
Multi-party Computation with Small Shuffle
Complexity Using Regular Polygon Cards

Kazumasa Shinagawa1,2(B), Takaaki Mizuki3, Jacob C.N. Schuldt2,
Koji Nuida2, Naoki Kanayama1, Takashi Nishide1, Goichiro Hanaoka2,

and Eiji Okamoto1

1 University of Tsukuba, Tsukuba, Japan
shinagawa@cipher.risk.tsukuba.ac.jp

2 National Institute of Advanced Industrial Science and Technology,
Tsukuba, Japan

3 Tohoku University, Sendai, Japan

Abstract. It is well-known that a protocol for any function can be con-
structed using only cards and various shuffling techniques (this is referred
to as a card-based protocol). In this paper, we propose a new type of
cards called regular polygon cards. These cards enable a new encod-
ing for multi-valued inputs while the previous works can only handle
binary inputs. We furthermore propose a new technique for constructing
a card-based protocol for any n-ary function with small shuffle complex-
ity. This is the first general construction in which the shuffle complexity
is independent of the complexity (size/depth) of the desired functional-
ity, although being directly proportional to the number of inputs. The
construction furthermore supports a wide range of cards and encodings,
including previously proposed types of cards. Our techniques provide a
method for reducing the number of shuffles in card-based protocols.

Keywords: Multi-party computation · Card-based protocol · Polygon
cards · Shuffle complexity

1 Introduction

1.1 Background

Since the seminal work of den Boer [2], many card-based protocols have been pro-
posed, which can securely compute a function by applying shuffles to sequences
of cards [1–13]. Compared to computer-based protocols, a card-based protocol
can be performed without the use of computers and electricity. Thus, this type
of protocol is suitable when computers are not available or the parties do not
trust the security of computers-based protocols (although card-based protocols
require a different set of trust assumptions). Moreover, it is easy to understand
the correctness and the security of card-based protocols since they do not rely on
complicated reductions to mathematical problems which may be hard to verify
and understand for non-experts.
c© Springer International Publishing Switzerland 2015
M.-H. Au and A. Miyaji (Eds.): ProvSec 2015, LNCS 9451, pp. 127–146, 2015.
DOI: 10.1007/978-3-319-26059-4 7

128 K. Shinagawa et al.

The Five-Card Trick [2] is the first card-based protocol, in which two parties
can securely compute the AND function of their secret inputs, using five cards
that have two types of front sides (♣ , ♥) and identical backs (×). In the
subsequent works [1,3–13], many card-based protocols are proposed which focus
on feasibility results and reducing the number of cards required in the protocols.
In 2009, Mizuki and Sone [8] proposed composable AND, XOR, and COPY
protocols using six, four, and six cards, respectively. (It is possible to compute
any functions by composing these protocols.) These results [8] are the most
efficient construction for the elementary boolean functions with respect to a
commonly used encoding scheme in which each input bit is encoded using two
cards (a two-cards-per-bit encoding scheme). For any n-ary boolean function,
Nishida et al. [10] showed that it is possible to construct a (2n+6)-card protocol
using a two-cards-per-bit encoding scheme. In 2014, Mizuki and Shizuya [7]
showed that under a one-card-per-bit encoding scheme1 it is possible to construct
composable AND, XOR, and COPY protocols using three, two, and three cards
with rotationally symmetric backs. (A protocol for any n-ary function using only
n + 3 cards can easily be obtained by combining the result from [10] with the
encoding scheme in [7].)

While previous results show that it is feasible to construct a protocol for
an arbitrary function using a small number of cards, it is unknown how to
construct a protocol with small shuffle complexity. Since shuffles are the most
costly operations, a large number of shuffles immediately imply a large computa-
tional overhead. Let f be a function and let |f | be the smallest number of gates
(AND/XOR/COPY) in circuits implementing f . In this case, we can obtain a
protocol for f using the previous AND/XOR/COPY protocols to evaluate the
circuit for f , which yields a shuffle complexity of exactly |f |. We stress that even
if a protocol has an asymptotic small number of shuffles (e.g. polynomial in |f |),
it is not always considered to be efficient. For card-based protocols, it is desirable
that the shuffle complexity is as low as possible (with small coefficients), and
ideally, that it is independent of the complexity of the desired functionality.

1.2 Our Contribution

Our main contributions are as follows: (1) We first propose a new type of cards,
regular polygon cards, that can deal with multi-valued inputs directly. As a
result, we can construct a protocol for an arbitrary linear function with small
shuffle complexity. (2) We define a new notion, which we call oblivious conver-
sion. This enables the construction of a protocol for any functions with small
shuffle complexity. (3) We show that the regular polygon cards enable the con-
struction of an efficient voting protocol for multiple candidates. Our protocols
1 We stress that the two-card-per-bit encoding schemes are important since the one-

card-per-bit encoding scheme [7] needs unnatural shuffle for computing the AND
function. Thus, it is still meaningful to improve protocols under the two-cards-per-
bit encoding schemes.

Multi-party Computation with Small Shuffle Complexity 129

Table 1. Comparison between our protocols and previous protocols

Table 2. Comparison between our voting protocol and previous voting protocol

of voters # of candi. Input timing # of shuffles # of cards

[3] (standard) any n 2 restricted O(n log n) 2�log2 n� + 6

Ours (Sect. 4) n (n < m) any � no restriction n �n + �n

Ours (Sect. 5) n (n < m) any � no restriction n + 1 (n + 2)�

using regular m-sided polygon cards have smaller shuffle complexity than pro-
tocols using the previously proposed cards ♣ , ♥ (the cards are referred to as
standard in Table 1).

Regular Polygon Cards. The regular m-sided polygon cards (Fig. 1) have
(360/m)◦ rotational symmetry, and have a value corresponding to an element
of Z/mZ. The card with rotationally symmetric backs proposed by Mizuki and
Shizuya [7] (in the context of one-card-per-bit encoding schemes) can be regarded
as a regular 2-sided polygon card. Our work introduces the first card-based proto-
cols for multi-valued inputs while all previous works [1–13] only consider binary
inputs. Using the m-sided polygon cards, it is possible to construct addition, sub-
traction, and copy protocols over Z/mZ using only a single shuffle while protocols
based on [8,10] use O(log m) shuffles (see Table 1, Addition and Subtraction). We
also construct a protocol for multiplication by a constant a ∈ Z/mZ using only
�log2 a� + 1 shuffles while protocols based on [8,10] use O(log a · log m) shuffles
(see Table 1, Multiplication). Composing our protocols, we can securely compute
an arbitrary linear function while maintaining a small shuffle complexity.

