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Abstract In this tutorial chapter, we demonstrate how to integrate a new planner
into ROS and present their benefits. Extensive experimentations are performed to
show the effectiveness of the newly integrated planners as compared to Robot
Operating System (ROS) default planners. The navigation stack of the ROS open-
source middleware incorporates both global and local path planners to support
ROS-enabled robot navigation. Only basic algorithms are defined for the global
path planner including Dijkstra, A*, and carrot planners. However, more intelli-
gent global planners have been defined in the literature but were not integrated in
ROS distributions. This tutorial was developed under Ubuntu 12.4 and for ROS
Hydro version. However, it is expected to also work with Groovy (not tested).
A repository of the new path planner is available at https://github.com/coins-lab/
relaxed_astar. A video tutorial also available at https://www.youtube.com/playlist?
list=PL8UbFU8tzwRjkxccq2zLkmTkOOYela5fu.
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1 Introduction

Mobile robot path planning is a hot research area. Indeed, the robot should have the
ability to autonomously generate collision free path between any two positions in
its environment. The path planning problem can be formulated as follows: given a
mobile robot and a model of the environment, find the optimal path between a start
position and a final position without colliding with obstacles. Designing an efficient
path planning algorithm is an essential issue in mobile robot navigation since path
quality influences the efficiency of the entire application. The constructed path must
satisfy a set of optimization criteria including the traveled distance, the processing
time, and the energy consumption.

In the literature, the path planning problem is influenced by two factors: (1) the
environment, which can be static or dynamic, (2) the knowledge that the robot has
about the environment; if the robot has a complete knowledge about the environment,
this problem is known as global path planning. On the other hand, if the robot has
an incomplete knowledge, this problem is classified as local path planning.

The navigation stack of the Robot Operating System (ROS) open-source middle-
ware incorporates both global and local path planners to support ROS-enabled robot
navigation. However, only basic algorithms are defined for the global path planner
including Dijkstra, A*, and carrot planners.

In this tutorial, we present the steps for integrating a new global path planner into
the ROS navigation system. The new path planner is based on a relaxed version of the
A* (RA*) algorithm, and it can be found in [1]. Also, we compare the performance
of the RA* with ROS default planner.

The rest of this tutorial is organized as follow.

• Section2 introduces ROS and its navigation system.
• Section3 introduces the relaxed A* algorithm.
• In Sect. 4, we present the steps of integrating a new global path planner into the
ROS navigation system.

• Section5 presents the ROS environment configuration.
• In Sect. 6, we conduct the experimental evaluation study to compare the perfor-
mance of RA* and ROS default planner.

2 ROS

ROS (Robot Operating System) [2] has been developed by Willow Garage [3] and
Stanford University as a part of STAIR [4] project, as a free and open-source robotic
middleware for the large-scale development of complex robotic systems.

ROSacts as ameta-operating system for robots as it provides hardware abstraction,
low-level device control, inter-processesmessage-passing and packagemanagement.
It also provides tools and libraries for obtaining, building, writing, and running code
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across multiple computers. The main advantage of ROS is that it allows manipulat-
ing sensor data of the robot as a labeled abstract data stream, called topic, without
having to deal with hardware drivers. This makes the programming of robots much
easier for software developers as they do not have to deal with hardware drivers and
interfaces. Also, ROS provides many high-level applications such as arm controllers,
face tracking, mapping, localization, and path planning. This allow the researchers to
focus on specific research problems rather than on implementing themany necessary,
but unrelated parts of the system.

Mobile robot navigation generally requires solutions for three different problems:
mapping, localization, and path planning. In ROS, the Navigation Stack plays such
a role to integrate together all the functions necessary for autonomous navigation.

2.1 ROS Navigation Stack

In order to achieve the navigation task, the Navigation Stack [5] is used to inte-
grate the mapping, localization, and path planning together. It takes in infor-
mation from odometry, sensor streams, and the goal position to produce safe
velocity commands and send it to the mobile base (Fig. 1). The odometry comes
through nav_msgs/Odometry message over ROS which stores an estimate of
the position and velocity of a robot in free space to determine the robot’s loca-
tion. The sensor information comes through either sensor_msgs/LaserScan
or sensor_msgs/PointCloudmessages over ROS to avoid any obstacles. The
goal is sent to the navigation stack bygeometry_msgs/PoseStampedmessage.
The navigation stack sends the velocity commands through geometry_msgs/
Twist message on /cmd_vel topic. The Twist message composed of two sub-
messages:

Fig. 1 ROS navigation stack [2]
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geometry_msgs/Vector3 linear
float64 x
float64 y
float64 z

geometry_msgs/Vector3 angular
float64 x
float64 y
float64 z

linear sub-message is used for the x, y and z linear velocity components in meters
per second and angular sub-message is used for the x, y and z angular velocity
components in radians per second. For example the following Twist message:

linear: {x: 0.2, y: 0, z: 0}, angular: {x: 0, y: 0, z: 0}

will tell the robot to move with a speed of 0.2 m/s straight ahead. The base controller
is responsible for converting Twistmessages to “motor signals”which will actually
move the robot’s wheels [6].

