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Abstract. This paper investigates the problem of extracting sequence features
that can be useful in the construction of prediction models. The method intro-
duced in this paper generates such features by considering contiguous subse-
quences and their mutations, and by selecting those candidate features that have
a strong association with the classification target according to the Gini index.
Experimental results on three genetic data sets provide evidence of the superi-
ority of this method over other sequence feature generation methods from the
li-terature, especially in domains where presence, not specific location, of fea-
tures within a sequence is pertinent for classification.
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1 Introduction

Supervised sequence classification deals with the problem of learning models from
labelled sequences. The resulting models are used to assign appropriate class labels to
unlabelled sequences. Sequence classification methods can be used for example to
predict whether a segment of DNA is in the promoter region of a gene or not.

In general, sequence classification is more difficult than classification of tabular
data, mainly because of two reasons: in sequence classification it is unclear what
features should be used to characterize a given data set of sequences (e.g., Fig. 1 shows
three different candidate features whose presence, or lack of, in a sequence can be used
to characterize the sequence); and the number of such potential features is very large.
For instance, given a set of sequences of maximum length l, over an alphabet B, where
Bj j ¼ d symbols are considered as features, then there are dk potential features. Fur-
thermore, the number of potential features will grow exponentially as the length of
subsequences under consideration increases, up to dl. Thus, determining which features
to use to characterize a set of sequences is a crucial problem in sequence classification.

A mutation is a change in an element of a sequence. Like in DNA sequences, this
could result from unrepaired damage to DNA or from an error during sequence
replication. We are interested in whether these changes affect the sequences’ function.
Thus, we focus on generating features that represent mutation patterns in the sequences,
and on selecting the generated features that are most suitable for classification.
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More specifically, our proposed Mutated Subsequence Generation (MGS) algo-
rithm generates features from sequence data by regarding contiguous subsequences and
mutated subsequences as potential features. It first generates all contiguous subse-
quences of a fixed length from the sequences in the data set. Then it checks whether or
not each pair of candidate feature subsequences that differ in only one position should
be joined into a mutated subsequence. The join is performed if the resulting joint
mutated subsequence has a stronger association with the target class than the two
subsequences in the candidate pair do. If that is the case, the algorithm keeps the joint
subsequence and removes the two subsequences in the candidate pair from consider-
ation. Otherwise, the algorithm keeps the candidate pair instead of the joint mutated
subsequence. After all the generated candidate pairs of all lengths have been checked, a
new data set is constructed containing the target class and the generated features.

The features in the resulting data set represent (possibly mutated) segments of the
original sequences that have a strong connection with the sequences’ function. We then
build classification models over the new data set that are able to predict the function
(i.e., class value) of novel sequences.

The contributions of this paper are the introduction of a new feature generation
method based on mutated subsequences for sequence classification, and a comparison
of the performance of our algorithm with that of other feature generation algorithms.

2 Related Work

Feature-based classification algorithms transform sequences into features for use in
sequence classification [1]. A number of feature-based classification algorithms have
been proposed in the literature. For example, k-grams are substrings of k consecutive
characters, where k is fixed beforehand, see Fig. 1(a). Damashek used k-grams to
calculate the similarity between text documents during text categorization [2]. In [3],
the authors vary k-grams by adding gap constraints into the features, see Fig. 1(b).
Another kind of feature, k-gapped pair, is a pair of characters with constraint l2 − l1 = k,
where k is a constant, and l1 and l2 are the locations in the sequence where the
characters in the pair occur, see Fig. 1(c). The k-gapped pair method is used to generate
features for Support Vector Machines in [4, 5]. In contrast with our method, features
generated by their approach cannot represent mutations in the sequences.

Another method is mismatch string kernel [6]. It constructs a (k, m) – mismatch tree
for each pair of sequences to extract k-mer features with at most m mismatches. It then
uses these features to compute the string kernel function. A similarity between this

Fig. 1. Example of different candidate features for a given sequence. (a) 4-grams: AACT;
(b) 4-grams with one gap of size 2; (c) 2-gapped pair (TA,2).
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method and our method is that both generate features that are subsequences with
mutations. However, there are three major differences between them:

1. In mismatch string kernel, the features are generated from pairs of sequences and
used to update the kernel matrix. In contrast, our MSG method generates features
from the entire set of data sequences in order to transform the sequence data set into
a feature vector data set.