Oblivious Conversion. We define a new notion, oblivious conversion, which
is a generalization of oblivious transfer. This is a protocol that takes as inputs
an encoding of x ∈ Z/m0Z and a function f : Z/m0Z → Z/m1Z, and outputs
an encoding of f(x) ∈ Z/m1Z. By applying an oblivious conversion n times,

130 K. Shinagawa et al.

it is possible to construct protocols for arbitrary n-ary functions (see Table 1,
Protocol for an arbitrary f). This approach can be applied to various cards (and
encodings) including the regular polygon cards and the previously proposed cards
(♣ , ♥). Here, a protocol for f :

⊗n−1
i=0 Z/miZ → Z/mnZ (i.e., the domain of

f is n tuples in which each element belongs to Z/miZ) is regarded as an MPC
protocol for f with n parties P0, P1, · · · , Pn−1 where Pi holds the secret input
xi ∈ Z/miZ. Thus, an MPC protocol for any n-ary function can be obtained by
applying oblivious conversion by n times. The shuffle complexity of the obtained
protocol is small, and it does not depend on the complexity (size/depth) of the
function to be evaluated.

Voting Protocol. While oblivious conversion allows the generic construction of
protocols with a small shuffle complexity, it might still be possible to construct
even more efficient protocols for specific functionalities. We specifically construct
an efficient voting protocol for multiple candidates. For n voters and � candidates,
using the regular m-sided polygon cards (m > n), our protocol uses n+1 shuffles
and (n+2)� cards, while a protocol based on oblivious conversion uses n shuffles
and �n + �n cards.

1.3 Related Works

In 1993, Crépeau and Kilian [1] achieved protocols implementing any function-
ality by constructing composable elementary protocols (COPY/XOR/AND). In
2009, Mizuki and Sone [8] constructed composable elementary protocols using
fewer cards, by applying a new shuffle called a random bisection cut. To evaluate
a function that has |f | gates (COPY/XOR/AND), the shuffle complexity of the
obtained protocol is exactly |f |. On the other hand, our construction (Sect. 4)
requires only n shuffles where n is the number of inputs to the function.

Mizuki, Asiedu, and Sone [3] constructed a voting protocol with n voters
and 2 candidates, using 2�log2 n� + 6 cards. However, this protocol restricts the
timing of the voter inputs in order to reduce the number of required cards;
an unrestricted protocol requires O(n) cards to encode the voter inputs. Our
protocol is unrestricted, requires n cards, and makes use of n + 1 shuffles. In
contrast, the protocol from [3] requires O(n log n) shuffles (see Table 2).

2 Our New Cards and Model of Protocols

In this section, we propose regular polygon cards, and define protocols and the
security based on regular polygon cards as well as the standard notion of security.

2.1 Regular Polygon Cards

We first propose new cards called regular polygon cards, which are conceptually
different from previous cards (♣,♥). A regular m-sided polygon card encodes
an element of Z/mZ, while previous works use two cards to encode an element
of Z/2Z. From now on, we use Zm to denote Z/mZ.

Multi-party Computation with Small Shuffle Complexity 131

Definition 1 (Regular Polygon Card). A card is called a regular m-sided
polygon card if the front side of the card has no rotational symmetry and the
back side of the card has (360/m)◦ rotational symmetry.

Note that m, in a regular m-sided polygon card, does not refer to the shape
of the cards, but the symmetry of the back side of the card. Indeed, for all
m = m0m1, a regular m-sided polygon card is both a regular m0-sided polygon
card and a regular m1-sided polygon card. In the case of m = 2, a regular 2-sided
polygon card refer to a card with a 180◦ rotationally symmetric pattern [7].

Fig. 1. An example of regular 4-sided polygon cards

Set of Cards. The cards (Fig. 1) are an example of regular m-sided poly-
gon cards (m = 4). Letting the front side of a card correspond to a value of
Zm decided by the card’s rotation, a set of front side cards Fm is obtained as
Fm = {0, 1, · · · ,m − 1}. (See the upper four cards in Fig. 1; the value of a card
corresponds to the number shown in the top of the card.) Using [[x]] to denote a
card put face-down2 whose value is x, a set of back side cards Bm is obtained as
Bm = {[[0]], [[1]], · · · , [[m − 1]]} (see the lower four cards in Fig. 1). A set of cards
Cm is defined by Cm = Fm ∪ Bm. Let rotm and flipm be a rotation function and
a flip function, s.t., rotm, flipm : Cm → Cm. The rotation function rotm takes
x ∈ Fm or [[x]] ∈ Bm as input, and outputs x − 1 ∈ Fm or [[x + 1]] ∈ Bm, respec-
tively. (Note that both of x → x − 1 and [[x]] → [[x + 1]] correspond to the same
rotation operation.) The flip function flipm takes x ∈ Fm or [[x]] ∈ Bm as input,
and outputs [[x]] ∈ Bm or x ∈ Fm, respectively. From now on, we often omit
m and denote Cm,Fm,Bm, rotm, flipm as C,F ,B, rot, flip. Using rot and flip, any
card [[x]] ∈ B or x ∈ F can be expressed by operations on [[0]], i.e., [[x]] = rotx([[0]])
and x = flip(rotx([[0]])). We define a face function face which expresses the face
of cards. For [[x]] ∈ B, face([[x]]) = ×, and for x ∈ F , face(x) = “x”, where × and
“x” are symbols. Thus, the face function is a function that takes an element of C
as input, and outputs an element of a set of symbols {“0”, “1”, · · · , “m−1”,×}.

2 We assume that the direction of flipping is predetermined.

132 K. Shinagawa et al.

Fig. 2. An example of a sequence whose face is (“1”, ×3, “0”3, “2”)

Stack/Sequence. A stack of cards is defined by an ordered collection of cards.
For t cards c0, c1, · · · , ct−1 ∈ C, a stack d is denoted by d = c0 ◦c1 ◦· · ·◦ct−1 ∈ Ct

(the top is c0 and ct−1 is on the table), where Ct is the set of all stacks of t
cards. Note that a card c ∈ C is a special case of a stack. We use D to denote
a set of all stacks, i.e., D =

⋃∞
i=1 Ci. A sequence (of stacks) is defined by a

vector of multiple stacks (see an example of a sequence in Fig. 2). For k stacks
d0, d1, · · · , dk−1 ∈ D, a sequence d is denoted by d = (d0, d1, · · · , dk−1) ∈ Dk.
The difference between a stack and a sequence is that a stack is a single object
while a sequence consists of multiple objects. For a stack d = c0◦c1◦· · ·◦ct−1, the
face function is defined by face(d) = (face(c0), t). This means that a face of stacks
have two pieces of information; the face of the top card and the number of cards
in the stack3. From now on, we use (face(c))t to denote (face(c), t). For example,
for an encoding [[x]] ∈ B and a card c ∈ C, face([[x]] ◦ c) = (face([[x]]))2 = ×2.
For a sequence d = (d0, d1, · · · , dk−1) ∈ Dk, the face function is defined by
face(d) = (face(d0), face(d1), · · · , face(dk−1)) (see Fig. 2).