The navigation stack does not require a prior static map to start with. Actually it
could be initialized with or without a map. When initialized without a prior map, the
robot will know about the obstacles detected by its sensors only and will be able to
avoid the seen obstacles so far. For the unknown areas, the robot will generate an opti-
mistic global path which may hit unseen obstacles. The robot will be able to re-plan
its path when it receives more information by the sensors about these unknown areas.
Instead, when the navigation stack initialized with a static map for the environment,
the robot will be able to generate an informed plans to its goal using the map as prior
obstacle information. Starting with a prior map will have significant benefits on the
performance [5].

To build a map using ROS, ROS provides a wrapper for OpenSlam’s Gmapping
[7]. A particle filter-based mapping approach [8] is used by the gmapping package
to build an occupancy grid map. Then a package named map_server could be
used to save that map. The maps are stored in a pair of files: YAML file and image
file. The YAML file describes the map meta-data, and names the image file. The
image file encodes the occupancy data. The localization part is solved in the amcl
package using an Adaptive Monte Carlo Localization [9] which is also based on
particle filters. It is used to track the position of a robot against a known map. The
path planning part is performed in the move_base package, and is divided into
global and local planning modules which is a common strategy to deal with the
complex planning problem.

The global path planner searches for a shortest path to the goal and the local
path planner (also called the controller ), incorporating current sensor readings,
issues the actual commands to follow the global path while avoiding obstacles. More
details about the global and local planners in ROS can be found in the next sections.

The move_base package also maintains two costmaps, global_costmap and
local_costmap to be used with the global and local planners respectively. The
costmap used to store and maintain information in the form of occupancy grid about
the obstacles in the environment and where the robot should navigate. The costmap
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Fig. 2 Recovery behaviors [2]

initialized with prior static map if available, then it will be updated using sensor data
tomaintain the information about obstacles in theworld.Besides that, themove_base
may optionally perform some previously defined recovery behaviors (Fig. 2) when
it fails to find a valid plan.

One reason of failure, is when the robot find itself surrounded with obstacles and
cannot find a way to its goal. The recovery behaviors will be performed in some
order (defined by the user), and after performing one recovery, the move_base will
try to find a valid plan, if it succeeds, it will proceed its normal operation. Otherwise
if it fails, it will perform the next recovery behavior. If it fails after performing all
the recovery behaviors, the goal will be considered infeasible, and it will be aborted.
The default recovery behaviors order is presented in Fig. 2 and it is in increasingly
aggressive order to attempt to clear out the robot space. First recovery behavior is
clearing all the obstacles outside a specific area from the robot’s map. Next, an in-
place rotation will be performed if possible to clear the space. Next, in case this too
fails, more aggressively clearing for the map will be performed, to remove all the
obstacles outside of the rectangular area in which the robot can make an in-place
rotation. Next, another in-place rotation will be performed. If all this fails, the goal
will be aborted.

Therefore, in each execution cycle of the move_base, one of three main states
should be performed:

• Planning state: run the global path planner .
• Controlling state: run the local path planner and move the robot.
• Clearing state: run recovery behavior in case the robot stuck.

There are some predefined parameters in ROS navigation stack that are used to
control the execution of the states, which are:

• planner_ f requency: to determine how often the global path planner should
be called, and is expressed in Hz. When it is set to zero, the global plan will be
computed only once for each goal received.

• controller_ f requency: to determine how often the local path planner or
controller should be called, and also expressed in Hz.
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For any global or local planner or recovery behavior to be used with the
move_base it must be first adhere to some interfaces defined in nav_core pack-
age, which contains key interfaces for the navigation stack, then it must be added as
a plugin to ROS. We developed a tutorial on how to add a new global planner as a
plugin to ROS navigation stack, available at [10] and [11].

2.1.1 Global Planner

The global path planner in ROS operates on the global_costmap, which gener-
ally initialized from a prior static map, then it could be updated frequently based on
the value of update_ f requency parameter. The global path planner is respon-
sible for generating a long-term plan from the start or current position to the goal
position before the robot starts moving. It will be seeded with the costmap, and
the start and goal positions. These start and goal positions are expressed by their
x and y coordinates. A grid-based global planner that can use Dijkstra’s algorithm
[12] or A* algorithm to compute shortest collision free path for a robot is obtained
in global_planner package. Also, ROS provide another global planner named
carrot_planner, which is a simple planner that attempts to move the robot
as close to its goal as possible even when that goal is in an obstacle. The current
implementation of the global planner in ROS assumes a circular-shape robot. This
results in generating an optimistic path for the actual robot footprint, which may be
infeasible path. Besides that, the global planner ignores kinematic and acceleration
constraints of the robot, so the generated path could be dynamically infeasible.

2.1.2 Local Planner

The local path planner or the controller in ROS operates on the local_costmap,
which only uses local sensor information to build an obstacle map and dynamically
updated with sensor data. It takes the generated plan from the global planner, and
it will try to follow it as close as possible considering the kinematics and dynamics
of the robot as well as any moving obstacles information in the local_costmap.
ROS provides implementation of two local path planning algorithms namely the
Trajectory Rollout [13] and the Dynamic Window Approach (DWA) [14] in the
package base_local_planner . Both algorithms have the same idea to first discretely
sampled the control space then to perform forward simulation, and the selection
among potential commands. The two algorithm differ in how they sample the robot’s
control space.

