BigARTM: Open Source Library for Regularized
Multimodal Topic Modeling of Large Collections

Konstantin Vorontsov! ®9 Oleksandr Frei2, Murat Apishev®, Peter Romov!,
and Marina Dudarenko®

! Yandex, Moscow Institute of Physics and Technology, Moscow, Russia
voron@forecsys.ru, peter@romov.ru
2 Schlumberger Information Solutions, Oslo, Norway
oleksandr.frei@gmail.com
3 Lomonosov Moscow State University, Moscow, Russia
great-mel@yandex.ru, m.dudarenko@gmail.com

Abstract. Probabilistic topic modeling of text collections is a pow-
erful tool for statistical text analysis. In this paper we announce the
BigARTM open source project (http://bigartm.org) for regularized mul-
timodal topic modeling of large collections. Several experiments on
Wikipedia corpus show that BigARTM performs faster and gives better
perplexity comparing to other popular packages, such as Vowpal Wabbit
and Gensim. We also demonstrate several unique BigARTM features,
such as additive combination of regularizers, topic sparsing and decorre-
lation, multimodal and multilanguage modeling, which are not available
in the other software packages for topic modeling.

Keywords: Probabilistic topic modeling - Probabilistic latent sematic
analysis - Latent dirichlet allocation - Additive regularization of topic
models - Stochastic matrix factorization + EM-algorithm + BigARTM

1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis [1].
Topic model reveals a hidden thematic structure of a text collection and finds
a compressed representation of each document in terms of its topics. Practical
applications of topic models include many areas, such as information retrieval for
long-text queries, classification, categorization, summarization and segmentation
of texts. Topic models are increasingly used for non-textual and heterogeneous
data including signals, images, video and networks. More ideas, models and
applications are outlined in the survey [4].

From a statistical point of view, a probabilistic topic model (PTM) defines
each topic by a multinomial distribution over words, and then describes each
document with a multinomial distribution over topics. From an optimizational
point of view, topic modeling can be considered as a special case of approximate
stochastic matrix factorization. To learn a factorized representation of a text

© Springer International Publishing Switzerland 2015
M.Y. Khachay et al. (Eds.): AIST 2015, CCIS 542, pp. 370-381, 2015.
DOI: 10.1007/978-3-319-26123-2_36

http://bigartm.org

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 371

collection is an ill-posed problem, which has an infinite set of solutions. A typ-
ical approach in this case is to apply regularization techniques, which impose
problem-specific constrains and ultimately lead to a better solution.

Modern literature on topic modeling offers hundreds of models adapted to
different situations. Nevertheless, most of these models are too difficult for prac-
titioners to quickly understand, adapt and embed into applications. This leads
to a common practice of tasting only the basic out-of-date models such as Prob-
abilistic Latent Semantic Analysis, PLSA [6] and Latent Dirichlet Allocation,
LDA [3]. Most practical inconveniences are rooted in Bayesian learning, which
is the dominating approach in topic modeling. Bayesian inference of topic mod-
els requires a laborious mathematical work, which prevents flexible unification,
modification, selection, and combination of topic models.

In this paper we announce the BigARTM open source project for regu-
larized multimodal topic modeling of large collections, http://bigartm.org. The
theory behind BigARTM is based on a non-Bayesian multicriteria approach —
Additive Regularization of Topic Models, ARTM [11]. In ARTM a topic model is
learned by maximizing a weighted sum of the log-likelihood and additional reg-
ularization criteria. The optimization problem is solved by a general regularized
expectation-maximization (EM) algorithm, which can be applied to an arbitrary
combination of regularization criteria. Many known Bayesian topic models were
revisited in terms of ARTM in [12,13]. Compared to the Bayesian approach,
ARTM makes it easier to design, infer and combine topic models, thus reducing
the barrier for entering into topic modeling research field.