Encoding. For a finite set X, an encoding is defined as an injective function E
which maps x ∈ X to a tuple of back side cards Bk, where k is the length of
the encoding. This is also called a commitment in previous card-based protocols.
For an encoding E over Zm, we often omit “mod m”, e.g., we use E(x − 1) to
denote E(x− 1mod m). The most natural encoding is the one that maps x ∈ Zm

to E(x) = [[x]]. Unless otherwise noted, this is the encoding we use. (In Sects. 4
and 5, we use other encodings to achieve a small shuffle complexity.)

2.2 Operations

We now define operations for sequences; permutation, rotation, flip, shuffle, com-
position/decomposition, and insert/delete.

Permutation. Let Sk be the symmetric group of degree k. For a permutation
of k objects σ ∈ Sk, we define a permutation operation σ that takes as input a
sequence d = (d0, d1, . . . , dk−1) ∈ Dk and outputs σ(d). We define a useful per-
mutation cyck ∈ Sk that takes (d0, d1, . . . , dk−1), and outputs (d1, . . . , dk−1, d0).

3 The number of cards in a stack would be revealed by the thickness of the stack.

Multi-party Computation with Small Shuffle Complexity 133

We often omit the degree k and denote cyck as cyc.

(d0, d1, . . . , dk−1)
Perm σ−−−−→ (dσ−1(0), dσ−1(1), . . . , dσ−1(k−1)).

(d0, d1, . . . , dk−1)
Perm cyc−−−−−→ (d1, . . . , dk−1, d0).

Rotation. We define a rotation operation that takes as input a stack d ∈ D
and outputs rot(d). Here, the rotated stack, rot(d), corresponds to subtracting
1 (modulo m) to the value of all front side cards c ∈ F , and adding 1 from
the value of all back side cards c ∈ B in the stack d. By roti(d) we denote the
rotation operation applied i times. For [[x]] and a public number a, we can obtain
[[x + a]] by applying rota([[x]]). We use the following notation.

d
Rot−−→ rot(d). d

Roti−−→ roti(d).

Flip. We define a flip operation that takes as input a card c ∈ C and outputs
flip(c) which corresponds to the card c flipped around. For example, given the
back side card [[x]], flip(x) corresponds to the front side x. When the input is a
single back side card, we sometimes refer to the flip operation as open. We use
the following notation.

c
Flip−−→ flip(c).

Shuffle. In this paper, we use two shuffles, called a cyclic shuffle and a rotation
shuffle. Let a sequence d = (d0, d1, · · · , dk−1) ∈ Dk satisfy face(d0) = face(d1) =
· · · = face(dk−1). We define a cyclic shuffle that takes as input a sequence d as
above and outputs cycr(d) where r is uniformly chosen from Zk. (We assume that
nobody knows the value r except when all parties are corrupted by an adversary.)
Let a stack d ∈ D satisfy face(d) = face(rot(d)) = · · · = face(rotm−1(d)). (Thus,
the top of stack d is a back side card.) We define a rotation shuffle that takes as
input a stack d as above and outputs rotr(d) where r is uniformly chosen from
Zm. (Similarly, we assume that nobody knows the value r.) As far as we know,
all shuffles used in previous works can be expressed by the combination of the
operations defined here4. As in previous works, we can securely operate a cyclic
shuffle and a rotation shuffle5.

(d0, d1, · · · , dk−1)
CycShffl−−−−→ cycr

k(d0, d1, · · · , dk−1).

d
RotShffl−−−−→ rotr(d).

4 The “cyclic shuffle” used in [2] and the random bisection cut proposed in [8] corre-
sponds to one of our cyclic shuffles. Similarly, the shuffle used in [7] and the “rotation
shuffle” used in [12] corresponds to one of the our rotation shuffles.

5 We demonstrate how to securely obtain a cyclic shuffle. Let P0, · · · , Pn−1 be the
parties participating in the protocol. P0 chooses a uniformly random value r0 ∈ Zk

and applies cycr0 to d , and sends cycr0(d) to P1. Similarly, Pi receives d’ , chooses
ri ∈ Zk, and sends cycri(d’) to Pi+1. Finally, Pn−1 outputs cycr(d) where r =
r0 + · · · + rn−1. Nobody knows the uniform random value r except when all parties
are corrupted by an adversary assuming parties are honest-but-curious.

134 K. Shinagawa et al.

Composition/Decomposition. We define a composition operation that takes
as input a pair of cards (c0, c1) where c0, c1 ∈ C and outputs a stack c0 ◦ c1 ∈ C2.
We define a decomposition operation as the inverse operation of a composition,
i.e., it takes c0 ◦ c1 ∈ C2 and outputs (c0, c1). Similarly, we define a flip composi-
tion operation that takes (c0, c1) where c0, c1 ∈ C and outputs c0 ◦ flip(c1) ∈ C2,
and flip decomposition operation that is the inverse operation of a flip composi-
tion. We use the following notation.

(c0, c1)
Comp−−−→ c0 ◦ c1. c0 ◦ c1

Decomp−−−−→ (c0, c1).

(c0, c1)
FComp−−−−→ c0 ◦ flip(c1). c0 ◦ c1

FDecomp−−−−−→ (c0, flip(c1)).

Insert/Delete. We define an insert operation that takes as input a sequence
(d0, d1, · · · , dk−1) ∈ Dk and outputs (0, d0, d1, · · · , dk−1) ∈ Dk+1. Oppositely, we
define a delete operation that takes as input a sequence (d0, d1, · · · , dk−1) ∈ Dk

and outputs (d1, · · · , dk−1) ∈ Dk−1. Note that using permutation and rotation
operations we can easily insert/delete any card at any position. We use the
following notation.

(d0, d1, · · · , dk−1)
Insert−−−→ (0, d0, d1, · · · , dk−1).

(d0, d1, · · · , dk−1)
Del−−→ (d1, · · · , dk−1).

We have now defined all operations used in our protocols. However, we would
like to apply these operations to a subsequence of the sequence. (For example, we
want to apply a shuffle to a half of sequence.) For this reason, we use (naturally)
extended operations that apply to a subsequence as follows.

(d0, d1, d2, · · · , dk−1)
RotShffl {0,1}−−−−−−−−→ (rotr(d0), rotr(d1), d2, · · · , dk−1).

(c0, c1, d2, · · · , dk−1)
Flip {0,1}−−−−−−→ (flip(c0), flip(c1), d2, · · · , dk−1).

(d0, d1, d2, · · · , dk−1)
Comp {1,2}−−−−−−−→ (d0, d1 ◦ d2, d3, · · · , dk−1).