After the global plan passed to the controller , the controller will produce veloc-
ity commands to send to a mobile base. For each control cycle, the controller will
try to process part from global path (determined by the size of the local_costmap).

First, the controller will sampled the control space of the robot discretely. The
number of the samples will be specified by the controller parameters vx_samples
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and vtheta_samples (more details about the parameters can be found in the next
section). Then, the controller will perform a simulation in advance for each one of
those velocity samples from the current place of the robot to foresee the situation from
applying each sample for amount of time (this time will be specified in the parameter
sim_t ime). Then, the controller will evaluate each resultant path from the simulation
and will exclude any path having collisions with obstacles. For the evaluation, the
controllerwill incorporates the followingmetrics: distance fromobstacles, distance to
the goal position, distance from the global plan and robot speed. Finally, the controller
will send the velocity command of the highest-scoring path to the mobile base to
execute it.

The “MapGrid” is used to evaluate and score the velocities. For each control cycle,
the controller will create a grid around the robot (the grid size determined by the size
of the local_costmap), and the global path will be mapped onto this area. Then each
grid cell will receive a distance value. The cells containing path points and the goal
will be marked with 0. Then each other grid cell will be marked with its manhattan
distance from nearest zero grid by a propagation algorithm. This “Map Grid” is then
used in the evaluation and scoring of the velocities. As the “Map Grid” will cover
small area from global path each time, the goal position often will lie outside that
area. So in that case the first path point inside the area having a consecutive point
outside the area will be considered as “local goal”, and the distance from that local
goal will be considered when scoring trajectories for distance to goal.

3 Relaxed A*

RA* is a time linear relaxed version of A*. It is proposed to solve the path planning
problem for large scale grid maps. The objective of RA* consists of finding optimal
or near optimal solutions with small gaps, but at much smaller execution times than
traditional A*. The core idea consists of exploiting the grid-map structure to establish
an accurate approximation of the optimal path, without visiting any cell more than
once.

In fact, inA* the exact cost g(n) of a node nmay be computedmany times; namely,
it is computed for each path reaching node n from the start position. However, in the
RA* algorithm g(n) is approximated by the cost of the minimum-move path from
the start cell to the cell associated to node n.

In order to obtain the relaxed version RA*, some instructions of A*, that are time
consuming with relatively low gain in terms of solution quality, are removed. In fact,
a node is processed only once in RA*, so there is no need to use the closed set of the
A* algorithm. Moreover, in order to save time and memory, we do not keep track of
the previous node at each expanded node. Instead, after reaching the goal, the path
can be reconstructed, from goal to start by selecting, at each step, the neighbor having
the minimum g(n) value. Also, it is useless to compare the g(n) of each neighbor
to the g(n) of the current node n as the first calculated g(n) is considered definite.
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Finally, it is not needed to check whether the neighbor of the current node is in the
open list. In fact, if its g(n) value is infinite, it means that it has not been processed
yet, and hence is not in the open list. The RA* algorithm is presented in Algorithm 1.

input : Grid, Start , Goal
t Break = 1+1/(length(Grid)+width(Grid));
// Initialisation:
openSet = Start // Set of nodes to be evaluated;
for each vertex v in Grid do

g_score(v)= infinity;
end
g_score[Start] = 0;
// Estimated total cost from Start to Goal:
f _score[Start] = heuristic_cost(Start , Goal);
while openSet is not empty and g_score[Goal]== infinity do

current = the node in openSet having the lowest f _score;
remove current from openSet ;
for each free neighbor v of current do

if g_score(v) == infinity then
g_score[v] = g_score[current] + dist_edge(current, v);
f _score[v] = g_score[v] + t Break * heuristic_cost(v, Goal);
add neighbor to openSet ;

end
end

end
if g_score(goal) ! = infinity then

return reconstruct_path(g_score) // path will be reconstructed based
on g_score values;

else
return failure;

end

Algorithm 1: Relaxed A*

Both terms g(n) and h(n) of the evaluation function of the RA* algorithm are not
exact, then there is no guaranty to find an optimal solution.

4 Integration Steps

In this section, we present the steps of integrating a new path planner into ROS. The
integration has two main steps: (1) writing the path planner class, and (2) deploying
it as a plugin. Following, we describe them in details.
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4.1 Writing the Path Planner Class

As mentioned before, to make a new global planner work with ROS, it must first
adhere to the interfaces defined in nav_core package. A similar example can be
found in the carrot_planner.h [15] as a reference. All the methods defined in
nav_core::BaseGlobalPlanner class must be overridden by the new global
path planner. For this, you need to create a header file, that we will call in our case,
RAstar_ros.h

1 /∗∗ include the libraries you need in your planner here ∗/
2 /∗∗ for global path planner interface ∗/
3 #include <ros/ros.h>
4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>
6 #include <nav_core/base_global_planner.h>
7 #include <geometry_msgs/PoseStamped.h>
8 #include <angles/angles.h>
9 #include <base_local_planner/world_model.h>

10 #include <base_local_planner/costmap_model.h>
11

12 using std::string;
13

14 #ifndef RASTAR_ROS_CPP
15 #define RASTAR_ROS_CPP
16

17 namespace RAstar_planner {
18

19 class RAstarPlannerROS : public nav_core::BaseGlobalPlanner {
20 public:
21

22 RAstarPlannerROS();
23 RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);
24

25 /∗∗ overridden classes from interface nav_core::BaseGlobalPlanner ∗∗/
26 void initialize(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);
27 bool makePlan(const geometry_msgs::PoseStamped& start,
28 const geometry_msgs::PoseStamped& goal,
29 std::vector<geometry_msgs::PoseStamped>& plan
30 ) ;
31 };
32 };
33 #endif

Now, we will explain the different parts of the header file.