BigARTM source code is released under the New BSD License, which permits
free commercial and non-commercial usage. The core of the library is written
in C++ and is exposed via two equally rich APIs for C++ and Python. The
library is cross-platform and can be built for Linux, Windows and OS X in both
32 and 64 bit configuration. In our experiments on Wikipedia corpus BigARTM
performs better than Vowpal Wabbit LDA and Gensim libraries in terms of
perplexity and runtime. Comparing to the other libraries BigARTM offers several
additional features, such as regularization and multi-modal topic modeling.

The rest of the paper is organized as follows. In Sect. 2 we introduce a multi-
modal topic model for documents with metadata. In Sect. 3 we generalize the fast
online algorithm [5] to multimodal ARTM. In Sect. 4 we describe parallel archi-
tecture and implementation details of the BigARTM library. In Sect. 5 we report
results of our experiments on large datasets. In Sect.6 we discuss advantages,
limitations and open problems of BigARTM.

2 Multimodal Regularized Topic Model

Let D denote a finite set (collection) of texts and W1 denote a finite set (vocab-
ulary) of all terms from these texts. Each term can represent a single word or
a key phrase. A document can contain not only words, but also terms of other
modalities. Each modality is defined by a finite set (vocabulary) of terms W™,
m=1,..., M. Examples of not-word modalities are: authors, class or category

http://bigartm.org

372 K. Vorontsov et al.

labels, date-time stamps, references to/from other documents, entities mentioned
in texts, objects found in the images associated with the documents, users that
read or downloaded documents, advertising banners, etc.

Assume that each term occurrence in each document refers to some latent
topic from a finite set of topics T'. Text collection is considered to be a sample of
triples (w;, d;, t;), i = 1,...,n, drawn independently from a discrete distribution
p(w, d, t) over the finite space W x Dx T, where W = Wl U ... U W™ is a disjoint
union of the vocabularies across all modalities. Terms w; and documents d; are
observable variables, while topics ¢; are latent variables.

Following the idea of Correspondence LDA [2] and Dependency LDA [9] we
introduce a topic model for each modality:

plwld) =Y pw|t)p(t|d) = ¢uibia, dED, weW™ m=1,.. M.
teT teT

The parameters 0;q = p(t| d) and ¢y = p(w|t) form matrices © = (61a) .,

of topic probabilities for the documents, and @™ = (d)wt)wnle of term probabili-
ties for the topics. The matrices @™, if stacked vertically, form a Wx T-matrix ®.
Matrices @™ and @ are stochastic, that is, their vector-columns represent discrete
distributions. Usually |T'| is much smaller than |D| and |W|.

To learn parameters @, @ from the multimodal text collection we maximize
the log-likelihood for each m-th modality:

m —
L (P™,0) = Z Z Naw Inp(w | d) — mmax,
deD weWm

where ng4,, is the number of occurrences of the term w € W™ in the document d.
Note that topic distributions of documents @ are common for all modalities.
Following the ARTM approach, we add a regularization penalty term R(®,O)
and solve a constrained multicriteria optimization problem via scalarization:

Z m%, ©) 4+ R(,0) — ma; (1)
Z Suwt = 1, uwt = 0; Zetd =1, 64> 0. (2)
weWwm teT

The local maximum (P, 0) of the problem (1), (2) satisfies the following
system of equations with auxiliary variables pyg, = p(t|d, w):

Ptdw = nfg]lp((lswtetd); (3)
OR

deD

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 373

OR
Orq = ntoerjgl (ntd + 014 89td>; Ngd = wzedTm(w)ndwptdw; (5)

,0 .
where operator norm z; = % transforms a vector (z;)ier to a discrete

teT =T

distribution; m(w) is the modality of the term w, so that w € W™(®),

The system of Egs. (3)—(5) follows from Karush-Kuhn-Tucker conditions.
It can be solved by various numerical methods. Particularly, the simple-iteration
method is equivalent to the EM algorithm, which is typically used in practice.
For single modality (M =1) it gives the regularized EM algorithm proposed
n [11]. With no regularization (R = 0) it corresponds to PLSA [6].

