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Abstract The case study at hand describes our ROS-based setup for robot-assisted
(minimally-invasive) surgery. The system includes different perception components
(Kinects, Time-of-Flight Cameras, Endoscopic Cameras, Marker-based Trackers,
Ultrasound), input devices (Force Dimension Haptic Input Devices), robots (KUKA
LWRs, Universal Robots UR5, ViKY Endoscope Holder), surgical instruments and
augmented reality displays. Apart from bringing together the individual components
in a modular and flexible setup, many subsystems have been developed based on
combinations of the single components. These subsystems include a bimanual tele-
manipulator, multiple Kinect people tracking, knowledge-based endoscope guidance
and ultrasound tomography. The platform is not a research project in itself, but a basic
infrastructure used for various research projects. We want to show how to build a
large robotics platform, in fact a complete lab setup, based on ROS. It is flexible and
modular enough to do research on different robotics related questions concurrently.
The whole setup is running on ROS Indigo and Ubuntu Trusty (14.04). A repository
of already open sourced components is available at https://github.com/KITmedical.

Keywords Cognitive robotics · Medical robotics · Minimally-invasive surgery ·
Modular research platform

1 Introduction

Research into the robot-assisted operating room (OR) of the future necessitates the
integration of diverse sensor and actuator systems. Due to the rapidly progressing
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Fig. 1 Overview of our modular ROS-based research platform for robot-assisted minimally-
invasive surgery (cf. [4]). The system contains several components to perceive the environment, the
patient and the user. Physically actions can be executed by different robots. Interchangeability of
components is essential, i.e. higher level algorithms should not have to know which robot, tracking
system or camera is used. The whole setup also exists as a virtual model for the robotics simulator
Gazebo. Thus algorithms can be evaluated in simulation on a single host without the necessity of
accessing the real lab setup. This benefits both researchers and students by reducing the problem
of scheduling lab access

state of the art, the volatility of project funding and the diversity of research questions,
a modular and flexible platform is essential. Instead of each researcher developing a
separate setup for his project, synergies can be taken advantage of if the core platform
is used and extended by multiple researchers.

The ROS-based OP:Sense platform [9] tries to accomplish this for robot-assisted
minimally-invasive surgery (MIS). Figure1 shows the currently integrated compo-
nents. Some components are directly used in the research applications. For these
ROS provides a standardized and network transparent interface to use them—
concurrently—from any computer within the lab network. This way many lab
resources can be shared and do not have to be under exclusive control, e.g. sen-
sors. Other resources require arbitration, e.g. control of robot manipulators. Yet, it
is still advantageous that they are not bound to a specific control host. However, the
more interesting platform subsystems are those relying on multiple resources and
present these resources as more capable components to research applications. For
example, it is either possible to control the redundant lightweight robots directly
from the application or to interface them through a subsystem. This subsystem uses
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the environment sensors to optimize their redundant degree of freedom automati-
cally. Examples of research applications include an automated endoscopic camera
guidance robot [2], intuitive human robot interaction in the OR based on multiple
fused Kinect cameras [1] and probabilistic OR situation recognition [7].

The remainder of the chapter consists of the following topics:

• First, a brief introduction to robot-assisted surgery and current research topics in
this field are provided.

• Second, the general lab setup in terms of computing and networking hardware is
described.

• Third, an overview of the diverse components that are integrated into the plat-
form. For some components we rely on packages provided by the ROS commu-
nity. These will be referenced and briefly discussed. The components that were
either heavily adapted or created in our lab and released to the community will
be treated in greater detail. Our components comprise different perception com-
ponents (Kinects, Time-of-Flight Cameras, Endoscopic Cameras, Marker-based
Trackers, Ultrasound), input devices (Force Dimension Haptic Input Devices),
robots (KUKA LWRs, Universal Robots UR5, ViKY Endoscope Holder), surgi-
cal instruments and augmented reality displays.

• Fourth, following the single components, this part focuses on subsystem, which
provide higher level functionality through the combination of multiple compo-
nents. The subsystems include a bimanual telemanipulator, multiple Kinect people
tracking, knowledge-based endoscope guidance and ultrasound tomography.

• Fifth, we will focus on organizational and software engineering aspects of the
overall setup. In our case the robot actually is the whole lab. Therefore, change
and configuration management are particular problems to be addressed.

2 Background

Research in the field of surgical robotics has seen a similar shift to research in indus-
trial robotics. Instead of aiming for fully automated systems with a minimum of
human involvement, the goal is to provide the surgeon and more general the oper-
ating room (OR) staff with cooperating assistance systems. These systems require
information about the current situationwithin theOR, in particular about the tasks and
activities of the OR staff. The robots in the ORmust also be sensitive to their immedi-
ate surroundings instead of simply executing a pre-programmed task. Research ques-
tions pertain to improve the robot’s capabilities of perception, planning or action. In
order to facilitate research that relies on progress in multiple of these dimensions,
we designed a ROS-based modular platform for cognitive surgical robotics.



320 A. Bihlmaier et al.

Fig. 2 An example slave
side of the telemanipulation
scenario featuring three
different types of robots:
Two manipulating robots
(LWR, UR5) with attached
articulated tools in the
minimally-invasive
configuration and the ViKY
system holding the
endoscopic camera

3 ROS Environment Configuration

Although industrial robot manipulators are part of our lab setup, the actual robotic
system is the whole operating room. For that reason, each component and subsystem
of the platform will be described on its own in the following chapters. Beforehand,
only a few basic points about the complete computing and networking hardware are
presentedhere. Thefirst part of the computational infrastructure are the coremachines
that provide aROSabstraction to the components and subsystems.The secondpart are
the individual researchers’ client machines, which run the high-level applications.
In the core platform a large Gigabit Ethernet switch serves as central networking
hub. Some large components contain an additional internal network hierarchy that is
connected to the central switch (e.g. Sects. 4.4 and 4.5). Core computing is distributed
across about 15 computers. For the most part these consist of commodity desktop
machines, some with high-end graphics cards (see Sect. 4.6), some small form-factor
PCs and a few single-board computers. All core machines run Ubuntu Linux.