(d0, d1, · · · , dk−1)
Del {1,k−1}−−−−−−−→ (d0, d2, d3, · · · , dk−2).

We use O to denote the set of extended operations as above. Here, we stress that
the shuffles are special operations6. We use OS to denote the set of shuffles. The
set of shuffles is a proper subset of the set of extended operations (OS ⊂ O).

2.3 Model

Protocol. We define a protocol using regular m-sided polygon cards as follows.

Definition 2 (Protocol). A protocol Π taking input (x0, x1, · · · , xn−1) is spec-
ified by 〈(P0, P1, · · · , Pn−1), (E,E′), π〉, where Pi is a party who holds the secret
6 All operations except shuffles output a sequence in a deterministic way. However,

shuffles output a sequence in a probabilistic way under a uniformly random value r.

Multi-party Computation with Small Shuffle Complexity 135

value xi, E and E′ are the input and output encodings, and π is a transition func-
tion that takes as input a vector of faces of sequences, and outputs an element
of O ∪ {⊥}. The protocol Π proceeds as follows.

1. Pi submits E(xi) in public. Let c0 := (E(x0),E(x1), · · · ,E(xn−1)) be the initial
sequence, and let C0 := (c0) be the initial vector of sequences.

2. Iteratively proceed as follows: For a vector Ci = (c0, c1, · · · , ci), apply the
operation τi := π(face(c0), · · · , face(ci)) to the sequence ci, and obtain the
sequence ci + 1.
– When τi �∈ OS (τi is not a shuffle operation), all parties publicly obtain

ci+1 by applying τi to ci, i.e., ci
τi−→ ci+1. Note that all of these operations

proceed in public.
– When τi ∈ OS (τi is a shuffle operation), all parties invoke a shuffle pro-

tocol for ci, and obtain ci +1. In the shuffle protocol, each party Pi gener-
ates a uniformly random value ri privately, and apply cycri or rotri to the
sequence. As a result, all parties obtain the sequence obtained from apply-

ing cycr or rotr where r := r0 + r1 + · · · + rn−1. We use ci
τi(r)−−−→ ci + 1 to

denote a shuffle under the random value r.
– When τi = ⊥, all of the parties output cour := ci as an output sequence.

For a protocol Π with input x = (x0, x1, · · · , xn−1) we use Trans(Π,x) to
denote the transcript of an execution of Π(x), including the random values
generated by the parties as part of the protocol:

Trans(Π,x) → ((face(c0), face(c1), · · · , face(c�)), face(cout), r0, r1, · · · , rn − 1)

where � is the number of generated sequences, cout is the output sequence cout,
and ri is a vector of random values7 used by Pi.

Security. As in standard multi-party computation, we define security via a
simulation-based security experiment. Intuitively, our notion of security cap-
tures that any set of corrupt users cannot learn anything about the secret input
of honest users, expect for the output of the protocol. More specifically, for a
protocol to be secure, we require that there exist an efficient simulator which
can simulate the corrupt user’s view of the protocol execution, without access to
the honest user’s input. We define a perfect security for a protocol Π as follows.

Definition 3 (Perfect Security). Let Π be a protocol. We say that Π is per-
fectly secure if for any C � Zn there exists an efficient algorithm S such that
for any x = (x0, x1, · · · , xn−1) the outputs of the experiments Exp0Π,C(x) and
Exp1Π,C,S(x) are distributed identically.

Exp0Π,C(x) Exp1Π,C,S(x)
Trans(Π,x) Trans(Π,x)
→ (face(C), face(cout), {ri}i∈Zn

); → (face(C), face(cout), {ri}i∈Zn
);

view := (face(C), {(xi, ri)}i∈C); S({xi}i∈C, face(cout)) → view′;
output view; output view′;

7 When there are no shuffles in a transcript, the vector ri should be an empty vector.

136 K. Shinagawa et al.

Efficiency. For a protocol Π, the card complexity and the shuffle complexity are
defined as the worst-case number of cards and shuffles required in Π, respectively.
We evaluate the efficiency of protocols with respect to the card complexity and
shuffle complexity. Note that these complexities are not necessarily related, and
cannot be compared directly. Furthermore, since the shuffle operation is the only
randomized operation, the shuffle complexity can also be seen as a measure for
demanding a protocol is with respect to random number generation.

3 Efficient Protocols Using Regular Polygon Cards

In this section, using properties of regular m-sided polygon cards, we construct
protocols for linear functions over Zm. Linear functions are all functions that can
be expressed as a composition of multiplications by a constant and additions. In
particular, we construct four protocols as follows.

– Addition Protocol : ([[x0]], [[x1]])
Add−−→ [[x0 + x1]].

– Subtraction Protocol : ([[x0]], [[x1]])
Sub−−→ [[x1 − x0]].

– Copy Protocol : [[x]]
Copy k−−−−→ ([[x]], [[x]], · · · , [[x]]

︸ ︷︷ ︸
k

).

– Multiplication by Constant Protocol : [[x]] Mult a−−−−→ [[ax]].

Composing them, we can securely compute an arbitrary linear function over Zm.

3.1 Addition, Subtraction, and Copy Protocols

We construct an addition protocol over Zm using regular m-sided polygon cards.
It takes as inputs two encodings [[x0]] and [[x1]], and outputs an encoding of the
sum [[x0 +x1]]. Our idea is simple. Firstly, using a rotation shuffle, we obtain two
encodings [[x0+r]] and [[x1−r]], and open the former to learn the value ε := x0+r.
Since ε is masked by the random value r, ε reveals no information about x0. Once
ε is opened in public, we can easily obtain [[x0+x1]] from [[x1−r]] by applying an
ε-times rotation. The most important part in our addition protocol is generating
the rotation and the inverse rotation [[x0 + r]] and [[x1 − r]]. You can see the
demonstration movie (https://youtu.be/9Tid6X-9r-c).

Addition Protocol (Add)

Secret Information : (x0, x1) ∈ (Zm, Zm).
Input : ([[x0]], [[x1]]).
Output[[x0 + x1mod m]]. (We omit “mod m” in the description.)

1. Apply a flip composition to ([[x0]], [[x1]]).

([[x0]], [[x1]])
FComp−−−−→ [[x0]] ◦ flip([[x1]]).

https://youtu.be/9Tid6X-9r-c

Multi-party Computation with Small Shuffle Complexity 137

2. Apply a rotation shuffle to [[x0]] ◦ flip([[x1]]).

([[x0]] ◦ flip([[x1]]))
RotShffl−−−−→rotr([[x0]]) ◦ rotr(flip([[x1]]))

= [[x0 + r]] ◦ flip([[x1 − r]]).