2. In the process of computing candidate mutated subsequences, our MSG method
does not only consider mutations in the subsequences, but also takes into account
correlations between these mutated subsequences and the target classes. In contrast,
the mismatch string kernel method disregards the latter part.

3. The mismatch string kernel method can be used in Support Vector Machines and
other distance based classifiers for sequence data. Our MSG approach is more
general as it transforms the sequences into feature vectors. In other words, the data
set that results from the MSG transformation can be used with any classifier defined
on feature vectors.

3 Background

3.1 Feature Selection

Feature selection methods focus on selecting the most relevant features of a data set.
These methods can help prediction models in three main aspects: improving the pre-
diction accuracy; reducing the cost of building the models; and making the models, and
even the data, more understandable.

To obtain the features that maximize classification performance every possible
feature set should be considered. However, exhaustively searching all the feature sets is
known to be an NP-hard problem [7]. Thus, a number of feature selection algorithms
has been developed based on greedy search methods like best-first and hill climbing
(see [8]). These greedy algorithms use three main search strategies: forward selection,
which starts with a null feature set and at each step adds the most important unselected
feature (according to a specific metric); backward deletion, which starts at the full
feature set and at each step removes an unimportant feature; and bi-directional
selection, which also starts at a null feature set and at each step applies forward
selection and then backward deletion until a stable feature set is reached.

3.2 CFS Evaluation

The Correlation-based Feature Selection (CFS) algorithm introduces a heuristic func-
tion for evaluating the association between a set of features and the target classes. It
selects a set of features that are highly correlated with the target classes, yet uncorre-
lated with each other. This method was introduced in [9]. In this paper, we use this
algorithm to select a subset of the generated features that is expected to have high
classification performance.
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3.3 Gini Index

In decision tree induction, the Gini index is used to measure the degree of impurity of
the target class in the instances grouped by a set of features [10]. Similarly in our
research, the Gini index is used to measure the strength of the association between
candidate features and the target class. Specifically, we use it during feature generation
to determine whether or not to replace a pair of subsequences (candidate features) that
differ just in one position with their joined mutated subsequence. Details are described
in Sect. 4.1. The Gini index of a data set is defined as: 1�P

c2C pðcÞ2, where C is the
set of all target classes, and p denotes probability (estimated as frequency in the data
set). Given a discrete feature (or attribute) X, the data set can be partitioned into disjoint
groups by the different values of X. The Gini index can be used to calculate the
impurity of the target class in each of these groups. Then, the association between
X and the target class can be regarded as the weighted average of the impurity in each
of the groups:GiniðXÞ ¼ P

x2X pðxÞ � ð1�
P

c2C pðc xj Þ2Þ.

4 Our MSG Algorithm

4.1 Feature Generation

Our Mutated Subsequence Generation (MSG) algorithm belongs in the category of
feature-based sequence classification according to the classification methods described
in [1]. The MSG algorithm transforms the original sequences into contiguous subse-
quences and mutated subsequences, which are used as candidate features in the con-
struction of classification models.

The MSG algorithm generates features of different lengths according to two
user-defined input parameters: the minimum length lmin and the maximum length lmax.
It first generates the candidate subsequences of length lmin, then length lmin þ 1, and all
the way to the subsequences of length lmax. Then it takes the union of all the generated
subsequences of different lengths. Finally, the MSG algorithm constructs a new data set
containing a Boolean feature for each generated subsequence (see Table 2 for an
example). Each sequence in the original data set is represented as a vector of 0’s and
1’s in the new data set, where a feature’s entry in this vector is 1 if the feature’s
corresponding subsequence is present in the sequence, and 0 if not.

The feature generation process consists of five main steps described below. Figure 2
shows an example of the transformation of a sequence data set into the subsequence
features, from Step a to Step d.

