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Abstract This tutorial chapter aims to teach the main theoretical concepts and
explain the use of ROSNavigation Stack. This is a powerful toolbox to path planning
and Simultaneous Localization And Mapping (SLAM) but its application is not triv-
ial due to lack of comprehension of the related concepts. This chapter will present
the theory inside this stack and explain in an easy way how to perform SLAM in
any robot. Step by step guides, example codes explained (line by line) and also real
robot testing will be available. We will present the requisites and the how-to’s that
will make the readers able to set the odometry, establish reference frames and its
transformations, configure perception sensors, tune the navigation controllers and
plan the path on their own virtual or real robots.
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1 Introduction

Simultaneous Localization And Mapping (SLAM) is an important algorithm that
allows the robot to acknowledge the obstacles around it and localize itself. When
combined with some other methods, such as path planning, it is possible to allow
robots to navigate unknown or partially known environments. ROS has a package
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that performs SLAM and path planning along with other functionalities for naviga-
tion, named Navigation Stack. However, some details of its application are hidden,
considering that the programmer has some expertise. The unclear explanation and
the many subjective aspects within the package can lead the user to fail using the
technique or, at least, consume extra effort.

This chapter aims to present the theory inside ROS Navigation Stack and explain
in an easy way how to perform autonomous navigation in any robot. It will also
explain how to use a virtual environment to use the Navigation Stack on virtual
robots. These robots are designed to publish and subscribe the same information
in real and virtual environments, where all sensors and actuators of real world are
functional in virtual environment.

We begin the chapter explaining what the Navigation Stack is with some sim-
ple and straight-forward definitions and examples where the functionalities of the
package are explained in conjunction with reminders of some basic concepts of
ROS. Moreover, a global view of a system running the Navigation Stack at its full
potential is shown,where the core subset of this system is explained bit by bit. In addi-
tion, most of the indirectly related components of the system, like multiple machine
communication, will be indicated and briefly explained, with some tips about its
implementation.

The chapter will be structured in four main topics. Firstly, an introduction of
mobile robot navigation and a discussion about SLAMwill be presented, along with
some discussion about transformations.

In the second section,ROSEnvironment, themain purpose is to let the reader know
everything he needs to configure his own virtual or real robot. Firstly, the limitations
of the Navigation Stack are listed together with the expected hardware and software
that the reader should have to follow the tutorial. Secondly, an explanation about
odometry and kinematics is given, focusing on topics like precision of the odometry
and the impact of the lack of it in the construction of costmaps for navigation (do
not worry, you will see that in detail later). Perception sensors are also discussed.
The differences and advantages of each of the main kinds of perception sensors, like
depth sensors, light detection and ranging (LIDAR) sensors are also emphasized.
In addition, reference frames and its transformations are discussed, showing how to
achieve the correct merge of the sensors information. Still on the second section,
a dense subsection about the Navigation Stack is presented. It is in respect to the
configuration of the Navigation Stack to work with as many robots as possible,
trying to organize the tutorial in a way that both reach high level of detail and
generalization, ensuring that the reader is apt to perceive a way to have his own robot
navigate itself. An in-depth discussion of map generation and map’s occupancy is
performed. To do that, the tutorial is structured in a step-by-step way in which all
the navigation configuration files will be analyzed, examining the parameters and
setting them to example values that correspond to pioneer (ARIA based) robots (e.g.
Pioneer 3-AT, as seen on Fig. 1). The explanation of the whole process in addition to
the demonstration of the effects of the parameter changes should be enough to clear
up any doubts the reader might have.
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Fig. 1 Side by side are two
pioneer ARIA based robots:
Pioneer 3-AT and Pioneer
LX. These robots, owned by
the Advanced Laboratory of
Embedded Systems and
Robotics of UTFPR, can use
the Navigation Stack

In the third sectionwewill discuss the experiments in real andvirtual environments
to prove the accuracy of the SLAM method. All steps to use a virtual environment
where the reader should be able to test his own configuration for the Navigation
Stack are demonstrated. Lastly, some experiments are run in virtual and real robots,
to illustrate some more capabilities of the package. In this section we will also take
a glance over rviz usage.

Lastly, a brief biography of the authors will be presented, showing why this team
is able to write the tutorial chapter here presented.

2 Background

ROS has a set of resources that are useful so a robot is able to navigate through a
known, partially known or unknown environment, in otherwords, the robot is capable
of planning and tracking a path while it deviates from obstacles that appear on its
path throughout the course. These resources are found on the Navigation Stack.

One of the many resources needed for completing this task and that is present
on the Navigation Stack are the SLAM systems (also called localization systems),
that allow a robot to locate itself, whether there is a static map available or SLAM
is required. amcl is a tool that allows the robot to locate itself in an environment
through a static map, a previously created map. The entire area in which the robot
could navigatewould have to bemapped in ametrically correctway to use staticmaps,
a big disadvantage of this resource. Depending on the environment that surrounds
the robot, these static maps are capable of increasing or decreasing the confidence
of the localization systems. To bypass the lack of flexibility of static maps, two
other localization systems are offered by ROS to work with the Navigation Stack:
Gmapping and hector_mapping.
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Both Gmapping and hector_mapping are implementations of SLAM, a technique
that consists on mapping an environment at the same time that the robot is moving, in
otherwords, while the robot navigates through an environment, it gathers information
from the environment through its sensors and generates a map. This way you have
a mobile base able not only to generate a map of an unknown environment as well
as updating the existent map, thus enabling the use of the device in more generic
environments, not immune to changes.

The difference between Gmapping and hector_mapping is that the first one takes
in account the odometry information to generate and update the map and the robot’s
pose. However, the robot needs to have proprioceptive sensors, which makes the
usage of it hard for some robots (e.g. flying robots). The odometry information is
interesting because they are able to aid on the generation of more precise maps, since
understanding the robot kinematics we can estimate its pose.

Kinematics is influenced, basically, by the way that the devices that guarantee the
robot’smovement are assembled. Some examples ofmechanic features that influence
the kinematics are: the wheel type, the number of wheels, the wheel’s positioning
and the angle at which they are disposed. A more in-depth explanation of kinematics
is done in Introduction to Mobile Robots [1].

However, as much useful as the odometry information can be, it is not immune to
faults. The faults are caused by the lack of precision on the capture of data, friction,
slip, drift and other factors. These accumulated factors can lead to inconsistent data
and prejudice themaps formation, that tend to be distorted under these circumstances.

Other indispensable data to generate a map are the sensors’ distance readings, for
the reason that they are responsible in detecting the external world and, this way,
serve as reference to the robot. Nonetheless, the data gathered by the sensors must be
adjusted before being used by the device. These adjustments are needed because the
sensorsmeasure the environment in relation to themselves, not in relation to the robot,
in other words, a geometric conversion is needed. To make this conversion simpler,
ROS offers the tf tool, which makes it possible to adjust the sensors positions in
relation to the robot and, this way, suit the measures to the robot’s navigation.

3 ROS Environment

Beforewebegin setting up the environment inwhichwewillwork, it is very important
to be aware of the limitations of the Navigation Stack, so we are able to adapt our
hardware. There are four main limitations in respect to the hardware:

• The stack was built aiming to address only differential drive and holonomic robots,
although it is possible to use some features with another types of robots, which
will not be covered here.

• The Navigation Stack assumes that the robot receives a twist type message [2]
with X, Y and Theta velocities and is able to control the mobile base to achieve
these velocities. If your robot is not able to do so, you can adapt your hardware or
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just create a ROS node that converts the twist message provided by the Navigation
Stack to the type of message that best suits your needs.

• The environment information is gathered from a LaserScan message type topic. If
you have a planar laser, such as a Hokuyo URG or a sick Laser, it should be very
easy to get them to publish their data, all you need to do is install theHokuyo_node,
Sicktoolboxor similar packages, depending onyour sensor.Moreover, it is possible
to use other sensors, as long as you can convert their data to the LaserScan type.
In this chapter, we will use converted data from Microsoft Kinect’s depth sensor.

• The Navigation Stack will perform better with square or circular robots, whereas
it is possible to use it with arbitrary shapes and sizes. Unique sizes and shapes may
cause the robot to have some issues in restricted spaces. In this chapter we will be
using a custom footprint that is an approximation of the robot.

If your system complies with all the requirements, it is time to move to the software
requirements, which are very few and easy to get.

• You should have ROS Hydro or Indigo to get all the features, such as layered
costmaps, that are a Hydro+ feature. From here, we assume you are using a Ubuntu
12.04 with ROS Hydro.