3 #include <ros/ros.h>
4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>
6 #include <nav_core/base_global_planner.h>
7 #include <geometry_msgs/PoseStamped.h>
8 #include <angles/angles.h>
9 #include <base_local_planner/world_model.h>

10 #include <base_local_planner/costmap_model.h>
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It is necessary to include coreROS libraries needed for path planner. The headers:

4 #include <costmap_2d/costmap_2d_ros.h>
5 #include <costmap_2d/costmap_2d.h>

are needed to use the costmap_2d::Costmap2D class that will be used by the
path planner as input map. This map will be accessed automatically by the path
planner class when defined as a plugin. There is no need to subscribe to costmap2d
to get the cost map from ROS.

6 #include <nav_core/base_global_planner.h>

is used to import the interface nav_core :: BaseGlobal Planner , which the plugin
must adhere to.

17 namespace RAstar_planner {
18

19 class RAstarPlannerROS : public nav_core::BaseGlobalPlanner {

It is a good practice, although not necessary, to define namespace for your class. Here,
we define the namespace as RAstar_planner for the class RAstarPlanner
ROS. The namespace is used to define a full reference to the class, as RAstar_
planner::RAstarPlannerROS. The class RAstarPlannerROS is then
defined and inherits from the interface nav_core::BaseGlobalPlanner. All
methods defined in nav_core::BaseGlobalPlanner must be overridden by
the new class RAstarPlannerROS.

22 RAstarPlannerROS();

Is the default constructor which initializes the planner attributes with default values.

23 RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);

This constructor is used to initialize the costmap, that is the map that will be used
for planning (costmap_ros), and the name of the planner (name).

26 void initialize(std::string name, costmap_2d::Costmap2DROS∗ costmap_ros);

Is an initialization function for the BaseGlobalPlanner, which initializes the
costmap, that is the map that will be used for planning (costmap_ros), and the
name of the planner (name).
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The initialize method for RA* is implemented as follows:

1 void RAstarPlannerROS::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros)
2 {
3 if (!initialized_)
4 {
5 costmap_ros_ = costmap_ros;
6 costmap_ = costmap_ros_−>getCostmap();
7 ros::NodeHandle private_nh("~/" + name);
8

9 originX = costmap_−>getOriginX();
10 originY = costmap_−>getOriginY();
11 width = costmap_−>getSizeInCellsX();
12 height = costmap_−>getSizeInCellsY();
13 resolution = costmap_−>getResolution();
14 mapSize = width∗height;
15 tBreak = 1+1/(mapSize);
16 OGM = new bool [mapSize];
17

18 for (unsigned int iy = 0; iy < height; iy++)
19 {
20 for (unsigned int ix = 0; ix < width; ix++)
21 {
22 unsigned int cost = static_cast<int>(costmap_−>getCost(ix, iy));
23 if (cost == 0)
24 OGM[iy∗width+ix]=true;
25 else
26 OGM[iy∗width+ix]=false;
27 }
28 }
29 ROS_INFO("RAstar planner initialized successfully");
30 initialized_ = true;
31 }
32 else
33 ROS_WARN("This planner has already been initialized ... doing nothing");
34 }

For the particular case of the carrot_planner, the initialize method is imple-
mented as follows:

1 void CarrotPlanner::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
2 if (!initialized_){
3 costmap_ros_ = costmap_ros; //initialize the costmap_ros_ attribute to the ←↩

parameter.
4 costmap_ = costmap_ros_−>getCostmap(); //get the costmap_ from ←↩

costmap_ros_
5

6 /∗ initialize other planner parameters ∗/
7 ros::NodeHandle private_nh("~/" + name);
8 private_nh.param("step_size", step_size_, costmap_−>getResolution());
9 private_nh.param("min_dist_from_robot", min_dist_from_robot_, 0.10);

10 world_model_ = new base_local_planner::CostmapModel(∗costmap_);
11

12 initialized_ = true;
13 }
14 else
15 ROS_WARN("This planner has already been initialized ... doing nothing");
16 }
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27 bool makePlan(const geometry_msgs::PoseStamped& start,
28 const geometry_msgs::PoseStamped& goal,
29 std::vector<geometry_msgs::PoseStamped>& plan
30 ) ;

Then, the method bool makePlan must be overridden. The final plan will be
stored in theparameterstd::vector<geometry_msgs::PoseStamped>&
plan of the method. This plan will be automatically published through the plugin as
a topic. An implementation of the makePlan method of the carrot_planner
can be found in [16] as a reference.

Class Implementation In what follows, we present the main issues to be considered
in the implementation of a global planner as plugin. The complete source code of
the RA* planner can be found in [1]. Here is a minimum code implementation of the
RA* global path planner (RAstar_ros.cpp).

