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Abstract. While a lot of work has been done on the design and security
analysis of PKI-based authenticated key exchange (AKE) protocols, very
few exist in the symmetric key setting. The first provably secure sym-
metric AKE was proposed by Bellare and Rogaway (BR) in CRYPTO
1994 and so far this stands out as the most prominent one for symmet-
ric key setting. In line with the significant progress done for PKI based
system, we propose a stronger model than the BR model for symmet-
ric key based system. We assume that the adversary can launch active
attacks. In addition, the adversary can also obtain long term secret keys
of the parties and the internal states of parties by getting access to their
ephemeral secrets (or internal randomness) by means of appropriate ora-
cle queries. The salient feature of our model is the way we handle active
adversaries even in the test session.

We also design a symmetric key AKE construction that is provably
secure against active adversaries in our new model using weak primitives.
Dodis et al. (EUROCRYPT 2012) used weak Pseudo Random Functions
(wPRF) and weak Almost-XOR Universal hash function family (wAXU)
to design a three-pass one-sided authentication protocol in the symmetric
key paradigm. A direct application of their techniques yields a four-pass
(two-round) symmetric key AKE protocol with mutual authentication.
Our construction uses particular instances of these weak primitives and
introduces a novel technique called input-swapping to achieve a three-
pass symmetric key AKE protocol with mutual authentication resisting
active attacks (even in the test session). Our construction is proven secure
in the Random oracle Model under the DDH assumption.
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1 Introduction

Key exchange protocols allow two parties to establish secure communication over
an untrusted network by setting up shared keys. Authenticated Key Exchange
protocol (AKE) allows two parties not only to share a session secret key but
also to mutually authenticate each other. After the key is securely established
between the two parties, the key is used for encrypting messages among the two
parties.

Most symmetric key encryption systems assume that the two parties share
a common secret. Thus, before exchanging the actual data, the two parties first
need to establish such a shared secret. For this, they usually first run a key
agreement protocol over the public channel to agree on a symmetric key. We
refer the established key by key agreement protocol as Long Term key (LTK)
between a pair of parties.

In symmetric key set up, key exchange protocols broadly fall under two
categories: i. Server-based key exchange protocols where the presence of a
trusted server is assumed and all the parties have a LTK shared with the
server; all the communication between the two parties take place via the server
[NS78,OR87,GNY90] and ii. Server-less key exchange protocols where the pres-
ence of a trusted server is not required but it is assumed that the communicating
parties share a LTK between themselves [Sat90,BR94,CJ97]. In this paper we
focus on Server-less two party symmetric key exchange protocol.

While the communicating parties may use their LTKs to securely exchange
messages for confidentiality or authenticity, it is generally considered a bad prac-
tice. This is because even if the pre-shared keys or LTKs have good entropy, the
key tends to weaken with use; this is the reason why session keys are used
instead and changed frequently. Hence, there is a need for key derivation based
on pre-shared keys.Generally, for each session, the parties generate a session ran-
domness, called ephemeral secret key and use that to generate the session key.
This session key can be applied to subsequent network systems including live
conference, online video games, collaborative work spaces and much more.

The Diffie-Hellman protocol [DH76] was the first key-exchange protocol
not requiring a pre-shared static secret between the parties. It does not how-
ever enforce authentication between the parties, and is therefore vulnerable to
man-in-the-middle attacks. After that, many authenticated key-exchange (AKE)
protocols were proposed [JKL04,BLL07,CL08,CY08,LCZ07]; either they are
insecure or their security is proved in an ad-hoc manner and later on some attacks
would be presented.The attacked systems were either modified in a minor way to
just overcome the proposed attack or abandoned altogether. This prompted the
need for formal models for AKE problem and robust protocols for AKE whose
security is proved formally in these models. Starting from the seminal work
of Bellare and Rogaway [BR94], progressive stronger models were proposed by
several authors such as [LMQ+03,Ust08,Kra05,SEVB10,MU08,CK01,LLM07,
Sho99]. However all these are defined for the PKI based systems.

Surprisingly, after the first formal model for AKE was proposed by Bel-
lare and Rogaway [BR94] for symmetric key system, no further progress has
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happened in refining the system for symmetric key settings considering stronger
classes of adversaries. Several authors have presented protocols for AKE in the
symmetric key set up such as [NS78,OR87] etc. However, none of them were
proved and they were shown to be susceptible to various classes of attacks
[Boy90,CJ97,BGH+92]. In fact many of the ISO-9798 family of protocols were
shown to vulnerable to various classes of attacks [BCM13].

Our first contribution is that we propose a new model for a symmetric key
AKE that allows the adversary to have far more power than the BR model
[BR94]. More specifically, the adversary can obtain session randomness of party,
long term keys of a parties. In particular we allow the adversary to obtain all
information other than those which allow him to trivially compute the session
key for a particular session (as defined by the freshness condition in Sect. 3.3).
Moreover we allow the adversary to be fully active even in the test session. We
define what it means for a symmetric key AKE to be secure in our new model.