• You should have the Navigation Stack installed. In the full desktop version of ROS
it is bundled, but depending on your installation it might be not included. Do not
worry with that for now, it is just good to know that if some node is not launching
it may be because the package you are trying to use is not installed.

• As stated on the hardware requirements, youmight need some software to get your
system navigation ready:

– If your robot is not able to receive a twist message and control its velocity as
demanded, one possible solution is to use a custom ROS node to transform the
data to a more suitable mode.

– You need to have drivers able to read the sensor data and publish it in a ROS
topic. If you’re using a sensor different from a planar laser sensor, such as a
depth sensor, you’ll most likely also need to change the data type to LaserScan
through a ROS node.

Now that you know all you need for navigation, it is time to begin getting those
things. In this tutorial we’ll be using Pioneer 3-AT and Pioneer LX and each of them
will have some particularities in the configuration that will help us to generalize the
settings as much as possible. We’ll be using Microsoft’s Kinect depth sensor in the
Pioneer 3-AT and the Sick S300 laser rangefinder that comes built-in in the Pioneer
LX. Most of this chapter is structured in a “by example” approach from now on and
if you like it, you should check out the ROS By Example—Volume 1 [3] book. In
this book, there are a lot of useful codes for robots and a navigation section that
complements very well what we discuss in this chapter. You also might find useful
to check their example codes [4], where you can find a lot of useful codes, such as
rviz configuration files and navigation examples.
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Important Note: no matter what robot you’re using, you will probably need to
allow the access to the USB ports that have sensors or to the ports that communicate
to your robots. For example, if you have the robot connected in ttyUSB0 port, you
can give the access permission by issuing the following command:

sudo chmod 777 -R /dev/ttyUSB01

This configurationwill be valid only for the current terminal, so it is recommended
to add this instruction to the ∼/.bashrc file. Edit this file by writing the following
lines at the bottom of the file:

if [ -e /dev/ttyUSB0 ]; then1
sudo chmod 777 -R /dev/ttyUSB02
echo “Robot found on USB0!”3
fi4

This command will check if there is something in the /dev/ttyUSB0 port and, if
the condition holds, it will change the permissions on the port and will print to the
screen the message “Robot found on USB0!”. It is noteworthy that, as said above,
this command is assuming that the robot is on /dev/ttyUSB0. Also, this script will be
executed every time a new terminal is opened and since a sudo command is issued a
password will be prompted for non-root users.

3.1 Configuring the Kinect Sensor

The Kinect is a multiple sensor equipment, equipped with a depth sensor, an RGB
camera and microphones. First of all, we need to get those features to work by
installing the drivers, which can be found in the ros package Openni_camera [5].
You can get Openni_camera source code from its git repository, available on the
wiki page, or install the stack with a linux terminal command using apt-get (REC-
OMMENDED). We will also need a ROS publisher to use the sensor data and that
publisher is found in the Openni_launch [6] package, that can be obtained the exactly
same ways. To do so, open your terminal window and type:

$ sudo apt-get install ros-<rosdistro>-openni-camera1
$ sudo apt-get install ros-<rosdistro>-openni-launch2

Remember to change “<rosdistro>” to your ros version (i.e.‘hydro’ or ‘indigo’).
With all the software installed, it’s time to power on the hardware.

Depending on your application plugging Kinect’s USB Cable to the computer
you’re using and the AC Adapter to the wall socket can be enough, however needing
a wall socket to use your robot is not a great idea. The AC Adapter converts the AC
voltage (e.g. 100V@60Hz) to the DC voltage needed to power up the Kinect (12V),
therefore the solution is exchanging the AC adapter for a 12V battery. The procedure
for doing this is explained briefly in the following topics:
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• Cut the AC adapter off, preferably near the end of the cable.
• Strip a small end to each of the two wires (white and brown) inside of the cable.
• Connect the brown wire to the positive(+) side of the 12V battery and the white
wire to the negative(−). You can do this connection by soldering [7] or using
connectors, such as crimp [8] or clamp [9] wire connectors.

Be aware that the USB connection is enough to blink the green LED in front of the
Kinect and it does not indicate that the external 12V voltage is there. You can also
learn a little more about this procedure by reading the “Adding a Kinect to an iRobot
Create/Roomba” wiki page [10].

Now thatwehave the software and the hardware prepared, some testing is required.
With theKinect powered on, execute the following command on theUbuntu terminal:

$ roslaunch openni_launch openni.launch1

The software will come up and a lot of processes will be started along with the
creation of some topics. If your hardware is not found for some reason, you may see
the message “No devices connected…waiting for devices to be connected”. If this
happens, please verify your hardware connections (USB and power). If that does not
solve it, you may try to remove some modules from the Linux Kernel that may be the
cause of the problems and try again. The commands for removing the modules are:

$ sudo modprobe -r gspca_kinect1
$ sudo modprobe -r gspca_main2

Once the message of no devices connected disappears, you can check some of
the data supplied by the Kinect in another Terminal window (you may open multiple
tabs of the terminal in standard Ubuntu by pressing CTRL+SHIFT+T) by using one
or more of these commands:

$ rosrun image_view disparity_view image:=/camera/depth/disparity1
$ rosrun image_view image_view image:=/camera/rgb/image_color2
$ rosrun image_view image_view image:=/camera/rgb/image_mono3

The first one will show a disparity image, while the second and third commands
will show the RGB camera image in color and in black and white respectively.

Lastly, we need to convert the depth image data to a LaserScan message. That is
needed because Gmapping, the localization system we are using, accepts as input a
single LaserScan message. Fortunately, we have yet another packages to do this for
us, the Depthimage_to_laserscan package and the ira_laser_tools
package. You just need one of the two packages, and, although the final result is
a LaserScan message for both, the data presented will be probably different. The
Depthimage_to_laserscan package is easier to get and use, and as we have
done with the other packages, we can check out the wiki page [11] and get the source
code from the git repository or we can simply get the package with apt-get:

$ sudo apt-get install ros-<rosversion>-depthimage-to-laserscan1



128 R.L. Guimarães et al.

This package will take a horizontal line of the PointCloud and use it to produce
the LaserScan. As you can imagine, it is possible that some obstacles aren’t present
at the selected height, the LaserScan message will not represent the PointCloud data
so well and gmapping will struggle to localize the robot in the costmap generated by
the Navigation Stack using the PointCloud directly.

The other option, ira_laser_tools package, produces a more representative
result, but it is harder to use and consumes a lot more processing power. In this pack-
ageyouhave twonodes:laserscan_virtualizer andlaserscan_multi_
merger. The first one, can be configured to convert multiple lines of your Point-
Cloud into different LaserScan messages. The second one, the merger node, receives
multiple LaserScan messages and merges them in a single LaserScan message. You
can check the article found on [12] to find out more about the package.

To install this package, you have to first clone the git repository found on [13]
to your catkin workspace source folder and then compile it. This is done with the
following commands:

$ cd /home/user/catkin_ws/src1
$ git clone https://github.com/iralabdisco/ira_laser_tools.git2
$ cd /home/user/catkin_ws3
$ catkin_make4

Now that the nodes are compiled, you have to configure the launch files to suit
your needs. Go to the launch folder, inside the ira_laser_tools package folder,
and open laserscan_virtualizer.launch with your favorite editor. You
should see something like this:

1 <!--
2 FROM: http://wiki.ros.org/tf#static_transform_publisher
3

4 <<static_transform_publisher x y z yaw pitch roll
frame_id child_frame_id period_in_ms>>

5 Publish a static coordinate transform to tf using an x/
y/z offset and yaw/pitch/roll. The period, in
milliseconds, specifies how often to send a
transform. 100ms (10hz) is a good value.

6 == OR ==
7 <<static_transform_publisher x y z qx qy qz qw frame_id

child_frame_id period_in_ms>>
8 Publish a static coordinate transform to tf using an x/

y/z offset and quaternion. The period, in
milliseconds, specifies how often to send a
transform. 100ms (10hz) is a good value.