Many Bayesian topic models can be considered as special cases of ARTM with
different regularizers R, as shown in [12,13]. For example, LDA [3] corresponds
to the entropy smoothing regularizer.

Due to the unified framework of additive regularization BigARTM can build
topic models for various applications simply by choosing a suitable combination
of regularizers from a build-in user extendable library.

3 Online Topic Modeling

Following the idea of Online LDA [5] we split the collection D into batches Dy,
b=1,...,B, and organize EM iterations so that each document vector 0 is iter-
ated until convergence at a constant matrix @, see Algorithms 1 and 2. Matrix &
is updated rarely, after all documents from the batch are processed. For a large
collection matrix @ often stabilizes after small initial part of the collection. There-
fore a single pass through the collection might be sufficient to learn a topic model.

Algorithm 1 does not specify how often to synchronize @ matrix at steps 5-8.
It can be done after every batch or less frequently (for instance if % takes long
time to evaluate). This flexibility is especially important for concurrent imple-
mentation of the algorithm, where multiple batches are processed in parallel.
In this case synchronization can be triggered when a fixed number of documents
had been processed since the last synchronization.

The online reorganization of the EM iterations is not necessarily associated
with Bayesian inference used in [5]. Different topic models, from PLSA to multi-
modal and regularized models, can be learned by the above online EM algorithm.

4 BigARTM Architecture

The main goal for BigARTM architecture is to ensure a constant memory usage
regardless of the collection size. For this reason each Dy batch is stored on disk
in a separate file, and only a limited number of batches is loaded into the main
memory at any given time. The entire © matrix is never stored in the memory. As
a result, the memory usage stays constant regardless of the size of the collection.

374 K. Vorontsov et al.

Algorithm 1. Online EM-algorithm for multimodal ARTM

Input: collection {Dy: b=1,..., B}, discounting factor p € (0, 1];
Output: matrix &;
initialize ¢t for all w € W and t € T}
Nwt =0, Nyt :=0forallwe W and t € T
for all batches Dy, b=1,..., B
(Rwt) := (Nwt) + ProcessBatch(Dy, duwt);
if (synchronize) then
Nt 1= PNt + Ndyw for all w € W and ¢ € T
Pt := norm (nwt—i—(ﬁwt‘Z—R) foralwe W™, m=1,...,M and t € T}
wewm wt

Nt := 0 for all w e W and t € T

N OOtk W N

®

Algorithm 2. ProcessBatch(Dy, ¢yt)

Input: batch Dy, matrix ¢u¢;
Output: matrix (fwe);
Nwt ;=0 for all w e W and t € T
for all d € Dy
initialize 0.4 := ﬁ forallt € T
repeat
Didw = nt()er%11(¢wt6td) forallt € T;

(S N N

Ntd = Y e Tm(w)PdwPtdw for all t € T
Orq = norm(ntd + 0ta ;TR) for all t € T
teT td

8 until 0, converges;
9 increment iyt by Ngwpidw for all w € d and t € T}

Concurrency. An general rule of concurrency design is to express parallelism at
the highest possible level. For this reason BigARTM implements a concurrent
processing of the batches and keeps a single-threaded code for the ProcessBatch
(Dy, dwi) routine.

To split collection into batches and process them concurrently is a common
approach, introduced in AD-LDA algorithm [8], and then further developed in
PLDA [15] and PLDA+ [7] algorithms. These algorithms require all concurrent
workers to become idle before an update of the @ matrix. Such synchronization
step adds a large overhead in the online algorithm where @ matrix is updated
multiple times on each iteration. An alternative architecture without the syn-
chronization step is described in [10], however it mostly targets a distributed
cluster environment. In our work we develop an efficient single-node architec-
ture where all workers benefit from the shared memory space.