We then give a construction of a three-pass symmetric key exchange protocol
from weak Pseudo Random Functions (wPRF) and weak Almost-XOR Universal
hash function family (wAXU). Dodis et al. [DKPW12] showed how to construct
a three-pass authentication protocol from wPRF secure against active attacks.
If we use the techniques of [DKPW12] to obtain mutual authentication, it will
result in a four-pass (two-round) symmetric key AKE. We improve upon this
direct application of their scheme by showing how to obtain a three-pass actively
secure symmetric key AKE using secure instances of the same primitives which
provides mutual authentication. For this, we introduce a new technique, called
input swapping. Ours is the first construction that achieves security against
fully active adversaries and at the same time provide mutual authentication of
both parties in only three-pass using weaker primitives than MAC or PRF. Our
proposed construction is also efficient and is secure under the Decisional Diffie
Hellman (DDH) assumption in the Random Oracle (RO) model.

Our construction is also forward secure. So even if an adversary can get
the long term secret key (LTK) between two parties, he cannot infer the pre-
viously established session keys between them. The concept of perfect forward
secrecy was first defined by Gunther [Gün90] and used in protocols like Station-
to-Station (STS) [DVOW92], SASI [Chi07]. These protocols update the LTKs at
regular interval of time and irreversibly, i.e., if an adversary gets hold of a LTK
Kt at time interval t say, he cannot infer the previous LTKs before time period
t, since it will require the adversary to break the one-wayness of some function.
These schemes are called Key-Evolving Schemes (KES). The time interval after
which the LTKs should be updated depends from application to application
depending on the level of security they want to achieve. They can be updated
after each session, or they may be updated after every � interval of time. The
first approach is generally not followed due to the concurrent nature of AKE
protocols. It may happen that multiple instances of the same protocol is run-
ning between different parties. If the LTKs are updated after each session, it may
cause some other sessions to abort. So generally the second approach is followed
which is far more suitable for distributed setting like the Internet. However on
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the downside, if we use the second approach for key evolution we do not achieve
perfect forward secrecy in its entirely, whereas if we update the LTKs after each
session we achieve perfect forward secrecy. The faster the LTKs are evolved more
forward secrecy is achieved. We also evolve the LTKs at regular time intervals
or epoch. The duration of each epoch after which the LTK needs to be updated
or evolved depends on the application. If the level of security needs to be high,
then the key refreshment needs to be done frequently. However it should not
be the case that the key refreshment rate gets greater than the rate at which
the session key is actually established between the parties. In some sense our
constructions are also key-evolving. So we can achieve perfect forward secrecy
due to the key evolving nature of our protocol and also due to the fact that in
each session the parties choose independent randomness.

1.1 Our Contributions

To summarize what we have said earlier in the previous section our main con-
tributions are as follows:

1. We propose a new model for a symmetric forward-secure AKE that is more
powerful than the BR model [BR94]. In addition, our model has the capability
to handle active adversaries even in the test session.

2. We propose a concrete three-pass symmetric key AKE protocol secure in our
new model withstanding active adversaries. The security of this protocol is
proved under the Decisional Diffie Hellman (DDH) assumption in the random
oracle model.

3. Our construction uses much weaker primitives like weak Pseudo Random
Functions (wPRF) and weak Almost-XOR Universal hash function family
(wAXU) as in [DKPW12]. However, with the introduction of a new tech-
nique which we call input swapping, combined with these primitives, we can
complete our protocol in three-passes.

4. Our protocol also achieves perfect forward security. We achieve this by a key
evolving strategy and also sampling independent randomness for each party
in each session.

2 Preliminaries

In this section, we define all the notations we would be using throughout the
paper. We also provide some standard definitions and state the complexity
assumptions required for our constructions.

2.1 Notations

The set of integers modulo an integer p is denoted by Zp. Let [n] denote the set
of integers {1, 2, . . . , n} where n ∈ N, the set of all natural numbers. For a set
X, x ∈R X denotes that x is randomly sampled from the set X. We denote by
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λ the security parameter and it will be given in unary to the algorithms. All the
algorithms will run in time polynomial in the size of the security parameter. Let
{0, 1}∗ denote the set of all binary strings and {0, 1}n denote the set of all binary
strings of length n. The length of a string x ∈ {0, 1}∗ is denoted by |x|. Let p be
a large prime of order λ where p = 2q + 1 and q is a prime number. Let G be a
multiplicative subgroup of Z∗

p with prime order q and let g be a generator for G.
A function f : N → R is called negligible if it vanishes faster than the inverse of
any polynomial, i.e., for a constant c > 0 and sufficiently large n, f(n) < n−c.
We define DLOG(x) to denote the discrete logarithm of x with base g.

2.2 Some Standard Definitions

Definition 1. Weak Pseudo-Random Functions(wPRF). A function
family F = {fK}K∈K : D → F where K is the key space, is said to be a
weak PRF family if for any polynomial-sized k, randomly chosen f ∈R F , and
r1, r2, . . . rk ∈R D, the distribution of (r1, f(r1)), (r2, f(r2)), . . . , (rk, f(rk)) is
computationally indistinguishable from the uniform distribution over (D,F)k,
i.e., an adversary for a weak-PRF aims to distinguish a random member of
the family from a truly random function after observing a polynomially-bounded
number of samples. A wPRF is called (t,Q, ε)-wPRF if for a t-time adversary
A making at most Q queries to the function, the advantage in distinguishing the
above two distributions is at most ε.

