
Development of Concurrent Object-Oriented
Logic Programming Platform for the Intelligent
Monitoring of Anomalous Human Activities

Alexei A. Morozov1,4(B), Abhishek Vaish2, Alexander F. Polupanov1,4,
Vyacheslav E. Antciperov1, Igor I. Lychkov3,

Aleksandr N. Alfimtsev3, and Vladimir V. Deviatkov3

1 Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Moscow, Russia
2 Indian Institute of Information Technology, Allahabad, India
3 Bauman Moscow State Technical University, Moscow, Russia

4 Moscow State University of Psychology & Education, Moscow, Russia
morozov@cplire.ru

Abstract. The logic programming approach to the intelligent monitor-
ing of anomalous human activity is considered. The main idea of this
approach is to use first order logic for describing abstract concepts of
anomalous human activity, i.e. brawl, sudden attack, armed attack, leav-
ing object, loitering, pickpocketing, personal theft, immobile person, etc.
We have created a research led software platform based on the Actor
Prolog concurrent object-oriented logic language and a state-of-the-art
Prolog-to-Java translator for examining the intelligent visual surveil-
lance. A method of logical rules creation is considered in relation to
the analysis of anomalous human behavior. The problem of creation of
special built-in classes of Actor Prolog for the low-level video processing
is discussed.

Keywords: Anomalous human activity · Intelligent visual surveillance ·
Object-oriented concurrent logic programming · Actor Prolog

1 Introduction

Human activity recognition is a rapid growing research area with important
application domains including security and anti-terrorist issues [1,6,7]. Recently
logic programming was recognized as a promising approach for dynamic visual
scenes analysis [4,8,17–19]. The idea of the logic programming approach is in
usage of logical rules for description and analysis of people activities. To approach
the problem, knowledge about object co-ordinates and properties, scene geome-
try, and human body constraints is encoded in the form of certain rules in a logic
programming language and is applied to the output of low-level object/feature
detectors. There are several studies based on this idea. In [4] a system was
designed for recognition of so-called long-term activities (such as fighting and
meeting) as temporal combinations of short-term activities (walking, running,
inactive, etc.) using a logic programming implementation of the Event Calculus.
c© Springer International Publishing Switzerland 2015
G. Plantier et al. (Eds.): BIOSTEC 2014, CCIS 511, pp. 82–97, 2015.
DOI: 10.1007/978-3-319-26129-4 6

Development of Concurrent Object-Oriented Logic Programming 83

The ProbLog state-of-the-art probabilistic logic programming language was used
to handle the uncertainty that occurs in human activity recognition. In [19] an
extension of predicate logic with the bilattice formalism that permits processing
of uncertainty in the reasoning was proposed. The VidMAP visual surveillance
system that combines real time computer vision algorithms with the Prolog based
logic programming had been proposed by the same team. S. O’Hara [18] com-
municated the VERSA general-purpose framework for defining and recognizing
events in live or recorded surveillance video streams. According to [18], VERSA
ensures more advanced spatial and temporal reasoning than VidMAP and is
based on SWI-Prolog. F.A. Machot et al. [8] have proposed real time complex
audio-video event detection based on the Answer Set Programming approach.
The results indicate that this solution is robust and can easily be run on a chip.

Research indicates that conventional approaches to human behavior recogni-
tion include low-level and high-level stages of video processing. In this paper, we
addressed the problem of the high-level semantic analysis of people activity. We
have created a research led software platform based on the Actor Prolog concur-
rent object-oriented logic language [9–14] and a state-of-the-art Prolog-to-Java
translator [15] for implementation of the logical inference on video scenes. The
Prolog-to-Java translator provides means for a high-level concurrent program-
ming and a direct access to the low-level processing procedures written in Java.

In the case of simple human behavior, a set of logic program rules can be
created manually on the basis of a priori knowledge of the particular behavior fea-
tures, for example, speed of moving, but in the case of complex spatio-temporal
behavior, special methods of automatic logical rules creation are to be developed.

We have described our first experiments in the area of human activity recog-
nition in Sect. 2. The problem of creation of special built-in classes of the Actor
Prolog logic language for the low-level video processing is discussed in Sect. 3.
A method of logical rules creation based on a hierarchy of fuzzy finite state
automata is briefly considered in Sect. 4.

