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The use of positron-emitting and high-energy gamma photon-emitting
radiopharmaceuticals, like fluorine-18 fluorodeoxyglucose (**F-FDG), for
real-time cancer detection and surgical guidance within the operating
room and for real-time guidance of diagnostic and therapeutic interven-
tional procedures within the interventional radiology suite, has great clini-
cal potential. This technology may allow for (1) real-time intraoperative
staging of the extent of disease; (2) real-time intraoperative surgical plan-
ning and execution of the necessary and most appropriate operation, deter-
mination of the extent of surgical resection, and determination of the
completeness of surgical resection; (3) real-time pathologic evaluation of
intact surgical resected specimens for the confirmation of completeness of
surgical resection and for surgical margin assessment; (4) real-time patho-
logic evaluation of diagnostically biopsied tissues for confirmation of cor-
rectness of tissue diagnosis; and (5) real-time guidance of diagnostic and
therapeutic interventional procedures within the interventional radiology
suite. This chapter discusses (1) the history and development of positron
imaging and detection, (2) the fundamental basis for the use of *F-FDG in
positron imaging and detection strategies, (3) the inherent limitations of
BE-FDG in positron imaging and detection strategies, (4) radiation detec-
tion devices utilized during 'F-FDG-directed surgery, (5) the clinical
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applications of real-time F-FDG-directed surgery and real-time *F-FDG-
directed interventional procedures, (6) timing issues related to *F-FDG-
directed surgery, (7) the inherent challenge of in situ detection of
BE-FDG with a gamma photon detection device, and (8) occupational
radiation exposure during '8F-FDG radioguided surgical procedures.

25.1 The History
of the Development
of Positron Imaging

and Detection

The theoretical physics framework behind the
implementation of positron imaging and detec-
tion is the basic concept of electron-positron
annihilation [1-6], which was first realized in the
1930s. Within any given biological system,
electron-positron annihilation results when a pos-
itron (i.e., a positively charged antimatter coun-
terpart of an electron), emitted from the nucleus
of a radionuclide and travels only a few millime-
ters, collides with an electron (i.e., a negative
charged particle) within a biological tissue and
generates two resultant high-energy 511 keV
gamma photons traveling in opposite directions.
The development of clinical applications of
positron imaging and detection has its origins in
the early 1950s [7, 8] and occurred far before the
subsequent availability of fluorine-18 fluorode-
oxyglucose (¥F-FDG) in the late 1970s [9, 10].
The first reported clinical application of positron
imaging technology in humans was published by
Gordon L. Brownell and William H. Sweet at the
Massachusetts General Hospital (Boston,
Massachusetts, USA) in 1953 and consisted of
the collection of three-dimensional data using a
prototype positron imaging device on patients
with brain tumors who were intravenously
injected with arsenic-74 [7, 8]. Subsequent tech-
nologic advancements over the ensuing two
decades culminated in the development of the
first commercially available positron emission
tomography (PET) device by the early 1970s for
generating whole-body positron transaxial
tomographs [7, 11-14], thus representing the
antecedent of current-day PET imaging devices.
Currently, positron imaging and detection, in
the specific form of F-FDG PET imaging, is a

well-established cancer imaging modality that is
routinely used in the clinical management of a
wide variety of solid malignancies [6, 15-25].
BF-FDG PET is generally combined with “ana-
tomical” imaging, by way of computed tomogra-
phy (CT), for attempting to maximize the
geographic localization and spatial recognition of
sites of ¥F-FDG avidity to corresponding ana-
tomic structures. A wide range of diagnostic util-
ities of '8F-FDG PET/CT have been clinically
investigated and implemented [6, 15-25]. Those
diagnostic clinical applications include (1) initial
cancer diagnosis, (2) initial cancer staging, (3)
subsequent cancer restaging, (4) therapy plan-
ning, (5) monitoring therapy response, (6) sur-
veillance for cancer survivors, and (7) cancer
screening for at-risk populations. As a step
beyond these diagnostic clinical cancer imaging
utilities, there has been emergent interest in the
feasibility of utilizing '®F-FDG for real-time can-
cer detection and surgical guidance within the
operating room [6, 26—76] and for real-time guid-
ance of diagnostic and therapeutic interventional
procedures within the interventional radiology
suite [6, 77-95].

The Fundamental Basis
for the Use of '®F-FDG

in Positron Imaging

and Detection Strategies

25.2

The radionuclide °F has a relatively short physi-
cal half-life of approximately 110 min [6, 96,
97]. The radioactive decay pattern of F is pre-
dominantly (97 %) by way of positron emission
(i.e., beta plus decay emission). The maximum
positron radiation emission energy of “F is
approximately 635 keV, giving "®F a relatively
low maximum positron radiation emission energy
level as compared to other positron-emitting
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radionuclides. As a result, the positron emitted
from the nucleus of '8F travels only a very short
distance (i.e., approximately 1-2 mm) within a
biological tissue before interacting/colliding with
an electron (i.e., a negative charged particle).
This interaction/collision of the emitted positron
with the electron and the resultant electron-
positron annihilation within a biological tissue
generates two resultant high-energy 511 keV
gamma photons traveling in opposite directions
[1-6, 96, 97]. These resultant high-energy
511 keV gamma photons can travel many, many
centimeters within a biological tissue. As based
upon the initial positron emission and subsequent
electron-positron annihilation process which
occurs by F, the detection of ®F within biologi-
cal tissues can potentially be accomplished by
one of two mechanisms: (1) a direct mechanism
of detection of positron emissions (i.e., beta plus
decay emissions) using a beta plus detection
device or (2) an indirect mechanism of detection
of the resultant high-energy 511 keV gamma
photons arising from electron-positron annihila-
tion process using a gamma photon detection
device [6].

