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Abstract. Wavelet denoising effectiveness has been proven in neural
signal processing applications characterized by a low SNR. This non-
linear approach is implemented through the application of some thresh-
olds on the detail signals coming from a sub-band decomposition. The
computation of the thresholds could exhibit a high latency when involv-
ing some estimators such as the Median Absolute Deviation (MAD),
which is critical for real-time applications. When a VLSI implementa-
tion is pursued for low-power purposes, such as in the neuroprosthetic
field, these aspects cannot be overlooked. This paper presents an analysis
of the main VLSI hardware implementation figures related to this spe-
cific aspect of the signal denoising by wavelet processing. Xilinx System
Generator has been exploited as a design and co-simulation tool to ease
the hardware development on off-the-shelf FPGA platforms. The MAD
estimator has been both combinatorially and sequentially implemented,
and compared against the sample standard deviation. The study reveals
similar performance on the neural signals but dramatically worse imple-
mentation figures for the MAD. The combinatorial version of the MAD
actually prevents an efficient implementation on medium-small devices.
This result is important to perform a correct implementation choice for
implantable real-time systems, where the device size is relevant for an
usable realization.

Keywords: Wavelet denoising - Neural signal processing - FPGA -
Design tools

1 Introduction

Wavelet denoising (WD) is a non-linear filtering technique usually adopted to
remove the background noise added to the signal of interest, especially in pres-
ence of a Gaussian source whose spectrum overlaps the useful signal bandwidth.
Its effectiveness has been proven in several biomedical signal processing applica-
tions [1,19], including neural signals denoising [5]. When a poor signal to noise
ratio (SNR) is present, the adoption of WD can help in revealing even hidden
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events in the time domain [3]. Algorithmically, it consists of a sub-band decom-
position of the signal, thresholding (introducing the non-linearity) and recom-
position. Several methods for calculating the thresholds have been presented
in the scientific literature, with different performance both in terms of quality
(effectiveness) and efficiency. This issue is normally overlooked even though it is
actually important when real-time performance is required.

Some specific applications such as neural signal processing for motor /sensory
neuroprostheses could benefit from the adoption of WD [3]. In this case, in gen-
eral, both real-time performance and low power dissipation are required, all
the more so when the device is aimed to be implanted. From this perspective,
Application Specific Integrated Circuits (ASICs) represent the most powerful
implementation platform, even though their design requires highly specific skills
and a longer development time [13]. Since the outcome of the design process is
quite inflexible, taking into account the quickly mutable environment generated
by the advancements of the research in biomedical signal processing, the adop-
tion of tools for automatic creation of hardware description language (HDL)
designs can speed up the prototyping phase on Field Programmable Gate Array
(FPGA) or ASIC. Examples of such tools are ORCC! or Xilinx System Gener-
ator?. Without specific add-ons, these tools are generally rather ineffective for
low-power design [15]. The integration with tools such as Simulink enables a
faster development thanks to the possibility of considering the implementation
at an higher level.

This paper presents an analysis of the main VLSI hardware implementa-
tion figures related to the specific aspect of the threshold estimation in wavelet
denoising for neural signal processing. The threshold estimation stage, which
must iteratively evaluate the average level of the noise affecting the signal of
interest, is marginally considered in the largest part of the applications. Except
when a fixed threshold is used [7], the estimation of the standard deviation of
the noise is usually required. The Median Absolute Deviation (MAD), known to
be a robust estimator of the dispersion in presence of outliers, is compared here
to the sample standard deviation in terms of effectiveness and efficiency when
the algorithm is implemented in hardware on an FPGA platform, in the light
of a perspective development of an implantable neural signal processing ASIC.
Both combinatorial and sequential versions of the MAD have been implemented,
along with sample standard deviation and a pure software implementation on a
MicroBlaze processor. The results in terms of area and latency reveal the poor
scalability of the MAD implementations and the comparable effectiveness with
simpler approaches, resulting from the evaluation onto an open neural signals
database [17].