(a) The MSG algorithm generates all the contiguous subsequences of a specific length
from each original sequence;

(b) It divides the contiguous subsequences into n categories according to which class
they are most frequent in, where n is the number of different classes;

(c) For each category, it generates mutated subsequences based on the Gini index;
(d) It combines together all the features from each category;
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(e) It repeats Step a to Step d with a different length, until features of all the lengths in
the user defined range are generated. Then it combines these features prior to
constructing the new data set.

Computation of Contiguous Subsequences. Given k ≥ 1, a contiguous subsequence
of length k is a subsequence formed by taking k consecutive symbols from the original
sequence. For example, gc is a contiguous subsequence of length 2 in the sequence
gcta, while gt is not.

The MSG algorithm starts with the generation of contiguous subsequences. Sup-
pose that the original sequences have length t, and that the contiguous subsequences to
be computed have length k. First, each sequence is traversed and all of its contiguous
subsequences of k symbols are extracted from starting locations 1 through (t – k + 1).
Then, duplicate subsequences are removed. For example, Table 1 shows the contiguous
subsequence features of length 4 for the data set in Fig. 2, together with the number of
occurrences of each feature in data set sequences of a given target class.

Separation. In this step, the algorithm separates the contiguous subsequences into n is
the number of different classes in the data set. Each subsequence is assigned to a
category according to which class it is most frequent in. For example, the first four
features in Table 1 are assigned to Category 1, because they are more frequent in Class
1 than in Class 0, and the other four to Category 2. If a subsequence is maximally
frequent equally in more than one class, it is randomly assigned to one of those classes.

Generation of Mutated Subsequences. In this step, the MGS algorithm generates
mutated subsequences. The following terminology will be used in the description of
this step.

Fig. 2. Illustration of the mutated subsequence generation process from Step (a) to Step (d). In
this example, features of length 4, including mutated subsequences and contiguous subsequences,
are obtained. Here, the Gini index of each of the mutated subsequences ac[c|t]a and c[c|t]ag is
better than the Gini indexes of its forming contiguous subsequences.
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• Mutated Subsequence: A mutated subsequence is a subsequence of length k (k ≥ 1)
which contains r mutative positions, where 1 ≤ r ≤ k. In each mutative position,
there are two or more substitutions. In this paper, we consider mutated subse-
quences with only one mutative position. For example, in the subsequence g½c aj �t,
the second position is a mutative position, with two possible substitutions c and
a. Thus, a mutated subsequence has many instantiations, in our example gct and
gat. We say that a mutated subsequence is contained in an original sequence when
any of its instantiations is contained in the original sequence. For example, g½c aj �t is
contained in the sequence gata as well as in the sequence gata.

• Candidate Pair: a candidate pair is a pair of subsequences which are different from
each other in only one position. For instance, acca and acta is a candidate pair. The
candidate pair could also contain mutated subsequences, like for instance acca and
ac½t gj �a.

• Joinable Checking: joinable checking is used to determine whether or not to join
together a candidate pair of subsequences depending on their correlation with the
target class. In this paper, we use the Gini index to measure this correlation. For
example, suppose sub1 is acca and sub2 is acta in Table 1. Their joint sequence sub3
is ac½c tj �a. The original data set in Fig. 2 can be split into two groups by each one of
the subsequences in the pair: one group consists of the original data sequences which
contain the subsequence, marked as groupsubi1 ; the other group consists of the rest of
data sequences, marked as groupsubi2 . Taking sub1 as an example, there is only one
sequence in groupsub11 , which is in class 1 (accag); and there are three sequences in
groupsub12 , two of which are in class 0 (ccctg and gctaa), and the other one is in class
1 (actag). Thus, by using the formula in Sect. 3.3, we can calculate the Gini index

for sub1 as followings: impurityðgsub11 Þ ¼ 1� 0
1

� �2� 1
1

� �2¼ 0; impurityðgsub12 Þ ¼
1� 0

1

� �2� 1
1

� �2¼ 0:444; Giniðsub1Þ ¼ pðgsub11 Þ � impurityðgsub11 Þþ pðgsub12 Þ �
impurityðgsub12 Þ ¼ 0 � 1

4 þ 0:44 � 3
4 ¼ 0:333: Similarly, we calculate the values Gini

(sub2) = 0.333, Gini(sub3) = 0. Since sub3 has the best measure value, implying that
it has the strongest association with the target class, then the candidate pair sub1 and
sub2 is joinable.