2 Logical Analysis of Manually Marked Videos

On the first stage of the research, we have performed several experiments on
analysis of manually marked videos that is traditional approach in the area. The
CAVIAR data sets [5] were used. The CAVIAR data sets are annotated using
the XML-based Computer Vision Markup Language (CVML). The structure of
CVML is simple enough, so we read it using the ‘WebReceptor’ built-in class
of the Actor Prolog for XML/HTML parsing. The CVML annotations contain
information about co-ordinates of separate persons and groups of persons in
videos. So, our experiments have pursued the following goals:

1. To check if the Actor Prolog system is fast enough to process videos in real
time even without performing low-level analysis.

2. To check if there is enough information about the positions of persons for
accurate estimation of the velocity and the acceleration of separate personages
in the video scene.

84 A.A. Morozov et al.

Fig. 1. An example of CAVIAR video with a case of abrupt motions.

Fig. 2. The logic program has recognized that two persons were fighting.

The latter issue is important because the accurate estimation of the velocity
and/or acceleration opens a way for the recognition of so-called abrupt motions
of objects [4]. This kind of motions is necessary for recognition of several long-
term activities (such as fighting or sudden attack), though recognition of abrupt
motions is not usually provided by standard low-level analyzing procedures. The
abrupt motions are not marked in the CAVIAR annotations as well.

An example of abrupt motion recognition is shown in Figs. 1 and 2. A program
written in Actor Prolog uses given co-ordinates of two persons to estimate the
distance between them and the 2-nd derivative of the co-ordinates to detect
abrupt motions.

A logical rule describes an abnormal behavior (fighting) as a conjunction of
two conditions:

1. Several persons have met sometime and somewhere.
2. After that they implement abrupt motions.

The text of the logic program is not given here for brevity. After recognition of
these two conditions, the logic program has decided that there was a case of a
scuffle and has indicated the fighting persons by a red rectangle (see Fig. 2).

This example demonstrates a possibility of recognition of video scenes seman-
tics using the logical inference on results of the low-level recognition of sep-
arate objects; however one can see the following bottle-neck of the approach.

Development of Concurrent Object-Oriented Logic Programming 85

Manually defined co-ordinates of the objects were used for estimation of their
acceleration and nobody can guarantee that automatic low-level procedures will
provide exact values of co-ordinates that are good enough for numerical differen-
tiation. So, the discussion on the high-level recognition procedures is impossible
without consideration of underlying low-level recognition methods.

The second issue of this example is whether it is useful to separate the recog-
nition process into concurrent sub-processes implementing different stages of
the high-level logical inference. Working intensities of different sub-processes are
different. For example, the differentiation of co-ordinates requires more computa-
tional resources and another sub-process that implements recognition of people
behavior could wait for the results of differentiation.

3 Advanced Logic Analysis of Video Scenes

On the next stage of the research, we have implemented experiments on video
analysis based on the automatically extracted information about co-ordinates
and velocity of blobs in video scenes.

3.1 Implementation of Base Low-Level Video
Processing Procedures

A promising approach for implementation of the low-level recognition procedures
in a logic language is usage of the OpenCV computer vision library and we are
planning to link Actor Prolog with the JavaCV library that is a Java inter-
face to OpenCV. Nevertheless, Java has enough standard tools to solve simple
image processing/recognition problems and we have started our experiments with
pure Java.

We have created low-level Java procedures [16] that implement several basic
recognition tasks:

1. Background subtraction;
2. Discrimination of foreground blobs;

Fig. 3. A low-level procedure discriminates trajectories (violet lines) of objects and
moments of their interactions (green circle marks and blue links).

86 A.A. Morozov et al.

3. Tracking of the foreground blobs over time;
4. Detection of interactions between the blobs.

The first experiments have demonstrated clearly that the exact estimation of
an object velocity was impossible without taking into account the interactions
of objects (see Fig. 3), because of edge effects of differentiation in the interaction
points.

After implementation of the object interactions check, we have got tracks
that were accurate enough to determine whether a person is walking or running.
In the next section, we will describe an approach to lower boundary estimation
of blob velocity and discuss its possible application to the detection of anomalous
behavior of people.