Dating back to the work of Otto Heinrich
Warburg in the early 1930s from the Kaiser-
Wilhelm-Gesellschaft zur Forderung  der
Wissenschaften (Berlin-Dahlem, Germany), it
has long been recognized that malignant tumors
have an accelerated rate of glucose metabolism
and have an increased rate of glucose transport
and glucose utilization [6, 98—101]. The bio-
chemical transport and processing mechanisms
related to ®F-FDG, a non-physiologic '*F-labeled
analog of glucose, within malignant cells are also
well described within the scientific literature
[6, 102-104]. ®F-FDG within the circulatory
system is transported into cells (both malignant
cells and normal cells) by a facilitated diffusion
mechanism involving specific glucose transport-
ers (i.e., GLUT transporters). Once it is within
the cell, ®F-FDG is phosphorylated to 'F-FDG-
6-phosphate by the enzyme hexokinase. However,
unlike ¥F-FDG, '8F-FDG-6-phosphate cannot be
readily transported across the cellular membrane
of either malignant cells or normal cells, thus
essentially entrapping the "*F-FDG-6-phosphate

S.P. Povoski et al.

within those cells. The enzyme glucose-6-
phosphatase is responsible for dephosphorylating
BE-FDG-6-phosphate back to "“F-FDG within
the intracellular environment and is present in
relatively lower levels within malignant cells as
opposed to normal cells. Additionally, unlike
glucose-6-phosphate, '®F-FDG-6-phosphate can-
not be utilized as a substrate in the metabolic
steps of glycolysis, hence attributing to the fur-
ther accumulation of ®F-FDG-6-phosphate
within those cells. This overall process which
results in the intracellular accumulation 'F-FDG-
6-phosphate is thought to occur more readily in
malignant cells than in normal cells secondary to
the combination of the overexpression of the glu-
cose transporters GLUT 1 and GLUT 3 by malig-
nant cells, the higher level of hexokinase within
malignant cells, and the lower level of glucose-6-
phosphatase within malignant cells, thus leading
to proportionally greater accumulation of
BE-FDG-6-phosphate within malignant cells as
compared to normal cells. This elegantly eluci-
dated biochemical transport and processing
mechanism represents the fundamental basis
behind the clinical application of '8F-FDG for the
detection of malignant tumor using positron
imaging and detection strategies (i.e., diagnostic
PET imaging technology and various radiation
detection probe technologies) [6, 98—104].

Inherent Limitations

for the Use of '8F-FDG

in Positron Imaging

and Detection Strategies

25.3

Despite the fact that these biochemical transport
and processing mechanisms lead to the greater
accumulation of the phosphorylated form of '8F-
FDG within malignant cells as compared to nor-
mal cells, there are several inherent limitations
regarding the utilization of ®F-FDG for the
detection of malignant tumor using positron
imaging and detection strategies [6, 75, 102,
105-107]. First, 8F-FDG can readily accumulate
within various normal tissues (i.e., brain, heart,
mucosa and smooth muscle of the stomach, small
intestines and colon, thyroid, liver, spleen, and
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brown fat) which typically have physiologic pro-
pensity for ¥*F-FDG accumulation. Second, '*F-
FDG can also readily accumulate within tissues
representing benign disease processes (i.e., infec-
tion, inflammation, and trauma). The basis for
these first two limitations is the fact that "*F-FDG
is not a cancer-specific imaging and detection
agent. Third, 8F-FDG is excreted by way of the
urinary tract (kidneys, ureters, and bladder), thus
leading to accumulation within those structures.
Fourth, alterations in tissue uptake of *F-FDG
can occur in patients with elevated blood glucose
levels/impaired glucose metabolism, in patients
receiving insulin, and in obese patients. An accu-
mulation of '®F-FDG within normal tissues leads
to intrinsically higher background levels of '$F-
FDG activity within normal tissues located in
proximity to adjacent sites of elevated *F-FDG
activity representing malignant tumor. This may
be particularly challenging when the malignant
tumor site itself has a relatively low level of
BE-FDG activity, leading to a relatively low
target-to-background ratio (i.e., low tumor-to-
background ratio) of the radiation emissions of
BE-FDG.

25.4 Radiation Detection Devices
Utilized during "®F-FDG-
Directed Surgery:
Mechanisms
for the Detection of '®F-FDG
and Device Specifications

25.4.1 General Considerations

As previously mentioned, there are two mecha-
nisms for how *F-FDG within biological tis-
sues can be detected by a radiation detection
device: (1) the direct detection of positron
emissions (i.e., beta plus decay emissions)
using a beta plus detection device and (2) the
detection of the resultant high-energy 511 keV
gamma photons arising from electron-positron
annihilation process using a gamma photon
detection device [6]. The ability to success-
fully detect '®F-FDG within a site of suspected
malignancy is highly dependent upon the
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specific type of radiation detection device
utilized and its performance parameters
[6, 108]. The most important performance
parameters for any given radiation detection
device are (1) overall sensitivity (i.e., effi-
ciency, detected count rate per unit of activity),
(2) spatial selectivity (i.e., radial sensitivity
distribution), (3) spatial resolution (i.e., lateral
sensitivity distribution), (4) energy resolution
(i.e., spectral discrimination), and (5) contrast.