9

10 -->
11
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12 <launch>
13

14 <!-- DEFINE HERE THE STATIC TRANFORMS, FROM
BASE_FRAME (COMMON REFERENCE FRAME) TO THE
VIRTUAL LASER FRAMES-->

15 <!-- WARNING: the virtual laser frame(s) *must*
match the virtual laser name(s) listed in
param: output_laser_scan -->

16 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster1" args="0 0 0
0 0.3 0 laser_frame scan1 1000" />

17 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster2" args="0 0 0
0 0.0 0 laser_frame scan2 1000" />

18 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster3" args="0 0 0
0.0 0.0 0.3 laser_frame scan3 1000" />

19 <node pkg="tf" type="static_transform_publisher"
name="ira_static_broadcaster4" args="0 0 0
0.0 0.0 -0.3 laser_frame scan4 1000" />

20

21 <node pkg="ira_laser_tools" name="
laserscan_virtualizer" type="
laserscan_virtualizer" output="screen">

22 <param name="cloud_topic" value="/
cloud_in"/> <!-- INPUT POINT CLOUD --
>

23 <param name="base_frame" value="/
laser_frame"/> <!-- REFERENCE FRAME
WHICH LASER(s) ARE RELATED-->

24 <param name="output_laser_topic" value ="
/scan" /> <!-- VIRTUAL LASER OUTPUT
TOPIC, LEAVE VALUE EMPTY TO PUBLISH
ON THE VIRTUAL LASER NAMES (param:
output_laser_scan) -->

25 <param name="virtual_laser_scan" value ="
scan1 scan2 scan3 scan4" /> <!-- LIST
OF THE VIRTUAL LASER SCANS. YOU MUST
PROVIDE THE STATIC TRANSFORMS TO TF,
SEE ABOVE -->

26 </node>
27 </launch>
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This launch file is responsible for converting some parts of the PointCloud in
multiple LaserScans. As you can notice from the file, it is taking four lines from the
Kinect PointCloud: two horizontal lines, one at the kinect level and another 30cm
above the kinect level; two oblique lines, each of them with 0.3 rad of rotation to one
side in relation to the Kinect and in the same horizontal level. You can have more
information about the usage in the comments in the code itself and on this article
[12], but here are the things you will most likely need to modify to correctly use the
package:

• The number of scans you want: You have to find a number good enough to
summarize a lot of information without using too much CPU. In our case, we
tested with 8 horizontal lines, from 25cm below the Kinect to 90cm above of it.
We used horizontal lines because that way the ground would not be represented
in the LaserScan message. To do this, simply duplicate one of the node launching
lines, changing the name of the node and the name of the scan to an unique name.
For each line, you should configure the transform coordinates to whatever you see
fit, although we recommend the horizontal lines approach. Do not forget to put the
name of the new scan on the virtual_laser_scan parameter.

• The tf frame of the Kinect: Change laser_frame to the name of the frame of
your Kinect. In our case, camera_link.

• Input PointCloud: Change this line to the name of the topic that contains the
PointCloud. Openni_launch publishes it, by default, to /camera/depth
/points.

• The base_frame parameter: Selects the frame to which the LaserScans will be
related. It is possible to use the same frame as the Kinect.

• The output_laser_topic parameter: Selects the output topic for the LaserScan
messages. We left it blank, so each of the LaserScans would go to the topic with
their respective name.

Lastly, you have to configure the merger node. Start by opening up the
laserscan_multi_merger.launch file, on the same folder of the virtual-
izer launch file. You should see this:

1 <!--
2 DESCRITPION
3 -->
4

5

6 <launch>
7 <node pkg="ira_laser_tools" name="

laserscan_multi_merger" type="
laserscan_multi_merger" output="screen">

8 <param name="destination_frame" value="/
cart_frame"/>

9 <param name="cloud_destination_topic"
value="/merged_cloud"/>
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10 <param name="scan_destination_topic"
value="/scan_multi"/>

11 <param name="laserscan_topics" value ="
scandx scansx" /> <!-- LIST OF THE
LASER SCAN TOPICS TO SUBSCRIBE -->

12 </node>
13 </launch>

This launch file is responsible for merging multiple LaserScans into a single one.
As you can notice from the file, it is taking two LaserScan topics (scandx and
scansx) and merging. The three things you will most likely modify are:

• The destination_frame parameter: Chooses the frame to which the merged
LaserScan is related. Again, you can simply use the Kinect frame.

• Cloud : Change laser_frame to the name of the frame of your Kinect. In our
case, camera_link.

• The scan_destination_topic: Youwill probably want gmapping to read this infor-
mation, so, unless you have some special reason not to do that, use the /scan
topic here.

• The laserscan_topics paramter: List all the topics that contain the LaserScan
messages you want to merge. If you are using eight, you will most likely use scan1
to scan8 here.

Important Notes: When using this package, there are some important things you
have to notice. First, it won’t work correctly if you launch the merger before the
virtualizer, and since ROS launchers do not guarantee the order, you may use a shell
script to do that for you. Second, if the transformations take too long to be published,
you may end up with some issues in the merger. To correct that, we modified the
149th line of the code, changing the ros::Duration parameter from 1 to 3(setting this
parameter too high will make the LaserScan publication less frequent). The line will
then look like that:

tfListener_.waitForTransform(scan->header.frame_id.c_str(), destination_frame.c_str(),1
scan->header.stamp, ros::Duration(3));

With this last installation, you should have all the software you need for Kinect
utilization with navigation purposes, although there is a lot of other software you
can use with it. We would like to point out two of these packages that can be very
valuable at your own projects:

• kinect_aux [14]: this package allows to use somemore features of theKinect, such
as the accelerometer, tilt, and LED. It can be used along with the openni_camera
package and it is also installed with a simple apt-get command.

• Natural Interaction—openni_tracker [15]: One of the most valuable packages
for usingwith theKinect, this package is able to do skeleton tracking functionalities
and opens a huge number of possibilities. It is kind of tough to install and the
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process can lead to problems sometimes, so we really recommend you to do a full
system backup before trying to get it to work. First of all, install the openni_tracker
package with an apt-get, as stated on the wiki page. After that, you have to get
these recommended versions of the files listed below.

– NITE-Bin-Linux-x86-v1.5.2.23.tar.zip
– OpenNI-Bin-Dev-Linux-x86-v1.5.7.10.tar.bz2
– SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz2

The official openni website is no longer in the air, but you can get the files on
Openni.ru [16] or on [17], where I made them available. The first two files (NITE
and Openni) can be installed following the cyphy_people_mapping [18] tutorial
and the last file should be installed by:

• Unpacking the file

$ tar -jxvf SensorKinect093-Bin-Linux-x86-v5.1.2.1.tar.bz21

• Changing the permission of the setup script to allow executing.

$ sudo chmod a+x install.sh1

• Installing.

$ sudo ./install.sh1

Now that we have all software installed we should pack it all together in a single
launch file, tomake thingsmore independent and do not need to start a lot of packages
manually when using the Kinect. Here is an example of a complete launch file for
starting the Kinect and all the packages that make its data navigation-ready:

1 <launch>
2 <include file="$(find openni_launch)/launch/

openni.launch" />
3 <node respawn="true" pkg="

depthimage_to_laserscan" type="
depthimage_to_laserscan" name="laserscan">

4 <remap from="image" to="/camera/depth/
image" />

5 </node>
6 </launch>

As you can see and you might be already used to because of the previous chap-
ters, the ROS launch file is running one node and importing another launch file:
openni.launch, imported from the openni_launch package. Analyzing the code in a
little more depth:
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• The first and sixth lines are the launch tag, that delimits the content of the launch
file;

• The second line includes the openni.launch file from the openni_launch pack-
age, responsible for loading the drivers of the Kinect, getting the data, and pub-
lishing it to ROS topics;

• The third line starts the packagedepthimage_to_laserscanwith the “laser-
scan” name. It also sets the respawn parameter to true, in case of failures. This
package is responsible for getting a depth image from a ROS topic, converting it
to a LaserScan message and publishing it to another topic;

• The fourth line is a parameter for the depthimage_to_laserscan. By
default, the package gets the depth image from the /image topic, but the
openni_launch publishes it in the /camera/depth/image topic, and that
is what we are saying to the package.

There is still the transform (tf) missing, but we will discuss that later, because the
configuration is very similar to all sensors.

3.2 Sick S300 Laser Sensor

The pioneer LX comes bundled with a Sick S300 laser sensor and we’ll describe here
how to get its data, since the process should be very similar to other laser rangefinder
sensors. The package that supports this laser model is sicks300, that is currently
only supported by the fuerte and groovy versions of ROS. We are using a fuerte
installation of ROS in this robot, so it’s no problem for us, but it must be adapted if
you wish to use it with hydro or indigo. For our luck, it was adapted and it is available
at STRANDS git repository [19]. The procedure for getting it to work is:

• Cloning the repository, by using the command git clone https://github.com/bohle
nder/sicks300.git (the URL will change depending on your version);

• Compile the files. For rosbuild versions, use rosmake sicks300 sicks300 and for
catkinized versions, use catkin_make.

• Run the files by using the command rosrun sicks300 sicks300_driver. It should
work with the default parameters, but, if it doesn’t, check if you have configured
the baud rate parameter correctly (the default is 500000 and for the pioneer LX,
for example, it is 230400).