Table 1. Contiguous subsequences of length 4 of the data sequences in Fig. 2, and their
frequency counts in each data set class.

Feature Class 0 Class 1

acca 0 1
ccag 0 1
acta 0 1
ctag 0 1
cact 1 0
actg 1 0
gcta 1 0
ctaa 1 0
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The MSG algorithm performs joinable checking on every candidate pair within
each category. Once a candidate pair is determined to be joinable, then the two sub-
sequences are joined together to create a new subsequence, called subi, and they are
also marked. Then the joinable checking is performed on subi with every other sub-
sequence in the category. If there are other subsequences that are joinable with, then
they are also joined together with subi and marked. Finally, subi is added into the
mutated subsequence set. After all candidate pairs are checked, the algorithm deletes
the marked subsequences and the duplicate mutated subsequences. A simplified pseudo
code of mutated subsequences generation is shown in Fig. 3.

Combination of Categories. In the previous step, some contiguous subsequences
might remain intact. That is, they are not joined with other subsequences. Thus, in each
category, there might be two types of features: mutated subsequences and unchanged
contiguous subsequences. In this step, the algorithm combines the feature sets of all
categories together into one feature set. In this set, all features have length t, as defined
in Step (b).

Combination of Features of Different Lengths. After all the features of the lengths in
the user-defined range are generated in Step (a) through Step (d), the MSG algorithm
combines these features of different lengths together and constructs a new data set.
Each data instance in the new data set corresponds to a sequence in the original data set.
The instance’s value for each feature is a Boolean value stating whether or not the
feature is a subsequence of the instance. Table 2 shows the transformed data from the
data set in Fig. 2 for the subsequence length range 3−4.

Function Mutated_Subsequences_Generation(C):
• Input: C: set of subsequences
• Output: set of all features, contiguous and 

mutated subsequences, that can be generated from C

Initialization: S <- {}
for each pair of subsequences sub1 and sub2 in C do

if sub1 and sub2 is a joinable pair then
sub3 <- sub1 sub2
mark sub1
mark sub2
for each sequence subi in C do

if sub3 and subi is a joinable pair then
sub3 <- sub3 subi
mark subi

S <- S {sub3}
for each sequence subj in C do

if subj is marked then
C <- C -- subj

return C S

Fig. 3. The pseudo code for mutated subsequences generation. ⊕ is the join operator. For
example, acca� acta ¼ ac½c t�j a and acca� ac½t gj �a ¼ ac½c tj gj �a.
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4.2 Feature Selection

Once that the set of candidate features has been generated as described in Sect. 4.1, we
use bi-directional feature selection based on the CFS evaluation (see Sect. 4) to select
the best feature set from the transformed data set. This feature set is then used to build
classification models.

5 Experimental Evaluation

The performance of our MSG algorithm is compared with that of other feature gen-
eration algorithms which are commonly used for sequence classification. These algo-
rithms are described below.

• Position-based [11]: Each position is regarded as a feature, the value of which is
the alphabet symbol in that position.

• k-grams [4]: A k-gram is a sequence of length k over the alphabet of the data set
(see Fig. 1(a)). The value of a k-gram induced feature for a sequence S is whether
the k-gram occurs in S or not.

• k-gapped Pair [12]: In a k-gapped pair (xy, k), xy is an ordered pair of letters over
the alphabet of the data set, k is a non-negative integer (see Fig. 1(c)). The value of a
k-gapped pair induced feature for a sequence S is 1 if there is a position i in S, where
si = x and si+k+1 = y. Otherwise, the value is 0.