Radiation detection devices are categorized as
either scintillation detectors or semiconductor ion-
ization detectors [6, 108]. The basis for how a
scintillation-type detection system works is that
the radiation emitted from the radionuclide excites
atoms within the scintillation crystal, producing
visible light in proportion to the energy absorbed,
and for which a photomultiplier enhances the
resultant visible light and converts it into an
electrical pulse which is quantified by a detection
unit. Examples of inorganic scintillation materials
used in scintillation detectors include
thallium-activated sodium iodide (Nal[T1]),
thallium-activated cesium iodide (CsI[TI]),
sodium-activated cesium iodide (CsI[Na]),
samarium-activated lutetium orthooxysilicate
(LSO), bismuth germanate (BGO), cerium-
activated gadolinium orthosilicate (GSO[Ce]),
cerium-activated lutetium yttrium orthosilicate
(LYSOICe]), and cerium-activated lutetium gado-
linium oxyorthosilicate (LGSO[Ce]). Examples of
organic (“plastic”) scintillation materials used in
scintillation detectors include anthracene (C,H),
stilbene (C4H},), and naphthalene (C,,Hg). The
basis for how a semiconductor ionization-type
detection system works is that the radiation emitted
from the radionuclide produces free electrons as it
passes through and ionizes the semiconductor crys-
tal, creating an electrical pulse which is quantified
by a detection unit. Examples of crystalline materi-
als used in semiconductor ionization detectors
include cadmium telluride (CdTe), cadmium zinc
telluride (CdZnTe), mercuric iodide (Hgl,), and
silicon.

There are advantageous and disadvantageous
features to both the scintillation-type detection
system design and the semiconductor ionization-
type detection system design [6, 108]. On one
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hand, scintillation-type detection systems have
higher sensitivity (especially for medium-energy
to high-energy gamma photons) but have poorer
energy resolution and scatter rejection. Likewise,
scintillation-type detection probes tend to have a
much bulkier and heavier probe head profile. On
the other hand, semiconductor ionization-type
detection systems have higher-energy resolution
and scatter rejection but have lower sensitivity
(especially for medium-energy to high-energy
gamma photons). Likewise, semiconductor
ionization-type detection probes tend to have a
much more compact and light-weight probe head
profile.

25.4.2 Gamma Photon Detection

The detector component of a gamma detection
probe generally consists of an inorganic scintilla-
tor detector or a semiconductor ionization detec-
tor [6, 108]. Most commercially available
handheld gamma detection probes are generally
designed for detecting radioisotopes of gamma-
ray energies in the low-energy emission
(0-150 keV) range and medium-energy emission
(150-400 keV) range, thus allowing successful
detection of radioisotopes such as technetium-
99 m (*"Tc; 140 keV and 142 keV), indium-111
(""In; 171 keV and 247 keV), iodine-123 ('*I;
159 keV), and iodine-125 ('*I; 35 keV) [6, 76,
108]. However, most commercially available
handheld gamma detection probes are not specifi-
cally designed for detecting resultant high-energy
511 keV gamma emissions emanating from the
electron-positron annihilation process that is
characteristic of high-energy gamma photon-
emitting radionuclides, like '*F. As a result, there
has been a recent appearance of commercially
available handheld gamma detection probes that
are specifically intended for attempting to detect
high-energy 511 keV gamma emissions, and for
which these high-energy gamma detection probes
have been designated as “PET” probes. The over-
all weight and physical dimensions of any such
“PET” probe is generally a function of the thick-
ness of side and back shielding (with materials
like lead, tungsten, gold, or platinum) and the
length of collimation (i.e., extension of shielding
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in a forward direction beyond the distal face of
the detector in the direction of the radiation source
being counted) that is thought to be necessary to
block adjacent background radiation, to limit the
field-of-view, and to collimate the head of the
probe, with the intention of limiting the area of
tissue contributing to the probe count rate and of
providing better spatial resolution between areas
of tissue of differing radioactivity levels [6, 73,
108, 109]. All conventional attempts to improve
upon the current “PET” probe design by further
increasing the degree of side/back shielding or
the collimation length to further block adjacent
background radiation, or by increasing crystal
diameter/thickness to capture a greater percent-
age of 511 keV gamma emissions, are generally
counterproductive, as such  conventional
approaches will simply result in a “PET” probe
configuration that is prohibitively too large in
physical size, too heavy in weight, and potentially
of significant greater cost. Alternatively, in order
to attempt to bypass these physical barriers related
to the degree of side and back shielding, collima-
tion, and crystal diameter/thickness in designing
handheld gamma detection probes specifically
intended for the detection of 511 KeV gamma
emissions, efforts have been redirected toward
engineering more novel “PET” probe designs for
which their efficacy is not dependent upon side
and back shielding, collimation, or crystal diam-
eter/thickness. Several examples of alternative
design concepts for “PET” probe include second-
ary K-alpha x-ray fluorescence [73, 76, 109],
active electronic collimation [39, 61, 64, 66, 70,
76, 110-112], and other crystal geometry designs
using multiple small crystals with specific novel
geometric configurations [76, 113, 114] for opti-
mizing and maximizing background rejection
capabilities. These innovative alternative design
concepts for improving the efficacy of detection
of high-energy gamma photon-emitting/positron-
emitting radionuclides, some of which have
already been successfully applied to handheld
gamma detection probe systems, are also the
focus of current preclinical research that is
actively looking at developing small platform,
portable perioperative and intraoperative patient
and ex vivo surgical specimen imaging devices
which possess similar capabilities for detecting
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high-energy gamma photon-emitting/positron-
emitting radionuclides [76]. However, such small
platform, portable perioperative and intraopera-
tive patient and ex vivo surgical specimen imag-
ing devices have not yet been fully realized or
made commercially available for use in the set-
ting of clinical medicine.