4 Components

4.1 Robots

KUKA LWR IV Each of the KUKA LWR arms (cf. left robot in Fig. 2) has seven
degrees of freedom with position and torque sensors in each joint. Both robots are
controlled from a single PC. The communication protocol between the robots and
the PC—the Fast Research Interface (FRI)—is provided by KUKA and is based on
UDP. We control the robots with 1kHz update rate, so the computer has to respond
within 1ms. If the computer does not meet the cycle deadline, i.e. does not respond
in time to the measured joint data with new target parameters, the robot control per-
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forms an emergency stop of the robot. Thus, for each robot there are two threads.
One thread is running at the highest Linux kernel priority handling the FRI com-
munication. FRI joint positions and torques are stored and converted into Cartesian
position and forces/torques. Then one interpolation step towards the current target is
performed, either only in joint space or first in Cartesian space and then validated and
truncated within joint space. The other thread with normal priority manages the ROS
communication. Its update rate is decoupled from the robot and flexible, depending
on the task.

We decided to use the publisher/subscriber mechanism since the actionlib
is not suited for our scenario where we have constantly changing target positions.
These are due to the fact that we operate in a highly dynamic and unpredictable
environment. The robot is controlled online by a human instead of moving on a
predefined trajectory. Messages to the robot will not be forwarded directly, instead
they update the target for the interpolation, so velocity and acceleration constraints
are handled by the controller and the pose update rate is flexible. For robot control
in joint space we use sensor_msgs/JointState, both for reading the current
robot position and commanding a new target. In the second case, the semantics of
the velocity field are adapted to command the maximum joint velocity and the effort
field is used to command the maximum joint acceleration. For Cartesian control we
use geometry_msgs/Pose and specify fixed velocity and acceleration limits in
an initialization file. The robot controller PC handles some further low level control
strategies like hands-on mode and an optimization for the elbow position (the robot
redundancy). In hands-on mode, each joint accelerates into the direction of external
torque (the compensation of gravity and dynamic torques is done by the KUKA
controller), while heavily decelerated by viscous friction, so the robot comes to halt
quickly after being released. To optimize the elbowposition, a cost function is created
which considers the following aspects: distance of each joint to its limits, distance
of each hinge joint to its stretched position (to avoid singularities), distance of the
elbow to an externally specifiable target. The last point is used for interacting with
surgical personnel, which is further described in Sect. 5.3.

Universal Robots UR5 The UR5 robot is supported out of the box through the
universal_robot stack provided by the ROS Industrial community. However, in addi-
tion to the actionlib interface, we added the same topic interface as described for
the LWR IV above. Furthermore, a Gazebo plugin was developed that exposes the
manufacturer proprietary network format (see Sect. 5.6).

Trumpf ViKY A ROS interface for the motorized endoscope holder ViKY was
developed that allows servo position control over the network. The interface is the
same as for the two other types of robots. But since the ViKY only has three degrees
of freedom (DoF) a Cartesian topic is not provided, instead trocar coordinates are
exposed. The latter consist of spherical coordinates centered in the remote center of
motion, which is defined by the small trocar incision in the patient’s abdominal wall.
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Path Planning and Collision Avoidance For both lightweight manipulators, to be
more precise for any combination of manipulators and tools attached to the OR
table, a URDF robot description has been created.1 Based on the robot’s URDF we
use MoveIt! for path planning and collision avoidance. Path planning is an optional
component in some configurations of the system (cf. Sect. 5.1). However, collision
avoidance is always active with respect to all static parts of the environment.

4.2 Endoscope Cameras

Endoscopic cameras are a prerequisite for minimally-invasive surgery, thus the plat-
form provides not only one but two kinds of endoscope cameras. The first camera is a
medical device, R. Wolf Endocam Logic HD, which is interfaced through a HD-SDI
connection with a PC-internal video capture card, Blackmagic Design DeckLink.
A ROS driver, decklink_capture, was developed which provides the images using
image_transport. The second camera is an industrial GigE Vision camera, Allied
Vision Manta G-201, which is compatible with the community provided prosil-
ica_driver package. Proper use of ROS name remapping and of the information
provided in sensor_msgs/Image ensures that higher level applications trans-
parently work with both cameras.

4.3 OR Perception System

One major focus of OP:Sense is the perception of the robotic system and its envi-
ronment, especially people acting around and interacting with the robots. As the
environment in the OR is often very crowded, we developed a dense sensor system
to avoid occlusions. The sensing system consists of the following components that
each publishes its data under a separate topic namespace:

• an optical tracking system (ART): /art/body1..n
• a time-of-flight (ToF) 3D camera system (PMD): /pmd/S3/camera1..n
• a structured light 3D camera system (Kinect): /kinect/camera1..n

Figure3 gives an overview of the realized network topology for the whole perception
system. Figure4 shows a picture of the real setup as realized in the laboratory. In the
following, the components and their implementation as parts of our ROS network
are explained in more detail.

1To cope with the many possible combinations, we defined the models in a hierarchical manner
using the Gazebo SDF format, which we convert to URDF using the sdf2urdf converter provided
by our pysdf package.
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Fig. 3 Network topology of perception subsystems

Fig. 4 One side of our sensor rig with different cameras: Kinect (top left and top right), ToF
cameras (PMD S3, outermost), optical tracking system (ART, with two visible red LEDs), Kinect
server (center, with visible green circle)

4.4 Marker-Based Optical Tracking

For high-accuracy 6D pose tracking e.g. of medical instruments, the ARTTrack2
system by ART is used. We use a six-camera configuration in order to reliably
track rigid bodies in a volume over the OR table in presence of occlusions, e.g. by
robots or humans. The tracking system provides a network stream of the tracked
data in a simple proprietary network protocol. For usage in the ROS-based OP:Sense
environment, a ROS node was implemented that provides the pose of tracked
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objects both as a ‘raw’ data stream with all values provided in original ART
format (Float64MultiArray) and as a PoseStamped message with correct
frame_id to be directly accessible in ROS nodes and via the ROS command line
tools.