Notice that a k-gapped pair can be regarded as a mutated subsequence where the
k symbols between the pair can be any nucleotides. Thus, in order to perform a

Table 2. Transformed data set obtained by applying the MSG algorithm to the data set in Fig. 2,
with subsequence length range 3−4. Original data sequences are depicted as columns and
extracted features as rows due to formating restrictions.

accag actag ccctg gctaa

taa 0 0 0 1
gct 0 0 0 1
ctg 0 0 1 0
cac 0 0 1 0
act 0 1 1 0
cca 1 0 0 0
acc 1 0 0 0
[t|c]ag 1 1 0 0
ctaa 0 0 0 1
gcta 0 0 0 1
actg 0 0 1 0
cact 0 0 1 0
c[t|c]ag 1 1 0 0
ac[t|c]a 1 1 0 0
Class 1 1 0 0

Automatic Extraction of Highly Predictive Sequence 219



meaningful comparison, we use the same subsequence length values for the three
generation algorithms (k-grams, MSG, and k-gapped pair) in our experiments. More-
over, we use values of k > 5 to obtain features, since for k ≤ 5 most of the k-gapped
pairs are contained in all sequences, making them useless for classification.

To compare the performance of these algorithms, a number of experiments are carried
out on three data sets, the first two are collected from UCI Machine Learning Repository
[13], and the third one was collected in our prior work [14] from WormBase [15]:

• E.coli Promoter Gene Sequences Data Set: This data set consists of 53 DNA
promoter sequences and 53 DNA non-promoter sequences. Each sequence has
length 57. Its alphabet is {a, c, g, t}.

• Primate Splice-junction Gene Sequences Data Set: This data set contains 3190
DNA sequences of length 60. Also, its alphabet is {a, c, g, t}. Each sequence is in
one of three classes: exon/intron boundaries (EI), intron/exon boundaries (IE), and
non-splice (N). 745 data instances are classified as EI; 751 instances as IE; and 1694
instances as N.

• C.elegans Gene Expression Data Set: This data set contains 615 gene promoter
sequences of length 1000.We use here expression in EXC cells as the classification
target. 311 of the genes in this data set are expressed in EXC cells, and the other 304
genes are not.

The performance comparison in the following sections focuses on the prediction
level of models built on the generated features, and on differences among the models.
We implemented the four feature generation methods, MSG, k-grams, position-based,
and k-gapped pairs, in our own Java code. To measure the prediction level, we utilize
The WEKA System version 3.7.7 [16] to build three types of prediction models: J48
Decision Trees, Support Vector Machines (SVMs), and Logistic Regression (LR). We
use n-fold cross validation to test the models. We regard the models’ accuracy as their
prediction level. To measure the difference between two models, we perform a pair
t-test on their n-fold test results, and use p-values from the paired t-test to determine
whether or not the difference in model performance is statistically significant.

5.1 Results on the E.Coli Promoter Gene Sequences Data Set

Patterns from the Literature. As found in the biological literature [17, 18], and
summarized in [19], promoter sequences share some common DNA segments. Figure 4
presents some of these segments. As can be seen in the figure, these segments can
contain mutated positions. Also the segments are annotated with specific locations
where the segments occur in the original sequences. This is an important characteristic
distinguishing these segments from the subsequences generated by our algorithm. The
data set constructed by our MSG algorithm captures only presence of the subsequences
(not their positions) in the original sequences.

However, after examining the occurrences of the aforementioned segments in the
Promoter Gene Sequences data set, we found that for the most part each segment
occurs at most once in each sequence. Hence computational models created over this
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data set that deal only with presence of these patterns are expected to achieve a
prediction accuracy similar to that of computational models that take location into
consideration. Therefore, since the precise location of the patterns seems to be irrele-
vant, we expect our MSG algorithm to perform well on this data set.

Experimental Results. Each of the four feature generation methods under consider-
ation (MSG, k-grams, position-based, and k-gapped pair) was applied to the Promoter
Gene Sequence data set separately, yielding four different data sets. Parameter values
used for the feature generation methods were the following: for MSG, the range for the
length of transformed subsequences was 1−5; for k -grams, k ≤ 5; and for k-gapped,
k ≤ 10. Then, Correlation-based Feature Selection (CFS), described in Sect. 3.2, was
applied to each of these data sets to further reduce the number of features. The resulting
number of features in each of the data sets was: 61 for the MSG transformed data set,
43 for k-grams, 7 for position-based, and 29 for k-gapped pair. 5-fold cross validation
was used to train and test the models constructed on each of these data sets. Three
different model construction techniques were used: J4.8 decision trees, Logistic
Regression (LR), and SVMs. Figure 5 shows the prediction accuracy of the obtained
models. Table 3 depicts the statistical significance of the performance difference
between the models constructed over the MSG-transformed data set and the models
constructed over data sets constructed by other feature generation methods.

