
Efficient Data Intensive Secure Computation:
Fictional or Real?

Changyu Dong(B)

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, UK

changyu.dong@strath.ac.uk

Abstract. Secure computation has the potential to completely reshape
the cybersecruity landscape, but this will happen only if we can make
it practical. Despite significant improvements recently, secure computa-
tion is still orders of magnitude slower than computation in the clear.
Even with the latest technology, running the killer apps, which are often
data intensive, in secure computation is still a mission impossible. In
this paper, I present two approaches that could lead to practical data
intensive secure computation. The first approach is by designing data
structures. Traditionally, data structures have been widely used in com-
puter science to improve performance of computation. However, in secure
computation they have been largely overlooked in the past. I will show
that data structures could be effective performance boosters in secure
computation. Another approach is by using fully homomorphic encryp-
tion (FHE). A common belief is that FHE is too inefficient to have any
practical applications for the time being. Contrary to this common belief,
I will show that in some cases FHE can actually lead to very efficient
secure computation protocols. This is due to the high degree of internal
parallelism in recent FHE schemes. The two approaches are explained
with Private Set Intersection (PSI) as an example. I will also show the
performance figures measured from prototype implementations.

1 Introduction

In the past a few years, we have seen a dramatic increase in the scale and
financial damage caused by cyber attacks. Data security is now of paramount
importance for most organizations. Compounding the problem, changes in com-
puting – particularly the booming of Cloud computing and collaborative data
analysis – has added another layer of complexity to the security landscape. Tra-
ditionally, an organization can lock their data in secure storage and process
it within an in-house facility operated by trusted staff. But increasingly, data
processing is moving out of the trusted zone and security mechanisms that used
to be effective do not work any more. A promising solution to solve this problem
is secure computation. Secure computation allows for computation of arbitrary
functions directly on encrypted data and hides all information about the data
against untrusted parties, even if the untrusted parties are involved in the com-
putation. It is a transformative technology that will completely change the game.
c© Springer International Publishing Switzerland 2015
B. Christianson et al. (Eds.): Security Protocols 2015, LNCS 9379, pp. 350–360, 2015.
DOI: 10.1007/978-3-319-26096-9 35

Efficient Data Intensive Secure Computation: Fictional or Real? 351

One prediction says that within 15 years, the secure computation sector will be
bigger than the anti-malware sector which currently has the largest share of the
IT security industry [1].

Secure computation research started in the 1980s. Yao first defined the con-
cept of secure computation in his seminal paper [2]. The goal of secure com-
putation is to allow multiple parties to jointly compute a function over their
inputs, and keeping these inputs private. There are several different approaches
for achieving this goal. One prominent secure computation technique is Yao’s
garbled circuits protocol [3]. In this protocol, a function converted into an
encrypted Boolean circuit and the parties evaluate the circuit with encrypted
inputs. Another Boolean circuit based technique is the GMW protocol by Gol-
dreich et al. [4]. Also Cramer et al. showed that secure computation can be done
with arithmetic circuits and secret shared inputs [5]. Gordon et al. proposed
a technique for secure computation in a von Neumann-style Random Access
Machine (RAM) model by using an Oblivious RAM [6]. Recently, the devel-
opment of Fully Homomorphic Encryption (FHE) provided a new direction in
secure computation [7]. Apart from those generic secure computation techniques,
there are also many special-purpose protocols that are designed for specific secure
computation problems, e.g. private set intersection [8] and oblivious polynomial
evaluation [9]. Secure computation is an obvious solution for a class of prob-
lems in which parties must provide input to a computation, but no party trusts
any other party with that data. Examples include e-voting, auctions, informa-
tion retrieval, data sharing, data mining and many more. Despite the fact that
it has so many potential applications, secure computation has remained purely
theoretical for many years. Efficiency is one of the main reasons.

Recently there have been a few efforts aiming to turn secure computation
from a theorists’ toy to a real world tool. Significant progress has been made in
the last five years to improve the efficiency of secure computation by algorith-
mic advancements. For example, various protocols designed to efficiently com-
pute a specific function securely; improvements on garbled circuits including free
XOR [10], efficient OT extension [11] and fast cut-and-choose [12]; more efficient
share-based multiparty secure computation protocols including Sharemind [13]
and SPDZ [14]; more efficient RAM program based secure computation [15];
optimizations for FHE including SIMD operations [16] and polylog FHE [16].
The improvement is significant. Taking garbled circuit based secure computa-
tion as an example, after integrating many optimizations to date, the FastGC
framework [17] is 104 times faster than FairPlay [18] which was implemented
in 2004.

