
Fast Global Image Denoising Algorithm
on the Basis of Nonstationary Gamma-Normal

Statistical Model

Inessa Gracheva(B), Andrey Kopylov, and Olga Krasotkina

Tula State University, Tula, Russian Federation
gia1509@mail.ru, And.Kopylov@gmail.com, ko180177@yandex.ru

Abstract. We consider here a Bayesian framework and the respective
global algorithm for adaptive image denoising which preserves essential
local peculiarities in basically smooth changing of intensity of recon-
structed image. The algorithm is based on the special nonstationary
gamma-normal statistical model and can handle both Gaussian noise,
which is an ubiquitous model in the context of statistical image
restoration, and Poissonian noise, which is the most common model for
low-intensity imaging used in biomedical imaging. The algorithm being
proposed is simple in tuning and has linear computation complexity with
respect to the number of image elements so as to be able to process large
data sets in a minimal time.

Keywords: Image denoising · Bayesian framework · Nonstationary
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1 Introduction

Image analysis and information extraction are often used in many imaging sys-
tems. General degradation of image quality during acquisition and transmission
process in many cases is described by an additive Gaussian noise model. At the
same time, variations in low-intensity levels in quantum noise caused by fluc-
tuations in either the number of detected photons or the inherent limitation
of the discrete nature for photon detection can be described by a Poissonian
noise model, which is the most popular in biomicroscopy. The primary aim of
the image denoising technique is to remove the noisy observations while recon-
structing a satisfying estimation of the original image, thereby enhancing the
performance of these applications in imaging systems.

The most popular methods are good in case when we have only one type
of noise. For example, for denoising of Gaussian used the Steins unbiased risk
estimate from the concept of linear expansion of thresholds (SURE-LET) [1],
where directly the denoising process is parametrized as a sum of elementary
nonlinear processes with unknown weights; block-matching 3-D (BM3D) algo-
rithm [2] based on enhanced sparse representation in transform domain; fast
bilateral filter (FBF) [3] was first termed by Tomasi and Manduchi [4] based on
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the work [5,6], and later modified and improved in [7]. A widespread alternative
to the direct handling of Poisson statistics is to apply variance-stabilizing trans-
forms (VSTs) with the underlying idea of exploiting the broad class of denoising
methods which are based on a Gaussian noise model [8], such as the HaarFisz
transform [9]. Platelet approach [10], which stands among the state-of-the-art
algorithms for Poisson intensity estimation. Poisson unbiased risk estimate from
the concept of linear expansion of thresholds (PURE-LET) [11] is based on the
minimization of an unbiased estimate of the MSE for Poisson noise, a linear para-
metrization of the denoising process and the preservation of Poisson statistics
across scales within the Haar VST.

The purpose of this article is to present an algorithm that would satisfy
compromise between restoration quality and computational complexity. Firstly,
we want a method which is able to effectively remove Gaussian noise as well as
Poissonian noise. In the second place, the method should satisfy strict constraints
in terms of computational cost and memory requirements, so as to be able to
process large data sets. To achieve these purpose a nonstationary gamma-normal
noise model has been proposed in the framework of Bayesian approach to the
problem of image processing. This model allows us to develop a fast global
algorithm on the basis of Gauss-Seudel procedure and Kalman filter-interpolator.

2 Gamma-Normal Model of Hidden Random Field

The task of image reconstruction within the Bayesian approach can be expressed
as the problem of estimating a hidden Markov component X = (xt, t = 1, ..., N)
T = {t = (t1, t2) : t1 = 1, ..., N1, t2 = 1, ..., N2} of a two-component random
field, where observed component Y = (yt, t ∈ T ) is the analyzed image.

Probabilistic properties of a two-component random field (X,Y ) are com-
pletely determined by the joint conditional probability density Φ(Y |X, δ) of
original functions Y = (yt, t ∈ T ) with respect to the secondary data X =
(xt, t ∈ T ), and the a prior joint distribution Ψ(X|Λ, δ) of hidden component
X = (xt, t ∈ T ).

Let the joint conditional probability density Φ(Y |X, δ) be in the form of
Guassian distribution:

Φ(Y |X, δ) =
1

δN/2(2π)N/2
exp(− 1

2δ

∑

t∈T

(yt − xt)
2), (1)

where E(e2t ) = δ is the variance of the observation noise, which to be unknown.
Just as in [12,13], we will express our prior knowledge about sought for esti-

mates of a hidden component in the form of Markov random field. Let the con-
ditional probability densities of hidden variables with respect to their neighbors
be also Gaussian with some variance E(ξt

2) and the conditional mathematical
expectation equal to the value of the adjacent variable.

