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Abstract Model Driven Architecture (MDA) is recognised as a strong way to
develop high-quality systems, and specifically reactive systems. Within MDA,
models are in the center of a stepwise development based on extensions, refine-
ments and transformation. Systems Engineering addresses the problem of complex
system development in a holistic way, however, there is a lack of tools to verify
models from a behavioural point of view at the earlier stage of the development,
taking into account that the specifications are evolving during the system devel-
opment. We propose IDF, a framework for Incremental Development of Compliant
Models, which is constituted with a set of relations based on the verification of
liveness properties. It is computed on abstract models automatically set up from
behavioural specifications of the system or its component. These relations detect
non-conformance of models during their evolution (extension or refinement) such
as the non-interoperability of sub-components belonging to an architecture.

1 Introduction

Model Driven Architecture (MDA) [1] is recognised as a strong way to develop
high-quality systems, and specifically reactive systems which are event-driven
systems that must continuously react to external stimuli. Such systems include for
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instance embedded controllers for automotives, avionics, train, telephony, but also
communication network.

Within MDA, models are in the center of a stepwise development based on
model extensions, refinements and transformations, from an abstract incomplete
specification to a concrete complete model. By this way, models serve both as a
description of the problem domain, i.e. a requirement, and a specification for the
implementation, bridging the gap between problem and solution. Many methods
and tools have been proposed to support model development based on standard
modelling languages such as UML or SysML. Methodologies are also necessary in
order to deal with complex systems. Systems Engineering [2] addresses this chal-
lenge in a holistic way considering both business and technical aspects of a system
design, integrating all stakeholders at the early stage of the development, starting
from the user requirements and the definition of the environment of the system to be
designed in order to produce high-quality systems. Many methodologies and many
standards have been proposed to follow these recommendations as it is shown in the
survey proposed in [3]. Our area of interest focuses on the definition and the
analysis of the behavioural view of the system, expressed by a functional or organic
architecture whose components are defined by a behavioural view or an architec-
tural one. The target activities are therefore the functional analysis, the functional
verification and the synthesis in the IEEE 1220 Process model [4]. Our experience
in system modelling highlighted that architecture definition, behavioural abstraction
and refinement are the core activities of system design. Designing a system consists
not only in modelling its architecture, but also in evaluating its behavioural models
and that of its components at the beginning of the modelling process, although the
model is incomplete and non-deterministic. These features have to be considered as
a support for designers and architects. It means that such verifications have not to be
postponed at the end of the modelling process. They have to be integrated in the
incremental development of the system and its components.

For this propose, we have defined IDF, an Incremental Development
Framework. It is defined by a set of relations computed on an abstract formalism
(LTS for Labelled Transition System), allowing models to be evaluated during their
development. The environment of the system to be designed can be at its turn
modelled taking into account its uncertain or non-deterministic behaviour. By this
way, incompatibility or non-interoperability can be detected at early stages of the
design process. The framework is supported by a tool, named IDCM (Incremental
Development of Compliant Models). Experiments have been conducted on UML
models. Our work is inspired by techniques of model checking [5]. Such verifi-
cations aims at:

– supporting the stepwise realisation of systems by applying refinement and
extension operations

– analysing the interaction of the system with its environment, with respect to
non-deterministic scenarios

– insuring the interoperability of the system components
– insuring the evolution of the system by substituting a component by a new one
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This paper gives an overview of the concepts of IDF and tools we have
developed to support IDF. The following section presents modelling concepts of
architectures and behavioural components through an incremental development
process in order to point out topics being addressed. Section 2 introduces definition
of liveness and abstraction models allowing UML/SysML models to be analysed.
Section 3 gives an overview of relations we have implemented to support IDF.
Section 4 shows main functionalities of the tool IDCM for supporting IDF con-
cepts. A presentation of our future work will close this article.

2 The Architectural Paradigms

In this section, we present main useful concepts to understand our proposal for
incremental development of architectural models. We focus on the verification of
behavioural specifications of a system all along its design life cycle. Figure 1 gives
an overview of the useful operations for the development of a system based on a
MDA approach. We suppose that the first step starts by defining a behavioural
specification of the system (BEHAV1 in Fig. 1) at a high abstraction level. Such a
specification may evolve and be extended (BEHAV2 in Fig. 1) until an agreement is
reached between the various stakeholders of the system development (client,
end-users, designers). This agreement may however evolve during the system
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Fig. 1 Overview of an incremental development through refinement and extension operations
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design process and at every step, it will be necessary to be able to take into account
new specifications.