To run multiple ProcessBatch in parallel the inputs and outputs of this rou-
tine are stored in two separate in-memory queues, locked for push and pop
operations with spin locks (Fig.1). This approach does not add any noticeable

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 375

> L
D Processor threads: .
¥ ProcessBatch(Dy,¢u) [

Db ¢wt

Merger thread:
i |—Syncrohize()»{ Accumulate i,

Recalculate ¢,

Fig. 1. Diagram of key BigARTM components

synchronization overhead because both queues only store smart pointers to the
actual data objects, so push and pop operations does not involve copying or
relocating big objects in the memory.

Smart pointers are also essential for lifecycle of the ¢ matrix. This matrix
is read by all processors threads, and can be written at any time by the merger
thread. To update @ without pausing all processor threads we keep two copies —
an active @ and a background @ matrices. The active matrix is read-only, and
is used by the processor threads. The background matrix is being built in a
background by the merger thread at steps 6 and 7 of Algorithm 1, and once it
is ready merger thread marks it as active. Before processing a new batch the
processor thread gets the current active matrix from the merger thread. This
object is passed via shared smart pointer to ensure that processor thread can
keep ownership of its @ matrix until the batch is fully processed. As a result, all
processor threads keep running concurrently with the update of @ matrix.

Note that all processor threads share the same @ matrix, which means that
memory usage stays at constant level regardless of how many cores are used for
computation. Using memory for two copies of the ¢ matrix in our opinion gives
a reasonable usage balance between memory and CPU resources. An alternative
solution with only one @ matrix is also possible, but it would require a heavy
usage of atomic CPU instructions. Such operations are very efficient, but still
come at a considerable synchronization cost!, and using them for all reads and
writes of the @ matrix would cause a significant performance degradation for
merger and processor threads. Besides, an arbitrary overlap between reads and
writes of the @ matrix eliminates any possibility of producing a deterministic
result. The design with two copies of the & matrix gives much more control over
this and in certain cases allows BigARTM to behave in a fully deterministic way.

The design with two @ matrices only supports a single merger thread, and
we believe it should handle all 7.+ updates coming from many threads. This is a
reasonable assumption because merging at step 6 takes only about O(|W| - |T)
operations to execute, while ProcessBatch takes O(n|T|I) operations, where n is
the number of non-zero entries in the batch, I is the average number of inner
iterations in ProcessBatch routine. The ratio n/|W| is typically from 100 to 1000

! http:/ /stackoverflow.com/questions,/2538070/atomic-operation-cost.

http://stackoverflow.com/questions/2538070/atomic-operation-cost

376 K. Vorontsov et al.

(based on datasets in UCT Bag-Of-Words repository), and I is 10...20, so the
ratio safely exceeds the expected number of cores (up to 32 physical CPU cores
in modern workstations, and even 60 cores of the Intel Xeon Phi co-processors).

Data Layout. BigARTM uses dense single-precision matrices to represent @
and ©. Together with the @ matrix we store a global dictionary of all terms
w € W. This dictionary is implemented as std::unordered_map that maps a string
representation of w € W into its integer index in the @ matrix. This dictionary
can be extended automatically as more and more batches came through the
system. To achieve this each batch D;, contains a local dictionary W, listing
all terms that occur in the batch. The ng, elements of the batch are stored as
a sparse CSR matrix (Compressed Sparse Raw format), where each row corre-
spond to a document d € Dy, and terms w run over a local batch dictionary W,.
For performance reasons ¢ matrix is stored in column-major order, and ©
in row-major order. This layout ensures that Zt ®,,10:4 sum runs on contigu-
ous memory blocks. In both matrices all values smaller than 1076 are always
replaced with zero to avoid performance issues with denormalized numbers?.

Programming Interface. All functionality of BigARTM is expressed in a set of
extern C methods. To input and output complex data structures the API uses
Google Protocol Buffers®. This approach makes it easy to integrate BigARTM
into any research or production environment, as almost every modern language
has an implementation of Google Protocol Buffers and a way of calling extern C
code (ctypes module for Python, loadlibrary for Matlab, Plnvoke for C#, etc.).