3.2 A Fast Algorithm for Estimation of Object Velocity

At this stage of research, we use standard method of recovering physical co-
ordinates of objects in a scene, based on computing inverse matrix of projective
transformation by co-ordinates of four defining points. A well-known disadvan-
tage of this method is so-called ground plane assumption, that is, one cannot
compute co-ordinates of body parts that are situated outside from a pre-defined
plane. Usually, this pre-defined plane is a ground one and we can estimate prop-
erly the co-ordinates of person’s shoes only. Generally speaking, this problem
cannot be avoided in the framework of single camera approach, nevertheless,
our idea is in usage of object velocity (but not co-ordinates) for the anomalous
behavior detection and this point is exploited in the following algorithm.

We consider simplified rectangle blobs describing moving objects in the scene
(see example in Fig. 5). Co-ordinates of every corner of the blob are recovered
using the inverse matrix of the projective transformation. Then, one compares
the co-ordinates of corresponding corners of the blob in consecutive frames and
calculates the first derivative of their co-ordinates. The idea is that only the
corners situated in the ground plane give realistic estimations of velocity and
other corners give greater values because upper parts of body visually correspond
to more distant points in the ground plane. So, we exploit this property of
projective transformation and accept the lower boundary estimation of object
velocity as a minimal value of velocities (V11, V12, V21, and V22) of four blob
corners:

V ≈ min(abs(V11), abs(V12), abs(V21), abs(V22))

Note, that the algorithm does not recover the direction of blob movement. The
precision of the estimation of the blob velocity is not very high too, because of
the approximate nature of the algorithm. Moreover, the automatic detection of
blob shapes often produce illegal co-ordinates of blob corners because of common
problems with shades, obstacles, digital noise etc., and this issue is an additional
source of errors in the velocity estimation.

We have applied a median filtering to eliminate outliers in the velocity func-
tion. For instance, in the example in Fig. 4, the seven point median filter ensures

Development of Concurrent Object-Oriented Logic Programming 87

an estimation of blob velocity that is good enough for discrimination of running
and walking persons in the scene.

We have implemented this algorithm of velocity estimation in the library [16]
of low-level methods of image analysis of the Actor Prolog system and use it in
our experiments with the intelligent visual surveillance.

3.3 Creation of a Built-In Class of Actor Prolog

We have developed a special built-in class of the Actor Prolog language that
uses formerly described low-level recognition procedures. The ‘ImageSubtractor’
class of Actor Prolog implements the following tasks:

1. Video frames pre-processing including 2D-gaussian filtering, 2D-rank filtering,
and background subtraction.

2. Recognition of moving blobs and creation of Prolog data structures describing
the co-ordinates of the blobs in each moment.

3. Recognition of tracks of blob motions and creation of Prolog data struc-
tures describing the co-ordinates and the velocity of the blobs. The tracks are
divided into separate segments; there are points of interaction between the
blobs at the ends of a segment.

4. Recognition and ejection of immovable and slowly moving objects. This fea-
ture is based on a simple fuzzy inference on the attributes of the tracks (the
co-ordinates of the tracks and the average velocities of the blobs are consid-
ered).

5. Recognition of connected graphs of linked tracks of blob motions and creation
of Prolog data structures describing the co-ordinates and the velocity of the
blobs.

We consider two tracks as linked if there are interactions between the blobs
of these tracks. In some applications, it is useful to eject tracks of immovable
and slowly moving objects from the graphs before further processing of the video
scenes.

3.4 An Example of Anomalous Behavior Detection

Let us consider an example of logical inference on video. The input of the logic
program written in Actor Prolog is the Fight RunAway1 CAVIAR [5] dataset
sample (the sequence of JPEG files is used). The program will use no additional
information about the content of the video scene, but only co-ordinates of four
defining points in the ground plane (the points are provided by CAVIAR). The
total text of the logic program is not given here for brevity; we will discuss only
the program structure and main stages of data analysis.

The logic program creates two concurrent processes with different priori-
ties (see [12] for details about Actor Prolog model of asynchronous concurrent
computations). The first process has higher priority and implements video data
gathering. This process reads JPEG files and sends them to the instance of the

88 A.A. Morozov et al.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Time [sec]

V
el

o
ci

ty
 [

m
/s

ec
]

Beginning of
 the attack

Separation of
trajectories

Fig. 4. An example of estimation of velocities of blobs in a visual scene (see Fig. 3).
The X-axis denotes time in seconds and the Y-axis denotes lower boundary estimation
of blob velocities (m/sec). One can recognize walking persons (before the beginning of
the attack) and running persons (after the separation of the trajectories of persons) in
the diagram.