2 Wavelet Denoising of Neural Signals

WD has been used in neural signal processing since a long time to cancel the
background noise that can be approximated to a Gaussian distributed
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Fig. 1. Block Diagram of the Wavelet Denoising scheme using the a-trous approach.

random source [14]. For some wavelets, WD can be implemented using a sys-
tem of quadrature mirror Finite Impulse Response (FIR) filters for each stage.
The input signal is decomposed in its low-frequency and high-frequency bands,
respectively called “approximation” and “detail”. The approximation is split
again in the same way repeatedly until the N—th level of decomposition has
been reached and the detail signals are thresholded, before the recomposition is
pursued, as can be seen in Fig. 1. The basic analysis elements are a low-pass H(z)
and an high pass G(2) filters. Being the Nyquist frequency of the approximation
one half of that of the incoming signal, the sample rate can be reduced (deci-
mated approach) so that the same filters can be used in every level without any
information loss [9]. Alternatively, the sample rate can be preserved upsampling
in each level the filter coefficients of the previous one, in the so called algorithme
a trous scheme [6]. In practice, the filters at the stage i are simply H(z%), G(2%)
for the analysis and the mirrored versions for the synthesis. Such a redundant
approach leads to the same time resolution in every level [11] and to shift invari-
ance [4]. When the N-th level has been computed, all the details are thresholded
either hard or soft, respectively whether the samples of the detail signals are sim-
ply cleared to zero if below the threshold or also the samples above threshold are
modified by subtracting the value of the threshold itself. During recomposition,
the sample-wise averaging between an approximation and the related detail can
be implemented as a simple sum provided that the coefficients of the synthesis
filters are multiplied by 0.5.

2.1 The Thresholding Aspects

The choice of the threshold influences the quality of the denoising so much that
even data-specific approaches have been presented so far [12]. The threshold can
be fixed [7] or adaptive [18], the same or different for all the details. In particular,
adaptive thresholds are typically computed estimating the rms or the standard
deviation o of the signal at the different levels of the decomposition and then
correcting them through a multiplicative factor. Different scaling factors have
been derived and are preferred by different authors, as for the Minimax [3],
Stein’s Unbiased Risk [8] or Universal [2] methods. The last one, chosen in this
work regardless the method used to estimate the standard deviation of the noise,
is defined as:
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0 =o+/2log M (1)

where M is the length of the signal frame in terms of number of samples.

For the estimation of the standard deviation of the noise, due to the robust-
ness to the presence of outliers®, usually the preferred method is the MAD,
defined as:

MAD = median; (| X; — median;(X;)|) (2)

Furthermore, because of the high-pass nature of the detail signals, it is com-
mon to implement the MAD as simply the median of the absolute value of the
details:

MAD = median; (|X;|) (3)

It has been proved that MAD = 0.67450. Block-on-line threshold adap-
tiveness can be guaranteed exploiting a sliding window approach with variable
window length and overlap. For the sake of the comparison between the different
threshold estimation techniques in terms of performance and hardware figures,
the overlapping parameter is without effects. For the computation of the sample
standard deviation exploiting this sliding window approach, starting from the
technique used in [16] and thanks to the zero-mean nature of the high-pass detail
signals, for each N new input samples in the window, the related sum of squares
for the j-th decomposition level can be computed as:

N
sj =y din] (4)

and then used to determine ¢ for the 4-time larger windows as:

Thanks to the sliding window approach, the threshold value is updated every
N sampling periods (M = 4 x N). The longer the observation window, the better
the estimation accuracy, provided that instantaneous variations (neural spikes)
do not influence the threshold computation.

3 Hardware System Design

From an hardware perspective, when the final goal is a low-power embedded
architecture, the MAD estimation is effective for multiplier-free systems. Never-
theless, it pays the absence of actual mathematical computations with an algo-
rithmic complexity associated to the required sorting of one half of the block
of data. It is also onerous from the memory perspective when the block size

3 In neural signal processing, the spikes corresponding to the action potentials of the
active neurons can be considered as partly composed of outlier samples in recordings
with an average SNR.
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is huge. For such reasons, the MAD is more suited for off-line processing than
for on-line systems [16,20] such as those required in brain-machine interfaces
exploiting adaptive thresholds. Threshold adaptation is useful when the noise
process in non-stationary, for instance in real-world scenarios when the subject
moves in a real environment characterized by different noise sources spread over
the space.

For the analysis of the hardware features associated to the different design
choices, the “algorithme d-trous” has been selected using the simplest Haar
wavelet to reduce the memory footprint. The approximation signal at the 4"
level has been cleared, so that at 12 kHz the overall processing without the non-
linearity introduced by denoising would restrict the bandwidth between 375 Hz
and the Nyquist frequency [16]. The FIR filters have been implemented in the
Transposed Direct-Form I, not implementing specific optimizations since the fil-
ters banks are the same regardless the chosen threshold estimation strategies.
The Universal scaling has been selected, as already said. The overlap between
adjacent windows has been fixed to three quarters of the window length.