From Fig. 5, we can observe that the prediction levels of the models constructed
over features generated by MSG are superior to those of models constructed on other
features. The t-test results in Table 3 indicate that this superiority of MSG is statistically
significant at the p < 0.05 level in the cases highlighted in the table. As expected, the
MSG algorithm generates a highly predictive collection of features for this data set.
This in part due to the fact that for this data set, the presence alone, and not location, of
certain subsequences (or segments) discriminates well between promoter and
non-promoter sequences. Table 4 shows some of the features generated by MSG.

Fig. 4. Patterns taken from [19]. Promoter sequences share these segments at the given
locations. In these segments, “x” represents the occurrence of any nucleotide. The location is
specified as an offset from the Start of Transcription (SoT). For example, “-37” refers to the
location 37 base pair positions upstream from SoT.
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5.2 Results on the Primate Splice-Junction Gene Sequences Data Set

Patterns from the Literature. Some patterns in this data set have been identified in
[20]. These patterns state that a sequence is in EI or IE if the nucleotide triplets “TAA”,
“TAG”, and “TGA”, known as stop codons, are absent in certain positions of the
sequence. Conversely, if a sequence contains any stop codons in certain specified
positions, the sequence is not in EI (IE). To examine the effect of position on these
patterns, we generated the rules below, and calculated their confidence (i.e., prediction
accuracy) on this data set.

• Stop codons are present → not EI (74 %)
• Stop codons are present at specified positions → not EI (95 %)
• Stop codons are present → not IE (77 %)
• Stop codons are present at specified positions → not IE (91 %)

As can be seen, the position information is very important in these patterns. Hence,
we might expect that the MSG algorithm will not perform well on this data set, because

Fig. 5. Accuracy of models built on the features from four different feature generation methods
(MSG, k-gram, Position-based, and k-gapped pair), using three classification algorithms on the
Promoter Gene Sequences data.

Table 3. p-values obtained from t-tests comparing the prediction accuracies of models
constructed over MSG-generated features and models constructed over data sets generated by the
other 3 feature generation methods. t-tests were performed using 5-fold cross-validation over the
Promoter Gene Sequence data set. Highlighted in the table are the cases in which the superiority
of MSG is statistically significant at the p < 0.05 level.

k kBaseline: MSG -grams Position-based -gapped pair
p-value: J48 0.08 0.02 0.03
p-value: LR 0.01 0.06 0.01

p-value: SVM 0.08 0.08 0.01
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its generated features do not contain information about the location where subse-
quences appear in the original sequences.

Experimental Results. Once again, each of the four feature generation methods under
consideration (MSG, k-grams, position-based, and k-gapped pair) was applied to the
Splice-junction Gene Sequences data set separately, yielding four different data sets.

Fig. 6. Accuracy of models built on the features from four different feature generation methods
(MSG, k-gram, Position-based, and k-gapped pair), using three classification algorithms on the
Splice-junction Gene Sequence data.

Table 4. Sample features constructed by the MSG algorithm over the Promoter Gene Sequences
data set together with their correlation with the class feature.

MSG features Correlation with target

t[t|a]ta -0.61
[a|c]aaa -0.58
ta[a|g|c|t]aa -0.58
a[a|g|c|t]aat -0.56
ata[t|c|a|g]t -0.53
at[g|a|c]at -0.51
aatt[c|a|t|g] -0.51
aaa[g|a|t|c]t -0.5
tta[t|a|c]a -0.44
aaa[t|c|a|g]c -0.44
ccc[a|g] -0.41
ct[g|t|c|a]tt -0.41
at[t|a] -0.37
c[a|c|g|t]ggt 0.42
tgag[g|a] 0.43
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The parameters used for the feature generation algorithms were: for MSG, the range for
the length of transformed subsequences was 1−5; for k-grams, k ≤ 5; and for k-gapped,
k ≤ 10. Then, Correlation-based Feature Selection (CFS), described in Sect. 3.2, was
applied to each of these resulting data sets. The size of the feature set generated by the
MSG algorithm was 28, by k-grams was 29, by position-based was 22, and by k-
gapped pair was 49.

