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Abstract. Sanitizable signatures, introduced by Ateniese et al. at ESOR-
ICS’05, allow to issue a signature on a message where certain predefined
message blocks may later be changed (sanitized) by some dedicated party
(the sanitizer) without invalidating the original signature. With sanitiz-
able signatures, replacements for modifiable (admissible) message blocks
can be chosen arbitrarily by the sanitizer. However, in various scenar-
ios this makes sanitizers too powerful. To reduce the sanitizers power,
Klonowski and Lauks at ICISC’06 proposed (among others) an extension
that enables the signer to limit the allowed modifications per admissible
block to a well defined set each. At CT-RSA’10 Canard and Jambert
then extended the formal model of Brzuska et al. from PKC’09 to addi-
tionally include the aforementioned and other extensions. We, however,
observe that the privacy guarantees of their model do not capture pri-
vacy in the sense of the original definition of sanitizable signatures. That
is, if a scheme is private in this model it is not guaranteed that the sets of
allowed modifications remain concealed. To this end, we review a stronger
notion of privacy, i.e., (strong) unlinkability (defined by Brzuska et al.
at EuroPKI’13), in this context. While unlinkability fixes this problem,
no efficient unlinkable scheme supporting the aforementioned extensions
exists and it seems to be hard to construct such schemes. As a remedy, in
this paper, we propose a notion stronger than privacy, but weaker than
unlinkability, which captures privacy in the original sense. Moreover, it
allows to easily construct efficient schemes satisfying our notion from
secure existing schemes in a black-box fashion.

1 Introduction

Digital signatures are an important cryptographic tool to assert the authentic-
ity (source) and integrity of digital content. By virtue of these desired prop-
erties, every alteration of signed data necessarily yields an invalidation of the
original signature. If one, however, considers handwritten signatures on paper
documents, there are various scenarios where the handwritten signature is still
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visible (source authentication is still given), but the document contains several
blacked-out sections. These sections are not readable anymore and thus remain
confidential. Examples for such sanitized documents are the public release of
previously classified governmental documents, legal subpoenas for documents in
court trials or documents for medical or biomedical research [1,13,15].

It is clear that conventional digital signatures can not be used as a means
for source authentication in such scenarios for the obvious reason. A naive solu-
tion would be to issue a fresh signature on a sanitized version of the respective
document. However, this is often not possible (e.g., the signing key has already
expired or is not available) or it is even undesirable (e.g., due to time or cost
constraints).

1.1 Background on Sanitizable Signatures

To realize a controlled and limited sanitization of digitally signed content without
signer-interaction, various approaches to so called sanitizable signatures have
been introduced and refined over the years. Today, there are essentially two
flavors of sanitizable signatures. The first one focuses on removal (blacking-out)
of designated parts not necessarily conducted by a designated party (could be
everyone) and it covers redactable signatures [20], content-extraction signatures
[29] and the sanitizable signatures in [23]. The second one focuses on replacement
of designated parts conducted only by a designated party (the sanitizer) and
covers sanitizable signatures as defined in [2] and follow up work [4–8,26]. For a
separation of these flavors we refer the reader to [22].

In addition to the motivating examples in the beginning, sanitizable signa-
tures have shown to be a useful tool in various scenarios. Their applications
include customizing authenticated multicast transmissions, database outsourc-
ing (combating software piracy and unauthorized content distribution), remote
integrity checking of outsourced data [14] and secure routing [2]. Moreover, they
find applications in the context of public sector (open government) data [30],
DRM licensing for digital content protection [11,32], privacy protection in smart
grids [24], privacy-aware management of audit-log data [19], health record disclo-
sure [3] and anonymization [27], as well as identity management [28,33]. On the
more theoretical side, it has been shown how to build attribute-based anonymous
credential systems from sanitizable signatures in a black-box fashion [12].

In this paper, we focus on sanitizable signatures in the vein of Ateniese
et al. [2]. The basic idea behind such a scheme is that a message is split into
fixed and modifiable (admissible) blocks, where each admissible block is replaced
by a chameleon hash (a trapdoor collision resistant hash) of this block, and the
concatenation of all blocks is then signed. A sanitizer being in possession of
the trapdoor, can then change each admissible block arbitrarily by computing
collisions. Such a sanitizable signature scheme needs to satisfy (1) unforgeabil-
ity, which says that no one except the honest signer and sanitizer can create
valid signatures and sanitizations respectively, (2) immutability, which says that
a malicious sanitizer must not be able to modify any part of the message which
has not been specified as admissible by the signer, (3) privacy, which says that
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all sanitized information is unrecoverable for anyone except signer and sanitizer,
(4) transparency, which says that signatures created by the signer or the sani-
tizer are indistinguishable, and (5) accountability, which requires that a malicious
signer or sanitizer is not able to deny authorship. These security properties have
later been rigorously defined in [4], where it is also shown that accountability
implies unforgeability, transparency implies privacy1 and all other properties
are independent. Later, the property of (strong) unlinkability [6,8] as an even
stronger privacy property has been introduced. Additionally, other properties
such as (blockwise) non-interactive public accountability [7] have been proposed
and the model has also been extended to cover several signers and sanitizers
simultaneously [10].

1.2 Motivation for this Work

With sanitizable signatures, admissible blocks can be replaced arbitrarily by
the sanitizer. However, this often makes sanitizers too powerful and thus may
limit their applicability in various scenarios severely. To reduce the sanitizers’
power, Klonowski and Lauks [21] introduced several extensions for sanitizable
signatures, which allow to limit the power of a sanitizer in several ways and
thus eliminate the aforementioned concerns. In particular, they have introduced
extensions (1) limiting the set of possible modifications for an admissible block
(LimitSet), (2) forcing the sanitizer to make the same changes in logically linked
admissible blocks (EnforceModif), (3) limiting the sanitizer to modify at most
k out of n admissible blocks (LimitNbModif) and (4) forcing the sanitizer to
construct less than � versions of a message (LimitNbSanit). Later, Canard and
Jambert [9] extended the security model of Brzuska et al. [4] to cover the afore-
mentioned extensions (as [21] did not provide any model or proofs).