The scientific value of the tracking system is the precise tracking of rigid bodies,
e.g. to record and analyse the motions of surgical instruments during an intervention.
From a technical point of view, we use it as a day-to-day tool for conveniency tasks,
such as quickly acquiring an object’s location, and routine tasks such as registration.
The coordinate system defined by the optical tracking system is used as a world
coordinate system, where applicable. Registration methods have been developed for
the different sensors and actors present in our system, such as cameras (3D and
2D, e.g. endoscopic), robots (end effectors equipped with marker spheres), medical
phantoms and systems for augmented reality (projector and LED array).

4.5 Time-of-Flight Cameras

For low latency, low resolution 3D scene perception a multi-ToF-camera system is
used. It consists of six pmd[vision] S3 cameras (64× 48 px) and one pmd[CamCube]
2.0 (204× 204 px). This camera system is for applications where speedmattersmore
than high resolution, e.g. safety critical applications such as human-robot-interaction
in a shared workspace and collision avoidance.

As ToF cameras are prone to interference when used in the same space, we imple-
mented a time- and frequency-based multiplexing synchronization. The cameras are
controlled via their proprietary API from a dedicated PC over Ethernet segments sep-
arate from the ROS network (and USB in case of the CamCube). The data acquisition
and processing/publishing have been split into two different threads, thus a slower
processing/publishing (e.g. publishing to many subscribers via TCP) does not affect
the rate with which the cameras are triggered.

Acquired data is lightly preprocessed (filtering typical ToF artifacts such as jump-
ing pixels) and published onto the ROS network with the according data types, e.g.
sensor_msgs/PointCloud2 for point clouds and using image_transport for
the amplitude, depth and (in case of CamCube) greyscale images. As the low-level
details of the camera control such as time-multiplexed triggering are hidden from
the ROS network, there is also no direct low-level per camera control exposed via
ROS (such as offered in the pmd_camcube_3_ros_pkg package). Instead, control is
implemented as a service that allows to reconfigure the camera system to different
preconfigured modes, e.g. a mode with high frame rate and reduced integration time
(resulting in higher noise) or with high integration times and subsequent triggering
that offers the best data quality.
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4.6 RGB-D Cameras

In order to allow a high resolution supervision of the scene, which is of great impor-
tance for human action detection within the operating room, RGB-D cameras are
used in OP:Sense. More specifically, we utilize the Microsoft Kinect 360 cameras
of which four are attached to a ceiling-mounted camera rig (see Fig. 4). The Kinect
camera depth sensing is based on a structured light pattern which is projected onto
the scene. This pattern in the infrared spectrum is observed using an infrared camera.
The principle is based on stereo vision using an active component. Through the use of
an astigmatic lens system, the light dots of which the structured light is composed are
observed as ellipses with orientation. Their geometric relation and size is dependent
on the position of the surface the light is projected, relative to the camera sensor and
can therefore be used to reconstruct the 3D scene information. The output data of the
Kinect cameras is a 11 bit depthmapwith 640× 480 pixels resolution. In our system,
this depth map is directly used for people tracking (Primesense NITE framework) in
addition to the calculation of point clouds. The four Kinect cameras are mounted in
a rectangular configuration of approximately 1.80× 2.10m over the OR table. The
center of the field of view of each camera is in the center of the rectangle to observe
the operating table and it’s surrounding with the highest possible resolution that can
be achieved with Kinect cameras.

TheMicrosoft Kinect 360 cameras are integrated into the ROS environment using
the OpenNI package which allows for using the Kinect cameras from within a ROS
system. To keep the Kinects’ footprint in the OR as small as possible, we split the
access and processing of Kinect data between different computers. Each two Kinects
are connected to a small form-factor PC (Zotac ZBOX nano AD10, featuring two
USB host controllers and a 1 GBit Ethernet port). This Kinect server runs the driver
component of the OpenNI package and publishes the depth map and unprocessed
RGB image on the network. The processing of all connected Kinect cameras is
done on a central server located further away from the OR table, where sterility and
space usage are not an issue. This approach allows for a flexible number of Kinect
cameras which can easily be adapted to local requirements. The current small Kinect
servers, which have been integrated in 2011, still use internal fans for cooling, which
is problematic in the sterile OR environment. By today, the same system could be
easily realized with passive-cooled Kinect servers.

In addition, a new Kinect-based camera system using the Time-of-Flight based
Kinect One is currently being integrated. This system uses a four camera configura-
tion like the system described above. However, for the upcoming Kinect One system
we use a small computer for each camera runningWindows 8.1 that already performs
initial data processing such as point cloud calculation and user tracking based on the
Microsoft Kinect SDK 2.0.

The processed data is published to ROS using a custom bridge based on win_ros.
At time of implementation, win_ros was available only for Visual Studio 2010
whereas Kinect SDK 2.0 requires Visual Studio 2012, sowe split the ROS bridge into
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two components that exchange their data using shared memory. Data is published
using the following message types:

• sensor_msgs/PointCloud2: Organized, 512× 424 px RGB point cloud
(extended with a “uid” field that encodes the user id if the according point corre-
sponds to a tracked user).

• sensor_msgs/Image: 1920× 1080 px RGB image.
• geometry_msgs/PoseArray: Joint poses per tracked human.
• UInt8MultiArray: Tracking state for each joint per tracked human (as defined
by Kinect SDK 2.0: not tracked, inferred, tracked).