Definition 2. Almost Universal Hash Family. A family of keyed hash func-
tions {Hk : D → F}k∈K is ρ-almost universal if ∀x1 �= x2 ∈ D, Prk∈RK[hk(x1) =
hk(x2)] ≤ ρ holds.

Definition 3. Pairwise Independent Hash Family. A hash family H : D →
F is called pairwise independent if ∀x1, x2 ∈ D and x1 �= x2, and y1, y2 ∈ F,
Prh∈RH [h(x1) = y1 ∧ h(x2) = y2] = 1

|F|2 .

Definition 4. Weak-Almost XOR-Universal (wAXU) hash family. A
family of keyed hash functions {Hk : D → F}k∈K is δ-wAXU if for x1, x2 ∈R D

with x1 �= x2, and a y ∈ F, we have Prk∈RK[hk(x1) ⊕ hk(x2) = y] ≤ δ.
If ∀x1 �= x2 and for any y ∈ F, Prk∈RK[hk(x1) ⊕ hk(x2) = y] ≤ δ holds, then

it is called δ-AXU. If δ = 1
|F| , it is called (perfectly) XOR-universal.

Without loss of generality we can assume that the output of all the functions
can be embedded into a finite field. Example if the output size of a wPRF is n
bits, one can embed the output of the wPRF into a finite field of size 2n. The
simplest way this can be done is considering the function output t ∈ {0, 1}n as
a polynomial in a finite field F = (Zn

2 ,+,×) for suitable defined addition and
multiplication operations.

2.3 Complexity Assumption

In this section, we present a brief overview of the hard problem assumption.
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Definition 5. Decisional Diffie-Hellman Problem (DDH) - Given (g, gα,
gβ , h) ∈ G

4 for unknown α, β ∈ Z
∗
q , where G is a cyclic prime order multiplicative

group with g as a generator and q the order of the group, the DDH problem in
G is to check whether h

?= gαβ.
The advantage of any probabilistic polynomial time algorithm A in solving

the DDH problem in G is defined as

AdvDDH
A = |Pr

[A(g, gα, gβ , gαβ) = 1
] − Pr

[A(g, gα, gβ , h) = 1
] | α, β ∈ Z

∗
q |

The DDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDDH

A is negligibly small.

3 Our Security Model

In order to define what is meant by the security of an authenticated symmetric
key exchange protocol, we need to formally define the security model and to
define the powers of an adversary in this model. We assume there are n parties
P1, . . . , Pn each modeled by a probabilistic polynomial time Turing machine
(PPTM). We assume the parties P1, . . . , Pn are connected over point-to-point
links over which the messages can be exchanged between them. Since our AKE
is key evolving, the LTKs between the parties are fixed for a particular epoch
only and they are refreshed at the expiration of each epoch. In particular, the
lth epoch is denoted by Tl and it represents the time interval [al−1, al] ∀l ≥ 1.
In each epoch Tl, the parties Pi and Pj will have a LTK shared among them
denoted by LTK

(l)
ij ∀l ≥ 1. We denote the current epoch as Tt throughout the

paper. We assume that at the beginning of each epoch, the LTKs of all the parties
are updated simultaneously. Without loss of generality, we assume throughout
the paper that when two parties communicate with each other, they do so in
the same epoch. We now define the concept of a session and define the powers
of an adversary in our model. Next, we define the concept of partner session in
this setting and what it means for a session to be fresh. Finally, we define the
security of an symmetric AKE protocol in this model.

3.1 Session

A typical AKE protocol between two parties consists of several passes between
the parties wishing to establish a common session key. Let us denote the two
parties executing an instance of the protocol by A and B. Let us further assume
that A is the initiator and B is the responder for this execution of the protocol.
The set of all actions carried out by A during the execution of the protocol is
called session of A. Similarly we define the session corresponding to B.

Every session is uniquely identified by a label called session identifier. A
session corresponding to the party A consists of a (small) finite number of passes
executed by A. In a typical pass executed by A:
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1. A may perform some local computations that may depend on the values
received from B or locally generated by A and

2. A may communicate certain values to B or aborts.

The state of a typical pass, say the ith pass is described by the 5-tuple P̂i =
(sidAB , A,B, ini, outi) where A is the owner of the session, sidAB is the session
identifier, B is the peer, ini denotes the values A had received from B prior to
the execution of this pass and outi is the set of values that A sends to B in this
pass.