3. Apply a flip decomposition to [[x0 + r]] ◦ flip([[x1 − r]]). Open the 1st card
[[x0 + r]], and learn a value ε := x0 + r mod m publicly.

[[x0 + r]] ◦ flip([[x1 − r]])
FDecomp−−−−−→ ([[x0 + r]], [[x1 − r]])

Open {0}−−−−−→ (ε, [[x1 − r]]).

4. Delete the front card ε. Apply ε-times rotation to [[x1 − r]].

(ε, [[x1 − r]])
Del {0}−−−−→ [[x1 − r]] Rot ε−−−→ [[x0 + x1]].

Theorem 1. The above addition protocol is perfectly secure.

Proof. The faces of the sequence in the above addition protocol are the following.

(×,×)
FComp−−−−→ (×2) RotShffl−−−−→ (×2)

FDecomp−−−−−→ (×,×)
Open−−−→ (“ε′′,×) Del−−→ (×) Rot−−→ (×).

In the sequences, ε = x0 + r is a uniformly random value in Zm since r is
a uniformly random value in Zm. For any subset C � Zn, the simulator S is
constructed as follows. S takes {xi}i∈C and a face of the output sequence (×)
as inputs, chooses uniformly random r′

i and ε′ ∈ Zm, and outputs the following.

(((×,×), (×2), (×2), (×,×), (“ε′”,×), (×), (×)), {xi, r
′
i}i∈C).

This is the same as the real distribution. Therefore, our addition protocol Add
is perfectly secure. �
In the addition protocol, if we use [[x0]] ◦ flip([[x1]]) ◦ flip([[x2]]) · · · ◦ flip([[xk−1]])
instead of [[x0]] ◦ flip([[x1]]), then it is possible to apply an x0-addition operation
to k − 1 encodings by using a rotation shuffle (Single Instruction Multiple Data,
SIMD operation).

([[x0]], [[x1]], · · · , [[xk−1]])
Add−−→ ([[x0 + x1]], · · · , [[x0 + xk−1]]).

Using this property, we immediately obtain a copy protocol by applying our
addition protocol to [[x]] and [[0]]s, i.e., ([[x]], [[0]], · · · , [[0]]) Add−−→ ([[x]], · · · , [[x]]). We
use the following notation for our k-copy protocol.

[[x]]
Copy k−−−−→ ([[x]], [[x]], · · · , [[x]]

︸ ︷︷ ︸
k

).

In the addition protocol, if we use [[x0]] ◦ [[x1]] instead of [[x0]] ◦ flip([[x1]]), then
we obtain a subtraction protocol. Similarly, it is possible to operate a SIMD
operation in our subtraction as follows.

([[x0]], [[x1]], · · · , [[xk−1]])
Sub−−→ ([[x1 − x0]], · · · , [[xk−1 − x0]]).

138 K. Shinagawa et al.

Clearly, it is possible to apply a SIMD operation for [[x0]]-addition, [[x0]]-
subtraction, and copy for [[x0]]. For example, the following operation can be
obtained from a rotation shuffle.

([[x0]], [[x1]], [[x2]], [[x3]]) → ([[x1 + x0]], [[x2 − x0]], [[x3 − x0]], [[x0]], [[x0]]).

3.2 Protocol for Multiplication by a Constant

A protocol for multiplication by a constant, that takes an encoding [[x]] and
a constant a ∈ Zm as inputs and outputs [[ax]], can be constructed by just
applying our addition protocol a times. Using a binary representation a =
a0 + 2a1 + · · · + 2�−1a�−1, it is widely known how to reduce the complexity
for a multiplication. (We refer to this as the binary method.) In our model, we
can apply the binary method and obtain a protocol using only O(log a)-times
rotation shuffles as follows.

1. Let a ∈ Zm denote a constant represented by a = a0 + 2a1 + · · · + 2�−1a�−1

where ai ∈ {0, 1}.
2. Repeat the following from i = 0 to � − 1.

(a) If ai = 0, then apply our 2-copy protocol to [[2ix]], otherwise apply our
3-copy protocol to [[2ix]].

(b) For two encodings of [[2ix]], apply our addition protocol and obtain an
encoding of [[2i+1x]].

3. For all encodings generated as above, apply our addition protocol and obtain
an encoding of [[ax]].

Let �a be the number of ai that satisfies ai = 1. The shuffle complexity of the
above protocol is (2�log2 a� + �a − 1) rotation shuffles.

In the rest of this section, we show that it is possible to construct a mul-
tiplication by constant protocol whose shuffle complexity is only (�log2 a� + 1)
rotation shuffles. The basic idea is to use a SIMD operation of our addition
protocol. Our multiplication by constant protocol is denoted by [[x]] Mult a−−−−→ [[ax]].

Multiplication by Constant Protocol (Mult)

Secret Information : x ∈ Zm.
Input : [[x]].
Output[[ax]].
Let � = �log2 a� and a − 1 =

∑�−1
j=0 2j · bj where bj ∈ {0, 1}. Note that we use

a binary representation of a − 1, while the standard binary method using that
of a.

1. Invoke our (� + 1)-copy protocol to [[x]].

[[x]]
Copy �+1−−−−−→ ([[x]], · · · , [[x]]

︸ ︷︷ ︸
�+1

).

Multi-party Computation with Small Shuffle Complexity 139

2. Repeat the following operation for i = 0, 1, · · · , � − 1 the following opera-
tion. For clarity, we first demonstrate the 0th step and then the i-th step.
In the 0th step, invoke our addition protocol Add as follows: if b0 = 1, then
add the leftmost [[x]] to all others [[x]], otherwise add the leftmost [[x]] to all
others [[x]] except from the rightmost [[x]].

([[x]], · · · , [[x]]
︸ ︷︷ ︸

�

, [[x]]) Add−−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

([[2x]], · · · , [[2x]]
︸ ︷︷ ︸

�−1

, [[x]]) if b0 = 0.

([[2x]], · · · , [[2x]]
︸ ︷︷ ︸

�−1

, [[2x]]) if b0 = 1.

In i-th step (i > 0), the current sequence is s = (

�−i
︷ ︸︸ ︷
[[w]], · · · , [[w]], [[wi]]) where

w = 2ix, and wi = (
∑i−1

j=0 2jbj + 1)x. If bi = 1, then add [[w]] to all others.
If bi = 0, then add [[w]] to all others except from [[wi]].

([[w]], · · · , [[w]]
︸ ︷︷ ︸

�−i

, [[wi]])
Add−−→

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

([[2w]], · · · , [[2w]]
︸ ︷︷ ︸

�−i−1

, [[wi]]) if bi = 0.

([[2w]], · · · , [[2w]]
︸ ︷︷ ︸

�−i−1

, [[wi + w]]) if bi = 1.

3. Finally, the current sequence is a card [[w�]], where w� = (
∑�−1

j=0 2jbj +1)x =
ax. The output is the card [[w�]].