To deal with the expected data volume, a new 10 GBit Ethernet segment is cur-
rently added to our ROSnetwork throughwhich the published datawill be transferred
to a Ubuntu-based workstation for further processing.

4.7 Input Devices

One of themain research topics in the scope of OP:Sense is human robot cooperation.
Therefore interfaces that allow for a natural interaction with the system are required.
In the telemanipulation scenario the surgeon directly controls the robotic arms using
haptic input devices accessible from amaster console. The input system is composed
of a left hand device, a right hand device and a foot pedal.Monitors are included in the
master console providing an endoscopic view together with additional information
about the environment as well as the system and intervention state. The haptic input
devices are 7 axis devices from Force Dimension. In OP:Sense we use the Sigma.7
device (right hand) and the Omega.7 device (left hand). The devices are composed of
a delta kinematic for translational movement in Cartesian space coupled to a serial
kinematic for rotational input. Additionally, a gripper is attached at the handle of
the input device to actuate medical grippers or coagulators attached to the medical
robot. The Omega.7 device (Fig. 5) is capable of displaying translational forces and
gripper forces to the user. The Sigma.7 device additionally allows to render torques
on the rotational axis.

Fig. 5 The Omega.7 haptic
input device mounted at the
master console
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For the integration of these devices, a ROS wrapper based on the available Linux
driver of the haptic input devices has beenwritten. This wrapper is a ROS nodewhich
is run for each device. It allows to access the pose of the device using a topic of type
geometry_msgs/PoseStamped. The gripper position can be accessed via a
topic of type std_msgs/Float32. In order to render forces and torques on the
devices, a topic of type std_msgs/Float32MultiArray with 3 translational
entries, 3 rotational entries and 1 value for the gripper opening is used. The foot
pedal component includes two pedals and is used in the telemanipulation scenario
as a clutching system (deadman switch) and to change the scaling factor. The pedal
component is a medical pedal that has been connected to a USB I/O adapter that
can be accessed using an open source driver. Our ROS wrapper publishes all I/O
channels as std_msgs/Float32MultiArray.

4.8 OpenIGTLink-ROS-Bridge

OpenIGTLink (Open Network Interface for Image Guided Therapy) is a standard-
ized network protocol, used for communication among computers and devices in
the operating room. The protocol provides a simple set of messaging formats, e.g.
pose data, trajectory data, image data or status messages. Reference implementations
are available in C/C++, Matlab and Java. OpenIGTLink is supported, among others,
by 3D Slicer, IGSTK, MeVisLab, MITK and Brainlab. In order to connect compo-
nents using OpenIGTLink with OP:Sense a bridge between OpenIGTLink and ROS
was implemented. This bridge provides user-defined duplex communication chan-
nels between ROS nodes and OpenIGTLink connections. OpenIGTLink clients and
servers are supported. The channels convert the messages into the required target
format. Each channel is able to

• subscribe messages from ROS topics, convert them and send the converted mes-
sages to OpenIGTLink connections;

• receive messages from OpenIGTLink connections and publish them on ROS
topics.

Table1 shows the currently supported OpenIGTLinkmessage types and themapping
to ROSmessage types. Due to the complexity of the OpenIGTLink IMAGEmessage,
it had to be split into 3 ROS messages.

Table 1 The mapping between OpenIGTLink and Ros messages

OpenIGTLink message type ROS message type

POSITION geometry_msgs/PoseStamped

TRANSFORM geometry_msgs/TransformStamped

IMAGE sensor_msgs/Image tf/tfMessage
geometry_msgs/Vector3Stamped
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4.9 Ultrasound Imaging

TheOP:Sense platform provides an ultrasound system for intraoperative imaging and
navigation. The functionality of the system allows tracked live ultrasound imaging,
acquisition of 3D volumes, ultrasound-guided interventions, intraoperative naviga-
tion and preoperative imaging fusion [5]. As hardware components the Fraunhofer
DiPhAS ultrasound research platform, a 2D transducer with tracker marker mount,
a tracking system and a workstation computer for data processing are used. The
transducer can be mounted to a robot. As software components, the Plus toolkit for
navigated image-guided interventions and 3D Slicer for visualization and planning
are used. The components are connected viaOpenIGTLink. AnyOpenIGTLink com-
patible device can be used for tracking system or imaging. Alternatively, any device
supported by Plus can be used.

The integrationwithOP:Sense is realized by theOpenIGTLink-ROS-Bridge com-
ponent. Plus as the central component receives pose data from the bridge node
which acts as an OpenIGTLink server. Pose data can be received from any ROS
topic that provides either messages of type geometry_msgs/PoseStamped or
geometry_msgs/TransformStamped. The tracked image stream is provided
by Plus via an OpenIGTLink server. The OpenIGTLink-ROS-Bridge connects to the
Plus server and makes the stream available in the ROS network.

4.10 Surgical Instruments

OP:Sense can be used with different types of surgical instruments

• Rigid instruments: Instruments that can be used for open surgery and are rigidly
attached to the end effector of the robots, such as scalpels.

• Articulated minimally-invasive instruments: Standard minimally-invasive instru-
ments with a motor for opening/closing of the instrument and one for the rotation
along the instrument shaft.

• Flexible Surgical Instruments: Research instruments with flexible shafts that allow
for better manoeuvrability and dexterity.