That said, secure computation is still far from being practical. Despite all
the improvements, secure computation is still tens of thousand to billions times
slower than computation in the clear. The overhead might be acceptable if the
data to be processed were small, but can be prohibitive when the data is big.
Imagine we have a secure computation mechanism which slows down the com-
putation by 10,000 times, then what we can do in the clear in 10 seconds now
needs more than 1 day to complete, and what we can do in the clear in 10 hours
now needs more than 10 years! Paradoxically, when talking about the killer apps

352 C. Dong

of secure computation, people often use examples such as companies having so
much data that they do not have resources to process and have to process it in
untrusted clouds, or two mutually untrusted parties have to mine their massive
datasets together. Although the examples show the necessity of secure com-
putation, current secure computation technology is incapable of handling such
data-intensive applications. This becomes a major impediment to widespread
use of secure computation.

How to make data intensive secure computation practical? In the rest of this
paper, I will show two new approaches that have great potential: by designing
data structures and by using newly developed FHE techniques. I will present
the ideas using Private Set Intersection (PSI) protocols as an example.

2 Private Set Intersection: Background

A PSI protocol is a two-party protocol in which a client and a server want to
jointly compute the intersection of their private input sets in a manner that
at the end the client learns the intersection and the server learns nothing. PSI
protocols have many practical applications. For example, PSI has been proposed
as a building block in applications such as privacy preserving data mining [19,20],
human genome research [21], homeland security [22], Botnet detection [23], social
networks [24], location sharing [25] and cheater detection in online games [26].
Many applications requires massive datasets as inputs. The first PSI protocol was
proposed by Freedman et al. [8]. There are several approaches for PSI protocols.
Some of them are based on oblivious polynomial evaluation [8,27,28], some are
based on oblivious pseudorandom function (OPRF) evaluation [22,29–31], and
some are based on generic garbled circuits [32].

3 Data Structural Approach

In computer science, traditionally an effective approach to improve the efficiency
of data intensive computation is by using an appropriate data structure, but in
secure computation, the power of data structures has been largely overlooked.
The reason for that is probably because in the past secure computation research
focused on showing feasibility and the use cases were limited to those with small
data input. But when we are moving towards real world applications in which
data plays the central role and drives the computation, data structural design
will become an indispensable part of secure computation. A good example of
this data structural approach is the garbled Bloom Filter and the PSI protocol
based on this data structure [33].

3.1 From Bloom Filter to Garbled Bloom Filter

A Bloom filter [34] is a compact data structure for probabilistic set membership
testing. It is an array of m bits that can represent a set S of at most n elements.

Efficient Data Intensive Secure Computation: Fictional or Real? 353

Private Set: C Private Set: S

BFS

Secure AND

BFC∩S

BFC

client server

Fig. 1. The naive PSI protocol based on bloom filters.

A Bloom filter comes with a set of k independent uniform hash functions H =
{h0, ..., hk−1} that each hi maps elements to index numbers over the range [0,m−
1] uniformly. Let us use BFS to denote a Bloom filter that encodes the set S,
and use BFS [i] to denote the bit at index i in BFS . Initially, all bits in the array
are set to 0. To insert an element x ∈ S into the filter, the element is hashed
using the k hash functions to get k index numbers. The bits at all these indexes
in the bit array are set to 1, i.e. set BFS [hi(x)] = 1 for 0 ≤ i ≤ k −1. To check if
an item y is in S, y is hashed by the k hash functions, and all locations y hashes
to are checked. If any of the bits at the locations is 0 , y is not in S, otherwise
y is probably in S.

A standard Bloom filter trick is that if there are two Bloom filters, each
encodes a set S1 and S2, and both are of the same size and built using the
same set of hash functions, we can obtain another Bloom filter BFS1∩S2 by bit-
wisely ANDing BFS1 and BFS2 . The resulting Bloom filter BFS1∩S2 encodes
the set intersection S1∩S2. It seems that we can obtain an efficient PSI protocol
(Fig. 1) immediately from this trick. However, this naive protocol is not secure.
The reason is that due to collisions, the resulting Bloom filter BFC∩S usually
contains more 1 bits than the Bloom filter built from scratch using C ∩ S. This
means BFC∩S leaks information about elements in S.

