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Preface

This book is based on a conference held in Paris on May 31–June 2, 2012, on the
occasion of the retirement of Michèle Artigue from her position at Université Paris
Diderot (Paris 7). Organised under the theme The Didactics of Mathematics:
Approaches and Issues. A Homage to Michèle Artigue, the so-called Artigue
Colloquium gathered more than three hundred colleagues from all over the world.

When Michèle Artigue announced that she was officially retiring from her
position at Université Paris Diderot—but happily continuing her activities as an
Emerita Professor, allowing her to be further involved in mathematics education
research or other forms of involvement in support of the field— it became clear to
us, as well as to numerous members of the international mathematics education
community, that it was essential to mark in a very special way that moment in her
truly remarkable career. The idea of hosting in Paris a colloquium in homage to her
exceptional contribution to the development of didactics of mathematics over the
last decades was very quickly and easily agreed upon.

This book, the outcome of the Artigue Colloquium, offers more than a mere
reflection of its scientific content, as well-known researchers from the field have
been invited to summarise the main topics where the importance of Michèle
Artigue’s contribution is widely recognised. Her multiple interest areas give to this
volume its unique flavour of diversity.

We wish to use this opportunity in order to express our most sincere friendship
to our colleague, Michèle Artigue, with whom each of us has intensively interacted
over the past decades, in often quite different contexts.

Bernard R. Hodgson
Alain Kuzniak

Jean-Baptiste Lagrange
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Chapter 1
Introduction: Perspectives on Didactics
of Mathematics through Michèle Artigue’s
Contributions

Bernard R. Hodgson, Alain Kuzniak and Jean-Baptiste Lagrange

In 2012, a memorable conference on the didactics of mathematics was organised
and held in Paris, a result of the determination of an entire community to honour
one of its most distinguished members, Michèle Artigue. Given the exceptional
character of their highly esteemed colleague, the organisers of the meeting expected
the attendance of numerous researchers in the field, but the success largely
exceeded their expectations: more than three hundred people from many parts of the
world kindly participated so as to express both their admiration and their affection
for Michèle. An especially emotional event in the symposium was undoubtedly its
conclusion when, moving smoothly and graciously between French, Spanish and
English, Michèle Artigue evoked her family origins in her native Pyrenees and her
commitment to the development of education in all its forms. The importance of
this commitment was recognised in 2013 by the International Commission on
Mathematical Instruction (ICMI)—of which Michèle was herself Vice-President
(1999–2006) and President (2007–2009)—when she was awarded the Felix Klein
Medal, “in recognition of her more than thirty years of sustained, consistent, and
outstanding lifetime achievements in mathematics education research and devel-
opment”. More recently, she was awarded the 2015 Luis Santaló Medal by the
Latino-American educational community (Comité Interamericano de Educación
Matemática—CIAEM), showing again her influence beyond borders.
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The book The Didactics of Mathematics: Approaches and Issues. A Homage to
Michèle Artigue is the outcome of this conference, and it utilises the same general
structure. However, it offers more than merely a reflection of the event, as various
well-known researchers from the field have been invited to summarise the main
topics where the importance of Artigue’s contribution is widely recognised. Her
multiple interest areas, as a researcher involved in a wider community, give to this
volume its unique flavour of diversity. In the preparation of each chapter, authors
were given the opportunity to use one important paper by Artigue to initiate their
reflections about a given topic. It was not always easy to identify a clear or
pre-established order among this abundant and diverse material, as the different
themes discussed during the conference drew on the extremely rich scientific
journey of our colleague. As a conclusion to the book, Michèle Artigue—who
needless to say was given carte blanche—offers a few personal keys to under-
standing the main elements that guided her throughout her scientific choices.

Since the early 1970s and up to the present day, Michèle Artigue has been closely
linked to the emergence and the development of the didactics of mathematics. By
observing her exemplary professional history, one can witness a new and specific
research domain taking form, as well as see the difficulties that accompanied its
recognition by both the academic community and, more generally, the whole edu-
cation community. Academic recognition relies on the elaboration of a research
programme with a specific basis, both methodological and theoretical. Such
recognition also passes through the definition of themes specific to the domain and
the identification of its links and differences with related disciplines likewise
interested both in an epistemological and cognitive perspective on mathematics.
Finally, recognition from the education community implies that researchers abandon
the comfort of their research labs to become involved in social and cultural debates.

Following this conception of recognition, we have organised this opening
chapter around some of the major issues related to the past, the present, and the
future of the didactics of mathematics, and more generally of mathematics educa-
tion: didactics as a specific research domain, the role of theoretical frameworks, the
relationship to connected fields of research, and finally, the way didactics considers
its relationship with the outside world of mathematics teaching and learning.

1.1 Didactics of Mathematics as a Specific Research
Domain

1.1.1 At the Very Beginning: The Year 1968

In order to honour Michèle Artigue, to delineate her scientific and academic path,
and because of her close association with the genesis and development of didactics
of mathematics, we have to review the evolution of this research domain, both in
France and more generally around the world.

2 B.R. Hodgson et al.



In 1993, a conference entitled Twenty years of didactics of mathematics in
France was held in Paris. As pointed out in its title, the conference dated the birth
of this research domain in France to 1973. In his address to that conference,
Kilpatrick (1994) stressed the arbitrariness of such a date. Mentioning the out-
standing figure of Sylvestre-François Lacroix in the XVIIIth century, he wondered
whether we should not trace this birth to 200 years earlier.

Sylvestre-François Lacroix is the author of a remarkable publication about
mathematics teaching, as well as of a mathematics textbook intended for high
school teachers of that time. Inspired by Kilpatrick, we now consider this period of
the history of teaching, making connections with today’s concerns.

At the end of the eighteenth century, after the French Revolution, a first
“massification” of education—actually rather relative—required enlarging the
number of trained teachers. The solution to this problem was the establishment of
the École Normale de Paris in the year III (Dhombres 1992). The implemented
model was that of a pyramidal system disseminating knowledge from top to bottom,
with students from districts all over France following the courses in the École
Normale, and then redistributing knowledge to prospective teachers in their own
districts.

In mathematics, the courses were entrusted to the best mathematicians, who in
practice were not really concerned about the “art of teaching”, but rather eager to
communicate their own creations, often the most advanced of their time. For
instance, Monge explained the theory and methods of descriptive geometry, of
which he was the inventor. “Pedagogical” concerns, and more precisely concerns
for a “method”, are nevertheless present in the work of Lacroix, who was
Lagrange’s assistant during that period. Lacroix published two books on algebra, in
which he adopted two radically different positions relative to student work. The first
book, published in 1797, is an adaptation of a book by Clairaut chosen because its
structure follows “the process of invention” (Ehrhardt 2009). Writing a second
book two years later, Lacroix then adopted a synthetic structure, saying that he was
now convinced “that it is necessary to reduce the part of invention, and that after the
student overcomes the first difficulties […], he does not need a presentation of
contents following the way they were invented” (Ehrhardt 2009, p. 15).

Two centuries later, with the New Math reform, the same tendency was observed
to assign the development of curricula and the organisation of education to dis-
tinguished mathematicians. Again, the main orientation was provided by books for
teachers produced by these mathematicians, such as Dieudonné rejecting the
geometry of the triangle in favour of a geometry based on linear algebra—as is the
case in advanced mathematics. The same problems and tensions were thus
encountered when developing education to adapt to the rapidly changing world of
the 1960s. During that period, France aimed at a deep transformation of school
education, and substantial financial and institutional support was provided.
Prominent mathematicians were given the task of educational design, thus trig-
gering conflicts between school mathematics and research mathematics. The
dilemma again arose of choosing between learning approaches based on invention,
and more systematic methods that logically sequenced mathematical propositions.
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Kilpatrick concludes by favouring the year 1968 as the birth of didactics of
mathematics, when all these conditions helped the emergence of a research domain
about mathematics teaching/learning: 1968 was the year of “tranquil revolutions” in
a booming Western world, of the emergence of New Math in the curricula, as well
as an important increase in the number of secondary school students. In France it is
also the year that the Instituts de Recherche sur l’Enseignement des Mathématiques
(IREMs) network was established and, most importantly with regard to this book,
1968 marks Michèle Artigue’s first year of teaching.

1.1.2 Reproducibility of Didactical Situations: Towards
a Normal Science

At its inception, didactics benefited from solid institutional supports, among them
the network of the above-mentioned IREMs, thus involving university teaching
staff and facilitating the preparation and development of teachers in charge of
implementing the new mathematics reform.

Nowadays (2015), didactics of mathematics—even though this precise term may
still be a subject of debate within the international community—seems to be widely
recognised as a research field. We can even speak of a “normal science”, or more
precisely of a normal domain of research.

Indeed, a common assertion by the instigators of didactics of mathematics, in
France if not elsewhere, pertains to the scientific nature of the research project. For
instance, Brousseau declared that:

The didactics of mathematics presents itself, a priori, quite naturally, as the science of
specific conditions for the provoked acquisition of mathematical knowledge. (Brousseau
1994, p. 51).

Can we however speak of a “normal science” the way Kuhn defines it? Such a
question leads us to consider the issue of “scientificity” and experimenting in
didactics of mathematics. The notion of falsifiability introduced by the philosopher
Popper (1935) allows to draw a line between science and non-science. Certain
explicative or predictive statements of a scientific theory should be tested through
experiments. Therefore, contrarily to the Magna Didactica written by Comenius in
1638, the new didactics is experimental and seeks to take into account contingency.
This in turn raises the issue of what is an experiment in didactics.

Michèle Artigue’s contribution to this matter is crucial, questioning the repro-
ducibility of didactical situations and developing the notion of ingénierie didactique
in her “thèse d’état” and her frequently quoted 1990 paper (Artigue 1990a) as a
method for validating hypotheses in didactics. Hence, a method of research and
validation (and so of refutation) of didactical approaches was initiated.

An experimental design based on the didactical achievements in class, i.e., the design,
implementation and analysis of teaching sequences. (Artigue 1990a, p. 285).

4 B.R. Hodgson et al.



The notion of ingénierie didactique, and more generally issues related to
empirical studies in didactics, remain vibrant in the field and recently (in 2009) the
French Didactics Summer School was entirely devoted to this topic. Specifically,
questions of validity remain important regarding the number of individuals
involved in an empirical study, the duration, the influence of contextual factors, the
variability of curricula, and so on. In addition, the influence of settings in an
empirical study, distinguishing between “laboratory experiment” and “ordinary
classroom”, should not be left aside.

1.1.3 The French School of Didactics of Mathematics
Within an International Community

As already mentioned above, the mere use of the expression ‘didactics of mathe-
matics’ may still be seen as a source of debate within the international community.
In spite of such a lack of consensus and without entering into the linguistic or
practical issues that may be attached to it, this term is most helpful in the present
book in order to stress the specificities and the impact of the approach through
which issues concerning the teaching and learning of mathematics are generally
addressed in France. As is well known, one can even speak of a ‘French School’ of
didactics of mathematics (or of mathematics education, in the usual English par-
lance). Most of Michèle Artigue’s work can be seen as taking its source from this
French tradition of didactique des mathématiques, and it was considered important
in this book to propose some reflections on the connections with other approaches
and contexts encountered in ‘mathematics education’—connections in which
Michèle has herself played a crucial role.

In a paper orchestrated by Tommy Dreyfus and Kenneth Ruthven, and inspired
by the metaphor of travel—Didactique goes travelling: its actual and potential
articulations with other traditions of research on the learning and teaching of
mathematics (Chap. 2)—four colleagues, with interest and experience in research in
the didactics of mathematics from both a French and an international perspective,
were invited to reflect on the main issues underlying the actual and potential
connections between the French approach and others. Arcavi first stresses the
importance, in spite of the inherent difficulties, of establishing an extensive and
intensive ‘dialogue’ between different research traditions. Kilpatrick then uses the
notion of translation as a paradigm to address these difficulties, but emphasises that
what is at stake is more than a mere translation of language, from French to English
(or eventually other languages), but also, and more importantly, a translation
between cultures. Boero takes these comments further, pointing to the fact that even
a certain proximity of languages, such as may be the case with French and Italian,
does not necessarily eliminate all potential obstacles for communication. Finally,
Radford reminds us of key epistemological approaches on which didactique drew to
develop its analysis of the genesis of new knowledge and draws our attention to two
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very different strands, one emphasising the internal logic of a discipline as the
motor of its development, another urging attention to the broader sociocultural
context.

1.2 The Multiplicity of Theoretical Frameworks:
Networking Theories

In an article dealing with the notion of example spaces, Goldenberg and Mason
(2008) ended their presentation with a fierce attack against the vagueness of defi-
nitions in mathematics education, due to the absence of an axiomatic framework.
They reiterate that we frequently come across multiple usages of similar terms, and
usages of multiples terms having similar meanings. This attack may come as a
surprise to French researchers, as for a long time the French didactics has already
been poking fun at its own propensity to generate theoretical frameworks—actually
motivated by its scientific orientation which implies strong theoretical work.

The problems began with the proliferation of frameworks and paradigms.
However this can be seen as the normal state for an emerging science, or as an
intrinsic characteristic of a field which is so extended and complex that it needs
different theoretical approaches to report properly. Conducting crucial experiments
would then determine which, among all the theories, would lead to a “normal
science” based on a paradigm (or paradigms) accepted by the majority.

Evidence of the field’s scientificity would arise from its ability to avoid frag-
menting into several, and sometimes ideological, chapels, and to construct the field
upon a coherent networking of various approaches and methods. In order to make
progress on the question of theorisation and the multiplicity of frameworks, it is
useful to go back to simple questions often repeated by Michèle Artigue in order to
communicate beyond unconnected frameworks:

What is the issue that the researcher wants to address?
What is the nature of the institutional context in which this issue arises?
Normally, the theoretical framework should adjust to the questions and explain

certain essential differences. This constant return to the initial issue motivating
research should help to stay clear of two frequent obstacles:

• On the one hand, accumulating research within theoretical frameworks, without
referring to questions.

• On the other hand, omitting the context by applying exotic or exogenous the-
oretical frameworks.

In this book, Kidron and Bikner-Ahsbahs present, in their chapter entitled
Networking different theoretical perspectives (Chap. 3), the efforts of mathematics
education researchers in understanding how theories can be successfully connected
while respecting their underlying conceptual and methodological assumptions, a
process called “networking theories”. Both authors had the privilege of collaborating
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with Michèle Artigue and other colleagues in exploring ways of handling the
diversity of theories. They describe and explain the reasons for networking, as well
as the expected difficulties of the networking process. They characterise different
cases of networking and provide methodological reflections on the difficulties and
benefits that accompany the networking.

Grugeon-Allys, Godino and Castela accept these differences between research-
ers, each engaged in a different theoretical reflection not so easy to bring closer one
to the other. While acknowledging the fact that the creativity of researchers, which
gave birth to a number of theories, may have created problems in the community,
they offer a triple viewpoint on these matters in their chapter, Three perspectives on
the issue of theoretical diversity (Chap. 4). The first perspective examines the
richness of a multidimensional approach based on the mobilisation and networking
of various well-identified theories, enabling a segmentation of reality that is well
suited to the study of didactic phenomena. The second considers a possible
methodology for reducing theoretical diversity based on an upward integration
within an onto-didactical framework. Finally, the third perspective examines from a
social viewpoint the multiplicity of theories in the didactics of mathematics and the
search for connections.

1.3 Didactics of Mathematics and Related Research Fields

Didactics of mathematics covers a wide area related both to mathematics and to the
conditions of its transmission and appropriation by various institutions. This nat-
urally involves borrowing from other already highly structured fields—of course
from mathematics itself, as well as from its epistemology and history—and from
more distant fields such as psychology, semiotics and sociology.

1.3.1 Mathematics

The early development of didactics of mathematics was supported by leading
mathematicians, such as Freudenthal in the Netherlands, Rouche in Belgium, and
Revuz and Glaeser in France. These initial and very close links between mathe-
matics didactics and mathematics itself were maintained throughout the years,
evidenced by didactics research teams in France which are often still today part of
university scientific departments. Such is the case, for instance, with the
Laboratoire de Didactique André Revuz, of which Michèle Artigue is a member,
which belongs both to the mathematics and the physics departments of Université
Paris Diderot. This relationship with researchers in mathematics ensures the
epistemological vigilance necessary to any didactic development.

These comments about the importance of mathematics per se clearly apply to
Michèle Artigue herself. She started her own academic career as a mathematician
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with research projects in mathematical logic. But she very early became interested
in the teaching of analysis, with a particular attention to the research conducted by
Reeb and Lutz (see Lutz et al. 1996) concerning the use of non-standard analysis in
teaching. Her interest in the teaching of mathematical analysis remained unfailing
throughout the years and justifies the choice of this theme in the symposium.

Analysis is considered in this book from a didactical viewpoint in Oktaç and
Vivier’s Conversion, change, transition… in research about analysis (Chap. 5). In
this chapter, the authors offer a personal and original synthesis of research in the
didactics of mathematical analysis. The presentation stresses once more the
necessity of cross-approaches to this specific mathematics domain, where students
are led to embrace a number of complex and diverse notions—e.g., real numbers,
functions, limits—that are both central to and emblematic of analysis. The authors
show how theories such as socio-epistemology, APOS, or the use Duval’s semiotic
registers or Chevallard’s praxeologies can enrich didactical as well as epistemo-
logical questioning.

Two further chapters of this book pertaining not only to analysis, but also to the
field of mathematics as a whole, deal with Digital technology and mathematics
education. The general background to this theme was clearly captured by the title of
the very first so-called ‘ICMI Study’, The influence of computers and informatics
on mathematics and its teaching (Howson and Kahane 1986). Artigue’s contribu-
tion to this theme was of primary importance.

Issues concerning the role and impact of digital technologies in the teaching and
learning of mathematics are addressed here under two headings. In their chapter,
Core ideas and key dimensions of Michèle Artigue’s theoretical work on digital tools
and its impact on mathematics education research (Chap. 6), Kieran and Drijvers
revisit Artigue’s classical paper (2002) by drawing out what they consider to be the
core theoretical ideas and key dimensions of the body of work on tools and tool use
that Michèle not only elaborated, but also inspired others to develop further. They
trace the evolutionary path of these core ideas, noting the ways in which they theorise
the four general key dimensions: learner, teacher, tool, and mathematics. They focus
on core theoretical ideas that have been central to Michèle’s work and that have
impacted in various ways on the research of others: the instrumental approach to tool
use, instrumental genesis, the pragmatic-epistemic duality, the technical-conceptual
connection, the paper-and-pencil versus digitally-instrumented-technique relation-
ship, the institutional aspect, and the networking of theories.

In another chapter devoted to the theme of digital technologies, The teacher
perspective in mathematics education research—a long and slow journey still
unfinished (Chap. 7), Abboud-Blanchard, one of Michèle’s first PhD students,
draws our attention to the need for specific studies on teachers’ use of digital tools
for a better understanding of teaching practices in technological environments, of
their determinants, and of their evolution dynamics.
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1.3.2 Epistemology and History

The epistemological vigilance we just mentioned presupposes interactive exchanges
with specialists in the history of mathematics and in epistemology. Michèle has
clearly pointed this out in another of her fundamental papers, in which she dis-
cussed the possible connections between epistemology and didactics. Artigue
(1990b) stressed the crucial need of epistemology for the researcher in didactics.
She also pointed out that some knowledge of the history of mathematics is a key
component of didactical research, in order either to understand the historical
development of some mathematical concept, or to understand the shaping of
mathematics as a cultural activity.

Historians do not provide direct answers to mathematics education research
questions, for a number of structural reasons which Chorlay and de Hosson attempt
to lay out in Chap. 8, History of science, epistemology and mathematics education
research. Echoing Artigue’s 1990 paper mentioned above, Chorlay and de Hosson
discuss research practices at the intersection of two autonomous fields of knowl-
edge: mathematics education research on the one hand, and history of mathematics
on the other. The two main reasons they offer for the gap between history and
didactics are the deep heterogeneity of the objects and contexts of study, and the
epistemological differences between the two fields. Nonetheless, heterogeneity and
autonomy do not imply incommensurability. The authors conclude by stressing that
history does not teach, yet there is a lot to learn from it.

1.3.3 Psychology, Cognition, Semiotics and Sociology

An initial characteristic of the didactics of mathematics in France was the con-
spicuous presence of psychologists specialising in mathematical cognition.1 In
particular, Gérard Vergnaud, from the Centre national de la recherche scientifique
(CNRS), participated in the first developments of didactics of mathematics. In his
paper quoted above, Brousseau, in researching the link between epistemology and
cognitive sciences, concluded by giving a new and enlarged definition of what
didactics of mathematics was for him.

The didactics of mathematics thus places itself within the framework of cognitive sciences
as the science of the conditions specific to the diffusion of the mathematical knowledge that
is useful to the functioning of human institutions. (Brousseau 1994, p. 52).

1This characteristic is of course not specific to France. One can also think of the International
Group for the Psychology of Mathematics Education (PME), an ICMI-affiliated study group
established in 1976, whose fifth conference was held in Grenoble in 1981. (Gérard Vergnaud was a
member of the International Committee of PME at its beginning and also PME President in 1982.)
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The bonds today seem to have weakened: mathematical cognition was not
specifically mentioned at the conference in honour of Michèle Artigue, whereas it
was very present in the 20-year of didactics conference. We assume that this gap
results from the evolution of the two research fields. Today, cognitive sciences are a
highly technical field of research, mainly aimed at understanding the functioning of
the brain (e.g., the journal Mind, Brain and Education). Besides this aim, there is a
societal demand for applications to education, and especially to mathematics. In
recent years Michèle has stressed the need to consider this societal demand and, in
concluding a booklet about gestures and embodied cognition with a special emphasis
on cognitive sciences, she calls attention to “the need of working on the conceptual
and methodological implications of the integration of these approaches of cognition
into our research issues, reflecting on this occasion on the potentialities and limits of
our theoretical frameworks to tackle these issues” (Lagrange et al. 2012, p. 36).

By contrast, the recent evolution of didactics of mathematics tends to favour
research concerns centred on the forms of diffusion of specific knowledge within
the institutions, with links to specific sociological approaches. Semiotics, in various
forms, is a key component of most recent research studies.

1.4 Didactics of Mathematics and the Outside World
of Mathematics Education

In his 1993 lecture, Kilpatrick (1994) also stressed the fact that researchers in North
America tend to resist the expression didactics of mathematics and prefer to use
instead mathematics education when referring either to the teaching activity or to
the research field. ‘Didactics of mathematics’, de facto, allows a distinction between
these two dimensions: research on the one hand; and its impact on teachers, on
students through the education they receive, and also on curricula changes, on the
other hand.

In all these dimensions, we can notice the specific input provided by Michèle
Artigue and her ability to include all of them, without avoiding any. Her com-
mitment to the implementation and assessment of digital tools in education has
already been outlined above. What may be less known is that she was involved in
the fashionable and institutional demand for Inquiry-Based Education (IBE), pro-
moted today by most science and mathematics curricula on an international scale.

1.4.1 Inquiry-Based Education

In the chapter Inquiry-based education (IBE): towards an analysing tool to charac-
terise and analyse inquiry processes in mathematics and natural sciences (Chap. 9),
Ouvrier-Buffet, Bosdeveix and de Hosson (respectively from mathematics, biology
and physics) offer a general overview of IBE and compare different experiences in
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various scientific domains. They stress that while many guidelines have been devel-
oped for helping both teachers and teacher educators to implement teaching-learning
sequences involving inquiry processes, the specificities of the scientific knowledge
involved is rarely taken into account. They propose a “checklist” as a tool for ana-
lysing inquiry-based sequences that are being implemented in mathematics and sci-
ence classrooms.

1.4.2 The Researcher in the Wider Community

It is impossible not to mention Michèle Artigue’s exceptional contribution in being,
herself, a ‘Researcher in the Wider Community’. Motivated by the numerous
responsibilities that Michèle took on beyond her research work, a group of authors
look in practical terms, in Chap. 10, at how a researcher may come to develop this
kind of involvement, and at its goals and impacts.

In the first section of that chapter, Lagrange reflects on and draws lessons from
responsibilities taken by Michèle in various institutions such as the IREMs (at the
time of the colloquium in her honour, she was still President of the IREMs’ sci-
entific committee). Celia Hoyles then examines her personal involvement in the
National Centre for Excellence in the Teaching of Mathematics (NCETM) in the
UK, discussing how the Centre started and how it has evolved since 2006. Another
influential and active researcher, Jill Adler, contributes to this theme by focusing on
key developments in mathematics education in Africa that have emerged through
the work of the International Commission on Mathematical Instruction (ICMI), in
particular under the presidency of Michèle Artigue (2007–2009). Finally, French
academician Jean-Pierre Kahane discusses more generally the role and position of
researchers, and especially mathematicians, in contemporary society. He concludes
with remarks on the place that mathematics has in civic life and on the eminent
social role played in that connection by the teaching and learning of mathematics.

One aspect concerning the issue of the researcher as a member of a wider com-
munity is related to communication, and in particular to the choice of language(s) used
in various public contexts, for instance, publications or conference presentations. We
have already stressed above howMichèle Artigue, in her own oral presentation at the
colloquium organised in her honour, made a point of using three languages which she
speaks fluently, a testimony of her sensitivity to the diversity of the attendees’ cultural
environments. In a preliminary note about language in his contribution to this chapter,
Kahane emphasises that this colloquium included three languages, which contributed
to providing a successful setting, and he warns about the use of English as the pre-
ferred only possible language, especially in educational matters.

While acknowledging the convenience of having today English as a lingua
franca, it could be argued that the use of only English in a field so diverse as
didactics of mathematics could without doubt provoke an impoverishment—a risk
for which the entire educational community must be fully aware. The Artigue
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symposium should be seen as a testimony to the importance of further encouraging
multilingual conferences, even when editorial constraints compel using only one for
the post-conference book.

1.4.3 “L’École Artigue”

In a final colloquium presentation reflected in this book, a different perspective is
introduced concerning the relationship between didactics of mathematics and the
global issue of the teaching and learning of mathematics: that of preparing the next
generation of researchers in the field. Taking as a starting point the remarkable
contribution of Michèle Artigue in this regard, Haspekian, Straesser and Arzarello
propose, in their chapter, Preparing young researchers in mathematics education:
beyond simple supervising (Chap. 11), not only a testimony to her personal
accomplishments as a supervisor of numerous doctoral theses, but also a more
global reflection on what it means to accompany and guide PhD candidates
throughout their progression in their doctoral studies. They discuss the responsi-
bilities of various parties involved in such an endeavour, and point to some of the
main pitfalls that may occur.

1.4.4 Artigue’s Didactic Aventure

In the concluding chapter written by Michèle Artigue, she underlines that the
conference honouring her was a strong and emotional occasion for retrospective
reflection and she uses this opportunity to convey to the new generations of
didacticians some elements of a history which has shaped their field of study. She
invites us to follow her on a didactic route which begins with the creation of the
IREM of Paris 7 in January 1969 and ends at the conference in June 2012 in which
she expresses her confidence in the future of this research domain.

Before leaving the reader to explore the chapters of this book, it is important to
emphasise again the specific contribution of Michèle. She brings to us a precious
existential theorem: There exists a personal and rich manner to reconcile all these
points of view and develop research that interacts with social demand.
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Chapter 2
Didactique Goes Travelling: Its Actual
and Potential Articulations with Other
Traditions of Research on the Learning
and Teaching of Mathematics

Abraham Arcavi, Paolo Boero, Jeremy Kilpatrick, Luis Radford,
Tommy Dreyfus and Kenneth Ruthven

2.1 Introduction

The French tradition of research on the learning and teaching of mathematics, often
referred to simply as ‘didactique’, has developed a range of theoretical tools. These
tools share a common intellectual and professional hinterland, and although each is
honed to analysis of particular types of didactical question, they have increasingly
been used by French researchers in coordinated ways. As this movement towards a
more systematically articulated didactique has developed within France, ideas from
didactique have become sources of inspiration or points of reference for researchers
outside France. Fresh questions have naturally arisen about the central concepts of
didactique as they encounter new professional cultures and their associated intel-
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lectual traditions. At the Artigue colloquium, the last two authors of this chapter
convened a round-table discussion to explore this issue. Each of the first four
authors contributed by bringing a particular perspective inspired both by their
professional contacts with Michèle Artigue and their own interests and experience.

The first two of these contributions looked, in rather different ways, at corre-
spondences and contrasts between French didactique and some of the central the-
oretical frameworks influential in English-speaking research on the teaching of
mathematics. Abraham Arcavi launches our discussion by comparing didactical
engineering with design research and the didactical contract with sociomathemat-
ical norms.

2.2 Towards a Dialogue Between Traditions
and Approaches in Mathematics Education

Abraham Arcavi

I am honored and pleased to be part of this homage to Michèle Artigue. It is a most
appropriate opportunity to express my personal gratitude to her. I learned much
from Michèle’s writings and much more from the long and lively conversations I
was very lucky to have with her on many occasions. The luck refers to the many
opportunities we have had to encounter each other (including a mini-course in
Sweden that we co-taught). However, the depth and the breadth of our conversa-
tions have less to do with luck and more to do with Michèle’s friendly predispo-
sition to engage in dialogue, with her special ways of communicating, and above all
with her willingness to address my questions and comments, even if naïve—always
with unusual patience, care and deep respect for her interlocutor. I was consistently
impressed by her devotion as a teacher, as a “bridge builder” (between the
knowledgeable and the less knowledgeable, between the French tradition and other
schools of thought, between mathematicians and mathematics educators), and by
the scope of her vast knowledge and wisdom. Inspired by Michèle’s work and
personality, I would like to argue for a comprehensive effort to enhance and extend
the dialogue among traditions and communities in mathematics education, with
depth, care, respect and patience. In particular, I think it is of special importance to
continuously address, for example, the following question: Do the approaches of
the French didactique overlap those of the other traditions, and if so, in what sense?
Or maybe the issues are not the same after all?

I will briefly dwell on some aspects of this question by using examples and by
reporting on a conversation with a colleague who works in different traditions of
research and practice.
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My departure point is the very title: “Didactique goes travelling”. The travel
metaphor implies moving away from one’s comfortable and well-known territory to
other, less known, places, to meet people who speak different languages and/or
have different perspectives, and with whom we may talk about our places and ways
of doing things. As a traveler for short, intermediate and long periods, including
emigration and adaptation to a new place, I know that changing places often
compels us not only to meet new perspectives, but also to profoundly revisit and
make visible our own ideas and basic assumptions, which we tend to take for
granted.

In this “travel”, I will rely on informal conversations with Michèle Artigue and
on some of her lectures I attended.

2.2.1 Contrasting Traditions

In the 1980s, both the French didactique and the Anglo-Saxon traditions of
mathematics education seemed to be at a similar juncture:

(a) Dissatisfaction with the methods of study (external methodologies such as
tests and questionnaires, and overemphasis on statistical comparisons between
experimental and control groups) as the main avenues to “scientificity”; and

(b) A need to move away from cognitive research mostly held in laboratories in
order to capture “the complex intimacy of classroom functioning”. The
Anglo-Saxon tradition started to focus on the socio-cultural aspects of
teaching and learning, and the French didactique launched the Theory of
Didactical Situations, the idea of Didactical Engineering and more (perhaps
there is some chronological misrepresentation implicit here, since the roots of
French didactique can be traced back to the 60s, therefore the ideas were not
only a reaction to unsatisfactory extant theories and methods, however, their
visibility and influence became apparent in the 80s). In a certain sense, the
departure point and the ultimate goal of both traditions were similar: to capture
the complexity of learning in classroom settings, and to understand the
“ecology” beyond the “individual’s biology”.

In the following, I would like to consider two examples of ideas/constructs from
both traditions, to juxtapose them in order to ponder points of tangency, the extent
of the overlap and the character of the differences. Such juxtaposition is rather
simplistic, and thus it may do some injustice to both the depth and the breadth of the
ideas. Nevertheless, it is proposed as a starting point to launch a much needed
dialogue, even if it only serves the purpose of a “balloon to shoot at”.
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First example: Design research—Theory of Didactical Situations

Design research (Brown 1992) Theory of didactical situations (Brousseau
1997; Artigue 2000)

• From work sites/assigned tasks towards
communities of learners, where students
take charge of their own learning

• Engineer educational environments and
simultaneously conduct experimental
studies of those innovations

• Study simultaneous changes in the system,
concerning the role of students and
teachers, the type of curriculum, the place
of technology, and so forth This is
intervention research to inform practice and
which enables migration from experimental
classrooms to average classrooms operated
by and for average students

• Autonomous learners

• Work toward a theoretical model of learning
and instruction rooted in a firm empirical base

• From cognising subjects to didactic situations:
set of interactions between students, teachers
and mathematics at play in classrooms

• The didactic situation shapes and constrains
the knowledge constructed

• Without understanding the situation it is not
possible to interpret the students’ behaviors
in cognitive terms

• To understand teaching and learning
processes and the ways they interact

• To develop rational means for controlling
and optimising didactical situations

• Didactic, a-didactic situations and
devolution processes

• Confrontation between a priori analysis of
engineering design and a posteriori analysis
of data collected

Second example: Socio-mathematical norms—Didactical contract

Socio-mathematical norms (Yackel and Cobb
1996)

Didactical contract (Brousseau 1986; Artigue
2000; Sierpinska 1999)

• Normative understandings of what counts as
mathematically different, mathematically
sophisticated, mathematically efficient and
mathematically elegant in a classroom

• What counts as an acceptable mathematical
explanation and justification

• Influence the learning opportunities for both
the students and the teachers

• The students and the teachers may
interactively elaborate the norms

• Clarify how students develop beliefs and
values

• Concept developed by Brousseau as a
possible explanation for ‘elective failure’ in
mathematics

• Expectations of the teacher with respect to
the students, and conversely, regarding the
mathematical content

• “Rules” pertinent to the knowledge taught

• The rules of the didactic contract are
implicit: the teacher and the students do not
sign a chart of ‘rights and obligations’ but
they are there and we know that they are
there when they are broken
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2.2.2 Reflections of a “Traveler”

In my pursuit of understanding and reflecting upon the differences between traditions,
I thought that it may also be appropriate to bring vivid testimonies of a “traveler”
among traditions. I was fortunate to meet Takeshi Miyakawa in Tsukuba University
in Japan during 2005. Takeshi is currently a faculty member in the Department of
Mathematics at the Joetsu University of Education. What is special about Takeshi’s
background is that he did his PhD in Grenoble, France, under the guidance of Nicolas
Balacheff, and his post-doctoral fellowship with Patricio Herbst at the University of
Michigan in the USA. So Takeshi has first-hand experience in three traditions of
mathematics education. In preparation for the Artigue colloquium panel, I contacted
Takeshi and he kindly agreed to reply to my questions. Here are some of them:

1. As a person who worked in both the French tradition of didactique and the
Anglo-Saxon research tradition in mathematics education, what would you say
are the main differences between them?

2. Did you find theoretical “points of tangency” between the two traditions?
3. Do you have any explanation as to why the French tradition and the Anglo-Saxon

tradition do not engage in a deeper dialogue than seems to be the case?

Takeshi’s answers are extensive and interesting. I include here some of the main
points, taking into account what I think would best serve the promotion of the
dialogue between traditions.

The French research tradition in mathematics education is relatively homogeneous.
This is consonant with Laborde’s (1989) description of research as based on the
setting up of an original theoretical framework developing its own concepts and
methods and satisfying three criteria: relevance in relation to observable phenomena,
exhaustivity in relation to all relevant phenomena, and consistency of the concepts
developed within the theoretical framework. It is described as a national program to be
carried out neither by single researchers, nor by single teams, but by several institu-
tional sites. The American tradition is much more heterogeneous: “Research in
mathematics education is diverse. Very often, the theories from other fields of
research, like linguistics, sociology, ethnomethodology, psychology, cognitive sci-
ence, educational science, philosophy of mathematics, etc. are used. And the research
work focuses on different aspects according to the adopted outside theory. It also
seems, in my view, due to this diversity, that there is no sharp line between the
research in math education and the educational research in general” (Miyakawa 2012).

Another difference in Takeshi’s view is the centrality of the role and nature of
mathematical content knowledge in the French tradition, whereas this may not always
be the case in the USA. Even when there may be points of tangency regarding the
objects of study, it is often quite difficult to “put them together” because the goals, the
foci and the approaches to research are so different. Such differences should be pur-
sued, captured and made explicit, as a pre-requisite for a fruitful dialogue.

I would like to conclude on the basis of a reflection by Takeshi, which may also
contribute to pinpointing why the rapprochement between traditions is not
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happening as intensively as one might have expected: it is not easy to understand
the French research tradition if you are in the American tradition, and vice versa.
Understanding the other’s perspective is not a simple endeavour (Arcavi 2007), and
among its difficulties is undertaking a deep revision of one’s own implicit
assumptions, beliefs, biases and predispositions in one’s own research tradition. It
also implies the explication of the implicit—and this may require more than simply
reviewing published research results.

However, says Takeshi, there have been several appeals followed up by actual
research which seriously undertakes this rapprochement. The CERME working
group on theory may be one of these examples.

I encourage the furthering of these attempts, and I also encourage the research
community to be inspired by the intellectually sound and personally empathic
approach so nicely pursued by Michèle.

2.3 First Entr’acte

As Miyakawa notes above, French didactique has traditionally been more strongly
affiliated with mathematics in its disciplinary culture and social organisation than
with mainstream educational studies and core social sciences, in contrast with
English-speaking mathematics education. Jeremy Kilpatrick continues this discus-
sion by examining the commensurability of these two traditions of study of the
teaching of mathematics, and the conceptual frameworks that they have developed.

2.4 Lost in Translation

Jeremy Kilpatrick

“La syntaxe française est incorruptible. C’est de là que résulte cette admirable clarté, base
éternelle de notre langue. Ce qui n’est pas clair n’est pas français; ce qui n’est pas clair est
encore anglais, italien, grec ou latin.”1

Antoine de Rivarol 1783

English-language speakers struggle to express what is meant by didactique des
mathématiques. “Didactic of mathematics” sounds stilted, even when pluralised, and
“mathematics education” is simply wrong. A common solution is to use the French
words and let the Anglophone reader adopt the meaning he or she chooses.
L’ingénierie didactique raises further hurdles. Connecting didactique to Anglophonic
research in mathematics education guarantees that something will be lost—but what?

1“French syntax is incorruptible. It is from that that results this admirable clarity, the eternal
foundation of our language. What is not clear is not French: What is not clear is still English,
Italian, Greek, or Latin.”
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Almost two decades ago, in June 1993, a conference on 20 years of didactique
des mathématiques was held in Paris. The report of that conference (Artigue et al.
1994), which focused on the contributions of Guy Brousseau and Gérard Vergnaud,
marked a milestone in the development of didactique as a research enterprise.
Brousseau’s theory of didactical situations and Vergnaud’s theory of conceptual
fields, supplemented by the semiotic approach of Raymond Duval and the
anthropological approach of Yves Chevallard, have in the ensuing years provided
four important theoretical frameworks on which much of the field of French
didactique has been built (Winsløw 2005).

During the past decades, a major role in bringing didactique onto the world stage
has been played by Michèle Artigue, who through her many presentations and
publications in French, English and Spanish has elucidated for numerous audiences
the theory of didactical situations, didactical engineering, and the anthropological
theory of didactics. Her interest in the integration of computer technologies into
mathematics education, particularly at the university level, has led her to combine
and elaborate the anthropological approach in didactics with the theory of instru-
mentation in cognitive ergonomics (Artigue 2002), a combination that has been
especially productive in studying learning in computer algebra system environ-
ments. Over the past decade, in particular, Artigue has been a highly visible
champion of all things didactique.

2.4.1 Didactique as Traveller

The theme La didactique en voyage (Didactique goes traveling) provides a chal-
lenging metaphor: Where does didactique choose to go? What does it do along the
way? And what does it take along on its travels? A brief consideration of each of
these questions serves to introduce my main concern: What is lost when didactique
leaves its Francophonic nest?

2.4.1.1 Destinations: Places Travelled

The report of the conference (Artigue et al. 1994), held when didactique was just
reaching adulthood, suggests that whereas during its youth it had reached many
places within France, it had not managed to travel very far beyond the country’s
borders. Most of the affiliations of the contributors to the volume were with
institutions in France, and only a handful were outside—a few European countries,
the United States and Canada. Now that didactique is on the verge of middle age,
that situation has greatly changed.

Didactique has ventured around the world, aided in large part by translations of
important works into other languages. For example, the 1997 Spanish translation of
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Chevallard’s (1985) book on didactic transposition was enormously influential in
bringing his ideas to Latin America. Publications in English (e.g., Artigue and
Winsløw 2010; Barbin and Douady 1996; Herbst and Chazan 2009a; Laborde and
Perrin-Glorian 2005; Winsløw 2005) brought work on didactique to a much wider
audience, with research reports still coming primarily from France and its neighbors
Spain and Italy, but increasingly from places such as Argentina, Denmark,
Palestine, South Africa and Vietnam. The emphasis on studying teaching situations
in mathematics classrooms using approaches anchored in the theoretical frame-
works of didactique has given the work broad appeal.

2.4.1.2 Itineraries: Some Accomplishments

During its travels, didactique has expanded its reach (see Caillot 2007, for a brief
history of that expansion across disciplines). At first, it seemed a simple traveler:
Arising from the theory of didactical situations, it has been defined as “a research
field whose central goal is the study of how to induce a student to acquire a piece of
mathematical knowledge” (Warfield 2007, p. 86).

As a field of research, didactique seemed only part of the larger field of research,
study, theory, and practice that is called, in English, mathematics education, and in
fact, seemed only part of the research of other scholarly endeavors in that field. But
over time, as didactical engineering and anthropological theory were added to its
arsenal, didactique grew beyond the realm of research: “In French, the term ‘di-
dactique’ does not mean the art or science of teaching. Its purpose is far more
comprehensive: it includes teaching AND learning AND school as a System, and so
on” (Douady and Mercier 1992, p. 5).

Even a modest survey of the accomplishments of didactique over the past four
decades would be beyond the scope of this chapter, so I mention only a few
examples. Discussing the ways in which theories can provide a language to describe
practice, Silver and Herbst (2007) note how Vergnaud’s theory of conceptual fields
has been used by US researchers: “Much of the empirical work [on the learning of
additive and multiplicative structures] done by scholars like Carpenter, Fuson,
Behr, and their associates concurs with Vergnaud’s observations” (p. 52).

Silver and Herbst (2007) also give several examples of how research done in the
US “can be seen as illuminating the origins of some [didactical] contractual diffi-
culties and entanglements” (p. 55). They show how the construct of the didactical
contract fits with the work of Mary Kay Stein and her colleagues (Stein et al. 2000)
on the negotiation of task demands in the mathematics classroom. Silver and Herbst
also connect the didactical contract to much other research on the work of the
teacher. “The notion of didactical contract has turned out to be a particularly helpful
notion to turn a descriptive theory of instruction based on [a] relational conception
of teaching into an explanatory theory” (Silver and Herbst 2007, p. 63; see also
Herbst 2003, 2006).
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Sriraman and English (2010) term didactique “the French tradition” (p. 19), and
they outline both the theory of didactical situations (which they term TDS) and the
anthropological theory of didactics, noting that both are major theories of mathe-
matics education. Linking TDS to other research on mathematics teaching, they
assert:

Taken in its entirety, TDS comprises all the elements of what is today called situated
cognition. The only difference is that TDS is particularly aimed at the analysis of teaching
and learning occurring within an institutional setting (p. 23).

2.4.1.3 Baggage: The Burden of Terminology

Despite the broad dispersion and wide-ranging accomplishments of didactique over
the past decades, it has not had the influence outside the Francophone world that
one might have expected, given the field’s shift in focus to classroom situations:

During the past 30 years, researchers in mathematics education from English-, French-, and
Castilian-speaking regions have been giving increased attention to classroom instruction….
Communication among researchers across those language differences has however been
scarce. Different theoretical traditions as well as cultural differences in how to write and edit
scholarship have often contributed to exacerbate the obvious differences in language
competence and thus discouraged mutual acknowledgment. (Herbst and Chazan 2009b,
p. 13)

In my view, part of the communication problem is that didactique carries some
heavy baggage stemming largely from the language it employs and its metaphors in
particular. Pimm (1988) has noted what he calls “a fundamental metaphoric
structure in English” (p. 31), which I would claim is present in French as well, in
which one links together an adjective and a noun, with the adjective pointing “to a
new context of application, and sometimes considerable effort is required to create a
meaning for the whole expression” (p. 31). He gives some examples from science
and mathematics, with the mathematical examples including spherical triangle,
complex plane, and differential geometry. In a footnote, he notes two examples
from didactique:

Colette Laborde has pointed out to me that two terms central to the discipline of didactique
des mathématiques, namely contrat didactique and transposition didactique…have had a
difficult reception, in part precisely because of crossed interpretations. At one level, the last
thing that a contrat didactique is is a contract (because it is completely tacit and unspoken);
a transposition didactique usually involves a far greater alteration of material, structure and
form than does a musical transposition. (p. 33)

In such metaphors, as Pimm (2010) later observed, “The semantic pressure is
always piled onto the noun—it is never the adjective that has to shift or expand its
meaning” (p. 613).
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Another example is l’ingénierie didactique, which readily translates as didactical
engineering. Although the adjective poses some problems that are discussed below,
the more severe problem is posed by the noun. Didactical engineering is not
engineering in the same sense as mechanical or electrical engineering. But, as
Artigue (1994) observes, it is meant to “label a form of didactical work that is
comparable to the work of an engineer” (p. 29). As she correctly notes, engineers
“manage problems that science is unwilling or not yet able to tackle” (p. 30), and so
didactical engineering is intended to handle such problems in didactics. Didactical
engineering “has become polysemous, designating both productions for teaching
derived from or based on research and a specific research methodology based on
classroom experimentation” (p. 30). Whereas apparently, in French, l’ingénierie
didactique has made the journey from metaphor to accepted, well-formulated usage,
in English, didactical engineering still sounds awkward. Anglophones rarely use
engineering when speaking of activities in education, and when they do, it is often
used in a pejorative sense, suggesting the treatment of learners as material to be
managed rather than educated.