‘ImageSubtractor’ predefined class that implements all low-level processing of
video frames. The sampling rate of the video is 25 frames per second, so the
process loads a new JPEG file every 40 ms.

The second concurrent process implements logical analysis of collected infor-
mation and outputs results of the analysis. The analysis of video frames requires
more computational resources, but it does not suspend the low-level analysis,
because the second process has less priority. The analysis includes extraction
of blobs, tracking of the blobs over time, detection of interactions between the
blobs, creation of connected graphs of linked tracks of blobs, and estimation of
average velocity of blobs in separate segments of tracks (see Fig. 4). This infor-
mation is received by the logic program in a form of Prolog terms describing the
list of connected graphs.

The ‘ImageSubtractor’ class uses the following data structures for describ-
ing connected graphs of tracks (note, that the DOMAINS, the PREDICATES,
and the CLAUSES program sections in Actor Prolog have traditional meaning
developed in the Turbo/PDC Prolog systems):

DOMAINS:
ConnectedGraph = GraphEdge*.
GraphEdge = {

frame1: INTEGER,
x1: INTEGER,
y1: INTEGER,
frame2: INTEGER,
x2: INTEGER,
y2: INTEGER,
inputs: EdgeNumbers,
outputs: EdgeNumbers,
identifier: INTEGER,

Development of Concurrent Object-Oriented Logic Programming 89

coordinates: TrackOfBlob,
mean_velocity: REAL
}.

EdgeNumbers = EdgeNumber*.
EdgeNumber = INTEGER.
TrackOfBlob = BlobCoordinates*.
BlobCoordinates = {

frame: FrameNumber,
x: INTEGER,
y: INTEGER,
width: INTEGER,
height: INTEGER,
velocity: REAL
}.

That is, connected graph is a list of underdetermined sets [9] denoting sep-
arate edges of the graph. The nodes of the graph correspond to points where
tracks cross, and the edges are pieces of tracks between such points. Every edge
is directed and has the following attributes: numbers of first and last frames
(frame1, frame2), co-ordinates of first and last points (x1, y1, x2, and y2), a
list of edge numbers that are predecessors of the edge (inputs), a list of edge
numbers that are followers of the edge (outputs), the identifier of corresponding
blob (an integer identifier), a list of sets describing the co-ordinates and the
velocity of the blob in different moments of time (coordinates), and an average
velocity of the blob in this edge of the graph (mean velocity).

Fig. 5. A logical inference has found a possible case of a sudden attack in the graph
of blob trajectories. Rectangle blobs are depicted by yellow lines, blob trajectories are
depicted by red lined, moments of interactions between blobs are depicted by green
circles and blue links (Color figure online).

The logic program checks the graph and looks for the following pattern of
interaction among several persons: if two or more persons met somewhere in the
scene, and one of them has walked (not run) before this meeting, and one of them
has run (not walked) after this meeting, the program considers this scenario as a

90 A.A. Morozov et al.

kind of a running away and a probable case of a sudden attack or a theft. So, the
program alarms if this kind of sub-graph is detected in the total connected graph
of tracks. In this case, the program draws all tracks of the inspected graph in red
and outputs the “Attention!” warning in the middle of the screen (see Fig. 5).

One can describe formally the concept of a running away using defined con-
nected graph data type.

PREDICATES:
is_a_running_away(

ConnectedGraph,
ConnectedGraph,
ConnectedGraphEdge,
ConnectedGraphEdge,
ConnectedGraphEdge) - (i,i,o,o,o);

We will define the is a running away(G,G,P1, E, P2) predicate with the
following arguments: G is a graph to be analyzed (the same data structure is used
in the first and the second arguments), E is an edge of the graph corresponding
to a probable incident, P1 is an edge of the graph that is a predecessor of E,
P2 is an edge that is a follower of E. Note that G is an input argument of the
predicate and P1, E, and P2 are output ones. Here is an Actor Prolog program
code with brief explanations:

CLAUSES:
is_a_running_away([E|_],G,P1,E,P2):-

E == {inputs:I,outputs:O|_},
O == [_,_|_],
walking_person(I,G,P1),
running_person(O,G,P2),!.