1 #include <pluginlib/class_list_macros.h>
2 #include "RAstar_ros.h"
3

4 //register this planner as a BaseGlobalPlanner plugin
5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)
6

7 using namespace std;
8

9 namespace RAstar_planner {
10 //Default Constructor
11 RAstarPlannerROS::RAstarPlannerROS(){
12

13 }
14 RAstarPlannerROS::RAstarPlannerROS(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
15 initialize(name, costmap_ros);
16 }
17 void RAstarPlannerROS::initialize(std::string name, costmap_2d::Costmap2DROS∗ ←↩

costmap_ros){
18

19 }
20 bool RAstarPlannerROS::makePlan(const geometry_msgs::PoseStamped& start, const ←↩

geometry_msgs::PoseStamped& goal,
21 std::vector<geometry_msgs::PoseStamped>& plan ){
22 if (!initialized_) {
23 ROS_ERROR("The planner has not been initialized, please call initialize () to use the ←↩

planner");
24 return false ;
25 }
26 ROS_DEBUG("Got a start: %.2f, %.2f, and a goal: %.2f, %.2f", start.pose.position.x, ←↩

start.pose.position.y,
27 goal.pose.position.x, goal.pose.position.y);
28 plan.clear();
29 if (goal.header.frame_id != costmap_ros_−>getGlobalFrameID()){
30 ROS_ERROR("This planner as configured will only accept goals in the %s frame, but a ←↩

goal was sent in the %s frame.",
31 costmap_ros_−>getGlobalFrameID().c_str(), goal.header.frame_id.c_str←↩

());
32 return false ;
33 }
34 tf ::Stamped < tf::Pose > goal_tf;
35 tf ::Stamped < tf::Pose > start_tf;
36

37 poseStampedMsgToTF(goal, goal_tf);
38 poseStampedMsgToTF(start, start_tf);
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39

40 // convert the start and goal coordinates into cells indices to be used with RA∗ ←↩

planner
41 float startX = start.pose.position.x;
42 float startY = start.pose.position.y;
43 float goalX = goal.pose.position.x;
44 float goalY = goal.pose.position.y;
45

46 getCorrdinate(startX, startY);
47 getCorrdinate(goalX, goalY);
48

49 int startCell;
50 int goalCell;
51

52 if (isCellInsideMap(startX, startY) && isCellInsideMap(goalX, goalY)){
53 startCell = convertToCellIndex(startX, startY);
54 goalCell = convertToCellIndex(goalX, goalY);
55 }
56 else {
57 cout << endl << "the start or goal is out of the map" << endl;
58 return false ;
59 }
60 /////////////////////////////////////////////////////////
61 // call RA∗ path planner
62 if (GPP−>isStartAndGoalCellsValid(OGM, startCell, goalCell)){
63 vector<int> bestPath;
64 bestPath = RAstarPlanner(startCell, goalCell); // call RA∗
65

66 //if the global planner find a path
67 if ( bestPath−>getPath().size()>0)
68 {
69 // convert the path cells indices into coordinates to be sent to the move base
70 for ( int i = 0; i < bestPath−>getPath().size(); i++){
71 float x = 0.0;
72 float y = 0.0;
73 int index = bestPath−>getPath()[i];
74

75 convertToCoordinate(index, x, y);
76

77 geometry_msgs::PoseStamped pose = goal;
78 pose.pose.position.x = x;
79 pose.pose.position.y = y;
80 pose.pose.position.z = 0.0;
81 pose.pose.orientation.x = 0.0;
82 pose.pose.orientation.y = 0.0;
83 pose.pose.orientation.z = 0.0;
84 pose.pose.orientation.w = 1.0;
85

86 plan.push_back(pose);
87 }
88 // calculate path length
89 float path_length = 0.0;
90 std::vector<geometry_msgs::PoseStamped>::iterator it = plan.begin();
91 geometry_msgs::PoseStamped last_pose;
92 last_pose = ∗it;
93 it++;
94 for (; it!=plan.end(); ++it) {
95 path_length += hypot( (∗it).pose.position.x − last_pose.pose.position.x, (∗←↩

it).pose.position.y − last_pose.pose.position.y );
96 last_pose = ∗it;
97 }
98 cout <<"The global path length: "<< path_length<< " meters"<<endl;
99 return true;
100 }
101 else{
102 cout << endl << "The planner failed to find a path " << endl
103 << "Please choose other goal position, " << endl;
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104 return false ;
105 }
106 }
107 else{
108 cout << "Not valid start or goal" << endl;
109 return false ;
110 }
111 }
112 };

The constructors can be implemented with respect to the planner requirements
and specification. There are few important things to consider:

• Register the planner as BaseGlobalPlanner plugin: this is done through the
instruction:

5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)

For this it is necessary to include the library:

1 #include <pluginlib/class_list_macros.h>

• The implementation of the makePlan() method: The start and goal para-
meters are used to get initial location and target location, respectively. For RA*
path planners, the start and goal first will be converted from x and y coordinates
to cell indices. Then, those indices will be passed to the RA* planner. When the
planner finish its execution, it will return the computed path. Finally, the path
cells will be converted to x and y coordinates, then inserted into the plan vector
(plan.push_back(pose)) in the for loop. This planned path will then be
sent to the move_base global planner module which will publish it through the
ROS topic nav_msgs/Path, which will then be received by the local planner
module.