25.4.3 Beta plus Decay (i.e., Positron)
Detection

The detector component of a beta plus detection
probe generally consists of a semiconductor ion-
ization detector or an organic (“plastic”) scintil-
lator detector but for which an inorganic
scintillator detector can also be utilized [6, 45,
52, 108, 115-127]. As previously mentioned,
whereas high-energy 511 keV gamma photons
can travel many, many centimeters within bio-
logical tissues, positrons travels only very short
distances (i.e., approximately 1-2 mm) within
biological tissues before they are annihilated.
This difference in the distances traveled by posi-
trons as opposed to resultant high-energy
511 keV gamma photons within biologic tissues
contributes to both the advantages and disadvan-
tages of direct detection of positrons by a hand-
held beta plus detection probe. Thus, handheld
beta plus detection probes can be small in physi-
cal size and light in weight secondary to the fact
that whereas gamma photon detection of high-
energy 511 keV gamma photons relies heavily on
the thickness of side and back shielding and the
length of collimation, beta plus decay detection
of positrons does not require any significant
degree of side and back shielding or collimation.
However, whereas gamma photon detection of
high-energy 511 keV gamma photons is less
effected by the distance from the source of
511 keV gamma emissions to the proximity of
the head of the handheld gamma detection probe,
beta plus decay detection requires close apposi-
tion of the head of the handheld beta plus detec-
tion probe to the source of the positrons emitted
from the biologic tissue. As a result, if the head of
the handheld beta plus detection probe is not in
direct contact with the biologic tissue emitting
positrons, or if the source of the positrons emitted
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from the biologic tissue is located several milli-
meters below of the surface of that biologic tis-
sue, the handheld beta plus detection probe will
be unable to detect such 'F-FDG-avid tissues.
Along similar lines, the simple placement of a
sterile disposable barrier sheath over the hand-
held beta plus detection probe significantly
reduces the overall sensitivity for the detection of
BBE-FDG-avid tissues by such a device.

25.5 Clinical Applications of Real-
Time "®F-FDG-Directed
Surgery and Real-Time
18F-FDG-Directed
Interventional Procedures
(Tables 25.1 and 25.2)

The principal motivation behind the use of '3F-
FDG for providing for real-time cancer detection
and guidance within the operating room has
been multifactorial, including exploring its
applicability for real-time intraoperative staging,
surgical planning and execution, and determina-
tion of completeness of surgical resection [6].
The clinical application of '8F-FDG-directed
surgery was first described in 1999 by Desai
et al. from the Ohio State University (Columbus,
Ohio, USA) for colorectal cancer [6, 26, 27]. In
this first clinical description of ®F-FDG-directed
surgery, a total of 15 colorectal cancer patients
received an intravenous injection of 4.0-5.7 mCi
(148-211 MBq) of “F-FDG at a time of
58-110 min prior to intraoperative evaluation
with a commercially available gamma detection
probe. Fourteen of these 15 patients had under-
gone a prior preoperative diagnostic "F-FDG
PET scan. A single or multiple tumor foci were
identified with the gamma detection probe as
BE-FDG-avid tissue in 14 of the 15 patients
receiving an intravenous injection of *F-FDG on
the day of surgery. Likewise, a single or multiple
tumor foci were correctly identified with the
gamma detection probe as ®F-FDG-avid tissue
in 13 of 14 patients undergoing a prior preopera-
tive diagnostic *F-FDG PET scan, correctly cor-
relating to the sites of hypermetabolic activity
seen on the prior preoperative diagnostic
BF-FDG PET imaging.
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Subsequent to the first report of 'SF-FDG-
directed surgery in 1999 [6, 26, 27], multiple
groups of investigators from across the globe
have collectively investigated the utility of real-
time 'F-FDG-directed surgery and real-time
BE-FDG-directed diagnostic and therapeutic
interventional procedures in regard to a wide
range of solid malignancies, including colorectal
cancer, gastric cancer, gastroesophageal cancer,
pancreatic cancer, melanoma, lymphoma, breast
cancer, ovarian cancer, endometrial cancer, cervi-
cal cancer, vulvar cancer, testicular cancer, pros-
tate cancer, head and neck malignancies
(squamous cell cancer of the oral cavity, orophar-
ynx, hypopharynx, and laryngeal regions, iodine-
negative recurrent papillary thyroid cancer, and
recurrent medullary thyroid cancer), lung cancer,
squamous cell cancer of the skin, GIST (gastroin-
testinal stromal tumor tumors), sarcoma, adreno-
cortical carcinoma, and carcinoma of unknown
primary [6, 28-95]. Table 25.1 summarizes all
reported real-time “SF-FDG-directed surgery
series in the literature [6, 26-76]. Table 25.2
summarizes all reported real-time 'SF-FDG-
directed diagnostic and therapeutic interventional
procedure series in the literature [6, 77-95]. It is
worth noting a substantial portion of the clinical
investigations into the use of '8F-FDG for real-
time detection and guidance during cancer sur-
gery for a variety of solid malignancies have been
conducted at the Ohio State University
(Columbus, Ohio, USA) [6, 26-28, 44, 46-51,
53, 54, 56, 59, 67, 71-76].