is_a_running_away([_|Rest],G,P1,E,P2):-
is_a_running_away(Rest,G,P1,E,P2).

walking_person([N|_],G,P):-
get_edge(N,G,E),
is_a_walking_person(E,G,P),!.

walking_person([_|Rest],G,P):-
walking_person(Rest,G,P).

running_person([N|_],G,P):-
get_edge(N,G,E),
is_a_running_person(E,G,P),!.

running_person([_|Rest],G,P):-
running_person(Rest,G,P).

get_edge(1,[Edge|_],Edge):-!.
get_edge(N,[_|Rest],Edge):-

N > 0,
get_edge(N-1,Rest,Edge).

In other words, the graph contains a case of a running away if there is an edge
E in the graph that has a predecessor P1 corresponding to a walking person and

Development of Concurrent Object-Oriented Logic Programming 91

a follower P2 that corresponds to a running person. It is expected also that E
has more than one follower (it is a case of a branching in the graph)1.

is_a_walking_person(E,_,E):-
E == {mean_velocity:V|_},
V <= 0.5,!.

is_a_walking_person(E,G,P):-
E == {inputs:I|_},
walking_person(I,G,P).

That is, the graph edge corresponds to a walking person if the average blob
velocity in this edge is less or equal to 0.5 m/s, or the edge has a predecessor
that corresponds to a walking person.

is_a_running_person(E,_,E):-
E == {mean_velocity:V|_},
V >= 1.0,!.

is_a_running_person(E,G,P):-
E == {outputs:O|_},
running_person(O,G,P).

The graph edge corresponds to a running person if the average velocity in
this edge is more or equal to 1 m/s, or the edge has a follower corresponding to
a running person.

Note that aforementioned rules use plain numerical thresholds to discriminate
walking and running persons for brevity. Better discrimination could be ensured
by a kind of a fuzzy check, which can be easily implemented using arithmetical
means of standard Prolog.

This example illustrates the possible scheme of a logic program implementing
all necessary stages of video processing including video information gathering,
low-level image analysis, high-level logical inference on the video scene, and
reporting the results of the intelligent visual surveillance.

4 A Method of Logical Rules Creation

The logical rules considered in the previous section were created manually on
the basis of a priori knowledge of the particular behavior, but we would like to
create logical rules automatically in cases of complex spatio-temporal behavior.
In this section, we describe the method of logical rules creation [3] based on a
hierarchy of fuzzy finite state automata.

Let T = {ti|ti ∈ N} be a discrete set of time instances with constant intervals
Δt = ti+1−ti between consecutive time instances, where [ts, te] = {t|ts ≤ t ≤ te}
is a time interval T . Suppose that each 0th level feature (a speed or a position)

1 Note, that in the Actor Prolog language, the operator == corresponds to the ordi-
nary equality = of the standard Prolog.

92 A.A. Morozov et al.

of each moving object θ from a set {θ1, θ2, . . . , θl} at a time instance t equals
yi0(θt), i0 ∈ {1, . . . , m0}, that we call a feature sample. Samples Yi0 [θts , θte] =
〈yi0(θts), . . . , yi0(θte)〉 , i0 ∈ {1, . . . ,m0} of a single 0th level feature at several
consecutive time instances ts, . . . , te during a [ts, te] time interval are called a
trend.

Let us consider the following situation. Two persons walk alongside two roads
that are perpendicularly directed towards their meeting point (intersection).
While person A is far from the intersection, person B slows down waiting for
person A. When person A enters the intersection, person B accelerates and runs
into person A.

Let us formalize the persons’ behavior. Let persons A and B walk along
perpendicular lines with the intersection point O. Let xOy be a rectangular co-
ordinate system such that the Ox axis corresponds to the A person and the
Oy axis corresponds to the B person (Fig. 6). Let us consider each person as a
rectangle and the co-ordinates of the centroid of the rectangle as the co-ordinates
of the person. Suppose that persons move strictly along the co-ordinate axes and
current positions of persons A and B can be determined by single co-ordinates
ys(θA

t) and ys(θB
t) respectively. The ys(θA

t), ys(θB
t) co-ordinates of the persons

A and B are considered as first features. The yv(θA
t), yv(θB

t) speed values of the
persons are considered as second features.

ys(t
B)

yv(t
B)ys(t

A)

yv(t
A)

x

y

O

A

B

Fig. 6. Two persons in the rectangular co-ordinate system.