Now that your global planner class is done, you are ready for the second step,
that is creating the plugin for the global planner to integrate it in the global planner
module nav_core::BaseGlobalPlanner of the move_base package.

Compilation To compile the RA* global planner library created above, it must be
added (with all of its dependencies if any) to the C MakeLists.t xt . This is the code
to be added:

add_library(relaxed_astar_lib src/RAstar_ros.cpp)

Then, in a terminal run catkin_make in your catkin workspace directory
to generate the binary files. This will create the library file in the lib direc-
tory ~/catkin_ws/devel/lib/librelaxed_astar_lib. Observe that
“lib” is appended to the library name relaxed_astar_lib declared in the
CMakeLists.txt
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4.2 Writing Your Plugin

Basically, it is important to follow all the steps required to create a new plugin as
explained in the plugin description page [17]. There are five steps:
Plugin Registration First, you need to register your global planner class as plugin by
exporting it. In order to allow a class to be dynamically loaded, it must be marked as
an exported class. This is done through the special macro PLUGINLIB_EXPORT_
CLASS. This macro can be put into any source (.cpp) file that composes the plugin
library, but is usually put at the end of the .cpp file for the exported class. This was
already done above in RAstar_ros.cpp with the instruction

5 PLUGINLIB_EXPORT_CLASS(RAstar_planner::RAstarPlannerROS, nav_core::←↩

BaseGlobalPlanner)

This will make the class RAstar_planner::RAstarPlannerROS regis-
tered as plugin for nav_core::BaseGlobalPlanner of the move_base.

Plugin Description File The second step consists in describing the plugin in a
description file. The plugin description file is an XML file that serves to store all
the important information about a plugin in a machine readable format. It con-
tains information about the library the plugin is in, the name of the plugin, the
type of the plugin, etc. In our case of global planner, you need to create a new
file and save it in certain location in your package and give it a name, for example
relaxed_astar_planner_plugin.xml. The content of the plugin descrip-
tion file (relaxed_astar_planner_plugin.xml), would look like this:

1 <library path="lib/librelaxed_astar_lib">
2 <class name="RAstar_planner/RAstarPlannerROS"
3 type="RAstar_planner::RAstarPlannerROS"
4 base_class_type="nav_core::BaseGlobalPlanner">
5 <description>This is RA∗ global planner plugin by iroboapp project.</←↩

description>
6 </class>
7 </library>

In the first line:

1 <library path="lib/librelaxed_astar_lib">

wespecify the path to the plugin library. In this case, the path islib/librelaxed_
astar_lib, where lib is a folder in the directory ~/catkin_ws/devel/ (see
Compilation section above).

2 <class name="RAstar_planner/RAstarPlannerROS"
3 type="RAstar_planner::RAstarPlannerROS"
4 base_class_type="nav_core::BaseGlobalPlanner">

Here we first specify the name of the global_planner plugin that we will use
later in move_base launch file as parameter that specifies the global planner to
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be used in nav_core. It is typically to use the namespace (RAstar_planner)
followed by a slash then the name of the class (RAstarPlannerROS) to specify
the name of plugin. If you do not specify the name, then the name will be equal to the
type, which is in this case will be RAstar_planner::RAstarPlannerROS.
It recommended to specify the name to avoid confusion.

Thetype specifies the nameof the class that implements the pluginwhich is in our
caseRAstar_planner::RAstarPlannerROS, and thebase_class_type
specifies the name of the base class that implements the plugin which is in our case
nav_core::BaseGlobalPlanner.

5 <description>This is RA∗ global planner plugin by iroboapp project.</description>

The <description> tag provides a brief description about the plugin. For a
detailed description of plugin description files and their associated tags/attributes
please see the documentation in [18].

Why Do We Need This File? We need this file in addition to the code macro
to allow the ROS system to automatically discover, load, and reason about plugins.
The plugin description file also holds important information, like a description of the
plugin, that doesn’t fit well in the macro.

Registering Plugin with ROS Package System In order for pluginlib to query all
available plugins on a system across all ROS packages, each package must explicitly
specify the plugins it exports and which package libraries contain those plugins. A
plugin provider must point to its plugin description file in its package.xml inside
the export tag block. Note, if you have other exports they all must go in the same
export field. In our RA* global planner example, the relevant lines would look as
follows:

1 <export>
2 <nav_core plugin="${prefix}/relaxed_astar_planner_plugin.xml" />
3 </export>

The ${prefix}/ will automatically determine the full path to the file relaxed_
astar_planner_plugin.xml. For a detailed discussion of exporting a plugin,
interested readers may refer to [19].