Theorem 2. The above multiplication protocol is perfectly secure.

Proof. The faces of the sequence in the above multiplication protocol are the
following.

(×)
Copy−−−→ (×,×, · · · ,×

︸ ︷︷ ︸
�+1

) Add−−→ (×,×, · · · ,×
︸ ︷︷ ︸

�

) Add−−→ · · · Add−−→ (×,×) Add−−→ (×).

For any subset C � Zn, the simulator S is constructed as follows. S takes
{xi}i∈C and the face of the output sequence (×) as inputs, chooses uniformly
random r′

i,j and ε′
j ∈ Zm (for i ∈ C and j ∈ {0, 1, · · · , �}), and outputs

(face(C′), {xi, r
′
i,0, r

′
i,1, · · · , r′

i,�}i∈C). (Note that face(C′) can be easily generated
from ε′

j and the transition function π.) This is the same as the real distribution.
Therefore, our multiplication protocol Multa is perfectly secure. �

4 Efficient Protocols Using Oblivious Conversion

In this section, we construct protocols for any function f :
⊗n−1

i=0 Zmi
→ Zmn

with small shuffle complexity using a new protocol, an oblivious conversion. A
protocol based on oblivious conversion has a small shuffle complexity, but use

140 K. Shinagawa et al.

a large number of cards. In general, there is a trade-off between a specific con-
struction and a generic (oblivious conversion based) construction, in terms of the
shuffle complexity and the number of cards. (For example, the specific multipli-
cation by a ∈ Zm (Sect. 3.2) uses �log2 a� + 1 rotation shuffles and �log2 a� + 2
cards while a multiplication protocol based on oblivious conversion uses 1 cyclic
shuffle and 2m cards (Example 1).) Our oblivious conversion can be applied to
general encodings (see Corollary 1). Thus, for general encodings we can construct
protocols for any functions with small shuffle complexity (see Corollary 2).

For two finite cyclic groups Zm0 , Zm1 , let f be a function s.t. f : Zm0 → Zm1 ,
and let E0,E1 be encodings on Zm0 , Zm1 , respectively. An oblivious conversion
is defined by a protocol, that takes E0(x),E1(f(0)),E1(f(1)), · · · ,E1(f(m0 − 1))
as inputs, and outputs E1(f(x)). In our definition, an oblivious transfer can be
seen as an oblivious conversion. Indeed, if two parties P0 and P1 plays a receiver
and a sender, i.e., P0 chooses x, and P1 chooses f , then the oblivious conversion
is equal to an oblivious transfer.

Firstly, we construct an oblivious conversion for f : Zm → Zm, where the
input and output encodings are the standard encoding [[·]]. You can see the
demonstration movie (https://youtu.be/hlAetm66iRU).

Oblivious Conversion

Secret Information : x ∈ Zm.
Input : ([[x]],f) where f = ([[f(0)]], [[f(1)]], · · · , [[f(m − 1)]]).
Output : [[f(x)]].

1. Invoke our m-copy protocol for [[x]], apply a (i − 1)-times rotation to i-th
card from the left (i = 1, 2, · · · ,m), and obtain x = ([[x]], [[x − 1]], [[x −
2]], · · · , [[x − (m − 1)]]).

([[x]],f)
Copy m−−−−→ ([[x]], · · · , [[x]]

︸ ︷︷ ︸
m

,f) Rot−−→ (x,f).

We see the sequence as a matrix as follows.
(

x
f

)

=
(

[[x]] [[x − 1]] · · · [[0]] · · · [[x − (m − 1)]]
[[f(0)]] [[f(1)]] · · · [[f(x)]] · · · [[f(m − 1))]]

)

.

2. Apply a composition operation to each column and make a sequence w :=
(w0, w1, · · · , wm−1) where wi = [[x − i]] ◦ [[f(i)]]. Apply a cyclic shuffle to
the sequence, and then decompose it.

(
x
f

)
Comp−−−→ w

CycShffl−−−−→ cycr(w)
Decomp−−−−→

(
cycr(x)
cycr(f)

)

.

3. Open the first card of cycr(x), and learn the value ε := x−r mod m. Delete
the top column in the matrix.

https://youtu.be/hlAetm66iRU

Multi-party Computation with Small Shuffle Complexity 141

4. Apply an ε-times cyclic permutation to the sequence.

cycr(f)
Perm cycε

−−−−−−→ cycx(f).

5. The 1st card of cycx(f) is [[f(x)]], this is the output.

([[f(x)]], [[f(x + 1)]], · · · , [[f(x + m − 1)]]) Del−−→ [[f(x)]].

Theorem 3. The above oblivious conversion is perfectly secure.

Proof. In the case of m = 4, the faces of the sequence in the above protocol are
the following.

(×,×,×,×,×)
Copy−−−→ (×,×,×,×,×,×,×,×) Rot−−→ (×,×,×,×,×,×,×,×) −→

(× × × ×
× × × ×

)
Comp−−−→ (×2,×2,×2,×2)

CycShffl−−−−→ (×2,×2,×2,×2)
Decomp−−−−→

(× × × ×
× × × ×

)

Open−−−→
(

“ε” × × ×
× × × ×

)
Del−−→ (×,×,×,×)

cycε

−−→ (×,×,×,×) Del−−→ (×).

For any subset C � Zn, S takes {xi}i∈C and the face of the output sequence
(×) as inputs, chooses uniformly random r′

i ∈ Zm (for i ∈ C) and ε′ ∈ Zm,
and outputs (face(C′), {xi, r

′
i}i∈C). (Note that face(C′) can be easily generated

from ε′ and the transition function π.) This is the same as the real distribution.
Therefore, our oblivious conversion is perfectly secure. �

In above protocol, using an encoding E1 instead of [[·]], we can obtain an
oblivious conversion protocol that takes f = (E1(f(0)), · · · ,E1(f(m − 1))) as
inputs. Similarly, if an encoding E0 can execute Step 1 in the protocol, then we
can use E0(x) instead of [[x]] as input. This is formally stated in the following.

Corollary 1. For cyclic groups Zm0 , Zm1 , let f : Zm0 → Zm1 be a function and
E0,E1 be encodings on X,Y such that there exists integers k0, k1 that satisfies
for all x ∈ Zm0 face(E0(x)) = ×k0 and face(E1(f(x))) = ×k1 . If the encoding E0

supports the computation of (E0(x),E0(x − 1), · · · ,E0(x − (m0 − 1))) from E0(x)
by applying � shuffles, then there exists an oblivious conversion for f with only
� + 1 shuffles.

This can be easily proven from the construction of our oblivious conversion.