In order to estimate velocities one should specify an observation time interval
[ts, te] = {t|ts ≤ t ≤ te} and time instances ti ∈ [ts, te]. Linguistic vari-
ables are specified and behavior template models are defined as in [3]. Let
position(θA), speed(θA) and position(θB), speed(θB) be linguistic variables that
describe positions and speed values of persons A and B. The position(θA) and
position(θB) linguistic variables assume linguistic values far(θX), near(θX),
and inside(θX). The speed(θA) and speed(θB) linguistic variables assume lin-
guistic values high(θX) and low(θX).

Fuzzy sets corresponding to linguistic values far(θX), near(θX), inside(θX)
and high(θX), low(θX) are shown in Fig. 7. Fuzzy sets shown in Fig. 7 are used

Development of Concurrent Object-Oriented Logic Programming 93

Fig. 7. (a) Fuzzy sets corresponding to linguistic values far(θX), near(θX), and
inside(θX); (b) Fuzzy sets corresponding to linguistic values low(θX) and high(θX).

Fig. 8. (a) The Mpos(θX) first level automaton; (b) The Mspeed(θA) first level automa-
ton.

to define first level template automata Mpos(θX), Mspeed(θA), and Mspeed(θB) that
describe position and speed of persons A and B.

An automaton Mpos(θX) shown in Fig. 8(a) determines a sequence of the lin-
guistic values [far(θX), near(θX), inside(θX)] of the variable position(θX). The
automaton graph is based on a chain of allowed states b11−b12−b13 correspond-
ing to the values of the determined sequence. b11 is the initial state (marked by
the input arrow in Fig. 8(a)) and b13 is the final state of the automaton (the
output arrow in Fig. 8(a)). State transitions are specified below. If the input lin-
guistic value corresponds to the current state, then automaton retains its current
state. If the input linguistic value corresponds to the next allowed state, then
the automaton moves to that state. Automaton moves to the b14 denied state
if an input linguistic value violates the allowed linguistic values sequence of the
automaton. Note that the automaton cannot leave the denied state.

Automata Mspeed(θA) and Mspeed(θB) are presented in Figs. 8(b) and 9(a).
Let us define the second level template automaton that describes the joint

persons’ behavior. Let condition(θA, θB) be a linguistic variable that assumes
linguistic values safe(θA, θB), warning(θA, θB), and unsafe(θA, θB), where

safe(θA
t , θB

t) = [pos(θA
t) = far(θA)] ∧ [pos(θB

t) = far(θB)] (1)

94 A.A. Morozov et al.

Fig. 9. (a) The Mspeed(θB) first level automaton; (b) The Mcondition(θA,θB) second level
automaton.

warning(θA
t , θB

t) =([pos(θA
t) = near(θA)] ∧ [speed(θB

t) = high(θB)]) (2)

∨ ([speed(θA
t) = high(θA)] ∧ [pos(θB

t) = near(θB)])

unsafe(θA
t , θB

t) = [pos(θA
t) = inside(θA)] ∧ [pos(θB

t) = inside(θB)] (3)

Each linguistic value of the condition(θA, θB) linguistic variable corresponds
to a composite fuzzy set. The multidimensional domain of the composite fuzzy
set is a Cartesian product of the domains of the corresponding fuzzy sets [3].
According to Eq. (1), the domain of the safe(θA

t , θB
t) linguistic value is defined

as follows:

dom[safe(θA
t , θB

t)] = dom[far(θA)] × dom[far(θB)],

where dom[E] is the domain of a fuzzy set E and × is the Cartesian product.
A membership function is expressed as follows:

a = b ∧ c =⇒ Ra(yb, yc) = min{Rb(yb), Rc(yc)} (4)
a = b ∨ c =⇒ Ra(yb, yc) = max{Rb(yb), Rc(yc)} (5)

a = ¬b =⇒ Ra(yb) = 1 − Rb(yb) (6)

where a, b, and c are fuzzy sets; RE is a membership function of a fuzzy set
E, determined on the dom[E] domain; yb ∈ dom[b] and yc ∈ dom[c] are feature
values from corresponding domains.