In the case of Poissonian noise the variance of corresponding random variables
is determined by the intensity of photons emission and takes different values in
different parts of an image. We do not use here VST to reforms the data so
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that the noise approximately becomes Gaussian with a constant variance. On
the contrary, we do not assume the common variance of hidden components to
remain the same in an image plane, and suppose E(ξt

2) = rt. The unknown
variances (rt, t ∈ T ) are considered as proportional to the variance of the obser-
vation noise rt = λtδ with the proportionality coefficients λt acting as factors of
the unknown instantaneous volatility of hidden field X = (xt, t ∈ T ), unknown
as well.

Under this assumption, the a priori joint distribution of X = (xt, t ∈ T ) is
conditionally normal with respect to the field of the factors Λ = (λt, t ∈ T ). So,
we come to the improper a priori density:

Ψ(X|Λ, δ) ∝ 1
( ∏

t∈T

δλt

)1/2

(2π)n(N−1)/2

× exp

⎛

⎝−1
2

∑

t′,t′′∈V

1
δλt

(xt′ − xt′′)2
⎞

⎠ , (2)

where V is the neighborhood graphs of image elements having the form of a
lattice.

Finally, we assume the inverse factors 1/λt to be a priori independent and
identically gamma-distributed γ(1/λt|α, ϑ) ∝ (1/λt)

α−1 exp(−ϑ(1/λt)) on the
positive half-axis λt ≥ 0. The mathematical expectation and variance of gamma-
distribution are ratios α/ϑ, and α/ϑ2. The a priori distribution density of the
entire field of the factors:

G(Λ|α, ϑ) =
∏

t∈T

γ(λt|α, ϑ) ∝
(

∏

t∈T

1
λt

)α−1

exp

(
−ϑ

∑

t∈T

1
λt

)

= exp

[
−(α − 1)

∑

t∈T

ln λt − ϑ
∑

t∈T

1
λt

]
. (3)

We redefine the parameters α and ϑ through new parameters μ and λ

α =
1
2

[
1
δ

(
1 +

1
μ

)
+ 1

]
, ϑ =

λ

2δμ
, (4)

assuming thereby the parametric family of gamma distributions of inverse fac-
tors 1/λt

γ(1/λt|δ, λ, μ) ∝ (1/λt)
2μ+1
2δμ exp

(
− λ

2δμ
(1/λt)

)
, (5)

with mathematical expectations and variances

E(1/λt) =
(1 + δ)μ + 1

λ
, V ar(1/λt) = 2δμ

(1 + δ)μ + 1
λ2

.



74 I. Gracheva et al.

In terms of this parameterization, the independent prior distribution of each
instantaneous inverse factors 1/λt is almost completely concentrated around the
mathematical expectation 1/λ if μ → 0. On the contrary, with μ → ∞ coefficient
1/λ have tends to the almost uniform distribution.

In this way, we come to the prior density:

G(Λ|δ, λ, μ) = exp

[
− 1

2δμ

∑

t∈T

(
λ

1
λt

+
1
λ

ln λt

)]
, (6)

and, so, have completely defined the joint prior normal gamma-distribution of
both hidden fields X = (xt, t ∈ T ) and Λ = (λt, t ∈ T ):

H(X,Λ|δ, λ, μ) = Ψ(X|Λ, δ)G(Λ|δ, λ, μ).

Coupled with the conditional density of the observable field (2), it makes basis
for Bayesian estimation of the field X = (xt, t ∈ T ).

3 The Bayesian Estimate of the Hidden Random Field

Bayesian reasoning makes it possible to reduce a wide class of image analysis
problems to the problem of maximum a posteriori (MAP) estimation.

The joint a posteriori distribution of hidden elements, namely, those of field
X = (xt, t ∈ T ) and its instantaneous factors Λ = (λt, t ∈ T ), is completely
defined by (1) and (2) and, in terms of the original parameters (α, ϑ), by (3):

P (X,Λ|Y, δ, α, ϑ) =
Ψ(X|Λ, δ)G(Λ|α, ϑ)Φ(Y |X, δ)∫ ∫

Ψ(X ′|Λ′, δ)G(Λ′|α, ϑ)Φ(Y |X ′, δ)dX ′dΛ′ .