Our own experience with utilizing *F-FDG
for real-time cancer detection and guidance
within the operating room at the Ohio State
University (Columbus, Ohio, USA) [6, 26-28,
44,46-51,53,54,56,59, 67, 71-76] has strength-
ened our long-standing contention regarding the
importance of implementing a multimodal imag-
ing and detection approach to '8F-FDG-directed
surgery [50, 67, 74, 76]. Since 2005, the general
structure of this multimodal approach has incor-
porated various components, including (1) same-
day preoperative patient diagnostic whole-body
PET/CT imaging, (2) intraoperative gamma
detection probe assessment, (3) specimen imag-
ing of surgically resected specimens with both a
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clinical PET/CT unit and a micro PET/CT unit,
(4) radioactivity counting of selected portion of
surgically resected specimens by an automatic
gamma well counter, and (5) same-day postop-
erative patient diagnostic limited field-of-view
PET/CT imaging [67].

On the day of the anticipated “F-FDG-
directed surgery procedure, patients fasted for a
minimum of 6 h before undergoing the same-day
preoperative diagnostic whole-body *F-FDG
PET/CT scan [67, 74]. Each patient received a
same-day, single-dose, preoperative, intravenous
injection of '8F-FDG, consisting of an averaged
recommended dose in the range of approximately
15 mCi (555 MBq). The *F-FDG dosing at the
Ohio State University (Columbus, Ohio, USA)
was based upon the standard-of-care practice
guidelines set in the USA by the Society of
Nuclear Medicine, the American College of
Radiology, and the Society for Pediatric
Radiology for diagnostic F-FDG PET/CT
image acquisition (i.e., 10-20 mCi (370-
740 MBq) of '8F-FDG in adults) [128, 129]. The
same-day, single-dose, preoperative, intravenous
dose of BF-FDG was generally administered
approximately 75 min prior to the planned time
of the same-day preoperative diagnostic whole-
body "“F-FDG PET/CT scan, which was
performed within the time frame recognized by
the standard-of-care practice guidelines set in the
USA by the Society of Nuclear Medicine, the
American College of Radiology, and the Society
for Pediatric Radiology for diagnostic *F-FDG
PET/CT image acquisition [128, 129]. The same-
day preoperative diagnostic whole-body *F-FDG
PET/CT scan usually consisted of 6-8 field-of-
view PET bed positions and with 2 min of PET
imaging for each field-of-view PET bed position.
Patients then proceeded to the operating room for
their anticipated surgical procedure and com-
pleted standard postoperative recovery in the
postanesthesia care unit. The same-day postop-
erative diagnostic limited field-of-view '*F-FDG
PET/CT scan was generally restricted to those
field-of-view PET bed positions encompassing
the immediate area of the surgical field (usually
consisting of 1-3 field-of-view PET bed posi-
tions, in order to limit overall patient radiation
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exposure for the CT portion of the PET/CT, and
with 10 min of PET imaging for each field-of-
view PET bed position).

Our multimodal imaging and detection
approach to '8F-FDG-directed surgery at the
Ohio State University (Columbus, Ohio, USA)
[50, 67,74, 76] demonstrated technical and logis-
tical feasibility for coordination of services by
the surgeon, nuclear medicine physician, and
pathologist in a same-day fashion. It allowed for
(1) real-time intraoperative staging of the extent
of disease; (2) real-time intraoperative surgical
planning and execution of the necessary and most
appropriate operation, determination of the extent
of surgical resection, and determination of the
completeness of surgical resection; (3) real-time
pathologic evaluation of intact surgical resected
specimens for the confirmation of completeness
of surgical resection and for surgical margin
assessment; and (4) real-time pathologic evalua-
tion of diagnostically biopsied tissues for confir-
mation of correctness of tissue diagnosis.

25.6 Timing Issues Related
to '®F-FDG-Directed Surgery:
Impact of Length of Time
from Injection of '8F-FDG
to the Performance
of Intraoperative Gamma
Detection Probing

Numerous investigators have evaluated the con-
cept of delayed phase and dual-time-point diag-
nostic ®F-FDG PET imaging [74] in which a
portion of the diagnostic ®F-FDG PET imaging
sequence is extended temporally out further than
is generally recommended by the standard-
of-care practice guidelines for diagnostic
BE-FDG PET/CT image acquisition [128, 129].
Remarkably, several of these groups of investiga-
tors have performed delayed phase diagnostic
BE-FDG PET imaging out to ultra-extended
injection-to-scan acquisition time intervals rang-
ing to 6-9 h after the initial 'SF-FDG injection
dose is administered [31, 74, 130-134].

In contrast to the innumerous work done on
extended injection-to-scan acquisition time
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intervals for diagnostic 'SF-FDG PET imaging,
there has been very little data or discussion in the
literature regarding the equivalent scenario of
extended injection-to-probing time intervals as it
pertains to gamma detection probing of patients
intravenously injected with 8F-FDG [31, 38, 42,
43, 74]. Therefore, it is reasonable to say that the
optimal length of time from the injection of 8F-
FDG to the performance of intraoperative gamma
detection probing has yet to be determined.