According to Eq. (4), the membership function of a composite fuzzy set spec-
ified on the conjunction of two fuzzy sets is equal to minimum value of the
membership functions of these fuzzy sets. The second level template automaton
Mcondition(θA,θB) that describes the joint persons’ behavior is shown in Fig. 9(b).

The computation scheme of the recognition process is presented in Fig. 10. It
includes five units for evaluation and processing of linguistic variables arranged
in two levels. Each unit computes value of corresponding linguistic variable and
inputs it to the corresponding automaton.

The recognition of the situation is implemented in the following way. Initially,
all first and second level automata have initial states. Then feature samples for

Development of Concurrent Object-Oriented Logic Programming 95

Fig. 10. The computation scheme of recognition.

consecutive time instances ti ∈ [ts, te] are passed by turn into the first level
units for evaluation and processing of the first level linguistic variables. The first
level units compute values of linguistic variables and pass them into the second
level unit for evaluation and processing of the second level linguistic variable
condition(θA, θB). The first and the second level automata may change their
states during the operation. Situation is recognized if all first and second level
automata have moved to their final states after the end of the processing of all
feature samples. Situation is not recognized if one automaton has not moved to
the final state at least.

The computation scheme based on the fuzzy finite automata can easily be
converted to a logic program; one can use standard techniques of transforming
finite state machines into the logic programs [2].

5 Conclusions

We have created a research led software platform based on the Actor Prolog
concurrent object-oriented logic language and a state-of-the-art Prolog-to-Java
translator for examining the intelligent visual surveillance. The platform includes
the Actor Prolog logic programming system and an open source Java library of
Actor Prolog built-in classes [16]. It is supposed to be complete for facilitation of
research in the field of intelligent monitoring of anomalous people activity and
studying logical description and analysis of people behavior.

Our study has demonstrated that translation from a concurrent object-
oriented logic language to Java is a promising approach for application of the

96 A.A. Morozov et al.

logic programming to the problem of intelligent monitoring of people activ-
ity; the Actor Prolog logic programming system is suitable for this purpose
and ensures essential separation of the recognition process into concurrent sub-
processes implementing different stages of high-level analysis.

In the paper, a specialized built-in class of the Actor Prolog language imple-
menting simple pre-processing of video data and low-level analysis of video scenes
concerning the problem of intelligent monitoring of people activity was demon-
strated. We have implemented a simple analysis of videos based on automat-
ically extracted information on the co-ordinates and velocities of blobs in the
video scene. It was shown that robust recognition of abrupt motions is impossi-
ble without accurate low-level recognition of body parts (face, hands). This is a
subject of further studies.

A method of logical rules creation is proposed for situation analysis in the
environment of moving objects. A formal method for representing situations
using hierarchy of fuzzy finite state automata was considered. Future work will
include comprehensive testing of the proposed methods on massive datasets and
development of fully automatic method for situation representation using real
feature trends.

Acknowledgements. We acknowledge a partial financial support from the Russian
Foundation for Basic Research, grant No 13-07-92694, and Department of Science and
Technology, Govt. of India, grant No DST-RFBR P-159.

References

1. Aggarwal, J., Ryoo, M.: Human activity analysis: a review. ACM Comput. Surv.
(CSUR) 43(3), 16:1–16:43 (2011)

2. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley, Boston
(1986)

3. Devyatkov, V.: Multiagent hierarchical recognition on the basis of fuzzy situa-
tion calculus. Vestnik, Journal of the Bauman Moscow State Technical University,
Natural Science & Engineering, pp. 129–152. Vestnik MGTU, Moscow (2005)

4. Filippou, J., Artikis, A., Skarlatidis, A., Paliouras, G.: A probabilistic logic pro-
gramming event calculus (2012). http://arxiv.org/abs/1204.1851

5. Fisher, R.: CAVIAR Test Case Scenarios. The EC funded project IST 2001 37540
(2007). http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

6. Junior, J., Musse, S., Jung, C.: Crowd analysis using computer vision techniques.
A survey. IEEE Signal Process. Mag. 27(5), 66–77 (2010)

7. Kim, I., Choi, H., Yi, K., Choi, J., Kong, S.: Intelligent visual surveillance–a survey.
Int. J. Control Autom. Syst. 8(5), 926–939 (2010)