On top of the extern C API BigARTM already has convenient wrappers in
C++ and Python. We are also planning to implement a Java wrapper in the
near future. In addition to the APIs the library also has a simple CLI interface.

BigARTM has built-in libraries of regularizers and quality measures that can
be extended in current implementation only through project recompilation.

Basic Tools. A careful selection of the programming tools is important for any
software project. This is especially true for BigARTM as its code is written in
C++, a language that by itself offers less functionality comparing to Python,
.NET Framework or Java. To mitigate this we use various parts of the Boost
C++ Libraries, Google Protocol Buffers for data serialization, ZeroMQ library
for network communication, and several other libraries.

BigARTM uses CMake as a cross-platform build system, and it successfully
builds on Windows, Linux and OS X in 32 and 64 bit configurations. Building
the library require a recent C++ compiler with C++11 support (GNU GCC
4.6.3, clang 3.4 or Visual Studio 2012 or newer), and Boost Libraries 1.46.1 or
newer. All the other third-parties are included in BigARTM repository.

We also use free online services to store source code (https://github.com),
to host online documentation (https://readthedocs.org) and to run automated
continuous integration builds (http://travis-ci.org).

2 http://en.wikipedia.org/wiki/Denormal number#Performance_issues.
3 http://code.google.com /p/protobuf/.

https://github.com
https://readthedocs.org
http://travis-ci.org
http://en.wikipedia.org/wiki/Denormal_number#Performance_issues
http://code.google.com/p/protobuf/

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 377

5 Experiments

In this section we evaluate the runtime performance and the algorithmic quality
of BigARTM against two popular software packages — Gensim [14] and Vowpal
Wabbit*. We also demonstrate some of the unique BigARTM features, such as
combining regularizers and multi-language topic modeling via multimodality,
which are not available in the other software packages.

All three libraries (VW.LDA, Gensim and BigARTM) work out-of-core, e. g.
they are designed to process data that is too large to fit into a computer’s
main memory at one time. This allowed us to benchmark on a fairly large col-
lection — 3.7 million articles from the English Wikipedia®. The conversion to
bag-of-words was done with gensim.make_wikicorpus script®, which excludes all
non-article pages (such as category, file, template, user pages, etc.), and also
pages that contain less than 50 words. The dictionary is formed by all words
that occur in at least 20 documents, but no more than in 10 % documents in the
collection. The resulting dictionary was caped at |WW| = 100000 most frequent
words.

Both Gensim and VW.LDA represents the resulting topic model as Dirichlet
distribution over ¢ and © matrices: 84 ~ Dir(y,) and ¢, ~ Dir(A;). On con-
trary, BigARTM outputs a non-probabilistic matrices ¢ and ©. To compare the
perplexity we take the mean or the mode of the posterior distributions:

mean mean
= norm A, 0 = NOrm Viq;
wt wew td o T
mode mode
=norm(Ay: — 1 0 = norm(Yg — 1).
wt wEW(w)’ td teT (fy)

The perplexity measure is defined as

P(D,p) = exp (_711 Z Z N I (w0 | d)) (6)

deD wed

Comparison to Existing Software Packages. The Vowpal Wabbit (VW) is a library
of online algorithms that cover a wide range of machine learning problems.
For topic modeling VW has the VW.LDA algorithm, based on the Online Vari-
ational Bayes LDA [5]. VW.LDA is neither multi-core nor distributed, but an
effective single-threaded implementation in C++ made it one of the fastest tools
for topic modeling.

The Gensim library specifically targets the area of topic modeling and matrix
factorization. It has two LDA implementations — LdaModel and LdaMulti-
core, both based on the same algorithm as VW.LDA (Ounline Variational Bayes
LDA [5]). Gensim is entirely written in Python. Its high performance is achieved
through the usage of NumPy library, built over low-level BLAS libraries (such

* https://github.com/JohnLangford /vowpal _wabbit /.
5 http://dumps.wikimedia.org/enwiki/20141208 /.
5 https://github.com/piskvorky /gensim/tree/develop/gensim /scripts/.

https://github.com/JohnLangford/vowpal_wabbit/
http://dumps.wikimedia.org/enwiki/20141208/
https://github.com/piskvorky/gensim/tree/develop/gensim/scripts/

378 K. Vorontsov et al.

Table 1. The comparison of BigARTM with VW.LDA and Gensim. Train time is the
time for model training, inference is the time for calculation of 64 of 100000 held-out
documents, perplezity is calculated according to (6) on held-out documents.