The procedure should be very similar for other laser sensors and the most used
packages, sicktoolbox_wrapper, hokyuo_node and urg_node, are very well docu-
mented on the ROS wiki. Its noteworthy that there is another option for reading
pioneer LX laser sensor data: cob_sick_s300 package.

3.3 Transformations

As explained on the background section, the transforms are a necessity for the Nav-
igation Stack to understand where the sensors are located in relation to the center of
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the robot (base_link). It is possible to understand a little more of transformations by
examining the Fig. 2.

Fig. 2 Figure containing the most commonly used tf frames [20]

As you can see on the Fig. 2, we have several frames. A brief explanation of each
of the topics is done below:

• map is the global reference frame and the robot pose should not drift much over
time in relation to it [21].

• odomdrifts and can cause discrete jumpswhennew sensor information is available.
• base_link is attached to the robot center.
• base_ footprint is very straightforward: it is the base_link projection on the ground
(zero height). Therefore, its transform is published in relation to the base_link.

• base_stabilized is the center position of the robot, not computing the roll and pitch
angles. Therefore, its transform is also published in relation to the base_link.

• laser_link is the center position of the laser sensor, and its transform is published
in relation to the base_link.

There is a clear hierarchy on these frames: map is the parent of odom and odom
is the parent of base_link. The transform between odom and base_link has to be
computed over the odometry sensor data and published. The transformation between
base_link and map is computed by the localization system and the other transforma-
tion, between the map and the odom frames, uses this information to be computed.

We will publish a transform between the Pioneer 3-AT base_link and the Kinect
sensor laser_link(the center of the Kinect sensor) as example, given that this pro-
cedure is equal for any type of sensor. The first thing in order to use transforms is
getting the distances you need. You will have to measure three-dimensional coor-
dinates in respect to the center of the robot and will also need to get the angles
between the robot pointing direction and the sensor pointing direction. Our Kinect
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sensor is aligned with the robot pointing direction on the yaw and its z coordinate is
also aligned with the robot center (and that’s the usual case for most of the robots),
therefore we have to measure only the x and y distances between the sensor and the
robot centers. The x distance for our robot is 35cm (0.35m) and our height distance
(y) is 10cm (0.1m). There are two standard ways to publish the angle values on
transforms: using quaternion or yaw/pitch/roll. The first one, using quaternion, will
respect the following order:

static_transform_publisher x y z qx qy qz qw frame_id child_frame_id period_in_ms1

Where qx, qy, qz and qw are the versors in the quaternion representation of
orientations and rotations. To understand the quaternion representation better, refer
to Modeling and Control of Robot Manipulators [22]. The second way of publishing
angles, using yaw/roll/pitch and the onewewill be using, is published in the following
order:

static_transform_publisher x y z yaw pitch roll frame_id child_frame_id period_in_ms1

The common parameters for both quaternion and yaw/row/pitch representations
are:

• x, y and z are the offset representation, inmeters, for the three-dimensional distance
between the two objects;

• frame_id and child_frame_id are the unique names that will bound the transfor-
mations to the object to which they relate. In our case, frame_id is the base_link
of the robot and child_frame_id is the laser_link of the sensor.

• period_in_ms is the time between two publications of the tf. It is possible to
calculate the publishing frequency by calculating the reciprocal of the period.

In our example, for the Pioneer 3-AT and the Kinect, we have to include, in the
XML launcher (just write this line down at a new launch file, we will indicate further
in the text where to use it), the following code to launch the tf node:

<node pkg=“tf” type=“static_transform_publisher” name=“Pioneer3AT_laserscan_tf”1
args=“0.1 0 0.35 0 pi/2 pi/2 base_link camera_link 100” />

If you have some doubts on how to verify the angles you measured, you can use
rviz to check them, by including the laser_scan topic and verifying the rotation of
the obtained data. If you do not know how to do that yet, check the tests section of
the chapter, which includes the rviz configuration.

3.4 Creating a Package

At this point, you probably already have some XML files for launching nodes con-
taining your sensors initialization and for initializing some packages related to your
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platform (robot powering up, odometry reading, etc.). To organize these files and
make your launchers easy to find with ros commands, create a package containing
all your launchers. To do that, go to your src folder, inside your catkin workspace,
and create a package with the following commands (commands valid for catkinized
versions of ROS):

$ cd /home/user/catkin_ws/src1
$ catkin_create_pkg packageName std_msgs rospy roscpp move_base_msgs2

These two commands are sufficient for creating a folder containing all the files
that will make ROS find the package by its name. Copy all your launch files to the
new folder, namesake to your package, and then compile the package, by going to
your workspace folder and issuing the compile command:

$ cd /home/user/catkin_ws1
$ catkin_make2

That’s all you need to do. From now on, remember to put your launch and config
files inside this folder. You may also create some folder, such as launch and config,
provided that you specify these sub-paths when using find for including launchers
in other launchers.

3.5 The Navigation Stack—System Overview

Finally, all the pre-requisites for using the Navigation Stack are met. Thus, it is
time to begin studying the core concepts of the Navigation Stack, as well as their
usage. Since the overview of the Navigation Stack concepts was already done in the
Background section, we can jump straight to the system overview, which is done in
Fig. 3. The items will be analyzed in the following sections block by block.

You can see on Fig. 3 that there are three types of nodes: provided nodes, optional
provided nodes and platform specific nodes.

• The nodes inside the box, provided nodes, are the core of the Navigation Stack,
and are responsible, mainly, by managing the costmaps and for the path planning
functionalities.

• The optional provided nodes, amcl and map_server, are related to static map func-
tions, as will be explained later, and since using a static map is optional, using
these nodes is also optional.

• The platform specific nodes are the nodes related to your robot, such as sensor
reading nodes and base controller nodes.

In addition, we have the localization systems, not shown in Fig. 3. If the odometry
source was perfect and no errors were present on the odometry data, we would
not need to have localization systems. However, in real applications that is not the
case, and we have to account other types of data, such as IMU data, so we can
correct odometry errors. The localization systems discussed on this chapter are:
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amcl, gmapping and hector_mapping. Below, a table is available to relate a node to a
keyword, so you can understand better the relationship of the nodes of the Navigation
Stack.

Localization Environment inter-
action

Static maps Trajectory planning Mapping

amcl sensor_sources amcl global_planner local_costmap
gmapping base_controller map_server local_planner global_costmap
hector_mapping odometry_source recovery_behaviors

3.5.1 Amcl and Map_server

The first two blocks that we can focus on are the optional ones, responsible for the
static map usage: amcl and map_server. map_server contains two nodes: map_server
and map_saver. The first one, namesake to the package, as the name indicates, is a
ROS node that provides static map data as a ROS Service, while the second one,
map_saver, saves a dynamically generated map to a file. amcl does not manage the
maps, it is actually a localization system that runs on a known map. It uses the
base_footprint or base_link transformation to the map to work, therefore it needs
a static map and it will only work after a map is created. This localization system
is based on the Monte Carlo localization approach: it randomly distributes particles
in a known map, representing the possible robot locations, and then uses a particle
filter to determine the actual robot pose. To know more about this process, refer to
Probabilistic Robotics [24].

Fig. 3 Overview of a typical system running the Navigation Stack [23]
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3.5.2 Gmapping

gmapping, as well as amcl, is a localization system, but unlike amcl, it runs on
an unknown environment, performing Simultaneous Localization and Mapping
(SLAM). It creates a 2D occupancy grid map using the robot pose and the laser
data (or converted data, i.e. Kinect data). It works over the odom to map transfor-
mation, therefore it does not need the map nor IMU information, needing only the
odometry.

3.5.3 Hector_mapping

As said in the background section, hector_mapping can be used instead of using
gmapping. It uses the base_link to map transformation and it does not need the
odometry nor the static map: it just uses the laser scan and the IMU information to
localize itself.

3.5.4 Sensors and Controller

These blocks of the system overview are in respect to the hardware-software interac-
tion and, as indicated, are platform specific nodes. The odometry source and the base
controller blocks are specific to the robot you are using, since the first one is usually
published using the wheel encoders data and the second one is the responsible for
taking the velocity data from the cmd_vel topic and assuring that the robot repro-
duces these velocities. It is noteworthy that the whole system will not work if the
sensor transforms are not available, since they will be used to calculate the position
of the sensor readings on the environment.