If A is the initiator of the protocol then the state of the first pass is
denoted as (sidAB , A,B, , out1) because this being the first pass of the
session A would not have received any value from B. Since a session com-
prises of several passes, we define the state of a session corresponding to A
as (sidAB , A,B, IN,OUT, role) where A is the owner of the session and B is the
peer for the session, role = I if A is the initiator of the protocol and role = R
if A is the responder of the protocol, IN =

n⋃

i=1

ini, where n is the number of

passes and ini is the values received from B in the ith pass and OUT =
n⋃

i=1

outi

where outi denotes the values that A sends to B.
Several sessions may run concurrently at each party. Since a party can have

multiple concurrent sessions running within it, it has to maintain the states of all
these sessions. However these session states are independent of each other as all
the sessions use independent randomness and hence their states are to be stored
separately. The shared secret key obtained at the end of this session is called
the session key. On successful completion of a session, each entity outputs the
session key and deletes the session state. A session may not get completed,
and may enter into abort state, and in this case no session key is generated.

3.2 Adversary

The adversary A is also modeled as a PPTM which has the capability to launch
active attacks in all the session including the test session apart from his eaves-
dropping capability on the protocol messages. In order to model real life attacks
we allow the adversary to obtain more information such as the long term secret
key of parties. Since our protocol is key evolving (i.e. the long term secret keys
of users changes after a certain lifetime) we allow the adversary to obtain the
LTKs at a certain time period. Similarly the adversary can also obtain ephemeral
secret key of users during a particular session. In our security model since we
allow the adversary to launch active attacks even in the test session, we disallow
the adversary to make corrupt queries in the test session for the current epoch.
This restriction is quite natural and is an obvious one. In fact, if we allow the
adversary to obtain the LTK of the parties in the test session, ephemeral keys
of the parties and also allow the adversary to launch active in the test session,
it would be impossible to design any protocol as discussed in Sect. 4.3. Thus
we need to impose some restriction on the allowed queries when we make the
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adversary active in all sessions, including the test session. The information that
the adversary gets is modeled by the following oracle queries:

– Send(Pi, Pj ,m, t): This query models the capabilities of an adversary to per-
form the active man-in-the-middle attacks. Here t represents the index of the
current epoch Tt. The following sequence of actions are assumed to take place:
1. Case (i) m �= 0

– Party Pi sends m in this pass to party Pj .
– If Pj does not abort, it sends a response say rj to Pi.
– The value rj is given to the adversary.

2. Case (ii) m = 0
– Party Pi initiates a new session with party Pj .
– If Pj does not abort, it sends a response say rj to Pi.
– The value rj is given to the adversary.

– LTK Reveal(i, j, t): This query will return LTK
(l)
ij ∀1 ≤ l < t where t denotes

the index of the current epoch Tt, i.e., it allows the adversary to obtain the
LTKs of user Pi and Pj in all the previous epochs excluding the current epoch
Tt.

– Ephemeral Reveal(sid(t)ij ): This query reveals the ephemeral secret key of the

session sid
(t)
ij , i.e., the value randi of the current epoch Tt.

– SK Reveal(sid(t)ij ): The queries reveals the session key of a completed session

sid
(t)
ij for the current epoch Tt.

After some polynomial amount of interactions, A may choose a specific session
as Test session provided the session is completed and fresh as per Definition 9.
We denote the chosen session as Test(sid(t)ij ). Only one query of this form is
allowed.

– Test(sid(t)ij ): In response to the test query, a bit b ∈ {0, 1} is randomly gener-
ated. If b = 0, the session key is given to the adversary A. If b = 1, a uniformly
chosen random value from the set of valid session keys is returned to A.
After the Test query has been issued, the adversary can continue querying
provided that the test session remains fresh. Note that while A can issue
polynomial number of queries like Send, LTK Reveal, Ephemeral Reveal
queries he can issue only one Test query.

3.3 Few Important Definitions

Before defining the Sym-AKE security notion, we need to define what is meant
by session partnership or a matching session.

Definition 6. Session Partnership. Two sessions sid
(t)
ij =

(
Pi, Pj , OUT,

IN, role
)

and sid
′(t)
ji = (Pj , Pi, OUT ′, IN ′, role′) are said to be partnered ses-

sion or matching sessions iff:
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1. OUT = IN ′ and IN = OUT ′.
2. role �= role′.

We now define the condition for the freshness of a session.

Definition 7. Local Exposure of Session. Let Π be a protocol, and Pi and
Pj be two honest parties, sid

(t)
ij the identifier of a completed session at Pi with

peer Pj, and sid
′(t)
ji the matching session’s identifier. The session sid

(t)
ij is said

to be locally exposed to an adversary A if only A issued a SK Reveal(sid(t)ij ).

Definition 8. Exposure of Session. A session sid
(t)
ij is said to be exposed if

(a) it is locally exposed, or (b) its matching session sid
′(t)
ji exists and is locally

exposed.

Definition 9 (Session Freshness). A session that is not exposed is called a
fresh session.

Remark 1. Note that the adversary can ask the following combinations of
queries:

1. LTK Reveal (i, j, t) where 1 ≤ l < t and Ephemeral Reveal(sid(t)ij ).

2. LTK Reveal (i, j, t) where 1 ≤ l < t and Ephemeral Reveal(sid′(t)
ji ).

The goal of the adversary is to guess whether the challenge is a true session key
or a randomly selected key. We say the adversary is successful if he manages to
distinguish the session key from a random value with a noticeable probability
bounded away from 1

2 in any non-obvious way. More formally let us define the
security of a symmetric key AKE protocol as in Definition 10.