To avoid information leakage, we designed the garbled Bloom filters (GBF).
A garbled Bloom filter is much like a Bloom filter: it is an array of size m
with k hash functions. The difference is that at each position in the array, it
holds a λ-bit string rather than a bit, where λ is the secure parameter. The
bit string is either a share of a set element or a random string. To encode a
set S, each element s ∈ S is inserted as follows: initially all positions in the
GBF is set to NULL. We then hash the element using the k hash functions. For
0 ≤ j ≤ k − 2, If GBF [hj(s)] = NULL then we put an λ-bit random string
at this position, and then we set GBF [hk−1(s)] = s ⊕ (

⊕k−2
j=0 GBF [hj(s)]). We

can see that each of the k position GBF [hj(s)] holds a share of s. The shares
has the property that if all k shares are present, we can reconstruct the element
from the shares s =

⊕k−1
j=0 GBF [hj(s)]); however any subset that has less than

k shares reveals no information about the element. After inserting all elements
in s to the GBF, we put a λ-bit random string at each position that is still
NULL. To query an element y, y is hashed by the k hash functions and we test
⊕k−1

j=0 GBF [hj(y)] ?= y. If the test is true, then y is in the set S.

354 C. Dong

*

*

*

*

*

*

*

s11

s21

s12

s31

s22

*

*

*

*

*

*

*

*

s11

s21

s12

s31

0

0

0

1

0

0

1

1

1

1

1

0

Private Set: C Private Set: S

BFC GBFS

*

*

*

*

*

*

*

*

*

*

*

*

GBFC∩S

oblivious
transfer

client server

Fig. 2. The oblivious bloom intersection protocol.

A secure PSI protocol can then be built using a Bloom filter and a garbled
Bloom filter (Fig. 2). In the protocol, the client encodes its set into a Bloom
filter BFC , the server encodes its set into a garbled Bloom filter GBFS . The
server also generates an array contains m random bit strings of length λ. For
each position 0 ≤ i ≤ m− 1, the client and server run a (2,1)-Oblivious Transfer
protocol [35] such that if the bit BF [i] = 1, the client receives GBF [i], if the
bit BF [i] = 0, the client receives the ith string from the random string array.
At the end of the protocol, the result is a garbled Bloom filter GBFC∩S that
encodes the intersection.

By using a garbled Bloom filter, we fix the information leakage problem. In
the intersection garbled Bloom filter GBFC∩S , there might still exist residue
shares that belong to elements not in the intersection. However, if an element
s is not in C ∩ S, then the probability of all its shares remain in GBFC∩S is

Fig. 3. Indistinguishability of the intersection garbled bloom filter.

Efficient Data Intensive Secure Computation: Fictional or Real? 355

negligible. Then by the property of the shares, the residue shares of s in GBFC∩S

leak no information about s. For example, in Fig. 3, s12 in GBFC∩S is a share
of x2 which is not in the intersection. The element x2 has 3 shares and one of
the share s22 is not transferred to the client in the protocol. Then the other two
shares remain in GBFC∩S look uniformly random and do not leak information
about x2.

3.2 Performance Comparison

The PSI protocol obtained from garbled Bloom filter has many advantages:
it has linear complexity, is easy to parallelize, relies mainly on symmetric key
operations and it is much efficient than previous best protocols. We compared
the performance with the previous best protocols. One protocol is by Huang et
al. based the garbled circuits approach [32], and another is by De Cristofaro et al.
based on ORPF evaluation [22]. Figure 4 shows the performance improvement
at 128-bit security. The numbers displayed in the figure are ratios of running
time (previous protocol to our protocol).

Fig. 4. Performance comparison.

4 Fully Homomorphic Encryption Approach

FHE is a newly established area in cryptography. An FHE scheme allows (any)
computation to be carried out on encrypted data directly. FHE is a powerful
tool and at the same time is notorious for its inefficiency. It is a common belief
that FHE is too inefficient to be practical yet. However, this common belief is
not always true. In this section I will show how to build a more efficient PSI
protocol using fully homomorphic encryption.

4.1 The BGV FHE Scheme

In 2009, Gentry [7] developed the first FHE scheme. Following the breakthrough,
several FHE schemes based on different hardness assumptions have been pro-
posed, e.g. [36,37].

356 C. Dong

The RLWE variant of BGV [37] is among the most efficient FHE schemes; it
operates in certain polynomial rings. Namely, let Φm(x) be the m-th cyclotomic
polynomial with degree φ(m), then we have a polynomial ring A = Z[x]/Φm(x),
i.e. the set of integer polynomials of degree up to φ(m) − 1. Here φ(·) is the
Euler’s totient function. The ciphertext space of the BGV encryption scheme
consists of polynomials over Aq = A/qA, i.e. elements in A reduced modulo q
where q is an odd integer1. The plaintext space is usually the ring Ap = A/pA,
i.e. polynomials of degree up to φ(m) − 1 with coefficients in Zp for some prime
number p < q.