Didactique, in creating a precise vocabulary for its work, has made extensive use
of the fundamental metaphoric structure identified by Pimm, generating terms that
need careful exegesis before they are used. Anglophones may find that English
versions of those terms come laden with extra baggage that makes them difficult to
interpret correctly.

2.4.2 Didactique in Translation

Like any metaphor, la didactique en voyage is limited in applicability. Didactique is
not literally a traveler. So let me switch to another formulation and look at
didactique as a body of work being translated from French to English. It was
heartening to learn recently that, along with its neutral sense of “intended to
instruct,” didactic has much the same pejorative sense in French that it does in
English and that neither sense was the one originally intended:

About a quarter of a century ago, when some of us decided to use didactique as we do now,
we were faced with two main obstacles. First, didactique was used in French essentially as
an adjective, not as a noun. Second, the word had only two received meanings in common
parlance, neither of which—understandably—tallied with what we had in mind.2

(Chevallard 1999, p. 6)

Although the creators of didactique chose to give it a third—scientific—mean-
ing, as discussed above, that did not solve the problem of the reader unfamiliar with
that meaning.

2Chevallard argues in favor of using didactics in English rather than didactique. I agree with his
position but have used didactique in this paper in the spirit of the panel to which it contributes.
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For more than a decade, the editors of Recherches en Didactique des
Mathématiques (RDM) have given me the opportunity, for many of the manuscripts
accepted for publication, to edit the abstract in English that accompanies the resumen
in Spanish and résumé in French. Occasionally, I am given the résumé and asked to
produce an abstract, but usually my task is to polish the English of an abstract that an
author has constructed. The unpolished abstracts run the gamut from elegant English
prose to collections of English words that look as though they might have been
produced by a computer-assisted translation program. With the latter kind of
abstract, I struggle to find a good compromise between my understanding of the
résumé and intelligible English. Perhaps if I were more fluent in French, I would be
less sensitive to the difficulties that some authors apparently have in finding a
reasonable English equivalent for the ideas they have expressed in French.

The challenge of polishing these RDM abstracts has made me acutely aware that
translation from French to English, although at times fairly straightforward, is far
from being a matter of simple equivalence. There is translation, and then there is
interpretation, where it may be necessary to explain the intended meaning using
words rather different from what a literal word-for-word translation would produce.
French is known for its clarity, precision and rigor; English has other characteris-
tics. A translation from French is bound to lose shades of meaning, particularly
when one is dealing with the difficulties and complexities of didactique. Warfield
(2007) put it well:

Over the past decade I have made a sequence of translations [from French to English], each
time feeling cleverer than the last, and each time discovering afterwards some nuance that
has nonetheless disappeared. (p. 92)

Robert Frost once said, “Poetry is what gets lost in translation.”When didactique
is translated from the French milieu to that of English, it loses not only poetry but
also clarity and nuance.

2.5 Second Entr’acte

One could imagine, then, that the nuance of didactique might be more easily
grasped by speakers of other Romance languages. Certainly, didactique seems to
have proved particularly influential in Spanish-speaking research on mathematics
education. However, from his reflections on difficulties encountered in the dialogue
between French didactique and an emerging Italian approach to research on
mathematics education, Paolo Boero draws the lesson that research on mathematics
education is strongly shaped by many (other) features of the local ecology.
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2.6 Some Reflections on Ecology of Didactic Research
and Theories: The Case of France and Italy

Paolo Boero

2.6.1 Introduction

Beginning with lively discussions at the French Summer Schools of Mathematics
Didactics during the 80s, and her translation into French of my plenary lecture at
PME-XIII (1989), Michèle Artigue has played an intensive and, in my opinion,
crucial, role of ‘mediator’ in order to further the dialogue between the already well
constituted tradition of French research in Didactics of Mathematics and the newly
developing Italian research in the field.

While reflecting on the difficulties in establishing collaboration between the com-
munities of French and Italian mathematics educators, I am now convinced that these
difficulties do not derive only from researchers’ characteristics and personal positions,
but also (and perhaps mainly) from ecological conditions under which research in
mathematics education develops. By comparing the cases of France and Italy, I will
attempt to identify and describe some variables that are related to local conditions, and
in my opinion, that influence research developments and their outcomes (cf Bartolini
Bussi and Martignone 2013): the features of the school system (teacher’s “mission”
and degree of freedom); the economic constraints of research (conditions for funding),
particularly in the initial stage; and especially the weight of the cultural environment
(particularly, but not only, as concerns the field of mathematics). Discussing the
influence of these variables may contribute to identifying potential meeting points and
possibilities of productive collaboration between mathematics educators from different
countries, and also to better understanding the roots of different theoretical elaborations
and scientific productions developed in different countries.

2.6.2 Institutional and Economic Constraints

In the Italian reality, many of the studies performed concern educational (fre-
quently, long term) innovation, which is conceived within theoretical frameworks
that evolve according to the needs emerging from the analyses of what happens in
the experimental classrooms. Needs may concern more advanced framings and/or
the integration of new tools to improve teaching sequences and their analyses.

Such an evolutionary process, named ‘research for innovation’ by Arzarello and
Bartolini Bussi (1998), also provides the researcher with an environment where
basic research may take place. (An example of the relationships between the
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educational context shaped by research for innovation and didactical specific
research is presented in Boero et al. 2009). The differences in the most typical
research performed in France compared to Italy arise for various reasons. Later, I
will consider some cultural factors; here I would like to deal with some important
differences between France and Italy, which concern the institutional features of the
school system, the teacher’s role in the classroom, and the economic constraints that
have influenced the development of Italian research in mathematics education (in
particular, in the beginning, in the late70s and in the early80s).

Firstly, the Italian school system is much less rigidly organised than the French
one; national programs and, more recently, the Indicazioni nazionali per il cur-
riculum (National guidelines for curricula) are much less detailed and prescriptive
than French programs and guidelines for teaching; and nothing exists in Italy
comparable with the guidance and control functions exercised in France by
inspectors (cf Bartolini Bussi and Martignone 2013). The Italian situation allows
some teachers to violate not only official prescriptions, but also universally accepted
didactical and pedagogical principles. However, the situation allows other teachers
to engage in large scale innovative projects and to gradually develop their com-
petence as true researcher-teachers who participate in research teams, while
maintaining their teaching functions in their classrooms (Malara and Zan 2008).

Another aspect of the Italian situation concerns the role of the teacher: the
teacher is conceived in official documents as well as in current mentality, within the
school and outside the school, not only as a specialist in the teaching of one (or
several) discipline(s), but also as an educator. This conception probably depends on
the great interest of Catholic culture in educational issues, and on its strong
influence, in the past, on teacher education for kindergarten and primary school.
During past debates concerning how many years should be spent by a teacher in the
same classroom (with the same students), the great importance of the educational
side of the profession always resulted in the choice of long periods. Usually, a
primary school teacher teaches the same students for 5 years, while in secondary
school, a teacher teaches the same students for 3 years in lower secondary school
and for 2–3 years in high school.

In such an institutional and educational context, broad long-term teaching pro-
jects may be developed and tested, frequently opened to extra-school reality, fre-
quently extending over more than one year of teaching. These projects provide
teachers and researchers with the opportunity to identify and appreciate the long
term changes that educational choices produce, in comparison with other more or
less traditional choices. As a consequence, when a teacher realises how the inno-
vation resulting from collaborating with the researcher results in a different mastery
of concepts and skills, in comparison with previous teaching cycles, then the tea-
cher feels motivated to further engage in research work. Furthermore, both the
teacher and the researcher are motivated to attempt to identify and analyse the
mechanisms that have improved the teaching results, thus contributing to further
improving the classroom work and develop interesting research work.

But such within-the-school reasons (which make the Italian situation different
from the French) are not sufficient to explain: the importance of research for
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innovation in Italy; the strong presence of teachers in the Italian research teams; and
the fact that the development of theoretical knowledge and toolkits is strictly con-
nected with a perspective of didactical innovation (cf Bartolini Bussi andMartignone
2013), and not so much aimed at modeling the teaching process and what happens in
ordinary classrooms (an aim so relevant in French didactics of mathematics).

Starting from the middle of the sixties, we find several mathematicians who
engaged (from different positions—in favor of or against modern mathematics) as
promoters of the reform of national programs, and then (since the beginning of the
seventies) as organisers of projects for an alternative teaching of mathematics, in
collaboration with teachers. Indeed, some Italian mathematics teachers—the best
known was Emma Castelnuovo—were already engaged in the movement for the
reform of mathematics teaching at the national and international level. Starting from
the middle of the seventies, research grants by the National Research Council (in-
cluding the first research fellowships to prepare researchers in the field of mathe-
matics education) were specifically aimed at elaborating upon and experimenting
with innovative educational projects, based on different methodological and epis-
temological assumptions. When some of the mathematicians and the teachers
engaged in research in mathematics education served as members of ministry
commissions for the development of new national programs (in the years 1977/79,
for grades VI to VIII; and in the years 1983/85, for grades I to V), they were able to
offer the principles and the results of their didactical innovations to many class-
rooms. Also in more recent years (starting from the year 2000) some mathematicians
engaged in mathematics education research and some researcher-teachers from our
research teams took part in the development of the national guidelines for curricula
for all school levels. As a result, present official texts (particularly on the method-
ological and cultural side) and accompanying materials sponsored by the Italian
Mathematical Union (UMI)—the Italian association of mathematicians—particu-
larly the examples of good practice, largely rely upon the research for innovation
work performed by the university-school research teams.

Such a history of the development of research for innovation in Italy, its funding
(particularly in the first period), and its influence on the evolution of national
programs and guidelines for curricula, may make it possible to better understand
why Italian researchers in mathematics education prefer to engage in research with
immediate or at least eventual innovations in the teaching of mathematics. It may
also help to better understand why they prefer to engage in long-term teaching
experiments and innovative projects, based on wide-ranging hypotheses—in spite
of the dangers of such a choice for the scientific validity of results.

2.6.3 The Influence of the Cultural Context

While comparing research in mathematics education developed in France and in
Italy, we may ask ourselves why the problématique of the mathematics-reality
relationships and of the relationships between mathematics and other disciplines
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(like physics) is so relevant in Italian research, and why, on the contrary, research
on the sociological and institutional sides is so little developed in Italy in com-
parison with France. My hypothesis is that those differences largely depend on the
different cultural contexts in which research in mathematics education developed,
and still develops, in France and in Italy.

As concerns mathematics, the lively debate in Italy among mathematicians about
mathematics and its teaching during the sixties and the seventies resulted in a
plurality of positions which corresponded rather well to the plurality of positions
about Modern Mathematics among teachers engaged in teaching reform. During the
same years, when many Modern Mathematics textbooks were distributed in Italian
schools under the pressure of the in-service teacher preparation organised by the
Italian Ministry of Education, according to OECD orientations, the Italian
Mathematical Union promoted the translation into Italian of the School
Mathematics Project (SMP). SMP was a project originating in the UK and linked to
the tradition of mathematics teaching in that country. In the same period, Emma
Castelnuovo’s textbooks and volumes on mathematics teaching were popular
among teachers engaged in elaborating new ways of teaching. Those positions,
initiatives and materials opposed to Modern Mathematics contributed to developing
experiences of lively relationships in the classroom between motivation of students,
construction and development of mathematical knowledge, and knowledge of
natural and social phenomena. Progressively those relationships were further
developed and resulted in different educational orientations: those inspired by
Freudenthal, based on the idea of vertical and horizontal mathematizing; more
radical positions (mathematics develops both on the conceptual side and on the
ways of thinking side according to the development of knowledge in suitable fields
of experience) as in the projects of the Genoa research team led by me since the
middle of the seventies; or positions resulting in the classroom construction of
mathematical knowledge through problem solving activities within mathematics,
but constantly open to applications to extra-mathematical problems.

By comparing what happened in France and in Italy we may identify deep
differences which may be attributed to the influence of the Bourbaki team in the
debate on mathematics and its teaching in France during the fifties and sixties. In
fact, those differences originated far back in French history (since Descartes) and
are still strong even today. In the French cultural tradition, mathematics is con-
sistent, and its structural and formal features and its rigorous, coherent and unitary
organisation are very relevant. Moreover, mathematical modeling (as well as
statistics) belonged for long periods of the twentieth century to the field of applied
mathematics, outside mathematics. While those positions have been dominant in
France for long periods, in Italy some streams of research in geometry developed,
based on intuition and spatial organisation, up to the middle of the twentieth
century; and applied mathematics always belonged in Italy to the field of mathe-
matics, in parallel with geometry, algebra and mathematical analysis.

Concerning sociological studies and the interest in the institutional aspects of
schooling and their influences on teachers’ choices, Italian research in mathematics
education (and also in the sciences of education) is rather weak. When we consider
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phenomena related to sociological or institutional aspects, we usually refer to
elaborations and tools taken from abroad (like Brousseau’s construct of Didactical
Contract, and Chevallard’s Theory of Didactical Transposition). We may
acknowledge the consequence of an important lack in Italian culture: nothing can be
compared in Italy, as concerns the importance and the resonance of the cultural
environment, with P. Bourdieu’s or M. Foucault’s constructions.

2.6.4 A Healthy (or Unhealthy?) Eclecticism

Should we borrow some tools or constructions from abroad? If we consider Italian
scientific production in mathematics education, we may identify a strong tendency to
use or adapt theoretical tools of different origins (borrowed from different disci-
plines, or derived from different theories in the field of mathematics education). The
only constraints concern local coherency (when dealing with application to a given
research problem). Some original contributions and constructs (like Mathematical
Discussion by Bartolini Bussi 1996; or Semiotic Bundle by Arzarello et al. 2009; or
Field of Experience Didactics by Boero and Douek 2008; or Semiotic Mediation by
Bartolini Bussi and Mariotti 2008; or Cognitive Unity of Theorems by Boero et al.
2007) have a local scope and are usually integrated with other theoretical constructs
borrowed from different theories. In the general framework of research for inno-
vation (a kind of meta-theoretical framework), this kind of eclecticism is not only
legitimate, but also favored according to the needs of didactic innovation and of an
in-depth, comprehensive interpretation of what happens in the experimental class-
rooms. In Italy, we frequently compare mathematics education to the engineering
sciences, and I find that this analogy may be rather well justified, in the Italian case.
Here again we may identify the influences of an institutional context and a cultural
context. Particularly at the beginning, and during the seventies and the eighties, the
policy of funding oriented mathematics educators towards the improvement of
mathematics teaching and the analysis of experimental situations. Moreover, in the
Italian cultural context, the importance attributed to great coherent and autonomous
theoretical constructions (in human sciences as well as in natural sciences) is not so
strong as to orient research in that direction.

2.7 Third Entr’acte

Boero identifies an eclecticism in Italian research in mathematics education, in
which ideas and tools are borrowed from disparate theories, even disciplines.
Perhaps the greater maturity of didactique means that, as systematic relations
between its constructs have come to the fore, they have taken on both an inde-
pendent life and a new—almost objective—character, their roots in other disciplines
transcended. In his contribution, Luis Radford reminds us of key epistemological
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approaches on which the youthful didactique drew to develop its analysis of the
genesis of new knowledge. While both are, in some sense, historically informed,
Radford draws our attention to two very different strands of historical epistemology,
one emphasising the internal logic of a discipline as the motor of its development,
another urging attention to the broader socio-cultural framing of the discipline.

2.8 Epistemology as a Research Category in Mathematics
Teaching and Learning

Luis Radford

2.8.1 Introduction

In a seminal text, Artigue (1990) discusses the function of epistemological analysis
in teaching. In 1995 she returns to this issue in her plenary conference delivered at
the annual meeting of the Canadian Mathematics Education Study Group/Groupe
canadien d’études en didactique des mathématiques. In my presentation, I draw on
Artigue’s ideas and inquire about the role of epistemology in mathematics teaching
and learning. In particular, I ask the question about whether epistemology might be
an element in understanding differences and similarities between current mathe-
matics education theories.

As we know very well, mathematics came to occupy a predominant place in the
new curriculums of the early 20th century in Europe. It is, indeed, at this moment
that, in industrialised countries, the scientific training of the new generation became
a social need. As Carlo Bourlet—a professor at the Conservatoire National des Arts
et Métiers— noted in a conference published in 1910 in the journal L’Enseignement
Mathématique:

Notre rôle [celui des enseignants] est terriblement lourd, il est capital, puisqu’il s’agit de
rendre possible et d’accélérer le progrès de l’Humanité toute entière. Ainsi conçu, de ce
point de vue général, notre devoir nous apparaît sous un nouvel aspect. Il ne s’agit plus de
l’individu, mais de la société.3 (Bourlet 1910, p. 374)

However, if the general intention was to provide a human infrastructure with the
ability to ensure the path towards progress (for it is in technological terms that the
20th century conceived of progress and development), it remains that, in practice,

3Our role [i.e., the teachers’ role] is extremely serious, it is fundamental, because it is a matter of
making possible and accelerating the progress of the whole of Humanity. Thus conceived of, from
this general viewpoint, we see our duty in a new light. It is no longer a matter of the individual, but
of society.
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each country had to design and implement its curriculum in accordance with
specific circumstances. Curriculum differences and implementation resulted,
indeed, from internal tensions over political and economic issues, as well as
national intellectual traditions and the way in which the school was gradually
subjected to the needs of national capitalist production. These differences resulted
also from different concepts of education. To give but one example, in North
America, over the 20th century, the curriculum has evolved as it is pulled on one
hand by a “progressive” idea of education—i.e., an education centered on the
student and the discovery method—and, on the other, by ideas which organise the
teaching of mathematics around mathematical content and the knowledge to be
learned by the student. While proponents of the second paradigm criticise the first
for the insufficiency of their discovery methods used to develop students’ basic
skills in arithmetic and algebra, proponents of the first paradigm insist that, to foster
real learning, children should be given the opportunity to create their own calcu-
lation strategies without instruction (Klein 2003). We see from this short example
that the differences that underlie the establishment of a curriculum are far from
circumstantial. They are, from the beginning, cultural. Here, they relate to how we
understand the subject-object relation (the subject that learns, that is to say the
student; and the object to learn, here the mathematical content) as mediated by the
political, economical, and educational context. And it is within a “set of differ-
ences” in each country that the increasingly systematic reflection on the teaching
and learning of mathematics resulted, in the second half of the 20th century, in the
establishment of a disciplinary research field now called “mathematics education”,
“didactique des mathématiques”, “matemática educativa”, “didattica della matem-
atica”, etc.

As a result of its cultural determinations (which, of course, cannot be seen
through deterministic lenses: they are determinations in a more holistic, dialectical,
unpredictable sense), this disciplinary field of research cannot present itself as
something homogeneous. It would be a mistake to think that the different names
through which we call a discipline merely reflect a matter of language, a translation
that would move smoothly from one language to another. Behind these names hide
important differences, possibly irreducible, in the conception of the discipline, in
the way it is practiced, in its principles, in its methods. They are, indeed, as the title
of this panel indicates, research traditions.

The work of Michèle Artigue explores several dimensions of the problem posed
by the teaching and learning of mathematics. In this context, I explore two of these
dimensions.

The first dimension consists in going beyond the simple recognition of differ-
ences between the research traditions in mathematics teaching and learning. Artigue
has played, and continues to play, a fundamental role in creating bridges between
the traditions found in our discipline. She is a pioneer in the field of research that we
now call connecting theories in mathematics education (e.g., Prediger et al. 2008).
Artigue’s role in this field is so remarkable that there was, at the Artigue conference,
a panel devoted to this field.
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A second dimension that Artigue explores in her work is that of epistemology in
teaching and more generally in education. She has also made a remarkable con-
tribution to the point that there was also a panel on this topic at the conference. In
what follows, I would like to briefly focus on the first dimension in light of the
second. In other words, I would like to reflect on epistemology as a research
category that provides insight in understanding differences and similarities in our
research traditions.

2.8.2 Epistemology and Teaching

The recourse to epistemology is a central feature of the main theoretical frameworks
of the French school of didactique des mathématiques (e.g., Brousseau 1983;
Glaeser 1981). The recourse to epistemology, however, is not specific to mathe-
matics. There is, I would say, in French culture in general, a deep interest in history.
An inquiry into knowledge cannot be carried out without also raising questions
about its genesis and development. In this context, one could hardly reflect on
mathematical knowledge without taking into account its historical dimension. I can
say that it is this passion for history that surprised me in the first place when I arrived
in France in the early 1980s. In Guatemala, my native country, and perhaps in the
other Latin American countries, as a result of the manner in which colonisation was
conducted from the 16th century to the 19th century, history has a deeply ambiguous
and disrupting meaning: it means a devastating rupture from which we will never
recover and that continues to haunt the problem of the constitution of a cultural
identity. In France, however, history is precisely that which gives continuity to being
and knowledge—a continuity that defines what Castoriadis (1975) calls a collective
imaginary. From this collective imaginary emanates, among other things, a sense of
cultural belonging that not even the French revolution disrupted in France.
Immediately after the French revolution, men and women certainly felt and lived
differently from the pre-revolutionary period; however they continued to recognise
themselves as French. With the disruption of aboriginal life in the 15th century (15th
century as reckoned in accordance with the European chronology, of course, not to
the aboriginal one), the aboriginal communities of the “New World” were subjected
to new political, economical, and spiritual regimes that changed radically the way
people recognised themselves. One may hence understand why the passion for
history that I found in France was something new for me, as was also the idea of
investigating knowledge through its own historical development.

The function of epistemology, however, is not as transparent and simple as it
may first appear. And this function is even less transparent in the context of edu-
cation. The use of epistemology in the context of education cannot be achieved
without a theoretical reflection on the way in which epistemology can help edu-
cators in their research. It is precisely this reflection that Michèle Artigue under-
takes in her 1990 paper in RDM and to which she returns in her plenary lecture
delivered at the annual meeting of the Canadian Mathematics Education Study
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Group/Groupe canadien d’études en didactique des mathématiques (Artigue 1995).
Indeed, in these papers she discusses the function of epistemological analysis in
teaching and identifies three aspects.

Firstly, epistemology allows one to reflect on the manner in which objects of
knowledge appear in the school practice. Artigue speaks of a form of “vigilance”
which means a distancing and a critical attitude towards the temptation to consider
objects of knowledge in a naive, a naive non-historical way.

A second function, even more important than the first one, according to Artigue,
consists of offering a means through which to understand the formation of
knowledge. There is, of course, an important difference when we confront the
historical production of knowledge and its social reproduction. In the case of
educational institutions (e.g., schools, universities), the reproduction of knowledge
is achieved within some constraints that we cannot find in the historical production
of knowledge.

Les contraintes qui gouvernent ces genèses [éducatives] ne sont pas identiques de celles qui
ont gouverné la genèse historique, mais cette dernière reste néanmoins, pour le didacticien,
un point d’ancrage de l’analyse didactique, sorte de promontoire d’observation, quand il
s’agit d’analyser un processus d’enseignement donné, ou base de travail, s’il s’agit
d’élaborer une telle genèse.4 (Artigue 1990, p. 246).

The third function, which is not entirely independent of the first, and which is the
one that gives it the most visibility to epistemology in teaching, is the one found
under the idea of epistemological obstacle. Artigue wrote in 1990 that it is this
notion that would come to an educator’s mind if we unexpectedly asked the
question of the relevance of epistemology to teaching.

Finally, the historical-epistemological analysis has undoubtedly refined itself in
the last twenty years, both in its methods and in its educational applications (see, for
example, Fauvel and van Maanen 2000; Barbin et al. 2008). We understand better
the theoretical assumptions behind the notion of epistemological obstacle, its
possibilities and its limitations.

My intention is not to enter into a detailed discussion of the notion of episte-
mological obstacle that educators borrow from Bachelard (1986) and that other
traditions of research have integrated or adapted according to their needs (D’Amore
2004). I will limit myself to mentioning that this concept relies on a genetic con-
ception of knowledge, that is to say a conception that explains knowledge as an
entity whose nature is subject to change. Now, knowledge does not change ran-
domly. Within the genetic conception that informs the notion of epistemological
obstacle, knowledge obeys its own mechanisms. That is why, for Bachelard, the
obstacle resides in the very act of knowing, it appears as a sort of “functional
necessity”. It is this need that Brousseau (1983, p. 178) puts forward when he says

4The constrains that govern these [educational] geneses are not identical to those that governed the
historical genesis, but the latter remains nonetheless, for the didactician, an anchoring point, a kind
of observational promontory when the question is to analyze a certain process of teaching, or a
working base if the question is to elaborate such a genesis.
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that the epistemological obstacles “sont ceux auxquels on ne peut, ni ne doit
échapper, du fait même de leur rôle constitutif dans la connaissance visée”.5

This conception of knowledge as a genetic entity delimits the sense it takes in the
different conceptual frameworks of the French school of didactique des
mathématiques. More or less under the influence of Piaget, knowledge appears as
an entity governed by adaptive mechanisms that subjects display in their inquisitive
endeavours. These mechanisms are considered to be responsible for the production
of operational invariants: this is the case in the theory of conceptual fields
(Vergnaud 1990). As a result, this theory looks at these invariants from the learner’s
perspective. But the adaptive mechanisms can also be understood differently: they
can be considered as forms of action that show “satisfactory” results in front of
some classes of problems. “Satisfactory” means here that they correspond to the
logic of optimum or best solutions in the mathematician’s sense. This is the case in
the theory of situations that looks at these forms of actions under the epistemo-
logical perspective. Beyond the boundary that defines the class of problem where
knowledge shows itself to be satisfactory, these forms of action generate errors.
That is to say, they behave in a way that is no longer suitable in the sense of
optimal, mathematical adaptation. Knowledge encounters an obstacle. The crossing
or overcoming of the obstacle ineluctably requires the appearance of new
knowledge.

How far and to what extent do we find similar conceptions of knowledge in other
educational research traditions? I would like to suggest that it is here where we can
find a reference point that can allow us to find differences and similarities in our
research traditions—sociocultural theories, critical mathematics education,
socio-constructivist theories, and so on.

I mentioned above that in the genetic perspective on knowledge, the obstacle
appears with a “functional necessity”. However, there are several ways to under-
stand this need. In what follows I give two possible interpretations.

The first interpretation, and perhaps the most common, is to see this need as
internal to mathematical knowledge. This would involve conceiving of mathe-
matical knowledge as being provided, in a certain way, with its own “internal
logic.” This interpretation justifies how, in the epistemological analysis, the centre
of interest revolves around the content itself. Social and cultural dimensions are not
excluded, but they are not really organically considered in the analysis (D’Amore
et al. 2006). To use an analogy, these dimensions constitute a “peripheral axiom”
which we can use or not, or use a bit if we will, without compromising the core
theorems (or results) of the theory.

In the second interpretation, the development of knowledge appears intimately
connected to its social, cultural and historical contexts. So we cannot conduct an
epistemological analysis without attempting to show how knowledge is tied to
culture, and without showing the conditions of possibility of knowledge in

5Epistemological obstacles “are those to which knowledge cannot and must not escape, because of
their constitutive role in the target knowledge.”
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historical-cultural layers that make this knowledge possible. It is here that we find
Michel Foucault’s conception of knowledge, whose influence in the French tradi-
tion of mathematics education has remained, surprisingly, relatively marginal.

What is important to note here is that behind these two interpretations of
knowledge and its development are two different conceptions of the philosophy of
history. In the first interpretation, history is intelligible in itself. In the second
interpretation, history is not necessarily intelligible. To be more precise, in the first
interpretation, in which the theoretical articulation goes back to Kant (1991), the
conception of the history revolves around the idea of a reason that develops by
self-regulation. History is reasonable in itself. There are aberrations and ruptures, of
course, but if you look more closely, history appears intelligible to reason. Here,
“history is a slow and painful process of improvement” (Kelly 1968, p. 362). In the
second interpretation, in which theoretical articulation goes back to Marx (1998),
history and reason are mutually constitutive. Their relation is dialectical. There is no
regulatory, universal reason. The reason is historical and cultural. Their specific
forms, what Foucault calls epistemes, are conditioned in a way that is not causal or
mechanical, by its nesting in the social and political practices of the individuals. It is
precisely the lack of such a nesting in the rationalist philosophies that Marx
deplores in The German Ideology: “the real production of life appears as
non-historical, while the historical appears as something separated from ordinary
life, something extra-superterrestrial” (1998, pp. 62-63). He continues further: those
theoreticians of history “merely give a history of ideas, separated from the facts and
the practical development underlying them” (1998, pp. 64–65). In the Hegelian
perspective (Hegel 2001) of history that Marx prolongs in his philosophical works,
it is, indeed, in the socio-cultural practices that we must seek the conditions of
possibility of knowledge, its viability and its limits. Reason is unpredictable and
history, as such, is not intelligible in itself. It cannot be, because it depends on the
reasons (always contextual and often incommensurable between each other) that
generate it.

In this philosophical conception of history, what shape and role could the
epistemological analysis have? And what could be its interest in different traditions
of research on the teaching and learning of mathematics? Concerning the first
question, one possibility is the use of a materialist hermeneutic (Bagni 2009; Jahnke
2012) that emphasises the cultural roots of knowledge (Lizcano 2009; Furinghetti
and Radford 2008). Concerning the second question, the reasons already given by
Artigue in the early 1990s seem to me to remain valid. These reasons can
undoubtedly be refined. This refinement could be done through a reconceptual-
ization of knowledge itself, reconceptualization that might consider the political,
economical and educational elements that, as suggested previously, come to give
their strength and shape to knowledge in general and to academic knowledge in
particular. The topicalisation of epistemology in the different theoretical frame-
works and the different traditions of research would be an anchor point to better
understand their differences and similarities.
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2.9 Concluding Comments

Abraham Arcavi, with the support of Takeshi Miyakawa, convincingly makes the
point that establishing connections between theoretical frameworks is important for
mathematics education as a scientific domain but is also very difficult, especially if
these frameworks have arisen in different cultures and responded to different
problématiques. A major reason for this difficulty lies in the implicit assumptions
underlying the work of researchers and the questions they ask. Hence, extensive
and intensive dialogues are needed to make progress. Abraham has shown a
direction for such dialogue, and Takeshi has experienced it in the practice of his
research in France, in the USA and in Japan. Nevertheless, such communication
remains fraught with potential misunderstandings.

Jeremy Kilpatrick highlights these communicative difficulties from the point of
view of “translation” in his contribution, but he shows how such translation must
reach far deeper than language. A translation between cultures is involved cultures
that incorporate different views of schooling and education, as well as different
views about the role of theory in mathematics education research, as Paolo Boero
has expounded eloquently and exemplified clearly in his contribution.

Radford takes a further step when he encourages us to follow Michèle Artigue’s
lead (of 25 years ago) in investigating the role of epistemology in mathematics
teaching and learning. He explains how epistemology has the potential to lead
beyond the mere recognition of the differences and difficulties of translation:
refining the analysis of the epistemological foundations underlying different theo-
ries in different cultural contexts can lead to a deeper understanding of the differ-
ences and similarities and hence support building bridges.

The four contributors to this chapter point out that one needs a deep under-
standing of both cultures, the one translated from and the one translated into, in
order to be able to build bridges, and they all point to Michèle as having developed
such deep understanding in her own and foreign contexts of mathematics education
research. In particular, Michèle’s deep epistemological questioning has made an
essential contribution to her being exemplary in connecting researchers from dif-
ferent cultures working in different paradigms.

The CERME working group on theory was mentioned repeatedly, and indeed a
sustained effort at establishing deep bridges between theories has sprung from that
working group and prompted a group of researchers to not only lead dialogues
between theories but to look at different aspects of a classroom lesson by means of
different theoretical frameworks, and to compare and connect these frameworks
while trying to formulate and answer research questions. A comprehensive
description of this effort has recently been published in book form (Bikner-Ahsbahs
and Prediger 2014). Not surprisingly, one of the leaders in these efforts over the past
decade has been Michèle.

All contributors have pointed to the central role Michèle has been playing and
continues to play in many facets of mathematics education research (and practice—
but that’s for other chapters in this book). We cannot express it better than Abraham
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Arcavi does in his piece, so we join him and, in the name of all authors of this
chapter, repeat how impressed we are by her as a devoted teacher, as a “bridge
builder” (between the knowledgeable and the less knowledgeable, between the
French tradition and other schools of thought, between mathematicians and math-
ematics educators); and by the vast scope of her knowledge and wisdom.
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Chapter 3
Networking Different Theoretical
Perspectives

Ivy Kidron and Angelika Bikner-Ahsbahs

In the introduction to the proceedings of the working group of CERME 4 on
theories, Artigue et al. (2006) wrote

…as a research community, we need to be aware that discussion between researchers from
different research communities is insufficient to achieve networking. Collaboration between
teams using different theories with different underlying assumptions is called for…
(p. 1242).

As a consequence of this call for collaboration, a “networking group” coordi-
nated by Angelika Bikner-Ahsbahs was created. Since 2006, we have collaborated
in this group with Artigue and with a group of European researchers. This
Networking Theories Group aims to advance the networking idea as a research
practice. In our view, the networking of theories is not only another research
approach. This chapter is inspired by our eight years of intense collaboration with
Michèle Artigue and with the members of the Networking Theories Group. It is a
result of our attempt to deal with the diversity of the theories involved in a fruitful
way to advance our knowledge. This experience has been a joint experiment to
empirically disclose and substantiate how theories can be brought together scien-
tifically to solve problems with better results than if we had applied each theory on
its own.

In the following sections, we describe our collaboration with Michèle Artigue
and colleagues in the Networking Theories Group. The “problématique” that
characterises the process of networking is described in Sect. 3.1, particularly the
reasons for networking and the expected difficulties of the networking process.
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Methods and methodologies for networking are presented in Sect. 3.2. Then, the
results of networking are discussed in Sect. 3.3. The final section is devoted to
concluding remarks.

3.1 The “Problématique”

During the last decade researchers in mathematics education have devoted efforts to
understanding how theories can be connected successfully while respecting their
underlying conceptual and methodological assumptions, a process called ‘net-
working theories’. In their introduction paper to the proceedings of the theory group
at CERME 4, Artigue et al. (2006) wrote that “the central term that emerged from
the working group was networking” (p. 1242):

If we can develop and maintain a certain degree of networking between some of the
advocates of the different theoretical stances that are currently evident within mathematics
education, this will constitute an important step on the path towards establishing mathe-
matics education as a scientific discipline. (Artigue et al. 2006, p. 1242)

Important questions arose from the theory group discussion:

Why networking? What are the aims of the effort of connecting theories?
What are the characteristics of the different cases of networking theories?
What are the problems which arise in the efforts of networking theories?

In the following, we attempt to answer these questions on the basis of the
research undertaken by Michèle Artigue.

Why networking? What are the aims of the effort of connecting theories?
One important aim of connecting theories might be to capitalise on the benefits

arising from drawing on the diversity of theories. Exploring ways of handling the
diversity of theories may help researchers to better grasp the complexity of learning
and teaching processes. Networking might also be a consequence of the rapid
contemporary growth of different forms of communication and increasing inter-
national scientific cooperation (Radford 2008). These are without doubt all correct
answers to the question ‘why networking?’. Nevertheless, attempting to answer this
question on the basis of the research undertaken by Artigue, we are especially
interested in analysing how the networking of theories has emerged in the different
paths of her research.

We first notice the importance of the epistemological dimension in Artigue’s
research from 1990 to 1995 (Artigue 1990, 1995). In 1990, Artigue refers to the
important role of the epistemological analysis. In particular, she mentions that the
epistemological analysis permits the formulation of important questions which
enable mathematics educators to decide which elements of mathematical culture
will be reproduced in the teaching of mathematics. At the same time, Artigue points
out that it is not enough to ask questions of an epistemological nature, rather it is

44 I. Kidron and A. Bikner-Ahsbahs



also important to build theoretical frameworks which will permit these questions to
be adequately answered:

Dans cette perspective, le travail du didacticien ne se limite d’ailleurs pas à intégrer ce
questionnement de nature épistémologique à son activité. Il consiste aussi à construire les
cadres théoriques permettant le travail sur de telles questions et la capitalisation des acquis
didactiques. (Artigue 1990, p. 247)

As a consequence of Artigue’s awareness of the crucial role of the theoretical
dimension, beginning references to networking appear very early in her research,
for example, in her research on the usage of CAS (see for example Artigue 2002).
Kynigos (2012) wrote about the complexity of the instrumentation process and how
Artigue found it necessary and operationally functional to draw some connections
between cognition theory, cognitive ergonomics and the anthropological approach
with its emphasis on institutions and praxeologies (Bosch and Chevallard 1999).
We see here a beginning of networking theories long before the introduction of this
term at CERME 4.

What are the characteristics of the different cases of networking theories?
As a consequence of the different aims of networking, the development of

networking follows completely different profiles (Arzarello et al. 2007). We dis-
tinguish the top-down profile, in which researchers begin with different theoretical
frameworks, and the bottom-up profile, in which researchers search for new theo-
retical tools only if the others turn out to be insufficient. As we already have
described in Kidron and Bikner-Ahsbahs (2015, p. 226):

We [thus] differentiate between different kinds of interest in the effort of networking
theories. In some cases, the goal is to investigate the complementary insights that are
offered when we analyze a given data with different theories (Kidron 2008; [Haspekian
et al. 2013]). In some other cases, the researchers start with an empirical phenomenon with
the aim of developing their understanding by means of connecting two or more different
perspectives (Arzarello et al. 2009). In some further cases, the aim of networking is to
satisfy the need for an enlarged framework in relation to some new domain of research
(Lagrange and Monaghan 2010). In such cases, each theoretical tool turns out to be
insufficient to properly analyse the data [bottom-up profile]. In other cases, the interest in
the rich diversity of theories is to explore the insights offered by each theory to the others
[top-down profile] and at the same time to explore the limits of such an effort. (Kidron et al.
2008; [Kidron et al. 2014; Haspekian et al. 2013])

What are the problems which arise in the efforts of networking theories?
First attempts to discuss the difficulties and benefits in networking are described

in Bikner-Ahsbahs et al. (2010) and in Prediger et al. (2010). Conditions for a
productive dialogue between theorists are discussed in Monaghan (2010). Kidron
and Monaghan (2012) consider the complexity of dialogue between theorists. They
refer to three points as the source of problems which arise in the efforts of net-
working theories: the relevance of data; the different priorities of each theory with
regard to the focus of analysis; and the differences in the use of language in different
theories.
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A first source of difficulty in networking theories is that the same piece of data
might be relevant for one theory but not relevant for another:

It is through a methodological design that data is first produced; then the methodology
helps the researcher to “select” some data among the data that was produced but also helps
the researcher to “forget” or to leave some other data unattended. (Radford 2008, p. 321)

In our own ‘networking experience’ with Michele Artigue and other colleagues,
the question of data relevance was crucial. This is described in Kidron et al. (2008)
with the networking of three theories: Theory of Didactic situations (TDS),
Abstraction in Context (AiC), and Interest Dense Situations (IDS). The data
required to complete the appropriate analysis from the point of view of each
framework was different. This is one example among others in which the notion of
“minimal unit of analysis” (Artigue et al. 2012) is raised; especially the questions:
What constitutes a significant unit for a didactic analysis? What are the minimal
units of reality considered as pertinent in a given research paradigm in order to
permit the analysis of the observed facts?

The different priorities of each theory with regard to the focus of analysis are
another source of difficulty. There might be different questions of interest for dif-
ferent frameworks. This is illustrated in Kidron et al. (2014) in which three theories
were involved: TDS and AiC (which we have already mentioned), and a third
theory, the Anthropological Theory of the Didactic (ATD). The authors explain the
meanings of the terms ‘context’ (for AiC), ‘milieu’ (for TDS), and ‘media-milieus
dialectic’ (for ATD), each being a cornerstone for the theory while all attempting to
theorise specific contextual elements.

…in relation to the role of the teacher, TDS researchers might ask what milieu the teacher is
making available to the students and how she is managing its evolution in order to establish
a meaningful connection with the mathematical knowledge aimed at. AiC researchers might
ask how the teacher’s intervention influences the students’ construction process as
described by means of the RBC epistemic actions. ATD researchers in their turn might ask
what responsibilities the teacher and the students are assuming in the media-milieus
dialectics and what conditions enable them to manage it. (Kidron et al. 2014, p. 159)

Kidron et al. (2008) analyse how social interactions are viewed in three different
theories. For the three theories (TDS, IDS and AiC), social interactions are
important. Nevertheless, each theory has different priorities with regard to the focus
of analysis. Therefore, the ways the theories view social interactions are different.
For IDS researchers, it is the learning itself; for AiC researchers it is considered to
be a part of the context; and for TDS researchers, contextual factors are part of the
situation, the system of relationships between students, teacher and mathematics.

The differences in the use of language in different theories are also a source of
difficulty. We note, especially, the plurality of meanings of a single word. Even the
term ‘epistemic actions’ is used differently in AiC and IDS. Also, the term ‘milieu’
in ATD is not equivalent to the ‘a didactic milieu’ which is used in TDS.
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3.2 Methods and Methodologies of Networking

Michèle Artigue has contributed in different ways to methodologies of the net-
working of theories. In her early work on didactical engineering (DE) (Artigue
1994), she combined two theories: The theory of didactical transposition (Chevallard
1991, 1992) and the theory of didactic situations (Brousseau 1986) which both
“shape and determine, to a certain extent, the current approach [of didactical engi-
neering as a framework for the conceptions of teaching products]” (Artigue 1994,
p. 27). Artigue emphasised that both theories share a systemic approach to didactical
engineering: “[…] despite their different focuses of interest, these two theories link
up on one essential point related to our topic [didactical engineering]: They
emphasize the need to envisage the study of didactical phenomena within a systemic
approach” (p. 28). Due to their complementarity, the two approaches can fruitfully
be networked in the methodology of didactical engineering. This was substantiated
by Artigue in that she compared and contrasted both theories according to their
strengths and weaknesses in contributing to the methodology of didactical engi-
neering and finally proposed to link both, for example, by including constraints into
the a priori analysis that stem from both theories: Constraints of an epistemological
and of a cognitive nature referring to a student who interacts with the milieu were
complemented by “constraints of a didactical nature” that refer to the institutional
dimension of mathematical knowledge (Artigue 1994, p. 32.ff.). Note that this work
on theories is not uncommon for French researchers, the field of didactics being
much concerned by theoretical consistency.

This methodological direction has been further developed by Artigue to inves-
tigate the use of technology in building mathematical concepts (Artigue 2002).
Although Artigue did not talk about the networking of theories at that time, the
research she reported on and the development of the instrumental approach mirrors
its essence: The necessity of looking to institutional conditions regarding the use of
CAS calculators as well as to students’ conceptualisation led to the coordination
of the Anthropological Theory of the Didactic and the notions of instrument and
instrumental genesis taken from cognitive ergonomics. This coordination being
implemented into didactical engineering as a research methodology can be regarded
as an early piece of the networking of two theories.

In a recent paper, Artigue (2015) traces the origin of DE back to the early
eighties and describes its development in parallel with the development of the
theory of didactical situations on the one hand and of the anthropological theory of
the didactic on the other. She identifies two directions in which DE has expanded
and changed. By referring to Barquero (2009), she indicates a change of the DE by
its application to studying more open problems incorporated into the
Anthropological Theory of the Didactic by a new paradigm. By referring to
Perrin-Glorian (2011), Artigue proposes DE of second generation as a way of
researching how DE can be used to implement a design into the practice of
schooling. She finishes her reflection with the claim: “[…] that the transition from
research to development needs specific forms of research, extending our view of the
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ways didactical engineering and educational research can be connected” (Artigue
2015, p. 493). This foreshadows a possible direction in which networking
methodologies may develop to match theoretical and practical concerns.
Interestingly, the idea of networking methodologies was raised at the last CERME
conference in the working group on theoretical perspectives. In one of the sessions,
methodology was an explicit focus (Hickman and Monaghan 2013). Questions
about the place of methodology in theoretical frameworks and the relationship of
this issue to the methodology for networking theories were discussed.