The LimitSet Extension. Although all of the aforementioned features improve
the applicability of sanitizable signatures, we deem the LimitSet extension to
be the generally most useful one (besides, it is the only extension that is related
to the privacy property). Thus, in the remainder of this paper, we only con-
sider the LimitSet extension and refer to schemes that implement this exten-
sion as extended sanitizable signature schemes (ESSS). In existing constructions,
LimitSet is realized by using cryptographic accumulators, a primitive that
allows to succinctly represent a set (as a so called accumulator) and to com-
pute witnesses certifying membership for elements in the set. Basically, the set
of admissible changes for such a block is accumulated and the admissible block
is replaced by the respective accumulator. Loosely speaking, the signer initially
provides an element together with the witness and sanitizing simply requires the
sanitizer to exchange this element and the witness.

How to Define Privacy? Recall that for sanitizable signatures without exten-
sions, privacy means that it should not be possible to recover the original message
1 We note that the implication of privacy by transparency [6] only holds in the proof-

restricted case (cf. Sect. 3).



458 D. Derler and D. Slamanig

from a sanitized version. Now, what is the most reasonable definition for privacy
given the LimitSet extension? It seems to be most natural to require that, given
a (sanitized) signature, a LimitSet block does not leak any information about
the remaining elements in the respective set (and thus no information about the
original message). By carefully inspecting the security model for ESSS in [9],
we, however, observe that their privacy definition does not capture this. In fact,
an ESSS that reveals all elements of the sets corresponding to LimitSet blocks
will be private in their model. One motivation for a weak definition of privacy
in [9] might have been to preserve the implication from (proof-restricted) trans-
parency (as in the original model from [4]). However, as it totally neglects any
privacy guarantees for the LimitSet extension, a stronger privacy notion seems
advantageous and often even required. In [6,8] a stronger notion of privacy for
sanitizable signatures—called (strong) unlinkability—has been introduced. This
notion, when adapted to ESSS, indeed guarantees what we want to achieve.
Yet, unlinkability induces a significant overhead for constructions supporting
the LimitSet extension. As we will see later, the only unlinkable construction
that supports the LimitSet extension [12] is rather inefficient and is only proven
secure in a customized model which does not consider all security requirements
of sanitizable signatures and thus does not represent an ESSS. In general, as we
will show later, efficient unlinkable constructions of ESSS seem hard to achieve.
Taking all together we conclude that, while the notion of privacy in [9] seems
to be too weak, unlinkability seems to be too strong. Subsequently, we motivate
why a stronger privacy notion (inbetween these two notions) that still allows to
obtain efficient instantiations is however important for practical applications.

Motivating Applications. We consider use cases where it is required to limit
the sanitizers abilities, while at the same time providing privacy with respect
to verifiers. For instance, consider authenticity preserving workflows that span
multiple enterprises. Using ESSS they can be modeled as illustrated in Fig. 1,
with a signer and a sanitizer per enterprise. Then, employees can—within some
well defined boundaries—act (in the role of the sanitizer) on behalf of their com-
pany, while also being accountable for their actions. However, companies do not
disclose sensitive business internals. As a concrete example for such a workflow,
envision that a bank signs a document containing a LimitSet block with autho-
rized financial transactions for some company once every day. An employee of
this company is then able to demonstrate the authorization of single transactions

Fig. 1. Modeling a workflow using ESSS
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to subsequent enterprises via sanitization, while not being able to maliciously
introduce new transactions. The company will definitely want that employees
can be held accountable for revealing certain transactions and that transactions
which were never revealed by sanitized versions of the orignal document remain
concealed. Observe, that an ESSS being private according to [9] could reveal
sensitive business internals upon signature verification (i.e., the unused trans-
action information). Another use case is the anonymization of (medical) data
before publishing it, e.g., instead of removing the entire address information of
some individual, one can replace the precise address with some larger region. To
do so, one could define an admissible set with two elements being the precise
address and the region. This would greatly help to automate the sanitization and
to reduce errors, which, in turn, improves the quality of sanitized documents2.
Likewise to the previous example, an ESSS which is private according to the
definition in [9] would allow to reconstruct the precise address from a sanitized
document.

1.3 Contribution

In this paper we take a closer look at the privacy definition for ESSS in [9] as
well as the unlinkability definitions in [6,8] when applied to the security model
for ESSS. We conclude that these notions are either not strict enough to cover
the requirements outlined in the previous section or too strict to obtain practical
schemes. To this end, we introduce a stronger notion of privacy—denoted strong
privacy—which explicitly considers privacy issues related to the LimitSet exten-
sion. More precisely, our strengthened notion guarantees that the sets of allowed
modifications remain concealed, while still allowing efficient instantiations. We
show that privacy is strictly weaker than strong privacy and that unlinkability
is strictly stronger than strong privacy. Most importantly, we show that efficient
and secure ESSS providing strong privacy can be constructed in a black-box way
from any sanitizable signature scheme that is secure in the models of [4,18]. We
do so by proposing (1) a generic conversion of sanitizable signatures to ESSS
which support the LimitSet extension and (2) showing that instantiating the
LimitSet extension in this generic conversion with indistinguishable accumula-
tors (as introduced in [16]) yields constructions that provide strong privacy.

2 Preliminaries and Notation

For the sake of compact notation, we often use the concatenation operator,
e.g., (ai)n

i=1||(bi)m
i=1 := (a1, . . . , an, b1, . . . , bm) and assume that concatenated

sequences can later be uniquely decomposed (even when concatenating elements
of different types and lengths). Let x ←R

X denote the operation that picks an
element x uniformly at random from a finite set X. A function ε : N → R

+ is
called negligible if for all c > 0 there is a k0 such that ε(k) < 1/kc for all k > k0.
In the remainder of this paper, we use ε to denote such a negligible function.
2 Such sets could be obtained and standardized by using concepts from k-anonymity

[31] or t-plausibility [1] with the help of domain expert knowledge.
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2.1 (Indistinguishable) Accumulators

Accumulators allow to represent a finite set X of values as a single succinct accu-
mulator accX . For each value x ∈ X , one can efficiently obtain a membership
witness witx that certifies the membership of x in accX , while this is infeasible
for values y /∈ X (collision freeness). Indistinguishable accumulators [16] addi-
tionally require that neither the accumulator nor corresponding witnesses leak
information about the accumulated set. Subsequently, we use the basic model for
static accumulators from [16] and note that in general a trusted setup is assumed
(i.e., AGen is run by a TTP that discards the trapdoor skacc). However, if the
party maintaining accX is trusted, as it is the case within sanitizable signatures,
using skacc may be useful as it typically supports more efficient computations
(the parameter sk∼

acc denotes the optional trapdoor, i.e., using the trapdoor does
not influence the output distributions of the algorithms and all algorithms also
run without skacc).