In 2004, Higashi et al. [31, 74] examined the
question of “appropriate timing” for “postinjec-
tion” gamma detection probing using phantom
studies and a limited series of 3 patients with
“superficially located malignant lesions.” For the
phantom studies, they used 5 liter plastic barrels
filled with saline containing varying-dose “back-
ground” ¥F-FDG as the “body trunk” phantom,
0.2 liter plastic bottles filled with saline contain-
ing varying-dose ®F-FDG as the “kidney” phan-
tom, and 2 fixed-dose '*F-FDG sources to simulate
“superficially located tumor nodules.” For the 3
patients with “superficially located malignant
lesions,” they performed ‘“preoperative” gamma
detection probing at the skin surface at 1, 3, 5, 6,
and/or 7 h after receiving an intravenous injection
of 2-10 mCi (74-370 MBq) of ¥F-FDG (and for
which no intraoperative gamma detection probing
was undertaken). In their limited patient data set,
they showed that the tumor-to-background ratios
of BF-FDG by gamma detection probing at the
skin surface remained relatively stable at the mea-
sured time intervals and remained relatively stable
up to the 7-h postinjection time interval. However,
they were concerned that the overall lower '8F-
FDG count rates encountered at time intervals of
6-7 h postinjection of '®F-FDG, secondary to the
normal physical decay pattern of “F-FDG,
“would be problematic” when applied to a clinical
application of intraoperative gamma detection
probing. Therefore, they concluded that the clini-
cal application of intraoperative gamma detection
probing was “more suitable” at 1-3 h postinjec-
tion of ¥F-FDG as compared to 6-7 h postinjec-
tion of ¥F-FDG.

In 2006 and 2007, Gulec et al. [38, 42, 43, 74]
reported on two consecutive series of patients,
including 40 patients undergoing intraoperative
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gamma detection probing after receiving an intra-
venous injection of 7-10 mCi (259-370 MBq) of
BE-FDG [38] and 25 patients undergoing intra-
operative gamma detection probing after receiv-
ing an intravenous injection of 5-15 mCi
(185-555 MBq) of ®F-FDG [42]. In both series,
Gulec et al. [38, 42, 43] reported observing a
nonsignificant trend toward an increased tumor-
to-background ratio of 8F-FDG as the duration
of time from the 8F-FDG injection to performing
intraoperative ~ gamma  detection  probing
increased, with satisfactory count rates and lesion
detection capabilities up to 6 h of time after injec-
tion of ¥ F-FDG. Therefore, regarding intraopera-
tive gamma detection probing during
BE-FDG-directed surgery, they concluded that
longer injection-to-probing time intervals “accen-
tuated” the tumor-to-background ratio of F-
FDG and resulted in “better lesion detection”
[38, 42]. However, they also stated that “more
delayed intervals between FDG injection and
imaging might compromise image quality as a
result of lower count rates” [42].

Most recently, in 2014, our group at the Ohio
State University (Columbus, Ohio, USA) [74]
examined the question of extended injection-to-
scan acquisition time intervals in a retrospective
data analysis of a subset of patients undergoing
BE-FDG-directed surgery. This data analysis
specifically looked at preoperative *F-FDG
PET/CT imaging and postoperative 'F-FDG
PET/CT imaging of 32 individual ®F-FDG-avid
lesions (from among a total of 7 patients) which
were not surgically manipulated or altered dur-
ing 8F-FDG-directed surgery, and, for which, all
of these 32 individual ®F-FDG-avid lesions
were visualized on both same-day preoperative
BF-FDG PET/CT imaging and same-day post-
operative ¥F-FDG PET/CT imaging. In this ret-
rospective data analysis, both "“F-FDG-avid
lesions and their corresponding background tis-
sues were assessed on same-day preoperative
and postoperative 'F-FDG PET/CT scans. This
data analysis demonstrated several important
time-dependent observations. First, '*F-FDG
PET/CT imaging performed at extended injec-
tion-to-scan acquisition times of up to a mean
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time of 530 min (i.e., approximately five half-
lives for *F-FDG) was able to maintain a desig-
nation of good/adequate diagnostic image
quality deemed necessary for clinical interpreta-
tion. Second, the mean "‘F-FDG-avid lesion
SUV..x value increased significantly from pre-
operative to postoperative '|F-FDG PET/CT
imaging (mean “F-FDG-avid lesion SUV
value; 7.7 preoperative to 11.3 postoperative; P
<0.001). Third, mean background SUV,,, value
decreased significantly from preoperative to
postoperative ®F-FDG PET/CT imaging (mean
background SUV,,, value; 2.3 preoperative to
2.1 postoperative; P=0.017). Fourth, the mean
lesion-to-background SUV,,. ratio increased
significantly from preoperative to postoperative
BE-FDG PET/CT imaging (mean lesion-to-
background SUV,,, ratio; 3.7 preoperative to 5.8
postoperative; P <0.001).

The far-reaching implications of these collec-
tive time-dependent observations [74] appear
highly influential for guiding future direction in
BE-FDG-directed procedural and surgical appli-
cations, as well as ®F-FDG PET/CT oncologic
imaging. First and foremost, these time-
dependent observations justify the more wide-
spread and integrated, real-time use of diagnostic
BE-FDG PET/CT imaging in conjunction with
BE-FDG-directed interventional radiology diag-
nostic biopsy procedures and therapeutic ablation
procedures, as well as with ®F-FDG-directed
surgical procedures. These sorts of integrated,
real-time utilities for diagnostic '*F-FDG PET/
CT imaging would facilitate periprocedural veri-
fication of appropriate tissue targeting during
BE-FDG-directed interventional radiology diag-
nostic biopsy procedures and therapeutic ablation
procedures and for perioperative verification of
appropriate tissue targeting and completeness of
resection during *F-FDG-directed surgical pro-
cedures. Secondly but still importantly, these
time-dependent observations could have far-
reaching impact on potentially reshaping future
thinking regarding what represents the “most
optimal” injection-to-scan acquisition time inter-
val for all routine diagnostic *F-FDG PET/CT
oncologic imaging.
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25.7 Inherent Challenge of In Situ
Detection of '®F-FDG