The investigation of the role of theories is explicitly addressed in the Technology
Enhanced learning in Mathematics (TELMA) project by the method of
cross-experimentation (Cerulli et al. 2008). The starting point was “a need to get a
deeper insight on the role played by the theoretical frameworks each team uses in its
own research” (p. 202). The researchers used the idea of experimenting “with a
dynamic digital artifact [DDA] developed by another team, in another educational
context, and under other theoretical perspectives” (Artigue and Mariotti 2014,
p. 335). This method allowed the teams to explore how far the theories and con-
structs involved in the design process may influence its experimentation and what
kind of constraints the alien user experienced. In their final reflection, the authors
valued cross-experimentation as a “joint methodology to help different developing
and experimenting teams to make explicit their assumptions and the set up of their
experimental investigations” (Cerulli et al. 2008, p. 212).

This method of cross-experimentation has been further developed in two direc-
tions. In the ReMath project, it is used again as a method for educational ICT
research but explicitly “developed and consolidated as a networking methodology”
(Artigue and Mariotti 2014, p. 333) to enrich the process of theorising. This was in
contrast to TELMA, that focused more on the a posteriori analysis of the experi-
ments in the ReMath project, and also the “design of […] DDAs and the scenarios of
use became an essential dimension” (p. 333). One interesting result of this enterprise
was the deepened insight that instrumentation can be regarded as a boundary object
which allows interpretation from different theoretical points of view.

Both the authors of this chapter worked with Tommy Dreyfus on a joint project
titled “effective knowledge construction in interest-dense situations”. In this project,
cross-experimentation was also adopted as an idea to develop cross-methodologies
that seemed typical of the methodologies normally used in networking projects
(Kidron and Bikner-Ahsbahs 2015; Bikner-Ahsbahs and Kidron 2015). For
example, in the above-mentioned project, a cross-task design began with separate
designs of tasks, which were exchanged, piloted and analysed. The results were
exchanged again and a revision of the tasks was initiated; finally, the teams decided
upon common tasks which could be used by the different theory teams in the
networking approach of research. Similarly, cross-analyses of a common dataset
started with separate analyses, followed by exchange of the results, co-revisions of
the analyses and by exchange again. The final step aimed to merge the analyses by
the use of networking strategies (see for example, Prediger et al. 2008) as far as
possible towards integration.
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3.3 The Results of Networking

As we began our networking experience, we realised the difficulties that can
accompany the networking process. Sometimes, it seemed that it might be impossible
to use our own theory to analyse a transcript obtained from another research project
that had been designed within another theoretical perspective. After our networking
experience we discovered that it is possible and that this cross analysis of a transcript
is a very rewarding and enriching effort. We have learnt that the difficulties point to
the benefits. As an example of the results of networking, we realised that trying to
define the data each theorist missed allowed us not only to better understand the other
theory, but also to better understand our own theory with its basic assumptions.
Assumptions are sometimes tacit: “even researchers who are quite explicit about the
theoretical frameworks they use, are usually not explicit about, and can even be
unaware of the assumptions underlying their theoretical approach” (Artigue et al.
2006, p. 1241). In our experience of the networking of theories, a specificity of this
approach became apparent: its strengths in disclosing tacit assumptions.

Entering a dialogue between theorists is not an easy task. It requires what
Artigue calls “an effort of decentration”, that is, an ability to go beyond our own
focus of analysis in trying to understand our respective didactical cultures, and to
identify interesting similarities and complementarities between our perspectives as
well as boundary objects that could support connections. As a consequence of this
effort we may better see the limits of our respective theoretical lenses and also what
could be gained from networking.

In the following section, we describe the results of networking from our col-
laboration with Artigue and colleagues within the Networking Theories Group
(mentioned earlier in the Introduction section). Some of these results are described
in the book Networking of theories as a research practice in mathematics education
(Bikner-Ahsbahs, Prediger and The Networking Theories Group 2014). This book
results from our fruitful collaboration during the last decade. Five theories were
introduced in the networking process: APC; the theory of Action, Production and
Communication (Arzarello and Sabena 2014); TDS, the Theory of Didactical
Situations (Artigue et al. 2014); ATD, the Anthropological Theory of the Didactic
(Bosch and Gascón 2014); AIC, the theory of Abstraction in Context (Dreyfus and
Kidron 2014); and IDS, the theory of Interest-Dense Situations (Bikner-Ahsbahs
and Halverscheid 2014). We also collaborated with Artigue in two cases studies.

In one case study, the networking was conducted between IDS and TDS
(Bikner-Ahsbahs et al. 2014). Inspired by Ferdinando Arzarello, both groups of
researchers immediately identified phenomena well known in the traditions the
researchers normally work in from the same set of video data. Bikner-Ahsbahs,
coming from social constructivism as established by Bauersfeld and his colleagues,
observed a phenomenon called funnel (interaction) pattern. Artigue and Haspekian,
as TDS-researchers, identified a Topaze effect. The identification of different phe-
nomena in the same set of data was a surprise and initiated a networking process
resulting in further conceptualising the phenomena. Based on the definitions of the
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two phenomena, separate analyses were carried out and resulted in the insight that
the data neither showed a complete Topaze effect nor a complete funnel pattern.
A subsequent literature review carried out by Artigue revealed that:

The Topaze effect naturalized too quickly in the sense that it was so directly adopted and
integrated in didactic analyses that the notion remained somehow not sufficiently worked
out. (Bikner-Ahsbahs et al. 2014, p. 209)

Comparing and contrasting both phenomena and their theoretical backgrounds by
analysing the same data allowed the researchers to discover a common underlying
theme about teaching and learning in classrooms: Teachers and students sometimes
attempt to hold on to the fiction that mathematics is learnt although understanding
the mathematical content is missing or only takes place in a superficial way. The two
phenomena capture this fiction but in different ways. The funnel pattern describes it
as a pattern of social interaction based on routine actions, whereas the Topaze effect,
coming from a strong epistemological background, focuses more on the mathematics
to be learnt and explains this kind of fiction as a specific attempt to avoid breaking
the didactic contract. A coordinated reflection on the networking process revealed
that the theoretical understanding of the two theories involved was progressing with
respect to being more explicit about their strengths and weaknesses and allowed
re-conceptualizing the two phenomena as extreme types that only partly appeared in
the data. The additional value of the new status of the two phenomena as extreme
types mirrors the methodological strength of networking, in that analysing the dif-
ference between these extreme types and the empirical situations allowed clarifi-
cation as to why the data conformed to neither a Topaze effect nor a funnel pattern.

In the second case study, the networking was conducted between AiC, TDS and
ATD (Kidron et al. 2014). The three theoretical approaches are sensitive to issues of
context but, due to their differences in focus, context is not theorised and treated in
the same way in each of the three theories. In this networking case, the authors
observed how the dialogue between the three theories appeared as a progressive
enlargement of the focus, demonstrating the complementarity of the approaches and
the reciprocal enrichment, without losing what is specific in each one. As a con-
sequence of the networking, the authors observed how the three theories comple-
ment each other. AiC offers a fine-grained analysis of the students’ epistemic
processes and makes subtle evolutions visible in the process of construction of
knowledge. TDS and ATD offer to AiC the benefits of a more systematic
engagement in a priori analysis for anticipating the possible effect of contextual
characteristics on epistemic actions.

The analyses illustrate the differences between the three theories as well as the
shared epistemological sensitivity which can be noticed in the a priori analyses
provided by each theory. This epistemological sensitivity was the point of contact
which permitted the dialogue between the theories to begin. The three theories share
the aim of understanding the epistemological nature of the episode, while, at the
same time, each theory accesses data in its own ways. For AiC researchers, the
focus is on the epistemic process itself whereas TDS and ATD researchers are
interested in the question of how this process is made possible.
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We have already mentioned another collaboration from both chapter authors
with Artigue and colleagues on networking theoretical approaches (Kidron et al.
2008) in which the focus is on how each of the three frameworks—TDS, AiC and
IDS—take into account social interactions in learning processes. Observing how
each theoretical framework has its own way of considering the role of social
interactions in the learning process, the authors point out that:

[…] the different views the three theories have in relation to social interactions force us to
reconsider the theories in all their details. The reason for this is that the social interactions,
as seen by the different frameworks, intertwine with the other characteristics of the
frameworks. (Kidron et al. 2008, p. 253)

Reconsidering the theories “in all their details”, the authors ask how it is possible
to establish links between the theoretical approaches without becoming embroiled
in contradictions between the basic assumptions underlying each theory. The
authors were aware of the substantial difficulties involved in the attempt to connect
the theoretical approaches. Therefore, they raised the question: What can (and what
cannot) be the possible aims of such an effort? The authors concluded that the aim
was to develop meta-theoretical tools able to support the communication between
the different theoretical languages, which enable researchers to benefit from their
theories’ complementarities.

In summarising the results of networking, we pay attention to contributions to
the CERME groups on theory. We have already mentioned the CERME 4 theory
group (Artigue et al. 2006) in which the crucial role of the theoretical dimension
was analysed. The work was continued at CERME 5 in Artigue’s plenary, where
she used digital technologies as a window on raising theoretical issues in mathe-
matics education (Artigue 2007). At CERME 7, Artigue et al. (2012) considered the
potential offered by the anthropological theory of the didactic (ATD) for addressing
the issue of networking between theories through the extension of the notion of
praxeology—which is at the core of ATD—from mathematical and didactical
praxeologies to research praxeologies. Extending the notion of praxeology results in
“networking praxeologies, which can be situated at a meta-level with respect to
ordinary research praxeologies” (Artigue and Mariotti 2014, p. 352). These con-
siderations directed the participants at the CERME 7 group to the challenging task
of networking ‘approaches for networking theories’ (Kidron et al. 2012).

Artigue’s long journey with respect to networking includes important projects
with other researchers, such as the TELMA and ReMath projects that we mentioned
in the previous section on methods and methodologies in the networking process.
The ReMath enterprise is analysed in a special issue of Educational Studies in
Mathematics (Kynigos and Lagrange 2014). In an article of this issue, Artigue and
Mariotti (2014) describe the methodological constructs that have been developed
and used in ReMath and the results of the networking activity: The identification of
possible connections and complementarities between frameworks, the identification
and elaboration of boundary objects between cultures, and the progressive building
of a shared theoretical framework regarding semiotic representations.
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3.4 Concluding Remarks

Exploring issues in the networking of theories is not a purely academic exercise. As
Michèle Artigue described in her comment during the colloquium in Paris, the main
issue is to solve problems in mathematics education. Therefore, the networking of
theories is explored in order to find out how far this approach assists in finding
solutions or further clarifying problems. We share this point of view and aspire to
better understand the construction of mathematical knowledge towards the end
result of enriching learners’ mathematical experiences. After networking and
enriching our own theoretical frameworks, we need to consider how to apply our
work to solve problems which occur in the classroom. This new approach will
provide us with strategies and methodologies to take into account different kinds of
milieus and to answer research questions focusing on the teaching and learning of
mathematics.

Meanwhile, the enterprise of the networking of theories has attracted many more
researchers. These researchers not only research collaboratively but also introduce a
further diversity of theories. However, the novelty of this area of research includes
the practical block of networking praxeologies, both tasks and techniques, which
are not yet well established; they are rather art-craft objects whose potential needs
to be tested in action, and progressively refined (Artigue and Mariotti 2014, p. 251).

In conclusion, research using the networking of theories approach seems to
provide an interesting potential for advancing our field, but it is still at the early
stages. Combining different perspectives such as cognitive, epistemological,
socio-cultural, and including semiotic and institutional aspects is a real challenge. In
Artigue’s work, we observe how the way she integrates her experience in different
domains of research facilitates the fruitful interaction between these perspectives in
the networking process. As mentioned by Radford (in this book), “Artigue has
played, and continues to play, a fundamental role in creating bridges between the
traditions found in our discipline. She is a pioneer in the field of research that we
now call connecting theories in mathematics education”.
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Chapter 4
Three Perspectives on the Issue
of Theoretical Diversity

Brigitte Grugeon-Allys, Juan D. Godino and Corine Castela

4.1 Introduction

Since the birth of the didactics of mathematics in the 1970s, the research community
has aimed to build theories that may be used as models for studying phenomena in
the teaching and learning of mathematics, within amilieu designed for their teaching.
A survey of the literature reveals the development and multiplication, both in France
and abroad, of a great number of theories for appreciating complex and multifarious
phenomena in many different cultures, examined according to a variety of inputs and
levels of analysis. These theories involve an interplay of different didactic concepts
and tools. The creativity of researchers has created certain problems in the com-
munity, such as ‘internal difficulties relating to the communication and capitalisation
of knowledge, and external difficulties when holding discussions with other com-
munities, explaining the state of the art on a specific topic to non-specialists, or
guiding didactic efforts in a well-argued manner’ (Artigue 2009, p. 307). Over the
last decade, researchers have shared thoughts and views on the relationships between
these theories at such events as the CERME congress1 and in European projects such
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as Technology Enhanced Learning in Mathematics (TELMA) and ReMath. This is
clearly reflected in the publication of special journal issues (Morgan and
Kanes 2014; Prediger et al. 2008a; Skott et al. 2013) and books such as the
Networking of Theories in Mathematics Education (Bikner-Ahsbahs and Prediger
2014). Michèle Artigue’s active participation in all these endeavours warrants the
devotion of an entire chapter to this theme.

This chapter proposes three different perspectives on this topic, expressed in the
first person. The first of these examines the richness of a multidimensional approach
based on the mobilisation and networking of various well-identified theories,
enabling a segmentation of reality that is suited to the study of didactic phenomena.
To do so, Grugeon-Allys highlights the identity and limitations of didactic theories
developed in France during the early days of research in the didactics in mathe-
matics, along with their functionality and complementarity. The second perspective
defends a possible methodology for reducing theoretical diversity. Godino does this
by drawing on the theory known as EOS (Entidades primarias de la ontología y
epistemología). The third perspective is a contribution by Castela, who examines a
social viewpoint of the multiplicity of theories in the didactics of mathematics and
the search for connections. After considering networking based on the notion of
praxeology, she proposes some new perspectives by borrowing from the anthro-
pological theory of didactics and the field theory applied to science respectively.

4.2 The Richness of Didactic Theories and Their
Networking for a Multidimensional Approach
of Didactic Phenomena

I will begin with a point of view developed by Artigue (2009), whereby ‘a given
theory cannot claim to encompass everything and explain everything’ and ‘the
coherence and strength of a theory lies primarily in what it relinquishes’ (Ibidem,
p. 309). Artigue singles out two guiding principles in her reflections:

• ‘the consideration of the relations between theoretical frameworks cannot be
achieved without identifying and respecting their respective coherencies and
limitations’,

• ‘[one should] examine theories and their development in terms of functionalities,
tracing theoretical objects to the needs that these objects fulfill or at least attempt
to fulfill’ (Artigue 2009, pp. 309–310).

In order to determine the identity of theories and their boundaries, Radford
(2008) compares the systems of principles, the methodologies and the types of
research questions on which they are based.2 This constitutes a means of deepening

2A theory can be seen as a way of producing understandings and ways of action based on: A
system, P, of basic principles, which includes implicit views and explicit statements that delineate
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the understanding of theories in relation to their research paradigms, and investi-
gating their limitations and potential connections. It defines the boundary of a
theory as ‘the “edge” that a theory cannot cross without a substantial loss of its own
identity. (…) behind such an edge, the theory conflicts with its own principles’
(Radford 2008, p. 323). To determine the types of connections between theories,
Radford studies the structure and aim of the connection. He considers the
theory-networking scale (Prediger et al. 2008b) that distinguishes between several
connection types (Ibidem, p. 318). ‘Comparing’ consists of searching for similar-
ities and differences, whereas ‘contrasting’ has to do with emphasising differences.
‘Coordinating theories’ amounts to selecting coherent elements from different
theories in order to investigate certain research problems. ‘Combining theories’
tends to involve juxtaposition.

To take this point of view further, I shall hypothesise that a multidimensional
approach based on the mobilisation and networking of well-identified theories—
each of which uses a particular conceptual filter to segment reality and mobilise its
objects of study—can be conducive to the study of complex didactic phenomena.
The connection between theories can take several forms and involve varying
degrees of integration, culminating with the local level.

To argue in favour of the contributions of a multidimensional approach, I will
examine the salient features of the identity and limitations of the founding theories
that emerged in the field of research in the didactics of mathematics in France from
the 1970s onwards.

Fig. 4.1 Landscape of strategies for connecting theoretical approaches (Prediger et al. 2008b,
p. 170)

(Footnote 2 continued)

the frontier of what will be the universe of discourse and the adopted research perspective; and a
methodology, M, which includes techniques of data collection and data interpretation as supported
by P. A set, Q, of paradigmatic research questions (templates or schemas that generate specific
questions as new interpretations arise or as the principles are deepened, expanded or modified)
(Radford 2008, p. 320).
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4.2.1 Main Theories: The Theory of Conceptual Fields,
the Theory of Didactic Situations
and the Anthropological Theory of Didactics

These theories aim to study, describe and explain the processes of the teaching and
learning of mathematics by assuming that the very nature of mathematical savoir
and practices influences these processes. They share the following principles: the
fundamental role of mathematical savoir and its epistemology, and the role of
problem solving for the learning and teaching of mathematics. These theories
developed according to the historical, scientific and cultural conditions of the 1970s
as well as the individual background of the researchers, in response to research
questions and methodological choices that led the researchers to distinguish their
theory from other theories. I will not attempt to present in a few words the fun-
damental ideas or the concepts developed by each theory, as this would be
impossible. I only wish to shed light on certain elements that lie at the core of each
of the theories, which constitute their strength and delineate the boundaries between
them, at a given stage in the development of research in the didactics of
mathematics.

4.2.1.1 A Theory Centred on the Modeling of Knowledge Acquisition

The Theory of Conceptual Fields (TCF) developed by Vergnaud is centred on the
modeling of knowledge acquisition. Vergnaud endeavours to bring research in
developmental cognitive psychology closer to issues pertaining to teaching and
academic learning. Two major concerns form the backbone of TCF.

First, Vergnaud makes a strong hypothesis: that of a link between the creation of
connaissance and the structure of mathematical savoir. He defends the idea that it is
essential to study mathematical concepts in relation to the situations that will enable
their conceptualisation. To him, one of the major challenges in research in didactics
in the 1980s was to characterise and classify problems, in the psychological sense
of the term,3 that give a concept its meaning and function. Thus, Vergnaud (1990)
models a ‘concept’ by means of a ‘triplet of three sets (S, I, L): the set S of situations
that give meaning to the concept, the set I of invariants that form the basis of the
operationality of schemes (the signified, or signifié), and the set L of linguistic and
non-linguistic forms that enable the symbolic representation of the concept, its
properties, the situations and the handling procedures (the signifier, or signifiant)
(Ibidem, p. 61, personal translation). The conceptualisation of a given concept, built
by a given student, at a given moment, corresponds to a set of situations in which

3‘By problem, I mean (…) all situations in which one must discover the relations and develop
exploration, hypothesis and verification activities in order to produce a solution’ (Vergnaud 1986
p. 52). In this paper, Vergnaud uses the terms ‘problem’, ‘situation’ and ‘situation-problem’
interchangeably.
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the concept is applied, the representations that enable it to be represented, the
invariants, rules of action and acting attributes that appear in the course of the
associated activity through procedures, as well as the perceived scope of validity;
hence the disparities between students’ conceptions and the targeted concepts that
are taught.

This point of view leads Vergnaud to consider that one cannot comprehend the
development of a concept without setting it in the context of a long time period in a
much broader system that is directly linked to the mathematical content of the
problems4—a conceptual field. A conceptual field encompasses a set of situations
that is progressively mastered by reference to several concepts and the set of
concepts that contribute to the mastery of the situations. To understand how a
student develops and adapts a concept requires a segmentation of mathematical
savoir into relatively large domains in order to study the long-term evolution of
such processes through a set of relatively diverse situations.

In TCF, students are psychological subjects.5 The questions that are studied are
connected to the object of study: students’ conceptualisation processes over the
long term. The methodology is anchored in cognitive psychology approaches,
centred on the study of schemas developed by students during problem solving,
which calls for a microscopic scale of analysis. Vergnaud focuses—from the stu-
dent’s and teacher’s perspective—on the role of the structure of problems and
carries out classifications. But at the time of writing, he was not interested in the
conditions for putting situations into practice in the classroom, the role of the
teacher in the management of situations and interactions, or even the constraints to
be taken into account in the educational system.

4.2.1.2 A Theory Centred on the Conditions of the Operation
of Situations in an Educational System

In the theory of didactic situations (TDS), Brousseau (1986, 1998) develops con-
ceptual tools for understanding what is at play in the classroom from a mathe-
matical standpoint by focusing the study around the didactic situation, which is
initially defined as a system of relationships between some students, a teacher and a
mathematical savoir. The object of study in TDS corresponds to the conditions in
which a teaching system may bring about optimal development of students’ con-
naissances in relation to an existing savoir within an educational system. TDS
studies didactic phenomena that involve interactions between the savoir, the stu-
dents and the teacher as a whole. The didactic modelling of situations consists first
and foremost in matching, to a given savoir, a minimal class of adidactic situations

4‘The description of general stages of development such as those described by Piaget or other
developmental psychologists does not enable us to understand the development of compétences–
connaissances involved in problems’ (Vergnaud 1986, p. 56).
5Vergnaud seems to use the terms ‘student’ and ‘child’ independently of each other.
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that make this connaissance appear to be the optimal and independent means of
solution in these situations with regard to the milieu. This class of situations can be
created by a game involving the cognitive variables6 and the didactic variables of a
fundamental situation. The ‘Race to 20’ is a prototypical example of this for
Euclidian division. Brousseau (1986) defines conceptual tools for understanding the
adidactic situations: situations of action, formulation and validation, as well as
devolution and institutionalisation. Of utmost importance to him is the belief that
meaningful learning of mathematics cannot be achieved if there is too much reli-
ance on the teacher for problem solving. This explains the importance placed on the
concepts of devolution and milieu, and on the duality between didactic and adi-
dactic situations.

4.2.1.3 A Theory Focused on Institutions

The Anthropological Theory of Didactics (ATD) shifts the focus on research of
didactic transposition, the savoir savant or scholarly knowledge questions and
situations towards the institutions in which the situations ‘live’. It studies new and
broader questions. Indeed, Chevallard adopts a perspective of epistemological and
institutional emancipation in relation to the institutions where the objects of savoir
studied the didactics of mathematics ‘live’. A savoir has not always existed: it is the
result of human activities and depends on their position and function, according to
the place, society and time period. In the educational system, the savoir to be taught
should not be considered to be transparent as it is related to the institution in which
it is taught. Chevallard (1985) distinguishes, through the process produced by
mathematicians from the savoir à enseigner or knowledge to be taught in an
institution, the savoir enseigné or knowledge taught by the teacher, and the savoir
appris or knowledge learnt by the student. A student’s learning is also determined
by the institution where he or she is learning. ATD is a tool for modelling and
analysing students’ and teachers’ activities in teaching institutions that enables an
appreciation of the implicit constraints (assujettissements) at work. Chevallard
(1992, 1999) develops the notion of praxeology to describe the creation and evo-
lution of objects of savoir within an institution, as well as the institutional and
personal relationships to these objects. The notion of praxeology encompasses on
the one hand the types of tasks and the techniques for accomplishing them, the
praxis, and on the other hand the discourse known as technology that justifies a
technique and renders it intelligible along with the theory that, in turn, justifies this
technology and renders it comprehensible, the logos. This notion provides a tool for
analysing the structure of teaching in different institutions, and is particularly useful
for understanding the transitions between two institutions in the different stages of
didactic transposition. One of the most crucial contributions of ATD is the

6For example, those related to the categories of problems in conceptual fields pertaining to the
savoir in question.
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definition, prior to any study, of the reference epistemological model relating to a
given savoir that forms the basis for the analysis of transposition phenomena. As
Brousseau points out, ‘this “anthropological” approach is perfectly in line with the
theory of situations and completes it. It allows more direct access to a certain
number of problems, especially those pertaining to macrodidactics and the relation
to savoir’ (Brousseau 2003).

Having reached the end of this first section, I would like to emphasise, apart
from the usual issues, the following points based on the fields of action prioritised
in these theories: the modelling of students’ acquisition of connaissances in TCF,
the modelling of adidactic situations as an optimal means of access to savoir in
TDS, the creation and evolution of a savoir in different institutions, and the rela-
tionships to this savoir in ATD. These choices give rise to distinct methodologies at
different levels of analysis, each with its functionalities—but also its limitations—
for addressing new research questions.

4.2.2 Functionalities of Theories

I will now examine the importance and richness of these theories for studying new
research questions and take into account different aspects of the didactic phenomena
involved by distinguishing between dimensions at different levels of analysis. For
any research and segmentation, the consideration of different dimensions can lead
to subsegments, each of which is associated with a theoretical framework and an
appropriate methodology. I will base my investigation on research pertaining to
different ways of connecting elements (Fig. 3.1) derived from TCF, TDS and ATD.

4.2.2.1 Dynamics of a Multidimensional Approach: Complementarity
Between Theories and Evolution of Research Questions

Here, I will illustrate the dynamics of a multidimensional approach by contrasting
the differences between two theories, then coordinating them, according to two
main inputs: the student and the institution.

The investigation focuses on the transition problems and notably the institutional
discontinuities that are often involved in these transitions. We consider a study that
examines the difficulties faced by 16- and 17-year-old students from ‘lycées pro-
fessionnels (LP)’, who are among the best academically and yet fail in specially
tailored adaptation classes aimed at preparing them for further education in ‘lycées
technologiques (LT)’ (Grugeon 1997). One savoir lies at the core of this failure:
elementary algebra. The frequent explanations for this failure are of a cognitive
kind: the students’ difficulties stem from their standard in knowledge of mathe-
matics. A cognitive approach serves this type of reasoning and its associated
conclusions. Adopting an anthropological approach enables us to overcome such
negativity, view the cognitive through the institutional filter and put the problem
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being studied in a wider perspective encompassing all the transition problems.
Thus, the contrasting of these two approaches encourages us to explore a new
hypothesis: as the two institutions developed different institutional relationships to
algebraic objects, the difficulties observed could be explained by the inadequacy of
the personal relationships developed under the influence of the first institution, with
respect to the expectations of the second institution. In order to carry out the
investigation, I considered it necessary to define a ‘sort of reference, independent of
the institutions involved, yet positioned within their field of action (…), then build a
(multidimensional) analysis framework based on this definition for analysing the
institutional and personal relations’ (Grugeon 1997, p. 170). This reference forms
the basis of an epistemological analysis of the various relationships to algebra,
through the types of problems in the algebraic domain, the algebraic objects and
their properties, as well as the modes of representation used to solve them: it has
been developed from a summary of research work carried out in the didactics of
algebra (Chevallard 1985; Kieran 2007).

This study identified discontinuities in the institutions’ programmes, which a
more superficial examination would not only have failed to find, but which could
also have led to misapprehensions. The analysis reveals that the dominant institu-
tional relationship to algebra in LP is mainly structured around the use of formulae
(for calculating rates or loan repayments), for example for writing equations,
whereas in LT, it is focused on equation writing, equations and functions.

The results of this research clearly demonstrate that ‘the relevance and impor-
tance of a theoretical construction are closely tied to the manner in which it forces
us to change our filters, rendering visible what was previously invisible, forcing us
to question our spontaneous interpretations, making apparently erratic, incoherent
or counterproductive behaviour rational and understandable, in a word, changing
our vision of the world and pointing out where we should direct our energy’
(Artigue 2009, p. 320).

4.2.2.2 Scope and Adaptability of Theoretical Frameworks

I will now deal with the scope of theories and their adaptability, especially with
regard to the conditions in which TDS may be used in the study of regular sessions.
This involves a ‘coordinating’-type connection between two theories that will be
illustrated based on research into the issues surrounding ‘regular’ classes
(Perrin-Glorian 1999; Perrin-Glorian and Hersant 2003). I will refer to certain
points that were featured in Perrin-Glorian’s contribution at the Artigue
Colloquium.7 Perrin-Glorian formulated the general problem in these terms: ‘how
to define situation when observing a sequence of sessions on proportionality in 6e
[i.e. the first year of French secondary school] that one has not prepared?’, unlike

7For all references to contributions to the Artigue Colloquium, the reader may refer to https://sites.
google.com/site/colloqueartigue/short-proceedings.
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what occurs in didactic engineering. Perrin-Glorian and Hersant (2003) propose
reconstructing such situations after observing the sessions and analysing them a
priori. In order to access the dynamics of the teaching occurring in regular classes,
the implemented methodology segments reality by conducting successive zoom-ins
that allow an appreciation of different scales of analysis, and aims to link the
various levels involved: the microdidactic level of the situation and interactions, the
local level of the teacher’s long-term plan, and the macro level of the savoir and the
institutional constraints based on programmes and manuals. This segmentation has
led Perrin-Glorian and Hersant to call upon TDS concepts and tools at the local or
microdidactic level, and ATD concepts and tools at the macroscopic level. ATD is
used to analyse savoir and institutional constraints, by making a distinction between
the various institutions, based on an epistemological construction of the savoir in
question. At the local level of the session, TDS enables us to study the situations
that come into play in the sessions considered to be of significance with regard to
the didactic aim of the series. The definition of a situation as a game is primarily
dependent on three components and their function in the situation: the didactic aim
(targeted new connaissances), the material milieu that is or is not set up, the
problem and the rules of the game (especially on how to win). The didactic contract
is what enables us to interpret the game, whether from the perspective of the teacher
or the students, by distinguishing between the milieu-related conditions that can be
changed and those that cannot be changed by virtue of being connected to insti-
tutional constraints. The teacher’s game consists of organising and regulating the
student’s game, and in leading the student to identify and formulate the connais-
sances that are necessary to win. At the microdidactic level, the analysis of sig-
nificant episodes relies on the examination of feedback from the milieu and the
evolution of the didactic contract. Here, Perrin-Glorian points out the distinction
between a psychological subject and a social subject. Indeed, the study of the
adidactic situation and the anticipation of procedures for solving it take into account
the cognitive dimension of the epistemic subject. The social dimension is brought in
at the microscopic level to study the interactions within the classroom, and at the
macroscopic level to place didactic issues within social issues. Perrin-Glorian and
Hersant (2003) were led to define new dimensions for analysing didactic contract,
notably the area of mathematics concerned, the status of the savoir (degree of
institutionalisation and familiarity) to the students with regard to tool–object
dialectic (Douady 1986), and the properties of the milieu (possibilities of feedback
that are open to interpretation by the students).

From this we may observe yet another illustration of the importance, richness
and scope of the theories that highlights, at different levels, the dynamics of the
coordination between TDS and ATD for dealing with a new research question:
‘TDS manages the local level, especially matters pertaining to didactic engineering,
whereas ATD manages the global level and the study of institutional relations by
studying official documents, manuals and various teaching resources’ (Artigue
2009, p. 314). Researchers use the complementarities between these theories as
levers for conducting research on appropriate segmentations.

4 Three Perspectives on the Issue of Theoretical Diversity 65



4.2.2.3 Different Cultures and Common Sensitivities: Contributions
of a Comparison Between Theories

In this section, I would like to demonstrate how the contrasting of theories can
enrich the study of a given theme, by bringing in different approaches and varied
perspectives. I will refer to the Theory of Semiotic Mediation (TSM) (Bartolini
Bussi and Mariotti 2008), which was developed in Italy based on Activity theory.
I will examine the respective sensitivities of TDS and TSM to the sociocultural
dimension of learning and to its semiotic dimension. Are they different? If the
answer is yes, how do the didactic analyses and choices differ and do they enhance
the relationship with these dimensions?

To do so, I will draw on certain points discussed in Mariotti’s talk at the Artigue
Colloquium. Mariotti refers to crossover experiments conducted between French
researchers and Italian researchers in the ReMath project. Didactic analyses and
choices differ significantly depending on whether the sociocultural sensitivity leans
towards TDS or TSM. TDS is based on the a priori analysis of situations, students’
actions and feedback from the milieu, with students being considered as epistemic
subjects (cf. Sect. 4.2.1.2). A posteriori analysis examines the realisation of situa-
tions. The focus is, on the one hand, on the relationships between the connaissances
that are called upon in the situation as well as the interaction between the actions
and feedback of the milieu, and on the other hand, on the institutional techniques
and technologies brought into play. By adopting the TSM perspective (Bartolini
Bussi and Mariotti 2008), the priority is not to analyse either the productivity of the
scenarios built around tools perceived to be sources of feedback, or the institutional
constraints. Instead, the focus is on the semiotic mediations that take place in the
classroom and the teacher’s role in making them effective; the analysis concerns the
indicators given by students that point to the accomplishment of the task, and the
way in which these indicators develop.

There is another difference, which has to do with the mediating role of the
teacher. TDS mainly focuses on the teacher’s role in engaging students in mathe-
matical activity (devolution) and in formulating and decontextualising, in terms of
savoir, the connaissances developed by students and targeted in the situation during
institutionalisation. From a TSM perspective, the critical issue is to show how
personal significations are connected to the mathematical significations of the tar-
geted and culturally established mathematical savoir. The teacher’s role appears to
be essential for enabling students to link the connaissances called upon in the
situations to the savoir; this manifests itself in complex interactions occurring over
time spans that far exceed those of the institutionalisation phases. This analysis
points out the difference in the importance that the TDS and TSM approaches bring
to social activities.

In summary, the research work presented in this first perspective illustrates the
functionality of theories in their networking for studying new research questions,
according to various objectives and levels of integration (Fig. 4.1): a contrasting
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connection for developing a problem and the associated methodology
(Sect. 4.2.2.1), and for revealing the different aspects of an object of study based on
the different underlying principles of theories (Sect. 4.2.2.3); a coordination of
theories at different levels of analysis (Sect. 4.2.2.2); and a locally integrated
construction in the last example born of the necessity to define new concepts for
studying new research questions. The next perspective deals with the topic of
unification, which will be developed and argued by Juan Godino in contrast to the
option of connecting theories.

4.3 Hybridisation of Theories: The Case
of the onto-Semiotic Approach

As we indicated above, the articulation of theoretical frameworks (networking
theories) is receiving special attention. Several authors (Prediger et al. 2008b;
Radford 2008; Artigue et al. 2009) consider that the coexistence of the various
theories explaining the phenomena of a discipline, such as mathematics education,
is to some extent inevitable and enriching, but it can also be a hindrance to its
consolidation as a scientific field. As already analysed in the previous section (see
Fig. 4.1), Prediger et al. (2008b) describe different strategies and methods for
articulating theories, which range from ignoring each other, to their global
unification.

Personally I believe that progress in any discipline, particularly in mathematics
education, requires that we consider the “Occam’s razor” or parsimony, economy or
succinctness principle, used in logic and problem solving. This principle states that
among competing hypotheses, those with fewer assumptions are preferable; in other
words, the simplest explanation is usually the best. Applying Occam’s razor to
mathematics education research justifies the efforts made in the field to compare,
articulate and unify theories.

But it is also necessary to consider the phrase attributed to Einstein: “Everything
should be kept as simple as possible, but no more,” which can be regarded as a
formulation of the “Chatton’s anti-razor” principle: “If an explanation does not
satisfactorily determine the truth of a proposition, and is sure that it is true, you
should find another explanation”. The multiplicity of theories in mathematics
education is a consequence of the implicit application of Chatton’s anti-razor, while
efforts of comparison, coordination and unification of theories results from the also
implicit application of Occam’s razor. It is important to acknowledge that both
principles do not conflict and that a rational position on the multiplicity of theories
should be to explore the synergy that exists between them.
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4.3.1 Issues in Theories Unification

In this section I argue the necessity and usefulness of articulating (internal and
local) mathematics education theories, using the example of four well known the-
ories in “French didactic”: TCF (Theory of Conceptual Fields), Theory of Semiotic
Representation Registers (TSRR, Duval 1995, 1996), TDS (Theory of Didactical
Situation), and ATD (Anthropological Theory of Didactic). The first two theories
focus their attention on the cognitive dimension (individual or subjective knowl-
edge) while the last two basically study the epistemic dimension (institutional or
objective knowledge). I, however, believe that the consolidation of mathematics
education as a techno-scientific discipline should tackle issues such as:

• What are the problems, principles and methodologies addressed and used in
each framework?

• What redundancies exist in the tools used by these frameworks? Are they
incompatible?

• Can the cognitive and epistemic tools of different frameworks synergistically
coexist?

• Is it useful to construct a theoretical system that takes into account the various
dimensions involved (epistemic, cognitive, instructional and ecological), and to
avoid redundancies? What would the primitive notions and basic postulates of
this new system be?

It is clear that we cannot address these issues here, but only show the relevance
and potential utility of moving towards a theoretical system that coherently artic-
ulates the epistemic and cognitive approaches, in order to achieve effective
instructional designs. To meet this goal I briefly describe some basic notions from
these theoretical models whose clarification, confrontation and articulation could be
productive. I will briefly mention how these theories conceive knowledge, from the
epistemic point of view in TDS and ATD, and from the cognitive point of view in
the other theories. This is not the place to make a comparison and possible artic-
ulation of these theories and their various components; instead I try to exemplify a
networking strategy based on the rational analysis and possible hybridisation of
conceptual tools used in each case. The system of results developed by each the-
oretical framework is not discussed or articulated.

This strategy has given rise to the Onto-semiotic Approach (OSA) in
Mathematics Education, which has been developed by Godino et al. (Godino and
Batanero 1994; Godino et al. 2007) in an attempt to articulate these and other
related theories from an approach they describe as onto-semiotic. These authors
conceive the theories under two perspectives:

1. In a narrow sense, as “system of tools” (concepts, principles and methodologies)
used to answer a set of characteristic questions of an inquiry field; this inter-
pretation may be similar to the triplet given in Radford (2008)—Principles,
Methods and Questions.
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2. In an expanded sense, and in addition to the above components, the “system of
results” (knowledge) obtained as result of applying the tools to the questions.

In principle, any theory can produce valuable knowledge for understanding the
field and rationally acting upon it. However, various theories may be redundant,
inconsistent, insufficient, or more or less effective for the intended work. The
clarification, comparison and possible articulation of theories intend to develop a
system of optimal conceptual and methodological tools which enhance research in
the field. Such an articulation can be performed by rational analysis of the con-
stituent elements of these theories and by developing new conceptual tools when
mere amalgam of existing ones is not possible or appropriate. As I aim to
demonstrate, this strategy has led to a new theoretical notion, onto-semiotic con-
figuration (Fig. 4.2), which incorporates, in a hybrid or blending way, constituent
elements of concept, conception, scheme, mathematical praxeology, and semiotic
register of representation.

4.3.2 The Notion of Knowledge in the Theories Analysed

The theoretical contribution of Duval (1995) falls within the line of inquiry, which
posits a mental (internal representations) nature for mathematical knowledge, and
attributes an essential role in the processes of formation and apprehension of mental
representations (noesis) to language and its various manifestations. The availability
and use of various semiotic representation systems and their transformations are
considered essential in the generation and development of mathematical objects.
However, semiosis (production and apprehension of material representations) is not
spontaneous and its mastery should be a goal of teaching. Particular attention
should be given to the conversion between non-congruent semiotic representation
registers. Duval’s cognitive semiotics provides other useful notions for studying
mathematical learning, such as types of discourse, and meta-discursive functions of
language, functional differentiation and coordination of registers (Duval 1996).

The theory of conceptual fields (Vergnaud 1990, 1994) has introduced a set of
theoretical concepts for analysing the construction of knowledge by learners (see
Sect. 4.2.2.1). This is why we consider this theoretical model in the cognitive
programme, recognising, however, that some theoretical notions (conceptual field)
have an epistemic nature. Vergnaud’s basic cognitive notion is that of scheme. The
scheme is described as “the invariant organization of behavior for a class of given
situations” (Vergnaud 1990, p. 136). The author states that “it is in the schemes
where the subject’s knowledge acts; they are the cognitive elements that allow the
subject’s action to be operative, and should be investigated.” Each scheme is rel-
ative to a class of situations whose characteristics are well defined.

Vergnaud also proposes a notion of concept (Sect. 4.2.1.1) to which he attributes
a cognitive nature by incorporating the operative invariants “on which rests the
operationality of the schemes.” This notion is different from the concepts and
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theorems that are found in science; he does not propose an explicit conceptuali-
sation for them. Vergnaud first describes the notion of conceptual field as “a set of
situations”, and then clarifies that we should also consider the concepts and theo-
rems involved in solving such situations.

In the TSD the savoir (knowledge to teach) has a separate, preexisting cultural
existence and, in a way, is independent of the individuals and institutions interested
in its construction and communication. The main objective of the didactic of
mathematics is the analysis of communication and reconstruction processes of such
cultural knowledge by the subject, in the form of knowing within the didactical
systems. The didactic transposition, developed in the ATD framework, recognises
the adaptations of this knowledge for its study in the school context, giving rise to
different epistemic varieties of the same knowledge.8

As for the notions used in the TDS to refer to “subject’s knowledge”, we find
‘representation’ in the sense of internal representation; at other times Brousseau
uses the expression “implicit models” for such knowledge and representations. He
interprets implicit models as “ways of knowing”, which do not operate in a way
completely independent nor totally integrated in controlling the subject’s
interactions.

The Anthropological Theory of Didactic has so far focused almost exclusively
on the institutional dimension of mathematical knowledge. The notions of mathe-
matical organisation and institutional relationship to the object are proposed to
describe mathematical activity and the emerging institutional objects from such
activity. The cognitive dimension is described in terms of “personal relationship to
the object”, which is proposed as a substitute for the related psychological concepts
(such as conception, intuition, scheme, and internal representation).

4.3.3 Towards an Integrative Theoretical System

The brief summary of the concepts used by the four theories to describe mathe-
matical knowledge from the institutional (epistemic) and personal (cognitive) points
of view suggests that the simple superposition or the indiscriminate use of them to
describe the phenomena of didactic transposition and mathematical learning can
only create confusion.

This is one reason why Godino and Batanero (1994) began to lay the founda-
tions of an ontological, epistemological and cognitive model of mathematical
knowledge based on anthropological and semiotic bases. With a style reminiscent
of axiomatic works in mathematics, these authors began by defining the primitive
notions of mathematical practice, institution, institutional and personal practices,

8Developing the ecology of knowledge is a characteristic feature of ATD, whose connection with
TDS, and other theories, is considered possible and necessary, as explained B. Grugeon (see
Sect. 3.2.2).
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institutional and personal object, meaning of an institutional and personal object,
and knowledge and understanding of the object. These notions were supplemented
in later works with a typology of primary mathematical objects and processes as
well as an interpretation of the notion of semiotic function. This notion is conceived
as a triadic relationship between two objects, antecedent and consequent, according
to a criterion or rule of correspondence, allowing the development of an operational
notion of knowledge (meaning, understanding and competence) (Fig. 4.2). These
notions may include those related to the epistemological and cognitive approaches
used in mathematics education, as described in Godino et al. (2006).

In Fig. 4.2 the notions of practice, object, process (sequence of practices from
which the object emerges) and semiotic function (tool which relates the various
entities and that takes into account the object referential and operational meaning)
are the key elements of the epistemological and cognitive modeling of mathematical
knowledge proposed by the OSA. We might think that the onto-semiotic config-
uration is equivalent to the TCF conceptual triplet or the TAD praxeological
quartet, however, the OSA has developed an explicit typology of objects (and
processes) that enables more analytical and explanatory descriptions of mathe-
matical activity than the other theoretical notions.

Specifically, the OSA proposes that in mathematical practices, the following six
types of objects intervene: situations–problems, languages, concepts (in the sense of
entities which are defined), procedures, propositions and arguments. These primary
entities can also be seen from five dual points of view: personal–institutional;

Fig. 4.2 Primary entities of the OSA ontology and epistemology
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ostensive–not ostensive; extensive–intensive; unitary–systemic; and expression–
content (Godino et al. 2007).

4.3.4 Concordances and Complementarities

The theories mentioned (TSRR, TCF, TDS, ATD) put different weight on the
personal and institutional dimension of mathematical knowledge and its contextual
dependence. The OSA postulates that the systems of practices and the emerging
objects are relative to the contexts and institutions in which the practices are carried
out and the subjects involved in them (i.e., they depend on language games and
forms of life, Wittgenstein 1973).

The description of an individual subject’s knowledge about an object O can be
undertaken in a comprehensive way with the notion of “systems of personal
practices.” Knowledge is also interpreted as the set of semiotic functions that the
subject can establish where O is brought into play as an expression or content
(signifier, signified). Within this system of practices, when asked to solve a type of
problem–situation, we distinguish between those with operative or procedural
character and those with discursive nature, and we obtain a construct closely related
to the notion of praxeology (Chevallard, 1999), but only if we consider both a
personal and an institutional dimension in the notion of praxeology.

We propose the different ways of “solving and communicating the solution” of
certain types of problems related to a given object, for example, “function” as the
answer to the question “what does the function object mean” for a person (or an
institution)? This semiotic modeling of knowledge allows us to interpret the notion
of schema as the cognitive configuration associated with a subsystem of practices
relative to a class of situations or contexts of use, and the notions of concept-in-act,
theorem-in-act and conception, as partial constituent components of such cognitive
configurations.