Definition 10 (Sym-AKE security). The protocol Π is said to be Sym-
AKE-secure, if no polynomially bounded adversary can distinguish a fresh session
key from a random value, chosen from the distribution of session keys, with
probability significantly greater than 1/2. An adversary A outputs his guess b′

in the test session. The adversary wins the game if he guesses the challenge b
correctly, i.e., b′ = b. The advantage of A against Π in the Sym-AKE model is
defined as

AdvΠ,Sym-AKE
A = Pr[b′ = b] − 1

2 .

The protocol Π is defined to be Sym-AKE secure iff the following two conditions
hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key. (Correctness)

2. For any probabilistic polynomial-time adversary A, AdvΠ,Sym-AKE
A is negligible.
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4 Symmetric Key Exchange Protocol Resilient to Fully
Active (FA) Adversaries

In this section, we give our construction of a symmetric key exchange protocol
that can handle fully active adversaries. We give the adversary the power to
additionally launch active attacks on the test session. Note that it is trivial to
achieve security against FA adversaries in one-round by simply MAC-ing or
applying a secure pseudo-random function (PRF) on the values sent across by
the parties. More precisely party Pi can simply perform a MAC on the value
χi by using the LTKs shared between Pi and Pj (keyed MAC), i.e., let y =
MACK (χi, Pi, Pj). Now party Pi sends 〈Pi, χi, y〉 to party Pj who can verify
the authenticity of the MAC. After this party Pj can simply perform a MAC
on the value χj by using the LTKs shared between Pj and Pi, i.e., let y′ =
MACK (χj , Pj , Pi). Party Pj then sends 〈Pj , χj , y

′〉 to party Pi. Party Pi can
verify the authenticity of the MAC sent from Pj and engage in session key
exchange. Another way of achieving security against FA adversaries is by using
a PRF with the seed of the PRF being the LTK shared between Pi and Pj .

But instead of using MAC or PRF we use weaker primitives like Weak Pseudo
Random Functions (wPRF) and weak Almost XOR Universal (wAXU) hash
functions to achieve resilience against FA adversaries. We propose a three-pass
symmetric key AKE resilient to FA adversaries using concrete instances of these
weaker primitives.

4.1 Intuition Behind our Construction

NAXOS trick [LLM07] is one of the standard tool that is used to construct
secure key exchange protocols in public key paradigm. We, for the first time,
introduce the NAXOS trick in symmetric key setting. We generate a pseudo-
ephemeral key K̃ by hashing the long term shared secret key between the parties
(LTK) and the ephemeral randomness chosen by the parties in each session
(randk where k ∈ i, j), i.e., K̃ ← H1 (LTK, randk). The value K̃ is never
stored, and so the adversary must learn both LTK and randk to compute K̃.
So the adversary needs to query LTK Reveal on one of the two parties and also
Ephemeral Reveal on any one of the two parties in the current epoch, but this
type of query is not allowed in our model. So in our protocol, the initiator of the
session must compute K̃ = H (LTK, rand) twice: once during sending gK̃ and
once during computing the secret session key from the received values. This is
done to avoid to storing this pseudo ephemeral value, which when compromised
can allow the adversary to compute the shared secret session key. But in addition
to safeguard against active attacks in the test session we use wPRF and wAXU
hash functions to achieve authentication of parties. However to achieve a three-
pass symmetric key AKE using these primitives in three-pass is challenging. The
main idea we employ is a trick what we call the input swapping technique. Using
this trick we get a three-pass symmetric key exchange protocol with mutual
authentication of parties in the presence of FA adversaries. The idea is to swap
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the inputs of the wPRF and the wAXU hash functions during the computation
of values at the two parties as shown in Algorithm 1. More precisely, a party
computes the function sampled randomly from the wPRF family on it’s local
input and evaluates the hash function sampled randomly from the wAXU on the
input received from the other party. Now the adversary receives the values sent
by one party (owner) and also the tag value computed by its peer (responder) in
the second pass. Now he has to forge the tag value of the owner. The tag values
computed by the owner and responder have their inputs swapped in the wPRF
and the wAXU functions. So the security intuition is that even receiving the tag
value from the receiver in the second pass and the values sent by the owner in
the first pass will not help the adversary to forge the tag value sent from the
owner in the third pass. Also if the adversary tries to tamper with the values
sent by the owner or the receiver or both he will be caught during verification
since the adversary does not possess the long term secret keys of the current
epoch held by the parties.

4.2 Protocol Π: A Three-Pass Protocol Secure Against FA
Adversaries

In this section we present the concrete construction of a protocol that is secure
against fully active adversaries in our new security model. Let Pi and Pj be
the two parties participating in the protocol. Our construction provides mutual
authentication of both the parties involved in the session key establishment and
in addition are forward-secure.