Definition 1 (Accumulator [16]). An accumulator is a tuple of PPT algo-
rithms (AGen, AEval, AWitCreate, AVerify) which are defined as follows:

AGen(1κ, t): This algorithm takes a security parameter κ and a parameter t. If
t �= ∞, then t is an upper bound for the number of accumulated elements. It
returns a key pair (skacc, pkacc), where skacc = ∅ if no trapdoor exists.

AEval((sk∼
acc, pkacc), X ): This (probabilistic)3 algorithm takes a key pair (sk∼

acc,
pkacc) and a set X to be accumulated and returns an accumulator accX
together with some auxiliary information aux.

AWitCreate((sk∼
acc, pkacc), accX , aux, x): This algorithm takes a key pair (sk∼

acc,
pkacc), an accumulator accX , auxiliary information aux and a value x. It
returns ⊥, if x /∈ X , and a witness witx for x otherwise.

AVerify(pkacc, accX , witx, x): This algorithm takes a public key pkacc, an accumu-
lator accX , a witness witx and a value x. It returns true if witx is a witness
for x ∈ X and false otherwise.

A secure indistinguishable accumulator is correct, collision free and indistin-
guishable. We recall the definitions for collision freeness and indistinguishability
below4.

Definition 2 (Collision Freeness). An accumulator is collision-free, if for all
PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎣

(skacc, pkacc) ← AGen(1κ, t), O ← {OE(·,·,·),OW(·,·,·,·)},
(wit∗x, x∗,X ∗, r∗) ← AO(pkacc) :

(AVerify(pkacc, acc∗,wit∗x, x∗) = true ∧ x∗ /∈ X ∗)

⎤
⎦ ≤ ε(κ),

3 If AEval is probabilistic, the internally used randomness is denoted as r. AEvalr is
used to make the randomness explicit.

4 Note that, even though A can run AEval and AWitCreate itself, they are modeled as
oracles to emphasize that A sees arbitrary accumulators and witnesses.
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where acc∗ ← AEvalr∗((skacc , pkacc),X ∗). Here, OE and OW represent the ora-
cles for the algorithms AEval and AWitCreate, respectively. In case of randomized
accumulators the adversary outputs randomness r∗, which is omitted for deter-
ministic accumulators. Likewise, the adversary can control the randomness r
used by OE for randomized accumulators. Thus OE takes an additional input r.

Definition 3 (Indistinguishability). An accumulator is indistinguishable, if
for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(skacc, pkacc) ← AGen(1κ, t), b ←R {0, 1}, (X0,X1,
state) ← A(pkacc), (accXb

, aux) ← AEval((sk∼
acc, pkacc),Xb),

O ← {OE(·,·,·),OW(·,·,aux,·)}, b∗ ← AO(pkacc, accXb
, state) :

b = b∗

⎤
⎥⎥⎦ ≤ 1

2
+ ε(κ),

where X0 and X1 are two distinct subsets of the accumulation domain. Here, OE

is defined as before, whereas OW is restricted to queries for values x ∈ X0 ∩ X1.
Furthermore, the input parameter aux for OW is kept up to date and is provided
by the environment, since A could trivially distinguish using aux.

It is obvious, that the notion of indistinguishability requires a randomized AEval
algorithm. We stress that [16] also provide a variant of indistinguishability, which
adds this non-determinism to accumulators with a deterministic AEval algo-
rithm. To do so, an additional random value xr from the accumulation domain
is inserted into the accumulator upon AEval. This notion is called collision-
freeness weakening (cfw) indistinguishability, since collision freeness only holds
for X ∪ {xr} and not X .

3 Formalizing Extended Sanitizable Signatures

In this section, we present a formal model for ESSS. Our model can thereby be
seen as a rigorous formalization of the model for ESSS presented in [9]. Addi-
tionally, we include the suggestions from [18], i.e., additionally consider forgeries
where one only tampers with ADM. We stress that, when omitting the exten-
sions regarding LimitSet and ADM, it is equivalent to the model of [4], which
is generally considered as the standard model for sanitizable signature schemes.

Definition 4 (Message). A message m = (mi)n
i=1 is a sequence of n bitstrings

(message blocks).

Henceforth, we use �i to refer to the (maximum) length of message block mi and
assume an encoding that allows to derive (�i)n

i=1 from m.

Definition 5 (Admissible Modifications). Admissible modifications ADM
with respect to a message m = (mi)n

i=1 are represented as a sequence ADM =
(Bi)n

i=1, with Bi ∈ {fix, var, lim}.
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Here Bi = fix indicates that no changes are allowed, Bi = var indicates that
arbitrary replacements are allowed, and Bi = lim indicates that the replacements
are limited to a predefined set (LimitSet).

Definition 6 (Set Limitations). Set limitations V with respect to a message
m = (mi)n

i=1 and admissible modifications ADM = (Bi)n
i=1 are represented by a

set V = {(i,Mi) : Bi = lim ∧ Mi ⊂ ⋃�i

j=0{0, 1}j}.

We use m′ �(ADM,V) m to denote that m′ can be derived from m under ADM and V.

Definition 7 (Witnesses). Witnesses W = {(i,Wi)}t
i=1, with Wi = {(mi1 ,

witi1), . . . , (mik
,witik

)}, are derived from set limitations V = {(i,Mi)}t
i=1, with

Mi = {mi1 , . . . ,mik
}. Thereby, witij

attests that its corresponding message block
mij

is contained in the set Mi.

With V ←−(m,ADM) W, we denote the extraction of the set of witnesses V correspond-
ing to a message m from the set W.

Definition 8 (Modification Instructions). Modification instructions MOD,
with respect to a message m = (mi)n

i=1, admissible modifications ADM and set
limitations V are represented by a set MOD = {(i,m′

i)}t
i=1 with t ≤ n, where i

refers to the position of the message block in m, and m′
i is the new content for

message block mi.

With MOD � (ADM,V), we denote that the modification instructions in MOD
are compatible with ADM and V. Furthermore, with (m0,MOD0,ADM,V) ≡
(m1,MOD1,ADM,V), we denote that after applying the changes in MOD0 and
MOD1 to m0 and m1 respectively, the resulting messages m′

0 and m′
1 are identical.