Articulated Minimally-Invasive InstrumentsThe instruments are standard laparo-
scopic instruments with a modified gripping mechanism and a motorized rotation
along the instrument shaft. These instruments are used in the minimally-invasive
telemanipulation configuration of the OP:Sense system. Faulhaber brushless DC-
servomotorswith an integratedmotion controller and aCAN interface providemotor-
ization. An instrument control node serves as a bidirectional wrapper between ROS
messages and appropriate CANmessages. After calibration, the node accepts a grip-
per opening angle on a std_msgs/Float64 topic (in percentage of maximum
angle) and publishes its current opening angle on another topic of the same type. The
same also holds for the rotation angle of the instrument shaft rotation.
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Fig. 6 Instrument holder
with flexible instruments

Flexible Surgical InstrumentsFor interventions in the abdominal area, a higher dex-
terity of the instruments than that achievable by traditional laparoscopic instruments
can be benefitial. For this case, an instrument holder with three flexible instruments
(see Fig. 6) was designed, that can be attached to the end-effector of a robot [8].
Using this holder, all three instruments can rotate around a common axis and move
individually on a translational axis. The flexible part of the instrument, 180mm in
length and with a diameter of 10mm, is composed of two segments. Each segment
with a length of 90mm consists of a stack of alternating rigid and soft elements,
which are equipped with two Degree of Freedom (DoF) that are actuated individu-
ally by cables. The rigid elements are stereolithograpically printed, whereas the soft
elements are made out of vacuum casted silicone. By pulling the cables, the silicone
elements are deformed and the segment bends into the according direction. Addition-
ally, in the center axis of the flexible structure a channel is realized where an optical
sensor is integrated, capturing the current shape of the instrument. A gripper with
one DoF is fixed at the tip of two instruments and a chip-on-the-tip camera module
is attached to the third instrument. From the kinematical point of view, each flexible
segment features 54DoF. These are reduced to two main axis of motion, represented
as revolute DoFs around the x- and y-axis per silicon element. The control of one
instrument via ROS is realized by a sensor_msgs/JointState topic for the
instrument holder and each instrument. Due to the negligible velocity of the joints,
only the position field contains the x- and y-axis values for both segments. In the
same way, there are topics for the grippers.

4.11 Augmented Reality

With respect to the field of human-machine-interaction, OP:Sense integrates modali-
ties for spatial augmented reality, where information is directly provided in the scene
without assistant devices such as AR glasses. For projecting information onto the
situs, a full HD short-distance projector (Benq TH 682ST) is mounted over the OR
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Fig. 7 Exemplary live
scenario for spatial
augmented reality for
minimally-invasive
interventions with projected
instrument shaft, tip point
and view cone of the
endoscopic camera

table and is connected to one of the Kinect servers (see Sect. 4.6). Connection via
HDMI is possible by the configuration of the vendor-specific graphics card driver in
order to have a non-modified 1920× 1080 pixel output signal.2

Rendering of content is performed using openframeworks, which we extended
with a ROS interface. For displaying basic geometric information like project-
ing the trocar points and instrument poses onto a patient, we use the scalable
vector graphics (SVG) format. We implemented a SVG preprocessor as part of
our augmented reality node that parses the SVG string for a custom tf exten-
sion and replaces the tf frame ids with the correct coordinates from the point of
view of the projector. If for example an application needs to highlight the robot’s
end effector (which pose is available on tf), it can simply send an SVG graph-
ics that contains <circle *tf [cx|cy] RobotToolTip /tf* r=100
fill=blue (...) />. The augmented reality node will receive this message,
continuously evaluate it based on the tf transformations available on theROSnetwork
and project the according image. Figure7 shows a demonstration scenario with live
projection based on current system data available on tf. To keep the network load
low, we realized a continuous reactive projection, e.g. onto a target that provides
position updates with 100 Hz, by sending only one initial message to the projection
node.

5 Subsystems

5.1 Telemanipulation

Telemanipulation is a concept to use robots in a master-slave mode. This means
that input devices (masters) are used to control the robots (slaves) of a system. The
concept can be used in hazardous environments such as chemistry labs. In medicine,
telemanipulation is usually applied to minimally-invasive surgery (MIS) to allow the

2In our case, for an AMD graphics card on Ubuntu, the required command is:
aticonfig–set-dispattrib=DFP2,sizeX:1920 and ,sizeY:1080 as well as
,positionX:0 and ,positionY:0.
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Fig. 8 Overview of a large
part of the components (see
Sect. 4) in our lab setup in a
configuration for
telemanipulation (see
Sect. 5). Front Master
console with haptic input
devices, foot pedals and
screens. Back Different
robots mounted to the OR
table. Top Perception and AR
system

surgeon to work more similar to open surgery than is the case in traditional MIS.
Additional goals are improvement of ergonomics and accuracy, e.g. by providing a
scaling factor between human input and instrument motion.

Our system is composed of a master console with haptic input devices and slave
robots, mounted to the operating bed, to which the surgical tools are attached. The
system is depicted in Figs. 8 and 2. A third robot such as the UR5 or the ViKY is
utilized to hold the endoscope providing vision to the situs. The instruments of the
robots are introduced to the patient’s body through trocars which are the remote
center of motion for the telemanipulation task. This remote center of motion creates
the fulcrum effect which causes a mirrored motion of the tip of the instruments
compared to the surgeon’s hand motion. In non-robotic surgery, this effect can only
be compensated by the surgeon through practical experience.With a telemanipulated
robot, this effect can be compensated in software. Additionally, the remote center
of motion restricts the movement of the tooltip to four degrees of freedom (rotation
around the tool shaft, three translations of the tooltip), whichmeans that two rotations
(hand wrist movement) are lost as long as no additional joints at the tooltip are used.
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Finally, a problem inMIS is that the image from the endoscopic image is displayed
on a monitor which is in most cases not registered to the surgeon’s hand, thereby
producing an additional cognitive load. In OP:Sense the complete system is regis-
tered with respect to the endoscopic camera whose image is displayed at the master
console. Thus, the surgeon’s vision of the instruments is in the same coordinate
frame than his/her eyes, i.e. the instrument’s position and orientation corresponds
to the surgeon’s hand position and orientation. The configuration of the telemanip-
ulation system, e.g. setting which input device controls which robot, is completely
controlled by launch files and can therefore be adapted to various combinations of
input device and robot. The telemanipulator directly uses the robot controllingmech-
anisms of OP:Sense described above, i.e. the input and output of the telemanipulator
is a geometry_msgs/Pose. This means that for a bimanual setup the telemanip-
ulation system is launched twice with different robot-input device configurations.