3.5.5 Local and Global Costmaps

The local and global 2D costmaps are the topics containing the information that
represents the projection of the obstacles in a 2D plane (the floor), as well as a
security inflation radius, an area around the obstacles that guarantee that the robot
will not collide with any objects, no matter what is its orientation. These projections
are associated to a cost, and the robot objective is to achieve the navigation goal
by creating a path with the least possible cost. While the global costmap represents
the whole environment (or a huge portion of it), the local costmap is, in general, a
scrolling window that moves in the global costmap in relation to the robot current
position.
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3.5.6 Local and Global Planners

The local and global planners do not work the sameway. The global planner takes the
current robot position and the goal and traces the trajectory of lower cost in respect to
the global costmap. However, the local planner has a more interesting task: it works
over the local costmap, and, since the local costmap is smaller, it usually has more
definition, and therefore is able to detect more obstacles than the global costmap.
Thus, the local planner is responsible for creating a trajectory rollout over the global
trajectory, that is able to return to the original trajectory with the fewer cost while it
deviates from newly inserted obstacles or obstacles that the global costmap definition
was not able to detect. Just to make it clear, move_base is a package that contains the
local and global planners and is responsible for linking them to achieve the navigation
goal.

3.6 The Navigation Stack—Getting It to Work

At last, it is time to write the code for the full launcher. It is easier to do this with an
already written code, such as the one that follows:

1 <launch>
2 <master auto="start"/>
3

4 <!-- PLATFORM SPECIFIC -->
5 <node pkg="p2os_driver" type="p2os_driver" name=

"p2os_driver" >
6 <param name="port" value="/dev/ttyUSB0" /

>
7 <param name="pulse" value="1.0" />"
8 </node>
9

10 <node pkg="rostopic" type="rostopic" name="
enable_robot" args="pub /cmd_motor_state
p2os_driver/MotorState 1" respawn="true">

11 </node>
12

13 <!-- TRANSFORMS -->
14 <node pkg="tf" type="static_transform_publisher"

name="Pioneer3AT_laserscan_tf" args="0.1 0
0.35 0 pi/2 pi/2 base_link camera_link 100"
/>

15

16 <!-- SENSORS CONFIGURATION -->
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17 <arg name="kinect_camera_name" default="camera"
/>

18 <param name="/$(arg kinect_camera_name)/
driver/data_skip" value="1" />

19 <param name="/$(arg kinect_camera_name)/
driver/image_mode" value="5" />

20 <param name="/$(arg kinect_camera_name)/
driver/depth_mode" value="5" />

21

22 <include file="$(find course_p3at_navigation)/
myKinect.launch" />

23

24 <!-- NAVIGATION -->
25

26 <node pkg="gmapping" type="slam_gmapping"
respawn="false" name="slam_gmapping" output=
"screen">

27 <param name="map_update_interval" value="
2.0"/>

28 <param name="maxUrange" value="6.0"/>
29 <param name="iterations" value="5"/>
30 <param name="linearUpdate" value="0.25"/>
31 <param name="angularUpdate" value="0.262"

/>
32 <param name="temporalUpdate" value="-1.0"

/>
33 <param name="particles" value="300"/>
34 <param name="xmin" value="-50.0"/>
35 <param name="ymin" value="-50.0"/>
36 <param name="xmax" value="50.0"/>
37 <param name="ymax" value="50.0"/>
38 <param name="base_frame" value="base_link

"/>
39 <param name="minimumScore" value="200.0"/

>
40 <param name="srr" value="0.01"/>
41 <param name="str" value="0.01"/>
42 <param name="srt" value="0.02"/>
43 <param name="stt" value="0.02"/>
44 </node>
45

46 <node pkg="move_base" type="move_base" respawn="
false" name="move_base" output="screen">

47 <rosparam file="$(find
course_p3at_navigation)/
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sg_costmap_common_params_p3at.yaml"
command="load" ns="global_costmap" />

48 <rosparam file="$(find
course_p3at_navigation)/
sg_costmap_common_params_p3at.yaml"
command="load" ns="local_costmap" />

49 <rosparam file="$(find
course_p3at_navigation)/
sg_local_costmap_params.yaml" command
="load" />

50 <rosparam file="$(find
course_p3at_navigation)/
sg_global_costmap_params.yaml"
command="load" />

51 <rosparam file="$(find
course_p3at_navigation)/
becker_base_local_planner_params.yaml
" command="load" />

52 <param name="base_global_planner" type="
string" value=" navfn/NavfnROS" />

53 <param name="controller_frequency" type="
double" value="6.0" />

54 </node>
55

56

57 </launch>

As you can see the code is divided by commentaries in four sections as enumerated
below:

3.6.1 PLATFORM SPECIFIC

Before explaining this section it is useful to clarify something: these PLATFORM
SPECIFIC code is related to the platform specific nodes and it is not, by any means,
the only platform specific sections of the navigation configuration, since almost all
parameters presented on this chapter can be modified depending on your needs. This
first section of the code is relative to the nodes you have to run so your robot is
able to read the information in the /cmd_vel topic and translate this information
into the respective real velocities to the robot’s wheels. In the case here represented,
for the Pioneer 3-AT, two nodes are run: p2os_driver [25] and an instance of the
rostopic [26] node. The first one, p2os_driver, is a ROS node specific for some
Pioneer robots, including the Pioneer 3-AT, able to control the motors in accordance
to the information it receives from the ros topics /cmd_vel and /cmd_motor_state.
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/cmd_vel has the velocities information and /cmd_motor_state tells the package if the
motors are enabled. That is the reason the rostopic node should be run: it publishes
a true value to the /cmd_motor_state topic so the p2os_driver knows that the motor
should be enabled. p2os_driver also publishes some useful data, like sonar sensor
data, transformations, battery_state and more.

3.6.2 TRANSFORMS

As discussed in the transforms section, you should create a transform between the
robot’s base_link and the sensor laser_link. Here is the place we recommend it to be
put, although it can be launched in a separate launch file or in any particular order in
this launch file. Any other transforms you may have should be put here too.

3.6.3 SENSORS CONFIGURATION

This section of the code was left to initialize all the nodes regarding the sensors
powering up and configuration. The first four lines of this section contain some
configurations of the Kinect sensor:

• (1) The first line changes the camera name to kinect_camera_name;
• (2) The second lines sets it to drop 1 frame of the Kinect for each valid one,
outputting at approximately 15Hz instead of 30Hz;

• (3) The third and fourth lines are in respect to the resolution, where we have
selected 320 × 240 QVGA 30Hz for the image and 30Hz QVGA for the depth
image. The available options for image mode are:

– 2: (640 × 480 VGA 30Hz)
– 5: (320 × 240 QVGA 30Hz)
– 8: (160 × 120 QQVGA 30Hz)

And for the depth image mode:

– 2: (VGA 30Hz)
– 5: (QVGA 30Hz)
– 8: (QQVGA 30Hz)

It is noteworthy that these parameters configurations for the Kinect, although
recommended, are optional, since the default values will work. Besides the parameter
configuration, there is also the line including the Kinect launcher that we wrote at
the “Configuring the Kinect Sensor” section, which powers the sensor up and gets
its data converted to laser data. If you’re using any other kind of sensor, like a laser
sensor, you should have your own launcher include here. Finally, if you odometry
sensors aren’t configured yet(in our case, the p2os_driver is responsible for this) you
may do this here.
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3.6.4 NAVIGATION

Understanding which nodes you should run, why and what each of them does is the
main focus of this chapter. To get our Pioneer 3-AT navigating, we are using two
navigation nodes (gmapping and move_base) and a lot of parameters. As explained
before, gmapping is a localization system, while move_base is a package that con-
tains the local and global planners and is responsible for linking them to achieve
the navigation goal. Therefore, let us start explaining the gmapping launcher, the
localization system we are using, since we have odometry available and our map is
unknown (we will not use any static maps). For that, each parameter will be analyzed
at once, as follows:

• map_update_interval: time (in seconds) between two updates of the map. Ideally,
the update would be instantaneous, however, it would cost too much for the CPU
to do that. Therefore, we use a interval, for which the default is 5 s.

• maxUrange: themaximum range for which the laser issues valid data. Data farther
from this distance will be discarded.

• iterations: the number of iterations of the scanmatcher.
• linearUpdate, angularUpdate and temporalUpdate: thresholds for a scan request.
temporalUpdate asks for a new scan whenever the time passed since the last scan
exceeds the time indicated in the parameter, while linearUpdate and angularUpdate
ask for scanwhen the robot translates or rotates (respectively) the amount specified
in the parameters.

• particles: sets the number of particles used in the filter.
• xmin, ymin, xmax and ymax: these four coordinates form, together, the map size.
• base_ frame: indicates the frame that corresponds to the mobile base in the trans-
form tree.