Important Note: In order for the above export command to work properly, the
providing package must depend directly on the package containing the plugin inter-
face,which isnav_core in the case of global planner. So, the relaxed_astar package
must have the line below in its relaxed_astar/package.xml:

1 <build_depend>nav_core</build_depend>
2 <run_depend>nav_core</run_depend>

This will tell the compiler about the dependency on the nav_core package.
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4.2.1 Querying ROS Package System for Available Plugins

One can query the ROS package system via rospack to see which plugins are
available by any given package. For example:

1 $ rospack plugins −−attrib=plugin nav_core

This will return all plugins exported from the nav_core package. Here is an
example of execution:

1 turtlebot@turtlebot−Inspiron−N5110:~$ rospack plugins −−attrib=plugin nav_core
2 rotate_recovery /opt/ros/hydro/share/rotate_recovery/rotate_plugin.xml
3 navfn /home/turtlebot/catkin_ws/src/navfn/bgp_plugin.xml
4 base_local_planner /home/turtlebot/catkin_ws/src/base_local_planner/blp_plugin.←↩

xml
5 move_slow_and_clear /opt/ros/hydro/share/move_slow_and_clear/recovery_plugin.xml
6 robot_controller /home/turtlebot/catkin_ws/src/robot_controller/←↩

global_planner_plugin.xml
7 relaxed_astar /home/turtlebot/catkin_ws/src/relaxed_astar/←↩

relaxed_astar_planner_plugin.xml
8 dwa_local_planner /opt/ros/hydro/share/dwa_local_planner/blp_plugin.xml
9 clear_costmap_recovery /opt/ros/hydro/share/clear_costmap_recovery/ccr_plugin.xml

10 carrot_planner /opt/ros/hydro/share/carrot_planner/bgp_plugin.xml

Observe that our plugin is now available under the package relaxed_astar
and is specified in thefile /home/turtlebot/catkin_ws/src/relaxed_astar/relaxed_astar_
planner_plugin.xml. You can also observe the other plugins already existing in
nav_core package, including carrot_planner/CarrotPlanner and
navfn, which implements the Dijkstra algorithm.

Now, your plugin is ready to use.

4.3 Running the Plugin

There are a few steps to follow to run your planner in turtlebot. First, you need to
copy the package that contains your global planner (in our case relaxed_astar)
into the catkin workspace of your Turtlebot (e.g. catkin_ws). Then, you need to
run catkin_make to export your plugin to your turtlebot ROS environment.

Second, you need to make some modification to move_base configuration to
specify the new planner to be used. For this, follow these steps:

1. In Hydro, go to this folder /opt/ros/hydro/share/turtlebot_navigation/launch/
includes

$ roscd turtlebot_navigation/
$ cd launch/includes/

2. Open the file move_base.launch.xml (you may need sudo to open and be
able to save) and add the new planner as parameters of the global planner, as
follows:
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1 ......
2 <node pkg="move_base" type="move_base" respawn="false" name="move_base" ←↩

output="screen">
3 <param name="base_global_planner" value="RAstar_planner/RAstarPlannerROS"←↩

/>
4 ....

Save and close the move_base.launch.xml. Note that the name of the
planner is RAstar_planner/RAstarPlannerROS the same specified in
relaxed_astar_planner_plugin.xml.
Now, you are ready to use your new planner.

3. You must now bringup your turtlebot. You need to launch minimal.launch,
3dsensor.launch, amcl.launch.xml and move_base.launch.
xml. Here is an example of launch file that can be used for this purpose.

1 <launch>
2 <include file="$(find turtlebot_bringup)/launch/minimal.launch"></include>
3

4 <include file="$(find turtlebot_bringup)/launch/3dsensor.launch">
5 <arg name="rgb_processing" value="false" />
6 <arg name="depth_registration" value="false" />
7 <arg name="depth_processing" value="false" />
8 <arg name="scan_topic" value="/scan" />
9 </include>

10

11 <arg name="map_file" default="map_folder/your_map_file.yaml"/>
12 <node name="map_server" pkg="map_server" type="map_server" args="$(arg ←↩

map_file)" />
13

14 <arg name="initial_pose_x" default="0.0"/>
15 <arg name="initial_pose_y" default="0.0"/>
16 <arg name="initial_pose_a" default="0.0"/>
17 <include file="$(find turtlebot_navigation)/launch/includes/amcl.launch.xml">
18 <arg name="initial_pose_x" value="$(arg initial_pose_x)"/>
19 <arg name="initial_pose_y" value="$(arg initial_pose_y)"/>
20 <arg name="initial_pose_a" value="$(arg initial_pose_a)"/>
21 </include>
22

23 <include file="$(find turtlebot_navigation)/launch/includes/move_base.launch.xml←↩

"/>
24

25 </launch>

Note that changes made in the file move_base.launch.xml will now be
considered when you bring-up your turtlebot with this launch file.

4.4 Testing the Planner with RVIZ

After you bringup your turtlebot, you can launch the rviz using this command (in
new terminal).

$ roslaunch turtlebot_rviz_launchers view_navigation.launch −−screen
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5 ROS Environment Configuration

One important step before using the planners is tuning the controller parameters as
they have a big impact on the performance. The controller parameters can be cate-
gorized into several groups based on what they control such as: robot configuration,
goal tolerance, forward simulation, trajectory scoring, oscillation prevention, and
global plan.

The robot configuration parameters are used to specify the robot acceleration
information in addition to theminimumandmaximumvelocities allowed to the robot.
We are working with the Turtlebot robot, and we used the default parameters from
tur tlebot_navigation package. The configuration parameters are set as follow:
acc_lim_x = 0.5, acc_lim_theta = 1, max_vel_x = 0.3, min_vel_x = 0.1,
max_vel_theta = 1 min_vel_theta = −1 min_in_place_vel_theta = 0.6.