The notion of conception (in its cognitive version) is interpreted in the OSA
framework in terms of personal onto-semiotic configuration (systems of personal
practices, objects, processes and relationships). In semiotic terms, when we ask for
the meaning of a subject’s “conception” about an object O the answer is “the
system of operative and discursive practices that the subject is able to express and
where the object is involved”. This system is relative to some local and temporal
circumstances and is described by the network of objects and processes involved.

Likewise, understanding and knowledge are conceived in their personal–insti-
tutional dual nature, involving therefore the system of operative, discursive and
normative practices carried out to solve certain types of problem—situations.
Subject’s learning of an object O is interpreted as the subject’s appropriation of the
institutional meanings of O; it occurs through negotiation, dialogue and progressive
linkage of meanings.

The notion of meaning is specified in the OSA framework. Meaning of a
mathematical object is the content of any semiotic function and, therefore,
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according to the corresponding communicative act can be an ostensive or
non-ostensive, extensive or intensive, personal or institutional object; it could refer
to a system of practices, or a component (e.g., problem situation, notation, or
concept). The notion of sense is interpreted as a partial meaning, that is, it refers to
the subsystems of practice corresponding to certain frames or contexts of use.

In the OSA framework, Duval’s notions of representation and semiotic register
allude to a particular type of referential semiotic function between ostensive objects
and (not ostensive) mental objects. The semiotic function generalises this corre-
spondence to any type of objects and also includes other types of dependences
between objects. For example, the ostensive expression y = 2x refers to a particular
mathematical function (conceptual entity, not ostensive). Between the two entities a
representational semiotic function is established. In other situations the function
y = 2x can be on behalf of (represent) the class of first-degree polynomial functions,
or the general function concept. Now the antecedent and the consequent of the
semiotic function are conceptual entities. The mathematical function y = 2x can be
used to model certain practical situations, for example, to determine the cost of
x kilograms of apples with a unit cost of 2 €. Here prevails the use or pragmatic
meaning of the function concept: y = 2x is defined by the system of practices the
object participates.

The notion of sense in the TDS is restricted to the correspondence between a
mathematical object and the various fundamental situations from which the object
emerges and “gives its senses” (it can be described as “situational meaning”). This
correspondence is undoubtedly crucial to provide the raison d’être for that object,
its justification or phenomenological origin. But it is also necessary to take into
account the semiotic functions or correspondences between the object and the
remaining operative and discursive components of the system of practices from
which the object comes from, understood either in cognitive or epistemic terms.

The TCF extends the notion of meaning as a “response to a given situation”
introduced in TDS. This extension is meant to include, in addition to the situational
component, the procedural (schemas) and discursive/normative (concepts and
theorems) elements. The content considered as “meaning of a mathematical object
for a subject” in TCF is nearly the wholeness described in the OSA as the “system
of personal practices”. However, the notion of semiotic function and the associated
mathematical ontology provides a more general and flexible tool for didactic—
mathematical analysis.

An essential aspect that allows us to distinguish between the theoretical models
considered in this section is the dialectic between the institutional and personal
duality, between epistemological and cognitive approaches, which often appear
disjointed, resulting in extreme positions. In some cases the emphasis is on the
personal dimension (TCF and TSRR), in others the institutional dimension (ATD
and TDS), while in OSA a dialectical relationship between the two dimensions is
postulated, so that it can help to coordinate the remaining theoretical models.
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4.3.5 Hybridisation and Competition of Theoretical
Frameworks

As we have explained, the OSA does not intend to build a “holistic theory that
explains everything”, but to advance the construction of a system of conceptual and
methodological tools that allows researchers to conduct the macro and micro
analysis of the epistemic, cognitive, instructional and ecological dimensions
involved in mathematics teaching and learning processes. For the epistemic and
cognitive notions analysed, the mere overlap or amalgamation of theoretical tools is
not possible, given their heterogeneity and partiality, and the OSA has tried to
develop a new framework with a clear hybrid character. The onto-semiotic con-
figuration construct (Fig. 4.2) keeps a “family resemblance” with the notions of
concept, conception, semiotic representation register, knowledge, and mathematical
praxeology, but is not reducible to any of them, so it requires a specific designation.
This notion can be more effective than the original notions, allowing researchers to
analyse the micro and macro level of institutional and personal mathematical
activity, and to better understand the relationships between both dimensions of
mathematical knowledge. To prove this statement, however, would require a deeper
analytical and experimental work than that produced in this brief presentation and
that provided in Godino et al. (2006).

It is clear that this new entity competes with those already existing, and has to
prove its relative effectiveness to solve the paradigmatic issues in the field. Progress
is needed in comparing the results obtained from the emerging construct with other
theoretical frameworks to test its possible survival.

The ecological analysis outlined of the emerging ideas should be complemented
with the corresponding sociological analysis; it is not enough having generated a
new potentially strong hybrid entity, it is necessary that social and material cir-
cumstances for its development are given. It is needed to attract new researchers
involved in the study, to develop understanding and application of the new
instruments, and to be able to achieve the necessary resources to conduct research,
communicate, discuss and publish the results.

4.4 Social Perspective of the Multiplicity of Theories
and the Search for Connections in the Didactics
of Mathematics

The final section of this chapter is relatively adventurous in the sense that it offers—
if not provides novel answers—to at least introduce new ways of examining the
multiplicity of theoretical approaches by proposing to add a sociopolitical dimen-
sion to what has hitherto been an essentially epistemological approach. There are
three parts to this text. The first part picks up on the key points of Bosch’s con-
tribution at the Artigue Colloquium and is centred on the notion of research
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praxeology, which is a significant contribution by Bosch, Artigue and Gascón to the
reflections on Networking. The next two parts will, as mentioned earlier, attempt to
open new doors by borrowing from the anthropological theory of didactics and the
field theory applied to science respectively.

4.4.1 Theories as Components of the Praxeological
Modelling of Scientific Research

4.4.1.1 Some Reference Points Relating to the European Dynamics
of the Networking of Theories

As mentioned in the introduction to this chapter, schemes such as the Working
Groups of the CERME congress and the two research projects, Telma and ReMath,
have enabled the development of a community of European researchers who are
able to understand each other and begin to build a common capital focused on
interaction activities between theories.

Most notably, the ReMath project aims to develop certain interactive environ-
ments that are tested in conditions as close as possible to real teaching situations.
The original version of this project also aimed to reduce the diversity of theoretical
frameworks, as such diversity is viewed as one of the reasons why research in
digital environments for human learning has a weak influence on practices.
However, the initial work carried out quickly led to modifications in the formulation
of this aspect of the project. The idea of creating a grand unifying theory that could
incorporate contributions from the various views that exist in the field of research in
the didactics of mathematics is considered to be a dead end.

ReMath has thus been directed towards the exploration of other ways of con-
necting theories. In their assessment of the work accomplished, Artigue and
Mariotti (2014, p. 350) remark that:

we have obtained practical results in terms of networking situated at different levels of the
hierarchic scale presented in section I,9 from comparison up to local integration in a few
cases; we have also identified limitations to such networking especially when a design
perspective is adopted, and coherent design choices must be made.

In several cases, research led to local integration between theory couples, to
which Mariotti chose to devote her entire contribution at the ‘Évolution des cadres
théoriques’ roundtable (see also Sect. 4.2.2.3). On the whole, however, the net-
working of theories was of limited scope. On the other hand, in the aforementioned
text, Artigue and Mariotti emphasise the productivity of the work accomplished at a
meta-level of reflection, a shared effort that could not have been achieved without
the development of a specific language and set of tools. At the Artigue Colloquium,

9See Fig. 4.1.
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Bosch centred her presentation on the contribution of research praxeology to the
modelling of activities in the networking of theories and to the building of the
necessary metalanguage. I will revisit this contribution in the following section.

4.4.1.2 The Notion of Research Paradigm, a Critical Tool for Thinking
About the Complexity of the Networking of Theories

In the standard ATD model, research activities are described in terms of pointwise
praxeologies [T/τ/θ/Θ] where the notion of theory appears as the symbol Θ. This
very model considers praxeological organisations that contain praxeologies with the
same technology, followed by those of with the same theory; one refers to local and
regional praxeological organisations. Artigue et al. (2011, 2012) only introduce the
expression ‘research praxeology’, but it is clear that this refers to an amalgam of
pointwise praxeologies located at the regional level. A praxeological organisation
of research may thus be defined by:

• the types of problems that may or may not be addressed, which determines the
acceptable research issues and the transformations that they will undergo to
define objects of study;

• the corresponding methodologies that are deemed legitimate;
• the technologies of these research techniques, especially the rational arguments

that produce them, and that justify and explain methodological choices; and
• the theory—I refer to the definition used in the ReMath group, which is not

exactly that in ATD (see below)—of a structured system of knowledge that
emerges from research practices and that, in return, conditions the three previous
praxeological levels.

In a dynamic vision, such an amalgam can exist prior to the development of a
theory. Artigue et al. (2011, 2012) stress the importance of the technological level
of praxeologies: it is particularly pertinent when it comes to appreciating the nature
and role of knowledge in the emergence phase of an initial amalgam, which will
only become a praxeological organisation that is identifiable by a relatively sub-
stantial theory as research is carried out. But this lability at the theoretical level does
not prevent the emerging organisation from attaining a certain social existence,
which materialises at the very least through the development of a community of
researchers who refer to it. At this stage of an iterative developmental process, some
of the results thus obtained, especially didactic phenomena,10 create new types of
problems and new methodologies. The knowledge produced is integrated into the
technology of new praxeologies that come to be included within the growing
amalgam. Artigue et al. (2011, 2012) provide the example of didactic transposition:

10According to an expression by G. Brousseau, a didactic phenomenon is a regularity whose
stability is established by research.
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this is a phenomenon that, well before its inclusion in ATD, gave rise to the
development of henceforth indispensable praxeologies in research work based on
ATD and TDS.

In the above, we may discern the existence of an object that does not appear in
the praxeological model: a social organisation, without which praxeologies would
neither develop nor organise themselves into an amalgam that could produce a
theory. Here, the expression ‘research paradigm’ refers to this epistemic and
social pair. A research paradigm is also a social construction, a product of a certain
history, the fruit of a search for consensus within a community of researchers
specialising in amalgamated praxeologies, which may be conceptualised in ATD by
considering a paradigm to be an institution.

The notion of the praxeological organisation of research clearly brings to mind
Radford’s proposal (Radford 2008, see 4.2 note 2), which analyses the concept of
theory by means of the (P,M,Q) triplet. To these three components the authors of the
book Networking of Theories in Mathematics Education have added a fourth, Key
constructs.11 They use this new model to present five theoretical approaches that
played a major role in the studies reported in their book, the expression ‘theoretical
approach’ being preferred to ‘theory’. The two resulting quadruplets are thus brought
closer together. If one were to consider that ‘savoirs’, understood as explicit and
socially legitimised knowledge, is but little taken into account in Radford’s proposal,
then the ‘Key constructs’ component changes everything. Explicit principles and key
constructs are elements that the praxeological model considers at the level of the
‘Theory’ component. Is there, then, such a thing as identity? If one considers the
theories of mathematical praxeologies, the answer is no, unless the idea of key
constructs is very broad. Besides, other types of knowledge are revealed by the
‘Technology’ component of praxeologies. Indeed, this model makes a distinction
between two components of methodology: research techniques and their technology.
This enables a convenient description of the process that accompanies what is
referred to in Radford (2008, p. 322), under the heading ‘Connecting the principles
P1 of a theory τ1 and the methodology M2 of a theory τ2’: when one paradigm
borrows a research technique from another, the technology is reworked in such a way
as to establish technique compatibility with the principles and theory of the bor-
rowing paradigm. If one considers a research paradigm to be an institution, this is a
form of the transpositive phenomenon that comes with the interinstitutional circu-
lation of praxeologies (Chevallard 1999, p. 231; Castela and Elguero 2013, p. 132).
In summary, the praxeological model still offers greater possibilities for incorpo-
rating and analysing the knowledge produced and used by a research paradigm.

Both models take into account—in what appears to me to be the same way—the
existence of a field of questions associated with a theory (Q) or a paradigm (set of
type T problems). However, praxeological modelling does not allow one to
incorporate all the basic principles considered by Radford, since technologies and

11For example, the concepts of adidactic and didactic situations, milieu and didactic contract are
presented as key constructs of TDS.
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theories are composed of explicit and legitimised knowledge. Yet a research
paradigm is not wholly subsumed by the theoretical component that symbolises it:
however developed the latter may be, it cannot reveal everything about the reasons
for the choices that constitute the identity of a paradigm—its point of view, to
borrow the expression used by Bosch in her talk, or its boundary in the words of
Radford (2008, p. 323, see 4.2). Some principles remain implicit. One of the effects
of networking activities is to force researchers who call upon the paradigms
involved to update the founding principles.

As mentioned above, a research paradigm, and especially the social organisation
that it encompasses and that produces it, can begin to exist prior to the existence of
a theory in the sense that has been used thus far, i.e., a structured system of
knowledge. But in ATD, theory is the technology of technology in the eyes of the
community that acknowledges praxeology, and can be very embryonic. In this way,
it is possible for the phenomenon of praxeological amalgamation in a scientific
community to rapidly manifest itself as the development of a theoretical instance,
without being identifiable as a theory in the scientific sense. Initially, the theoretical
instance of a paradigm may be strongly characterised by the personality of the
researcher or small group of researchers who introduced it: certain philosophical or
ideological options serve as a prelude to the priorities given to certain topics, and
therefore to the problems studied and the results obtained, which by default leaves
its mark on the technologies and subsequently the theory subjected to the scientific
process of the assessment. Let us conjecture that as a scientifically recognised
theory is being built, there is a tendency to forget the primary reasons that constitute
the very foundations of the paradigm and whose signature is borne by all the
components of the latter.

Thus, based on this first part, I draw attention to the fact that the work required to
appraise the commensurability of two paradigms is not limited to an examination of
the conceptual apparatus of each theory. This echoes one of the points highlighted
by Artigue and Mariotti in the conclusion of their assessment of the ReMath
project:

Despite our maturity as researchers, we all discovered up to what point our knowledge of
many of the theoretical frameworks involved in the project was superficial. It had been gained
through reading articles, listening to presentations, and discussing with colleagues. It lacked
the first hand experience provided by the actual use in a research project. In such conditions,
misunderstanding and distortions are frequent. (Artigue and Mariotti 2014, p. 350)

What constitutes the essence, pertinence and efficiency of a paradigm are col-
lectively the objects of research that it favours for reasons that are sometimes
implicit; its research practices and its theory. How then, in these conditions, do we
connect two paradigms and above all attain a true understanding of a ‘foreign’
paradigm? This is precisely the question to which the ReMath project has brought
preliminary answers, a summary of which has been provided by Artigue and Bosch
(2014) in terms of networking praxeologies. One might say that the analysis of the
amalgamation of research praxeologies developed here belongs to the technology of
several of the networking methodologies tested.
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At this point, let us turn our attention to one particular outcome of the assess-
ment conducted by the researchers involved in the ReMath project, that is, the fact
that they were led to deconstruct their original injunction of reducing theoretical
diversity in the didactics of mathematics in order to reconstruct a version that would
most certainly be very different. This was accomplished from within the field of
research in the didactics of mathematics, alongside a group of didactical studies on
the design and testing of sequences by means of software, and is a key component
of the networking praxeologies that were developed. I propose to carry on this
deconstruction of the postulate on the harmful nature of the multiplicity of research
paradigms and the necessity for integrative development in the didactics of math-
ematics by adopting a complementary approach; indeed, one must, conversely,
search for tools beyond didactics in order to consider how it works.

4.4.2 Considering Research in Didactics as Being
Externally Determined: A Second Contribution
of ATD

The Anthropological Theory of Didactics is not just a theory in didactics: many of
its key concepts also apply to other realms of reality. This stems from a certain
consistency in the approach by the person to whom its development may be chiefly
credited, Yves Chevallard: deconstruct the self-evidences (‘allant de soi’) and to do
so, put things into perspective by immersing the realm being studied into another
broader realm. Wishing to justify the use of the adjective ‘anthropological’ by
clarifying its meaning, Chevallard (1999, p. 223) writes:

Le point crucial […] est que la TAD situe l’activité mathématique, et donc l’activité d’étude
en mathématiques, dans l’ensemble des activités humaines et des institutions sociales. Or ce
parti pris épistémologique conduit quiconque s’y assujettit à traverser en tout sens –ou
même à ignorer- nombre de frontières institutionnelles à l’intérieur desquelles il est pourtant
d’usage de se tenir, parce que, ordinairement, on respecte le découpage du monde social
que les institutions établies, et la culture courante qui en diffuse les messages à satiété, nous
présentent comme allant de soi, quasi naturel, et en fin de compte obligé.

In the rest of the cited paper, the author introduces the postulate that the same
praxeological model may be used for all human activities, including mathematics.
This stance has enabled didactics developed according to the ATD paradigm to
refrain from having viewpoints from the world of research in mathematics imposed
on it without question, and to distance itself from the presentations of mathematical
knowledge proposed in academic texts.

Thus, when Artigue, Bosch and Gascón use the notion of praxeology to consider
research in didactics, they already do so from outside this realm of human activities,
which is precisely what I propose to pursue in the following section.
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4.4.2.1 Research in Didactics as Being Externally Determined in Its
Workings

I will once again adopt the ATD point of view and consider research in didactics as
an institution among other elements, determined by other institutions that encom-
pass it or are juxtaposed with it and that it also, in return, determines. Thus,
civilisation, society, school and pedagogy appear in the range of institutions that are
considered in ATD to influence the discipline of mathematics and its constitutive
praxeologies (Chevallard 2007, p. 737). This provides an idea of the diversity of
institutional levels involved. We are led to consider the influence exerted by the
various societies and geopolitical organisations that are home to research in
didactics on the latter, its structure, actors and praxeologies. To appreciate this
complex reality requires the consideration of a network of institutions, each pos-
sessing a unique identity, at the local level of states, the regional level of geo-
graphical or linguistic groups, and finally the global level. Signs of such a structure
are easily identified in the organisation of the ICMI as well as in the range of
journals devoted to the didactics of mathematics.

On the epistemological front, the theory we have put forward has important
consequences, as it amounts to considering that the paradigms of research in
didactics, and therefore the results produced, bear the mark of the local sociocul-
tural and institutional contexts in which they appear. Returning to the paradigms
involved in the ReMath project, the influence of the French and Italian sociocultural
contexts on TDS and TSM is, for example, likely to have affected the role given to
the teacher under either theory (see Sect. 4.2.2.3).

4.4.2.2 Research in Didactics as Being Externally Determined by Its
Objects

In the above section, we touched on the determinations that affect research insti-
tutions, especially the social components of paradigms and via these, therefore,
praxeologies. However, we must also consider that these very institutions determine
the realm of reality that constitutes the object of study in the didactics of mathe-
matics, that is, all the phenomena of passing down and learning associated with
mathematical praxeologies. Noone can dispute the vast distance that separates the
following two objects of study: on the one hand, the passing down of arithmetic
techniques in the Aymara villages of northern Chile, whose culture developed
specific calculation praxeologies, and on the other hand, the use of software in the
French (or Italian) education system to promote the learning of algebra. Is the
epistemic aim of research in didactics to bring to light universal regularities when
the reality that it aims to study is, unlike that of physics for example, so diversified?
Assuming that such shared phenomena do exist (didactic contract is often cited as
an example), how can they explain the complexity of the two local realities
described above? More importantly still, given that research in didactics is as much
engineering as it is science, and has both technical and epistemic objectives, what
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results can they bring about? Can we postulate that the same tools enable us to meet
the requirements of the various didactical institutions in the world, to understand
any dysfunctions identified, and to develop solutions deemed acceptable by these
institutions and their subjects? I propose to consider it more epistemologically
justified to adopt the reverse postulate until there is evidence of its erroneous nature.
It seems to me that the multiplicity of paradigms is a consequence of the episte-
mology of a science that aims to take action in the reality being studied in order to
improve it, which highlights the local dimension.

One example is the ethnomathematic perspective developed in both South
America and Africa in response to what emerged in the period between 1985 and
1990 as a need to ‘“multiculturaliser” les curricula de mathématiques pour pouvoir
améliorer la qualité de l’enseignement et augmenter la confiance en soi sociale et
culturelle de tous les élèves.’12 (Gerdes 2009, p. 21). This consisted in coming up
with solutions to the widespread failure in the learning of mathematics within an
educational system that had not truly done away with the colonial vision of teaching
and ‘[presenting] la mathématique comme quelque chose d’“occidental” ou
d’“européen”, comme une création exclusive de la race blanche’ 13(ibidem, p. 31).

4.4.2.3 How to Meet the Epistemological Need for Mutual
Understanding?

Research in the didactics of mathematics is therefore regarded as being determined
by both the social and cultural environment in which it is carried out, in terms of its
questions and answers as well as its agents and organisations. Such determinations
arising from the same source are reflections of each other, which may be considered
to be a factor of coherence and efficiency. But this vision contradicts the conception
of science as an approach to building objective facts possessing a universal value of
truth and, according to Bourdieu, resulting as much from a confrontation between
scientists as from a confrontation with reality:

The fact is won, constructed, observed, in and through the dialectical communication
among subjects, that is to say through the process of verification, collective production of
truth, in and through negotiation, transaction, and also homologation, ratification by the
explicit expressed consensus - homologein- (and not only in the dialectic between
hypothesis and experiment). (Bourdieu 2001, p. 73)

The extension to higher institutional levels of work leading to homologation, or
etymologically speaking to a rational agreement on the same discourse, appears to
be an intrinsic component of the scientific approach: ‘The process of depersonal-
ization, universalization, departicularization of which the scientific fact is the

12“Multiculturalise” mathematics curricula in order to improve the quality of education and
increase confidence in social and cultural self of all students.
13Mathematics as something “Western” or “European”, as an exclusive creation of the white race.
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product is all the more likely actually to take place the more autonomous and
international the field is.’ (ibidem, pp. 75–76)

It is clear that the multiplicity of theories and paradigms of didactical research
does not facilitate this change in level as it stands in the way of mutual under-
standing. This advocates, at the very least, for a verification of the emergence of
new theories. Reducing theoretical diversity has been the solution adopted in a
certain number of sciences, especially the exact sciences, which are also the oldest.
To consider that didactics should follow the same path by replacing all existing
theories with integrative wholes is to postulate that the workings of the sciences in
question are the only ones possible, to accept the idea that given its youth, didactics
should have no other way forward than to align itself with others. This view is
illustrated by J. Godino in Sect. 4.3 of this chapter. Conversely, I consider that such
a strategy is not relevant and would otherwise cause us to lose much of what has
been produced by the various paradigms. The work carried out in the ReMath
project tested the fact that the mutual criticism required to build scientific objec-
tivity could be achieved by means that do not presuppose a common theoretical
framework. The praxeologies of homologation in didactics could well be different
from those of the exact sciences.

In summary, it is my opinion that social and epistemological reasons justify why
research in the didactics of mathematics should not be subjected to, as a
self-evidence (‘allant de soi’), a principle of reducing theoretical diversity derived
from other sciences: the multiplicity of theories and paradigms in this scientific field
is seen as being inherent to the eminently social nature of its object and to the
intended intervention in the society in which it is found. But it must come up with
its own means of attaining scientific homologation.

4.4.3 Research in Didactics as a Power Game

To conclude the work of deconstruction undertaken thus far, I will refer to the field
theory by Bourdieu, and more specifically to how he uses it to analyse the workings
of science in the aforementioned book, Science de la science et réflexivité.

4.4.3.1 Elements of the Field Theory Applied to Science

The scope of the present text makes it impossible to truly appreciate the force of the
work described above. I will, notwithstanding, present certain elements of the field
theory, which may not be familiar to all readers.

A field is characterised by a game that is played only by its agents, according to
specific rules. The agents are individuals and structured groups; in science they are
isolated scientists, teams or laboratories. The conformity of agents’ actions to the
rules of the game is partly controlled by objective visible means, but the key point
of the theory, through the concept of habitus, is the inculcation of social field rules

82 B. Grugeon-Allys et al.



into the agents’ subjectivity. This individual system of dispositions, partly
embodied as unconscious schemes, constitutes an individual’s right of entry into the
field.

The field game is twofold. Firstly, it is productive of something that is the
field-legitimised goal in the social space. The rules, and therefore the individual
dispositions, are established to achieve this goal that every agent considers desir-
able. In the case of science, the goal is epistemic: tacitly accepting the existence of
an objective reality endowed with some meaning and logic, scientists have the
common aim of understanding the world and producing true statements about it. As
seen above, Bourdieu adds a social dimension to the Bachelardian conception of the
construction of scientific fact. Despite this social nature, scientific homologation
produces objective statements about the world thanks to specific rules of scientific
critical scrutiny, ‘the reference to the real, [being] constituted as the arbiter of
research’ (ibidem, p. 69).

Secondly, the game is a competition between agents, which results in an unequal
distribution of some specific form of capital—a source of advantage in the game
itself and a source of power over the other agents. Thus, a field, including the
scientific one, appears to be

a structured field of forces, and also a field of struggles to conserve or to transform this field
of forces. […] It is the agents, […] defined by the volume and structure of the specific
capital they possess, that determine the structure of the field […This one] defined by the
unequal distribution of capital, bears on all the agents within it, restricting more or less the
space of possible that is open to them, depending on how well placed they are within the
field… (ibidem, pp. 33–34)

Capital includes several species, for instance, in science: laboratory equipment,
funding and journal edition. Here, we focus on symbolic capital, especially its
scientific modality.

Scientific capital is a particular kind of symbolic capital, a capital based on knowledge and
recognition. (ibidem, p. 34)
A scientist’s symbolic weight tends to vary with the distinctive value of his contributions
and the originality that the competitor-peers recognize in his distinctive contribution. The
notion of visibility, used in the American universitary tradition, accurately evokes the
differential value of this capital which, concentrated in a known and recognized name,
distinguishes its bearer from the undifferentiated background into which the mass of
anonymous researchers merges and blurs. (ibidem, pp. 55–56)

This theory of science as a field challenges an idyllic vision of the scientific
community, disinterested and consensual; however through the hypothesis of
embodied dispositions, it avoids considering the scientists’ participation in the
capital conquest in terms of personal ambition or cynicism.

In summary, we bear in mind that within the field theory, scientific strategies are
twofold.

They have a pure – purely scientific- function and a social function within the field, that is
to say, in relation to other agents engaged in the field. (ibidem, p. 54) Every scientific
choice […] is also a strategic strategy of investment oriented towards maximization of the
specific, inseparably social and scientific profit offered by the field. (ibidem, p. 59)
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4.4.3.2 The Injunction to Unify Theories Seen as Being Related
to a Power Game

Let us return to the main topic. Bourdieu’s work leads us to consider that the
production of independent theories, just like the call for their incorporation into
wholes where they are engulfed, relates to the game of conquest and contestation of
positions of power in the field. To be recognised as the producer of a theory gives
both material and symbolic credit to a researcher. This is true of the major didactic
theories introduced by persons whose names are ever present. This phenomenon
fosters multiplication: there is greater potential, from an individual point of view, in
creating one’s own theory than in seeking approval for one’s contributions via an
existing theory. Since it is difficult to blend two well-developed paradigms, regu-
lating individual productions appears to be an epistemological necessity.

The same does not necessarily apply to the intermediate structures of research: above
all, I believe that the development of a specific paradigm is an asset to an emerging
research community, a means of avoiding the domination of older communities whose
general tendency is to impose their own paradigms as the only pertinent ones. I have
already postulated that the need to unify paradigms could be epistemologically chal-
lenged by virtue of the diversity of the didactic reality depending on the societies and
countries involved. Now, I question it as an obstacle to an autonomous organisation of
didactical research in countries where the latter is just emerging. We have already
discussed ethnomathematics, and now I mention socioepistomology, which has been
deliberately developed by a group of Mexican researchers with the twofold aim of
developing tools adapted to the educational reality of Latin America, and breaking away
from what could be felt as a prolongation of colonisation through the dominance of
North American and European theoretical frameworks in the didactics of mathematics.

To end this paper, I propose to invert the problem: if developing a paradigm is an
empowering factor, then the question lies in the significance—from the point of
view of the positions of the various subinstitutions in the field of didactical research,
notably regional institutions (characterised, for example, by their geographical
location or by a common language)—of the necessity of reducing theoretical
diversity, especially when this involves not the integration of several theories into a
whole that would preserve the contributions of each but rather a process of selection
for the purposes of simplification. Let us recognise that the significance afforded to
the issue of the multiplicity of paradigms in didactics is not only related to epis-
temological reasons, but is also a facet of the social game of the field.
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Chapter 5
Conversion, Change, Transition…
in Research About Analysis

Asuman Oktaç and Laurent Vivier

5.1 Introduction

Analysis, whether at the secondary school or university level teaching, has been a
didactical field of study for several decades, notably through the research current
known as Advanced Mathematical Thinking (Tall 1991). The understanding of
mathematical analysis concepts can be approached from different points of view.
The following citation from Duval (2001, pp. 83–84) helps us understand the
complexity of this endeavour and establish the focus of this chapter.

[O]bserving the subject “in mathematical activity” is far from being a simple or unequiv-
ocal process, because the functioning of the subject can be analysed in terms of the objects
to be manipulated, used or transformed […]. However the functioning of the subject can
also be analysed in terms of the internal systems (of representation or other) that should be
called upon so that the subject has access to mathematical objects and can manage and
control their transformations.

The perspective adopted in this chapter concerns the “changes in points of view
and in tools” that is involved when tackling problem situations in the process of
learning mathematical analysis concepts. Regarding this issue, Artigue points out
the following:

[F]or more than twenty years, research has brought out the fact that the learning of
mathematics is not a continuous process, that it necessitates reconstructions, reorganiza-
tions, even sometimes veritable breaks with earlier knowledge and modes of thought. This
fact has often nourished a vision of a hierarchy in learning, conceived as the progression
through a succession of stages, as a progression toward increasing levels of abstraction.
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More and more, research shows that learning rests, in a quite decisive way, on the flexibility
of mathematical functioning via articulation of points of view, “registers of representation”,
and “settings of mathematical functioning”. Conceptualization appears also more and more
dependent on the concrete and symbolic tools of mathematical work. This dependence,
which concerns at the same time what is learned and the methods of learning, is particularly
important to take into account today, because of the rapid evolution of tools resulting from
technological advances (Artigue 1999, p. 1379).

Artigue (2006) indicates that research in advanced mathematics education is
mainly concerned with “the progression between the increasing levels of
abstraction” (p. 276), but that since the year 2000 new research approaches have
been developed focusing on connection and flexibility. Examples of this trend
include connections linked to changes in setting (Douady 1986); changes in
mathematical domains (Kuzniak 2014; Montoya Delgadillo and Vivier 2014);
conversions of register (Duval 1995), as suggested strongly by the above citations;
as well as changes in points of view, as in the three perspectives raised by
Vandebrouck (2011b) for functions.

A transition between two stages of APOS (Action-Process-Object-Schema)
Theory (Arnon et al. 2014), can also be interpreted in this sense since it involves a
change of point of view about a mathematical object (more information about this
theory will be provided in the section on functions). The same is true concerning the
notions of concept definition and concept image (Tall and Vinner 1981).

These theoretical notions provide a way of looking at mathematical topics from
different angles, sometimes even simultaneously, bringing out different qualities
and characteristics of the concepts involved. Knowing about different facets of a
mathematical concept, including the special difficulties that might be attached to
them, has strong implications for developing teaching strategies and designing
problem situations in order to optimise student learning.

Artigue (1998) classified the difficulties that students experience in relation to
learning elementary analysis into three categories: (1) those tied to the complexity
of the mathematical objects such as real numbers, functions and sequences, that are
still in construction when students start learning analysis; (2) those related to the
notion of limit, including its conceptualisation and technical aspects; and (3) those
that have to do with the rupture from algebraic thinking.

Topics such as function, limit, derivative, continuity, real number system,
integral, sequence, series and differential equation are among those that form the
heart of elementary and advanced analysis courses. The notion of infinity often
plays an important role in their conceptualisation. For the purposes of this chapter, a
selection of studies that are more directly related to its aim is made, due to the large
amount of research concerning analysis and related topics (in particular, the theme
of differential equations is not addressed here because of space considerations. On
this topic the special issue 26(3) of the Journal of Mathematical Behavior (2007)
can be consulted).

In the following section, the subject of real numbers will be addressed, focusing
on the notions of rational and irrational numbers, decimal and non-decimal num-
bers, the numerical line and the completeness of R. The case of the equality
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0.999… = 1 will be the topic of a specific discussion. Next, the notion of limit will
be examined, elaborating on the case of sequences more specifically. Finally, the
topic of functions will be covered, including their derivation and integration.

The role that technological tools (calculators, software, movement detectors)
play in the learning of mathematical analysis, including the advantages that they
provide in terms of utilising different registers of representation, has been studied
quite extensively (Berry and Nyman 2003; Kaput and Roschelle 1997). However,
Artigue (2008) warns against the limitations of the type of visualisations that these
tools offer. The use of such technologies and their particularities will only be
touched in this chapter as they relate to the chapter’s general objective of offering a
perspective on the learning of mathematical analysis, seen from the angle of
changes in points of view.

5.2 The Real Numbers

5.2.1 Registers of Representation

Research studies conducted on real numbers are few, with the exception of those
exploring the distinction between rationality and irrationality, and with some
including questions related to usual number sets (Fischbein et al. 1995; Ghedamsi
2008; Sirotic and Zazkis 2007a; Voskoglou 2013; Zachariades et al. 2013; Zazkis
and Sirotic 2010). Notwithstanding, beyond the rationality/irrationality distinction,
these studies highlight the importance of changes in registers of representation
(Duval 1995, 2006) in the teaching and learning of real numbers.

From a numerical point of view and related to the notion of irrationality, two
registers of representation are particularly at play in teaching: the fractional register
favoured over the decimal register for representing rational numbers. However,
concerning the notion of non-decimality, Bronner (1997, 2005) claims that real
numbers can also be perceived by means of the distinction between the finite
decimal expansion that characterises decimal numbers, and the infinite expansion,
that characterises non-decimal numbers (Bronner introduced the term idecimal,
emphasising therefore the decimal register). Two advantages of this change in
viewpoint can be identified. Firstly, the numbers can be written in a unique register
of representation, even if the treatment rules are to be defined, and for the same
reason one can have an idea about their definition. Secondly, the perspective
employed is analytic and no longer algebraic. Indeed, the rational/irrational dis-
tinction presented at secondary school and at the beginning of university studies is
essentially algebraic—it suffices to look at the classical proof of the irrationality of
√2 to be convinced—and this register contains in a natural manner the notions of
approximation and neighbourhood (the balls of radius 10−k are cylinders of lexi-
cographical order) that are at the heart of real analysis.
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Alongside these two numerical registers, there is another important one: the
geometric register where R is represented by a line equipped with a point of
reference. This representation seems to be especially used, with apparently positive
effects, in works concerning the rational/irrational distinction (Sirotic and Zazkis
2007b; Voskoglou 2013). Núñez et al. (1999), in their study on the continuity of
functions, distinguish two ways of conceiving a line: (1) the line is a totality which
is not constituted by elements and where the points are dots on the line; and (2) the
line is a set of points and therefore the points constitute the line.

Few studies focus specifically on the topological links between the geometrical
line and R; on this issue we cite the work of Castela (1996), who reports on a study
carried out with 58 Grade 10 students. In particular, to the questions: between two
points A and B, is there one closer to B than all the others? and between the
numbers 0 and 8, is there one that is larger than all the others?, students’ responses
were coherent with 17 negative and 30 affirmative answers obtained to both
questions simultaneously. Castela concludes in particular that the passage to a
continuous set of numbers constitutes a complex learning process where one cannot
rely on the points-numbers correspondence. We also refer to the Ph.D. thesis of
Bergé (2004) who made a summary on this subject.

Although studies about different semiotic registers are of utmost importance and
have gained the support of researchers in the field, there are also other theoretical
notions employed in research with regard to changes in viewpoints. One such
example is the distinction between opaque and transparent, used by Zazkis and
Sirotic (2010) in their study on irrationality (which can also be applied to other
notions). Another approach consists of the global, local and pointwise perspectives
on functions as investigated by Vandebrouck (2011a, b)—see also Maschietto
(2008) and Rogalski (2008) where the expression point of view is used instead of
perspective. Using this approach, the decimal expansion allows the pointwise and
local perspectives. The value of a number such as 0.333… or
a = 0.12112111211112… constitutes an instance of a pointwise perspective,
whereas the mastering of neighbourhoods, as in affirming that ‘0.12112 is in a ball
of radius 10−5 around a’ or that ‘it is an approximation of a with a precision of
10−5’, is a local one. However this approach does not permit a global perspective as
allowed by a geometrical representation or as in the form of an interval.

5.2.2 From the Development of Repeating Decimal
to the Object of Real Number

The passage from a finite to an infinite number of digits poses two related problems:
(1) thinking about this new way of writing as a mathematical object, namely a
number; and (2) identifying the two kinds of representations of decimal numbers,
namely finite expansion and infinite repeating expansion, in the perspective of
dealing with usual numbers (if not, one obtains other set numbers which are not

90 A. Oktaç and L. Vivier



Q nor R, sets with a lot of holes). This identification is not obvious and this fact can
explain why so many researchers are interested in the emblematic rela-
tion 0.999… = 1 (see the next section).

These two problems are not recent; their roots can be traced back to the Eleatics’
paradoxes about the existence of movement (Aristote, Physique VI). In Zenon’s
first argument, the dichotomy, if we fix the departure at 0 and the arrival at 1 (for a
detailed discussion of this paradox, see Fischbein 2001): before arriving at 1, one
has to arrive at the middle of the path, namely at 1/2; afterwards one also needs to
arrive at the middle of the middle, namely at 1/4, etc. In base two, the remaining
distances to be travelled are, successively, 0.1, 0.11, 0.111 etc. and, symmetrically,
the distances already travelled are 0.1, 0.01, 0.001 etc.

On this issue, APOS Theory (Arnon et al. 2014; Dubinsky et al. 2005) highlights
the passage between the stages of Action, where one deals with a finite number of
digits, and of Process, where one perceives that the digits go on without coming to
an end. However, if one remains at the Process stage, one sees that the movement
can never start since there is always a distance remaining from the departure—and
that is the paradox. Therefore, one stays with a potential infinity. But if one allows
an actual infinity, or an Object in the sense of APOS Theory, one obtains 0.111…
and, of course, 0.00…01 (the “…” indicate an infinite repetition). Consequently, the
question turns into making sense of 0.111… and 0.00…01 and then identifying
them respectively, with 1 (identical to 0.999… and 1 in base ten) and with 0.

One can therefore recognise the complexity of encapsulation; on the one hand it
is necessary to perceive the infinite series as a total (actual infinity), and on the other
hand this total should be conceived as a mathematical object. To respond to this
problem, Dubinsky et al. (2013) propose in APOS theory the introduction of a new
intermediary stage between Process and Object that they name totality. It is a matter
of conceiving 0.999… as a total, with infinitely many 9’s, before being able to have
access to the object, namely the number. This point of view is closely related to an
idea proposed by Vivier (2011), which distinguishes between two objects: the
number and the period. Indeed, totality can be thought of as the encapsulation of the
Process of the repetition of 9’s that gives the object period, usually denoted by �9
(this is the passage from potential to actual infinity). What remains to be done is
constructing 0:�9 as a mathematical Object, namely as a number.

The study of Weller et al. (2009, also see Arnon et al. 2014, Chap. 8) provides
elements for understanding how repeating decimal expansions can become num-
bers. These authors propose a teaching method for rational numbers in two regis-
ters: fractional and decimal. Operations on decimal expansions are performed with
the aid of a programming language, with the calculations performed in the frac-
tional register, internally. They note a clear improvement in quantity and in quality
of knowledge about rationals and decimal expansions, and in particular about the
double representation of decimals (on an experimental group of 77 and control
group of 127 pre-service teachers). The results of this study can be interpreted as the
construction of repeating decimals as numbers since basic arithmetic operations can
be applied to them (Vivier 2011; Yopp et al. 2011). The Object “number” can
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emerge from this work, and this result agrees with the point of view presented by
Artigue (2007, p 47) who, following Bronner, affirms that “numbers and calculus
live in symbiosis”.

In their mathematical study about an exotic base, Rittaud and Vivier (2012) have
identified the Object period as a fundamental object for the comprehension of
repeating decimal expansions. They propose a construction of Q through repeating
decimals by means of simple algorithms of four basic arithmetic operations (these
algorithms were developed during the 18th century by accountants (Hatton 1728;
Marsh 1742) but they seem to have been forgotten completely by the history of
mathematics). It becomes possible to work directly on these repeating expansions,
without a programming language, contrary to suggestions from Weller et al. (2009).

Once the case of the rationals is settled (that is, the repeating decimals, including
the equality between 0.999… and 1), there is a second step that needs to be
overcome before arriving at R. If one only considers the periodic sequences,
everything can be algebraised, either by a conversion in the fractional register, or by
working directly with algorithms in the decimal register. The passage to R by the
unlimited repeating decimal expansions needs to take into account a totality (in the
sense of APOS), which does not, however, correspond in general to the encapsu-
lation of a Process. One can very well consider the particular processes such as the
one in 0.1011011101111011111… or in the Champernowne number
0.123456789101112… or still in the numbers defined by a limit such as e or π.
However, more generally, the Process relative to a real number x is defined by the
sequence of truncations of the expansion of x. Here there is an interplay between the
Process and Object that cannot be described easily: it seems that x already exists as
an Object and that the Process is second. This idea should be investigated in order
to clarify the construction of these concepts.

5.2.3 The Case of the Comparison Between 0.999… and 1

Numerous studies about the comparison between 0.999… and 1 have been con-
ducted in the past (Sierpinska 1985; Tall 1980; Tall and Schwarzenberger 1978, and
many others). It is considered a key issue for entry into the real numbers, at a
crossroads of several notions: completeness (no gap between 1 and 0.999…); the
notion of limit (sum of the terms of a geometric series or of a sequence of trun-
cations); infinitesimals (between standard and non-standard analysis); the double
representation of decimals in the decimal system (or the equivalent with a different
base); rational (and irrational) numbers; the impact on Euclidean geometry (given
that every number is the abscissa of a point on a line equipped with a reference
point and a unit vector); potential and actual infinities; and so on. Yopp et al. (2011)
state that it is important for those who teach students in the final years of primary
school to have knowledge related to this equality.

Wilhelmi et al. (2007) propose several ways of verifying the equality of two real
numbers. However, they rely explicitly on the field of real numbers which is

92 A. Oktaç and L. Vivier



supposed to be already constructed, together with its properties. In fact, this is the
case for all proofs for the equality between 0.999… and 1 (see for example Tall and
Schwarzenberger 1978) that are based implicitly on the properties of an already
constructed set, essentiallyQ and R. Assuming a different point of view, Rittaud and
Vivier (2014) propose the idea that the equality between 0.999… and 1 (and as a
result, equalities concerning all the decimal numbers) is a technology (Chevallard
1999) since it produces and explains calculation techniques. This technology is
hidden, made up of the construction ofQ by means of repeating decimal expansions.

As noted, for example by Mena-Lorca et al. (2014) or Ngansop and
Durand-Guerrier (2014), the proofs concerning “0.999… = 1” generally do not
convince the subjects, even if they accept the validity of them. The semiotic
opposition between 0.999… and 1 seems to be too strong. It is noteworthy that in
the question of comparison between 0.999… and 1, the response rate suggesting the
equality varies little across different studies: in Tall (1980), 14 out of 36 (39 %)
university students; in Mena-Lorca et al. (2014), 14 out of 40 (35 %) and 7 out of
19 (37 %) for two populations of mathematics teachers; and in Rittaud and Vivier
(2014), 17 out of 43 (39 %) first-year university students. For a non-mathematician
public on the other hand and not surprisingly, Vivier (2011) found that at the start
of high school, out of 113 students who were interviewed, all responded the
inequality to the comparison question between 0.999… and 1; in Weller et al.
(2009), 150 out of 204 (73.5 %) pre-service teachers responded inequality.

Non-standard analysis developed by Robinson in the 1960s proposes an alter-
native to the equality in question (see for example the vignette of Artigue, “the
revenge of the infinitesimals”, at http://blog.kleinproject.org/). One can very well
build a non-standard theory of numbers in which 0.999… < 1 and that could give
some meaning to objects such as 0.00…01. Nevertheless, the construction is
complex since it is necessary to pursue and consider, after the comma, infinitely
many infinite series of digits. Despite the promising attempts of its introduction in
teaching (Artigue 1991; Hodgson 1994), non-standard analysis remains marginal.
Still, some researchers continue developing this point of view (Ely 2010; Katz and
Katz 2010a, b) and they consider it especially important that students can develop,
against traditional teaching, non-standard conceptions of numbers (Ely 2010). For
example, Manfreda Kolar and Hodnik Čadež (2012, pp. 404–405) report that, to the
question what is the largest number?, a student responded 99… and to the question
what number is closest to the number 0.5?, 67 students responded 0.4999… while
three responded 0.500…1. These answers are classified within a conception asso-
ciated to potential infinity, although one can also note here a non-standard con-
ception of numbers.