Example 1 (Multiplication by a Constant Protocol). For a function
f : Zm → Zm defined as f(x) = ax, and encodings E0(·) = E1(·) = [[·]], the
oblivious conversion for f is a protocol of multiplication by a constant a.

Example 2 (Square Protocol). For a function f : Zm → Zm defined as
f(x) = x2, and encodings E0(·) = E1(·) = [[·]], the oblivious conversion for f is a
square protocol.

142 K. Shinagawa et al.

Example 3 (Modulus Switch). For a function f : Zm0 → Zm1 defined as
f(x) = (xmod m1), and encodings E0(x) = [[x]] (the natural encoding of regular
m0-sided polygon cards) E1(y) = [[y]] (the natural encoding of regular m1-sided
polygon cards), the oblivious conversion for f is a modulus switch protocol.

For all x ∈ Zm0 , if an encoding E0 satisfies cyc(E0(x)) = E0(x − 1mod m0),
then we can obtain an oblivious conversion which has a lower shuffle complexity.
For such an encoding, there exists a constant k which satisfies E(x) ∈ Bkm, since
cycm(E(x)) = E(x − m) = E(x). Thus, we can use E(x) instead of x in Step 2.
As a result, we obtain an oblivious conversion using only a cyclic shuffle.

Example 4 (Encodings for Small Shuffle Complexity). For Zm,
let EA(x) = ([[x]], [[x − 1]], · · · , [[x − (m − 1)]]) ∈ Bm, and EB(x) =
([[y0]], [[y1]], · · · , [[ym−1]]) ∈ Bm where yj = 0 for (j �= x) and yx = 1. And then EA

and EB satisfy ∀x
[
cyck(E(x)) = E(x − 1)

]
. Furthermore, let EC be an encoding

which have redundancy, s.t. EC(x) = (EA(x),EA(x)) ∈ B2m. Then EC satisfies
∀x

[
cyc2k(EC(x)) = EC(x − 1)

]
.

MPC for Small Shuffle Complexity. It is possible to construct a secure MPC
for any function using only our oblivious conversion. We use (αi)m−1

i=0 to denote
the sequence (α0, α1, · · · , αm−1). For a function f :

⊗n−1
i=0 Zmi

→ Zmn
and an

output encoding En, we first define a sequence f as follows.

f (x0,··· ,xn−3,xn−2) := (En(f(x0, · · · , xn−2, i)))
mn−1−1
i=0

f (x0,··· ,xn−3) := (f (x0,··· ,xn−3,i))mn−2−1
i=0

...

f (x0) := (f (x0,i))m1−1
i=0

f := (f (i))m0−1
i=0

Let E0,E1, · · · ,En−1 be encodings over Zm0 , Zm1 , · · · , Zmn−1 , respectively.
Given encodings of inputs {Ei(xi)}i∈Zn

and f , we can obtain the output sequence
En(f(x0, · · · , xn−1)) as follows.

(E0(x0),f) OC−−→ f (x0)

(E1(x1),f (x0)) OC−−→ f (x0,x1)

...

(En−2(xn−2),f (x0,··· ,xn−3)) OC−−→ f (x0,··· ,xn−3,xn−2)

(En−1(xn−1),f (x0,··· ,xn−3,xn−2)) OC−−→ En(f(x0, · · · , xn−1))

where OC−−→ denotes applying the oblivious conversion.

Corollary 2. For cyclic groups Zm0 , Zm1 , · · · , Zmn
, let f :

⊗n−1
i=0 Zmi

→ Zmn

be a function and let Ei (i ∈ {0, 1, · · · , n − 1}) and En be encodings on Zmi
and

Multi-party Computation with Small Shuffle Complexity 143

Zmn
such that there exists integers k0, k1, · · · , kn that satisfies for all xi ∈ Zmi

face(Ei(xi)) = ×ki (i ∈ {0, 1, · · · , n − 1}) and face(En(f(x0, x1, · · · , xn−1))) =
×kn . If for all Zmi

(i ∈ {0, 1, · · · , n − 1}) the encoding Ei supports the com-
putation of (Ei(x),Ei(x − 1), · · · ,Ei(x − (mi − 1))) from E(x) by applying �i

shuffles, then there exists a card-based protocol for f with only
∑n−1

i=0 (�i + 1)
shuffles. In particular, if each Ei satisfies ∀x ∈ Zmi

[
cycr(Ei(x)) = Ei(x − r)

]

(i ∈ {0, 1, · · · , n − 1}), then there exists a card-based protocol for f with only n
cyclic shuffles.

This corollary can be easily proven from the above discussion.

5 Efficient Voting Protocol for Multiple Candidates

Using our oblivious conversion (Sect. 4), it is possible to construct a protocol
for any n-ary function with n cyclic shuffles. Since protocols based on oblivi-
ous conversion are generic constructions, they require a large number of cards.
Therefore, it might be possible to construct a more efficient protocol in terms of
both the shuffle complexity and the number of cards by considering a protocol
tailored to a specific functionality. In this section, we construct an efficient vot-
ing protocol for � candidates and n voters. Assume each voter Pi holds xi ∈ Z�,
i.e., Pi supports the xi-th candidate. For x ∈ Z�, let Ev(x) be an encoding for
voting as follows8

Ev(x) := cyc−x
� ([[1]], [[0]], [[0]], · · · , [[0]]

︸ ︷︷ ︸
�

).

Clearly, this encoding satisfies ∀x
[
cyc�(Ev(x)) = Ev(x − 1mod �)

]
. Our voting

protocol takes n encodings Ev(x0),Ev(x1), · · · ,Ev(xn−1) as inputs, and outputs
y = ([[y0]], · · · , [[y�−1]]) where yj is the number of votes for the j-th candidate.
(Note that our voting protocol outputs encodings of the number of votes, thus
we can apply an arbitrary functionality to the outputs.) The shuffle complexity
of our voting protocol is n+1 cyclic shuffles while a protocol using our oblivious
conversion has only n cyclic shuffles. However, the number of cards is only (n+2)�
while the protocol using our oblivious conversion needs O(�n).

For the simplicity, we show a voting protocol with 2 voters. It is easy to
extend this to a voting protocol with n voters for an arbitrary n.

Voting Protocol with 2 Voters and � Candidates

Secret Information : (x0, x1) ∈ Z
2
� .

Input : Ev(x0),Ev(x1).
Output : ([[y0]], · · · , [[y�−1]]) where yi = |{j|xj = i}|.

8 The encoding Ev is just equal to EB (Sect. 4, Example 4).

144 K. Shinagawa et al.

1. We deal with the input sequence (Ev(x0),Ev(x1)) as a matrix as bellow.
Insert Ev(0) = ([[1]], [[0]], · · · , [[0]]) and all-zero sequence 0 = ([[0]], · · · , [[0]]).