Library Train | Inference | Perplexity
Procs | Time Time Mode | Mean
BigARTM 1 35min | 72s 4000
LdaModel 1 369 min | 395 s 4213 | 4161
VW.LDA 1 73min | 120s 4061 | 4108
BigARTM 4 9min [20s 4061
LdaMulticore | 4 60min |222s 4055 ‘ 4111
BigARTM 8 4.5min |14s 4304
LdaMulticore | 8 57min | 224s 4379 ‘ 4455
7Y A A] 6
A2 cevivivennnnnin..). L e g I :
L R A3iaiot SIIIE IR SIS o 1 g S :
F A S 8 S e S 1 8 |
‘% (5] SEREEEEESY JEREERS ERRELLERR SRS § 2L i
al A 1 5
=1t E
2 Il [\V — Il o \V] L L L L L L
5 10 15 20 25 30 0 5 10 15 20 25 30
Number of Parallel Threads Number of Parallel Threads

Fig. 2. Running BigARTM in parallel: speed up (left) and memory usage (right)

as Intel MKL, ATLAS, or OpenBLAS). In LdaModel all batches are processed
sequentially, and the concurrency happens entirely within NumPy. In LdaMulti-
core the workflow is similar to BigARTM — several batches are processed con-
currently, and there is a single aggregation thread that asynchronously merges
the results.

Each run in our experiment performs one pass over the Wikipedia corpus and
produces a model with |T| = 100 topics. The runtime is reported for an Intel-
based CPU with 16 physical cores with hyper-threading. The collection was split
into batches with 10000 documents each (chunksize in Gensim, minibatch in
VW.LDA). The update rule in online algorithm used p = (b + 79) -5, where b is
the number of batches processed so far, and 7¢ is an a constant offset parameter
introduced in [5], in our experiment 75 = 64. Updates were performed after each
batch in non-parallel runs, and after P batches when running in P threads. LDA
priors were fixed as « = 0.1, 8 = 0.1, so that 8, ~ Dir(a), ¢, ~ Dir(5).

Table 1 compares the performance of VW.LDA, Gensim LdaModel, Gensim
LdaMulticore, and BigARTM. Figure2 shows BigARTM speedup and mem-
ory consumption depending on the number of CPU threads for Amazon AWS
c3.8xlarge with 32 virtual cores, Gensim 0.10.3 under Python 2.7.

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 379

Table 2. Comparison of LDA and ARTM models. Quality measures: Piox, Piook —
hold-out perplexity on 10 K and 100 K documents sets, S, So — sparsity of @ and
© matrices (in %), Ks, Kp, K. — average topic kernel size, purity and contrast
respectively.

Model Pmk Pu)()k S«p S@ Ks ’Cp ’Cc
LDA 3436 | 3801 | 0.0 |0.0 |873 |0.533]0.507
ARTM | 3577|3947 |96.380.9|1079 | 0.785|0.731

3
t— 100 op it 1
=" -
L0417 e = 80 1 0.8 §
> . 9 z
= 2 N
2 0.87 605 G075 0.6 3
9 =) T
=% @ <]]
5 0.69 40 & 5 05 049
¥ >
: X , £
0.52 47 20 0.25 0.2 5
, &
)
0.34 0 0
1-10° 2.10° 3-106 1-10° 2. 10° 3-10°
Perplexity - - - Phi Theta Size - - - Purity Contrast

Fig. 3. Comparison of LDA (thin) and ARTM (bold) models. The number of processed
documents is shown along the X axis.