with a Gamma Photon
Detection Device When
Encountering a Low Target-
to-Background Ratio of "®F-
FDG and the Impact

of Threshold Detection
Criteria Methodology

on the Determination

of Gamma Detection Probe
Positivity for Intraoperative
In Situ Identification

of ®F-FDG-Avid Tissue Sites
during '®F-FDG-Directed
Surgery

A significant challenge faced during attempted
intraoperative in situ identification of 8F-FDG-
avid tissue sites with a gamma photon detection
device during '8F-FDG-directed surgery is a
scenario in which a low target-to-background
ratio (i.e., low tumor-to-background ratio) of
high-energy 511 keV gamma photon emissions
is encountered within the surgical field [6, 31,
38, 42, 43, 45, 52, 73, 75, 115-126]. As previ-
ously discussed, a low target-to-background
ratio of high-energy 511 keV gamma photon
emissions can results from a multitude of fac-
tors, including the marginal 'F-FDG uptake by
certain tumor-bearing tissues, the distribution
and degree of intrinsic physiologic background
BE-FDG activity within adjacent surrounding
tissues which do not represent tumor-bearing
tissues, and innumerable factors related to the
technical specifications of the specific gamma
photon detection device used for generating the
counts per second measurements [75]. In this
regard, some investigators have suggested that a
minimum in situ target-to-background ratio of
1.5-to-1 for ®F-FDG is necessary for allowing
the surgeon to comfortably differentiate tumor-
bearing tissues from normal tissue during
BE-FDG-directed surgery [38, 42, 43, 73, 75].
However, a target-to-background ratio of 1.5-
to-1 simply represents an arbitrary and fixed
ratio determination.
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Our personal experience with 'F-FDG-
directed surgery at the Ohio State University
(Columbus, Ohio, USA) [6, 26-28, 44, 46-51,
53, 54, 56, 59, 67, 71-76] clearly indicates that
the observed in situ target-to-background ratio of
BE-FDG-avid tissue sites is frequently less than
1.5-to-1 and is highly dependent upon the spe-
cific gamma photon detection device utilized.
Resultantly, when intraoperative detection of in
situ ®F-FDG-avid tissue sites relies solely on a
fixed target-to-background ratio (i.e., a ratiomet-
ric threshold method) as the threshold for probe
positivity, the success of intraoperative detection
can be limited and provide unsatisfactory results
to the surgeon [73, 75]. Therefore, our own group
has long contended that improved intraoperative
in situ identification of 8F-FDG-avid tissue sites
during 8F-FDG-directed surgery can be better
accomplished by the use of the three-sigma sta-
tistical threshold criteria method for determina-
tion of gamma detection probe positivity. The
three-sigma statistical threshold criteria defines
any given tissue as being probe positive when the
count rate in that tissue exceeds three standard
deviations above the mean count rate detected
within normal adjacent tissue.

In order to comparatively assess the efficacy
of the 1.5-to-1 ratiometric threshold criteria
method and the three-sigma statistical threshold
criteria method for determination of gamma
detection probe positivity for intraoperative in
situ detection of '®F-FDG-avid tissue sites during
BE-FDG-directed surgery, we evaluated a total of
401 intraoperative gamma detection probe mea-
surement sets of in situ counts per second mea-
surements collected from our prospective, pilot
study database and performed our analysis in a
manner that was completely independent of the
specific type of gamma detection probe system
that was used for determination of the counts per
second measurements [75]. Our data analysis
demonstrated that the three-sigma statistical
threshold criteria method was significantly better
than the 1.5-to-1 ratiometric threshold criteria
method (P <0.001) for determining gamma
detection probe positivity for intraoperative in
situ detection of ®F-FDG-avid tissue sites during



438

BE-FDG-directed surgery. Likewise, the three-
sigma statistical threshold criteria method was
able to detect true positive results at target-to-
background counts ratios that were much lower
than could be detected by a ratiometric threshold
criteria method that set the target-to-background
count ratio cutoff at 1.5-to-1. Thus, if a surgeon
utilized a gamma detection probe system with
high count rate sensitivity, it was theoretically
feasible that target-to-background count ratios as
low as 1.1-to-1 could be identified as in situ probe
positive when applying the three-sigma statistical
threshold criteria method. Therefore, use of the
three-sigma statistical threshold criteria for deter-
mination of gamma detection probe positivity for
intraoperative in situ detection of "*F-FDG-avid
tissue sites during |F-FDG-directed surgery
proved instrumental for overcoming the com-
monly encountered scenario of a low target-to-
background ratio (i.e., low tumor-to-background
ratio).

25.8 Occupational Radiation
Exposure to Intraoperative
and Perioperative Personnel
from '8F-FDG Radioguided
Surgical Procedures

Occupational radiation exposure incurred by
intraoperative and perioperative personnel par-
ticipating in surgical cases has been previously
evaluated by several groups of investigators [37,
41, 4446, 52, 54, 55, 57, 60, 61, 64, 67, 135—
137]. These investigators have reported data
based upon several different study-design sce-
narios, including utilizing simulated surgical
cases [46, 135, 136], surgical cases in which the
patient was injected with '*F-FDG but in which
actual ¥F-FDG-directed surgery with intraopera-
tive utilization of radiation detection probes was
not undertaken for assisting in the surgical proce-
dure [55, 57, 137], and actual ¥F-FDG-directed
surgery cases [37, 41, 44, 45, 52, 54, 60, 61, 64,
67].