There are three basic algorithms in the BGV scheme:

– G(p, λ, L): The key generation algorithm. Given p, λ and L such that p is the
prime number that defines the plaintext space, λ is the security parameter
and L is the depth of the arithmetic circuit to be evaluated, generate a secret
key, the corresponding public key and a set of public parameters.

– Epk(m̄): The encryption algorithm. Given a public key pk, encrypt an element
m̄ ∈ Ap.

– Dsk(c): The decryption algorithm. Given the secret key sk, decrypt a cipher-
text c.

Being a fully homomorphic encryption scheme, the BGV scheme supports
both multiplication and addition operations over ciphertexts. Let us denote
homomorphic addition by � and homomorphic multiplication by �. We can
homomorphically add or multiply two ciphertexts together. We can also homo-
morphically add or multiply a ciphertext with a plaintext.

4.2 Polynomial Representation of a Set

Freedman et al. [8] first proposed to use a polynomial for representing a set in
PSI. Given a set S, we can map each element in S to an element in a sufficiently
large field R. Then S can be represented as a polynomial (in a ring R[x]). The
polynomial is defined as ρ(x) =

∏
si∈S(x − si). The polynomial ρ(x) has the

property that every element si ∈ S is a root of ρ(x). For two polynomials ρ1 and
ρ2 that represent the two sets S1 and S2 respectively, the the greatest common
divisor of the two polynomials gcd(ρ1, ρ2) represents the set intersection S1 ∩S2.
Based on this, we can design protocols to securely obtain the set intersection.
Without loss of generality, let both ρ1 and ρ2 to be of degree δ and let γ1 and
γ2 to be two uniformly random degree δ polynomials in R[x], Kissner and Song
proved in [27] that γ1 · ρ1 + γ2 · ρ2 = μ · gcd(ρ1, ρ2) such that μ is a uniformly
random polynomial. This means if ρ1 and ρ2 are polynomials representing sets
S1 and S2, then the polynomial γ1 · ρ1 + γ2 · ρ2 contains only information about
S1 ∩ S2 and no information about other elements in S1 or S2. This forms the
basis of their PSI protocol in which a party obtains γ1 · ρ1 + γ2 · ρ2 to find the
set intersection but learns nothing more about elements in the other party’s set.
1 In the BGV encryption scheme, there are actually a chain of moduli q0 < q1 < · · ·
< qL defined for modulus switching. But for simplicity we just use q throughout the
paper.

Efficient Data Intensive Secure Computation: Fictional or Real? 357

However, Kissner’s protocol is not practical due to the facts that it uses expensive
Paillier encryption and the computational complexity is quadratic in the size of
the sets.

4.3 The Private Set Intersection Protocol Based on FHE

We parallelize computation by utilizing the native plaintext space of BGV to
load multiple data items. The native plaintext space of BGV is a polynomial
ring, therefore a set can be easily represented in the plaintext space. To simplify
the description, I will start from the case where |C| = |S| = φ(m)

2 − 1. In the
protocol, the client has a BGV key pair (pk, sk) and a set C. The server has a
set S. The two parties encode their sets into ρC and ρS that are polynomials in
Ap. The protocol is shown in Fig. 5:

1. The client encrypts its set polynomial ρC and sends the ciphertext c to the
server.

2. The server chooses random polynomial γC and γS in Ap, each of degree φ(m)
2 −

1, then the server computes homomorphically c′ = (c � γC) � (ρS · γS). The
server sends c′ to the client, who then decrypts the ciphertext and obtains
the polynomial ρC · γC + ρS · γS.

3. The client then evaluates the polynomial obtained in the last step with ele-
ments in C. For each element, if it is a root then it is in the intersection. The
client then outputs the intersection C ∩ S.

To compute the intersection of sets whose sizes are larger than φ(m)
2 − 1, we

can use bucketization. Bucketization is a process to partition a large set into
disjoint subsets (buckets). The two parties use a public uniform hash function
H : {1, 0}∗ → [1, k] to map their set elements into k buckets. This is done by
hashing each element to get a bucket number and putting the element into the
bucket with this number. If the size of the set to be bucketized is n, then each
bucket will have around n/k elements. The two parties can choose k so that with
a high probability, each bucket has no more than φ(m)

2 − 1 elements. To prevent
information leakage through bucket size, the two parties pad each bucket with
random elements so that all buckets have the same size φ(m)

2 − 1. They then
run the PSI protocol k times. In the ith run, each party uses its ith bucket as
the input to the PSI protocol. The union of outputs is the intersection of the
two sets.

Fig. 5. The PSI protocol.