When the system is complex, its design is structured into components that may
represent functional components or physical components depending on the stage of
the design process. Components defined according to a structural view are called
architectures. For example, in Fig. 1, the first architecture is named ARCHI1; it is
extended into ARCHI2 whose components have to be refined. Architectures can be
seen as a hierarchical tree whose leaves are behavioural components. Architectures
may represent logical architectures or physical ones.

Extensions means that new behaviours are introduced into the design, for
whatever reasons: the system is too complex to be defined in one shot, the client
changes is mind, there is an already developed COTS whose specification is closed
of the required one that could be integrated with lower cost, a product line has
already be tested and its enhancement is expected by introducing new requirements,
and so on.

Refinements aim at adding details and reducing non-determinism in order to get
a concrete model closer to the final implantation of the system.

Developments of components may be processed by separate teams, by means of
a collaborative platform, that increase the complexity of the process. One main
concern of component designers is to develop components that meet their speci-
fication. Components are supposed to be defined for a given context, except that
this context is evolving since it is itself under development. One goal of the
architect is to verify the behavioural consistency of the models being developed.
This task is critical since sub-systems have their own development life cycle.
Nevertheless, the architect cannot wait until the final implantation model to check
the consistency analysis of the system. He/she has to maintain the functional
consistency of the system model under development whatever the abstractions of
sub-system models. We characterize consistency by the following properties:

– conformance: the behavioural specification of the architecture that is deduced
from the interaction of its components fulfils the mandatory parts of the spec-
ification [6].

– interoperability: the system is deadlock free; whatever point of interaction may
be reached, communication will not be blocked and each part will reach one of
its final states [7].

Architectures and behavioural components are defined from an external point of
view, by a set of ports useful for establishing connections and a set of interfaces
defining required and provided operations (or services). In order to illustrate con-
cepts of architecture modelling, we will take as example the V76 case study pro-
posed by [8], which is a simplified version of the protocol described in the
ITU V.76 recommendation, based on LAPM (Link Access Procedure for Modems).
Figure 2a represents an abstract external view of an architecture named V76-DL
which represents the communication between two components that implement the
protocol V76 and Fig. 2b is a more detailed external view.
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The internal view of an architecture is defined by its components and their
interconnections. For example, Fig. 3 illustrates the internal view of architecture
V76-DL: it is constituted with two components of type V76 whose external view is
given in Fig. 4. The architecture allows two users to communicate through the ports
U1 and U2.

Fig. 2 External view of two points of view of architecture V76-DL

Fig. 3 Internal view of architecture V76-DL

Fig. 4 External view of component V76
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The internal view of a behavioural component is defined by a behavioural
specification defined according to its ports, the operations of its external view and
private internal operations. Many formalisms may be used for behavioural speci-
fication depending on the system features and the progress of the development:
sequence diagrams, state machines, functional flow block diagrams. For example,
Fig. 5a shows a simplified specification of the architecture V76-DL from the
transmitting user point of view and Fig. 5b shows the state machine of component
V76 belonging to architecture V76-DL.

Analysing the consistency of an architecture during its development requires
specific mechanisms and tools that are usually not proposed by CASE
(Computer-Aided Software Engineering) tools. These mechanisms are divided into
two groups:

– model verifications: adequate relations have to be defined to capture confor-
mance, refinement, extension and interoperability

– model abstraction: adequate models have to be set up from the model under
construction in order to capture behavioural specification from an external point
of view and an appropriate abstraction in order to compare models defined at
different abstraction levels.

These mechanisms are defined according to liveness properties that have to be
preserved during development. This property is the liveness. Next section gives
definition of liveness and motivates this choice.