The telemanipulation system is registered optically using the optical tracking
system and the endoscopic image, working in the base frame of the tracking system.
In addition, tracking is used to acquire the current position of all components during
the operation. This allows to move the robots and the camera during the procedure
while providing a stable coordinate system to the surgeon. The telemanipulation
system is composed of the nodes listed below, which are implemented as nodelets to
minimize the latency and the (de)serialization overhead:

• Input device node: The haptic device node described in Sect. 4.
• Telemanipulation node: This node receives the input device position, the robot
position and in case of articulated instruments also the instrument position. Addi-
tionally, the node reads the calibration and periodically published tracking poses
(geometry_msgs/Pose). The system is triggered through the update rate of
the haptic input devices, that thereby serves as clock generator of 1kHz. Each
cycle new positions for the instrument tooltip are computed, which are published
as geometry_msgs/Pose messages.

• Trocar node: A trocar point can be defined by means of an optically tracked
pointing device. The device is pointed at the desired position at which moment a
std_srvs/Empty service is called. The trocar node reads the current position
of the pointing device and uses its position as trocar point. When the service is
called for the first time, the trocar algorithm is activated. As soon as the trocar
algorithm is running, it continuously calculates the necessary pose of the robot
end effector while abiding to the trocar constraint (for each instrument pose, the
trocar point has to be along the shaft of the instrument). This results in a robot
pose that holds the instrument tip at the desired position, but neglects the desired
orientation of the instrument. In case of the use of an articulated instrument, the
trocar node also computes the required pose for the instrument. The final output
of the trocar node is a topic of type geometry_msgs/Pose which is passed to
the robot controller and a topic of type std_msgs/Float64 representing the
desired rotation of the rotation axis of the instrument in radian.
The telemanipulator can also be used in an open surgery mode where no tro-
car is used. In this case the trocar algorithm is bypassed and the output of the



ROS-Based Cognitive Surgical Robotics 333

telemanipulation mode is directly used to compute the new robot end effector
pose based on the calculated tooltip pose. Articulated instruments are not used
in this case as in open mode no trocar point is present and all 3 rotations and
translations of the robot can be used.

• Robot controller: The robot controller directly drives the robot to the desired pose
computed by the trocar node without using path planning. This is possible as
the increments of the path in telemanipulation mode are small enough given an
appropriate update rate of the telemanipulator.

As described above, the pedal serves as a dead man switch (which disconnects
the robot when not pressed) and for setting the motion scaling. The pedal’s current
configuration is passed to a pedal node which passes the state of the clutching pedal
as a std_msgs/Bool to the telemanipulation node.Whenever the clutch is closed,
the telemanipulation node performs a registration routine after which any movement
of the input devices and the robot is computed relative to the position of the robot
and the haptic input device at the time the clutch closed. The second pedal switches
between a set of scaling factors. Every time the scaling is changed, the current scaling
factor is passed to the telemanipulation node as a topic of type stdmsgs/Float32
where it is used to scale the motion of the haptic input device with respect to the
robots movement.

5.2 Multi-RGBD People Tracking

Another important part in the scope of OP:Sense is the semantic perception of the
environment. To allow for sophisticated human robot interaction such as situation
detection or the optimization of the robot posewith respect to the human, information
about the human pose is needed. For this purpose we utilize the Kinect system
where each Kinect camera is registered to a reference one. The approach is based
on OpenCV and PCL. For registration, we first detect a checkerboard in both RGB
cameras (reference camera and camera to be registered), then we use the depth
camera to find the 3D positions of the checkerboard corners in both Kinect frames.
The resulting correspondences are then used to estimate the transform between the
cameras. This is repeated until all cameras are registered to each other. In a second
registration step we use the reference camera and the RANSAC plane detection
algorithm to detect the floor plane which is later on used for the computation of
people positions.

The aim of the people detection system is to integrate information about the posi-
tion of the humans, the points representing the humans and the skeletal configuration
of the humans. As written in Sect. 4.6, one workstation is dedicated to perform all
computations on both theRGBand the depth images from theKinect. Afilter pipeline
implemented as nodelets is used to perform a fusion on the heterogeneous data from
the Kinect. The components of this pipeline are:
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• People detection node: The Primesense NITE algorithm is used to detect and track
people in the camera frames. The algorithm runs for every camera and extracts a
depth image that only includes the pixels representing a human (other pixels are
black). NITE is capable of detecting up to 16 humans at a time so we compute
16 depth images. We then perform an erosion operation on the depth images to
remove some of the noise introduced by the use of multiple Kinect cameras. For
each camera we then publish 16 topics whereas each topic is used for one of
the users depth images.3 Additionally we add the skeletal configuration of each
human that is computed by the NITE algorithm with respect to the camera frame
where the human is detected to the tf tree. Finally, we publish topics of type
std_msgs/Float32 to provide the keys of users detected and the keys of
users of which tracking information are available for following computations.

• User image processor node: This node computes a 3D pointcloud for each human
detected in a Kinect camera using the known transfer function of the Kinect. In
the human detection system, this node runs once for every Kinect camera and sub-
scribes to the 16 depth image topics representing the users. After the computation
of a point cloud for every user, we perform an additional noise removal step using
the statistical outlier removal algorithm fromPCL. This produces a low noise point
cloud for every human detected in the scene. For every possible detected human
a sensor_msgs/PointCloud2 topic is created which is used to publish the
point clouds representing the users. When four Kinect cameras are used, this cre-
ates 64 topics that are either empty or contain information associated to a detected
human.