3.1 The Model

An ESSS is a tuple of PPT algorithms (KeyGensig,KeyGensan,Sign,Sanit,Verify,
Proof, Judge) which are defined as follows:

KeyGensig(1κ): This algorithm takes as input a security parameter κ and outputs
a keypair (sksig, pksig) for the signer.

KeyGensan(1κ): This algorithm takes as input a security parameter κ and outputs
a keypair (sksan, pksan) for the sanitizer.

Sign (m,ADM, V, (sksig, pksig), pksan): This algorithm takes as input a message
m, corresponding admissible modifications ADM and set limitations V, as
well as the keypair (sksig, pksig) of the signer and the verification key pksan of
the sanitizer. It computes the set W from V, obtains V ←−(m,ADM) W and outputs
a signature σ = (σ̂,V) together with some auxiliary sanitization information
san = (aux,W)5. In case of an error, ⊥ is returned. As in [4], we assume that
ADM can be recovered from a signature σ.

5 While san is not required for plain sanitizable signature schemes, ESSS additionally
return san to pass auxiliary information, which is only relevant for the sanitizer.
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Sanit ((m, σ),MOD, san, pksig, sksan):This algorithm takes as input a valid mes-
sage-signature pair (m, σ), modification instructions MOD, some auxiliary
sanitization information san and the verification key pksig of the signer and
the signing key sksan of the sanitizer. It modifies m and σ according to MOD
and outputs an updated message-signature pair (m′, σ′) and ⊥ if m′ ��(ADM,V) m.
We assume that V can be reconstructed from san.

Verify ((m, σ), pksig, pksan): This algorithm takes as input a message-signature
pair (m, σ) and the public verification keys of the signer pksig and the sanitizer
pksan. It returns true if σ is a valid signature on m under pksig and pksan, and
false otherwise.

Proof ((m, σ), {(mj , σj)}q
j=1, (sksig, pksig), pksan): This algorithm takes as input a

message-signature pair (m, σ), q message-signature pairs {(mj , σj)}q
j=1 cre-

ated by the signer, the keypair (sksig, pksig) of the signer and the public key
pksan of the sanitizer and outputs a proof π.

Judge ((m, σ), pksig, pksan, π): This algorithm takes as input a message-signature
pair (m, σ), the verification keys of the signer pksig and the sanitizer pksan
and a proof π. It outputs a decision d ∈ {sig, san}, indicating whether the
signature has been produced by the signer or the sanitizer.

3.2 Security Properties

For security, an ESSS is required to fulfill the following properties.

Definition 9 (Correctness). An ESSS is correct, if

∀κ,∀m,∀ADM,∀V,∀MOD � (ADM,V),
∀(sksig, pksig) ← KeyGensig(1κ),∀(sksan, pksan) ← KeyGensan(1κ),
∀(σ, san) ← Sign(m,ADM,V, (sksig, pksig), pksan),
∀(m′, σ′) ← Sanit((m, σ),MOD, san, pksig, sksan),
∀{(m1,ADM1,V1), . . . , (mq,ADMq,Vq)} ⊇ (m,ADM,V) :
Verify((m, σ), pksig, pksan) = true ∧ Verify((m′, σ′), pksig, pksan) = true ∧(
((σj , ·) ← Sign(mj ,ADMj ,Vj , (sksig, pksig), pksan))

q
j=1 ∧ π ← Proof((m′, σ′),

{(mj , σj)}q
j=1, (sksig, pksig), pksan) ∧ Judge((m′, σ′), pksig, pksan, π) = san

)
.

Definition 10 (Unforgeability). An ESSS is unforgeable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ), (sksan, pksan) ← KeyGensan(1κ),
O ← {OSign(·, ·, ·, (sksig, pksig), ·),OSanit(·, ·, ·, ·, sksan),

OProof(·, ·, (sksig, pksig), ·)}, (m∗, σ∗) ← AO(pksig, pksan) :
Verify(m∗, σ∗, pksig, pksan) = true ∧

(m∗,ADM∗,V∗, pksan) /∈ LSign ∧ ((m∗, σ∗),ADM∗, pksig) /∈ LSanit

⎤
⎥⎥⎥⎥⎦

≤ ε(κ),

where OSign, OSanit and OProof simulate the Sign, Sanit and Proof algorithms,
respectively. The environment keeps track of the queries to OSign using LSign.
Furthermore, it maintains a list LSanit containing the answers of OSanit extended
with pksig and ADM from the respective oracle query.
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Definition 11 (Immutability). An ESSS is immutable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ),O ← {OSign(·, ·, ·, (sksig, pksig), ·),
OProof(·, ·, (sksig, pksig), ·)}, (pk∗

san,m
∗, σ∗) ← AO(pksig) :

Verify(m∗, σ∗, pksig, pk
∗
san) = true ∧

(
(·, ·, ·, pk∗

san) /∈ LSign ∨
�m∗ �(ADM∗,V∗) m : (m,ADM∗,V∗, pk∗

san) ∈ LSign
)

⎤
⎥⎥⎥⎥⎦

≤ ε(κ),

where the oracles and the environment variables are as in Definition 10.

Definition 12 (Privacy). An ESSS is private, if for all PPT adversaries A
there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ), (sksan, pksan) ← KeyGensan(1κ),
b ←R {0, 1},O ← {OSign(·, ·, ·, (sksig, pksig), ·),

OSanit(·, ·, ·, ·, sksan),OProof(·, ·, (sksig, pksig), ·),OLoRSanit(·, ·, ·,
(sksig, pksig), (sksan, pksan), b)}, b∗ ← AO(pksig, pksan) : b = b∗

⎤
⎥⎥⎦ ≤ 1

2
+ ε(κ),

where OSign, OSanit and OProof are as in Definition 10. OLoRSanit is defined as
follows:
OLoRSanit((m0,MOD0), (m1,MOD1),ADM, (sksig, pksig), (sksan, pksan), b):

1: Randomly choose V (compatible with MOD0 and MOD1).
2: If MOD0 �� (ADM,V) ∨ MOD1 �� (ADM,V), return ⊥.
3: If (m0,MOD0,ADM,V) �≡ (m1,MOD1,ADM,V), return ⊥.
4: Compute (σb, sanb) ← Sign(mb, ADM,V, (sksig, pksig), pksan).
5: Return (m′

b, σ
′
b) ← Sanit((mb, σb), MODb, sanb, pksig, sksan).