Setup: Choose a group G of prime order q and let g be a generator of G. We
assume the DDH problem is hard in G. Let the keyspace K1 = K2 = Z

∗
q . Let

F = {fK1 : G → G}K1∈K1 be a weak pseudo random function(wPRF) family
and H = {hK2 : G → G}K2∈K2 be a weak Almost XOR-Universal (wAXU) hash
function family. We may define fK1(x) = xK1 and hK2(y) = yK2 so that f is
a wPRF under the DDH assumption and h is a also a wAXU hash function
by DDH as well [DKPW12]. Choose a collision resistant hash function H1 :
Z

∗
p × Z

∗
q → Z

∗
q and a non-invertible collision resistant key derivation function

KDF : Z∗
q × {0, 1}∗ × {0, 1}∗ → Z

∗
q .

Long Term KeyGen: For every pair of users, say Pi and Pj the Long Term
KeyGen algorithm produces a long term key LTK = K = 〈K1,K2〉 ∈ K1 × K2

and we assume that this common key is securely available with both the parties
Pi and Pj .

Session Key Establishment: The two users Pi and Pj choose secret ephemeral
exponents randi and randj respectively and compute the values χi and χj

respectively. They now engage in an interactive three-pass key establishment
protocol as shown in Algorithm 1. Party Pj computes a tag υj using the keyed
function f chosen uniformly at random from the wPRF family and a keyed hash
function h uniformly at random from the wAXU family. The party Pj applies the
function f on its local input (χj) and the function h on the input received from
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Pi Pj

1. Choose randi ∈R Z
∗
q

2. Compute χi = gH1(K1,randi)

〈Pi,χi〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
3. If χi /∈ G, Abort

4. Choose randj ∈R Z
∗
q

5. Compute:

χj = gH1(K1,randj)

6. Compute:

υj = (χj)
K1 · (χi)

K2

〈Pj ,χj ,υj〉←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7. if χj /∈ G, Abort

8. If (χj)
K1 · (χi)

K2 �= υj , Abort

9. Compute:

υi = (χi)
K1 · (χj)

K2

〈Pi,υi〉−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
10. If

(χi)
K1 · (χj)

K2 �= υi,

Abort

Session Key Generation

Pi : Compute Z′ = (χj)
DLOG(χi) = gH1(K1,randj)·H1(K1,randi)

Pj : Compute Z′ = (χi)
DLOG(χj) = gH1(K1,randi)·H1(K1,randj)

Finally, Z = KDF (Z′, Pi, Pj)

Algorithm 1: Protocol Π

Pi (i.e., χi). Party Pj then send the values χj and the computed tag value υj

to Pi. Party Pi then verifies the tag using the secret key K = 〈K1,K2〉 and the
received value χj . If the verification goes through, Pi computes the tag value υi

and sends it over to Pj and proceed with the session key generation phase. Notice
that here we are also using our technique of input swapping, i.e., the inputs to
the functions fK1 and hK2 are swapped in the computation of υj and υi). Pj

then verifies the received tag value from Pi using the LTK K = 〈K1,K2〉. If
the verification goes through, it proceeds with the session key generation phase.
Finally at the end of the protocol both the users Pi and Pj compute the same
session key Z ′ as shown and compute the final session key using the secure KDF.
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Remark 2. The protocol consists of two sends by the owner of the session and
only one send by the responder (peer) per session. Here each party needs to
perform four exponentiations, two calls to the wPRF function f and two calls
to the wAXU hash function h.

Remark 3. The values χk where k ∈ {i, j} are freshly generated for every session.
In a preprocessing or a setup stage, the two users generate large number of
ephemeral secret values and stores them in the table Tk. For each session, user
Pk extracts a fresh value from the table Tk and uses them to generate the session
keys for that session.

Remark 4. The value of the LTK K = 〈K1,K2〉 is updated or evolved in each
epoch. So the protocol Π is a key-evolving scheme (KES) and also since the values
of the ephemeral keys generated in each session are random and independent of
each other, it also achieves forward secrecy.

4.3 Need for Disallowing LTK Reveal Query in the Test Session
for the Current Epoch

In this section we show that by incorporating active attacks in the test session,
it is impossible to achieve any kind of security for the AKE protocol if the
long term keys of the parties of the current epoch are given to the adversary.
In particular this is not a requirement specific to symmetric key settings only.
In public key AKE also the same restriction holds. In particular if we allow
LTK Reveal (i, j, l) oracle service to the adversary for the current epoch T in
the test session, then the adversary must be given the LTK K (or private keys
in public key settings) shared between parties Pi and Pj for the current epoch.
If the adversary B gets hold of the LTK shared between the two parties and he
is allowed to perform active attacks he can successfully launch an impersonation
attack as shown in Algorithm 2 when he is allowed to query the LTK of Pi and
Pj in the current epoch . He can simply chose any session randomness on behalf
of any one of the parties and can impersonate that party. Since the adversary
also knows the LTK, the authentication at the other end (peer) will go through.
This shows an impossibility result for allowing the LTK for the current epoch
to be revealed to a FA adversary in the test session. The adversary can fool the
party Pj into believing that he shares a key with party Pi and he can compute
the same session key as party Pi. This represents a successful impersonation
attack. In particular we show an impersonation attack on our protocol Π if we
allow LTK of current epoch to be given to B. In order to tackle this attack we
allow only LTK Reveal (i, j, l) where 1 ≤ l ≤ k − 1 and do not reveal the LTK
for the current epoch Tk between the users involved in the test session query in
our new model. But note that he can even get the LTKs of the users involved
in the test session for previous epochs. Hence from the above discussion we get
the following proposition:

Proposition 1. For any key-evolving two-party symmetric key AKE protocol,
if we allow the Long Term Key (LTK) of the parties of the current epoch to get
revealed to a Fully Active adversary, we cannot hope for any sort of security.
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Pi Adversary Pj

χi−−−−−−−→ χi−−−−−−−→
1. Compute : χ̃j = gH1(K1,randj) χj ,υj←−−−−−−−−

χ̃j ,υ̃j←−−−−−−− 2. Compute υ̃j = (χ̃j)
K1 · (χi)

K2 :

υi=(χi)
K1 ·(χ̃j)

K2

−−−−−−−−−−−−−−−→ 3. Compute : υ̃i = (χi)
K1 · (χj)

K2 υ̃i−−−−−−−−−→
Session Key Computation:

Pi : Compute Z1 = (χ̃j)
DLOG(χi) = gH1(K1,randj)·H1(K1,randi)

Pj : Compute Z2 = (χi)
DLOG(χj) = gH1(K1,randi)·H1(K1,randj)

B : Compute Z1 = (χi)
DLOG(χ̃j) = gH1(K1,randi)·H1(K1,randj)

Algorithm 2: Impersonation Attack on Π in Presence of
LTK Reveal(i, j, t) where 1 ≤ l ≤ t

4.4 Security Proof of Π

In this section we give the security proof of our protocol Π discussed in Sect. 4.2.

Theorem 1. For any fully active AKE adversary A against our protocol Π,
running in time t̃ and having advantage AdvΠ,Sym-AKE

A , that activates at most
m sessions, we construct a DDH solver S with advantage AdvDDH

S , a discrete
logarithm solver τ with advantage AdvDLOG

τ such that:

AdvΠ,Sym-AKE
A ≤ m2

2 · AdvDDH
S − AdvDLOG

τ − 1
2

(
1 − 1

|G|
)

.

where S runs in time O(t̃ · m) and τ runs in time O(t̃) and |G| denotes the size
of the underlying group.

Proof. Let A be an adversary against our protocol Π. In accordance with
our security model, the adversary A is allowed to make session activation
queries. A query of the form Send(Pi, Pj) makes user Pi perform Step 1-2
of our protocol, and create a session with identifier (Pi, Pj , 〈Pi, χi, ηi〉, �, I).
On a query (Pi, Pj , 〈Pi, χi, ηi〉), Pj creates a session with identifier (Pj , Pi, 〈Pj ,
χj , ηj〉, 〈Pi, χi, ηi〉,R). The query (Pi, Pj , 〈Pi, χi, ηi〉, 〈Pj , χj , ηj〉,R) makes Pi

update the session identifier (Pi, Pj , 〈Pi, χi, ηi〉, �, I) (if any) to (Pi, Pj , 〈Pi,
χi, ηi〉, 〈Pj , χj , ηj〉, I) and perform Step 4-6 of our protocol. The adversary is
also allowed to make the following queries: Ephemeral Reveal, LTK Reveal,
SK Reveal. Since the session key is computed as H2(σ) where σ = (Z ′, Pi, Pj),
the adversary can distinguish a fresh session key from a random session key in
two ways:

– Guessing Attack: A guesses the test session key correctly.
– Key Replication Attack: A succeeds in making two non-matching sessions

compute the same session key and then A simply issues a session key reveal
query on one of the sessions and uses that key in the other session.
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– Forging Attack: A computes the value σ and issues the H2 digest query to
get the session key.

Under the Random Oracle (RO) model, the first two attacks cannot succeed,
except with negligible probability. Key Replication attack will not succeed,
because if χi �= χ′

i, or χj �= χ′
j , or ηi �= η′

i or ηj �= η′
j or Pi �= P ′

i or Pj �= P ′
j ,

and no substring of Pi matches Pj , then the probability that H2(σi, Pi, Pj) =
H2(σ′

i, P
′
i , P

′
j) is negligible and vice versa. Thus it is enough to analyze the event

E where E is defined as the event “A succeeds in forging the session key of a
fresh session denoted by sid0 = (Pi, Pj , 〈χi0 , ηi0 , Pi〉, 〈χj0 , ηj0 , Pj〉, ς)”. We will
show that if A mounts a successful forgery, then we will be able to construct a
DDH solver S which uses A as a subroutine.

Analysis of E. If event E occurs with non-negligible probability, using A we
can build a DDH solver that succeeds with non-negligible probability.