• Fusion: This node is not triggered by the camera driver as the Kinect cameras are
not running synchronously. Instead, it uses its own computation loop for clock
generation. It subscribes to all point clouds representing users and to the array
of detected users published by the NITE node. The purpose of this node is to
combine the clouds of corresponding users that are detected by multiple cameras.
As a measure to determine these correspondences, the centroid of each point-
cloud representing a human is computed using the according PCL algorithm and
projected to the floor. To allow for a more robust correspondence estimation,
we project the centroids of the point clouds to the floor. The Euclidean dis-
tance between the centroids is used to concatenate the point clouds of humans
which were detected in multiple cameras. The final point clouds are published as
sensor_msgs/PointCloud2. Additionally we use a custom message hold-
ing a 2D array that provides the information about corresponding humans in mul-
tiple camera views.

• Distance computation: This node computes features that can be used to infer
information about the current state in the OR. Features include distances between
humans and different parts of the robots or between human and human. One
particular feature is the distance between the human closest to the two robots. It is

3Unfortunately, the NITE nodes cannot be run as nodelets.
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used as a simple low-dimensional input to the robot cost function in Sect. 4.1. The
node subscribes to the combined point clouds of the Fusion node and uses CUDA
to perform brute force Euclidean distance computation between the point clouds
and CAD models of scene items. An example for such a CAD model is the robot
in its current joint configuration.

5.3 Human-Robot-Interaction

In the design of a large modular surgical robotic platform, ease of use and intuitive
interaction has to be considered, but also safety for the medical staff, the patient
as well as the technical devices. Therefore, we combine probabilistic models and
rule based functions in order to interpret the context information in an ongoing
surgery. Context information can be modelled by using workflows. These workflows
are composed of individual workflow steps presented as Hidden Markov Models
(HMM). For each workflow step, a different HMM was trained using previously
acquired training data. In Fig. 9 a representation of the target workflow (autonomous
switching to the hands-on mode) is given. During the training phase we recorded
various features to fit each HMM individually.

In the following example we employ four workflow steps and thus four HMMs
(‘s’ = start, ‘a’ = touch EE, ‘b’ = move robot, ‘l’ = release EE). Additionally,
we annotate each step by capturing the corresponding keyboard input, including the
ROS time to synchronize the recorded features and the keyboard input afterwards.
The quality of the online classification strongly depends on the selected feature vec-
tor. One representative feature for the workflow is the minimal distance between the
human and the robot end effector as calculated by theMulti-RGB-D People Tracking
subsystem (cf. Sect. 5.2) and provided as a std_msgs/Float. Another feature is
the robot’s velocity which is included in the sensor_msgs/JointState mes-
sages provided by its controller (see Sect. 4.1). The last feature “approach” indicates
if the human is moving towards or away from the robot derived from minimal dis-
tance feature. The implementation was done in Python, for which a Gaussian HMM

Fig. 9 Intuitive switching of a robot from position mode into Hands-On mode and back, based
on the perception subsystem using Hidden Markov Models. a Start position ‘s’. b Touch EE ‘a’.
c Move robot ‘b’. d Release EE ‘l’
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model is provided within the package scikit. After training of the HMMs, they can
be used for realtime online classification in OP:Sense. The feature vector is passed
to each HMM and evaluated by using the log likelihood probability implemented in
scikit. The HMMwith the highest likelihood will be set as the most likely state. The
result state is published as a std_msgs/String for other subcomponents.

5.4 Endoscope Guidance

The teamwork between the surgeon and the human camera assistant in minimally-
invasive surgery poses many challenges and opportunity for improvement. There-
fore, we research having a robot instead of a human assistant guiding the endoscope.
Motorized endoscope holders, such asViKY(seeSect. 4.1), are already commercially
available. However, they require that the surgeon manually controls every reposi-
tioning, thus further increasing his cognitive load. A cognitive endoscope guidance
system is currently being researched that provides autonomous endoscope reposi-
tioning by means of a knowledge base. Since this assistance system is not developed
standalone, but based on our ROS platform, many synergies can be exploited and
additional functionality is provided to the surgeon. For further information, we refer
to the detailed description in [2].

5.5 Ultrasound Tomography

The ultrasound imaging component can be used to create 3D volumes using the
freehand-3D-ultrasound ability. To acquire more detailed volumes with fewer dis-
tortions a robotic ultrasound tomography was implemented. Using a robot mounted
transducer it is possible to record equidistant and parallel slices which allows a direct
volume reconstruction. In addition, the area of interest can be scanned from several
directions, which can decrease speckle noise. Due to the force control scheme of
the LWR robot, it is possible to acquire scans by following uneven surfaces with the
probe such as the human body. As a tracking system, the pose data from the optical
tracking system is subscribed. Alternatively it is possible to use the robot position as
tracking data. The robot and ultrasound imaging system, using the OpenIGTLink-
ROS-Bridge, is controlled from a Python ROS node. As an HMI, a GWT GUI using
rosjs was implemented, so any device with a browser can be used for inputs. The
results are displayed in 3D Slicer. The reconstructed volume can be published to the
ROS network using the OpenIGTLink message type IMAGE.

5.6 Simulation

Due to the cost and complexity of the complete platform, only a single instance of it
exists in our institute. It is shared bymultiple researchers and their students. Naturally
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this leads to a bottleneck in scheduling time for complex experiments. Themodularity
and network transparency provided by ROS mitigate the problem to some extent,
because sensor components and subsystems can be used in parallel. However, in the
common case thatmultiple researchers require exclusive access to some components,
e.g. the OR table mounted robots, another solution is required. Providing an accurate
simulation of large parts of the setup, of which multiple instances, running on office
desktop computers, can be used independently from each other, helped us a lot.
More details about our use of the Gazebo simulator for this purpose and how the
simulation can help to perform advanced unit and regression testing (Robot Unit
Testing) is published in [3].