The most comprehensive evaluation of occu-
pational radiation exposure to intraoperative and
perioperative personnel participating in ¥ F-FDG-
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directed surgery cases was published in 2008 by
our group at the Ohio State University (Columbus,
Ohio, USA) [54, 67]. In this comprehensive
study, 10 actual '®F-FDG-directed surgery cases
were evaluated. A mean dose of 18.9 mCi
(699 MBq) of ®F-FDG was intravenously
injected at a mean time of 142 min prior to sur-
gery. The resultant mean deep dose equivalent
per case for the surgeon, anesthetist, scrub tech-
nologist, postoperative nurse, circulating nurse,
and preoperative nurse was 164, 119, 92, 63, 54,
and 48 pSv, respectively.

The results of this comprehensive evaluation
were used to determine the estimated number of
BE-FDG-directed surgery cases per year and the
estimated number of hours of exposure per year
that could be theoretically incurred by the sur-
geon, anesthetist, scrub technologist, postopera-
tive nurse, circulating nurse, and preoperative
nurse in both the USA and internationally [54,
67]. Based upon the established annual occupa-
tional exposure limit for adults within the USA
of a total effective dose equivalent of 50,000 pSv
(as defined by the US Nuclear Regulatory
Commission) [54, 138], the estimated number of
BE-FDG-directed surgery cases per year and the
estimated number of hours of exposure per year
that could be theoretically incurred by the sur-
geon, anesthetist, scrub technologist, postopera-
tive nurse, circulating nurse, and preoperative
nurse were 305 cases and 820 h, 420 cases and
1020 h, 543 cases and 2083 h, 794 cases and
1471 h, 926 cases and 2941 h, and 1042 cases
and 602 h, respectively [54]. In contrast to the
annual occupational exposure limit for adults
within the USA, the annual occupational expo-
sure limit for the adult international community
outside the USA (as defined by the International
Commission on Radiological Protection (ICRP))
is more stringent and complex, with the annual
occupational exposure limit for adults to be a
total effective dose equivalent of 20,000 pSv per
year, averaged over a 5-year period (100,000 pSv
in 5 years), with further provision that the total
effective dose equivalent should not exceed
50,000 pSv in any single year [54, 139, 140].
Based upon the established annual occupa-
tional exposure limit for the adult international
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community outside the USA defined by the
International Commission on Radiological
Protection (ICRP), the estimated number of
BF-FDG-directed surgery cases per year and the
estimated number of hours of exposure per year
that could be theoretically incurred by the sur-
geon, anesthetist, scrub technologist, postopera-
tive nurse, circulating nurse, and preoperative
nurse were 122 cases and 328 h, 168 cases and
408 h, 217 cases and 833 h, 317 cases and 588 h,
370 cases and 1176 h, and 417 cases and 241 h,
respectively [54]. The data outlined in this com-
prehensive evaluation [54, 67] clearly illustrated
that the absorbed radiation dose received by both
intraoperative and perioperative personnel
involved in '"*F-FDG-directed surgery cases was
relatively low per case and allows for all such
personnel to participate in multiple cases and
still remain well below regulatory standards set
for occupational radiation exposure limits.

25,9 Concluding Remarks

The use of positron-emitting and high-energy
gamma photon-emitting radiopharmaceuticals,
like "*F-FDG, for real-time cancer detection and
surgical guidance within the operating room and
for real-time guidance of diagnostic and thera-
peutic interventional procedures within the inter-
ventional radiology suite, has great clinical
potential. When a multimodal imaging and detec-
tion approach to ¥ F-FDG-directed surgery is uti-
lized, thus coordinating of services provided by
the surgeon, nuclear medicine physician, and
pathologist, this integrated approach has the
potential for allowing (1) real-time intraoperative
staging of the extent of disease; (2) real-time
intraoperative surgical planning and execution of
the necessary and most appropriate operation,
determination of the extent of surgical resection,
and determination of the completeness of surgi-
cal resection; (3) real-time pathologic evaluation
of intact surgical resected specimens for the con-
firmation of completeness of surgical resection
and for surgical margin assessment; (4) real-time
pathologic evaluation of diagnostically biopsied
tissues for confirmation of correctness of tissue
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diagnosis; and (5) real-time guidance of diagnos-
tic and therapeutic interventional procedures
within the interventional radiology suite.
However, major hurdles still exist for maximiz-
ing the clinical potential of these technologies.
The greatest challenges that remain involve the
need for the development of more technically
optimized handheld radiation detection probes
for positron-emitting and high-energy gamma
photon-emitting radiopharmaceuticals, like '*F-
FDG, as well as the need for the development of
portable positron and high-energy gamma photon
imaging devices that can be fully integrated into
the operative/perioperative arena for real-time
intraoperative/perioperative patient and speci-
men imaging. If these hurdles can be overcome,
the use of positron-emitting and high-energy
gamma photon-emitting radiopharmaceuticals
for real-time cancer detection and surgical guid-
ance within the operating room and for real-time
guidance of diagnostic and therapeutic interven-
tional procedures within the interventional radi-
ology suite can become more fully realized and
potentially impactful upon the long-term out-
come for cancer patients.
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