• minimumScore: its a threshold value for considering the outcome of the scan
matching good. Here we set the parameter to 200, but you should test some values
between 0 and 300 depending on your configuration. Keep in mind that scores go
from about −3000 to more than 600.

• srr, srt, str and stt: these parameters relate to the odometry errors. You should test
your configuration and measure the four possible errors respectively: translation
as a function of translation, translation as a function of rotation, rotation as a
function of translation and rotation as a function of rotation. Here, r goes for rho
(translation) and t goes for theta (rotation). The easiest way to do this is by sending
goals to your robot and measuring the difference between the expected movement
and the actual movement.

As to move_base, it bases its path planning techniques on the current location and
the navigation goal. In the node launcher code, we have the usual syntax to launch
a node, followed by a list of seven parameters, five of which are rosparams. The
params are two:

• base_global_planner is a parameter for selecting the plugin (dynamically loadable
classes). The plugin we use is the default for 1.1+ series, so we put this statement
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here just to ensure we’ve selected the correct one. As you will see on the test
section, we changed this parameter to use the dwa_local_planner, since it works
better on our configuration.

• controller_ frequency is a parameter that fixes the rate (in Hz) at which the control
loop will run and velocity commands will be issued.

The rosparams, in turn, are files that contain more parameters for the move_base,
and which are done this way to keep the files organized and easy to read. Thus, we
will take advantage of this fact and analyze the parameter files separately. First, we
begin looking at the costmap_common_params file, the one that contains parameters
that apply for both the local and global costmaps:

1 obstacle_range: 5.0
2 raytrace_range: 6.0
3

4 max_obstacle_height: 1.0
5 min_obstacle_height: 0.05
6

7 footprint: [ [0.3302, -0.0508], [0.254, -0.0508],
[0.254, -0.254], [-0.254, -0.254], [-0.254, 0.254],
[0.254, 0.254], [0.254, 0.0508], [0.3302, 0.0508] ]

8 #robot_radius: 0.35
9 inflation_radius: 0.35

10 footprint_padding: 0
11

12 transform_tolerance: 1.0
13 map_type: costmap
14 cost_scaling_factor: 100
15

16

17 observation_sources: laser_scan_sensor
18 laser_scan_sensor: {sensor_frame: camera_link,

data_type: LaserScan, topic: scan, marking: true,
clearing: true}

19

20 #observation_sources: pointcloud_sensor
21 #pointcloud_sensor: {sensor_frame: camera_link,

data_type: PointCloud2, topic: /camera/depth/points,
marking: true, clearing: true}

As you may know, the sharp(#) represents a commented line or value, and does
not affect the results. This way, let us present the meaning of each of the params used
in the costmap common parameters file:

• obstacle_range and raytrace_range: obstacle_range relates to the maximum dis-
tance (in meters) that will be considered when taking the obstacle data and putting
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it to the costmap, while raytrace_range is the maximum distance (also in meters)
that will be considered when taking the free space around the robot and putting it
to the costmap.

• max_obstacle_height and min_obstacle_height: these parameters set the area that
will consider the sensor data as valid data. The most common is setting the min
height near the ground height and the max height slightly greater than the robot’s
height.

• robot_radius and inflation_radius: when you’re considering your robot as circu-
lar, you can just set the robot_radius parameter to the radius(in meters) of your
robot and you get a circular footprint. Although, even if you don’t have a circular
robot, it is important to set the inflation_radius to the “maximum radius” of your
robot, so the costmap creates a inflation around obstacles and the robot doesn’t
collide, no matter what is it direction when getting close to obstacles.

• footprint and footprint_padding: when you want a most precise representation
of your robot, you have to comment the robot_radius parameter and create a
custom footprint, as we did, considering [0, 0] as the center of your robot.
footprint_padding is summed at each of the footprint points, both at the x and
y coordinates, and we do not use it here, so we set it to zero.

• transform_tolerance: sets themaximum latency accepted so the systemknows that
no link in the transform tree is missing. This parameter must be set in an interval
that allows certain tolerable delays in the transformpublication and detectsmissing
transforms, so the Navigation Stack stops in case of flaws in the system.

• map_type: just here to enforce we are using a costmap.
• cost_scaling_factor: this parameter sets the scaling factor that applies over the
inflation. This parameter can be adjusted so the robot has a more aggressive or
conservative behavior near obstacles.

e−cost_scaling_factor×(distance_from_obstacle−inscribed_radius)× (costmap_2d::INSCRIBED_INFLATED_OBSTACLE−1)

• observation_sources: This last parameter is responsible for choosing the source of
the sensor data. We can both use here point_cloud, as we’re using for the Kinect,
or laser_scan, as the commented lines suggest and as may be used for a Hokuyo or
sick laser sensor. Along with the laser type, it is very important to set the correct
name of the subscribed topic, so the Navigation Stack takes the sensor data from
the correct location. The marking and clearing values are self-explanatory, since
they set if the sensor data from the observation source is allowed to mark and clear
the costmap. This parameter raises yet some very important discussion:

– When selecting which observation source you are going to use, you have to
consider that gmapping is using a LaserScan message as its observation source.
If you are using a Kinect, you can choose the PointCloud message as your
observation source here, and, although it will represent a lot more obstacles
than the LaserScan would, that can bring a lot of problems to gmapping, that
will struggle to get the current robot position.

Now that we have set all the costmap common parameters, we must set the para-
meter specific to the local and global costmaps. We will analyze them together, since
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most of the parameters are very similar. First, take a look at the files. For the global
costmap we have:

1 global_costmap:
2 global_frame: /map
3 robot_base_frame: base_link
4 update_frequency: 1.0
5 publish_frequency: 1.0 #0
6 static_map: false
7 width: 50 #3.4
8 height: 50 #3.4
9 origin_x: -25 #-1.20 is the actual position; -0.95 is

the old one, for the frond wheel at the marker
10 origin_y: -25 #-1.91
11 resolution: 0.1

And for the local:

1 local_costmap:
2 global_frame: /odom
3 robot_base_frame: base_link
4 update_frequency: 5.0
5 publish_frequency: 10.0
6 static_map: false
7 rolling_window: true
8 width: 3.0
9 height: 3.0

10 resolution: 0.025

As you can see, both of them start with a tag specifying the costmap to which
they relate. Then, we have the following common parameters:

• global_frame: indicates the frame for the costmap to operate in. They are set to
different values because gmapping publishes the transform from odom to map,
the global reference frame. If you set both of them to /odom you will be using the
odometry data exclusively.

• robot_base_frame: indicates the transformation frame of the robot’s base_link.
• update_frequency and publish_frequency: The frequency (in Hz) for map update
and for publication of the display data.

• static_map: indicates whether the system uses or not a static map.
• width and height: width and height of the map, in meters.
• resolution: resolution of the map in meters per cell. This parameter is usually
higher in smaller maps (local).

Aside from these common parameters, there’s the definition of the map size along
with the choosing between rolling window map or not. For the global map, we
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adopted the fixed map (there is no need to set rolling_windows to false, since it is
the default), therefore we need to declare the x and y initial positions of the robots
in respect to the map window. For the local_costmap, we use a rolling window map
and the only parameter we have to set is the rolling_window to true.

Lastly, we have the base_local_planner parameters file. The base_local_planner
treats the velocity data according to its parameters so the base_controller receives
coherent data. Thus, the base_local_planner parameters are platform_specific. Take
a look at the configuration for the Pioneer 3-AT:

1 TrajectoryPlannerROS:
2 max_vel_x: 0.5
3 min_vel_x: 0.1
4 max_rotational_vel: 0.5
5 max_vel_theta: 0.5
6 min_vel_theta: -0.5
7 min_in_place_rotational_vel: 0.5
8 min_in_place_vel_theta: 0.5
9 escape_vel: -0.1

10

11

12 acc_lim_th: 0.5
13 acc_lim_x: 0.5
14 acc_lim_y: 0.5
15

16 holonomic_robot: false

Again, we should analyze the most important parameters separately.

• min_vel_x and max_vel_x: The minimum and maximum velocities (in meter-
s/second) allowed when sending data to the mobile base. The minimum velocity
should be great enough to overcome friction. The maximum velocity adjust is
good for limiting the robot’s velocity in narrow environments.

• max_rotational_vel and min_in_place_rotational_vel: limits for the rotational
velocities, the difference is that rotational_vel is the maximum rotation veloc-
ity when the mobile base is also moving forward or backward, while in_place
_rotational_vel is the minimum rotation vel so the robot can overcome friction
and turn without having to move forward or backward.

• min_vel_theta and max_vel_theta: the minimum and maximum rotational veloc-
ities (in radians/second).