S simulates A’s environment, with n parties P1, . . . , Pn. Since A is polynomial
(in |q|), we suppose that each party is activated at most m times (m,n ≤ L(|q|
for some polynomial L). S chooses Pi, Pj randomly such that i, j ∈ [n], and
t ∈R [m] (with these choices, S is guessing the test session). The challenger is
given the DDH problem instance 〈G, g, q, p, C = gα,D = gβ , T 〉 where T = gαβ

or T is random.
If the adversary queries on a value σ to the key derivation oracle KDF, the

solver S looks up its corresponding list LKDF to see if the value corresponding
to the query is already listed in the list If the KDF Oracle was already queried
with σ as input, the challenger extracts the value Z from the list LKDF and
returns the value. Otherwise it chooses a random value from the distribution of
session keys and returns it to the adversary.

The solver S sets χi0 ← C and χj0 ← D. Note that S does not know the
values of H1(K, randi0) and H1(K, randj0) and the values of H1(K, randi0) and
H1(K, randj0) is implicitly set to a and b respectively. We claim that if the
adversary wins in the forging attack, S can solve the DDH challenge. Indeed the
session key for the selected test session is of the form KDF(σ) where σ includes
the value CDH(χi0 , χj0), i.e., CDH(C,D). The adversary A cannot detect
whether it is in the simulated session or the actual session unless it queried
σ to the KDF function. Hence to win A must have queried on the KDF at the
point σ. So if the adversary guesses the session key correctly, the solver S out-
puts 1 indicating it is a DDH tuple, else it outputs 0 indicating it is a random
tuple.

Now A is allowed to make EphemeralReveal(sidt
ij0

), EphemeralReveal
(sid′t

ji0
), but he is not allowed to ask both:

i. (LTK Reveal(i, j, l), EphemeralReveal(sidt
ij0

) where l = t or
ii. (LTK Reveal(i, j, l), EphemeralReveal(sidt

ji0
) where l = t.

If sid0 is indeed the test session, the only way A can distinguish the simulated
session from the true session is it makes queries on (K, randi0) or (K, randj0)
(by which A can find out H1(K, randi0) or H1(K, randj0)). However A is not
allowed to make these queries to reveal both (K, randi0) or (K, randj0) . Hence
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for this A needs to find out the discrete logarithms of either gH1(K,randi0) or
gH1(K,randj0). This corresponds to the hypothetical discrete logarithm solver τ
in Theorem 1. Moreover since, A can activate at most m sessions and make at
most t̃ KDF oracle queries, its total running time is O(t̃ · m).

Probability Analysis: The solver S picks up two parties Pi and Pj and picks
a session and its matching session randomly. So the probability that A picks
one of the selected sessions as test session and another as its matching session
is 1

(m2 )
= 2

m(m−1) . The advantage of the DDH solver is related to the sum of the

advantages of our AKE adversary A and the discrete logarithm solver τ . Let us
define the event E: probability that the adversary A queries the KDF at the
point σ as defined before. Now the advantage of the DDH solver S is equal to
the probability that the adversary A outputs b′ = b (the challenge bit).

Pr[b′ = b] = Pr[b′ = b|E]· Pr[E]+ Pr [b′ = b|¬E]· Pr[¬E]

Now let us analyze the probability of the event E.

Pr[E] ≥ 2
m(m−1)

(
AdvΠ,Sym-AKE

A + AdvDLOG
τ

)
≥

2
m2

(
AdvΠ,Sym-AKE

A + AdvDLOG
τ

)

So, we have:

Pr[b′ = b] ≥ 1. 2
m(m−1)

(
AdvΠ,Sym-AKE

A + AdvDLOG
τ

)
+ 1

2 ·
(
1 − 1

|G|
)

or AdvDDH
S ≥ 1. 2

m(m−1)

(
AdvΠ,Sym-AKE

A + AdvDLOG
τ

)
+ 1

2 ·
(
1 − 1

|G|
)

or AdvΠ,Sym-AKE
A ≤ m2

2 · AdvDDH
S − AdvDLOG

τ − 1
2

(
1 − 1

|G|
)
.

By our assumption, both AdvDDH
S and AdvDLOG

τ are negligible. Hence
AdvΠ,Sym-AKE

A is also negligible. �
Thus, Theorem 1 ensures the security of our authenticated symmetric key AKE
protocol.

5 Conclusion and Future Work

We propose a new security model for symmetric key AKE. Our model gives
much more power to the adversary and also captures security against fully active
adversaries, i.e., adversaries who are active in all the sessions including the test
session. We also present a concrete construction providing security in our new
security model for symmetric key AKE.

We show how to achieve a three-pass symmetric key AKE secure against
fully active adversaries without using MACs or pseudorandom functions. Specif-
ically, we use secure instances of weaker primitives like weak PRF and wAXU
hash functions. However, achieving a three-pass AKE using wPRFs and wAXU
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functions is non-trivial and for this we introduce a novel technique which we
call input swapping technique. Our construction is proven secure in the random
oracle model under the DDH assumption. We leave open the problem of con-
struction of a symmetric key AKE protocol in our new security model using
weaker primitives, resisting fully active adversaries in the standard model.
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