10-fold cross validation was used to construct and test models over these four data
sets. Average accuracies of the resulting models are shown in Fig. 6, and the t-test
results in Table 5. On this data set, the position-based algorithm performed the best.
This is expected given that location information is relevant for the classification of this
data set’s sequences, as discussed above. The MSG generated features yielded pre-
diction performance at the same level of that of k-grams; and statistically significantly
higher performance (at the p < 0.05 significance level) than that of k-gapped pair. Some
of these MSG generated features are shown in Table 6.

Table 5. p-values obtained from t-tests comparing the prediction accuracies of models
constructed over MSG-generated features and models constructed over data sets generated by the
other 3 feature generation methods. t-tests were performed using 10-fold cross-validation over
the Splice-junction Gene Sequences data set. Highlighted in the table are the cases in which the
superiority of MSG is statistically significant at the p < 0.05 level.

k kBaseline: MSG -grams Position-based -gapped pair

p-value: J48 0.23 6.5E-18 2.12E-13

p-value: LR 0.72 6.78E-16 7.3E-13

p-value: SVM 0.15 2.3E-17 3E-14

Table 6. Sample features constructed by the MSG algorithm over the Splice-junction Gene
Sequences data set together with their correlation with the class feature.

MSG features Correlation with target

gt[a|g]ag -0.5
ggt[a|g]a -0.44
ggt[a|g] -0.38
gt[a|g]a -0.35
gtg[c|a]g -0.35
aggt[a|g] -0.35
gta[g|a]g -0.34
[g|t|a]ggta -0.32
tc[t|c]t -0.03
[t|c]ag -0.02
t[c|t]tc 0.01
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5.3 Results on the C.Elegans Gene Expression Data Set

Patters from the Literature. Motifs are short subsequences in the promoter sequences
that have the ability to bind transcription factors, and thus to affect gene expression. For
example, a transcription factor CEH-6 is necessary for the gene aqp-8 to be expressed
in the EXC cell, by binding to a specific subsequence (ATTTGCAT) in the gene
promoter region [22]. The binding sites for a transcription factor are not completely
identical, as some variation is allowed. These potential binding sites are represented as
a position weight matrix (PWM), see Table 7 for an example. A motif is a reasonable
matching subsequence according to a specific PWM.

It has been shown that motifs at different positions in the promoter have different
importance in controlling transcription [23], and that the order of multiple motifs and
the distance between motifs can also affect gene expression [14].

Experimental Results. Each of the four feature generation methods under consider-
ation (MSG, k-grams, position-based, and k-gapped pair) was applied to the C.elegans
Gene Expression data set separately, yielding four different feature vector data sets. The
parameters used for the feature generation algorithms were: for MSG, the range for the
length of transformed subsequences was 1−6; for k-grams, k ≤ 6; and for k-gapped,
k ≤ 10. After CFS, the size of the feature set generated by the MSG algorithm was 97,
by k-grams was 63, by position-based was 122, and by k-gapped pair was 4. The
average accuracies of the resulting models with 10-fold cross validation are shown in
Fig. 7.

On this data set, MSG achieved the best performance among the methods tested.
The p-values in Table 8 indicate that MSG prediction performance is significantly
better than those of position-based and k-gapped pair at the p < 0.05 significance level.
MSG performed slightly better than k-grams, but not significantly better.

5.4 Discussion

Computational Complexity Comparison of the Methods. Suppose that a data set
consists of n sequences of length l over an alphabet B, where Bj j ¼ d (for the three data

Table 7. A PWM for PHA-4, found in [23]. It records the likelihood of each nucleotide at each
position of the PHA-4 motifs.