5.2.4 The Completeness of R

Apart Bergé’s work (see below), there are few research studies about the com-
pleteness of R and this is also true of topology (we can cite Bridoux 2011, who
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focuses on the first notions of the topology of RN at the university which she
identifies as Formalising, Unifying and Generalizing (FUG) notions after Robert
1998). Of course, one can also consider the studies about the notion of limit, but
these do not focus directly on the questions of topology; in some of these studies,
issues about topology are discussed without being a main concern.

Similarly the relationship between the completeness of R and the notion of limit
is far from being obvious, as evidenced by confronting the articles of Burn (2005)
and Mamona-Downs (2010). Burn (2005) exposes a point of view on limits of
numerical sequences that allows to free oneself from the completeness of R. He
proposes an elaboration of the limit notion, based on the historical development and
initial conceptions of students (especially the monotone convergence, as in Bloch
2000; see the discussion that follows) without specifying the numerical domain:
indeed it suffices to have a subset of R, if possible stable for the usual operations,
and that contains sequences converging to 0, such as D (the ring of finite decimals),
Q or the algebraic numbers—hence the specific topology of R is no longer required.
However, as it can be seen in the method of exhaustion proposed by Grégoire de
Saint Vincent, it is necessary to come up with a candidate for the limit since the
point of view developed by Burn cannot give the existence of a limit. For the
existence, it is essential to refer to theorems, such as the theorem on the conver-
gence of a monotone bounded sequence, and the characteristics of R as a complete
space (see also Nardi 2008, Chap. 6).

Conversely, Mamona-Downs (2010) proposes basing oneself on the set of the
terms of a sequence rather than the sequence itself. This has the advantage of
dismissing all the dynamic aspects in favor of a static point of view. The refor-
mulation of the notion of convergence is made with the help of the points of
accumulation; existence is ensured by the Bolzano-Weierstrass theorem. It is,
however, necessary to distinguish some particular cases, mainly consisting of
constant sequences, since in this case the set is finite. This innovative point of view,
based strongly on the topology of R, needs to be tested experimentally.

Thus the connections between the completeness of R and the limits of real
sequences seem to be particularly complex. As for the question of the completeness
of R proper, it seems that only Bergé has tackled it. Bergé (2010) studied the
responses of 145 students to a test on completeness. The students were distributed
in courses II, III and IV, where the completeness of R is explicit, notably with lower
and upper bounds (in course I, completeness is implicit). In her study, she analysed
two tasks. The first task asked students how to explain to a young student the fact
that an increasing sequence bounded from above converges. Only 12 students
mentioned explicitly the completeness. The great majority of the students admitted
as a fact, without discussion, that the limit existed, and almost half of them provided
a graph (two- or three-dimensional). Some students used an extra-mathematical
metaphor in their explanations while others presented major confusions. However,
one can think that there was a bias in the question since one should address “a
young student” while in course I itself, the mathematical work did not require the
explicit utilisation of the completeness.
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The second task concerned the meaning of the completeness of R for the 21
students in courses III and IV. Bergé noted that 8 students, of which 7 were from
course IV, had an operational conception of the completeness that could be useful
in proofs; the other 13 students only had a natural vision that could not be of help in
proofs.

While completeness was a question that Bergé judged as crucial, she remarked
that its comprehension did not come from solving tasks and that it was necessary to
think about curricula which aimed at conceptualising. We agree with Artigue
(2006) on the necessity of thinking about the teaching of analysis, here for real
numbers, on a long-term basis.

5.2.5 Conclusion on Real Numbers

In numerous studies on real numbers it appears that the comprehension of the set
R depends on the distinction between rational and irrational. Yet, the notion of
irrational number only shows the insufficiency of Q for geometry and algebra. This
point of view is too limited for analysis (let’s not forget that R is really needed for
analysis). In our opinion, the study of real numbers, from the perspective of
analysis, requires other points of view than that of rational/irrational distinction with
the purpose of being able to understand in an elementary manner the set R.

We can consider the notion of density which is often brought up in research
studies, but it is not characteristic of real numbers since the rationals and decimals
also possess this property which is more related to the order rather than the topology
of R (even if these two concepts are close for the set R, the points of view are quite
different). More generally, the properties of R treated in research are often not
specific to R. For example, the study, otherwise interesting, by Zachariades et al.
(2013) proposes 25 questions, none of which really involves properties distinctive
of R. Of course they are concerned about essential questions such as the density, the
recognition of the nature of a number, or the conversion between representations.
However, it is the interviews that reveal some central ideas about R, especially
concerning the equality between 0.999… and 1 (which is, by the way, related to the
set Q).

Where is, then, the essence of R? When, then, do we need R? It seems that it
happens only in analysis, otherwise, one can very well concentrate on a subset
(such as Q or the algebraic numbers, even if it means including π and some other
transcendent numbers). Bergé (2006, 2008), in a study on university-level analysis,
identifies the explanation of the completeness of R as an essential element of the
passage from calculus to analysis (calculus is a type of algebraised analysis, a
calculation on the objects of analysis). It also seems that in order to achieve at least
a part of the essential features of R, it is necessary to focus, more or less directly, on
the completeness of R. One can consider several notions such as the Intermediate
Value Theorem, the fixed point theorem, the theorem/axiom about the increasing
sequences bounded from above, the expansion of unlimited decimals, upper and

5 Conversion, Change, Transition… in Research About Analysis 95



lower bounds, etc. without forgetting the topological relationships between the
numerical and geometrical viewpoints, between R and the line.

There also remains a question which does not seem to have been the object of
research: what is the role of knowledge about the real numbers for the learning of
analysis? This lack of attention contrasts with affirmations about the supposed
importance of this role (see for example Bloch 2000, p. 117).

5.3 Limits

The notion of limit has been the subject of research in mathematics education for
nearly 40 years (Cornu 1991; Davis and Vinner 1986; Robert 1982; Tall and
Schwarzenberger 1978; Tall and Vinner 1981), including both sequences and
functions. Research about the limits of functions is abundant, however, specific
studies about series are few (see for example González-Martín et al. 2011;
Martínez-Planell et al. 2012, or see Bagni 2005 for a historical point of view on
teaching).

We mention two reasons for considering this concept in mathematics education.
On one hand, research into the learning of limits points out that this notion presents
serious difficulties for students (Cornu 1991; Sierpinska 1987). On the other hand,
the notion of limit, as a fundamental notion of mathematical analysis, appears in
different contexts such as continuity, differentiability, integration and approxima-
tion, so the associated difficulties with limits can also have an implication on the
learning of these concepts.

The interplay between the formal and the intuitive seems to be especially
important in the case of limits. Attempts at starting instruction with a formal def-
inition can bring about memorisation of rules and procedures, rather than building
necessary structures for understanding (Oehrtman 2008); this may be partially due
to the algebraic notation involved in the formal definition or difficulties with
quantification (Swinyard and Larsen 2012). Some authors suggest that success is
more likely to occur when understanding of the formal aspects is built upon the
spontaneous conceptions of students (Fernández 2004). However, as Artigue (1998)
notes, between the intuitive and formal conceptions, there is a considerable quali-
tative gap.

Many researchers consider that the passage from a dynamic to a static con-
ception of limit is at the heart of the difficulty experienced by many students (Tall
1992). The first section on limits is about models that students have about the
notion of limit. These models are often in contradiction with the formal definition,
which is the topic of the second section. This definition is recognised as being
particularly difficult to acquire and is sometimes judged as useless by students. The
third section concerns the support that the graphic register can constitute in learning
limits. The fourth section deals more specifically with functions. We have chosen to
address the notion of limit more in detail for sequences, with most of the research
results being transferable to functions as well.
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5.3.1 Models About the Notion of Limit

Robert (1982) noted three main types of representations about limit in university
students, which consequently became the subject of several research studies:

• Dynamic models where “to converge” is described as “to get closer to”; this
kind of model can be observed since the first introduction of the notion of limit
and is favoured by verbal expressions and gestures. These models are not a
priori incorrect but they are not precise enough, for example, 4 − 1/n gets closer
to 5 (example taken from Dawkins 2012). They can glide towards a monotone
conception, including, for a sequence (sn) and its limit s, “the distance between
sn and s decreases”.

• Static models that are not formalised and are more or less precise expressions of
the formal definition such as “every interval around l contains all the un except
for a finite number of them” (also see Roh 2008, 2010 in what follows).

• Monotone models where convergence is perceived by means of the case
“monotone bounded” with the interpretation of the term “limit” as “barrier” or
“wall”. These models are incorrect since they are too partial.

In her 1982 study, Robert investigated the performances of students on a test and
remarked that the three types of representations she found were quite differentiat-
ing: those who had a static model were successful; those with a monotone model
failed the test; and among those with a dynamic model, half succeeded and half
failed.

Davis and Vinner (1986) found the same types of conceptions, in particular: a
sequence does not reach its limit; implicit monotony; the confusion limit/bound;
and the limit is the last term. Likewise, Cornu (1991) studied students’ conceptions
associated with the use of words from everyday language, such as “limit”, “to
converge”, “to tend towards” or “to approach”. These terms induce dynamic con-
ceptions tied to speed; one gets closer to an object (with a possible monotone
conception) without reaching it. In relation to this issue, Tall and Schwarzenberger
(1978, p. 46) reported on the response of a particular student: “sn → s means sngets
close to s as n gets large, but does not actually reach s until infinity.” This con-
ception seems to be reinforced through a verbalisation of the definition such as the
following: “one can make sn as close to s as one wants provided that one chooses
n sufficiently large”.

5.3.2 The Formal Definition

The formal definition with quantifiers, order of terms to be complied with, and the
variables, ε and N, is a definition acknowledged as being difficult to understand
(Nardi 2008, Chap. 6). Mamona-Downs (2001) proposes a detailed interpretation of
different elements of this formal definition, patiently exposing its characteristics and
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role. It can also be deduced that this definition is difficult because of a double local
point of view associated with the expressions “for all ε” and “for n sufficiently
large”.

In a graphical work with strips of length 2ε, Roh (2010) identifies four categories
related to the interpretation of the expression “8ε > 0”: in category 1, students
remain out of the discussion because they consider strips of length zero although
ε = 0 is not allowed; in category 2, the expression “for all ε” is forgotten and only
some strips, and sometimes even only one strip, are used; in category 3, students
take into consideration an infinity of possible choices for ε but do not think about
making it tend towards 0 (it should be noted that this is not mentioned in the
definition); category 4 consists of those students who respond correctly. Roh pro-
poses a hierarchy of four categories associated with each one of the characteristics
of ε and N as well as the relationship between them.

Similarly, Durand-Guerrier and Arsac (2005) discuss the use of variables and
quantifiers in analysis in the case of a classical task in topology: show that if a
closed set A and a compact set B are disjoint then d(A, B) > 0. Durand-Guerrier and
Arsac (2005, p. 159) show the following proof proposed by a student to 22 uni-
versity mathematics instructors:

1. 8e[ 0; 9x 2 A;9y 2 B; 0� d x; yð Þ\e=2
2. As x 2 A, and A closed ) x 2 �A ) 9xn � A; xn ! x
3. but, d xn; yð Þ� d xn; xð Þþ d x; yð Þ
4. And, as xn ! x; 9n0; n� n0 d xn; xð Þ\e=2
5. thus for n[ n0; d xn; yð Þ\e so xn ! y and as xn � A, then:
6. y 2 �A ¼ A, and y 2 B ) y 2 A\B ) A\B 6¼ £

All the instructors acknowledge the importance of mathematical knowledge in
order to be able to carry out a proof and point out the fact that x and (xn) depend on
ε. However, only two of them mention a logical analysis of the status of variables
and quantifiers, while changes in status and in rules of inference are used implicitly
(as often occurs in mathematics), with some of them being prohibited (here at line
5). Durand-Guerrier and Arsac offer a framework that can be used for a logical
analysis of proofs and foresee the relevance that this issue might have for teaching.

Many research studies try to create or reinforce the relationships between the
formal definition and the concept images about the notion of limit or graphical
representations (see the next section for the supporting role of the graphical setting).
Although a verbalisation and a geometrisation can aid in comprehension, it is
important to keep a mathematical vigilance, so that the expressions remain correct
(Nardi 2008, Chap. 6). In a similar way, we can question the usage of metaphors.
Dawkins (2012) studies the cognitive trajectory of three students and identifies in
particular the references to a metaphor used in classes where the terms of sequences
are considered as stragglers to a party, with the party taking place at the limit of the
sequence. Dawkins observes that one of the students presents numerous reorgani-
sations of his personal concept images and concept definitions (Tall and Vinner
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1981), making regular references to the metaphor and noting that he has serious
difficulties in keeping a distance from this metaphor. One can also wonder if the
usage of this metaphor has really constituted an aid for this student.

On the other hand, Hitt (2006) underlies the importance of conflicts and col-
laborative work in order to make spontaneous, non-institutional and functional
representations emerge from students. In Hitt, examples concerning the definition of
limit of a sequence can be found.

5.3.3 The Supporting Role of Graphical Setting

When introducing the notion of limit at the end of secondary school in France,
Bloch (2000, Chap. 6) proposes a situation, designed and analysed within the
framework of the Theory of Didactical Situations (Brousseau 1997), and based on a
dialectical relationship between a convergent sequence and a sequence that tends to
+∞. The two proposed sequences are those defined by the perimeters and areas
obtained during the construction of the Koch snowflake. This reliance on geometry
allows, in particular, a control that turns out to be important when the calculators’
capacities are surpassed. Validation criteria for the limits are obtained which in turn
allows an institutionalisation of correct definitions, without necessarily presenting
the formal definition. That being said, as Bloch warns, the fact of choosing strictly
increasing sequences can become an obstacle and induce a monotone model.

Roh (2008, 2010), asks 11 undergraduate students to work on the notion of
convergence by using two-dimensional graphical representations of pairs (n, un) of
sequences and translucent strips to be placed on the graphs. They are strips of
length 2ε with a central line (ε-strips), with the aim of having the inequality |un–
L| < ε appear on the graph. The students must choose between two definitions: the
first one asks that an infinity of points be covered by all strips and the second one
asks that only a finite number of points not be covered by all strips (only the second
definition is correct). The idea is for the important elements of the formal definition
to stand out, especially the fact that all the terms starting from a certain natural
number should fall into the strip and not only an infinity of them, as well as the fact
that one has to consider several ε’s (actually an infinity of ε as close to zero as one
wishes). The responses of these students are analysed in relation to their initial
conceptions, including the conflicts (Roh 2008). The author recognises that it is
difficult to change a conception while it is coherent for the subject, but affirms that
offering a graphical work, such as the one with strips, helps provoking a conflict
that can aid in confronting the obstacles.

Cory and Garofalo (2011) make use of the same graphical ideas. Making the
assumption that mathematics teachers do not see the point of the formal definition,
they use dynamic geometry software that allows for control over the size of the
strips of length 2ε. They conclude that the work with a graphical-dynamical strip of
length improves the concept images (Tall and Vinner 1981) of the three teachers
who participated in the study, including that of the “unreached limit”. Furthermore,
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this allows connections with the formal definition that is difficult to learn, notably
the comprehension that involves quantifiers.

Alcock and Simpson investigate the characteristics of students who, according to
them, are visual (Alcock and Simpson 2004) or non-visual (Alcock and Simpson
2005). Their study takes place at the beginning of two analysis courses (a standard
course and a collaborative one); it is based on interviews that are performed over
8 weeks. They analyse two tasks: the first is about the logical relationship between
the sequence converges and the sequence is bounded (see also Nardi 2008, p. 196);
the second concerns the convergence of the series Σ(−x)n/n. In their analysis they
make use of four main indicators: use of a diagram; use of a gesture; explicit
preference for diagrams and drawings over algebraic representations; and the search
for a meaning beyond algebraic representation. With these indicators, the authors
identify 9 students as visual and 7 as non-visual (2 other students are not classified).

The visual students quickly draw, almost the same images, which allows them to
offer responses. The issue is to find out whether the students draw on, and in what
manner, the formal definition. While the formal definitions are perceived as con-
ventions to be implemented by an external authority, this is often accompanied by a
rejection towards using them, with the trust in drawings being perceived as suffi-
cient. These students experience difficulties engaging in processes of proof. The
authors conclude their 2005 article by claiming that beyond the utilisation of
drawings by teachers, which are widely adopted by visual students and rarely by
non-visual students, it is precisely this relationship between the visual and formal
representations that should be worked on. We also find in this work discussion
about the coordination between registers again (see also the discussion with respect
to the students E and H in Nardi 2008, pp. 196–197).

5.3.4 Limits of Functions

In connection with functions, the limit notion is involved in many analysis concepts
such as continuity, derivatives, integrals and differential equations, having therefore
a direct influence in their understanding. According to Artigue (1998), its role is
more of a unifying concept than a tool for solving problems. Oehrtman (2008)
contends that instruction on limits should not be carried out in isolation, rather the
connections of limits to other notions should be explored, thus motivating a deep
understanding of both the limit concept and the others in question. He adds that the
design of limit instruction will depend on the goals that are set for students’
learning, such as exposure to formal definitions and proofs; intuitive understanding;
and de-emphasis of limits and alternative foundations of calculus.

Przenioslo (2004) argues that many conceptions that students in her research
study held after completing a university calculus course had probably already been
there at secondary school, and that the misconceptions formed at that level were not
corrected by taking a university course in calculus.
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Cottrill et al. (1996), in trying to come up with a model for how students might
develop a formal understanding of the limit concept, provide a preliminary genetic
decomposition, and after carrying out interviews they suggest that the formation of
a dynamic conception of limit might be more difficult than most think, since it
cannot be expressed as the interiorisation of an Action into a single Process. The
revised genetic decomposition based on data suggests that it is formed by the
coordination of two Processes (one where the domain element approaches a value,
and the other where the function value approaches the limit) as part of a Schema.
Another source of difficulty is identified as the lack of a powerful quantification
conception. They suggest that writing computer programs as a pedagogical strategy
might be helpful towards the construction of this concept. As a conclusion, Cottrill
et al. (1996) argue the following:

As opposed to some researchers who believe that a dynamic conception may hinder pro-
gress toward the development of a formal understanding of the limit concept, we believe
that the difficulty in moving to a more formal conception of limit is at least partially a result
of insufficient development of a strong dynamic conception (p. 190).

Swinyard and Larsen (2012) interpret this quote as referring to a passage from an
informal to a formal understanding of limits, however they consider that the
approach of Cottrill et al. (1996) is geared towards finding a candidate for the limit
of a function, rather than checking that a certain value is the limit of a function at a
certain point, the latter being the process involved in the definition of limit. They
also point out that students often do not realise the difference between these two
processes. Following a developmental research design and adopting the theoretical
analysis of Cottrill et al. (1996) as a starting point, Swinyard and Larsen (2012) go
on to describe a refined genetic decomposition of the limit concept. In their study,
special importance was put on students’ reasoning and, based on that, strategies
were developed to overcome difficulties that they experienced; students were
motivated to formulate their own definitions through specific tasks designed for that
purpose.

Another important interplay with regard to limits of functions occurs among
different representations of this concept. Hitt and Páez (2001) identified calculus
students’ difficulties when working on conversion tasks between numeric, graphic
and algebraic representations of limits. They found that when given a graph, stu-
dents were concentrating on the curve instead of the domain and the range of the
function and were unable to interpret the graph in terms of limits. Students also
relied on substitution when calculating limits.

Karatas et al. (2011) applied a test to Grade 12 students as well as to pre-service
teachers in their first, second and third years of university. The test used tasks about
limits and continuity, focusing on verbal, graphical and algebraic representations.
The authors found that “the comprehension of graphical representation decreases
with respect to education level of students” (p. 257). For example, when a function
was given in a graphical context, students thought that it should be defined at a
point in order for the limit to exist at that point, although in an algebraic context
they did not have difficulty in finding the limits of discontinuous functions. The
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authors underlined the importance of making connections between limits and
continuity.

Other studies (Blaisdell 2012; Duru 2011) report that in general students have
less difficulty dealing with graphical representations compared to questions that
involve symbolic and definitional aspects.

In a study conducted with high-school students, Elia et al. (2009) found that
students with a conceptual understanding of limits could perform conversion tasks
between graphical and algebraic representations, both ways. They also report that
students who made use of algorithmic processes as a result of the didactic contract
were not very successful in solving this kind of problems.

Hähkiöniemi (2006) makes use of the notions of associative and reflective
connections in relation to representations, when researching student understanding
of the limiting processes involved in the difference quotient. Associative connection
between representations is defined as changing from one representation to another,
and reflective connection happens when one representation is used to explain
another. When working on the interview tasks, students used different representa-
tions of the limiting process related to the difference quotient, including graphical
representation of secants converging to the tangent line, difference quotients over
diminishing intervals, and average rate of change over diminishing intervals.
Hähkiöniemi found that “Difficulty seemed to be in the structure of the limiting
representations and their connections to formal mathematics” (p. 182).

5.3.5 Conclusion About Limits

One cannot but notice the contrast between the studies by Roh (2008, 2010) and by
Cory and Garofalo (2011), and those by Alcock and Simpson (2004, 2005). Can
images, aided by a graphical work, be effective for all students? Wouldn’t it be
necessary to target the interventions according to the profiles of students as Alcock
and Simpson suggest? It should be noted that the study by Alcock and Simpson
focuses mainly on the external manifestations of students. In particular, it is not
because the non-visual students do not propose graphical images that they do not
have these images “in their head”. Here the difficulty in assessing the mathematical
activity of a subject is acknowledged. This may be studied by research using
activity theory.

Similarly, it can be noted that the majority of current research focuses on the
notion of limit in its dimension of object hence neglecting the dimension of tool
(Douady 1986). Yet sequences and limits often intervene as tools in mathematics,
as indicated by González-Martín et al. (2011) for the series. Here, one can identify a
line of research that remains to be explored in-depth.

Explicit studies on representational aspects of limits taking into account the
relationship between the nature of different registers and related students difficulties
are not abundant. This area seems to be a promising context for future research. This
might help clarify the contrasting results that have been found in different studies.
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5.4 Functions

The notion of function is one of the most basic and complex entities with which
students come into contact; there is abundant research concerning its learning and
teaching. The aim of this section is to give an overview of some research related to
functions that draws on aspects related to calculus and analysis.

In relation to the learning of this concept, Artigue (1998) identified four basic
sources of difficulties: (a) ones that are tied to the identification of what a function
is, (b) those that are related to the breach between a process and an object con-
ception, (c) ones that have to do with representing functions in different semiotic
registers, and (d) difficulties with overcoming numerical and algebraic modes of
thinking in favour of functional thinking. Sierpinska (1992) also mentions the
manipulation of symbols and the language that is used in connection with functions
as sources of problems for students. A common mistake is to confuse the physical
attributes of a situation (such as the trajectory of an object) with the visual attributes
of a graph modeling the situation (Bell and Janvier 1981; Oehrtman et al. 2008).

In the context of functions, three types of representations are commonly used:
graphical, algebraic, and numerical. From early on, research demonstrated the
difficulties students have with transiting from one representation to another, espe-
cially from graphical to algebraic expressions (Duval 1999). Tall (1996) considers
that with the use of computer simulations new kinds of representations are added to
the study of calculus:

• enactive representations with human actions giving a sense of change, speed and
acceleration,

• numeric and symbolic representations that can be manipulated by hand or by
computer, including the possibility of programming by the student,

• visual representations that can be produced roughly by hand or more accurately
and dynamically on computers, and

• formal representations in analysis that depend on formal definitions and proof
(p. 291).

He goes on to add that “enactive experiences provide an intuitive basis for
elementary calculus built with numeric, symbolic and visual representations, but
that mathematical analysis requires a higher level of formal representation” (p. 293).

5.4.1 Research Within APOS Theory

Different theories explain the cognitive development required to understand func-
tions in different ways. We now turn to APOS, a cognitively oriented theory that
models the construction of knowledge as moving through the stages (also known as
conceptions) of Action, Process, Object and Schema. The mechanism that allows
the transition from Action to Process is known as interiorisation and from Process
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to Object is encapsulation (Asiala et al. 1996). The mental constructions together
with the mental mechanisms that are used in constructing a mathematical concept
form part of a genetic decomposition of that concept, a model that shows a possible
way in which students may construct their knowledge (Arnon et al. 2014). In what
follows, the stages of APOS theory are illustrated for the function concept, and
examples are provided as to what students are expected to perform under each
conception.

An individual at the Action stage acts on a previously constructed object, such as
number, as a result of external stimuli such as a formula or an algorithm; in the case
of functions he or she can calculate, for example, the value of a given polynomial
function at a given point. Oehrtman et al. (2008) mention that students whose
understanding of functions is restricted to an Action conception experience diffi-
culties such as thinking that “a piecewise function is actually several different
functions”, “reasoning dynamically” since it requires visiting each ordered pair, or
“conceiving of domain and range as entire sets of inputs and outputs” (p. 157).

When asked to state what a function is, students with an Action conception tend
to give responses such as the following: “A function is something that evaluates an
expression in terms of x” or “A function is an equation in which a variable is
manipulated so that an answer is calculated using numbers in place of that variable”
(Breidenbach et al. 1992, p. 252).

Oehrtman et al. (2008) consider that students with an Action conception cannot
think about the inverse of a function, since they are limited to carrying out pro-
cedural actions such as switching the variables or reflecting the graph with respect
to the line y = x; they cannot think about the properties of a function, either.
According to these authors, designing situations that involve different representa-
tions is helpful in promoting a Process conception of function. They posit that by
using a Process conception, a covariational viewpoint can be developed, which in
turn proves to be useful in visualising multi-variable functions.

By repeating actions and reflecting on them, an individual interiorizes them into
Processes, which are dynamic transformations (Arnon et al. 2014) that are carried
out internally, as opposed to Actions that are static. With this conception one can
“think of a function in terms of accepting inputs, manipulating them in some way,
and producing outputs without the need to make explicit calculations” (Arnon et al.
2014, p. 30). For example, a student with a Process conception can explain what a
function is in the following manner: “A function is a statement that when given
values will operate with these values and return some result” (Breidenbach et al.
1992, p. 252).

A Process conception of function is often needed to develop an understanding of
the concepts of limit, derivative and definite integral (Oehrtman et al. 2008).
However, without an Object conception, an individual cannot have a complete
understanding of operations on functions, such as compositions.

By encapsulating the Process of function, an individual constructs a static entity,
that is, an object, which can be transformed by means of applying actions on it. In
the case of functions, this might be in terms of performing operations on the
functions, or forming sets or other structures of functions. If necessary, an
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individual with an Object conception can de-encapsulate a function, that is, he or
she can go back to the Process that gave rise to it. An individual with an Object
conception can define a function K on a set F of real valued functions, for example:
K fð Þ xð Þ ¼ f �2xð Þ for every f in F (Oktaç and Çetin 2016).

Finally, a function Schema can be constructed as a collection of mental con-
structions related to the function concept whose coherence would be determined by
the individual’s ability to decide whether a given problem situation can be resolved
using functions. An individual who is at the Schema stage “could construct various
systems of transformations of functions such as rings of functions, infinite dimen-
sional vector spaces of functions, together with the operations included in such
mathematical structures” (Dubinsky and McDonald 2001, p. 280).

5.4.2 Multiple Representations and Points of View

For Duval (2006), there are two kinds of transformations of objects from one
semiotic representation to a different one. If one stays within the same semiotic
register, the transformation is known as treatment; if one changes registers, then it is
given the name of conversion. Success with conversions is in part due to their
congruence, or transparency, and this property does not have to be reversible
(Duval 2006). According to Duval, this explains why students have considerably
more difficulty when they are asked to find an algebraic representation of a given
graph, than when they identify the graph of a given function. The results of the
review presented by Gagatsis et al. (2006) are in line with this observation. The
reasons for this might be related on the one hand to the fact that the algebraic
register is favoured in instructional practices and, on the other, to the iconic
characteristics of visual representations (Gagatsis et al. 2006).

According to Bloch (2005), it is when conversion is implied that a task becomes
non-routine. She gives the following examples as suggestions for teaching the
concept of function at the secondary level: Using a graph, find the properties of the
corresponding function and write them symbolically; find the algebraic equation of
a function given in another register (such as graphical or numerical); construct
graphs of functions that comply with certain restrictions; interpret equations as
composed functions; and compose functions given by their graphs and find inverse
graphs.

Duval (2008) asks the question “what enables us to recognize that two semiotic
representations have nothing in common, yet stand for the same knowledge
object?” (p. 45). Another related question is “how can one distinguish the repre-
sented object from the content of the representation used, if there is no access to
mathematical objects apart from semiotic representations?” (p. 46). According to
Duval (2008), the answer lies in establishing and discriminating correspondences
between the relevant units of different representations. In the case of a linear
function, two kinds of connections between graphs and the corresponding equations
should be established (which can also be generalised to other types of functions as
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well): (1) a local one by reading relevant points such as intersections or points on a
graph for the purpose of plotting, and (2) a global one focusing on the relationship
between the visual properties of a graph such as the inclination and the related
features of the equation, such as the coefficients (the terms local and global bear
different meanings here than local and global perspectives introduced above). The
key issue in Duval’s approach seems to be that of access to mathematical objects.

Thompson (1994a, p. 39) is of the opinion that the idea of multiple represen-
tations presents problems; he cautions about their use in teaching the function
concept:

Tables, graphs, and expressions might be multiple representations of functions to us, but I
have seen no evidence that they are multiple representations of anything to students.

[…]

Put another way, the core concept of “function” is not represented by any of what are
commonly called the multiple representations of function, but instead our making con-
nections among representational activities produces a subjective sense of invariance.

Kaput (1993) advocates an approach to teaching functions where different rep-
resentations appear as representations of situations for which students can establish
a link to formal mathematical systems. In his opinion, it is desirable for these
representations to be presented simultaneously and to be acted on and controlled by
students in rich environments. In agreement with this stance, Thompson (1994a,
p. 40) mentions the following:

The key issue then becomes twofold: (1) To find situations that are sufficiently propitious
for engendering multitudes of representational activity and (2) Orient students to draw
connections among their representational activities in regard to the situation that engen-
dered them.

Thompson’s warning is in line with the approach adopted in APOS Theory with
regard to the issue of representations. Arnon et al. (2014) suggest that in con-
structing a Process conception as predicted by a genetic decomposition, each rep-
resentation of a function such as directed graph, arrow diagram, set of ordered pairs,
graph of points, table and expressions should be directly linked to the concept of
function. “In dealing with a problem situation, which may call for a particular
representation of the concept, the learner thinks of the concept in terms of that
representation” (p. 180). In this way, the learner identifies the process that is rep-
resented at the start, then using her or his Process conception, expresses the function
process in terms of the new representation (Arnon et al. 2014).

[T]he reason students have so much trouble making the transition from one representation
to the next is that they (are taught to) go directly from one representation to another without
passing through the cognitive meaning of the concept (given by the genetic decomposition).
(Arnon et al. 2014, p. 181)

For Duval, representations are more intimately related to mathematical concepts
as the following quote shows:
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All separation between concept and semiotic representation is rejected. Just as there is no
“problem” without “formulation”, the same way there is no concept without semiotic
representation. Naturally, one can change the register of representation of a concept, but
one can never separate the concept from a semiotic representation. (2001, pp. 93–94).

Drawing on the notions developed by Rogalski (2008), and with the intention of
investigating students’ concept images further, Vandebrouck (2011a) considers
three perspectives on functions as a way to explain difficulties students face when
transiting from secondary school to university. He also explores the relationship
between these perspectives and the process/object duality. When a point-wise
perspective is adopted, a function is thought about in terms of a correspondence
between two sets of numbers that comply with certain criteria. Representations that
are often used in relation to this aspect are numerical formulas and tables of values
(Vandebrouck 2011a). The global perspective takes into account the overall
properties of a function and is “necessary to understand the notion of variation”
(p. 2095), with a table of variations being an appropriate representation for it.
According to Vandebrouck, although graphs can be used in relation to the two
perspectives already mentioned in this paragraph, algebraic formulas can only be
considered by students in a global context if they belong to well-known functions,
since they do not readily present the function object as an entity. In order to develop
a global sense of functions, students need to master representations that favour such
a perspective, as in graphical and symbolic representations (Vandebrouck 2011b).

The local perspective is not usually addressed until the university level
(Vandebrouck 2011a); from this perspective, notions such as continuity, differen-
tiability and limit can be introduced in terms of neighbourhoods (Vandebrouck
2011b). In particular, Vandebrouck stresses the importance of the mastery of a
global perspective on functions as a pre-requisite for working with a local per-
spective. In this context, algebraic formulas as well as graphs would be adequate
representations, and establishing a connection between them is especially
important.

5.4.3 Multi-variable Functions

Although research on functions is abundant, the same thing cannot be said about
research on multi-variable functions. One example in this category is the study
carried out by Trigueros and Martínez-Planell (2010, 2012) that aims to explain
how students build their understanding of two-variable functions. They use APOS
Theory to model the construction of the concept, together with Duval’s theory of
semiotic representations, with the aim of analysing student productions to deter-
mine the relationship between the flexibility in using these representations and
understanding of the concept. For these authors, the two theories complement each
other in a coherent manner; one of the ways they could interact is the enrichment of
a Schema in terms of mastering different representations of functions of two
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variables. Trigueros and Martínez-Planell (2010) also mention that the use of a
theory of representations added a new angle to the analysis carried out with APOS
Theory.

Trigueros and Martínez-Planell (2010) attribute students’ difficulties in carrying
out treatments in the graphical register to their lack of coordination between the
three schemas: those of R3, one-variable function and sets. Students had consid-
erable difficulty in intersecting a fundamental plane (of the form x = c, y = c or
z = c where c is a constant) with a given surface, when they were both given
algebraically, or when the plane was given algebraically and the surface, geomet-
rically. Trigueros and Martínez-Planell (2010) state that “This ability requires,
according to our analysis, the possibility to do or imagine doing a succession of
treatments and conversions of representations of the function of interest” (p. 17).
Another source of difficulty when working with representations in R3 was identified
as the lack of experience with interpreting and drawing projections into R2.

Trigueros and Martínez-Planell (2012) provide a genetic decomposition for the
concept of two-variable functions that includes representations. After students had
taken a course in multi-variable calculus in two universities (one in Mexico and
another in Puerto Rico), the researchers carried out interviews for the purpose of
testing their initial genetic decomposition; the interview questions included specific
treatment and conversion tasks related to representations of two-variable functions.

The researchers found that the Action conception was identified as having to
work with specific pairs of numbers when looking for the domain or the range of a
function. In general, the students with this conception were able to find the
graphical representations of points given in algebraic form, but they could not carry
out the reverse conversion. Process conception was referred to as being able to
think in terms of all the points that made up the domain or the range of a function.
These students, for example, had “interiorized the actions of finding elements in the
domain into the process of finding all the elements in the domain” (Trigueros and
Martínez-Planell 2012, p. 375). Students with Process conception could generally
perform conversions, but they presented difficulties with the types of conversions
needed for an Object conception.

In the same study, only 4 out of 13 students demonstrated an Object conception.
These students were generally able to recognise properties of two-variable functions
and work with them in different registers and they were able to apply actions of
treatment and conversion on them. All these students had developed a
well-structured R3 schema.

5.4.4 Derivative

In this section and in the following one we consider two central concepts of cal-
culus and analysis: derivative and integral. Promoting a conceptual understanding
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of these notions requires special strategies concerning different aspects of the
teaching and learning process. In particular, understanding the mental processes
involved in the construction of these concepts and the associated difficulties
becomes of special importance.

As a result of their review, Sánchez-Matamoros et al. (2008) determine three
contexts in which the development of the concept of derivative takes place: (1) in
the relationship between the concepts of rate of change and difference quotient,
(2) in systems of representation whose integration in teaching fosters conceptual
understanding, and (3) in the relationship between the derivative of a function at a
point and the derivative function. In what follows, some of these contexts will be
illustrated by drawing on examples from research.

Derivative is a multi-faceted concept with which students need to work in dif-
ferent contexts. Zandieh (2000) developed a framework to analyse the concept of
derivative, which consists of two main components: multiple representations and
layers of process-object pairs. In this framework the representation viewpoint is
described as follows:

The concept of derivative can be represented (a) graphically as the slope of the tangent line
to a curve at a point or as the slope of the line a curve seems to approach under magni-
fication; (b) verbally as the instantaneous rate of change; (c) physically as speed or velocity;
and (d) symbolically as the limit of the difference quotient. Many other physical examples
are possible, and there are variations possible in the graphical, verbal, and symbolic
descriptions. (p. 105)

It is not very clear from this description why only the aspect “rate of change” is
chosen as a verbal representation, since almost any facet can be described verbally.

In Zandieh’s approach, the aspects ratio, limit, function that are implied in the
concept of derivative form its layers; each one of these layers can be thought of as a
process or as an object. This information can be arranged into a matrix, where
possible representations (or contexts) form its columns and different process-object
layers form the rows.

Each empty box in the matrix represents an aspect of the concept of derivative. For
example, the box in the ratio row and the graphical column represents the slope of a secant
line on a graph of the function whose derivative we are concerned about. (p. 106)

One of the conclusions that Zandieh (2000) draws from interview data by using
the above-mentioned framework is that students in the same class can develop very
different understandings of the derivative. She also points out a problem that stu-
dents can have which consists in staying with a pseudo-object conception (citing
Sfard 1992), which results from not properly understanding the underlying process
of an object; the fact that many derivative problems can be solved using
pseudo-objects makes it a challenge for developing instructional strategies.

Asiala et al. (1997) give a genetic decomposition of the derivative concept in
terms of graphical and analytic paths which do not have to be disjoint. In what
follows, we present this genetic decomposition adapting it into a table format for
comparison purposes. From the fourth step, the two paths converge (see Table 5.1).
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Asiala et al. (1997) found that writing computer programs helped university
students to move further along the stages of the genetic decomposition, since
special activities promoted the mechanisms of interiorisation and encapsulation.
According to these authors, a major issue in learning the concept of derivative
occurs in establishing a “relationship between the derivative of a function at a point
and the slope of the line tangent to the graph of the function at that point. This

Table 5.1 Genetic decomposition of the derivative concept, adapted from Asiala et al. (1997,
p. 407) into table format

Graphical
stage

Graphical description Analytical description Analytical
stage

1a
graphical

The action of connecting two
points on a curve of a function
to form a chord which is a
portion of the secant line
through the two points
together with the action of
computing the slope of the
secant line through the two
points

The action of computing the
average rate of change by
computing the difference
quotient at a point

1b
analytical

2a
graphical

Interiorisation of the actions
in point 1a to a single process
as the two points on the graph
get “closer and closer”
together

Interiorisation of the actions
in point 1b to a single process
as the difference in the time
intervals gets “smaller and
smaller,” i.e., as the length of
the time intervals gets “closer
and closer” to zero

2b
analytical

3a
graphical

Encapsulation of the process
in point 2a to produce the
tangent line as the limiting
position of the secant lines
and also produce the slope of
the tangent line at a point on
the graph of a function

Encapsulation of the process
in point 2b to produce the
instantaneous rate of change
of one variable with respect to
another

3b
analytical

4 Encapsulation of the processes in points 2a and 2b, in general, to
produce the definition of the derivative of a function at a point as
a limit of a difference quotient at the point

4

5 Coordination of the processes in points 2a and 2b in various
situations to relate the definition of the derivative to several other
interpretations

5

6 Interiorisation of the action of producing the derivative at a point
into the process of a function f which takes as input a point x and
produces the output value f′(x) for any x in the domain of f′

6

7 Encapsulation of the process in point 6 to produce the function f′
as an object

7

8 Reconstruction of the schema for the graphical interpretation of a
function using the relationship between properties of functions
and derivatives

8
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forms a foundation for understanding the derivative as a function which, among
other things, gives for each point in the domain of the derivative the corresponding
value of the slope” (p. 414). In this study they focused especially on students’
ability to work with the graph of a function in the absence of a symbolic expression.

Based on their empirical observations, Asiala et al. (1997) proposed a revised
genetic decomposition. In this new model, the role that the function concept plays,
the need for an explicit symbolic expression, and connections between the paths,
are taken into account.

Hähkiöniemi (2004) suggests that visual representations might be suitable for
students to start establishing a relationship between functions and their derivatives.
He adds that the students interviewed in his study were able to construct the concept
of derivative as object and did not have difficulty in relating the visual represen-
tation of a tangent to the symbolic process of finding the slope of the tangent.
However, the limit of the difference quotient caused problems in representations
other than the symbolic. The author suggests that visual representations could be
used in connection with differentiation rules, since this kind of representations
seems to facilitate the learning of derivatives.

In another study, it was found that for most students the existence of an algebraic
expression was necessary to answer any question about a function; if they were given
a graph, they wanted a formula to be associated with it before they were able to work
on it (Habre and Abboud 2006). For example, faced with the graph of a function, a
student said: “In order to see if the derivative is increasing or decreasing, we must
derive the function first” (p. 62). This kind of answer might be influenced by the
teaching that the students received and consequently the didactic contract in question.

Vivier (2010) proposes an alternative approach to the one presented in Table 5.1,
first by working on the object of tangent, in the graphical and algebraic settings,
based on an adaptation of the method of Descartes for the determination of tan-
gents. Afterwards, by means of an interplay between approximate and exact cal-
culation, a transition towards analysis where the notion of instantaneous rate of
change, as a limit of the average rate of change is proposed. In this approach
computer work with zooms on curves as proposed by Tall (1985) and Maschietto
(2008) is included. This proposition, tested on teachers (Páez Murillo and Vivier
2013), has shown the extent of a global conception in mathematics teachers’ work
as well as some difficulties related to the use of a conception associated with the
derivation in a graphical task about tangents.

5.4.5 Integral

Thompson and Silverman (2008) consider that in order for students to construct an
understanding of an accumulation function (usually represented byF xð Þ ¼ R x

a f tð Þdt),
they need to coordinate three processes: defining formula of f, covariational rela-
tionship between x and f, and accumulation together with its quantification. This
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means for them to understand a space curve that is formed by points of the form
ðx; f xð Þ; R x

a f tð ÞdtÞ. On the other hand, a Riemann sum represents the total amount of
the derived quantity, where each element of the sum is a multiplication of two
quantities, namely, f cð Þ and Dxwhere c 2 x; xþDx½ �. For students to think of an area
under a curve as something other than area, they have to think about the accumulation
of these incremental quantities (Thompson and Silverman 2008). The authors report
that understanding a Riemann sum as a function is quite difficult for students.

Camacho Machín and DePool Rivero (2003) designed a Utility File to be used
with the software DERIVE, in order to treat definite integral as an approximation in
terms of areas of plane figures, in numerical and graphical perspectives. This made
it possible to introduce the concept of definite integral before the concept of
indefinite integral in a context of applications. Later, Camacho Machín et al. (2008)
found that the use of this pedagogical strategy proved to be effective in the con-
struction of the definite integral concept in the context of calculation of an area.
They report that students had no difficulty in solving problems with continuous
functions, including treatments and conversions among numerical, algebraic and
graphical registers. However, when the function involved was defined by parts, the
situation changed. Furthermore, application problems that did not explicitly ask for
the calculation of an area proved to be difficult for the students.

As a result of their analysis of calculus textbooks, McGee and Martínez-Planell
(2014) observed that when introducing and developing the notion of definite
integral, the following registers were utilised: geometric, numeric, symbolic, and
verbal (this last one in the context of applications). Within the symbolic register, the
following representations were identified: expanded sum, sum in sigma notation,
and the definite integral. They further observed that in the same textbooks, the
treatment of double and triple integrals did not include the numerical register nor
the expanded sum representation. The authors underlined that for comprehension of
a concept to occur, conversion between registers should not simply stay at the level
of conversions implied in a semiotic chain; instead, there should be simultaneous
awareness (synergy) of the representations involved. After carrying out instruction
with experimental and control groups (where the experimental group used materials
designed to close the gap in relation to the representations identified as being absent
in the textbooks), interviews were conducted with students from both groups. Based
on the analysis of classroom observations, interviews and exam questions, it was
concluded that the missing representations were necessary for many students to be
able to comprehend the related treatments and conversions. It was also found that
the more students had experience with different coordinate systems, the more they
had awareness of the registers involved.

From an APOS perspective, Czarnocha et al. (2001) report that for an under-
standing of the concept of definite integral, coordination is necessary between the
“visual schema of the Riemann sum and the schema of the limit of the numerical
sequence” (p. 304). They emphasise that an Object conception of sequences is a
pre-requisite for understanding the definite integral as a limit of the Riemann sums.
Based on the genetic decomposition presented in Czarnocha et al. (2001), Boigues
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Planes (2010) proposes a more detailed one in terms of three nested Schemas:
partition of an interval, Riemann sums for a continuous function in an interval, and
definite integral as the limit of a sequence of Riemann sums.