Experiments with Combination of Regularizers. BigARTM has a built-in library of
regularizers, which can be used in any combination. In the following experiment
we combine three regularizers: sparsing of ¢; distributions, sparsing of 6, distri-
butions, and pairwise decorrelation of ¢; distributions. This combination helps
to improve several quality measures without significant loss of perplexity, accord-
ing to experiments on the offline implementation of ARTM [13]. The goal of our
experiment is to show that this remains true for the online implementation in
BigARTM. We use the following built-in quality measures: the hold-out perplex-
ity, the sparsity of @ and © matrices, and the characteristics of topic lexical kernels
(size, purity, and contrast) averaged across all topics.

Table 2 compares the results of additive combination of regularizers (ARTM)
and the usual LDA model. Figure 3 presents quality measures as functions of the
number of processed documents. The left chart shows perplexity and sparsity of
@, © matrices, and the right chart shows average lexical kernel measures.

Experiments on Multi-language Wikipedia. To show how BigARTM works with
multimodal datasets we prepared a text corpus containing all English and Russian
Wikipedia articles with mutual interlanguage links. We represent each linked
pair of articles as a single multi-language document with two modalities, one
modality for each language. That is how our multi-language collection acts as a
multimodal document collection.

The dump of Russian articles” had been processed following the same tech-
nique as we previously used in experiments on English Wikipedia. Russian words

" http://dumps.wikimedia.org/ruwiki/20141203/.

http://dumps.wikimedia.org/ruwiki/20141203/

380 K. Vorontsov et al.

Table 3. Top 10 words with p(w | t) probabilities (in %) from two-language topic model,
based on Russian and English Wikipedia articles with mutual interlanguage links.

Topic 68 Topic 79
research 4.56 | THCTUTYT 6.03 || goals 4.48 | MmaTg 6.02
technology 3.14 | yauBepcurer 3.35 || league 3.99 | urpok 5.56
engineering 2.63 | mporpamma 3.17 || club 3.76 | coopuast 4.51
institute 2.37 | yaebubrit 2.75 || season 3.49 | bk 3.25
science 1.97 | rexauueckuit 2.70 || scored 2.72 | npoTus 3.20
program 1.60 | rexmomorua 2.30 || cup 2.57 | kity6 3.14
education 1.44 | ray9IHBII 1.76 || goal 2.48 | dyrbosncT 2.67
campus 1.43 | uccnenosanue 1.67 || apps 1.74 | ron 2.65
management 1.38 | Hayka 1.64 || debut 1.69 | 3abuBarn 2.53
programs 1.36 | obpazoBanme 1.47 || match 1.67 | komana 2.14
Topic 88 Topic 251
opera 7.36 | ortepa 7.82 || windows 8.00 | windows 6.05
conductor 1.69 | onepHbIit 3.13 || microsoft 4.03 | microsoft 3.76
orchestra 1.14 | nupuxkep 2.82 || server 2.93 | Bepcusa 1.86
wagner 0.97 | meBery 1.65 || software 1.38 | npuozkenne 1.86
soprano 0.78 | meBuIA 1.51 || user 1.03 | cepsep 1.63
performance 0.78 | reaTp 1.14 || security ~ 0.92 | server 1.54
mozart 0.74 | maprus 1.05 || mitchell ~ 0.82 | nporpammubrit 1.08
sang 0.70 | corrpano 0.97 || oracle 0.82 | mosb3oBarennp 1.04
singing 0.69 | Baraep 0.90 || enterprise 0.78 | obecneuenne 1.02
operas 0.68 | opkecTp 0.82 || users 0.78 | cucrema 0.96

were lemmatized with Yandex MyStem 3.0%. To further reduce the dictionary
we only keep words that appear in no less than 20 documents, but no more
than in 10 % of documents in the collection. The resulting collection contains
216175 pairs of Russian-English articles, with combined dictionary of 196749
words (43 % Russian, 57 % English words).