Observe that since V is internally chosen (and, thus, independent of the bit b) in
OLoRSanit, privacy holds independent of the adversaries capability to reconstruct
the set limitations. Clearly, this contradicts a definition of privacy in a sense
that sanitized signatures do not reveal the original message.

Definition 13 (Transparency). An ESSS is transparent, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ), (sksan, pksan) ← KeyGensan(1κ),
b ←R {0, 1},O ← {OSign(·, ·, ·, (sksig, pksig), ·),OSanit(·, ·, ·, ·,

sksan),OProof(·, ·, (sksig, pksig), ·),OSanit/Sign(·, ·, ·, ·, (sksig, pksig),
(sksan, pksan), b)}, b∗ ← AO(pksig, pksan) : b = b∗

⎤
⎥⎥⎦ ≤ 1

2
+ ε(κ),

where OSign, OSanit and OProof are as in Definition 10. In addition, OProof does
not respond to queries for messages-signature pairs obtained using OSanit/Sign.
OSanit/Sign is defined as follows:
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OSanit/Sign(m,ADM,V,MOD, (sksig, pksig), (sksan, pksan), b):

1: If MOD �� (ADM,V), return ⊥.
2: Compute (σ, san) ← Sign(m, ADM,V, (sksig, pksig), pksan).
3: Compute (m′, σ0) ← Sanit((m, σ), MOD, san, pksig, sksan).
4: Compute (σ1, san) ← Sign(m′,ADM,V, (sksig, pksig), pksan).
5: Return (m′, σb).

Proof-Restricted Transparency [6]: OProof does not answer queries for mes-
sages returned by OSanit/Sign. In the proof for the implication of privacy by trans-
parency [4], OSanit/Sign is used to simulate the OLoRSanit queries. Thus, note that
the implication only holds if the privacy-adversary is restricted to OProof queries
for messages which do not originate from OLoRSanit. To additionally rule out even
stronger adversaries against privacy, i.e., such that privacy also holds after seeing
proofs for the messages in question, one would need to prove privacy directly.

Definition 14 (Sanitizer-Accountability).An ESSS is sanitizer-accountable,
if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ),O ← {OSign(·, ·, ·, (sksig, pksig), ·),
OProof(·, ·, (sksig, pksig), ·)}, (pk∗

san,m
∗, σ∗) ← AO(pksig),

π ← Proof((m∗, σ∗), SIG, (sksig, pksig), pk
∗
san) : Verify(m∗, σ∗, pksig,

pk∗
san) = true ∧ (m∗,ADM∗,V∗, pk∗

san) /∈ LSign ∧
Judge((m∗, σ∗), pksig, pk

∗
san, π) = sig

⎤
⎥⎥⎥⎥⎦

≤ ε(κ),

where the oracles are as in Definition 10. The environment maintains a list SIG,
containing all message-signature tuples obtained from OSign.

Definition 15 (Signer-Accountability). An ESSS is signer-accountable, if
for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(sksan, pksan) ← KeyGensan(1κ),O ← {OSanit(·, ·, ·, ·, sksan)},
(pk∗

sig,m
∗, σ∗, π∗) ← AO(pksan) : Verify(m∗, σ∗, pk∗

sig,
pksan) = true ∧ ((m∗, σ∗),ADM∗, pk∗

sig) /∈ LSanit ∧
Judge((m∗, σ∗), pk∗

sig, pksan, π) = san ∧

⎤
⎥⎥⎦ ≤ ε(κ),

where OSanit as well as LSanit are as in Definition 10.

4 Rethinking Privacy for ESSS

In the following, we consider alternatives to the standard privacy property, i.e.,
(strong) unlinkability, and finally come up with a notion denoted as strong
privacy which captures privacy for ESSS in the original sense of sanitizable
signatures.
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4.1 Revisiting Unlinkability

The notion of unlinkability for sanitizable signatures has been introduced in [6]
as a stronger notion of privacy (which implies the usual privacy property). In [8],
an even stronger notion, i.e., strong unlinkability, has been proposed. It requires
that unlinkability must even hold for signers. The notions defined in [6,8] can
easily be adapted to the model for ESSS and we do so below.

Definition 16 (Unlinkability). An ESSS is unlinkable, if for all PPT adver-
saries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ), (sksan, pksan) ← KeyGensan(1κ),
b ←R {0, 1},O ← {OSign(·, ·, ·, (sksig, pksig), ·),OSanit(·, ·, ·, ·,
sksan),OProof(·, ·, (sksig, pksig), ·),OLoRSanit(·, ·, ·, (sksig, pksig),

(sksan, pksan), b)}, b∗ ← AO(pksig, pksan) : b = b∗

⎤
⎥⎥⎦ ≤ 1

2
+ ε(κ),

where OSign, OSanit and OProof are as in Definition 10 and OLoRSanit operates as
follows:
OLoRSanit((m0,MOD0, san0, σ0), (m1,MOD1, san1, σ1),ADM, (sksig, pksig),
(sksan, pksan), b):

1: If MOD0 �� (ADM,V0) ∨ MOD1 �� (ADM,V1), return ⊥.
2: If (m0,MOD0,ADM,V0) �≡ (m1,MOD1,ADM,V1), return ⊥.
3: If for any i ∈ {0, 1}, Verify((mi, σi), pksig, pksan) = false, return ⊥
4: Return (m′

b, σ
′
b) ← Sanit((mb, σb), MODb, sanb, pksig, sksan).

Note that V0 and V1 can be reconstructed from san0 and san1, respectively. Furthermore,
note that for answers from the oracle OLoRSanit, the oracle OSanit is restricted to queries
for modifications which are covered by both set limitations V0 and V1, which were
initially submitted to OLoRSanit.

Definition 17 (Strong Unlinkability). An ESSS is strongly unlinkable, if for
all PPT adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎣

(sksan, pksan) ← KeyGensan(1κ), b ←R {0, 1},
O ← {OSanit(·, ·, ·, ·, sksan),OLoRSanit(·, ·, ·, ·, (sksan, pksan), b)},

b∗ ← AO(pksan) : b = b∗

⎤
⎦ ≤ 1

2
+ ε(κ),

where the oracles are as in Definition 16, except that A controls (sksig, pksig).