• min_in_place_vel_theta: alike min_in_place_rotational_vel, but in radians per
second.

• escape_vel: this speed delimits the driving speed during escapes (in meters per
second). Its noteworthy that this value should be negative for the robot to reverse.

• acc_lim_x, acc_lim_y and acc_lim_theta: accelerations limits. They are the x,y
and rotational acceleration limits respectively, wherein the first two are in meters
per squared second and the last is radians per squared second.
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• holomic_robot: this is a boolean responsible to choose between holonomic and
non-holonomic robots, so the base_local_planner can issue velocity commands as
expected.

Finally, we have a basic set up, contemplating all the usual parameters that you
have to configure and some more. There is a small chance that some parameter is
missing for your configuration, therefore it is a good idea to do a quick check in the
base_local_planner [27] and costmap_2d [28] wiki pages.

The way that we have presented does not use layers, although ROS Hydro+
supports this feature. Porting these files to this new approach of costmaps is not
a hard task, and that is what we will cover now.

3.7 Layered Costmaps

For this approach, we use the launchers and the configuration files from the pre-
vious package. First, we create a package named p3at_layer_navigation, as stated
on the creating a package section. Then, we copy all files from the previous pack-
age but the package.xml and CMakelists.txt files to the folder of the newly created
package. For the base_local_planner, nothing should be modified, since the planning
will not be affected in any way when exploding the maps in layers. The common
costmaps file is the one that will be affected the most, and here is one example
costmap_common_params.yaml file that illustrates this:

1 robot_base_frame: base_link
2

3 transform_tolerance: 1.0
4

5 robot_radius: 0.35
6

7 footprint: [ [0.3302, -0.0508], [0.254, -0.0508],
[0.254, -0.254], [-0.254, -0.254], [-0.254, 0.254],
[0.254, 0.254], [0.254, 0.0508], [0.3302, 0.0508] ]

8

9 inflater:
10 robot_radius: 0.35
11 inflation_radius: 0.35
12

13 obstacles:
14 observation_sources: pointcloud_sensor
15 pointcloud_sensor:
16 data_type: PointCloud2
17 topic: camera/depth/points
18 min_obstacle_height: 0.2
19 max_obstacle_height: 2.0
20 marking: true
21 clearing: true
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22 z_voxels: 8
23 z_resolution: 0.25
24 max_obstacle_height: 2.0

As you can see in the file, the parameters do not change much, the difference is
that they are organized in a different way: there are some parameters that are common
for all costmaps and there are some parameters that are common between layers. In
this example, we create two layers: a inflater layer, that considers a circular robot
with 35cm of radius, and, therefore, an inflation radius of 35cm so it doesn’t collide
with anything; a obstacles layer, that takes the pointcloud data (if you are using a
laser, please change that here) and passes this data to the costmap.

The two other files have a slight modification: you should specify the layers
they are using by using the plugins mnemonic, as shown for the global_costmap
configuration file:

1 global_frame: map
2

3 robot_base_frame: base_link
4 update_frequency: 1.0
5 publish_frequency: 1.0
6 static_map: false
7 width: 50
8 height: 50
9 origin_x: -25

10 origin_y: -25
11 resolution: 0.1
12

13 plugins:
14 - {name: obstacles, type: "costmap_2d::VoxelLayer"}
15 - {name: inflater, type: "costmap_2d::InflationLayer"}

The local_costmap should have the same plugins statement at the end. Moreover,
you can add any extra layers you want. The structure of the topics will change a
little bit, since the footprint is now inside the layers and the costmaps are divided
in multiple topics. You can get to know a little more about this organization in the
Using rviz section.

4 Starting with a Test

Before we begin the testing, we must find a way to visualize the navigation in action.
That can be done through the software rviz, that allows us, amongst other things, to
visualize the sensor data in a comprehensive way and to check the planned paths as
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they are generated. The execution of rviz is often in a computer different from the
one that operates on the robot, so you may use multiple machines that share the same
ROS topics and communicate.

4.1 Using Rviz

To run rviz, simply issue the following command:

$ rosrun rviz rviz1

The interface of rviz depends on your version, but the operation should be very
similar. It is way easier to configure rviz with the Navigation Stack up and running,
although it is possible to do so without it. In this tutorial we will only cover the
configuration steps when the Navigation Stack launcher is already implemented,
so make sure you have launched all the nodes needed for navigation and just then
launched rviz. After launching rviz, you should add the topics you wish to display.
First, as an example, add the PointCloud 2 from the Kinect, as shown in Fig. 4.

As you can see in Fig. 4, there are four steps for adding a new topic when Navi-
gation Stack is already running:

• (1) Click on the button “add” at the bottom left-hand side of the screen;
• (2) Choose the tab “By topic” on the windows that appears. This is only possible
when the topics are available, so if you don’t have the Navigation Stack running

Fig. 4 Steps for adding new information for rviz to display
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you will have to choose the info in the tab “By display type” and manually insert
the topic names and types.

• (3) Select the topic and its message type on the central frame of the window. In
this example, we are selecting the PointCloud2 data that the Kinect provides on
the /camera/depth_registered/points topic.

• (4) Write a meaningful display name in the textbox, so you don’t forget what the
data is representing in the future.

• (5) Confirm the addition by pressing “Ok”.

The process is equal for all kinds of topics, so a list of the most common topics
(note: depending if you changed some topic names, some things on the list may
differ) should be enough to understand and add all the topics you need.

Name Topic Message type
ROBOT FOOT-
PRINT

/local_costmap/robot_footprint geometry_msgs/PolygonStamped

LOCAL COSTMAP /move_base/local_costmap/costma
p

nav_msgs/GridCells

OBSTACLES
LAYER

/local_costmap/obstacles nav_msgs/GridCells

INFLATED OBSTA-
CLES LAYER

/local_costmap/inflated_obstacles nav_msgs/GridCells

STATIC MAP /map nav_msgs/GetMap or nav_msgs/O
ccupancyGrid

GLOBAL PLAN /move_base/TrajectoryPlannerRO
S/global_plan

nav_msgs/Path

LOCAL PLAN /move_base/TrajectoryPlannerRO
S/local_plan

nav_msgs/Path

2D NAV GOAL /move_base_simple/goal geometry_msgs/PoseStamped
PLANNER PLAN /move_base/NavfnROS/plan nav_msgs/Path
LASER SCAN /scan sensor_msgs/LaserScan
KINECT POINT-
CLOUD

/camera/depth_registered/points sensor_msgs/PointCloud2

It is interesting to know a little more about topics that you haven’t heard about,
because every topic listed here is very valuable at checking the navigation function-
alities at some point. Therefore, lets do a brief explanation at each of the topics:

• ROBOT FOOTPRINT: These message is the displayed polygon that represents
the footprint of the robot. Here we are taking the footprint from the local_costmap,
but it is possible to use the footprint from the global_costmap and it is also possible
to take the footprint from a layer, for example, the footprint may be available at the
/move_base/global_costmap/obstacle_layer_footprint/footprint_stamped topic.

• LOCAL COSTMAP: If you’re not using a layered approach, your local_costma
p in its whole will be displayed in this topic.

• OBSTACLES LAYER: One of the main layers when you’re using a layered
costmap, containing the detected obstacles.
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• INFLATED OBSTACLES LAYER: One of the main layers when you’re using a
layered costmap, containing areas around detected obstacles that prevent the robot
from crashing with the obstacles.

• STATIC MAP: When using a pre-built static map it will be made available at this
topic by the map_server.

• GLOBAL PLAN: This topic contains the portion of the global plan that the local
plan is considering at the moment.

• LOCAL PLAN: Display the real trajectory that the robot is doing at the moment,
the one that will imply in commands to the mobile base through the /cmd_vel
topic.

• 2D NAV GOAL: Topic that receives navigation goals for the robot to achieve. If
you want to see the goal that the robot is currently trying to achieve you should
use the /move_base/current_goal topic.

• PLANNER PLAN: Contains the complete global plan.
• LASER SCAN: Contains the laser_scan data. Depending on your configuration
this topic can be a real reading from your laser sensor or it can be a converted
value from another type of sensor.

• KINECT POINTCLOUD: This topic, shown in the example, is a cloud of points,
as the name suggests, that forms, in space, the depthimage captured by the Kinect.
If you are using a laser sensor, this topic will not be available.

These are the most used topics, however you may have a lot more depending on
your setup and in what you want to see. Besides, just the local_costmap and the most
used layers of it were presented, but you may want to see the global costmap and its
layers, in addition to another layers that you may use. Explore the topics you have
running with the rviz and you may find more useful info.