The goal tolerance parameters define how close to the goal we can get. xy_goal_
tolerance represents the tolerance in meters in the x and y distance and should not
be less than the map resolution or it will make the robot spin in place indefinitely
without reaching the goal, so we set it to 0.1. yaw_goal_tolerance represents the
tolerance in radians in yaw/rotation. Setting this tolerance very small may cause the
robot to oscillate near the goal. We set this parameter very high to 6.26 as we do not
care about the robot orientation.

In the forward simulation category, the main parameters are: sim_t ime, vx_
samples, vtheta_samples, and controller_ f requency. The sim_t ime represents
the amount of time (in seconds) to forward-simulate trajectories, and we set it to
4.0. The vx_samples and vtheta_samples represent the number of samples to use
when exploring the x velocity space and the theta velocity space respectively. They
should be set depending on the processing power available, and we use the value
recommended in ROS web-site for them. So, we set 8 to the vx_samples and 20
to vtheta_samples. The controller_ f requency represents the frequency at which
this controller will be called. Setting this parameter a value too high can overload
the CPU. Setting it to 2 work fine with our planners.

The trajectory scoring parameters are used to evaluate the possible velocities to
the local planner. The three main parameters on this category are: pdist_scale,
gdist_scale, and occdist_scale. The pdist_scale represents the weight for how
much the controller should stay close to the global planner path. The gdist_scale
represents the weight for how much the controller should attempt to reach its goal
by whatever path necessary. Increasing this parameter will give the local planner
more freedom in choosing its path away from the global path. The occdist_scale
represents the weight for how much the controller should attempt to avoid obsta-
cles. Because the planners may generate paths very close to the obstacles or
dynamically not feasible, we set the pdist_scale = 0.1, gdist_scale = 0.8 and
occdist_scale = 0.3 when testing our planners. Another parameter named dwa
is used to specify whether to use the DWA when setting it to true, or use the Tra-
jectory Rollout when setting it to f alse. We set it to true because the DWA is
computationally less expensive than the Trajectory Rollout.
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6 Experimental Validation

For the experimental study using ROS, we have chosen the realistic Willow Garage
map (Fig. 3), with dimensions 584 * 526 cells and a resolution 0.1 m/cel. In the map,
the white color represents the free area, the black color represents the obstacles, and
the grey color represents unknown area.

Three performance metrics are considered to evaluate the global planners:
(1) the path length, it represents the length of the shortest global path found by
the planner, (2) the steps, it is the number of the steps in the generated paths.
(3) the execution time, which represents the amount of time that the planner spend
to find its best path.

To evaluate the planners, we consider two tours each with 10 random points.
Figure3 shows the points for one of the tours, where the red circle represents the start
location, the blue circle is the goal location, and the green circles are the intermediate
waypoints. We run each planner 30 times for each tour. Figures4, 5, 6 and 7 show
the global plans for that tour generated by the RA*, ROS-A*, and ROS-Dijkstra for
grid path and gradient descent method respectively.

Tables1 and 2 shows the path length and the execution time of the planners for
the complete tour.

Fig. 3 Willow Garage map
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Fig. 4 RA* planner

Fig. 5 ROS A* (grid path)
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Fig. 6 ROS Dijkstra (grid path)

Fig. 7 ROS Dijkstra (gradient descent)
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Table 1 Execution time in (microseconds) and path length in (meters) for tour 1

Planner Execution time Path length Number of steps

Total Average

RA* (grid path) 34.7532 3.4214 ± 0.4571 199.6486 1765

A* (grid path) 163.0028 14.4820 ± 1.1104 192.7875 1771

Dijkstra (grid path) 189.9566 19.0443 ± 1.2455 193.5490 1783

Dijkstra (gradient descent) 211.7877 19.1116 ± 1.1714 187.7220 3485

Table 2 Execution time in (microseconds) and path length in (meters) for tour 2

Planner Execution time Path length Number of steps

Total Average

RA* (grid path) 137.2426 13.7243 ± 0.7017 291.9332 2465

A* (grid path) 198.8332 19.8833 ± 1.2563 280.0695 2551

Dijkstra (grid path) 216.1717 21.6172 ± 1.2391 281.4142 2568

Dijkstra (gradient descent) 218.4983 21.8498 ± 1.2261 275.3235 4805

The ROS-Dijkstra with gradient descent method generates paths with more steps
but little shorter in length than A* paths, this is because it has smaller granularity
(more fine-grain exploration), so it has more freedom in the movements and more
able to take smaller steps.

Other planners work at cell level (grid path), so they consider each cell as a single
point, and they have to pass the whole cell in each step. As the resolution of the map
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Fig. 8 Detailed execution time for tour 1
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Fig. 9 Detailed execution time for tour 2

is 10cm, so the distance in each step is at least 10cm. Comparing the execution time,
the RA*, extremely superior the other planners in all simulated cases. Using RA*,
the execution timewas reduced bymore than 78% from the ROS-A*. Figures8 and 9
shows the average execution time for 30 run between each two points from the tour.
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