The Bayesian estimate of (X,Λ) is the maximum point of the numerator
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(X̂, Λ̂|δ, α, ϑ) = arg maxX,Λ[ln Φ(Y |X, δ) + ln Ψ(X|Λ, δ) + ln G(Λ|α, ϑ)]

= arg maxX,Λ

(
− 1

2δ

∑
t∈T

(yt − xt)
2 − 1

2

∑
t∈T

ln δλt − 1
2δ

∑
t′,t′′∈V

1
λt

(xt′ − xt′′)2

− (α − 1)
∑
t∈T

ln λt − ϑ
∑
t∈T

1
λt

)
,

or, what is equivalent,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(X̂, Λ̂|δ, α, ϑ) = arg minX,ΛJ(X,Λ|Y, δ, α, ϑ),
J(X,Λ|Y, δ, α, ϑ) =

∑
t∈T

(yt − xt)
2

+
∑

t′,t′′∈V

{
1
λt

[
(xt′ − xt′′)2 + 2δϑ

]
+ δ(2α − 1) ln λt

}
.
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The substitution of the new parameters (4) makes the Bayesian estimate
independent of the observation noise variance δ:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(X̂, Λ̂|λ, μ) = arg minX,ΛJ(X,Λ|Y, λ, μ),
J(X,Λ|Y, λ, μ) =

∑
t∈T

(yt − xt)
2

+
∑

t′,t′′∈V

{
1
λt

[
(xt′ − xt′′)2 + λ/μ

]
+ (1 + 1/μ) ln λt

}
.

(7)

As it will be shown, the growing value of parameter μ endows this criterion
with a pronounced tendency to keep the majority of estimated volatility factors
λ̂t close to the basic low value λ and to allow single large outliers, revealing
thereby hidden events in the primarily smooth original field.

4 The Gauss-Seudel Procedure of Edge-Preserving Image
Denoising

The conditionally optimal factors Λ̂(X,λ, μ) = [λ̂t(X,λ, μ), t ∈ T ] are defined
independently of each other:

Λ̂(X,λ, μ) = arg minΛJ(Λ|X,λ, μ) :
∂

∂λt

{
1
λt

[(xt′ − xt′′)2 + λ/μ] + (1 + 1/μ) ln λt

}
= 0. (8)

The zero conditions for the derivatives, excluding the trivial solutions λt →
∞, lead to the equalities

1
λt

[
(xt′ − xt′′)2 + λ/μ

]
= (1 + 1/μ),

and, hence,

λ̂t(X,λ, μ) = λ
(1/λ)(xt′ − xt′′)2 + 1/μ

1 + 1/μ
, (9)

Substitution of (9) into (7) gives the equivalent form, which avoids immediate
finding the factors themselves:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(X̂, Λ̂|λ, μ) = arg minX,ΛJ(X,Λ|Y, λ, μ),
J(X,Λ|Y, λ, μ) =

∑
t∈T

(yt − xt)
2

+
∑

t′,t′′∈V

{
(1 + 1/μ) ln (1/λ)(xt′−xt′′ )2+1/μ

1+1/μ

}
.

(10)

It is almost quadratic function in a vicinity of the zero point (xt′ − xt′′)2 = 0 and
remains being so practically over the entire number axis if μ is small (Fig. 1).

But as μ grows, the originally quadratic penalty undergoes more and more
marked effect of saturation at some distance from zero. This means that the
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Fig. 1. The “saturation effect” of the unsmoothness penalty for sufficiently large values
of the parameter μ and fixed value λ=1.

criterion strongly penalizes estimates of original function but becomes more and
more indulgent to sharp discontinuities.

For finding the minimum point of the objective function with fixed structural
parameters μ and λ, we apply the Gauss-Seidel iteration to both groups of vari-
ables X = (xt, t ∈ T ) and Λ = (λt, t ∈ T ) starting with the initial values Λ̂0 =
(λ̂0

t = λ, t ∈ T ). At each iteration, current values of variables Λ̂k = (λ̂k
t = 1, t ∈ T )

according to (7) give calculate of the field X = (xt, t ∈ T ), whose minimum
point of the objective function gives the new approximation to the estimate of
the mutually agreed field X̂k = (x̂k

t , t ∈ T ):

X̂k = (x̂k, t ∈ T ) = arg minXJ(X,Λk|Y, λ, μ)

= arg minX

⎧
⎨

⎩
∑

t∈T

(yt − xt)
2 +

∑

t′,t′′∈V

1
λt

(xt′ − xt′′)2

⎫
⎬

⎭ . (11)

It is clear that there is no way to replace the lattice-like neighborhood graph
(Fig. 2a) by a tree-like one without loss of the crucial property to ensure smooth-
ness of the hidden secondary data field in all directions from each point of the
image plane.