4.2 Multiple Machines Communication

Multiple Machines Communication is a rather complex topic and it is possible that
you have to use more than one computer at the same time when navigating with
a robot. Usually, in navigation scenarios, two computers are used: one is mounted
on the mobile base and is responsible for getting sensor data and passing velocities
commands to the robot, while the other is responsible for heavy processing and
monitoring.

Although a ROS network can be very complex, if you are using just two machines
as specified above, youwill probably be able to communicate themwith the following
steps. If that is not your case, please refer to the Multiple Machines Communication
ROS wiki page [29]. To get the machines working together you must specify names
for both machines in the /etc/hosts file on your system. The usual hosts file is similar
to:You have to choose a name for both the machines (here we chose robot and
masterpc) and add to both the /etc/hosts files the entries for them. The entry on the
/etc/hosts must have the IP of the machine in the wireless lan they share and the name
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IPAddress Hostname1
127.0.0.1 localhost2
192.168.1.101 robot3
192.168.1.100 masterpc4

you picked (two new entries per file, one for itself and other for the other PC). After
that, you should set the ROS_MASTER_URI variables. In the master machine, it
should be:

$ export ROS_MASTER_URI=http://localhost:113111

In the other machine, you should type:

$ export ROS_MASTER_URI=http://mastermachine:113111

Test your configuration this way, and if the configurations work, add the export
lines to the end of the ∼/.bashrc file of both computers, so every time a terminal
window is opened these commands are issued.

4.3 Real Tests on Pioneer 3-AT

Finally, it is time to see the robot navigating. Launch your navigation file and then run
rviz. If you made all the correct configuration for the Navigation Stack and for rviz
you should be able to see your robot footprint, pose and the costmaps. Try selecting
the 2D Nav goal at the top of the screen in rviz, click and hold at some point on
the map and then choose the direction, so the robot knows where to go and in what
position it should stop. A global path would be generated, as well as a local, and
you should see them indicated by green lines. You can see an example of the robot
navigating on Figs. 5 and 6.

As you can see in the pictures, a global plan is drawn from the start point to
the finish point and a local plan is being drawn along the way, trying to follow
the global path without crashing. As for the costmaps, the yellow section indicates
where the obstacle is, and is an infinite cost area. The radius around the obstacle, in
our case almost entirely blue, is the inflation radius, where the cost is exponentially
decreasing from the obstacle to the border of the inflation radius. Depending on your
inflation_radius and cost_scaling_factor parameters, this coloring
can be different.
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Fig. 5 Example costmaps for the Pioneer 3-AT navigating in a room

Fig. 6 Photograph of the robot navigating, at the same moment the print screen of Fig. 5 was taken

Conducting the tests we have found that the navigation does not work so great
with the default planner. Therefore, we tested the dwa_local_planner and the results
were way better. The dwa_local_planner is, in general, better for slow robots, and to
use it you should modify your move_base launcher as follows:
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1 <node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen" clear_params="true"
>

2 <param name="controller_frequency" value="
10.0" />

3 <param name="controller_patience" value="15.0
" />

4 <param name="planner_frequency" value="2.0" /
>

5 <param name="clearing_rotation_allowed" value
="false" />

6 <rosparam file="$(find course_p3at_navigation
)/sg_costmap_common_params_p3at.yaml"
command="load" ns="global_costmap" />

7 <rosparam file="$(find course_p3at_navigation)/
sg_costmap_common_params_p3at.yaml" command="
load" ns="local_costmap" />

8 <rosparam file="$(find course_p3at_navigation)/
sg_local_costmap_params.yaml" command="load"
/>

9 <rosparam file="$(find course_p3at_navigation)/
sg_global_costmap_params.yaml" command="load"
/>

10 <param name="base_local_planner" value="
dwa_local_planner/DWAPlannerROS" />

11 <rosparam file="$(find course_p3at_navigation
)/dwa_planner_ros.yaml" command="load" />

12 </node>

As you can see, a new param file is added, and this file is very similar to the
base_local_planner parameters. You can find the original version of the file, taken
from the scitos_2d_navigation github [30] on their URL or you can see our modified
version here:

1 DWAPlannerROS:
2 acc_lim_x: 1.0
3 acc_lim_y: 0.0
4

5 acc_lim_th: 2.0
6

7 min_vel_x: -0.55
8 min_vel_y: 0.0
9 max_vel_y: 0.0

10 max_rot_vel: 1.0
11 min_rot_vel: 0.4
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12

13 yaw_goal_tolerance: 0.1
14

15 xy_goal_tolerance: 0.3
16

17 latch_xy_goal_tolerance: true
18

19 sim_time: 1.7
20

21 path_distance_bias: 5.0
22 goal_distance_bias: 9.0
23 occdist_scale: 0.01
24

25 oscillation_reset_dist: 0.05
26

27 prune_plan: true
28

29 holonomic_robot: false

If you are having some troubles, you may verify the view_frames functionality of
the tf ROS package. It is very useful for spotting problems on your transformation
tree and it also helps to learn better some of the concepts about transformations that
we have presented. To generate a “frames.pdf” file containing the current tf tree,
insert the following lines on the shell:

$ rosrun tf view_frames1

As a result, we got the tf tree seen on Fig. 7, where you can clearly see the hierarchy
between the frames and understand a little better the relation between them. Each
transform on the tf tree (represented by the arrows) has some related data, such as the
average rate and the node that is broadcasting the transform. If you don’t have a tree
structure like that, where some frame is not linked to the tree or the map, odom and
base_link are not presented on this order, please check your tf configuration. Please
note that this is not the only possible configuration, as you can have base_footprint
when you are using hector_mapping, for example. Another thing that you may have
noticed is thatwedonot have only one frame for theKinect: the openni_launcher node
publishes 4 transformations between 5 distinct frames, and the only transformation
that we have manually launched, in this case, is the transformation between the
base_link and the camera_link.

After seeing the system was working as expected, we tried to do some more
significant tests. First we arranged our test room in two ways: a single wood object
on the middle of the room and the robot at one side; a corridor formed by some
objects. You can see the two scenarios and the results of the navigation in rviz in
Figs. 8 and 9.
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Fig. 7 tf Tree generated by the view_frames command

To do these experiments, a initial and final position on the room were chosen for
each one. After that the distance and the difference in angle were measured, and then
we published the goal with these values. We have done that with a simple node, very
similar to the node you can find here [31]. You can also publish a goal by issuing the
following command (CHANGE THE VALUES TO SUIT YOUR NEEDS):

rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped ’ header: frame_id:1
”/base_link”, pose: position: x: 0.2, y: 0 , orientation: x: 0, y: 0, z: 0, w: 1 ’

It is possible to see on Fig. 8 that the robot would get to the goal by following a
straight line if no object was present, but it successfully avoids the obstacle and gets
to the exact point it intended to. It is also possible to see on the images that it doesn’t
just avoid the obstacle, but a region around it, the inflation radius, since there is a low
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Fig. 8 a Robot moving right after it receives a goal. b Robot avoiding the obstacle. c Robot getting
to the goal

Fig. 9 a Robot moving right after it receives a goal. b Robot entering the corridor. c Robot getting
to the goal

cost area right around of it. When it gets to the goal, it rotates until it gets the right
angle. In the way, you can see that the local and global CostMaps do not perfectly
match and start to drift, but the gmapping transformation is able to adjust that with
very little errors.

On Fig. 9 the task of the robot is harder: it has to avoid some obstacles and get to
a point that is after a corridor. At first, it tries to avoid the obstacles by going around
them, but it sees the wall. After that, it decides to enter the inflation radius, a high cost
area, but trying to stay as close to the border as possible. At the end, it successfully
gets to the goal and adjusts itself to the right direction.

In rviz it is possible to see some details about the navigation:

• Obstacles on the gmapping map and on the CostMaps should overlap each other
perfectly, and that is almost the case in most of the situations;

• Obstacles on local and global CostMap should also overlap each other, and gmap-
ping does a good job in correcting the odometry errors to get that;
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• The inflation radius is avoided by the robot, that usually translates right at its border
to get to the goal. This behavior can be different depending on the cost factors you
chose at the planner parameters;

• The global path is not perfectly followed by the local path in almost every situation,
because the parameters to calculate the smallest cost of them are usually different.
The frequency of update and cost parameters should alter this behavior as needed.

4.3.1 Conclusion

Navigating through unknown environments is a very hard task, however we had
great results doing it while using the Navigation Stack. This set of tools helped us to
achieve great results, allowing the robot to create a dynamically generated map and
achieve goals without crashing. We hope that this tutorial chapter, along with some
background reading of the references we have presented, is enough for you to also
get your robot navigating.
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