5.7 Software Frameworks

Table2 provides an overview of important libraries and frameworks, besides ROS,
that are used in our setup.

6 Organization and Software Engineering

6.1 Registration and Calibration

In OP:Sense, calibration and registration are organized in a separate ROS package.
The usual reference for calibration is the optical tracking system. For calibration

Table 2 Major software frameworks used in our surgical robotics platform

Name Website Version(s)

3D Slicer http://www.slicer.org/ 4.4

Chai3D http://www.chai3d.org/

Gazebo http://gazebosim.org/ 4.0; 5.0

Matlab http://de.mathworks.com/products/matlab/

MITK http://mitk.org/

MoveIt! http://moveit.ros.org/

OpenCV http://www.opencv.org 2.4; 3.0-beta

Openframeworks http://openframeworks.cc/

OpenIGTLink http://openigtlink.org/ 2

Plus https://www.assembla.com/spaces/plus/wiki 2.2

Point Cloud Library (PCL) http://www.pointclouds.org

Scikit-learn http://scikit-learn.org/stable/ 0.15.2

http://www.slicer.org/
http://www.chai3d.org/
http://gazebosim.org/
http://de.mathworks.com/products/matlab/
http://mitk.org/
http://moveit.ros.org/
http://www.opencv.org
http://openframeworks.cc/
http://openigtlink.org/
https://www.assembla.com/spaces/plus/wiki
http://www.pointclouds.org
http://scikit-learn.org/stable/
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purposes we use a tracking pointer with a rigid tip location which is found using
pivotisation. Using the transformation acquired by pivotisation, we can now compute
the position of the pointer’s tip with reference to the optical tracking system. The
pointer is then used to register other devices such as cameras to the optical tracking
system using landmarks in the scene that can be touched with the pointer and can at
the same time be detected within the camera’s image. Using OpenCV we compute
the transformation from the camera coordinate frame to the optical tracking system.
If the camera body itself is equipped with markers, e.g. in case of the endoscopic
camera, we can compute the transformation between the optical frame and the frame
of the markers, allowing to precisely calibrate the optics to the tracking system.
The calibrated pointer is also used for online calibration tasks such as setting new
trocar points for the telemanipulation system. If a new transformation is computed
through registration, the translation and the quaternion representing the pose are
saved to file. These registration files can be loaded through a pose publishing node
that is controlled via a launch file to publish the registration information on the tf
tree and/or on a dedicated geometry_msgs/Pose topic.

6.2 TF and Pose Topics

OP:Sense uses both the tf tree and a geometry_msgs/Pose based mechanisms
to send transformations. tf is usually selected if a transformation has to be visualized.
Additionally, tf is beneficial if the publishing frequency of a transformation is low or
average. For complex transformation chains this can easily deliver the transformation
from a frame to any other frame in the tree. Unfortunately, tf is not as performant as
publishing transformations onPose topics and degrades furtherwhen transformations
are published with high frequency. For fast transformation publishing such as in the
telemanipulation use case (1000Hz) we solely rely on sending transformations on
dedicatedgeometry_msgs/Pose topics and perform the framemultiplications in
the node. During the development phase, we usually keep the publishing frequencies
low and use tf. At the end of a development cycle when the frequency is increased we
switch to topics which enables most of the nodes to use both mechanisms. Additional
benefits of this method are that transformations can at any time be visualized using
RViz and the load on the tf is reduced to a minimum level.

6.3 Windows/Matlab Integration

The research and development process for the realization of math intensive compo-
nents such as flexible instruments (see Sect. 4.10) or inverse kinematics for robots
requires the use of a rapid prototyping environment. In our case Matlab/Simulink
is the tool for development of the robotic system kinematics, workspace analyses
and control design. However, the problem in our setup is, that Matlab runs on a
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Fig. 10 Infrastructure to connect Gazebo via ROSwithMatlab onWindows through a virtual Linux
machine

“Windows-Desktop-PC” and the roscore of the lab on a Linux system. In order to
control and interact with both systems, the lab setup, where the final hardware runs,
as well as the prototyping system and simulation in Matlab onWindows, we decided
to use virtualization (see Fig. 10). Inside the Linux guest system, Ubuntu 14.04 is
installed including ROS (Indigo) and Gazebo (4.0). The communication from Win-
dows to the lab environment is established by a physical network adapter with a
dedicated static IP. Additionally, there is a virtual bridge from the virtual machine
also using the physical network adapter of the host system. Now, it is possible to send
ROS messages from Windows to the lab’s ROS network in the same way as to the
virtual one. The configuration inside the virtual machine is limited to starting a local
roscore and setting up the environment variables accordingly. Regarding the Matlab
part in this setup, the ROS I/O package for Matlab 2013b is used to communicate
with ROS. Therefore, a Matlab class-object is implemented to create nodes, topics
and the associated publishers and subscribers. For future work, the latest Matlab
release 2015a with full ROS support via the Robotic System Toolbox will be used,
thereby achieving the integration of ROS, Gazebo, Simulink and real-time hardware.

6.4 Software Repositories and Configuration Management

The balance between independence of each researcher on the one hand and keeping
all components and subsystems working together on the other is difficult to get right.
After trying out many different ways to organize the software and configuration of
our platform, we suggest the following best practices for such a large setup: First,
maintain one source code repository for each part that is usable on its own. Second,
changes to core components that change an interface visible to the ROS network
must be documented and agreed upon beforehand. Third, have one repository with a
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hierarchical set of launch files to bring up different parts of the core components and
subsystems. Fourth, alwaysmind the software engineering principles of “Single Point
of Truth” (SPOT) or “Don’t Repeat Yourself” (DRY) [6] with regard to code and
configuration information. Fifth, maintain a (virtual) blackboard listing all available
system functionality and links to documentation on how to use it.
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