To avoid this obstacle, for finding the values of the hidden field at each
vertical row of the picture, we use a separate pixel neighborhood tree which
is defined, nevertheless, on the whole pixel grid and has the same horizontal
branches as the others (Fig. 2b). The resulting image processing procedure is
aimed at finding optimal values only for the hidden variables at the stem nodes
in each tree [14]. For this combination of partial pixel neighborhood trees, the
algorithm of finding the optimal values of the stem node variables boils down
into a combination of two usual Kalman filtration-interpolation procedures, each
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dealing with single, respectively, horizontal and vertical image rows considered
as signals on the one-dimensional argument axis.

First, such a one-dimensional procedure is applied to the horizontal rows
t1 = 1, ..., N1 independently for each t2 = 1, ..., N2. The resulting marginal
node functions Ĵt1,t2(x) should be stored in the memory. Then, the procedure is
applied to the vertical rows t2 = 1, ..., N2 independently for each t1 = 1, ..., N1

with the only alteration: the respective marginal node functions Ĵt(x), obtained
at the first step, are taken instead of the image-dependent node functions. In
the case of real-valued variables xt and quadratic pair-wise separable objective
function, these elementary procedures applied to single horizontal and vertical
rows are nothing else than Kalman filters-interpolators of special kind.

a) b)

Fig. 2. Neighborhood graphs of image elements: (a) rectangular lattice; (b) simplest
tree.

Each iteration of this algorithm has linear computational complexity with
respect to size of the original image. Once the estimates X̂k = (X̂k

t = x̂k
t , t ∈ T )

are found, the next approximation to the estimates of factors Λ̂k = (λ̂k
t = λ, t ∈ T )

is defined by the rule (9):

λ̂k+1
t =

(x̂k
t′ − x̂k

t′′)
2 + λ/μ

1 + 1/μ
, t′, t′′ ∈ T, (12)

which, in accordance with (8), gives the solution of the conditional optimization
problem

Λ̂k+1 = arg minΛJ(X̂k, Λ|Y, λ, μ)

= arg minΛ

⎧
⎨

⎩
∑

t∈T

(yt − x̂t)
2 +

∑

t′,t′′∈V

1
λt

(x̂k
t′ − x̂k

t′′)
2

⎫
⎬

⎭ .

The very structure of the iterative procedure (11) and (12) provides objective
function satisfying the inequality

J(X̂k+1, Λ̂k+1|Y, λ, μ) < J(X̂k, Λ̂k|Y, λ, μ),
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which, as it is shown previously, the equality holds only at the stationary point.
It remains only to specify the way of choosing the values of the structural

parameters μ and λ, which control, respectively, the basic average factors and
the ability of instantaneous volatility factors to change along the image plane.

5 Experimental Results

We use here one of the common measures of image distortion, namely peak
signal-to-noise ratio (PSNR). PSNR is an engineering term for the ratio between
the maximum possible power of a signal and the power of corrupting noise that
affects the fidelity of its representation. PSNR is most easily defined via the
mean squared error (MSE). Given a noise-free mn monochrome image x and its
noisy approximation x̂, MSE is defined as:

PSNR = 10log10

(
max(x2)
〈|x̂−x|2〉

)

We have tested the various denoising methods for a representative set of standard
8-bit grayscale images such as Barbara, Moon (size 512 × 512) and Peppers,
Cameraman (size 256 × 256), corrupted by simulated additive Gaussian white
noise and Poissonian noise at six different power levels, which corresponds to
PSNR decibel values. The parameters of each method have been set according to
the values given by their respective authors in the corresponding referred papers.
Variations in output PSNRs are, thus, only due to the denoising techniques
themselves.

Table 1 summarizes the PSNRs obtained by the various algorithms for denois-
ing of Poisson. We can see that the PURE-based approach clearly outperforms

Table 1. Comparison of Poissonian noise removal algorithms

Images Cameraman 256 × 256 Moon 512 × 512

Peak intensity 120 60 30 20 10 5 120 60 30 20 10 5

Input PSNR 24.08 21.07 18.05 16.29 13.28 10.27 26.27 23.25 20.23 18.48 15.47 12.46

Haar-Fisz 28.49 26.40 24.36 23.69 22.39 20.93 29.03 26.89 25.01 24.33 23.55 22.78

Platelet 28.29 26.79 25.44 24.60 23.24 21.49 29.16 26.01 25.05 24.60 23.96 23.63

PURE-LET 30.07 28.28 26.54 25.55 23.94 22.42 29.62 27.97 26.56 25.87 24.92 24.23

Our algorithm 29.03 26.95 25.67 24.70 23.54 21.86 29.56 27.64 25.98 25.05 24.39 23.79