González-Martín (2007) designed a teaching sequence for the concept of
improper integral, where the graphical register played a special role “in interpreting
certain results as well as in predicting and applying divergence criteria” (p. 162).
Algebraic register was used together with the graphical one so that students could
articulate the two. This sequence was applied by means of a didactical engineering
at a university. The author reports that as a result students accepted and recognised
the graphical register as having a valid mathematical status, although at the
beginning they might have expressed rejection.

5.4.6 Linking the Derivative and the Integral:
The Fundamental Theorem of Calculus

Artigue (1995) frames the problematique of the teaching of analysis concepts as
follows:

Numerous research studies show, and with surprising convergence, that even if students can
be taught to carry out in a more or less mechanical manner some calculations related to
derivatives and integrals and to solve some standard problems, great difficulties are
encountered to make them actually enter the field of calculus and to make them reach a
satisfactory understanding of the concepts and methods of thinking, that are the center of
this field of mathematics. These studies also show in a clear manner that faced with these
difficulties, traditional teaching, in particular at the university level, although has other
ambitions, tends to focus on an algorithmic and algebraic practice of calculus and to
evaluate in essence competencies acquired in this domain. (p. 97)

The issues mentioned in this quote might explain why students have serious
difficulties in developing a conceptual understanding of the Fundamental
Theorem of Calculus (FTC). In this theorem, differential and integral calculus are
intimately related, where the rate of change is coordinated with the amount of
change of accumulation, two notions that are essential in understanding the FTC
(Kouropatov and Dreyfus 2014; Thompson 1994b). According to Thompson and
Silverman (2008), if an accumulation function is given by F xð Þ ¼ R x

a f tð Þdt, its
comprehension (without focusing on Riemann sums) passes through three stages.
First, a process conception of f xð Þ as well as understanding of the covariational
relationship between the independent variable and f must be achieved. These two
aspects will then need to be coordinated with the process of accumulation together
with its quantification. Finally, the three values x, f xð Þ and

R x
a f tð Þdt must be

coordinated (Thompson and Silverman 2008). Establishing relationships between
these elements and the rate of change of the accumulation function can lead to a
conceptual understanding of the connection between derivative and integral, and of
the FTC (Kouropatov and Dreyfus 2014).
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5.4.7 Conclusion on Functions

The function concept has been studied extensively from the point of view of
cognitive constructions and the use of representations. In some research studies, the
use of these two approaches was found to be complementary and helpful in terms of
explaining student difficulties and construction of concepts. There seems to be a
need for further research, both theoretical and empirical, in order to explain in more
depth the different standpoints involved in these approaches, including how they
explain educational phenomena and if and how they might enhance our under-
standing of student learning.

5.5 Conclusion

The research studies that have been presented in this chapter are concerned, beyond
the technical and procedural aspects, with the conceptualisation of the notions of
analysis. This seems to be a particularly important and crucial issue for mathematics
education researchers, as Artigue (1995, see the citation at the end of the section
Derivative and integral) has pointed out. Ten years later, Artigue (2006) highlights
new research studies concerning flexibility, connections between settings, registers,
etc.

What stands out from these studies, independently of the notion in question, is
the importance of an interplay between different registers, as well as the importance
of the graphical register that constitutes a visual aid that is likely to favour
understanding. At the EM-ICMI Symposium in 2000, Artigue asked the following
questions:

Up to what point are graphic visualizations efficient tools for supporting the development of
mathematical knowledge in analysis? What kind of tasks, of problematic situations can
allow the students to maximize the expected benefits of these techniques? What are their
real potential and limits? Are they adequately exploited in current teaching with graphic
calculators? Even if research allows us to approach these questions better today, they
remain widely open. (Artigue 2003, p. 216).

Research continues into these still valid questions. Nevertheless, there seems to
be a less extensive use of the graphical setting regarding real numbers, including for
the topological questions, perhaps due to the unidimensionality of R. It seems that
real numbers constitute a research field to be invested in by researchers in math-
ematics education: what kind of aid can geometry provide for the learning of
topology, especially of the completeness? What impact does knowledge of real
numbers have on the conceptualisation of concepts in analysis?

However, the issue of changes in settings and domains, as well as the consider-
ation of different contexts, does not seem to be taken into consideration in a specific
manner in research studies. There might be a place for developing these aspects in
analysis education. Similarly, we have observed that research into the dimension of
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object concerning the notions of analysis is well advanced however the same cannot
be said of research about the dimension of tool. One exception is the didactic situation
designed by Legrand (1997) in order to introduce the Riemann integral, about whose
efficiency Artigue (2001) comments that “it strongly depends on the kind of scenario
developed in order to organize students’ encounter with this new facet of the integral
concept. In a crucial way, this scenario plays on the social character of the learning
process” (p. 214). This could be another line of research to develop.

Finally, the breach with the algebraic thinking identified by Artigue (1998) as the
third problem posed by the learning of analysis (see the introduction), seems to be
worth reconsidering from the perspectives of flexibility and connection. It could be
interesting to consider a productive interplay between algebra and analysis, taking
into account exact value, approximation and the nature of objects. As Artigue
(2003) commented, when referring to the initiation to analysis:

In the previous algebraic work, all the different components of an algebraic expression were
given the same weight; solving an equation meant finding all the numbers satisfying that
equation. In analysis, the management of algebraic expressions has to take into account the
different orders of magnitude of the terms and to look for what is predominant and what can
be neglected. Working with inequations is no longer playing the same game; it means
combining this differentiated treatment of expressions with the play on intervals or
neighbourhoods induced by the local perspective. The technical work thus deeply changes
and becomes more complex, as well as the heuristics and the control processes. (p. 219)

Research in this direction can help identify student difficulties, as well as shed
light on the ways for the construction of related concepts.
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Chapter 6
Digital Technology and Mathematics
Education: Core Ideas andKeyDimensions
of Michèle Artigue’s Theoretical Work
on Digital Tools and Its Impact
on Mathematics Education Research

Carolyn Kieran and Paul Drijvers

6.1 Introduction

In 2002 Michèle Artigue published an article entitled Learning mathematics in a
CAS environment: The genesis of a reflection about instrumentation and the
dialectics between technical and conceptual work. That paper reflects a funda-
mental contribution to theory on the teaching and learning of mathematics in
technological environments, and to instrumentation theory in particular. Clearly,
Michèle’s work1 did not end with her 2002 paper; rather, the article presents
important threads that she has continued to develop, and that have inspired other
researchers in the field. As such, the paper has had an important influence on the
international research agenda in the domain of technology-enhanced learning, as
well as a considerable impact on recent research. This chapter, therefore, has two
goals. The first goal is to revisit the central themes elaborated in that paper. The
second is to follow the evolutionary paths of the paper’s main themes and to outline
some new directions that have emerged from them.

To achieve these goals, we distinguish the threads that are general key dimen-
sions, which run through the body of Michèle’s work, from the threads that are core
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theoretical ideas, which are interwoven into and provide specific perspectives on
the key dimensions. The key dimensions are generic in nature; they include the
mathematics, the teacher, the learner, and the tool—dimensions that are in fact
touched upon in much of the research on the use of digital technology in mathe-
matics classes. The cross-wise threads of core theoretical ideas are those particular
notions that underpin and elaborate the ways in which the general dimensions are
considered and without which the dimensional terms would be devoid of specific
interpretation. In collaboration with others, Michèle has contributed uniquely to the
generation of core theoretical ideas that have profoundly impacted the way in which
we think about some of mathematics education’s basic dimensions. We also believe
that the metaphor of interweaving, which permeates this chapter, fits well with the
kind of ‘tinkering’ that we all try to do in our work, and at which Michèle excelled.

6.2 The Importance of Theoretical Foundations

6.2.1 Towards a New Theoretical Framework

The first theme we identify in Artigue’s (2002) IJCML article concerns the
importance of theoretical foundations. In one of the first sections, entitled A theo-
retical framework for thinking about learning issues in CAS environments, Artigue
emphasises the need that had been felt by her research group for a framework other
than the ones that were then in use, in particular a framework that would avoid the
traditional “technical-conceptual cut”:

In the mid-nineties, we thus became increasingly aware of the fact that we needed other
frameworks in order to overcome some research traps that we were more and more sensitive
to, the first one being what we called the “technical-conceptual cut” (Artigue 2002, p. 247).

In the search for such frameworks, she and her collaborators turned toward the
anthropological theory of the didactic (ATD, or TAD within the French commu-
nity) with its socio-cultural and institutional basis (Chevallard 1999) and the cog-
nitive ergonomic approach with its tools for thinking about instrumentation
processes (Rabardel 1995; Vérillon and Rabardel 1995). Together, these two the-
ories formed the foundational principles for a new theoretical framework, the in-
strumental approach to tool use—a framework that was supported by the earlier
research carried out by Artigue and her collaborators (e.g., Artigue et al. 1998; Guin
and Trouche 2002; Lagrange 1999, 2000; Trouche 1997). This theoretical work is
testimony to the importance Artigue attributed to what we consider an overall
characteristic of her research, that of theoretical frameworks in the area of
technology-enhanced learning. An important feature of this framework is the
underlying process of combining, integrating, and adapting the two theoretical
orientations for the specific purpose of investigating the opportunities and con-
straints of the use of digital tools in mathematics education.
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It is noted that the combining of Chevallard’s anthropological theory of the
didactic (with its institutional aspects that impact upon the generic dimensions of
teacher, learner, and mathematics) with the cognitive ergonomic approach of
Vérillon and Rabardel (with its tool and learner dimensions) into the instrumental
approach could be viewed as an early attempt at networking two theories before the
term came into vogue—a notion that Artigue addressed in her plenary talk at
CERME-5 in 2007. She remarked that this combining had been productive, even if
at times it had yielded tensions:

The difference [between the two frames] reflects in the evident tension existing between on
the one hand the language of praxeologies and techniques used in the TAD, and on the
other hand the language of schemes used by Rabardel. This tension between schemes and
techniques, … between the institutional and the individual, has been extensively discussed
in recent years … but up to now has not been overcome. … For me, this is a good
illustration of the difficulties that one necessarily meets when trying to integrate two dif-
ferent logics, to build something starting from two different coherences. It shows the
difficulties raised by the connection of theoretical frames (Artigue 2007, p. 75).

6.2.2 Further Developments and Impact:
Networking of Theories

In order to follow the evolutionary paths of the 2002 paper’s main themes and to
outline some new directions that have emerged from them, we now address some
further developments concerning the combination and confrontation of different
theoretical frameworks. While the instrumental approach to tool use continued to
develop in France and elsewhere during the years following the turn of the mil-
lennium, researchers who were conducting research on the use of digital tools in
mathematical learning and teaching were adapting frames involving several other
constructs, such as activity theory and social semiotics. The field was becoming
marked by fragmentation with respect to the theoretical frameworks used in
designing technological tools and in conducting research with these tools (Lagrange
et al. 2003). This was making difficult not only productive collaboration among
researchers but also the transporting of tools to educational contexts different from
those for which they had initially been designed.

To overcome this theoretical fragmentation, the European project Technology
Enhanced Learning in Mathematics (TELMA) was created, with Artigue one of the
main collaborators. Project participants explored possibilities for connecting and
integrating theoretical frames. According to Artigue et al. (2009, p. 218), “very
soon, we became convinced that integration could not mean for us the building of a
unified theory that would encompass the main theories we were relying on; the
number and diversity of theories at stake made such an effort totally unrealistic.”
Artigue and her collaborators realised that in order to develop an integrated
approach to research they needed a shared research practice so as to look at theories
in operational terms. Such a practice also needed an appropriate methodology and
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instruments. Radar charts, for example, were used to help position the tools used in
different studies (see Fig. 6.1).

Developing this shared research practice led to the constructs of didactical
functionality and shared concerns, where tool characteristics, modalities of tool use,
and educational goals were central. Tool characteristics included concerns related to
ergonomics, semiotic representations, and institutional/cultural distances. Modalities
of tool use included concerns related to the interaction with paper-and-pencil work,
the social organisation and roles of the different actors, and the functions given over
to the tool. Educational goals included concerns related to epistemological, cogni-
tive, social, and institutional considerations. The several cross-experimentation2

studies carried out by the various TELMA teams revealed that the concerns related to
tool, tool use, and goals do indeed drive the entire experimentation process. The
development of these concerns constitutes a major contribution by Artigue and her
collaborators with respect to the theoretical elaboration of the tool dimension in
research on technology-enhanced learning of mathematics. The work of the TELMA
researchers in developing methodological and conceptual tools was to evolve further
when the TELMA teams engaged in another project in continuity with their previous
research: the ReMath project3 (Representing Mathematics with Digital Media).

Fig. 6.1 Tool characteristic
radar chart within the
Integrative Theoretical
Framework (ReMath
Deliverable 1 2006)

2The TELMA cross-experimentation studies involved pairs of teams coming from different the-
oretical cultures, but both using the same digital technology—a technology that was well known to
one of the teams but alien to the other.
3The ReMath project relied on the TELMA meta-language of didactic functionalities and concerns,
as well as the system of cross-experiments, but had somewhat different aims. It focused more
specifically on representations and issues related to the design of digital artefacts and extended the
TELMA methodology to include cross-case-study analyses. For further elaboration of the ways in
which the ReMath project developed, modified, and extended the ideas initiated in the TELMA
project, see the recently published Artigue and Mariotti (2014) paper, which appeared after this
chapter was written.
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One of Artigue’s early initiatives within the ReMath project was the formulation of a
first version of an integrative theoretical frame (ITF), a document that—we note with
interest—began to use the language of networking of theories:

The first version of the ITF is neither a theory, nor a meta-structure integrating the seven
main theoretical frames used in ReMath into a unified whole. It is more a meta-language
allowing the communication between these, a better understanding of the specific coherence
underlying each theoretical framework, pointing out overlapping or complementary interests
as well as possible conflicts, connecting constructs which, in different frameworks are asked
to play similar or close roles or functions.…What has been achieved in TELMA… tends to
show that the metaphor of networking is, as regards the idea of integrative perspective, better
adapted than the metaphor of unification, but it only suggests some hints as regards the
strategies we could engage for making this networking productive. (ReMath Deliverable 1
2006, p. 31, italics in the original document).

Artigue was not the only one to elaborate on this core idea of networking of
theories; it received considerable attention at the 2005 Fourth Congress of the
European Society for Research in Mathematics Education (CERME 4), as well as at
successive ERME congresses (see also Bikner-Ahsbahs and Prediger 2006;
Prediger et al. 2008). Some of the strategies proposed for networking theories
included comparing, contrasting, coordinating or combining—in fact, strategies that
bear a certain relationship to the approaches that were part of the ongoing discourse
of researchers from the TELMA and ReMath projects. The interactions among the
various researchers participating in the Theory Working Group at the ERME
congresses, as well as the reflections of the networking group set up by Angelika
Bikner-Ahsbahs and Susanne Prediger at CERME 5 to work between the ERME
congresses, have not only advanced researchers’ thinking about this emerging area
(e.g., Artigue et al. 2005; Cerulli et al. 2005; Kidron et al. 2008; Artigue et al. 2010;
Bikner-Ahsbahs et al. 2010) but have also served to stimulate an increase in the
very activity of theorising within the field (e.g., Monaghan 2010, 2011; Drijvers
et al. 2013a; Godino et al. 2013; Lagrange and Psycharis 2013).

More recently, Artigue et al. (2011) have proposed a broadening of the dis-
cussion on networking of theories to include the construct of research praxeologies.
Artigue and her co-authors argue that talking about “theories,” as in “networking
theories,” indicates only the theoretical part of research practice. They have
therefore extended Chevallard’s ATD notion of praxeology to elaborate the pivotal
notion of research praxeology: It comprises the practice of research (with its
task-technique block) along with its technological-theoretical discourse. Artigue
et al. stress that research praxeologies are dynamic entities whereby changes in the
practical block lead to evolution of the technological-theoretical block and vice
versa (i.e., the technical-theoretical dialectic)—changes that involve considering the
notion of research phenomena. They maintain that “networking between theoretical
frameworks must be situated in a wider perspective than that consisting of the
search for connections between the objects and relationships structuring these. …
Our reflection tends to show that an approach in terms of research praxeologies can
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be productive for networking between theories, especially because it helps address
the essential issue of the functionality of theoretical frameworks, by inserting these
in systems of practices” (Artigue et al. 2011, p. 9).

In sum, our above review of recent literature shows that Artigue’s (2002) article
describing the interwoven roots of the instrumental approach to tool use was central
to the later theoretical work of combining and integrating theoretical frameworks
that grew into the networking of theories approach to research in mathematics
education.

6.2.3 Further Work and Impact: Ongoing Developments
of ATD

The above-mentioned Artigue et al. (2011) paper also reflects a second direction of
follow-up work in the field of theoretical frameworks, in this case concerning ATD.
In particular, researchers around the world have been inspired by Artigue’s and her
research group’s insistence on avoiding the technical-conceptual cut. Her group’s
development of the idea that the technical has a strong conceptual element, espe-
cially during the period of the initial learning of a technique (Lagrange 2000), has
been taken up not just in ensuing research involving digital tools (e.g., Nicaud et al.
2004; Boon and Drijvers 2005; Haspekian 2005; Martinez 2013) but also in the
theorising of mathematical learning at large (Kieran 2013). As an example of the
former, we refer to a research project on the interaction between the technical and
the conceptual in the learning of algebra with CAS tools (Kieran et al. 2006), which
was framed within the instrumental approach’s task-technique-theory
(TTT) adaptation of Chevallard’s ATD. Within that project, Hitt and Kieran
(2009) investigated in detail at close range the task-based activity of a pair of 10th
grade students and documented, with the aid of a specially-developed notation (see
Fig. 6.2), the ways in which students’ emerging theories were systematically being
revised as they engaged with CAS tools in concept-building actions within
technique-oriented algebraic activity.

Fig. 6.2 Students’ revisions
of their theoretical
explanations to account for
task-based phenomena in a
learning environment
involving the use of CAS
techniques (Hitt and Kieran
2009)
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This core idea of the technical-conceptual connection (also referred to as the
technical-theoretical connection), which was explored in the research of Artigue
and her group (Artigue et al. 1998; Lagrange 1999, 2000) and further developed in
the above more recent research, has provided a vital new theoretical tool for
reflecting on the learning of mathematics. As such, it has led to a different way of
thinking about the learner dimension within school mathematics, especially in the
area of algebra. In this area, where the technical has for decades held sway and
conceptual understanding considered all but an oxymoron, the work of Artigue and
her colleagues in changing the relationship between technical skills and conceptual
understanding has been truly ground breaking. We will come back to this
technical-conceptual connection in Sect. 6.4.

6.2.4 Core Theoretical Ideas and Key Dimensions

To summarise Sect. 6.2, which has focused on Artigue’s passion for theory, a main
theme that has been highlighted is the importance of and need for theoretical
foundations of research and development in the field of mathematics education.
Two of the key dimensions that we have identified as being central to the theoretical
advances that have been made are the tool and the learner dimensions. The theo-
retical threads that have been woven into, and have provided texture to, these
dimensions include the core idea of the instrumental approach to tool use frame,
with its concomitant core idea of the technical-conceptual connection—the latter
yielding novel theoretical perspectives particularly with regard to the learner
dimension in school mathematics. The tool dimension was significantly elaborated
by the theorising initiated within the TELMA project and further developed within
the ReMath project. Artigue’s emphasis on theoretical foundations and the fact that
these foundations can arise by a process of ‘tinkering’, integrating and adapting
existing theoretical frameworks within the domain of study, or from outside, is
another core idea of Artigue’s work—a core idea that may be seen as networking of
theories ‘avant la lettre’.

6.3 Instrumental Approaches and Instrumental Genesis

6.3.1 The Complexity of Instrumental Genesis

In the previous section we drew attention to the emergence of the instrumental
approach to tool use, based on principles from ATD and cognitive ergonomics. In
our opinion, this instrumental approach was the first fundamental theoretical lens for
studying the use of digital tools in mathematics education, and CAS in particular. It
proved to be a major contribution to the field (Hoyles and Lagrange 2010) and
underlines the importance of tools in use, which through their opportunities and
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constraints shape and are shaped by student knowledge. Instrumental approaches—
we use the plural here because of the different variations that now exist for the theory
—acknowledge the impact tools have on the ways in which students do and think
about mathematics: “Tools matter: they stand between the user and the phenomenon
to be modelled, and shape activity structures” (Hoyles and Noss 2003, p. 341).

In line with Rabardel’s (1995) distinction between an artefact and an instrument,
Artigue in her 2002 IJCML article points out that an instrument is a mixed entity that
is part artefact and part cognitive schemes (see also Guin and Trouche 1999). We can
summarise this in a ‘formula’: instrument = artefact + scheme. The process by which
an artefact becomes an instrument is referred to as instrumental genesis—another
core theoretical idea. This genetic process works in two ways: in one, the process is
directed from the user toward the artefact in that the artefact becomes loaded with
potentialities—the instrumentalisation of the artefact; in the other, the process is
directed from the artefact toward the user in that the user develops schemes of
instrumented action that permit an effective response to given tasks—the instru-
mentation of the user. An important contribution to our knowledge of using digital
technology in mathematics education, now, is the notion that the use of cognitive
tools such as advanced calculators or computers is neither self-evident nor trivial,
and that the instrumental genesis needed is a complex and time-consuming process.

The research on instrumental genesis emanating from Artigue’s collaborative
research group included doctoral theses that illustrated, for example, the diversity of
the instrumental relationships that students studying the concept of limit develop
with the digital technology of graphical and symbolic calculators (Trouche 1997,
whose doctoral thesis was directed by Dominique Guin). Students’ conceptions and
ways of interacting with the digital tools led Trouche to characterise five different
student profiles: theorist, rationalist, scholastic, tinkerer, and experimentalist.
Another thesis (Defouad 2000), which focused on the study of functional variation
over the course of the school year and involved Grade 11 students equipped with
the TI-92 CAS calculator, pointed to the complexity and fragility of the process of
instrumental genesis. For Defouad’s students, instrumental genesis was found to
progress slowly through various stages, beginning with the graphical application
being used for exploration and solving, and evolving through to the symbolic
application for the computation of exact values, at which point the graphical was
being used primarily for anticipation and control. A key dimension of research with
digital tools that is highlighted in both of these studies is that of the learner and the
way in which his/her characteristics interact with those of the tool.

6.3.2 Further Developments and Impact: Instrumental
Orchestration

The notion of instrumental genesis was followed up in several studies that identified
instrumentation schemes and that documented the difficult process of building these
up in students (e.g., see Fig. 6.3). However, it was not long before research related
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to the core theoretical idea of instrumental genesis was to focus on the teacher
dimension, both from the point of view of his/her role within the digitally enhanced
learning environment and from the perspective of his/her own instrumental genesis.

The potential synergy between the instrumental approach and the role of the
teacher led to Trouche’s (2004) elaboration of the construct of instrumental
orchestration: “the necessity (for a given institution—a teacher in her/his class, for
example) of external steering of students’ instrumental genesis” (p. 296). According
to Trouche, an instrumental orchestration is defined by didactic configurations and
their exploitation modes, the latter of which are aimed at providing students with
the means to reflect on their own instrumented activity. In pointing to the
instructional role involved in managing and fine-tuning an entire classroom of
individualised instruments so as to bring out their collective aspects, Trouche
integrates the individual concerns of the ergonomic frame with the institutional
concerns of the ATD. Further research on teachers’ instrumental orchestrations is
reported in, for example, Drijvers and Trouche (2008) and Drijvers et al. (2010),
and has resulted in some categorisations (see Fig. 6.4).

Teachers’ instrumental genesis has also been an area of study that has evolved
from the theoretical frame of the instrumental approach. Bueno-Ravel and Gueudet
(2007), who participated in the GUPTEN (Genesis of Professional Uses of
Technologies by Teachers) project spearheaded by Jean-Baptiste Lagrange, focused
specifically on e-exercises and the way in which these artefactual resources become
instruments for the teacher through a process of instrumental genesis. Artigue and
Bardini (2010) studied teachers’ instrumental geneses in a project involving the use
of a new tool, the TI-Nspire CAS. In particular, they addressed the issue of the
relationships between the development of mathematical knowledge and instru-
mental genesis and noted the impact of new kinds of instrumental distance (see
Haspekian and Artigue 2007) and closeness that shape teachers’ activities.

Fig. 6.3 Elements of an instrumentation scheme for solving equations in a CAS environment
(Drijvers et al. 2013a)
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6.3.3 Further Developments and Impact:
The Documentational Approach

A further evolution of the research on teachers’ instrumental geneses has been the
theoretical transformation of this focus into a new frame that is referred to as the
documentational approach of didactics (Gueudet and Trouche 2009). In this theo-
retical frame for studying teachers’ documentation work, the artefact-instrument
dialectic within instrumental genesis has been recrafted as the resource-document
dialectic within the process of documentational genesis. The new ‘formula’ thus
becomes: document = resource + scheme. This theoretical frame, which places
documentation work at the core of teachers’ professional growth, has been further
developed in Gueudet and Trouche (2010) and Gueudet et al. (2012). As an
elaboration, Sabra (2011) sketches the ‘fabric’ of a resource system for one par-
ticular teacher (see Fig. 6.5). Even more recently, this approach has evolved to take
into account the way in which documentation work is also central to the profes-
sional activity of design researchers (Kieran et al. 2013).

6.3.4 Core Theoretical Ideas and Key Dimensions

To summarise, in Sect. 6.3 we have focused on the complexity of the use of digital
tools and the corresponding instrumental genesis, and on the ways in which this
construct had been applied and developed by Artigue’s collaborators and by other
researchers outside France. The dimensional threads that have been theoretically
elaborated in that research include: the tool (and its use), the learner, and the

Fig. 6.4 A first inventory of teachers’ orchestrations (Drijvers et al. 2013b)
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teacher. The core theoretical idea that has been interwoven through, and that has
given a particular theoretical sense to, these dimensional threads has been the
construct of instrumental genesis.

6.4 The Pragmatic-Epistemic Duality

6.4.1 The Pragmatic and Epistemic Value of Techniques

In Sect. 6.2, the avoidance of the technical-conceptual cut was mentioned as a
hallmark of research on the use of digital tools in mathematics education—one that
has been inherited from the instrumental approach to tool use. The technical aspects
of using digital tools clearly incorporate a strong conceptual element and recon-
ciling these two can be seen as an important component of instrumental genesis.
Thus, while the conceptual is intricately interwoven with the technical within the
core idea of the technical-conceptual connection, the role of technique in con-
tributing to the development of the conceptual is central—and this brings us to the
pragmatic-epistemic duality.

An important contribution of Artigue’s (2002) article is the distinction she draws
between the pragmatic and epistemic values of techniques. Within the instrumental

Fig. 6.5 An inventory of one teacher’s resource system (Sabra 2011)
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approach, the pragmatic value of techniques refers to their “productive potential”
(Artigue 2002, p. 248), while their epistemic value refers to “their contribution to
the understanding of the objects they involve”, particularly during their period of
learning when they constitute a source of questions about mathematical knowledge
(see also Lagrange 2000). In her CERME-5 plenary lecture, Artigue (2007, p. 72)
clarified an important point about this duality within the instrumental approach to
tool use: “While technique is a fundamental object of the ATD, the ATD does not
distinguish between the epistemic and pragmatic values of techniques; these terms
come from cognitive ergonomy, but there they are linked to schemes and not to
techniques.”

Taking the pragmatic-epistemic notion of the ergonomic approach and con-
necting it with the objects of the ATD was an astute move on Artigue’s part. Having
already linked techniques to schemes by having the former designate the visible
part of the latter, Artigue could then refer to the epistemic and pragmatic values of
techniques. However, the appropriation of the pragmatic-epistemic duality within
the instrumental approach allowed for much more than this. It provided for con-
sidering the ‘mathematical needs of instrumentation’ (a phrase that combined the
mathematical underpinnings of the ATD with the instrumentational aspects of the
ergonomic approach) and for these mathematical needs to be interpreted in terms of
the epistemic value of instrumented techniques. In addition, it supported a
pragmatic-epistemic perspective on the two ATD objects of technique and theory
and highlighted the relationship between the two. As well, it opened up a discourse
for comparing and contrasting the pragmatic and epistemic values of “official”
mathematics with the pragmatic and epistemic values of instrumented mathematics.
The multiple ways in which the notion of pragmatic-epistemic duality allowed for
aligning the contributions of the ATD and of the ergonomic approach within the
instrumental frame, as well as for operationalising their interactions, render it a truly
core theoretical idea of Artigue’s work.

Three elements of Artigue’s research that are intertwined with the
pragmatic-epistemic duality, but which can also be considered central notions in
their own right, are the following: the institutional aspect, the task design com-
ponent, and the mathematical dimension. The first element, the institutional aspect,
refers to the educational, social and institutional contexts of techniques. In line with
ATD, Artigue (2002) describes how teachers in French mathematics classes during
the first year of a study were observed to have difficulty in giving adequate status to
instrumented techniques. In contrast to the standard way in which paper-and-pencil
techniques were explored, routinised, and institutionalised, the several digital
techniques that were introduced suffered from ad hoc treatments that prevented
them from becoming efficient and productive. The theoretical discourse accompa-
nying the use of such techniques remained fragmentary and underdeveloped.
Artigue points out that, while the “kinds of discourse which can be developed are
well known for official paper and pencil techniques, … a discourse has to be
constructed for instrumented techniques … a discourse that will call up knowledge
which goes beyond the standard mathematics culture” (Artigue 2002, p. 261). The
institutional roots of this difficulty are emphasised: “The institutional negotiation of
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the specific mathematical needs required by instrumentation [is] a negotiation
which today is not an easy one” (p. 268). This institutional aspect, which was
central to the ATD, remained a core theoretical idea that was threaded through all of
Artigue’s research (see Artigue 2012).

Second, in her discussion of the pragmatic-epistemic duality, Artigue relates the
constructing of an adequate discourse for instrumented techniques to task design,
that is, to the process of didactical engineering or ingénierie didactique. According
to Artigue, developing appropriate situations and tasks for instrumental work was a
challenge for the teachers involved in her research; they were unsure how to design
tasks that make provision for developing the epistemic value of techniques. In this
regard, Artigue (2002, p. 268) points out that “epistemic value is not something that
can be defined in an absolute way; it depends on contexts, both cognitive and
institutional; from the contextual [and mathematical] analysis of this potential to its
effective realisation there is a long way, with situations to build, viability tests, and
taking into account the connection and competition between paper and pencil and
instrumented techniques.” The latter remark highlights yet another core idea of her
work: the relationship between paper-and-pencil and digitally-instrumented tech-
niques. She notes that particular attention needs to be paid to the relationship
between techniques for using digital tools and ‘traditional’ paper-and-pencil tech-
niques: While both the pragmatic and the epistemic values are obvious for the case
of “official” paper-and-pencil techniques in that “the epistemic value of a
paper-and-pencil technique becomes evident through the details of its technical
gestures” (Artigue 2002, p. 259), the epistemic value of instrumented techniques
seems much less obvious.

Last but not least, a crucial step in the design of task sequences is a thorough
analysis of the underlying mathematical domain. In commenting that more than the
standard mathematics is called for when dealing with instrumented techniques,
Artigue emphasises not only the mathematical needs of instrumentation but also the
requirement for a deep a priori analysis of the mathematics embedded in the tool
and its use. She thereby stresses the importance of elaborating the mathematical
dimension within research studies—an emphasis that is shared by fellow
researchers of the French didactique tradition (see also Brousseau 1997). In one of
her examples, Artigue (2002) refers to the topic of equivalence of expressions and
the problem of detecting equality for certain types of algebraic expressions in a
CAS environment. She points out that the CAS tool can produce results—often
quite surprising and unexpected—that go beyond what is usually faced in
non-digital-technology-supported mathematics classrooms when algebraic expres-
sions are to be simplified. In her ensuing discussion of the mathematical needs
required for an efficient instrumentation, which she expresses in terms of the
epistemic value of instrumented techniques, Artigue (2002, p. 260) suggests that the
epistemic has to be provided for by constructing a mathematical discourse around
it: “The epistemic value of instrumented gestures is something that must be thought
about and reconstructed; in the teaching process, it has to be developed through an
adequate set of situations and tasks”.
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6.4.2 Further Developments and Impact: The Institutional
Aspect

The institutional/cultural aspect of the instrumental approach was highlighted in the
work of the TELMA and ReMath projects, where institutional considerations fig-
ured into the three main theoretical developments of the two projects: tool char-
acteristics, modalities of use, and educational goals. This aspect was also reflected
in the practice of the participating research teams, as witnessed by their own
institutional/cultural approaches to research. More recently, Artigue (2012) in her
MERGA plenary presentation on multiculturalism in mathematics education
research returned explicitly to the institutional aspect of Chevallard’s ATD theory:

Sensitivity to the cultural dependence of mathematics education must be supported by
appropriate constructs and methodological tools for being productive. With the develop-
ment of socio-cultural approaches, the field of mathematics education today offers a
diversity of theoretical frameworks and constructs for such a purpose. As with many French
colleagues, due to my cultural environment, I have found a support in the Anthropological
Theory of Didactics (ATD). In this theory initiated by Chevallard, indeed, an initial pos-
tulate is that human knowledge emerges from practices which are institutionally situated
thus a fortiori culturally situated (p. 6).

The attention paid to institutional conditions and constraints is also manifest in
the documentational approach of didactics (Gueudet and Trouche 2009). As shown
in Fig. 6.6, institutional influences may hinder or enhance teachers’ documenta-
tional genesis to an important extent.

Fig. 6.6 The institutional aspect in documentational genesis (Gueudet and Trouche 2009)
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6.4.3 Further Developments and Impact: Task Design
and Mathematical Analysis

The potential interactions between, on the one hand, the pragmatic and epistemic
values of techniques and, on the other hand, techniques instrumented digitally and
paper-and-pencil techniques, served as a basis for designing tasks in a CAS study
on equivalence reported by Kieran and Drijvers (2006). Task-sequences were
designed that would invite both technical and theoretical development, as well as
their co-emergence. One of the observations of the study was that most students
wanted to be able to produce themselves, by means of paper and pencil, the results
that were output by the CAS whenever the CAS results could not be explained by
their existing technical and conceptual knowledge. That is, CAS and
paper-and-pencil techniques were found to be interrelated epistemically and
co-constitutive of students’ theoretical development. However, it was also found
that the a priori mathematical analysis of the notion of algebraic equivalence, which
had guided the initial design of the study, did not go far enough. Data from student
work indicated that the mathematical analysis by the task designers had to be
further developed because it had not adequately taken into account the importance
of domain considerations and transitivity in students’ evolving conceptual under-
standing of equivalence (Kieran et al. 2013; also see Fig. 6.7). This led to a deeper
theoretical elaboration of the dimensional thread related to the underlying mathe-
matics and, at the same time, confirmed once again the importance of Artigue’s
insistence on the mathematical needs of instrumentation.

6.4.4 Core Theoretical Ideas and Key Dimensions

To summarise, Sect. 6.4 has highlighted the importance in Artigue’s work of the
dimensional thread related to the mathematics, that is, to the requirement for deep a
priori mathematical analysis of the needs of instrumentation and for developing

Fig. 6.7 Extract from a mathematical analysis of the notion of algebraic equivalence in the Kieran
et al. study (2013)
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adequate situations and tasks for instrumental work. Interwoven with the key
mathematical dimension have been the three core theoretical ideas of the prag-
matic-epistemic duality, the relationship between paper-and-pencil and digitally-
instrumented techniques, and the institutional aspect.

6.5 Closing Remarks

In this chapter, we have revisited Michèle Artigue’s classic 2002 IJCML article and
have drawn out what we consider to be the core theoretical ideas and key dimensions
of the body of work on tools and tool use that Michèle not only elaborated but also
inspired others to further develop. We have traced the evolutionary path of these core
ideas, noting the ways in which they theorised the four general key dimensions of
learner, teacher, tool, and mathematics. Without claiming to be exhaustive in our
selection, we have focused on seven core theoretical ideas that have been central to
Michèle’s work and that have impacted in various ways the research of others: the
instrumental approach to tool use, instrumental genesis, the pragmatic-epistemic
duality, the technical-conceptual connection, the paper-and-pencil versus digitally-
instrumented-technique relationship, the institutional aspect, and the networking of
theories.

We realise that we have discussed these core theoretical ideas as if they were
separable, one from the other. Of course, they are all related, with each but the last
being an intrinsic part of the frame of the instrumental approach to tool use.
However, while the core idea that is the instrumental approach to tool use is an
overarching one that subsumes most of the others, several of its component core
ideas merited being singled out and discussed individually. Some have been further
developed in various ways—sometimes without involving the use of digital tools—
and have even taken on lives of their own. This was noted, for example, with the
core theoretical idea of instrumental genesis, one strand of which has evolved into
documentational genesis and the frame of the documentational approach. Another is
the core theoretical idea of the technical-conceptual connection that has been
applied more broadly in recent research on mathematical learning.

The dimension of tools and tool use has been at the heart of Michèle’s work on
instrumentation and thus has been central to her theoretical work. Nevertheless, her
contributions extend beyond this dimension. Michèle’s theoretical ideas have had a
profound impact on the ways in which we think about some of the other basic
dimensions of mathematics education, such as the learner, the teacher, and the
mathematics. The further developments and impact of the core ideas and key
dimensions that we have described in this chapter are clear testimony to the richness
of Michèle Artigue’s theoretical contributions, for which we have much to be
thankful.
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Chapter 7
Digital Technology and Mathematics
Education: The Teacher Perspective
in Mathematics Education Research—A
Long and Slow Journey Still Unfinished

Maha Abboud-Blanchard

7.1 Introduction

Roughly two decades have passed since a UNESCO report (1992) gave an over-
view of the impact of computers and calculators on mathematics education at the
end of the eighties and in the early nineties. Following the first ICMI Study on
technology (1985), the editors wished to update some outcomes of this study and to
republish some others in order to make them available to mathematics educators
throughout the world. In the chapter entitled “Teacher education and training”,
Bernard Cornu declares:

However, computers are now very common in society; they are used in many domains of
daily life. In many countries national plans for computer equipment in schools have been
achieved, and so a lot of computers are available in schools. Much educational software has
been produced, and it is often of high quality. The use of computers does indeed become
easier. […] Current and future teachers must be prepared for this evolution. It is not enough
to master the knowledge and some pedagogical strategies and tools. Teachers must be able
to deal with all the evolution which will happen, and to adapt to different kinds of pupils
(pp. 87–88).

Despite significant advances in technological tools and environments for
mathematics teaching, and in educational research related to this field, it is hard to
claim nowadays that encouraging teachers to integrate technology into their prac-
tices is no longer necessary or a priority among institutional policymakers. In a
recent UNESCO report (Artigue 2011), Michèle Artigue, referring to the 17th ICMI
study (Hoyles and Lagrange 2010), states:

Technologies have undeniably enriched the possibilities of experimentation, visualisation
and simulation; they changed the relation to calculation, the relation to geometric figures.
[…] However, in spite of their undeniable potential for enhancing the teaching and learning
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of mathematics and their many positive achievements, they have to date had little effect
even in education systems that strongly encourage their use. Recent work on teachers’
practices in computer environments is beginning to give insights into this situation, and
forms of training properly adapted to teachers’ needs are being considered. Nevertheless,
the issue of widespread effective use of these technologies in basic mathematics education
remains for the moment unresolved. (p. 35)

Indeed, research focusing on teachers’ practices in mathematics classes is a
relatively recent phenomenon within the history (even though short) of mathematics
education and technology. During the first decade of use of technology the role of
teacher and its eventual changes was not a central issue for several reasons,
especially the opposition between technical and conceptual work, prevailing in the
discourse of innovation and research and also the underestimation of instrumental
issues. Technology by itself was considered to foster changes in the teacher’s role.
This first trend gradually gave way to research that recognised and attempted to
better understand the challenges that teachers face in the presence of digital tech-
nology (DT) and the need to rethink new possibilities for doing mathematics and
addressing classroom management issues (Healy and Lagrange 2010).

In this chapter I will review from this latter perspective the trajectory of Michèle
Artigue, showing how by directing doctoral theses, by conducting national inno-
vative projects and by participating in projects crossing cultural and educational
contexts, she played a substantial role in the research in this area. The following
sections are not conceived as a continuous chronological path but rather as mile-
stones based on episodes from Michèle’s “long story with technology”.1

7.2 From Students’ Tasks to Teachers’ Practices

In the early nineties, the French Ministry of Education asked a group of researchers
headed by Artigue to work together with a group of expert teachers to identify the
potential offered by a computer algebra system (CAS), DERIVE, for the teaching
and learning of mathematics at secondary level (Abboud et al. 1995; Artigue 1997).
The observations made during this collaboration clearly showed that integrating
CAS into mathematics teaching was absolutely not a matter of simply adding a new
artefact into a classroom. Indeed, the researchers asked the expert teachers to design
lessons that they considered to be evidencing the power of CAS for mathematics
learning. The teachers then provided lessons plans and their rationale as well as
their expectations on how the lesson plans would take place in their classrooms
(computer rooms). By observing these lessons, the research team shed light on the
fact that the mathematical dynamics in the classroom within the lesson in progress
resulted from a balance between two opposite tendencies. The first one favoured
reflexive work, as expected by teachers. The second focused on productive

1The title of the chapter is inspired by a wording used by Artigue (2012, p. 25).
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strategies, reducing thus the global coherence of students’ activity. This was
especially the case when students used what were named “fishing strategies”:
multiplying trials without spending time understanding computer feedback up to the
moment something easily interpretable (in terms of the task’s performing) hap-
pened. The research also found that the role of the teachers and their management
of the lesson were essential for maintaining this adequate, but complex, balance. It
was the didactic expertise of the teacher that prevented the second tendency (pro-
ductive strategies) gaining precedence over the first one (reflexive work).

Broadly, this study showed that in addition to thinking out the affordances of
digital technologies (DT) and the ways it affects mathematical learning, it became
essential to investigate the role of the teacher within technology-mediated lessons.
Simultaneously other researchers, in different contexts, came to the same conclu-
sion. This was confirmed by a meta-analysis of over 600 international publications
(published before 2000) on DT in the teaching and learning of mathematics
(Lagrange et al. 2003). Starting from this period, the emphasis in many research
studies began to shift toward aspects of teachers’ practices when DT was integrated
into their teaching, and on the complexity of this integration.

For instance, in the French sphere, Laborde and colleagues (Laborde 2001)
highlighted that appropriation of DT by teachers was a long process. Reporting on
teaching scenarios using dynamic geometry and their evolution over 3 years,
Laborde stressed:

We assume that really integrating technology into teaching takes time for teachers because
it takes time for them to accept that learning might occur in computer-based situations
without reference to a paper-and-pencil environment and to be able to create appropriate
learning situations. But it also takes time for them to accept that they might lose part of their
control over what students do (p. 311).

This is consistent with Ruthven et al. (2005), whose research tackling the use of
dynamic geometry shows that teachers may constrain the potential of technology in
order to retain control of the classroom. Indeed, teachers tend to reduce the
exploratory dimension of DT in order to control students’ explorations and to avoid
students encountering situations that could obscure the underlying rule or could
require explanations that go beyond the narrow scope of the lesson.

Adopting a more holistic perspective in understanding the key factors of
teachers’ activities and roles, Monaghan (2004) used Saxe’s cultural model centred
on emergent goals under the influence of four parameters. Using this model enabled
Monaghan to locate critical influences on teachers’ practice which he then used to
explore the complexities of integrating technology into teaching. A central feature
of this model was the notion of emergent goal that proved adequate to spot and
interpret phenomena that frequently occur in technology based lessons, resulting of
a gap between what the teacher was expecting and what really happened. Lagrange
and Ozdemir (2009) also used this model to analyse episodes encountered by
experienced teachers, marked by improvisation and uncertainty. By contrasting, in
similar lessons, the classroom activity of two teachers (one positively disposed
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towards the use of technology and the other not), they showed that suitable settings
and favourable parameters did not guarantee less complexity in DT integration.

More generally, one can conclude from these examples and many others in
education research that different approaches and frameworks were developed with
the same purpose of better understanding the way teachers use technologies.
Particular orientations can also be encountered that offer a wide range of theoretical
and methodological constructs to examine teachers’ use of technology in class-
rooms. A recent volume, “The mathematics teacher in the digital era”, edited by
Clark-Wilson et al. (2014), provides a more detailed and current overview of this
domain.

Returning to the issue that opened this section, I point out that after the DERIVE
project, a second project followed, also directed by Artigue, that studied the uses of
symbolic calculators. The outcomes and theoretical work resulting from these two
projects led Artigue and her colleagues to introduce a new and currently
well-known framework, the Instrumental Approach (IA), which is presented and
detailed in Chap. 6 (Kieran and Drijvers in this volume). It is worth noting that IA
was first used as means of studying students’ instrumental genesis; and a teacher
perspective was afterwards introduced, that is, the notion of instrumental orches-
tration (Trouche 2004), also used by Drijvers et al. (2010).