While (strong) unlinkability covers privacy for the LimitSet extension in the
original sense of privacy6, it seems very hard to construct efficient (strongly)
unlinkable schemes that support the LimitSet extension. Unfortunately, it is not
possible to simply extend existing (strongly) unlinkable constructions [6,8,17] by
the LimitSet extension. To illustrate why, we revisit the design principle of such
schemes. Here, upon Sign, the signer issues two signatures. The first signature,
6 Note, that the ability to reconstruct the set limitations for σ′

b obtained via OLoRSanit

would imply a trivial distinguisher for the unlinkability game.
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σFIX , only covers the fixed message blocks and the public key of the sanitizer,
whereas the second signature, σFULL, covers the whole message together with
the public key of the signer (and the public key of the sanitizer [8]). Upon Sanit,
the sanitizer simply issues a new signature σFULL, whereas the signature σFIX

remains unchanged. Finally, upon Verify, one verifies whether σFIX is valid under
pksig and σFULL is either valid under pksig or pksan for a given message m and
ADM. Thereby, the signature scheme used for σFIX is a deterministic signature
scheme, while the scheme used for σFULL can either also be a deterministic
signature scheme [8], a group/ring signature scheme [6], or a signature scheme
with rerandomizable keys [17].

When extending these schemes to also support the LimitSet extension, it
is clear that the set limitations need to be fixed by the signer and must not
be modifiable by the sanitizer. One simple way to realize the LimitSet exten-
sion would be to additionally include some unique encoding of the limitations
V in σFIX and check whether the message is consistent with the defined limi-
tations upon Verify. Obviously, this extension does not influence unforgeability
and immutability and the scheme is still (publicly) accountable. Furthermore
also privacy holds, since the set limitations which are included in the challenge
tuple in the privacy game are randomly chosen inside the OLoRSanit oracle. How-
ever, unlinkability can not hold for the following reason: When querying the
oracle OLoRSanit in the unlinkability game, the adversary can choose set limi-
tations V0 and V1 such that MOD0 � (ADM, V0), MOD1 � (ADM,V1) and
(m0,MOD0, ADM,V0) ≡ (m1,MOD1, ADM, V1), but V0 �= V1. For the corre-
sponding signatures σ0 = (σFIX0 , σFULL0), σ1 = (σFIX1 , σFULL1) submitted to
the oracle, this means that σFIX0 �= σFIX1 which yields a trivial distinguisher
for the unlinkability game.

As an alternative, one may think of separately signing each message con-
tained in the limited sets (using a deterministic signature scheme), where only
the signatures corresponding to the chosen messages are revealed. However, to
prevent forgeries where message blocks are re-used in other signatures (i.e., mix-
and-match like attacks [5]), it would be required to also include some message-
specific identifier in each signature. Again, it is easy to see that this would
provide a trivial distinguisher for the (strong) unlinkability game.

Clearly, the requirement that the limited sets are fixed by the signer and can-
not be modified later is not only specific to the aforementioned constructions,
but is inherent to all constructions of such schemes. To circumvent the afore-
mentioned issues, one could make use of more sophisticated primitives, which,
however, come at the cost of significant computational overhead and complexity
of the scheme. This is confirmed by the only known unlinkable construction sup-
porting LimitSet [12]. It is computationally very expensive due to a high number
of bilinear map applications and the use of non-interactive zero-knowledge proofs
of knowledge in the computationally expensive target group of the bilinear map.
Moreover, it is proven secure only in a model which does not consider all secu-
rity requirements of sanitizable signatures (as it is tailored to their black-box
construction of anonymous credentials) and thus does not represent an ESSS.
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4.2 A Strengthened Notion for Privacy

Surprisingly, our requirement that the set limitations remain concealed can be
met by a simple extension of the conventional privacy property. We call the
extended property strong privacy7. As we will see, this modification allows to
obtain efficient implementations from secure existing ones in a black-box fashion.
We modify the privacy game such that the set limitations in OLoRSanit can be
submitted per message, i.e., OLoRSanit takes (m0,MOD0,V0), (m1, MOD1, V1),
ADM. This means that V0 and V1 can be different and only need an overlap
such that after applying MOD0 and MOD1 the messages m′

0 and m′
1 are identical.

More formally, the game is defined as follows:

Definition 18 (Strong Privacy). An ESSS is strongly private, if for all PPT
adversaries A there is a negligible function ε(·) such that:

Pr

⎡
⎢⎢⎣

(sksig, pksig) ← KeyGensig(1κ), (sksan, pksan) ← KeyGensan(1κ),
b ←R {0, 1},O ← {OSign(·, ·, ·, (sksig, pksig), ·),OSanit(·, ·, ·, ·,
sksan),OProof(·, ·, (sksig, pksig), ·),OLoRSanit(·, ·, ·, (sksig, pksig),

(sksan, pksan), b)}, b∗ ← AO(pksig, pksan) : b = b∗

⎤
⎥⎥⎦ ≤ 1

2
+ ε(κ),

where the oracles OSign, OSanit and OProof are defined as in Definition 10. The
oracle OLoRSanit is defined as follows:
OLoRSanit((m0,MOD0,V0), (m1,MOD1,V1),ADM, (sksig, pksig), (sksan, pksan), b):

1: If MOD0 �� (ADM,V0) ∨ MOD1 �� (ADM,V1), return ⊥.
2: If (m0,MOD0,ADM,V0) �≡ (m1,MOD1,ADM,V1), return ⊥.
3: Compute (σb, sanb) ← Sign(mb, ADM,Vb, (sksig, pksig), pksan).
4: Return (m′

b, σ
′
b) ← Sanit((mb, σb), MODb, sanb, pksig, sksan).

Note that for answers from the oracle OLoRSanit, the oracle OSanit is restricted to
queries for modifications which are covered by both set limitations V0 and V1,
which were initially submitted to OLoRSanit.

Theorem 1. Privacy is strictly weaker than strong privacy, while (strong) unlink-
ability is strictly stronger than strong privacy.

As mentioned in [9], the extension of the model regarding LimitSet does not influ-
ence the relations of the properties shown in [4]. That is, unforgeability is implied
by accountability, (proof-restricted) privacy is implied by (proof-restricted) trans-
parency and immutability is still independent of the other properties. What
remains for the proof of Theorem1 is to unveil the relations of strong privacy to
the other privacy related notions. We subsequently prove a number of lemmas
to finally obtain the desired result.
7 In [22], a security notion called strong privacy has been introduced for plain saniti-

zable signatures. Our notion of strong privacy is unrelated to their notion and does
not conflict with their notion as ours is only meaningful in context of ESSS.
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Lemma 1. Not every transparent ESSS is strongly private.