358 C. Dong

4.4 Efficiency

The protocol is very efficient. This is due to the high degree of parallelism pro-
vided by the BGV scheme. In the protocol, we process a set of φ(m)

2 −1 elements
in one go, rather than processing them individually. Therefore the total compu-
tational cost is amortized by φ(m)

2 − 1. The parameter φ(m) is large, therefore
the amortized cost is small.

Table 1. Performance of PSI protocols.

210 212 214 216 218 220

GBF-PSI 0.67 1.99 8.21 32.41 130.42 530.36

FHE-PSI 0.11 0.14 0.45 1.55 5.91 23.48

Improvement 6X 14X 18X 21X 22X 23X

* Running Time in seconds

Table 1 shows the performance comparison of the GBF based and the FHE
based PSI protocols. In the experiment, security parameter is set to 128-bit. The
parameters for the BGV keys were |p| = 32, L = 1, |q| = 124, φ(m) = 5002. The
set size varied from 210 (1024) to 220 (1,048,576). As we can see, the FHE based
PSI protocol is much faster. For two 1 million elements input sets, the running
time is less than half a minute, which is only 1 - 2 orders of magnitude slower
than the computation in the clear.

5 Conclusion

In this paper, I presented two approaches that could lead to practical data inten-
sive secure computation. One approach is by designing better data structures.
The rationale behind this approach is that when the data to be processed is big,
arranging it into certain data structures may make it more amendable for com-
putation. Another approach is by using fully homomorphic encryption. Recent
fully homomorphic encryption schemes provide us facilities to parallelize com-
putation, which can greatly reduce the overall cost if the computation task is
data parallel. The two approaches can be combined. For example, when using
bucketization in the PSI protocol, the list of buckets is essentially a hash table
data structure. The research along these two lines is still in an early stage, but
further investigation will lead to fruitful results.

References

1. Evans, D.: Secure computation in 2029: Boom, bust, or bonanza. Applied Multi-
Party Computation Workshop (2014)

2. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual
Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164 (1982)

Efficient Data Intensive Secure Computation: Fictional or Real? 359

3. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27–29
October 1986, pp. 162–167 (1986)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, USA, pp.
218–229 (1987)

5. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

6. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: ACM Confer-
ence on Computer and Communications Security (2012)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178 (2009)

8. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

9. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, 1–4 May
1999, Atlanta, Georgia, USA, pp. 245–254 (1999)

10. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

11. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM Conference on Computer
and Communications Security (2013)

12. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

13. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

15. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, 18–21 May 2014, pp. 623–638 (2014)

16. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

17. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium, San Francisco, CA,
USA, 8–12 August 2011, Proceedings (2011)

18. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party compu-
tation system. In: Proceedings of the 13th USENIX Security Symposium, 9–13
August 2004, San Diego, CA, USA, pp. 287–302 (2004)

19. Aggarwal, C.C., Yu, P.S.: Privacy-Preserving Data Mining - Models and Algo-
rithms. Advances in Database Systems, vol. 34. Springer, USA (2008)

360 C. Dong

20. Dong, C., Chen, L.: A fast secure dot product protocol with application to privacy
preserving association rule mining. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen,
A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 606–617.
Springer, Heidelberg (2014)

21. Baldi, P., Baronio, R., Cristofaro, E.D., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: ACM Conference
on Computer and Communications Security, pp. 691–702 (2011)

22. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010)

23. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: Botgrep: finding p2p
bots with structured graph analysis. In: USENIX Security Symposium, pp. 95–110
(2010)

24. Mezzour, G., Perrig, A., Gligor, V., Papadimitratos, P.: Privacy-preserving rela-
tionship path discovery in social networks. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, pp. 189–208. Springer, Heidelberg (2009)

25. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.: Location
privacy via private proximity testing. In: NDSS (2011)

26. Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: Openconflict: preventing
real time map hacks in online games. In: IEEE Symposium on Security and Privacy,
pp. 506–520 (2011)

27. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

28. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010)

29. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

30. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

31. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

32. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

33. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM Conference on Computer and Communi-
cations Security (2013)

34. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

35. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

36. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

37. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: ITCS, pp. 309–325 (2012)

	Efficient Data Intensive Secure Computation: Fictional or Real?
	1 Introduction
	2 Private Set Intersection: Background
	3 Data Structural Approach
	3.1 From Bloom Filter to Garbled Bloom Filter
	3.2 Performance Comparison

	4 Fully Homomorphic Encryption Approach
	4.1 The BGV FHE Scheme
	4.2 Polynomial Representation of a Set
	4.3 The Private Set Intersection Protocol Based on FHE
	4.4 Efficiency

	5 Conclusion
	References