We build multi-language model with 400 topics. They cover a wide range of
themes such as science, architecture, history, culture, technologies, army, differ-
ent countries. All 400 topics were reviewed by an independent assessor, and he
successfully interpreted all except four topics.

Table 3 shows top 10 words for four randomly selected topics. Top words in
these topics are clearly consistent between Russian and English languages. The
Russian part of last topic contains some English words such as “Windows” or
“Server” because it is common to use them in Russian texts without translation.

6 Conclusions

BigARTM in an open source project for parallel online topic modeling of large
text collections. It provides a high flexibility for various applications due to

8 https://tech.yandex.ru/mystem/.

https://tech.yandex.ru/mystem/

BigARTM: Open Source Library for Regularized Multimodal Topic Modeling 381

multimodality and additive combinations of regularizers. BigARTM architecture
has a rich potential. Current components can be reused in a distributed solution
that runs on cluster. Further improvement of single-node can be achieved by
offloading batch processing into GPU.

Acknowledgements. The work was supported by the Russian Foundation for Basic
Research grants 14-07-00847, 14-07-00908, 14-07-31176 and by Skolkovo Institute of
Science and Technology (project 081-R).

References

10.

11.

12.

13.

14.

15.

Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77-84 (2012)

Blei, D.M., Jordan, M.I.: Modeling annotated data. In: Proceedings of the 26th
Annual International ACM SIGIR Conference on Research and Development in
Informaion Retrieval, pp. 127-134. ACM, New York (2003)

Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993-1022 (2003)

Daud, A., Li, J., Zhou, L., Muhammad, F.: Knowledge discovery through directed
probabilistic topic models: a survey. Front. Comput. Sci. China 4(2), 280-301
(2010)

Hoffman, M.D., Blei, D.M., Bach, F.R.: Online learning for latent dirichlet alloca-
tion. In: NIPS, pp. 856-864. Curran Associates Inc. (2010)

Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50-57. ACM, New York (1999)

Liu, Z., Zhang, Y., Chang, E.Y., Sun, M.: PLDA+: parallel latent Dirichlet alloca-
tion with data placement and pipeline processing. ACM Trans. Intell. Syst. Tech-
nol. 2(3), 26:1-26:18 (2011)

Newman, D.; Asuncion, A., Smyth, P., Welling, M.: Distributed algorithms for
topic models. J. Mach. Learn. Res. 10, 1801-1828 (2009)

Rubin, T.N., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for
multi-label document classification. Mach. Learn. 88(1-2), 157-208 (2012)
Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. Proc.
VLDB Endow. 3(1-2), 703-710 (2010)

Vorontsov, K.V.: Additive regularization for topic models of text collections. Dokl.
Math. 89(3), 301-304 (2014)

Vorontsov, K.V.; Potapenko, A.A.: Additive regularization of topic models. Mach.
Learn. 101(1-3), 303-323 (2015)

Vorontsov, K., Potapenko, A.: Tutorial on probabilistic topic modeling: additive
regularization for stochastic matrix factorization. In: Ignatov, D.I., Khachay, M.Y.,
Panchenko, A., Konstantinova, N., Yavorsky, R.E. (eds.) AIST 2014. CCIS, vol.
436, pp. 29-46. Springer, Heidelberg (2014)

Rehiifek, R., Sojka, P.: Software framework for topic modelling with large cor-
pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, ELRA, Valletta, pp. 45-50, May 2010

Wang, Y., Bai, H., Stanton, M., Chen, W.-Y., Chang, E.Y.: PLDA: parallel latent
dirichlet allocation for large-scale applications. In: Goldberg, A.V., Zhou, Y. (eds.)
AAIM 2009. LNCS, vol. 5564, pp. 301-314. Springer, Heidelberg (2009)

	BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections
	1 Introduction
	2 Multimodal Regularized Topic Model
	3 Online Topic Modeling
	4 BigARTM Architecture
	5 Experiments
	6 Conclusions
	References