Hereafter, we consider the two alternative solutions implemented for the esti-
mation of the standard deviation of the noise:

— the M AD of the signal, using either a combinatorial or an iterative approach;
— the sample standard deviation o of the signal.

In order to evaluate the different solutions from a hardware perspective, we
adopted Xilinx System Generator to speed-up the hardware design and perform
accurate co-simulations. The final design can be straightforwardly mapped onto
an FPGA board for performance evaluation. In our tests, a Xilinx Virtex-5
LX330 has been chosen as target device for its considerable amount of available
resources.

The estimation of the standard deviation of the noise has been performed
as described in the previous section. For the M AD implementation, on System
Generator the absolute value of each input sample is extracted, then the median
is computed on the whole incoming window of M input rectified samples and the
multiplication by a constant is performed to estimate the standard deviation.

As already said, the median value calculation requires the hardware imple-
mentation of a sorting algorithm which represents a costly operation from a
hardware point of view. A first possible solution can be the unfolded sorter
presented in [2], for which the Simulink model considering windows of M = 8
input samples is presented in Fig. 2. The basic sorting cell makes the comparison
between two inputs A and B and swaps them if A < B. It is possible to demon-
strate that, if the comparators work in parallel, M — 1 steps are sufficient to
properly perform the sorting of M elements. The output is updated in a combi-
natorial way every time a sample arrives in input at the sampling frequency fs,
after the proper shift of the values saved into the registers needed to prepare the
input samples for the processing. The M AD is computed as the arithmetic mean
of the two central elements of the sorted array for an even number of samples.

This solution clearly presents scalability issues with the enlargement of the
observation window. In this case, beyond the penalty associated to the huge
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Fig. 2. The Simulink Model of the sorting algorithm for the median estimation using
an unfolded combinatorial approach for windows with M=8 samples.

amount of hardware resources, the increasing internal critical path determined
by the cascade of comparators largely limits the maximum operating frequency.

To overcome such problems, an iterative (folded) approach to the implemen-
tation of the sorting algorithm, able to reuse the same resources at each step,
can be used. It is similar to the one proposed in [10] about the Burrows-Wheeler
transform but in this work it has been adapted to the wavelet denoising case. In
this case, the sorting strategy uses only two levels of comparators. At the begin-
ning, the swaps are performed only for the registers related to odd adjacencies,
activating only the first level of comparators. If the vector is not yet sorted, at
the next iteration only the comparators of the second level are active, and so
on until the sorting process is completed. It is possible to demonstrate that the
number of necessary steps is M /2 if M is the number of samples to sort. Figure 3
shows the iterative scheme.

The swp signal coming out from the comparator block is used to specify that
the two inputs have been swapped. The samples in input to the parallel sorter,
belonging to each observation window, are temporarily saved into a single-port
memory. Immediately after the last sample of the window has been saved in this
memory, its content is copied into the registers and the sorting process can start.
When all the swp signals are equal to 0 during the last necessary iteration, the
input vector is correctly sorted. A finite state machine, one for each Threshold
Estimator block (i.e. one for each decomposition level), is used to control the
various phases of the process.

In order to compare the hardware characteristics of these models of threshold
estimation based on the M AD against those of a traditional sample standard
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Fig. 3. The Simulink Model of the sorting algorithm for the median estimation using
an iterative approach for windows with M=8 samples.

deviation as described above, an hardware model has been designed also for such
an approach.

Figure 5 shows the Simulink model for this implementation. Every time an
input sample arrives, it is squared and added to the current value of s;. After N
samples, the final value of s; is saved in one of the 4 locations of the single-port
RAM used as circular buffer in order to determine the correct value of o over
the sliding window. It involves the hardware implementation of the squared root
as the final processing stage for the threshold estimation able to work with the
proper internal fixed point representation. To this aim, we chose to exploit an
iterative approach that is possible to demonstrate is able to converge in less than
64 iterations in case of input samples with a 16-bit fixed-point representation
using 15 bits of fractional part, achieving a good level of accuracy. Its pseudocode
is presented hereafter.

max = sqrt_in;

min = 0;

for(int i=0; i<ITERS; i++)
avg = (max+min)/2;
avg_2 = avg*avg;
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if (avg_2 > sqrt_in) max = avg;
else min=avg;
sqrt_out = min;

It operates as a bisection research method, dividing by 2 at each iteration
the range of possible values in which the result is searched until the algorithm
converges to a specific output value. This algorithm determines the hardware
implementation shown in Fig. 4.