We prove Lemma 1 by counterexample.

Proof. Let us consider an instantiation of Scheme 1 with a correct, unforgeable,
immutable, private, (proof-restricted) transparent and accountable sanitizable
signature scheme. Further, assume that the accumulator scheme is distinguish-
able. Then, an adversary against the indistinguishability implies an adversary
against strong privacy. ��
From this proof, we can straight forwardly derive:

Corollary 1. Not every private ESSS is strongly private.

To show that strong privacy is a strictly stronger notion than privacy, we addi-
tionally need to show that the following lemma holds.

Lemma 2. Every strongly private ESSS is also private.

To prove this, we show that we can construct an efficient adversary ASP against
strong privacy using an efficient adversary AP against privacy.

Proof. ASP simply forwards the calls to the oracles OSign,OSanit,OProof , whereas
the oracle OLoRSanit is simulated as follows: Upon every query (m0, MOD0),
(m1,MOD1), ADM of AP, ASP internally chooses random set limitations V such
that MOD0 � (ADM, V), MOD1 � (ADM,V). Then ASP forwards the query
(m0, MOD0,V), (m1,MOD1, V), ADM to its own OLoRSanit oracle and returns the
result to AP. Eventually, AP outputs a bit b which is forwarded by ASP. It is
easy to see that the winning probability of ASP is identical to that of AP. ��
Subsequently, we show that unlinkability is strictly stronger than strong privacy.

Lemma 3. Not every strongly private ESSS is (strongly) unlinkable.

We prove Lemma 3 by counterexample.

Proof. Let us consider an instantiation of Scheme 1 with a correct, unforgeable,
immutable, private, (proof-restricted) transparent and accountable sanitizable sig-
nature scheme which does not fulfill unlinkability. By Theorem3, we can extend
it to be strongly private by using an indistinguishable accumulator. ��
Lemma 4. Every unlinkable ESSS is also strongly private.

To prove Lemma 4, we show that we can construct an efficient adversary AU

against unlinkability using an efficient adversary ASP against strong privacy.

Proof. Likewise to the proof of Lemma 2, AU simply forwards the calls to the
oracles OSign,OSanit,OProof , whereas the oracle OLoRSanit is simulated as fol-
lows: Upon every query (m0, MOD0,V0), (m1,MOD1,V1), ADM of ASP, AU

obtains (σ0, san0) ← OSign(m0,ADM,V0), (σ1, san1) ← OSign(m1,ADM,V1)
using its own OSign oracle. Then AU forwards the query (m0, MOD0, san0, σ0),
(m1,MOD1, san1, σ1), ADM to its own OLoRSanit oracle and returns the result to
ASP. Eventually, ASP outputs a bit b which is forwarded by AU. It is easy to see
that the winning probability of AU is identical to that of ASP. ��
Taking all the above results together, Theorem1 follows.
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5 Black-Box Extension of Sanitizable Signatures

Provably secure existing constructions of ESSS build up on concrete existing
sanitizable signature schemes. As it turns out, we can even obtain a more general
result, i.e., we obtain an ESSS that only makes black-box use of sanitizable
signatures in the model of [4,18] and secure accumulators. The so obtained
black-box construction of an ESSS then fulfills all the security notions of the
underlying sanitizable signature scheme.

Before we continue, we recall the general paradigm for instantiating LimitSet
(cf. [9,21]).

Paradigm 1. For each LimitSet block, use a secure accumulator ACC to accu-
mulate the set of admissible replacements. The respective message blocks are
then replaced with the corresponding accumulator value, i.e., the accumulators
are included in the same way as fixed message blocks. Conversely, the actually
chosen message blocks for each LimitSet block are included in the same way
as variable message blocks (since they change on every sanitization). Finally,
the signature is augmented by the witnesses corresponding to the actual mes-
sage blocks, while the remaining witnesses are only known to the signer and the
sanitizer.

We introduce our generic construction (that follows Paradigm1) in Scheme 1,
where we use (KeyGensig, KeyGensan,Sign, Sanit,Verify,Proof ,Judge) to
denote the algorithms of the underlying sanitizable signature scheme. We define
two operators φ and ψ to manipulate sets S = {(k1, v1), . . . , (kn, vn)} of key-
value pairs. Thereby, we assume the keys k1, . . . , kn to be unique. The operator
φ(·, ·) takes a key k and a set S, obtains the tuple (ki, vi) with k = ki from S,
and returns vi. If no such tuple exists, ⊥ is returned. Similarly, the operator
ψ(·, ·, ·), takes a key k, a value v′

i and a set S and obtains the tuple (ki, vi) with
k = ki from S. It returns (S \{(ki, vi)})∪{(ki, v

′
i)} and ⊥ if no such tuple exists.

We will prove the security of Scheme 1 using similar arguments as in [9], but
relying on the abstract model of [4,18], instead of specific properties of the used
sanitizable signature scheme.

Theorem 2. When instantiating Scheme 1 with a sanitizable signature scheme
that provides security properties Σ in the model of [4,18] and a secure accumu-
lator scheme, one obtains an ESSS that provides security properties Σ.

We prove Theorem 2 in the extended version of this paper. Furthermore, we
emphasize that—while our model includes the extensions regarding ADM from
[18]—the proof does not rely on these extensions. This means that our black-box
construction is also applicable to schemes in the model of [4].

Now, we discuss some observations related to the instantiation of the Limit-
Set extension using accumulators. As discussed in the previous section, it seems
to be hard to design generic extensions that also preserve unlinkability [6,8].
Furthermore, the abstract model does not consider the signer as an adversary,
which gives some freedom regarding the implementations of certain algorithms
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KeyGensig(1
κ): Given a security parameter κ, run (sksig,pksig) ← KeyGen(1κ), choose an

accumulator scheme and run (skacc, pkacc) ← AGen(1κ). Finally, return (sksig, pksig) ←
((sksig, skacc), (pksig, pkacc)).

KeyGensan(1
κ): Given a security parameter κ, return (sksan, pksan) = (sksan,pksan) ←

KeyGensan(1
κ).