A C G T

1 0.097 0.144 0.52 0.238
2 0.003 0.755 0.003 0.238
3 0.003 0.097 0.003 0.896
4 0.003 0.896 0.097 0.003
5 0.003 0.99 0.003 0.003
6 0.849 0.003 0.144 0.003
7 0.99 0.003 0.003 0.003
8 0.614 0.05 0.191 0.144
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sets considered in this paper, d = 4). The position-based method has the lowest
computational complexity out of the four feature generation methods employed in this
paper. It takes O(l) time to extract each location as a feature for each sequence, so its
total complexity is O(nl). The k-gapped pair method needs to compute l – k − 1 pairs of
symbols for each sequence for a given gap size k. In our experiments, we considered
pairs with gap ≤ k, and since k ≪ l, the time complexity for each sequence is O(kl). Its
total complexity is O(nkl). Similarly, the k-gram method takes O(nkl) time complexity
to generate features of length ≤ k.

The MSG method has the highest computational complexity among the four
methods. Suppose that m subsequences are given as input to MSG (pseudo code in
Fig. 3). There are two outer loops and one inner loop in this process. The first outer

loop goes over all the
m
2

� �
pairs of subsequences, and its inner loop takes at most

m iterations. The second outer loop traverses m subsequences to delete the marked

ones. So the time complexity of this method is C m � m
2

� �
þm

� �
¼ oðm3Þ subse-

quences from the sequence data. Thus, its computational complexity is Oðd3kÞ in the
worst case.

Fig. 7. Accuracy of models built on the features from four different feature generation methods
(MSG, k-gram, Position-based, and k-gapped pair), using three classification algorithms on the
Gene Expression data.

Table 8. p-values obtained from t-tests comparing the prediction accuracies of models
constructed over MSG-generated features and models constructed over data sets generated by the
other 3 feature generation methods. t-tests were performed using 10-fold cross-validation over
the Gene Expression data set. Highlighted in the table are the cases in which the superiority of
MSG is statistically significant at the p < 0.05 level.

k kBaseline: MSG -grams Position-based -gapped pair

p-value: J48 0.18 0.41 0.01

p-value: LR 0.18 6.89E-6 1.45E-5 

p-value: SVM 0.21 8.39E-5 4.59E-5 
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Experimental Comparison of the Methods. The experimental results on the three
data sets provide evidence of the usefulness of the MSG algorithm. As we discussed
above, patterns in the E.coli promoter gene sequences data set are position-
independent, while patterns in the primate splice-junction gene sequences data set
are position-dependent. Given that the MSG-generated features do not take location
into consideration, MSG was expected to perform very well on the first data set but not
on the second data set. Our experimental results confirm this hypothesis. In summary,
MSG-generated features are most predictive in domains in which location is irrelevant
or plays a minor role. Nevertheless, even in domains in which location is important, our
MSG algorithm performed at the same level, or higher, than other feature generation
algorithms from the literature.

In the C.elegans gene expression data set, patterns are much more complex than in
the other two data sets considered. The MSG algorithm does not produce high clas-
sification accuracies on this data set. However, when compared to the other algorithms
under consideration, MSG generates features that yield more accurate prediction
models. One aspect that contributes to MSG’s comparably better performance on this
data set is its ability to represent mutations in the data sequences.

6 Conclusion and Future Work

In this work we present a novel feature generation method for sequence classification,
Mutated Subsequence Generation (MSG). This method considers subsequences, pos-
sibly containing mutations, as potential features for the classification of the original
sequences. It uses the Gini index to select the best features. We compare this method
with other feature generation methods on three genetic data sets, focusing on the
accuracy of the classification models built on the generated features. The experimental
results show that MSG outperforms other feature generation methods in domains where
presence, not specific location, of features within a sequence is relevant; and can
perform at the same level or higher than other non-position-based feature generation
methods in domains in which specific location, as well as presence, is important.
Additionally, MSG is capable of identifying one-position mutations in the subsequence
features that are highly associated with the classification target.

Future work includes further experimentation on much larger data sets; refinement
of our MSG algorithm to reduce its time complexity; extension of MSG to allow for
mutations in more than one subsequence position; and investigation of approaches to
and the effects of incorporating location information in the MSG generated features.
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