MAX

Pirst, gh

M
R

d
Genera tor
pleac S gD
£ - B

Fig. 4. The Simulink Model of the Squared Root block.

Regardless the chosen approach, the value of the threshold 6 obtained through
the Universal scaling approach is sent in input to the Thresholder block, able to
apply the hard thresholding on the detail samples. It should be also considered
that the value of 6 is different for the various levels.

4 Results

Before analysing the results in terms of hardware resources which are necessary
for the different solutions presented above, such solutions have been evaluated
from a functional perspective. A publicly available dataset of simulated neural
signals obtained from real physiological action potentials recorded from animals
at the central nervous system level has been used [17]. The synthetic signals
are obtained by linearly mixing an artificial sequence of real spikes from three
neurons to other spikes at random times and amplitudes, representative of the
background activity (of tunable intensity) of the neurons at a greater distance
from the recording electrodes. The sampling frequency has been scaled to 12 kHz
and the useful bandwidth is declared to be in the range 300 Hz - 3kHz.

4.1 Performance Analysis

Figure 6 shows in the first row the neural signal with a low level of background
noise used as input for the two hardware implementations based on the calcula-
tion of the M AD and of the sample standard deviation (the two versions of the
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Fig. 5. The Simulink Model of the Threshold Estimator block based on the calculation
of the sample standard deviation.

one implementing the M AD produce the same results). The next rows present
the related outputs considering observation windows of M = 4 x 64 samples.

It is possible to see that for both solutions, the wavelet denoising is able
to remove, after an initial transient, the background noise added to the neural
signal without cutting significant spikes. The same performance can be achieved
using the same input signal but with a stronger background noise for which it
is difficult to identify the various spikes on the raw signal, as can be shown in
the first row of the Fig. 7. Even using neural signals with very low SNR, the two
implementations behave similarly preserving the relevant spikes.

Then, we considered the possibility of enlarging the observation window in
order to provide a more significant frame for computing the statistics on the
signal. For example, Fig. 8 shows the outputs of the two solutions using M AD
and sample standard deviation in the case of windows of N = 128 samples
and a low level of background noise. The initial transient is obviously longer in
comparison to the previous cases.

We also analysed the trend of the thresholds in output from the same decom-
position level for different observation window lengths, for the two hardware
solutions. The aim is to verify which is the minimum value of IV, considering a
sliding window length of 4 x NN, that allows obtaining a good denoising.
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Fig. 6. Wavelet Denoising input and outputs: low level noise, N=64 samples.

As can be noticed from Fig. 9, after a variable transient period according to
the chosen value of IV, the longer the observation window the better the stability
of the threshold, not influenced by the presence of the neural spikes of interest.
In fact, in the case of N = 128, the threshold estimation assumes an almost
constant trend; the goal should be that of selecting the solution which provides
the best compromise in terms of threshold estimation and required hardware
resources.

4.2 Hardware Implementation Results

Synthesis results on a Xilinx FPGA Virtex-5 LX330 are presented in Table 1,
which shows the percentage of available slices and Look-up Tables (LUTs) needed
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Fig. 7. Wavelet Denoising input and outputs: high level noise, N=64 samples.

for the three considered threshold estimation blocks only, since the remainder of
the wavelet denoising implementation is the same regardless of this stage.

The solution based on the combinatorial (unfolded) M AD implementation,
as highlighted in Table 1, is absolutely inefficient, taking into account it has been
presented only for N = 8, with the usual 4-times larger observation window.
A rough estimation of the hardware resources required in case of N = 32 would
lead to more than 330kLUT over the 207360 available ones, thus exceeding the
considerable amount of physical resources on the target FPGA. The huge amount
of LUTSs, compared to the folded version, is incompatible with a real implemen-
tation in the context of this application, taking into account that the observation
window length should be large enough to properly estimate the statistics of a
signal sampled at 12 kHz.
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Fig. 8. Wavelet Denoising input and outputs: low level noise, N=128 samples.