Sign (m,ADM, V, (sksig, pksig), pksan): Given m = (mi)
n
i=1, ADM = (Bi)

n
i=1, V = {(i,Mi) : Bi =

lim ∧ Mi ⊂ ⋃li
j=0{0, 1}j}, (sksig, pksig) and pksan, this algorithm sets V, W ← ∅ and

computes
for i = 1 . . . n if Bi = lim do:
Mi ← φ(i,V), acci ← AEval((skacc, pkacc),Mi), Wi ← ∅,
∀vj ∈ Mi : witij

← AWitCreate((skacc, pkacc), acci,Mi, vj), Wi ← Wi ∪ {(vj ,witij
)}

Vi ← (i, (φ(mi, Wi), acci)), V ← V ∪ Vi, W ← W ∪ {(i, Wi)},
Bi ← var,m ← m||(acci, i),ADM ← ADM||(fix).

endfor.
Next, it computes σ̂ ← Sign(m,ADM, (sksig,pksig),pksan). Finally it sets σ ← (σ̂, V) and

san ← (∅, W) and returns (σ, san), or ⊥ if any of the calls to φ, ψ or Sign fails.
Sanit ((m, σ),MOD, san, pksig, sksan): Given (m, σ) = ((mi)

n
i=1, σ), MOD = {(i,m′

i)}t, san, pksig
and sksan, this algorithm computes
for i = 1 . . . n if Bi = var ∧ ⊥ �= φ(i, W) do:

Wi ← φ(i, W),wit ← φ(m′
i, Wi), (witij

, acci) ← φ(i, V), V′ ← ψ(i, (wit, acci), V).

endfor.
Finally, it computes σ̂ ← Sanit(Ext(m, σ),MOD,pksig, sksan) and returns σ = (σ̂, V), or
⊥ if any of the calls to φ, ψ or Sanit fails.

Verify ((m, σ), pksig, pksan): Given (m, σ) = ((mi)
n
i=1, σ), pksig and pksan, this algorithm verifies

whether Verify(Ext(m, σ),pksig,pksan) = false and returns false if so. Otherwise, it
computes
for i = 1 . . . n if Bi = var ∧ ⊥ �= φ(i, V) do:
(witij

, acci) ← φ(i, V), if [AVerify(pkacc, acci,witij
,mi) = false] { return false }.

endfor.
Finally, it returns true.

Proof ((m, σ), {(mj , σj)}q
j=0, (sksig, pksig), pksan): Return Proof(Ext(m, σ), {Ext(mj , σj)}q

j=0, (sksig,

pksig),pksan).

Judge ((m, σ), pksig, pksan, π): Return Judge(Ext(m, σ),pksig,pksan, π).

Ext (m, σ): On input (m, σ) = ((mi)
n
i=1, σ),

for i = 1 . . . n do:
(witij

, acci) ← φ(i, V), if [(witij
, acci) �= ⊥] { set m ← m||(acci, i) }.

endfor.
Return (m, σ).

Scheme 1. Black-box construction of ESSS from any sanitizable signature scheme.

and the choice of the accumulator scheme. As mentioned in Sect. 2.1, the abstract
model of accumulators assumes a trusted setup. It is, however, beneficial that
the signer runs the AGen algorithm to be able to perform more efficient updates
using the trapdoor. As a side effect, this also means that the signer is later able
to extend the limited sets by making use of the trapdoor in the fashion of [25]. If
this feature is unwanted, a TTP can run the AGen algorithm and publish pkacc
as a common reference string.

5.1 Obtaining Strong Privacy via a Black-Box Construction

Now we show how strongly private ESSS can be constructed from private sani-
tizable signature schemes in a black-box fashion. Basically, this can be achieved
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by applying the conversion in Scheme 1 and instantiating LimitSet using an
accumulator that provides the indistinguishability property.

Theorem 3. Let ESSS obtained using Scheme 1 be private and (AGen, AEval,
AWitCreate, AVerify) be an indistinguishable accumulator, then ESSS is strongly
private.

Proof. We prove the theorem above by using a sequence of games. Thereby, we
denote the event that the adversary wins Game i by Si.

Game 0: The original strong privacy game.
Game 1: As in the original game, but we modify the oracle OLoRSanit to firstly

compute V ← V0 ∩ V1 and to set V0 ← V, V1 ← V.

Transition Game 0 → Game 1: A distinguisher between Game 0 and Game 1 is
a distinguisher for the indistinguishability game of the accumulator.

In Game 1, the signatures are computed with respect to V0 ∩V1 in OLoRSanit.
This means that the LimitSet related values are independent of the bit b (similar
as when randomly choosing V). Thus, from the adversary’s viewpoint, Game 1 is
equivalent to the conventional privacy game, meaning that Pr [S1] ≤ 1

2 + εpriv(κ).
Furthermore, we know that the distinguishing probability between Game 0 and
Game 1 is equivalent to the indistinguishability advantage of the accumulators,
i.e., |Pr [S0] − Pr [S1] | = k · εind(κ), where k is the number of LimitSet blocks.8

In further consequence, this shows that the advantage of an adversary to win
the strong privacy game is negligible and bounded by Pr [S0] ≤ 1

2 + εpriv(κ) + k ·
εind(κ). ��
We also note that it might be an option to use cfw-indistinguishable accumu-
lators instead of indistinguishable accumulators if the accumulation domain is
large enough that the chosen random value xr can not be efficiently guessed.
This would resemble the suggestion of [21], who informally mentioned that addi-
tionally accumulating a random value might prevent the adversary from guessing
the set limitations.

6 Conclusion

In this paper we propose the notion of strong privacy for ESSS, which, in contrast
to the privacy notion for ESSS of [9] covers privacy for the LimitSet extension
in the original sense of sanitizable signatures. From a practical perspective, our
black-box constructions nicely combine with existing schemes in the model of
[4,18]. Thus, existing implementations of schemes in these models directly yield
a basis to instantiate our proposed extensions with relatively low effort, while
preserving the efficiency of the underlying schemes. Conversely, it is still an
open issue to construct efficient (strongly) unlinkable ESSS or to come up with a
generic extension to construct such schemes from existing unlinkable sanitizable
signature schemes.
8 For compactness, we exchange all accumulators in a single game change and note

that it is straight forward to unroll the exchange of the accumulators to k simple
game changes.
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