7.3 Towards Geneses of Technology Uses

In 2003, Artigue and her colleagues was in charge of a regional French project
involving more than 50 Grade 10 mathematics teachers (Artigue et al. 2007). The
project aimed to study volunteer teachers’ uses of web-based resources
(Electronic-Exercise-Bases (EEB)) over a period of three years. The study was
qualitative and the data was collected from lesson preparation plans, class obser-
vations, and responses to questionnaires and interviews. Most of these teachers
were familiar with the use of technology in the classroom at the beginning of the
project. The goal of the project was pragmatic in that it involved observing the
potential of EEB in ordinary classes, with an emphasis on helping the weaker
students (Abboud-Blanchard et al. 2007). The data analysis addressed the general
questions: Why and how do teachers use EEB? What effect does this use have on
their teaching activity? The outcomes emphasised the impact of using EEB in three
phases of the teachers’ activity: preparing lessons; interacting with students during a
lesson; and reflecting after the lesson on a comparison between what was prepared
and the effective activity of students. Outcomes mainly referred to teachers’ wish to
control the students’ activity contrary to specificities of the EEB, and to teachers’
focus on mathematical process in contrast with the EEB focus on answers only.

Data mining was also used in a subsequent national research project that
explored the geneses of technology uses in different educational contexts: the
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GUPTEN2 project (Lagrange 2013). The aim of this project was to better under-
stand how the practices of the teachers involved in the regional project evolved over
time and the factors that shaped this evolution. Indeed, the GUPTEN project had a
challenging perspective which was to identify the ordinary “uses” of DT that
teachers developed, beyond the original perspective of innovation, and by searching
for a state of equilibrium between paper-and-pencil traditional practices and the
response to an external (institutional and social) demand to integrate DT into
mathematics teaching and learning.

Multiple frameworks were used in this national project. The researchers
attempted to combine the Instrumental Approach with a framework used in the
French educational field to study teaching practices: the Double Approach (DA),
with the Activity Theory as its frame of reference. The DA was introduced and
developed by Robert and Rogalski (2005) to incorporate, on the one hand, a
didactical perspective, which views the teachers’ activities that involve task choices
and classroom management as a key factor affecting students’ activities, and on the
other hand an ergonomic perspective, which considers teachers as professionals
having craft knowledge, beliefs and previous experience whilst working in given
institutional and social conditions. We also used the distinction between “produc-
tive” activity and “constructive” activity emphasized by cognitive ergonomists like
Samurçay and Rabardel (2004). Indeed, by their actions, the subject (the teacher in
this case) modifies the situation but also changes him or herself, i.e., develops his or
her knowledge or builds new knowledge. The fact that the Instrumental approach
and the DA could both be considered as expanding Activity Theory, by adding and
articulating mathematics didactic perspective, ensured a certain a priori consistency
and continuity on a meta-level within the national research study.

The main contribution of this work was to provide a theoretical construct which
could be used to grapple with the complexity of the emergence and evolution of
teachers’ practices in technology-based lessons. This theoretical construct was a
thoughtful way of modelling geneses of technology uses (for more details, see
Abboud-Blanchard and Lagrange 2006, Abboud-Blanchard and Vandebrouck
2012). It focused on the development of technology uses by teachers. Considering
the processes of instrumental genesis of specific artefacts by the teacher, the notion
of geneses of uses transcends these processes by taking into account the globality
and stability of the teacher’s practices (with and without DT). The geneses of uses
are considered as patterns of development in three levels of practice’ organisation,
related both to temporality and to goals in the teaching activity: the micro level of
“automatisms” and elementary gestures; the local level related to management
issues and to teacher-students interactions; and the global level referring to
preparations and scenarios.

As explained at the end of the above section, the notion of instrumental genesis
was introduced and developed in research into mathematics education by Michèle
Artigue and her colleagues. They also drew from the Anthropological Theory of

2Genèses d’Usages Professionnels des Technologies Numériques chez les Enseignants.
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Didactics (ATD), highlighting the role of instrumented techniques and of their
interaction with paper-and-pencil techniques, and introducing the twofold charac-
teristics of techniques-“pragmatic” and “epistemic”-that Rabardel already identified
for instrumental schemes.

As to the recent development that the GUPTEN project proposes, it broadly
draws on the development of the instrumental approach by Rabardel and col-
leagues. Indeed, artefacts are considered not as isolated but as inscribed into sys-
tems of artefacts; the subjects’ activity often implies the use of multiple instruments
(Rabardel and Bourmaud 2005).

Relative to the two main conceptual frameworks inspiring these developments,
Lagrange (2012) recently attempted to evaluate the contribution of ATD and of
activity theory (and so to the ensuing IA and DA) in view of overarching issues
related to the use of DT by mathematics teachers. He emphasised that, although
very different in their nature and roots, the two theories start from a common vision
of knowledge as the product of human activity in social and cultural contexts
(p. 33). He then demonstrated how, in a specific research study, the use of the two
frameworks was possible and insightful.

These diverse efforts that aim to compare, connect and integrate theoretical
frames are in accordance with Michèle Artigue’s current preoccupations about the
networking of theories (see for example Artigue and Mariotti 2014). This trend in
Michèle’s research is further developed in Chap. 6 (Kieran and Drijvers in this
volume) and Chap. 3 (Kidron et al. in this volume).

7.4 Improving Teacher Education

In the proceedings from a Conference on ICT in school mathematics, Artigue
(1998) entitled her paper: “Teacher training as a key issue for the integration of
computer technologies”. The paper was her first published overview of obstacles to
the integration of ICT; she claimed that the poor sensitivity of teacher training to
these obstacles partly explains its poor efficiency. Indeed, research projects in which
she was involved and doctoral thesis that she was directing (see for example
Abboud 1994) brought her to highlight the fact that a current tendency, at the time,
in teacher training was to consider that disturbances due to the presence of tech-
nologies can be avoided by careful preparation and proper choice of a situation’s
variables relative to students’ tasks. In the closing section of the text, she states:

Teacher training based on innovative values and militancy has shown evident limits. For
the reasons mentioned above, our personal conviction is that such resistant obstacles will
not be overcome without giving didactic analysis a more important role in teacher training
and without providing teachers with didactic tools allowing them to analyse transpositive
processes, to identify the didactic variables of situations and pilot them, analyse their
professional techniques and the way these are modified by the use of computer technologies
(p. 127).
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Several years later, in a text synthesising her current research, Artigue once more
attempted to identify and analyse the difficulties and challenges in technology
integration (Artigue 2004). She ended her discussion with the following statement:

Training has not been able up to now, to go beyond the primitive phase of pioneer militancy
that is associated to the entrance of any kind of newness in the educational system. This fact
leads to a general underestimation of the necessary changes in the professional work of the
teacher, of the mathematical, technological and didactic expertise required if one wants to
have computer technologies really benefits mathematics teaching and learning (p. 221).

She also emphasised that educational policies continued to overlook how DT
participates in destabilising established routines and increasing the complexity of
teaching activity. She added that necessary changes must be supported by insightful
knowledge and appropriate training.

This situation described by Michèle has gradually become a major concern of
current research. Most teacher education researchers are themselves teacher edu-
cators studying the teachers with whom they work. Some others are focusing on the
kinds of knowledge developed in teacher training courses and on training strategies
used by teachers’ educators (Abboud-Blanchard 2013; Emprin 2007). In the 17th
ICMI Study (Hoyles and Lagrange 2010), several papers analysed views and
options of teacher education courses in mathematics and technology. They offered
features by which teacher education courses might be characterised, especially
those of changes in teachers’ role, activity and practices. In their text, Grugeon et al.
(2010) describe a number of teacher development courses implanted in different
cultural and educational contexts. Even if each course had its own consistency, the
authors tried to determine the underlying options and hypotheses; a categorisation
model according to the content and the teaching strategies followed. Six types of
course content were identified: the potential of software for learning, the evolution
of curriculum due to technology use, instrumental genesis, the reworking of old
tasks and the creation of new tasks for use with technology, appropriate new
teaching abilities, and working with technology in various professional contexts.
Four main strategies were also identified: demonstration (showing how to), role
playing (teacher as student), ‘in practice’ (teacher as reflective practitioner), and
learning communities. It is interesting to note that the first strategy, demonstrating
good practices, was the only one common to all five courses. The authors hoped
through this classification to provide useful support for future work in analysing and
describing teacher education projects. Reflecting on the latter, Artigue (2010)
declared in her closing chapter:

But we find also in the different contributions some evidence that we are now ready to enter
a new phase, and that the Study can efficiently contribute to this new phase through the
analysis it provides of current practices and of their resulting effects, through the
methodological and conceptual tools it proposes, through the positive and substantial
examples it presents of teacher preparation and professional development programs. These
examples moreover show that the technology itself offers now new and powerful tools for
supporting and accompanying the professional development of teachers in that area, seen as
a collective and collaborative enterprise […] (p. 471)
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Shifting into a ‘higher level’, new educational studies have emerged that tackle
the topic of educating the educators.3 New approaches focus on the need for a much
closer coordination between research, development, design, and practice, and
acknowledge the impact that educating teacher educators has on improving teacher
education itself, which has, in turn, repercussions for a wider implantation of
technology in everyday teaching practices. Still, to be efficient, this implies
long-term projects and innovative design of teacher education courses
(Abboud-Blanchard and Robert 2013). This cannot, though, be the task of indi-
viduals, neither left in the sole hands of researchers (Artigue 2009). Instead, it
requires specific structures able to organise and evaluate the effects of such
approaches on teacher educators’ professional development.

All of the previous issues and results were discussed within the session dedicated
to this topic4 in the International Conference “Hommage à Michèle Artigue” (in
Paris 2012). But at the same time, open questions emerged such as: What main
criteria are needed, and must be displayed, in teacher education to help teachers
efficiently organise technology-based sequences? How can questioning the balance
between pragmatic and epistemic values of technology (Artigue 2002) be integrated
in pre-service and in-service teacher education? How do we adapt current teacher
education to new generations of “plugged in and connected” teachers? Following
on from this last question, Artigue points out that we are living in a new digital era
and are witnessing the arrival and spread of new artefacts which shape our personal
and professional lives, including smartphones, touch-sensitive screens, mathemat-
ical applets, and diverse mobile technology devices. She also stresses the important
role that social networks play in communication modes (Artigue 2013). She
deduces that traditional paths in teacher education must be improved especially by
further reflecting on the potentialities of e-learning and on the growth of new ways
of teaching such as the Massive Online Open Courses (MOOC).

To summarise, I illustrated throughout this section how the discourse of Artigue
on teacher education kept coherence and even a certain recurrence over the passage
of time. By synthesising issues and outcomes from national and international
research, I pointed out that teacher education remains a key factor for any possible
evolution of DT integration in educational systems. It surely illustrates how difficult
these issues are to deal with and that the research community has to develop new
directions to challenge visions related to teachers’ professional development and to
expand this research area.

3See for example the Conference on international approaches to scaling up professional devel-
opment in maths and science education, December 2014 in Essen, Germany.
4This session was coordinated together with Colette Laborde; special thanks to her.
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7.5 Concluding Comments

Throughout this chapter I have attempted to revisit Michèle Artigue’s work on the
teacher’s perspective in technology-based education. I used episodes from her
research work to show how she contributed, often in a collaborative way, to
introduce new guidelines and new perspectives for research in this field.
Nevertheless it is also a fine-grain analysis based on her work within diverse
research projects, which led Artigue to provide reliable insights into the complex
issue of integrating technologies into educational systems.

I would like to add that Michèle had, and still has, a role of actor beyond her
research activity, often positioned at an institutional level; intervening and working
to improve mathematics teaching and learning in technology environments. One
could say that she is playing a dual role, by creating efficient conceptual frames and
methodological tools, and at the same time working in close collaboration with
actors. For instance, she regularly designed and intervened in teacher education
courses proposed by the Institute of Research in Mathematics Education (IREM)
that she headed for several years and still is an active member of the board. She also
continued to work with secondary teachers to experiment with innovation, to
produce educational resources, and to participate in projects addressing professional
development. Indeed, to accompany the slow evolution of incorporating technology
into school mathematics, researchers have to take into account a vision close to
what teachers experience in their everyday professional lives.

Finally, I would like to quote Michèle from a recent plenary conference entitled:
Teacher education and technology: a major challenge5:

[…] to teach math in this digital era, it is not only to learn to integrate in teaching practices
technologies such as calculators, dynamic geometry, spreadsheets or computer algebra
systems (CAS) which have long been the emblem of this integration, and this even if the
effective integration of these ‘old’ technology is still marginal. It is learning to take
advantage of many resources provided by the digital world for teaching and learning, and
new modes of social interaction and communication that it promotes. […] More than ever,
the need to thorough studies of teachers’ professional development related to digital
technologies is topical; the need for a better understanding of teaching practices in tech-
nological environments, of their determinants, and of their evolution dynamics. (Artigue
2013, pp. 5–6, our translation)

Indeed, this is another challenge for all educational researchers to continue
towards new directions and perspectives in a journey that is still unfinished…

5The original French title is: La formation technologique des enseignants: un défi majeur.
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Chapter 8
History of Science, Epistemology
and Mathematics Education Research

Renaud Chorlay and Cécile de Hosson

8.1 Introduction

In her paper of 1990 entitled Epistémologie et didactique, Michèle Artigue reflected
on 10 years of practice within the French mathematics education1 community,
while stressing the need for epistemology for the working researcher. First, she
underlined the need for epistemological awareness as an experience for the
researcher, enabling distance between the researcher and their personal mathe-
matical culture; second, she pointed out that some knowledge of the history of
mathematics was of a key component of didactical research, either to understand the
historical development of a mathematical concept, or to understand the shaping of
mathematics as a ruled cultural activity.

This chapter will, to a large extent, directly echo the original Artigue paper,
starting with a common take on “epistemology”. Of course, the word has many
meanings: rather than the noun “epistemology”, which seems to denote a well defined
research field, we will use the adjective “epistemological” to denote the endeavour of
deriving insight from knowledge/awareness of the history of mathematics that is
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relevant from a ME research perspective.2 Also, in spite of the fact that it discussed
several well-known and important papers from the 1980s, the Artigue paper was not a
literature review. Rather, the literaturereferenced by Artigue was discussed in detail
from a methodological perspective, focusing on the use of concepts from MER and
science education research such as “epistemological obstacle” and “conception”.

This chapter will also focus on issues of method, although with a shift of
emphasis. Instead of focusing directly on didactical concepts, we will mainly dis-
cuss research practices at the intersection of two autonomous fields of knowledge:
MER on the one hand, and the history of mathematics on the other; in this context,
“history of mathematics” will denote the outcome of the work of historians of
mathematic.

It seems to us that since Artigue’s 1990 paper, the interactions between the two
research communities have become less intense; certainly not because the need for
epistemological inquiry which Artigue clearly spelled out has faded, but probably
from the conjunction of two factors. First, a growing professionalisation of the two
research communities occurred. Second, the theory of didactical situations assigned
a role to the history of mathematics within a didactical theoretical framework,
making it easier for the ME researcher to engage with history. The multiplication of
theoretical frameworks, and the decline of interest in concepts such as “epistemo-
logical obstacle” probably made it less clear, in particular for early-career ME
researchers, why and how interactions with the historical community could benefit
them.

We will first endeavour to describe the structural differences between the two
fields of research: MER and the history of mathematics (HM). We will then use a
methodological viewpoint to analyse several classical and more recent works in
MER, in order to document the range of possible interactions and stress fruitful
leads. Our range of examples will cover recent works in physics education research
to the extent that they bring to light complementary connections between the his-
tories of science and didactics.

2This implies that we do not plan to cover another research topic which lies at the intersection of
the didactical and historical domains, namely, the use of history in a teaching (or teacher-training)
context. To learn more about this research-line, we refer the reader to Fauvel and van Maanen
(2000) or to Jankvist (2009) for recent survey papers. For a thought-provoking reflection on the
topic, we recommend Fried (2007). To learn more, the HPM group (International Study Group on
the Relations between History and Pedagogy of Mathematics) has a website: http://www.clab.edc.
uoc.gr/hpm/. We will not touch on the history of education either; for a recent and comprehensive
survey, see Karp and Schubring (2014).
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8.2 Two Autonomous Fields of Research

8.2.1 Structural Differences

MER and HM are two different and autonomous disciplines: each has its own
empirical field of investigation, its own set of legitimate questions, its own way of
validating claims, its own reference works, etc. That fact may be self-evident;
however, we feel it should be taken into account in order to pave the way for fruitful
collaborations. It is also a fact that ME researchers and historians of mathematics
have often been speaking at cross purposes: when historians of mathematics read
what ME researchers say about the history of mathematics, the typical reaction
goes: “this is not history, but a sketchy reconstruction of history framed within
a-historical categories; what really happened is really much more complicated than
that, you know …”; which ME researchers are usually fully willing to acknowledge
while wondering why historians would deny them the right to make heuristic use of
the HM, usually in a preliminary phase to their main investigation. For them,
learning about history (which is one of the things historians do) is a means to learn
something from history (which is not what historians do). Reciprocally, ME
researchers may sometimes be surprised by the lack of theoretical frameworks in
the work of historians, since such frameworks provide the main tools for describing
and analysing specific issues, and enable researchers to integrate their particular
study within a growing and soundly-structured body of knowledge about the
learning of mathematics in educational contexts. Even though some historians
occasionally borrow concepts from some theoretical frameworks,3 they usually feel
they have no use for theoretical frameworks from MER, because they don’t use
theoretical frameworks at all!

The purpose of this chapter is not to claim that these common misunderstandings
are only the result of the relative isolation of the two communities, and that they
would soon fade if both groups of researchers decided to work together with an open
mind. Quite the contrary, we think these misunderstandings point to differences
which are structural, and our purpose is to sketch ways of living with this fact.

Since the intended audience of this chapter is that of ME researchers, we would
like to briefly describe some elements of the work of historians. Of course, our
approach is descriptive and not normative.

MER and HM have at least this in common: contrary to what research mathe-
maticians do, the object of their investigation is not mathematics, and this object is
not studied primarily mathematically.4 Rather, both historians and ME researchers

3For instance, in the workshop on Epistémologie et didactique at the Artigue conference, historians
Dominique Tournès and Renaud Chorlay mentioned their use (or their interest) in concepts such as
“changement de cadre, de registre, de point de vue”, “niveau méta”, and “dialectique outil/objet”.
4At least not only, or even primarily, when it comes to ME. This does not mean that knowing as
much mathematics as possible, even very contemporary mathematics, is not very helpful for both
RME and HM. We will touch on this below.
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study how agents engage with mathematics, in a context which can be described;
mathematics is necessary to make sense of this engagement and this context, but
cannot possibly be the only background tool.

Beyond this common agent-based approach, dissimilarities become striking: ME
researchers study learners, while historians of mathematics tend to focus on
experts.5 ME researchers have direct access to the living agents they study, which
means empirical data can be gathered, hypotheses can be put to the test in
finely-tuned conditions, and cognitive processes can be investigated. Historians of
mathematics have indirect access to the agents they study, and it is part of their field
to attempt to assess what biases exist (for example, critique of sources, and careful
methodological reflection on corpus delineation). Historians of mathematics have to
deal with events that happened once, but that can be understood, compared, and to
some extent, fit into narratives6; MER has an experimental side to it, and can aim
for invariants and reproducibility.7

The fact that historians depend heavily on the availability of sources and do not
explicitly rely on theoretical frameworks does not imply that their work is purely
descriptive and erudite. To use Kuhn’s phrase, historians solve puzzles, just as any
researcher does, whatever their field. We would like to illustrate this agent-based,
puzzle-solving approach from three different angles.

8.2.2 Echoing Questionnaires

First, let us mention the kind of questions that historians aim to tackle. A very
general and context-free list of questions can be found, for instance, in Catherine
Goldstein’s (1999, 187–188) methodological paper8:

At a given period in time, what were the networks, the social groups, the institutions, the
organizations where people practiced mathematics or engaged with mathematics? Who

5This is of course a huge oversimplification: practitioners of mathematics need not be “profes-
sional” or “research” mathematicians: see, for instance, Dominique Tournès’ work on the math-
ematics of engineers in the 19th century; they need not even be experts: see, for instance, works on
the mathematics of merchants, either in the paleo-Babylonian period (Cécile Michel), or at the turn
of the 16th century in Occitan France (Maryvonne Spiesser). Again, the term “professional
mathematician” would need to be historically situated, since the current meaning refers to
something which stabilised in the second half of the 19th century. For instance, Stevin, Viète,
Fermat and Leibniz were trained in law and worked as top civil servants.
6The scale of the narratives—from the very local to the global study of the development of
something that matters to us today (be it negative numbers, the circle, or proofs by contradiction)—
is maybe where the tension between learning about the history of mathematics and learning from the
history of mathematics is the most perceptible.
7In her paper, Artigue pointed to another difference, that between historical genesis and artificial
genesis. We do not wish to mention it here, being wary of terms such as “historical genesis”.
8What follows is based on Goldstein’s list, but is not a direct translation.
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were mathematicians? In what conditions did they live; in what conditions did they carry
out mathematical work? How were they educated and trained? What did they learn?

Why did they work in mathematics, in what preferred domain? What did this domain
mean to them? (…) Where did mathematicians find problems to be solved? What were the
form and origins of these problems? Why was some result considered as very important, or
of lesser importance? According to which criteria? What was considered to be a solution to
a problem? What had to be proven, and what did not require a proof (tacitly or explicitly)?
Who decided so? When was a proof accepted or rejected? When was an explicit con-
struction deemed indispensable, optional or altogether irrelevant?

When, where and how mathematics were written? Who wrote, and for whom? For
instance, were new results taught, were they printed, were they applied? What got trans-
mitted? To whom was it transmitted, in which material and intellectual conditions?

What changed and what remained fixed (and according to what scale, to which criteria)?

This list strikingly echoes the list of questions which Guy Brousseau considered
to be meaningful for MER when he attempted to derive didactically-relevant insight
from a study of the history of mathematics. When discussing Georges Glaeser’s
paper of 1981 on the epistemological obstacles relative to negative numbers,
Brousseau summed up Glaeser’s approach, and then pointed to what he would
consider to be the more relevant questions:

This formulation shows what failed Diophantus or Stevin, seen from our time and our
current system. We thus spot some knowledge or possibility which failed 16th century
authors and prevented them from giving the “right” solution or the proper formulation. But
this formulation9 hides the necessity to understand by what means people tackled the
problems which would have required the handling of isolated negative quantities. Were
such problems investigated? How were they solved? (…) What we now see as a difficulty,
how was it considered at the time? Why did this “state of knowledge” seem adequate;
relative to what set of questions was it reasonably efficient? What were the advantages of
this “refusal” to handle isolated negative quantities, or what drawbacks did it help avoid?
Was this state stable? Why were the attempts at changing it doomed to fail, at that time?
Maybe until some new conditions emerge and, some “side” work be done, but which one?
These questions are necessary for an in-depth understanding of the construction of
knowledge [pour entrer dans l’intimité de la construction de la connaissance] (…).10

In both lists, we can see that a focus on agency does not mean that the object of
study is a freely creative cognitive agent. Quite the contrary: agents are born in a
world which preexists and constrains11 their actions. When it comes to mathe-
matical activity, constraints come from a great variety of sources, ranging from the
material environment (a Chinese abacus is not an electronic calculator) to epistemic
values (such as rigour, generality, simplicity, accuracy, applicability) and epistemic
categories (such as definition, justification, proof, example, algorithm,
analysis/synthesis, principle). The historical contingency of these constraints does
not imply that they have no a-historical components, be they mathematical prop-
erties (a rule such as “minus times minus equals minus” is not compatible with

9“formulation” denoting Glaeser’s analysis.
10Quoted in Artigue (1990, p. 252) Trans RC. Our emphasis.
11The word “constraint” should not be taken negatively: depending on viewpoints, such an
“element of context” can prove to be both a hindrance and a source of opportunities.
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distributivity of × over +) or semiotic properties (an algebraic shorthand with no
parentheses—such as Cardano’s—has different properties from Bombelli’s).
Making historical sense of how actors engage with mathematics involves under-
standing how they act within a given set of constraints, what meaning they give to
their actions, and in what respect these actions alter the system of constraints.

8.2.3 An Example

Let us now flesh out this notion of agent-based approach—this focus on mathe-
matical agency—from another angle. We will use the diagram below (see Fig. 8.1)
to illustrate several methodological points.

The very same diagram (Fig. 8.1) appears in two of the most influential works in
the history of mathematics: Euclid’s Elements and Descartes’ La Géométrie. One
could argue that not only the diagram is the same, but also the mathematical content
is the same; however, the parts these diagrams play in both works are strikingly
different.

In Euclid’s Elements12 (ca. 300 BCE), this diagram comes with proposition 14
of book II, a proposition which solves the following construction problem: to
construct a square equal (in area) to a given rectangle. If the sides of the rectangle
are equal (in length) to FG and GH, then the perpendicular IG is the side of the
sought-after square, which Euclid proves using proposition 47 of book I (which we
call Pythagoras’ theorem13). At the end of book I, a series of propositions estab-
lished that, for any given polygon, a rectangle with the same area could be con-
structed (with ruler and compass only), hence proposition 14 provides the final
positive solution to the problem of quadrature of polygons (i.e., to transform any
polygonal area into a square). In turn, this fact implies that—at least for polygons—
area is a well behaved magnitude: areas can be compared (since square areas can)
and added (since the Pythagorean construction provides a means to add square
areas). On this basis, a modern reader would conclude that a theory of measure is
possible for polygonal areas; the modern reader also knows that this requires the set
of real numbers. Euclid was well aware of the fact that the theory of well-behaved
geometrical magnitude (even line-segments, for which comparison and addition are
straightforward) requires more than natural numbers and their ratios. The solution
he presented in book V is a number-free solution, based on the notion of ratio of
magnitudes and not of measure. The positive result of II.14 also points to open

12Heath (1908) provides a convenient edition which is available online. For a recent critical
edition, see Euclide (1990–2001).
13Another proof is given by Euclid in proposition 8 of book VI. This proof rests on the notion of
similar triangles: in modern notations, IGF, IGH and IFH being similar, FG

GI ¼ GI
GH, hence

GI2 ¼ FG� GH. But the notion of similarity is introduced in book VI, since it depends on the
theory of ratios from book V.
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questions in the theory of magnitudes, in particular the extension of the theory
beyond the case of polygons (the case of the circle being of prime importance).

The same diagram (Fig. 8.1) appears on the second page of Descartes’ La
Geométrie (163714). Along with another diagram (Fig. 8.2), he aims to define
operations on segments15; operations for which he would use the same names as for
arithmetical operations. In Fig. 8.2, if AB denotes a unit segment, then BE will be
called the “product” of segments BC and BD.

In Fig. 8.1, if FG is the unit segment, then IG will be called the “square root” of
GH. Descartes then adds that he would not only use the same names as those of
arithmetical operations, but that he would also resort to the same signs as in algebra:
letters for segments (known or unknown), and symbols such as × and √ for the
above mentioned constructions. The project was to use the means of algebra
(rewriting rules, elimination in simultaneous equations, identification in polynomial
equalities, method of indeterminate coefficients) to capture and analyse geometrical
relations between segments; among such relations, those expressed by one equation
in two unknowns capture plane curves.16

This specific Cartesian project is quite different both from Euclid’s, and from
what we call either algebra or coordinate geometry. In the Elements, proposition
II.14 solved an area problem; in terms of magnitudes, considering two
line-segments could lead either to a new segment (by concatenation, which can be
seen as a form of addition), or to an area (that of a rectangle, which can be seen as a
form of multiplication), or to a ratio (which is not a geometrical entity, but not a
number either). On the contrary, Descartes uses elementary constructions (with an

Fig. 8.1 First diagram from
Descartes’ Geometry

Fig. 8.2 Second diagram
from Descartes’ Geometry

14See, for instance, Descartes (1954).
15“segments” as magnitudes; location is irrelevant.
16Not all plane curves, but this is another issue.
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ad hoc unit segment) to define operations such as “times”, “divide” or “root” as
internal operations within the domain of segments; this enables him to make free
use of algebraic symbolism while warranting geometrical interpretability.17 This
system, however, involves no global coordinate system; it does not even involve
coordinates, if by coordinates we mean (real) numbers, since no such numbers play
any part in the system.18

The fact that Descartes’ system is an algebra of segments has other far-reaching
consequences. Let us mention one of general epistemological importance. At first,
when we read in La Géometrie (Descartes 1954, p. 303) that the solution of
equation z2 ¼ azþ b2 (z being unknown, a and b known) can be expressed by

z ¼ 1
2
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
aaþ bb

r
;

we feel we are on familiar ground. However, we need to recall that this formula is
not a symbolic summary for a list of arithmetical operation on numbers, but is a
symbolic summary for a geometrical construction program; a ruler-and-compass
construction program which involves two concatenations, two multiplications
(Fig. 8.2), the construction of a “square-root” segment (Fig. 8.1), and three mid-
points. This, in turn, means that the algebraic manipulation of formulae and
equations deals with the transformation and comparison of geometric construction
programs. Here, the comparison with Al-Khwarizmi (ca 820 CE) is striking:

Roots and numbers equal to squares; for instance, if you say: three roots and four in
numbers are equal to one square.

Procedure: halve the number of roots, you get one and one half; multiply it by itself, you
get two and one quarter; add four, you get six and one quarter; work out the root, which is
two and one half; add half the number of roots – that is one and one half – you get four,
which is the root of the square; and the square is sixteen. (Rashed 2007, p. 106). (Trans.
RC).

With its purely rhetorical algebra and its use of generic examples,
Al-Khwarizmi’s text may look less familiar than Descartes’ formula. However, it
presents a bona fide list of operations which enables one to solve an equation, in a
numerical context. In the rhetorical context, algorithms are easy to express, but not
so easy to compare, transform and calculate upon.19 One of the properties of

17In a more traditional interpretation, if a and b denoted a segment, then a4 had no geometrical
interpretation (unless you are willing to work with hypervolumes of four dimensions!), nor had
formula aa + b (areas and segments cannot be added; a standard way out of this predicament is to
introduce a unit segment, and replace aa + b by the homogeneous aa + b.1).
18One could argue that whole numbers, and even positive rational numbers are implicitly present,
since concatenation warrants the existence of n-uples of a segment, and divisibility by the n-uple of
the unit segment warrants the existence of the n-th part of any segment.
19For an in-depth analysis of meta-level practices in a rhetorical/algorithmic context, we refer the
reader to Karine Chemla’s work on Ancient Chinese mathematics. For instance, Chemla and
Shuchun (2004), in particular pp. 21–34, and pp. 36–39.
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Descartes’ system is that its symbolic algebra allows for calculation to operate on
algorithms; the fact that the basic steps of the algorithms involved are ruler and
compass constructions and not numerical operations is irrelevant, and testifies to the
meta-level function of symbolic algebra.

This interplay between the familiar and the not-so-familiar (yet understandable)
may feel disorienting at first, but this disorienting effect is positive, as Artigue
stressed. It has a critical function, helping the researcher to distance him or herself
from his/her own mathematical culture20; and a heuristic function, suggesting new
viewpoints on seemingly familiar notions, for instance, the role of symbolism in
algebra, or the role of real numbers in geometry (as measures and as coordinates).
At least two other functions can be mentioned. First, it helps identify problems to
which there are no straightforward answers, for instance, what should we consider
to be the geometrical analogue of numerical multiplication, at least for
one-dimensional objects? In particular, should the analogue of the product be
one-dimensional or two-dimensional? A long series of different–yet mathematically
sound—constructions provides different answers to this question, including
dimension-changing solutions (going down with the dot product, or up with the
exterior product). Secondly, it helps question the notion of identity. It could be
argued that, from a purely mathematical point of view, Euclid and Descartes rely on
the same content associated with Fig. 8.1; this probably makes sense, but is not
necessarily very helpful, either to the historian or to the ME researcher. Indeed,
researchers in both fields aim to analyse how content depends on, for instance,
semiotic resources, or intended use.

To conclude this example from Euclid-Descartes, we would like to explain why
we chose such an example. On the one hand, the example is relatively small scale;
we did not need to include it in any large-scale narrative on the “stages” in the
history of geometry for this sketchy comparison to serve the four functions listed
above of epistemological inquiry. On an even smaller scale, the comparison with a
short passage of Al-Khwarizmi could play a relevant part even with no background
“big picture” on the history of algebra, or even on the Kitāb al-Jabr wa-al-
muqābala. On the other hand, to compare the uses of the same diagram required
that its role in the whole structure of the works (the Elements and La Géométrie) be
analysed. It requires some knowledge of history to make sense of highly sophis-
ticated but largely forgotten theoretical constructs such as the classical theory of
ratios or the 17th century research program of construction of equations. This
knowledge cannot derive from a quick look at short extracts from the original
sources, and probably not even from a lengthy examination of the complete books;
here, we depend on secondary sources and the work of professional historians such
as Bernard Vitrac (Euclide 1990–2001) for Euclid and Bos (2001) for Descartes.

20“A un premier niveau, l’analyse épistémologique est, me semble-t-il, nécessaire au didacticien
pour l’aider à mettre à distance et sous contrôle les ‘représentations épistémologiques’ des
mathématiques induites par l’enseignement” (Artigue 1990, p. 243).
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8.2.4 Solving Puzzles, Crafting Puzzles

We would now like to illustrate the puzzle-solving side of research in HM, by
giving short descriptions of a selection of recent works in that field. We also wish to
illustrate, with six examples, the difference between a naïve question and a research
question. Indeed, it is natural to begin with a naïve question, and curiosity is the first
driver in all fields of inquiry; however, delineating a specific question, on the basis
of available documents and of the state of research (historiography) is a key stage
when practicing research-level historical investigation. Since this sample is not a
survey, we can also proceed chronologically.

Example 1 Contrasting rational reconstructions: In Proust (2012), the author
studies the algorithm displayed in paleo-Babylonian tablets when working out the
reciprocals of large numbers in the sexagesimal system. The clay tablets display
instances of calculations, but no general descriptions of the method (much less any
justifications), which is why historians endeavour to come up with reconstructions
of the algorithm. A pioneer in the history of Babylonian mathematics, Otto
Neugebauer (1899–1990) reconstructed an algorithm on the basis of a few tablets-
an algorithm which required that additions be used along the way. However, in the
floating point sexagesimal number system, and in the purely numerical context of
these tablets, addition is not possible (whereas products and reciprocals make
perfect sense). On the basis of a much larger sample of tablets, Proust reconstructed
a different algorithm, one which is fully compatible with a floating point arithmetic.

Example 2 Re-problematising familiar practices: In his now classic work, The
Shaping of Deduction in Greek Mathematics, Netz (1999) attempted to
re-historicise the endeavours of the Greek mathematicians of the classical and
Hellenistic periods, with the aim of helping us to question many things we take for
granted. This is difficult for at least two reasons: first, some of the basic elements of
practice displayed in these texts—in particular, the practice of discussing lettered
diagrams using only explicit axioms and formerly established results—is so familiar
to us that we cannot imagine how a few men strove to establish this specific cultural
form based on the background of other cultural activities; and second, because we
feel we know that mathematics was a central intellectual activity in these periods, as
many texts from Plato and Aristotle seem to indicate. Netz established that this was
not the case, and discussed why Plato and Aristotle distorted our perception of
historical realities. In a stimulating review of this erudite book, Latour (2008)
emphasised the extent to which it echoed central methodological trends in the social
history of science.

Example 3 Describing a reception as a form of hybridation: The question of the
circulation of mathematics between different cultural areas—and not only different
periods—is also a central field of investigation. For instance, in a paper published in
1996, Karine Chemla discussed the introduction of “western” mathematics in 17th
century China by Jesuit missionaries. It was usually thought that, in this period, the
indigenous Chinese tradition of mathematics was to a large extent forgotten in
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China, and that western mathematics had been adopted passively. Actually,
studying the Chinese sources leads to a more nuanced picture. In particular, when
Jesuit Matteo Ricci and Chinese scholar Li Zhizao collaborated to write a treatise of
arithmetic based on Clavius’ Epitome arithmeticae, they ended up with much more
than a translation: Li added many elements from the indigenous tradition, in par-
ticular the fangcheng algorithm to solve simultaneous linear equations.21 This work
of synthesis did not stir interest in the West; in China, however, the introduction of
western mathematics revived scholarly interest in classical Chinese mathematics
and triggered comparative studies of both traditions.

Example 4 Renewing our understanding of a crucial step in the development
of mathematics: Our image of the beginning of calculus was significantly altered in
the 1990s by the publication of a hitherto little-studied Leibnizian manuscript
(Knobloch 1993). Until then, our understanding of the calculus according to
Leibniz was based on miscellaneous short texts (tracts, letters), in which few
attempts at justification were given. It was generally thought that even though
Leibniz claimed that his calculus could be justified by the rigorous methods of the
Ancients, he actually relied on infinitesimals (which, he admitted, were only “useful
fictions”). With the De quadratura arithmetica, which was written before the
invention of his calculus, Leibniz wrote a long treatise, in a deductive style which
both emulated and improved the exhaustion proof-scheme in a way that, were it to
be reformulated in a symbolic and numerical context, would be closer to the current
ε-δ proofs than those of the Ancients. Moreover, the term “fiction” was already used
in this context, to denote abbreviations for calculations dealing only with finite
quantities.

Example 5 Unravelling a forgotten branch of mathematical analysis: It is
well-known that for the founders of calculus, the prime goal was the study of curves
defined by ordinary differential equations, in a geometrical or physical context. Pen
and paper, and formulaic solutions were not the whole story, as was demonstrated
by the deep and original work of Dominique Tournès (following the work of Henk
Bos). Tournès (2003) studied the intense work on graphical methods and graphing
devices carried out from the very beginning (for example, Leibniz, Newton, Jean
Bernoulli, Euler), up until the advent of digital instruments in the second half of the
20th century. This work brings to light a great wealth of largely forgotten mathe-
matical ideas and techniques, shows the continuity between the algebraic research
program on the “construction of equations” (as in Descartes) and the late-17th and
18th century researches on ODEs, and documents the deep connections between the
most theoretical considerations on the one hand, and the demand for approximation
methods (be they graphical, mechanical or numerical) in the engineering commu-
nities on the other hand. Since 2003, Tournès furthered his work on integration

21Similar to Gaussian elimination.
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instruments,22 and headed a collective research program on the mathematical and
professional contexts of numerical calculation.23

Example 6 Studying the emergence of a meta level articulation: In the didactics
of analysis, it is customary to distinguish between point-wise, local and global
properties of functions. The distinction between “local” and “global” is now widely
accepted in the scholarly mathematical world, but it was not always the case.
Studying the emergence of an explicit local-global articulation is tricky for a
number of reasons. It concerns more or less all mathematics24; the meta level terms
“local” and “global” have definitions which differ in every specific mathematical
context—actually they can be used with no definitions at all. Moreover, the
question of the explicit is crucial. When, at the turn of the 20th century, some
mathematicians began to explicitly express such a distinction, was the general
context one in which it was clear to everyone that this mattered (though it went
without saying), or one in which no clear distinction was made between local and
global statements, resulting in a wealth of faulty proofs and ambiguously-worded
theorems? These questions were addressed in Chorlay (2011), who provided
answers based on a combination of quantitative and qualitative methods.

This short list of examples illustrates how historians endeavour to design
non-trivial questions, the means they use to answer these questions, and the kind of
answers they tend to consider relevant and innovative. Although historians provide
a great wealth of material that is of prime interest in MER, they do not usually
provide this material in a form which directly meets the needs of the MER
community.

8.3 Methodological Discussion of Some Classical Works

In the second part of this chapter, we would like to review several papers from the
didactics of mathematics and the sciences which explicitly carried out epistemo-
logical investigations in the sense of Artigue. Our primary goal is methodological:
we will present only a brief selection of papers in order to discuss concepts such as
obstacles, aspects of a concept, stages and didactical reconstruction.

22An exhibition of integration instruments was organised at the Paris Museum of Technology
(CNAM): http://culturemath.ens.fr/histoire%20des%20maths/htm/expo_aire/expo_aire.htm.
23For more information, see http://www.sphere.univ-paris-diderot.fr/spip.php?rubrique64.
24Indeed, analysis and geometry are not the only fields concerned. In the 1920s, H. Hasse
introduced the so-called “local-global” principle in number theory; “local algebra” is a branch of
commutative algebra, etc.

166 R. Chorlay and C. de Hosson

http://culturemath.ens.fr/histoire%2520des%2520maths/htm/expo_aire/expo_aire.htm
http://www.sphere.univ-paris-diderot.fr/spip.php%3frubrique64


8.3.1 Epistemological Obstacles

In a paper published in 1990, Artigue discussed in detail two studies which aimed
to investigate epistemological obstacles in the sense of Brousseau25: Glaeser’s
(1981) paper on negative numbers, and Sierpinska’s (1985) paper on limits. We will
focus on the second paper, so as to summarise and further Artigue’s methodological
analysis.

8.3.1.1 One Example in Analysis

Sierpinska’s paper is divided into two very different parts. The first part describes
and analyses two classroom experiments, which included high school students who
had received no prior teaching on limits or the derivative. In both situations, the
students had to determine the tangent to a given curve at a given point, on the basis
of a loose, intuitive and non-verbal description of the sought-after object. As
Sierpinska points out, in contemporary mathematics, the notion of limit is the
relevant tool for performing this task. Hence, by focusing on what students do and
say (when trying to describe and justify what they do), she aims to capture what
their conception of a limit is; to discover to what extent it differs from the current
formal definition; and to reveal what obstacles stand in the students’ way when
trying to pass from naïve and context-dependent conceptions to efficient general
procedures and proto-definitions (définitions opératoires).

In the second part of the paper, Sierpinska turns to the history of mathematics to
establish the epistemological natures of the obstacles that were identified:

If a given behaviour manifests itself in history just as it does with today’s students, then we
are justified in regarding it as a specific feature of the development of the given concept, as
opposed to an effect of teaching conditions. (Sierpinska 1985 8), (Trans. RC)

On the basis of two surveys on the history of mathematics, Sierpinska (1985,
p. 38) lists and classifies “obstacles” in the history of mathematics, as the Fig. 8.3
shows.

Artigue summarises Sierpinska’s list of obstacles (adapted from Artigue 1990,
p. 253):

• Horror infinity26 brings together the obstacles which stem from the refusal to
consider passing to the limit as an operation; those stemming from an automatic
use of algebraic methods designed for the handling of finite quantities to the case
of infinite quantities; those consisting in transferring all properties of the terms of

25Brousseau’s concept was derived from Bachelard’s historical epistemology.
26Sierpinska (1985, p. 39) uses Cantor’s phrase to bring together what, to her, stems from the
refusal to consider the actual infinite.

8 History of Science, Epistemology … 167



a convergent sequence to its limit27; and eventually those obstacles which consist
of regarding the passage to the limit as a physical movement, or a way of coming
ever closer.

• Obstacles related to the notion of function include failure to identify the
underlying functions; restriction to a sequence; monotonous reduction28; failure
to distinguish between limits and upper/lower bounds.

• Geometric obstacles: geometric intuition generates serious obstacles which
stand in the way of the formulation of a rigorous definition, both by preventing
the determination of what is to be taken to be the difference/distance between
two geometric magnitudes, and by conflating the notion of limit with that of
point in the closure of a subset.

• Logical obstacles reflect the failure to use quantification, or to take into account
the order of quantifiers.

• The obstacle of the symbol reflects the reluctance to coin a specific symbol (such
as lim

...
. . .) for the operation “passing to the limit”.

Fig. 8.3 Sierpinska’s classification of epistemological obstacles regarding limits

27Including sequences of functions. For instance, when assuming that the limit of a sequence of
continuous functions is continuous.
28This denotes the implicit assumption that a converging sequence is monotonous, at least from a
certain rank onward.
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Before we list what we take to be structural methodological shortcomings in this
paper, it is only fair to underline several of its most positive features. The paper has
a heuristic value, and indeed, several of the problems it points out have become
central in the didactics of analysis29: such as the inadequacy of everyday language
to capture the fundamental concepts of analysis; complicated and deceiving con-
nections between limit-positions of geometric objects, limits of associated magni-
tudes, and limits of associated numerical functions; sequential reduction and
monotonous reduction; implicit transfer of calculation rules and of properties from
the finite to the infinite, or from a converging sequence to its limits; and the need, at
some point in the curriculum, to regard a numerical sequence or a numerical
function as one object and not only as a collection of numbers. Also, as is often
noted, the didactics (and the teaching) of analysis is particularly thorny because of
the entanglement of all the basic concepts (limit, derivative, integral, function, the
real continuum); hence, the difficulty in designing experimental situations which are
rich and open-ended enough to yield interesting data, yet not so rich and
open-ended that all possible problems crop up and interfere. Finally, we are not
aware of any well-established theoretical framework (or even reasonably
sea-worthy set of conceptual tools) adapted to the description and analysis of
epistemological obstacles. In this respect, Sierpinska’s paper both points to a
problem of general significance for MER, and offers a stimulating proposal.

8.3.1.2 Focusing on “Obstacles” in MER

As Artigue pointed out, the notion of “epistemological obstacle” may not be the
best conceptual tool to describe the wealth of phenomena captured here, both in the
classroom experiments and in the historical literature. Here, we first focus on
the purely didactical aspects.