FPGA synthesis results demonstrate that the wavelet denoising solution
based on the threshold estimation by the sample standard deviation allows mini-
mizing the necessary hardware resources regardless the length of the observation
window. Furthermore, the usage of slices and LUTs of the M A D-based solution,
even using a folded approach, is clearly incompatible with an efficient implemen-
tation of this processing stage, especially compared to the same data related to
the sample standard deviation based implementations.

4.3 Latency Execution Evaluation

To evaluate the efficiency of the various approaches at the enlargement of the
observation window, a cycle-accurate profiling has been performed. It has been
carried out on the first-level detail obtained when processing the low-noise signal
used for the performance evaluation. These results have been compared to the
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Fig. 9. Threshold variation over time using different lengths of the observation window.

corresponding values of execution latency of a totally-software solution. To this
aim, an equivalent C code for each solution has been implemented on a MicroB-
laze processor and mapped on the same FPGA, analysing the latency by means
of a counter which is enabled when the last detail sample of the current data
block is received and disabled when the threshold has been computed.

Obviously, when implementing the folded M AD approach, the latency is
data-dependent and related to the number of swaps performed during the sorting
of the absolute values passed in input to the processing stage, as can be seen
in Table 2. This is not true for the sample standard deviation, which with the
proposed approach always requires 68 cycles in hardware. For the M AD, the
number of swaps on a real signals follows a Gaussian distribution, as evaluated
through the Lilliefors tests. For this reason, for different values of M we reported
in Table 2 the minimum and maximum observed number of swaps, the mean and
standard deviation. The range of variation, mean value and standard deviation
of the execution latency is also provided for both the hardware and the software
solutions, evaluating them on the whole detail signal and verifying even in this
case a Gaussian distribution by the same statistic test. As can be seen, the
number of execution cycles is always higher for the software implementation of
the M AD, and grows with the size of the observation window.
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Table 1. FPGA synthesis results for the Threshold Estimator varying the length of
the observation window.

N | fmaz[M H?Z]|Slice Registers LUTs
Sample std |32 |417.34 205 / 207360 (0.07 %) | 142 / 207360 (0.04 %)
64 1416.61 206 / 207360 (0.07 %) 144 / 207360 (0.04 %)
128 416.02 207 / 207360 (0.07%) | 147 / 207360 (0.04%)
unfolded MAD |8 |417.08 558 / 207360 (0.27 %) 20270 / 207360 (9.77 %)
folded MAD |32 |242.78 2493 / 207360 (1.20%) | 7164 / 207360 (3.45 %)
64 |246.70 4932 / 207360 (2.38 %) 14377 / 207360 (6.93 %)
128 221.42 9806 / 207360 (4.73 %) | 28861 / 207360 (13.91 %)

Table 2. Comparison of execution latency for the various approaches with respect to
a totally-software solution.

MAD
max min avg std
M=32 |Swaps 412 88 247 45
lat. HW sol.[cycles] | 139 59 114 19
lat. SW sol.[cycles] | 21070 | 16210 |18595 |679
M=64 | Swaps 1498 531 997 134

lat. HW sol.[cycles] | 294 209 239 26
lat. SW sol.[cycles] | 82960 | 68455 | 75455 | 2004
M=128 | Swaps 5426 2637 3987 |381
lat. HW sol.[cycles] | 600 360 518 69
lat. SW sol.[cycles] | 325240 | 283405 | 303755 | 5712

5 Conclusions

Despite the ASIC implementation of digital signal processing algorithms is usu-
ally the preferred choice when low-power requirements and high processing speed
are needed, the straightforward implementation of the best algorithmic solution
exploited in the field could lead to unsatisfactory results. This paper analysed
the particular case of the threshold computing for wavelet denoising algorithm.
This part of the algorithm is usually marginally considered, but could be in the
critical path when real-time update of the threshold is required.

In this paper, comparisons between a sample standard deviation and the wide-
spread M AD reveals similar functional performance with dramatically better
characteristic of the former in terms of hardware implementation, regardless the
M AD is implemented as a combinatorial trellis as suggested by some authors or in
a more efficient folded version. A latency analysis also reveals the superior perfor-
mance of the sample standard deviation, jointly to its data-independence, which
is an important aspect for real-time implementations. The paper also stresses the
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benefit of using hardware-software co-simulations tools such as Xilinx System
Generator for rapid prototyping and verification on FPGA, which represents a
value added for the research in rapidly evolving fields such as neural engineering.
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