3 The Use of Liveness and Abstraction as a Design
Guideline

Liveness and safety properties allow systems to be analysed with respect to their
behavioural specification as observed by their environment. This behaviour is
observed by traces which are partial sequences of interactions (events or actions)

Fig. 5 Behavioural specifications: a sequence diagram associated with the abstract architecture
V76-DL, b state machine of component V76
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starting from the initial state of the system. There are several ways to define safety
and liveness, some of them being contradictory about the classification of deadlock
property. We have selected definitions proposed by [9]: a safety property asserts
that the system always stays within some allowed set of finite behaviours, in which
nothing “bad” happens. The violation of such properties occurs after a finite exe-
cution of the system. A liveness property asserts that the system eventually reaches
a good set of states, that means it will eventually react as it should after some given
traces. A liveness property represents what the system must do, while a safety
represents what the system has not to do. When reasoning on models, liveness
properties can only be established under some fairness assumption, stating that the
system is not allowed to continuously favour certain choices at the expense of
others [10]. The fairness assumption implies that the system will eventually accept
an event occurring infinitely often. Lastly, we consider that deadlock freedom is a
liveness property, as proposed in [11] since a deadlock means that the system
refuses any input event.

Many formal methods addressing complex system development advocate
refinement techniques [12, 13] such as B method [14] or Object-Z [15]. They focus
on the preservation of safety properties all along the process of development. Such
methods are adequate when the specification of the component or the complete
system is definitive and not being defined or evolved. Another way to support
designers during model development is to preserve the liveness properties as men-
tioned in [16]: liveness properties act as a design guideline for developing systems.

Liveness is crucial for reactive systems and is complementary to safety to
support designers during an incremental development: observing liveness allows
specification to be enriched, starting from a “draft” model that is completed by a
stepwise approach in a non-regressive way.

It is therefore necessary to provide designers with tools to compare models
according to their liveness properties, taking into account that they sub-components
can be defined at different abstraction levels. For example, how ensuring that
architecture V76-DL fulfils the behavioural specification expressed by the sequence
diagram? Are components of architecture V76-DL interoperable?

To answer these questions, we have defined two mechanisms: model abstraction
and model analysis based on a liveness analysis.

3.1 Model Abstraction

With model abstraction, a simplified behaviour is extracted from models to be
analysed. This extraction takes into account several criteria: the abstraction levels of
models to be compared, the type of relation to be analysed (extension, refinement or
interoperability), and of course, the goal of the analysis that is based on the analysis
of the interaction of system (or one of its sub-system) and its environment. Abstract
models are formalised by LTS (Labelled Transition System) [17]. Reasoning on
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such a formalism has many advantages: the system analysis is independent from the
modelling formalism chosen by the designer; models can thus be compared even if
their application domain is different, that is usual in System Engineering; existing
relations already defined on LTS can be used for our purpose.

We do not formally introduce LTS and the process to abstract state machines
into LTS. You can refer to [18] and [19] to get details about the transformation.
Figure 6a illustrates the LTS generated from the state machine of component V76,
and Fig. 6b the LTS associated with the sequence diagram of the architecture
V76-DL. The transformation does not handle data; it only focuses on provided and
required events (or services) offered by the component under analysis. When the
component is an architecture, we have defined a transformation [20] which com-
putes all combinations of internal events between components and reduces the LTS
to observable events by hiding internal synchronisations and internal operations.
Hidden actions are noted i in the LTS. For example, the LTS associated with the
architecture of Fig. 3 handles operations defined on its interfaces given in Fig. 2b.
Operations defined on interfaces of internal components, that is interfaces
DataLinkIN and DataLinkOUT, are hidden. The LTS is built by synchronising the
two LTS of Fig. 6 on their internal connector. It contains 84 transitions and 54
states.

When models to be compared do not belong to the same abstraction level, their
interfaces may be different. For example, there are more operations in interfaces of

Fig. 6 a LTS associated with the state machine of component V76, b LTS associated with the
sequence diagram of the simplified specification of architecture V76-DL
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component V76-DL than those of the specification of V76 protocol given by the
sequence diagram. Comparison needs to align the abstraction levels. For this pur-
pose, we use a hiding mechanism and a renaming mechanism, when operations are
refined. For example, to compare V76-DL and the sequence diagram, internal
operations of the architecture (ua, i, sabme, and disc) are hidden such as the
operations belonging to the port u2, which correspond with the user receiving the
data. By this mechanism, the LTS associated with V76-DL architecture will be
comparable to the abstract specification.

The main feature of this abstract model is that it captures what the system must
do and what the system may do. That is crucial for liveness properties as we point
out below.