(
Ev(x0)
Ev(x1)

)
Insert−−−→

⎛

⎜
⎜
⎝

Ev(x0)
Ev(x1)

[[1]] [[0]] · · · [[0]] [[0]]
[[0]] [[0]] · · · [[0]] [[0]]

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Ev(x0)
Ev(x1)
Ev(0)

0

⎞

⎟
⎟
⎠ .

2. Apply a composition to each column and make a sequence w0 =
(w0,0, w0,1, · · · , w0,�−1). (Note that each w0,i contains 4 cards.) Apply a
cyclic shuffle to w0, and decompose it.

⎛

⎜
⎜
⎝

Ev(x0)
Ev(x1)
Ev(0)

0

⎞

⎟
⎟
⎠

Comp−−−→ w0
CycShffl−−−−→ cycr0(w0)

Decomp−−−−→

⎛

⎜
⎜
⎝

Ev(x0 − r0)
Ev(x1 − r0)
Ev(−r0)
cycr0(0)

⎞

⎟
⎟
⎠ .

3. Open the first row and learn the value ε0 := x0 − r0, and delete the first
row. For the bottom sequence cycr0(0), apply a rotation rot to ε0-th card
from the right, i.e., x0-th card of 0. (Note that we refer to the rightmost
card as the “0th” card.) Let cycr0(z0) be the bottom sequence.

4. Apply a composition to each column and make a sequence w1 =
(w1,0, w1,1, · · · , w1,�−1). (Note that each w1,i contains 3 cards.) Apply a
cyclic shuffle to w1, and decompose it.

⎛

⎝
Ev(x1 − r0)
Ev(−r0)
cycr0(z0)

⎞

⎠ Comp−−−→ w1
CycShffl−−−−→ cycr1(w1)

Decomp−−−−→
⎛

⎝
Ev(x1 − r)
Ev(−r)
cycr(z0)

⎞

⎠ .

where r = r0 + r1.
5. Open the first row and learn the value ε1 := x1 − r, and delete the first

row. For the bottom sequence cycr(z0), apply a rotation rot to ε1-th card
from the right, i.e., x1-th card of z0. Let cycr(z1) be the bottom sequence.

6. Apply a composition to each column and make a sequence w2 =
(w2,0, w2,1, · · · , w2,�−1). (Note that each w2,i contains 2 cards.)

(
Ev(−r)
cycr(z1)

)
Comp−−−→ w2

CycShffl−−−−→ cycr2(w2).

7. Open the 1st row, and learn the value ε2 := −(r + r2). Delete the 1st row,
and apply cycε2 to cycr+r2(z1). Output the sequence z1.

(
Ev(−(r + r2))
cycr+r2(z1)

)
Del−−→ cycr+r2(z1)

cycε2−−−→ z1.

Theorem 4. The above voting protocol is perfectly secure.

Multi-party Computation with Small Shuffle Complexity 145

Proof. In the case of � = 3, the faces of the sequence in the above voting protocol
are the following.

(× × ×
× × ×

)
Insert−−−→

⎛

⎜
⎜
⎝

× × ×
× × ×
× × ×
× × ×

⎞

⎟
⎟
⎠

Comp−−−−→
CycShffl

(×4,×4,×4)
Decomp−−−−→

⎛

⎜
⎜
⎝

× × ×
× × ×
× × ×
× × ×

⎞

⎟
⎟
⎠

Open−−−→

⎛

⎜
⎜
⎝

ε0
× × ×
× × ×
× × ×

⎞

⎟
⎟
⎠

Del−−→
Rot

⎛

⎝
× × ×
× × ×
× × ×

⎞

⎠ Comp−−−−→
CycShffl

(×3,×3,×3)
Decomp−−−−→

⎛

⎝
× × ×
× × ×
× × ×

⎞

⎠ Open−−−→

⎛

⎝
ε1

× × ×
× × ×

⎞

⎠ Del−−→
Rot

(× × ×
× × ×

)
Comp−−−−→

CycShffl
(×2,×2,×2)

Decomp−−−−→
(× × ×

× × ×
)

Open−−−→
(

ε2
× × ×

)
Del−−→ (×,×,×)

cycε2−−−→ (×,×,×).

where εi is the face of the opening i.e., εi = (“εi,0”, “εi,1”, “εi,2”) where
Ev(εi) = (εi,0, εi,1, εi,2). For any subset C � Zn, S takes {xi}i∈C and the face
of the output sequence (×) as inputs, chooses uniformly random r′

i,j ∈ Zm

and ε′
j,k ∈ Zm (for i ∈ C, j ∈ {0, 1, · · · , n}, and k ∈ {0, 1, · · · , � − 1}), and

outputs (face(C′), {xi, r
′
i,0, r

′
i,1, · · · , r′

i,n}i∈C). (Note that face(C′) can be easily
generated from ε′

j,k and the transition function π.) This is the same as the real
distribution. In general, for an arbitrary �, we can construct the simulator S
similarly. Therefore, our voting protocol is perfectly secure. �

Acknowledgment. The authors would like to thank members of the study group
“Shin-Akarui-Angou-Benkyou-Kai” for the valuable discussions and helpful comments,
and thank the anonymous reviewers for their comments. This work was partially sup-
ported by JSPS KAKENHI Grant Numbers 26330001 and 26330151, Kurata Grant
from The Kurata Memorial Hitachi Science and Technology Foundation, and JSPS A3
Foresight Program.

References

1. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)

2. den Boer, B.: More efficient match-making and satisfiability. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer,
Heidelberg (1990)

3. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013)

4. Mizuki, T., Fumishige, U., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Comb. 36, 279–293 (2006)

146 K. Shinagawa et al.

5. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012)

6. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Sec. 13, 15–23 (2014)

7. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A.,
Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324. Springer,
Heidelberg (2014)

8. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009)

9. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191(1–2), 173–183 (1998)

10. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Heidelberg (2015)

11. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input major-
ity function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B.,
Vega-Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer,
Heidelberg (2013)

12. Shinagawa, K., Mizuki, T., Schuldt, J., Nuida, K., Kanayama, N., Nishide, T.,
Hanaoka, G., Okamoto, E.: Secure multi-party computation using polarizing cards.
In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 281–297.
Springer, Heidelberg (2015)

13. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2),
671–678 (2001)

	Multi-party Computation with Small Shuffle Complexity Using Regular Polygon Cards
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Works

	2 Our New Cards and Model of Protocols
	2.1 Regular Polygon Cards
	2.2 Operations
	2.3 Model

	3 Efficient Protocols Using Regular Polygon Cards
	3.1 Addition, Subtraction, and Copy Protocols
	3.2 Protocol for Multiplication by a Constant

	4 Efficient Protocols Using Oblivious Conversion
	5 Efficient Voting Protocol for Multiple Candidates
	References