Table 2. Comparison of Gaussian noise removal algorithms

Images Papers 256 × 256 Barbara 512 × 512

Peak intensity 120 60 30 20 10 5 120 60 30 20 10 5

Input PSNR 8.13 14.15 18.59 22.11 28.13 34.15 8.34 14.35 19.23 22.48 28.47 34.46

FBF 21.39 24.39 27.57 29.60 32.62 35.72 22.66 24.21 26.43 28.32 32.92 36.51

SURE-LET 21.32 24.43 27.13 29.33 33.18 37.17 21.76 23.70 25.83 27.98 32.18 36.71

BM3D 21.49 24.40 27.70 30.16 34.68 37.93 23.03 24.59 26.99 28.72 33.98 37.78

Our algorithm 21.42 24.40 27.47 29.50 33.54 37.76 22.56 23.34 25.98 28.05 33.39 36.79
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a) b) c)

d) e) f)

Fig. 3. (a) Part of the original MRI slice. (b) Noisy version with simulated Poissonian
noise: PSNR = 22.31 dB. (c) Denoised with our algorithm (λ = 10, μ = 0.5): PSNR
= 29.03 dB. (d) Denoised with our algorithm (λ = 0.1, μ = 10): PSNR = 29.54 dB.
(e) Denoised with our algorithm (λ = 0.0001, μ = 0.1): PSNR = 29.32 dB. (f) Denoised
with our algorithm (λ = 0.1, μ = 0.5): PSNR = 29.89 dB.

the standard VST-based wavelet denoisier applied in an orthonormal wavelet
basis. Our solution also gives significantly better PSNRs than the non-redundant
version of the Platelet approach and Haar-Fisz algorithm.

Table 2 summarizes the results obtained for denoising of Gaussian. Our results
are already competitive with the best techniques available such as SURE-LET,
FBF and BM3D.

Figures 3 and 4 present the results of our algorithm for different images.
The values of the parameters (the basic average factors) and (the ability of
instantaneous volatility factors to change in time) are chosen different that show
their influence on the PSNRs value.

It is also interesting to evaluate the various denoising methods from a
practical point of view: the computation time. Indeed, the results achieved by
algorithms used for comparison in this paper are superiorly than many other
algorithms, but their weakness is the time they require (on a Core i3 worksta-
tion with 1.6 GHz for 256 × 256 and 512 × 512 images to obtain the redun-
dant results reported in Table 3. With our method, the whole denoising process
lasts approximately 0.16 s for 256 × 256 images (0.53 s for 512 × 512 images),
using a similar workstation. To compare with, FBF lasts approximately 1.8 s for
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a) b) c)

d) e) f)

Fig. 4. (a) The original Barbara image. (b) Noisy version with simulated Gaussian
noise: PSNR = 19.323 dB. (c) Denoised with our algorithm (λ = 0.1, μ = 1): PSNR
= 21.34 dB. (d) Denoised with our algorithm (λ = 0.1, μ = 0.5): PSNR = 23.65 dB.
(e) Denoised with our algorithm (λ = 0.0001, μ = 0.05): PSNR = 22.59 dB. (f) Denoised
with our algorithm (λ = 0.01, μ = 0.8): PSNR = 25.98 dB.

Table 3. Relative computation time of various denoising techniques (seconds)

Methods Image size

256 × 256 512 × 512

Platelet 856 1112

PURE-LET 4.6 10.2

BM3D 4.1 9.2

Haar-Fisz 1.3 3.2

FBF 0.5 1.8

SURE-LET 0.4 1.6

Our algorithm 0.16 0.53
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512 × 512 images, PURE-LET lasts approximately 10.2 s for 512 × 512 images.
Besides giving competitive results, our method is also much faster.

6 Conclusion

The gamma-normal model of the image and the expected result of processing,
proposed in this paper in a combination with computationally effective Kalman
filtration-interpolation procedure, allows us to develop fast global image denois-
ing algorithm which is able to preserve substantial local image features, in par-
ticular edges of objects.

The comparison of the denoising results, obtained with our algorithm with
respect to the other methods, demonstrates the efficiency of our approach for
most of the images. The visual quality of our denoised images is moreover char-
acterized by fewer artifacts than the other methods.

However, the most important advantage of the algorithm is low computation
time in comparison with other algorithms. With this algorithm you can handle
large images in a relatively short time.
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