3.2 Liveness Analysis

There exists a specific relation, which lonely goal is to preserve liveness. This
relation is conformance relation conf [21, 22]. Conformance testing methodolo-
gies proposed by ISO and ETSI [6] are designed to compare an implementation
model with a standard specification. Standard specifications or recommendations
serve to define both the mandatory and optional parts. The main idea behind
conformance is to verify agreement between an implementation and its specification
on required parts; informally speaking, an implementation conforms to a standard if
it has properly implemented all mandatory parts of the standard [23].

For instance, in Fig. 7, we can deduce the following properties:

– spec1, spec2 and spec4 may accept releaseREQ or connectREQ after a
sequence of connectREQ. As they may also refuse them, operations
releaseREQ or connectREQ are optional.

– spec3 must accept releaseREQ after connectREQ. releaseREQ is thus
mandatory after the trace connectREQ.

We can verify: spec1 conf spec2, spec2 conf spec1, spec1 conf spec4.
However, spec1 =conf spec3: from an observational standpoint, nothing distin-
guishes spec1 from spec3 but conf relation detects non-determinism of spec3. In
this example, spec1 may refuse releaseREQ after a non-empty unbounded
occurrences of connectREQ, whereas spec3, which is deterministic, cannot. spec1
and spec3 are trace equivalent, yet not in conformance. Lastly, even if spec1 conf
spec4 and spec4 conf spec1, we can verify that spec4 cannot substitute spec1.

Even though the conformance relation has been defined by [22], we are still not
aware of any published method to compute it. We have thus proposed an
implantation of this relation and pointed out how extension and refinement relations
can be defined from the conformance relation [19, 24]. In the same way, we have
implemented the procedure allowing to check if a component can substitute another
one, whatever its environment may be [20].
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Next section gives an overview of the tool IDCM we have defined and imple-
mented to provide designers with a tool box to analyse models.

4 IDCM: Incremental Development of Compliant Models

IDCM is a tool box allowing models to be compared with respect to refinement,
extension and substitution relations. It is based on concepts of IDF focusing on the
analysis of liveness properties and abstraction of behavioural/functional models. It
is developed in Java. Its first release is integrated into TopCased environment [25]
and focus on UML state machines and composite component analysis. When a
model is loaded for verification, the set of its components is proposed to be
abstracted into LTS (see Fig. 8).

Behavioural component transformation is performed by an ad hoc algorithm
we have developed by parsing state machine xmi models. Composite components
transformation is done with two stages: the first one produces an intermediate file
in EXP.OPEN format [26] that is obtained by parsing composite component xmi
models; the second stage, consisting in transforming the intermediate file into
LTS, is performed by the CADP toolbox [27]. LTS associated with state
machines and composite components are generated into CADP textual and binary
formats [27].

IDCM proposes a set of relations for model comparison. They are classified in
several families: relations for incremental development (extension or refinement),
relation for liveness verification to check the conformance between an implantation
and its specification, relations for assembling sub-components (compatibility) and
lastly, relations to check if a component can substitute another one. When a relation
between two models does not hold, a verdict is given as a sequence of observable

Fig. 7 Example of conf relation
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events leading to a failure. Designers are in charge to analyse the trace, to execute it
on the state machine, or in the architecture in order to find the mistake and correct it.
For example, we have found a mistake (Fig. 9) in the state machine of component
V76 by comparing the architecture with its abstract specification. There exists a
deadlock after the action connectREQ when the two users send together a
connectREQ. We have corrected this mistake by adding a state and transitions
between wait–eu and wait–establish states in the state machine of Fig. 5b.

Fig. 8 Interface to transform behavioural and architectural components into LTS

Fig. 9 Verdict of the conformance between the architecture V76-DL and its abstract specification
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5 Conclusion

Developing complex systems requires methodologies such as MDA and System
Engineering. Nevertheless, there is an actual difficulty for designers and architects
for evaluating the behaviour of a system being designed during its development.
We have thus proposed a framework supported by a tool allowing models to be
developed through a stepwise methodology using extensions, refinements and
substitutions. The development guarantees the liveness properties of the system.
Our proposal is thus complementary to approaches of safety analysis that must also
be performed during the development of critical systems.

Our future work plans to extend the model transformation to other functional
formalisms than state machines such as sequence diagrams and eFFBD (enhanced
functional block diagram). We are also defining a UML profile for incremental
development.
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