8. Machot, F., Kyamakya, K., Dieber, B., Rinner, B.: Real time complex event detec-
tion for resource-limited multimedia sensor networks. In: Workshop on Activity
Monitoring by Multi-camera Surveillance Systems (AMMCSS), pp. 468–473 (2011)

9. Morozov, A.A.: Actor Prolog: an object-oriented language with the classical declar-
ative semantics. In: Sagonas, K., Tarau, P. (eds.) IDL 1999, pp. 39–53. Paris, France
(1999). http://www.cplire.ru/Lab144/paris.pdf

http://arxiv.org/abs/1204.1851
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://www.cplire.ru/Lab144/paris.pdf

Development of Concurrent Object-Oriented Logic Programming 97

10. Morozov, A.A.: On semantic link between logic, object-oriented, functional, and
constraint programming. In: MultiCPL 2002. Ithaca (2002). http://www.cplire.ru/
Lab144/multicpl.pdf

11. Morozov, A.A.: Development and application of logical actors mathematical appa-
ratus for logic programming of web agents. In: Palamidessi, C. (ed.) ICLP 2003.
LNCS, vol. 2916, pp. 494–495. Springer, Heidelberg (2003)

12. Morozov, A.A.: Logic object-oriented model of asynchronous concurrent compu-
tations. Pattern Recognit. Image Anal. 13(4), 640–649 (2003). http://www.cplire.
ru/Lab144/pria640.pdf

13. Morozov, A.A.: Operational approach to the modified reasoning, based on the
concept of repeated proving and logical actors. In: Salvador Abreu, V.S.C. (ed.)
CICLOPS 2007, pp. 1–15. Porto, (2007). http://www.cplire.ru/Lab144/ciclops07.
pdf

14. Morozov, A.A.: Visual logic programming method based on structural analysis and
design technique. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp.
436–437. Springer, Heidelberg (2007)

15. Morozov, A.A.: Actor Prolog to Java translation (in Russian). IIP-9, pp. 696–698.
Torus Press Moscow, Budva (2012)

16. Morozov, A.A.: A GitHub repository containing source codes of Actor Pro-
log built-in classes (including the Vision package) (2014). https://github.com/
Morozov2012/actor-prolog-java-library

17. Morozov, A.A., Vaish, A., Polupanov, A.F, Antciperov, V.E., Lychkov, I.I., Alfimt-
sev, A.N., Deviatkov, V.V.: Development of concurrent object-oriented logic pro-
gramming system to intelligent monitoring of anomalous human activities. In: Jr.,
A.C., Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds.) BIODEVICES 2014,
pp. 53–62. SCITEPRESS (2014). http://www.cplire.ru/Lab144/biodevices2014.
pdf

18. O’Hara, S.: VERSA–video event recognition for surveillance applications. M.S.
thesis, University of Nebraska at Omaha (2008)

19. Shet, V., Singh, M., Bahlmann, C., Ramesh, V., Neumann, J., Davis, L.: Predicate
logic based image grammars for complex pattern recognition. Int. J. Comput. Vis.
93(2), 141–161 (2011)

http://www.cplire.ru/Lab144/multicpl.pdf
http://www.cplire.ru/Lab144/multicpl.pdf
http://www.cplire.ru/Lab144/pria640.pdf
http://www.cplire.ru/Lab144/pria640.pdf
http://www.cplire.ru/Lab144/ciclops07.pdf
http://www.cplire.ru/Lab144/ciclops07.pdf
https://github.com/Morozov2012/actor-prolog-java-library
https://github.com/Morozov2012/actor-prolog-java-library
http://www.cplire.ru/Lab144/biodevices2014.pdf
http://www.cplire.ru/Lab144/biodevices2014.pdf

	Development of Concurrent Object-Oriented Logic Programming Platform for the Intelligent Monitoring of Anomalous Human Activities
	1 Introduction
	2 Logical Analysis of Manually Marked Videos
	3 Advanced Logic Analysis of Video Scenes
	3.1 Implementation of Base Low-Level Video Processing Procedures
	3.2 A Fast Algorithm for Estimation of Object Velocity
	3.3 Creation of a Built-In Class of Actor Prolog
	3.4 An Example of Anomalous Behavior Detection

	4 A Method of Logical Rules Creation
	5 Conclusions
	References