For Brousseau, an obstacle (be it didactic or epistemological30) is an element of
knowledge (either explicit or “in act”) which proves valid and efficient in some
contexts, but becomes systematically error-generating in other contexts. A standard
example is that of the comparison of decimal numbers: some rules which are valid
and efficient for natural numbers (for instance, the more digits it takes to write a
number, the larger the number) become invalid and error-generating when applied
with decimals (it takes three digits to write 1,23 and only two to write 1,3; but
1,23 < 1,3). An obstacle is epistemological if it depends on mathematical facts only,
regardless of teaching paths. When confronted with an error-generating
in-act-theorem, it is not always easy to tell whether it is epistemological or

29In particular, we refer the reader to the papers of Bernard Cornu, Aline Robert and Maggy
Schneider.
30We will not discuss ontogenetic obstacles. For a further discussion of the concept of obstacle, we
recommend (Duroux 1983, 52–54).
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didactic; Brousseau suggested that a distinctive feature of epistemological obstacles
was their presence in mathematics of the past.

In the classroom experiments, students face several challenges: changing reg-
isters or frames (from the graphical to the numerical); experiencing the inadequacy
of the expressive resources available to them (everyday language, body motion,
basic symbolic algebra); hitting upon a paradoxical core (division by zero yielding a
finite result, straight line defined by two points which overlap); and regarding a
process/procedure as an object/concept (the notion of procept would later be
designed to describe this phenomenon). The fact that, when confronted with these
challenges, students do not come anywhere close to an ε-δ definition of the
derivative as limit of the differential quotient probably does not qualify as an error.

A difference between a statement and a reference statement (say, a given formal
definition) may be telling without pointing to any difficulty, misconception or error.
Some differences may indicate difficulties, but not all difficulties are errors. All
errors do not derive from epistemological obstacles. The epistemological character
of some obstacles is not always easy to ascertain; and, more often than not, the
history of mathematics may not be useful or even necessary to ascertain it.

To substantiate the last statement, let us mention the case of the “natural
numbers/decimals” obstacle, which is clearly (partly) epistemological but with no
significant historical basis. The same holds for a well-documented error-generating
belief, namely, all the magnitudes associated with a given class of objects vary in
the same way: for instance, a polygon has a length and an area; but it is not true that
when the length increases, the area always increases as well. This error-generating
belief is probably epistemological insofar as reveals some aspect of the acts of
knowing and forecasting, independently of teaching paths and curricula. As Artigue
(1990, p. 261) stressed, it is reminiscent of Bachelard’s original notion of episte-
mological obstacle in physics, and points to a larger class of obstacle-generating
features of the understanding process. As such, instances of errors ascribable to this
infelicitous thought-process may very well be found in historical texts. If some
were, they would probably not be indicative of any global dynamic of the devel-
opment of mathematical thought; and if none were found in history, it would not
make this error-generating belief any less important in mathematics education.

8.3.1.3 Do “Obstacles” Help Us to Make Sense of History?

The notion of “obstacle” is probably not the best conceptual tool to make sense of
the historical data collected either. Here we spell out several arguments, and suggest
alternative investigative paths.

First of all, this notion depends on that of error. Writing, for instance, that
Archimedes failed to consider “passing to the limit” as an operation, and avoided
the use of the actual infinite which (Sierpinska claims) is a core element of the
Weierstrassian ε-δ definition of a limit, seems slightly disrespectful and highly
questionable (respectively). Archimedes’ proofs by exhaustion may be written in a
style differing from the current standards in the first year of tertiary education; it
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does not make them mathematically incorrect, and does not testify to any cognitive
shortcoming. Whether or not passing to the limit is an “operation” (and has to be
seen this way) seems debatable; so is the assertion to the effect that the ε-δ defi-
nition of limits depends on the actual infinite. As to the last point, one could argue
that the ε-δ definition is actually very close to the Archimedian proof-scheme. For
instance, to establish that two areas are equal, Archimedes proves that this differ-
ence is less than any given area. To establish this, he relies on a fact which is made
explicit in Euclid’s Elements, and warrants convergence to zero for a class of
sequences of magnitudes.31 As to Weierstrass, many of his contemporaries regarded
his construction of the real numbers and his definition of the limit as a major step
toward the reduction of analysis to arithmetic, and the subsequent elimination of
infinites. When comparing proofs by exhaustion with the current Weierstrassian
definition, their fundamental similarity raises a series of potentially fruitful ques-
tions: what is the difference between a uniform, formal32 proof-scheme, and a
definition? What is the role of symbolic notations (the question is all the more tricky
since Weierstrass worked in a partly rhetorical context when discussing limits)?
Why was the Archimedian proof-scheme criticized in the 17th century, and how are
these criticisms related to the emergence of calculus?

As we mentioned earlier, all conceptual difficulties are not errors. The case of
negative numbers could also illustrate this point: from the middle of the 17th
century to the middle of the 19th century, some mathematicians, mathematics
educators and philosophers debated the meaning and legitimacy of isolated negative
numbers, and of the multiplication rule (Schubring 2005). This phenomenon was
quite independent from the fact that negative coefficients and the multiplication of
negatives had been used for centuries.33 The same holds for imaginary numbers or
calculus: at some points, their meaning and legitimacy were discussed in spite of the
consensus on how to use them. Two fruitful questions would be: what were the
arguments? Why were these issues controversial in some contexts and not in
others?34

31Proposition 1 of book X reads: “Two unequal magnitudes being set out, if from the greater there
be subtracted a magnitude greater than its half, and from that which is left a magnitude greater than
its half, and if this process be repeated continually, there will be left some magnitude which will be
less than the lesser magnitude set out” (Heath 1908, vol. 3, p. 14). In the context of real numbers, it
means that any positive sequence which is bounded above by a geometric sequence with common
ratio ½ tends to zero.
32“Formal” does not necessarily mean “symbolic”. Historians of ancient Greek mathematics
convincingly argue that the rhetoric of mathematical texts is so constrained, and so distinct from an
ordinary use of the Greek language, that it can indeed be called “formal”. See, for instance, Netz
(1999).
33On negative coefficients and the rule of sign in ancient Chinese mathematics, see Chemla and
Schuchun (2004, pp. 606–609).
34For instance, D. Rabouin showed that the use of

ffiffiffiffiffiffiffi�1
p

in algebra was not controversial in the
late 16th and 17th centuries, but became controversial in the late 17th century. This is
unpublished work, unfortunately.

8 History of Science, Epistemology … 171



Gathering historical data to document differences between various statements
and a reference definition can also bring to light the multiplicity of aspects35 of a
given concept. For instance, in her paper, Artigue listed a number of aspects of the
notion of a tangent to a curve: such as straight-line such that no other straight-line
can be inserted between it and the curve (local convexity); straight-line defined by
two infinitely close points; and straight-line defined by the direction of the velocity
vector of any point gliding along the curve. These aspects are not mathematically
equivalent and from an epistemological viewpoint their ecology is different; they
target different classes of curves and of problems and the associated signifiers (be
they graphical, symbolic or rhetoric) are different. Similarly, historical investigation
(based on texts) and didactical investigations (based on live empirical data) could
go hand in hand; which does not mean they would be carried out along the same
line or with the same expected outcome. Firstly, because the didactical study
attempts to capture the total and personal cognitive structure of students associated
with a mathematical concept (such as Tall and Vinner’s concept image); while
historians study context-embedded rational actors, not cognitive subjects. Secondly,
historical texts usually display the mature and genre-dependent productions of
mathematical experts. It does not mean that all they say is correct, but it means they
usually make meta-level choices which reflect both a large overview of mathe-
matics, and the intended middle-scale structure of the text (such as letter, research
paper, treatise, textbook). For instance, it is true that reading the first lesson of
Lagrange’s Théorie des fonctions analytiques (first published in 1797) shows a
specific definition of the derivative: if f(x) denotes of function of variable x, then
substituting x + i for x (i being an indeterminate quantity) gives rise to a devel-
opment of the form

f xþ ið Þ ¼ f xð Þþ ipþ i2qþ � � �

where p is a function of x only; function p will be called the derivative of f, denoted
by f 0 xð Þ (we are paraphrasing) (Lagrange 1867, p. 21). However, the complete title
of the book shows that this is a choice: Théorie des fonctions analytiques, contenant
les principes du calcul différentiel, dégagés de toutes considérations d’infiniment
petits, d’évanouissants, de limites36 et de fluxions, et réduits à l’analyse algébrique
des quantités finies. In the introduction, Lagrange (1867, trans. RC, p. 16) even
discussed the definition of the derivative as the limit of the differential quotient:
“One has to acknowledge that this idea, in spite of being right in itself, is not clear
enough to serve as principle for a science whose certainty must be founded on
evidence, and most of all, not clear enough to be presented to beginners” . To make
sense of this statement would require that the meaning of “limit”, “algebraic

35For a discussion of the possible meanings of the terms “conceptions”, “aspects” or “viewpoints”
(relative to a mathematical concept), see Artigue (1990, pp. 265–274). We will use the term
“aspect” to avoid the more cognitive and personal connotation of “conception”.
36The underlining is ours.
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analysis”, “principle” and “evidence” be investigated. Since his definition depends
on a theorem on the existence of power-series expansions for functions, Lagrange
established in a later chapter that this expansion holds “generally”; to make sense of
the latter statement would require that the meaning of the terms “function” and
“general” be investigated. Finally, Lagrange also engages in proofs in which the
limit-definition of the derivative is used in a ε-δ fashion (Chorlay 2013), demon-
strating his ability to switch between aspects when necessary. The fact that expert
mathematical thinkers (not necessarily mathematicians and not necessarily of the
past) exert meta-level control on a variety of representations is a well-identified key
to advanced mathematical thinking, as Artigue stressed (Artigue et al. 2007).

Finally, gathering historical documents is only one of the ways to document the
multiplicity of aspects making up a mathematical concept. In particular, studying
the avatars of the concept in various fields of contemporary mathematics can, to
some extent, serve a similar purpose. For instance, as far as the derivative is
concerned, differential geometry and algebraic geometry offer new vistas.37 The
standard differential geometric approach provides an extension of calculus in which
the primitive notion ramifies into several distinct notions (differentials, Lie
derivative, covariant derivative with respect to a connection), with different
invariance properties, each of them involving new spaces associated with the
original domain. From a dynamic and epistemological viewpoint, this testifies to a
process of conceptual differentiation rather than to a process of reduction to a
unique correct definition on the basis of formerly loose and partly faulty
proto-concepts. The algebraic geometric approach is further from the standard
calculus approach, since it relies neither on real numbers nor on notions of limit,
velocity or approximation. Extending the original multiplicity-of-intersection
approach to the derivative, the scheme version of algebraic geometry provides
rigorous notions of double point or infinitesimal thickening of a point (or even a
subvariety).

On the one hand, this multiplicity of viewpoints/aspects within mathematics (be
it contemporary or historical) for a given concept provides food for thought; on the
other hand, it raises methodological questions. As to the food-for-thought part, let
us mention two fields of investigation: first, the epistemological analysis of the
aspects (mathematical properties, ergonomic and semiotic properties) and of their
connections to other aspects of the same notion. Second, the study of the con-
nections between scholarly knowledge and school knowledge (as documented in
syllabi); the history of education, and the theory of didactic transposition provide
tools for the latter. As to the methodological issues, we will mention only one. For a
working mathematician endeavouring to give mathematical answers to mathemat-
ical questions, a given theoretical context provides a stable and unquestioned
framework including definitions, fundamental theorems and standard proof tech-
niques. For the researcher in mathematics education as well as for the historian of

37In her paper of 1990, Artigue mentioned non-standard analysis as an alternative rigorous the-
oretical context.
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mathematics, the very notion of a background reference mathematical theory is
problematic in a number of ways: which reference mathematical theory should be
chosen for a specific investigation? What is the role of the reference theory in the
didactical or historical investigation? Is a reference theory needed at all?

8.3.2 Large Scale Narratives: Episodes or Stages

We now proceed with our methodological discussion by presenting several papers
written by researchers in mathematics education and mathematics educators with a
sustained interest in the history of mathematics. This will enable us to discuss two
issues: the relevance of large scale narratives dealing with “stages” or “genesis”;
and the heuristic use of history in didactics.

In 2007, two papers published in the same issue of Educational Studies in
Mathematics suggested different ways of using a historical perspective to question
the teaching of algebra: Katz’s (2007) Stages in the history of algebra with
implications for teaching; and Syntax and meaning as sensuous, visual, historical
forms of algebraic thinking, by Puig and Radford (2007).

The abstract of the Katz paper reads:

In this article, we take a rapid journey through the history of algebra, noting the important
developments and reflecting on the importance of this history in the teaching of algebra in
secondary school or university. Frequently, algebra is considered to have three stages in its
historical development: the rhetorical stage, the syncopated stage, and the symbolic stage.
But besides these three stages of expressing algebraic ideas, there are four more conceptual
stages which have happened along side of these changes in expressions. These stages are
the geometric stage, where most of the concepts of algebra are geometric ones; the static
equation-solving stage, where the goal is to find numbers satisfying certain relationships;
the dynamic function stage, where motion seems to be an underlying idea, and finally, the
abstract stage, where mathematical structure plays the central role. The stages of algebra
are, of course not entirely disjoint from one another; there is always some overlap. We
discuss here high points of the development of these stages and reflect on the use of these
historical stages in the teaching of algebra. (Katz 2007, p. 185)

The distinction between a study of the semiotic aspects and the “conceptual”
aspects provides depth to the analysis by spanning a two-dimensional grid, and
suggests further investigations into the connections between both aspects. However,
whether or not Katz identifies “stages” in the history of “algebra” is questionable;
actually, the core of the paper is less schematic, displaying Katz’s historical culture
and sense of nuance. For instance, in regard to the “stage” aspect, Katz mentions
Al-Tusi’s (d. 1274) study of the number of solutions for a class of third-degree
equations in terms of the maximal value reached by what we would call the
left-hand side of the equation; this exemplifies a typically “functional” way of
thinking in an algebraic context, long before the 17th century. As to “algebra”:
whether or not the algorithmic solving of riddles bearing on width and area in
Babylonian clay tablets, or establishing a list of basic geometric identities as in
book II of the Elements, exemplify “algebraic” practices is highly questionable, and
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has been (and sometimes still is) hotly discussed in the historical community. Katz
is well aware of this fact and points out in the introduction of the paper that the term
“algebra” is not well-defined. Babylonian methods and Greek “geometric algebra”
may not be stages in the history of “algebra”; however it is necessary to study them
since they provide the necessary context to understanding something which clearly
belongs to the history of algebra, namely Al-Khwarizmi’s Kitab al-jabr.
Comparison is the key methodological tool, and what is specific in Al-Khwarizmi
can only be spelled out by comparing it to other mathematical practices; deciding
whether or not these practices are algebraic is a somewhat byzantine question.

More generally, setting out to identify “the stages” in the “development /his-
torical genesis” of a theory or concept is a methodologically risky endeavour, even
for careful thinkers who warn their readers against dubious analogies between
ontogeny and phylogeny, and abstain from drawing direct implications for teaching.
We’ve already mentioned two reasons: the use of a-historical categories (such as
“algebra”) to select and organise historical content on a very large scale raises
intrinsic methodological difficulties, and leads to simplifications which leave out all
that does not fit within the frame; but then, what are we to learn from a history
which is not the actual history? This delineation of homogeneous blocks also wipes
out the role of agents. For instance, in La Géométrie, Descartes presents a method
to determine the tangent to algebraic curves; however, his correspondence shows
that he also relies on ingenious kinematic arguments when studying non-algebraic
curves such as the cycloid.

There are two further difficulties. First, thinking in terms of “stages of devel-
opment” has a definite positivistic flavour: in this setting, the next stage replaces the
previous one; the fact that the next one comes after the former one is implicitly
taken to mean that it is better in some way, and this improvement is taken to be an
adequate explanation or cause for the historical change. Instead of using loaded
terms such as “stage”, lighter terms could probably be used, such as “aspects”,
“viewpoints” or “conceptual polarities”. What Katz convincingly points out is that
algebraic equations can be (and have been) considered from a static-numerical
viewpoint, or from a more dynamic-functional viewpoint. Viewpoints can coexist,
and their relative virtues may depend on circumstances. Moreover, if one becomes
obsolete at some point in time, its obsolescence can be studied as a historical
phenomenon: for whom does it become obsolete? Was the drive for change con-
ceptual, semiotic, instrumental or institutional? Was the change actively promoted
by some, or did things just fade away and die out? We do not mean to say that
loosely defined terms such as “aspect” or “polarities” are the only descriptive tools
which didactical analysis should use when attempting to derive relevant information
from the history of mathematics. Rather, we argue that starting the investigation
with a priori conceptual tools such as “stages” (and “obstacles”) not only leads to
many difficulties, it also hides a wealth of interesting phenomena. However, we do
not discuss here the conceptual tools relevant to later analysis of these phenomena
in a way which makes full use of what history can offer and provides relevance
from a mathematics education perspective.
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Second, more often than not, large scale narratives are implicitly expected to
cover all the stages. For instance, in his paper, Katz mentions a final structural
stage, in spite of the fact that it is not central to his argument and relies on a rather
dated view of the history of modern mathematics. Indeed, recent historical work has
greatly improved our understanding both of the history of algebra in the 19th and
early 20th centuries,38 and of the history of structuralism, both in algebra (Corry
2004) and in other branches of mathematics (Chorlay 2010).

The transition from rhetorical algebra to symbolic algebra is also the focal point
of Puig and Radford (2007). Their semiotic analysis focuses on the way meaning
was/is attached either to words or to symbols; and they point out the fact that the
connection between signs and what they represent is different when writing an
isolated equation, and when the equation is algebraically transformed to yield
solutions. On the basis of their knowledge of rhetorical and geometrically flavoured
algebraic practices (such as that of Al-Khwarizmi), Katz, Puig and Radford ques-
tion what they take to be the commonly held view that algebra grew from arith-
metic, and that it is only natural that school curricula should follow the same path.

The latest point illustrates what Artigue mentioned as one of the main roles of
historical knowledge for the researcher in mathematics education, namely to dis-
tance oneself from one’s own training-induced mathematical knowledge and image
of mathematics. The role of historical knowledge is used heuristically so as to
suggest new vistas, or to identify elusive articulations. This heuristic use bears on
epistemological moments rather than actual historical episodes, even if these
moments are suggested by historical texts and can be illustrated with
thought-provoking excerpts. As such, their heuristic value is not affected by the fact
that, for instance, Al-Khwarizmi’s practice is more multi-faceted when it comes to
the relationship between algebra, geometry and arithmetic. Indeed, in the Kitab al-
jabr, Al-Khwarizmi usually resorts to geometry to justify numerical algorithms.
However, on several occasions, for lack of a justification “by the (geometric) cause”
(al-‘illa), he resorts to justification “by the expression” (al-lafz) (Rashed 2007,
pp. 49–56). On several occasions, algebraic rewriting rules (in a rhetorical context)
are derived from the numerical algorithms in the Indian numerical system (base 10
positional system) which Al-Khwarizmi had introduced in his book, Hindu Art of
Reckoning.39 Just as well, when analysing the emergence of symbolic algebra in the
16th and early 17th centuries, a historian would probably feel the need to bring into
the picture elements which were central for mathematicians at that time, in par-
ticular, the distinction between analysis and synthesis, as well as the method of false
position (regula falsi).

A third way of making heuristic use of the history of mathematics over a long
time-scale is illustrated by Artigue and Deledicq’s text of 1992 on Quatre étapes
dans l’histoire des nombres complexes: quelques commentaires épistémologiques

38To learn more about recent works, a good starting point is Brechenmacher and Ehrhardt (2010).
39For instance, see Rashed (2007, pp. 122–124) for an example of what we would write
10þ xð Þ2¼ 100þ 20xþ x2.
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et didactiques. The authors study four groups of texts related to four stages in the
history of complex numbers: the use of new and uninterpreted operators in the
symbolic algorithms for solving 3rd degree equations in the Italian Renaissance; the
dispute over the logarithm of complex numbers, and the multivaluedness of the
measurement of angles at the beginning of the 18th century; the first geometric
representations of complex numbers at the turn of the 19th century; and the formal
algebraic constructions of complex numbers by Cauchy (as residue classes of real
polynomials modulo X2 þ 1) and Hamilton (C as R� R). The method of identifying
“stages”, “episodes” or “key moments” is clearly epistemological. Artigue and
Deledicq select four meaningful epistemological challenges (such as: to extend the
symbolic system in order to provide more uniform algorithms to solve some
equations), without aiming for a (questionable) comprehensive narrative in terms of
successive homogeneous stages. It so happens that, in the case of complex numbers,
these four epistemological challenges do correspond to well-delineated historical
contexts.40 Again, the fact that they include an episode such as the dispute over
complex logarithms—which played a significant role in history but does not clearly
correspond to a contemporary teaching issue—illustrates the “distancing ourselves
from what we think complex numbers are about” function of history; a function
which, as we mentioned earlier, knowledge of advanced contemporary mathematics
can serve just as well.

For each group of texts, Artigue and Deledicq explicitly distinguish between
three types of commentary: historical, epistemological, and didactical. They call
“epistemological” the comments which relate to the nature of mathematics or the
nature of the active engagement with mathematics, regardless of teaching contexts
and learning issues. In this case, the “didactical” comments do not relate directly to
teaching and learning issues, since the authors do not wish to draw quick conclu-
sions from the study of the action of mathematical “experts” such as Cardano
or Cauchy. Rather, the didactical comments relate to two different aspects:
the comparison between the historical situations/challenges and teaching
situations/challenges; and the conceptual tools which researchers in mathematics
education are familiar with when describing and analysing engagement with
mathematics in teaching contexts. For instance, after remarking that the formal
constructions of Cauchy and Hamilton used real numbers but took place before the
formal constructions of the set of real numbers, Artigue and Deledicq stress the
similarity with teaching contexts in which the order of the introduction of notions
differs from the purely deductive order. More often than not—and this is typical of

40The word “select”, and the fact that the criteria for selection are quite explicit, is of great
methodological importance. From a historical point of view, a study of the early 19th century
context would probably require that geometric calculations (vector and barycentric calculus) and
complex analysis be brought into the picture.
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a heuristic approach—the final output of the reflection is a series of questions rather
than answers, or the delineation of research projects.41

In this context, the distinction between an epistemological comment and a
didactical cannot be absolute. However, even when similar terms can be used in both
cases, a slight but definite difference in meaning remains. For instance, discussing (on
an epistemological level) the tool/object polarity leads to questions such as: when did
mathematicians consider that symbolic tools such as

ffiffiffiffiffiffiffi�1
p

challenged the notions of
number or magnitude?What were the relative roles of the geometric semantic and the
formal constructions in the passage from complex-numbers-as-tools to a new and
autonomous class of objects? In the didactical context, the dialectique outil/objet of
Régine Douady provides tool to analyse the function of a given concept in a given
teaching context, and to design teaching paths.

8.3.3 Epistemological Analysis of an Advanced Field:
Linear Algebra

In the 1990s, Jean-Luc Dorier’s dissertation and subsequent publications exemplify
the rare case in which both historical and didactical issues are studied at research
level, simultaneously. Dorier combined a clear methodological distinction between
the two fields of inquiry, and a long-run practice of co-problematisation.42

The topic of study was linear algebra and its teaching in the transition from
secondary to tertiary education. The starting point was a diagnosis of the didactical
system around 1990 in France, and its structural shortcomings. In higher-secondary
education, students dealt with free-moving vectors (defined either as translations, or
as equivalence classes of couples of points) in the context of Euclidean geometry.

41For instance: “Est-il possible de faire vivre dans le système didactique le processus analogique
de façon plus conforme au rôle qu’il joue dans l’activité scientifique, et si oui à quelles condi-
tions ? Il y a là encore un champ de questions auxquelles la didactique à l’heure actuelle
n’apporte pas de réponse satisfaisante” (Artigue and Deledicq 1992, p. 49).
42Dorier summarized his approach in his habilitation dissertation: “Notre position méthodologique
est finalement assez simple à résumer. Il s’agit de disposer, dans un premier temps, d’une analyse
historique de la genèse du savoir visé, établie de façon indépendante de l’analyse didactique, qui
est cependant l’origine et le but de la recherche. (…) l’analyse historique constitue une banque de
données que sous-tend déjà une réflexion épistémologique. Ce travail historique est en général
conduit de façon parallèle avec les premières analyses didactiques et peut s’appuyer pour une
part plus ou moins grande, sur des recherches déjà existantes. De cette confrontation initiale
ressortent les premières hypothèses didactiques, qui vont permettre d’éclairer certaines difficultés
d’enseignement ou d’apprentissage au niveau global. Il s’ensuit une deuxième analyse didactique
de ces difficultés visant à préciser et valider (ou invalider) les hypothèses. Ces analyses sont alors
confrontées à l’analyse historique dans une dialectique de nature épistémologique. Ce processus
se poursuit ainsi, permettant de mettre en place les éléments du dispositif expérimental, visant à
l’élaboration d’une genèse artificielle contrôlée par l’explicitation et la détermination des vari-
ables didactiques” (Dorier 2000b, p. 29).

178 R. Chorlay and C. de Hosson



These vectors differed from those used in physics (which are usually fixed), and
with their 3D-geometrical interpretation and their products (dot and cross), they
also differed strikingly from the elements of an abstract, axiomatically-defined,
vector space. As a result, the teaching of abstract linear algebra in the first year of
higher education usually combined a poorly-motivated abstract approach as far as
lessons were concerned (and those who tried to abstract the general structure from
the geometrical case faced foreseeable difficulties) and repetitive algorithmic tasks
as far as exercises were concerned; tasks for which the general theory was usually
not necessary, since a reasonable command of linear systems could usually solve
the problem.

Dorier endeavoured to both analyse the reasons for this state of affairs, and
design alternative teaching paths. In both cases, the analysis and the proposals were
based on his knowledge of history; however, the analysis and the proposals do not
derive directly from history, for at least two reasons. First, there is no such thing as
the history of linear algebra, and the problem of delineation of the object of study is
a purely historical problem. Second, because of the heterogeneity of the two fields
of research, Dorier selected what he considered to be key episodes in the history of
mathematics, analysed them from both a historical and epistemological viewpoint,
and used these studies as raw material for his didactical reflection. This didactical
reflection combined other elements, both theoretical and empirical.

A key episode took place in the inter-war period, with the formulation and
(partial) adoption in the mathematical community of axiomatic algebraic structures:

This final step has its roots in the late nineteenth century, but only really started after 1920.
It corresponds to the axiomatization of linear algebra, that is to say the reconstruction, with
the concepts and tools of a new axiomatic central theory, of what used to be operative (but
not explicitly theorized or unified) methods for solving linear problems. It is important to
realize that axiomatization did not, in itself, allow mathematicians to solve new problems,
but it gave them a more universal approach and language to be used in many varied
contexts (functional analysis, quadratic forms, arithmetic, geometry …). In fact, the theory
of determinants, which was very prosperous in the first half of the nineteenth century, is
sufficient to solve all linear problems in finite dimension. (Dorier 1995, p. 176)

This epistemological reading of a historical episode paves the way for didactical
analysis. Contrary to many concepts taught at primary and secondary levels, the
concepts of abstract linear algebra do not primarily fulfil a problem solving func-
tion; rather, they serve formalising, unifying and generalising purposes (FUG
concepts43). This specific connection between new concepts and more familiar
elements of knowledge create specific teaching challenges: painstakingly designed
problem-solving situations will probably not be adequate; and abstracting, unifying
and formalising on the basis of analogies between many different specific fields is
probably not a feasible teaching path. For FUG concepts, alternative teaching
strategies can be based on using reflective analysis with students, carried out at a
meta level:

43We refer the reader to the references in Dorier (1995) for the concepts developed by Robert,
Robinet and Rogalski.
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My hypothesis, based on the epistemological analysis presented above, is:
students have to anticipate the power of generalization due to the use of vector spaces.
In this sense, I tried to build a teaching sequence which introduces the learner to a con-
densed form of reflective analysis, which has been proved to be one of the fundamental
stages in the genesis of unifying and generalizing concepts. (…) The sequence, built on the
basis of an epistemological analysis, creates an artificial context, which motivates the
explicitation of the vector space axioms by the students themselves. (Dorier 1995, p. 186)

The adjective “artificial” testifies to the fact that this is not a rediscovery
approach. Of course, both the challenge (teaching a FUG concept) and the design
(enabling students to reflect on the properties of the mathematics they are dealing
with) are pretty specific to late-secondary and tertiary education. However, they are
not specific to abstract algebra, as Robert’s work on the notion of limit shows.

A different historical investigation was motivated by didactical and epistemo-
logical reasons. Starting from the hypothesis that a key concept for learners was that
of linear dependence (and its avatars: dimension, rank of a family of vectors, rank
of a linear system of equations), Dorier investigated historical episodes of explicit
formulations of similar concepts; as mentioned above, mathematicians were
familiar with properties of linear dependence long before they were integrated into
the abstract-algebraic theory of vector spaces, and had efficient tools to deal with
linear problems. Without attempting to cover everything even barely related to
linear-thinking, Dorier focused on the work of several authors, in particular Euler
(1707–1783), Grassmann (1809–1877) and Frobenius (1849–1917). His in-context
then comparative studies enabled him to make out several (mathematically equiv-
alent) viewpoints on linear dependence, thus providing epistemological depth to the
mathematical concept, and to identify conditions for the formulation of a more
abstract and context-independent notion of linear dependence.

In his paper on Cramer’s paradox in the theory of algebraic curves, Euler
introduced a notion which Dorier christened “inclusive dependence”: in a linear
system,44 the equations are not independent if at least one of them is “included” in
the others, a phenomenon which manifests itself through an obstruction to the usual
elimination procedure. In his paper of 1875 on the Pfaff problem, Frobenius also
discussed linear systems, and the context is also elimination theory—although with
the central tool of determinants, which was not the case for Euler. In spite of these
similarities, the Frobenius paper explicates many fundamental notions which were
only implicit in Euler: the fact that the set of solutions is stable under linear
combinations; the fact that other systems of equations can be considered equivalent
to the first, in two different (but equivalent) ways: they have the same linear space
of solutions; and they consist of linear combinations of the first equations, satis-
fying certain conditions (we would now regard this as a change of basis for a

44Including systems with a non-null right-hand side.
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subspace of the dual space). The duality between coefficients for the equations45

and solution n-uples is brought to light, as is the relationship between the ranks
m and n-m of the two systems of n-uples. Leaving technicalities aside, we can say
that Frobenius formulated fairly general concepts by considering sets of solutions
and sets of equations, the properties and equivalent representations of such sets, and
a numerical characterisation of their “size” (the rank).

On the basis of the analysis we just outlined, Dorier designed a teaching module
in which the notions of linear dependence and independence were gradually for-
mulated in an ever more abstract way, starting from the context of linear equations.
Instead of determinant theory (which was the historical context), Dorier relied on
Gaussian elimination. At several points, meta level questions were discussed such
as generality of the procedure, invariance of the rank, and the relative virtues of
various proto-definitions of the concept of linear independence.

Of course, this summary does not do justice to a decade of investigations. In
particular, Dorier also studied the transposition process through which the abstract
algebraic structure of the 1930s was gradually divided and transformed into
teaching objects. In particular, he showed how the geometric vectors—whose
history is quite different from the one we just recapitulated—were brought into the
picture in the hope of paving the way for the abstract version. For a comprehensive
view of this work, see Dorier (2000a).

8.3.4 History of Physics and Physics Education Research

The following detour through physics may be surprising. Nevertheless it enables us
to discuss a new set of examples based on recent research which documents a
wealth of fruitful opportunities for interaction between the history of science and
science education research. This section of the chapter will also reflect the fact that
the two authors come from history of mathematics and physics education research
respectively.

8.3.4.1 “Obstacle” in Early Physics Education Research

This detour through physics education research echoes Artigue’s paper. She posi-
tioned her thinking on the concept of “epistemological obstacle” in the wake of

45For instance, with n = 3: consider the simultaneous equations
2xþ 3y� z ¼ 0
x� z ¼ 0

�
, the triples

(2,3,−1) and (1,0,−1) form a base of the space of equations with the same solutions (i.e., a
subspace of the dual space), and (−3, 1, −3) is one element of the solution space. { (2,3,−1) ,
(1,0,−1) } being a family of rank m = 2, the space of solution is of dimension 1 (i.e., 3 − 2). In
dimension 3, of course, a geometric interpretation is available: the space of solutions is the line
along which two intersecting planes in general position meet.
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results developed by early physics education researchers, particularly those of
Viennot (1979, 2001). In doing so, Artigue connects the concept of obstacle to
more generic reasoning that could explain recurrent mistakes or confusions pro-
duced by both novices and experts facing several physical situations or problems to
be solved. As an example, Artigue refers to the linear causal reasoning where
several variables changing simultaneously are considered one after another, inter-
acting in a chronological way (i.e., multiple variable relationships interpreted as
temporal relationships). This general trend of reasoning (generally incompatible
with rationality in physics) has been identified as a powerful obstacle “generator” in
several domains of physics (for example, electrokinectics, thermodynamics,
waves). Focusing on trends of reasoning, physics education research reactivated to
a certain extent the Bachelardian concept of “epistemological obstacle”. In the late
70s and early 80s, several physics education researchers sought to identify simi-
larities between historical ideas and students’ trends of reasoning.46 This orientation
very likely opened the way for a long-standing interest from physics education
researchers (and more generally from science education researchers) in the history
of science. Nevertheless, this interest has changed substantially. Indeed, the large
volume of research which has been carried out worldwide tends to promote the
history of science as a powerful science teaching (or training) tool, especially in
physics education.

Our intention is not to provide an exhaustive review of the aims and findings
produced by physics education researchers working on or with historical materials.
Instead, we address the issue of the choices that underlie the exploitation of the
history of science when used for educational aims. Indeed, specific educational
purposes may reflect specific and heuristic terms for using historical materials. In
this regard, the history of science is mainly used in order to: (1) address the learning
of a given concept (or law); and (2) improve students’ and/or teachers’ views on the
nature of physics (from both epistemological and social viewpoints). Even if these
two approaches are rarely exclusive from each other, researchers in physics edu-
cation often fail to provide an explicit justification for the choices which govern the
way they use, extract and organise the historical material in their work and studies.
In this last part of our chapter, our aim is to provide some guidelines or benchmarks
for a more explicit justification of the choices taken by physics education
researchers when using historical materials. These guidelines can also benefit
mathematics education researchers.

8.3.4.2 History of Science and the Learning of New Concepts

The above-mentioned approach promoted by Dorier can form a fruitful answer to
questions which inevitably underlie the elaboration of teaching-learning sequences

46The relevancy of such similarities has been discussed at length in the physics education research
community. See, for example, Saltiel and Viennot (1985).
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in physics involving the history of science. In our perspective, associating the history
of science and physics education consists in creating an “epistemological dialectic”
(Dorier 2000b, p. 10) between two inquiries: the first focuses on students’ reasoning
or conceptions concerning a given physical phenomenon; the second concentrates
on constructing knowledge in the historical context. This dialectic allows:
(1) specifying the didactic constraints shaping the teaching process; (2) extracting
the historical elements to be reorganised according to these constraints; and (3) en-
suring that these elements take place in the didactic system with the aim of favouring
the acquisition of a given knowledge by students. This last stage requires assuming a
specific reorganisation of the extracted historical elements. Such reorganisation takes
the form of a teaching-learning sequence designed on the basis of historical elements
and named “didactical reconstruction”. In a didactical reconstruction, historical and
an-historical elements are included and mixed up in order to address specific didactic
constraints (such as targeted knowledge, students’ current conceptions or reasoning,
visibility of the historical material, and the usual functioning of the class).47 The idea
is not to provide teachers or students directly with a history of science but to identify
learning levers from a specific historical inquiry involving first-hand written sour-
ces.48 These levers are articulated and completed with an-historical elements chosen
and organised according to specific educational and conceptual purposes.
Consequently, a didactical reconstruction is neither objective nor exhaustive but
appears constrained, as with any reconstruction project. Indeed, the historical ele-
ments retained by a physics education researcher, as well as the way he or she
chooses to organise them can lead to reconstructions that differ from those of his-
torians of science. Because the motivations are specific on both sides, they produce
particular readings. The legitimacy of these readings is guaranteed, not through a
possible closeness with an ideal historical route but through the “fertility” of the
program which underlies them:

There is no neutral reading, no reading that does not engage a previous decision for defining
the detained events or for defining relevant materials, entities, mechanisms. Every time, a
selection principle is applied that depends on the adopted program. Each story, each
reconstruction, each model corresponds to a determined principle of reading. This principle
remains from a program, that is, from a generic manner of explaining or giving sense to an
object. (Berthelot 2002, p. 242, trans. CdH)

In this perspective, we admit that a didactic “program” exists that supports the
search for elements that could favour a better appropriation of physic concepts and
laws. When conducting research, using the history of science for physics learning in
a conceptual perspective should take into account the type of reasoning a student
can use concerning a phenomena to be studied. Searching, within the history of

47Unlike Mäntylä’s work which also involves didactical reconstructions (Mäntylä 2012), our
approach is based exclusively on the exploration of first hand historical sources.
48The visibility of the historical material within the teaching-learning sequence could also be
discussed. Indeed, the history of science can form a source for an educational pathway without
being explicitly exposed to students as such (see, for instance, de Hosson and Kaminski 2007).
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science, for situations that could be transformed into problems to be investigated by
students is a way of challenging the didactic use of the history of science. From this
standpoint, a search for certain proximity between students’ reasoning and ideas
from the past can form a fruitful fulcrum for the historical literature.

The model of didactical reconstruction as we define it has two functions. First, it
allows us to make more explicit and also to better understand the (implicit) choices
governing some teaching-learning sequences based on historical grounds. It is in
this way that we understand the principles governing Merle’s (2002) teaching
sequences concerning the horizon line (skyline) in elementary astronomy. This
sequence is based on an argument developed by Aristotle to address the spherical
shape of Earth: the modification of the aspect of the night-sky for observers trav-
elling south. It also takes into account the way students explain (with a drawing)
why observers situated either in the north or in the south of the same meridian do
not see the same stars in the sky. Generally, the drawing they provide presents a
meridian sometimes flat and sometimes curved, whereas the field of vision of each
of the observers is represented by a cone. If this way of geometrising the visible
space of an observer fits perfectly with observations described by Aristotle, it does
not allow discrimination between ideas of a flat Earth and those of a round Earth. In
fact, the geometrical tool used by Aristotle to solve the puzzle of the visible stars is
not a cone but a tangent line to the meridian, today known by the term “horizon”,
and which forms the knowledge developed as Merle’s sequence. Here we face an
asymmetry (not explicitly specified by the author) between historical hypotheses
and stakes on the one hand and didactic ones on the other hand. From an historical
point of view, the notion of horizon serves as a model for explaining the changes in
the night-sky in order to justify the idea of a spherical Earth; from a didactic point
of view, the changes in the night-sky connected to the spherical shape of the Earth
allow the construction of the notion of horizon. Students face an incoherence which
leads them to admit that their tool of “spontaneous” reasoning does not allow them
to conclude that the Earth is spherical. This incompatibility between Aristotle’s
reasoning process and their own conclusions leads them to build a new
geometrising tool for the field of vision. Here, the history of science is not actively
involved in resolving the problem posed to the students but the approach proposed
by Merle can be interpreted in terms of a didactic reconstruction: the situation she
grasped from history of science has been chosen in order to form a fruitful
problem-to-be-solved by students. Her choice was governed by what she knew
about students’ conception of “horizon”.

The second function of our model is to provide science education researchers
with a framework for the design of a teaching-learning sequence. We have created
and implemented several sequences according to the guidelines presented above
(de Hosson and Kaminski 2007; de Hosson and Décamp 2014). In these sequences,
a dialectic was settled in order to create a problem directly inspired by an historical
episode that could meet students’ interest and thus, be accepted by them.

A common conception hold by students concerning the relationship between
force and motion was addressed (de Hosson 2011). It is difficult for students to
admit that an object dropped from the top of the mast of a ship moving at a constant
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velocity lands at the bottom of the mast because it retains the horizontal movement
of the ship. This difficulty echoes the problem staged by Galileo in his Dialogue
concerning the two chief world systems. This proximity led us to elaborate a
learning pathway in which some elements of Galileo’s dialogue were selected and
reorganised according to specific educational constraints. The relevancy of the
sequences have been asserted in the “didactic engineering” framework (Artigue
1994) and rely on the identification of students with the characters staged by
Galileo. Here, the concept of “epistemologic obstacle” (Bachelard 2002) is con-
sidered as heuristic since it allows the search for anchoring problems, i.e., problems
inspired by the history of science that could be appropriated easily by students,
particularly as difficulties or ideas or reasoning on both (historical and cognitive)
sides could be considered, to a certain extent, to be closed.49

Beyond the restricted and specific perspective detailed above, the selection
process conducted by the science education researcher working with historical
materials can also aim to challenge students’ ideas of the nature of science.

8.3.4.3 Nature of Science (NoS)

History of science seems to play a significant role in helping teachers and/or stu-
dents to develop more appropriate conceptions of the scientific enterprise.
Nevertheless, the research carried out by Abd-el-Khalick and Lederman shows that
the use of the HoS to enhance teachers’ NoS views operates under certain condi-
tions (Abd-el-Khalick and Lederman 2000). In particular, they claim that only an
explicit instructional approach that targets certain NoS aspects can enhance
teachers’ NoS views:

Science educators cannot simply assume that coursework in HoS by itself is sufficient to
help prospective science teachers develop desired understandings of NoS (Abd-el-Khalick
and Lederman 2000, p. 1088).

Considering NoS as an expression that refers to ‘‘the epistemology of science,
science as a way of knowing, or the values and beliefs inherent to the development
of scientific knowledge’’ (Lederman 1992), some authors have used the history of
science to promote a renewed image of the nature of science. This also engages
different choices and foci. Indeed, if we wish to use the history of science to

49An unexpected consequence of the dialectic process we address is the role that physics education
research can play in historical inquiry. As Kuhn (1977, p. 23) says: “Part of what I know about
how to ask questions to dead scientists has been learned by examining Piaget’s interrogation of
living children”. Focusing on students’ difficulties can lead to pinpoint historical episodes reduced
or ignored by historians (de Hosson and Kaminski 2007). The proximity between students’ ideas,
and ideas from the past, may be justified from a Bachelardian point of view if one considers that
some trends of reasoning contain universal elements. In other words, a pre-physics exists (as
expired domain of knowledge) in both individual and historical development which may rely on
a-contextual forms of thinking. This is quite different in mathematics since pre-mathematics does
not really exist.
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influence students’ understanding of science, we must treat historical material in
ways which illuminate particular characteristics of science. In the research con-
ducted by Maurines and Beaufils (2012), history of science has not been considered
per se but as a means to introduce students to 20th century philosophical ideas of
science in order to help them to acquire scientific literacy. This was considered to be
a richer understanding of how science works mainly today, rather than in the past.
Consequently, the authors sought to identify, through analysing the history of
physics (the creation of the laws of refraction), which aspects of physics could be
considered as temporal invariables. According to the authors, the intersection of the
various studies on science is where the most authentic view of science is revealed.
Thus, they based their analysis on the philosophy, history, psychology and soci-
ology of science. From this perspective, scientific knowledge was considered to be
the result of activities—intellectual and practical—performed by individuals,
working collectively, in the socio-cultural context of a given historical period.
Maurines and Beaufils elaborated a set of documents (a dossier) in order to address
and reveal some consensual views on NoS (e.g., “relationships between scientists”).
These documents were made up of two types: some comprised historical scientific
information (e.g., facts, hypothesis, knowledge, experiment); while others were
chosen in order to be analysed on the basis of the different dimensions (spa-
tiotemporal range and degree of externality) which can be associated with the
different characteristics of NoS. As an example, the texts of the dossier related to
the objective ‘relationships between scientists’ provide not only some scientific
information, such as the type of explanation advanced by a scientist about the law
of refraction, but also some information on the interaction between this scientist and
the others.

8.4 Conclusion

We conclude this methodological tour by commenting on a deceptively simple
motto: history does not teach, yet there is a lot to learn from it. Historians do not
provide direct (even if partial) answers to MER questions, for a number of struc-
tural reasons which we attempted to describe: the two main reasons being the deep
heterogeneity of the objects of study (mathematics written in contexts different from
ours, usually by experts/teaching and learning of mathematics); and epistemological
differences between the two fields of study (which reflect this heterogeneity). Yet
heterogeneity and autonomy do not imply incommensurability. We presented
several cases of fruitful interactions, from the purely heuristic—albeit of a
well-controlled nature—to instances of the dialectic of co-problematisation.

While discussing these examples, we touched upon theoretical frameworks and
concepts of MER, but we did not focus on them. These concepts were designed to
study teaching and learning situations, hence are probably not suited for historical
investigation. However, when the research question is a MER question, didactical
concepts do not only help organise data into an intelligible structure, they also play

186 R. Chorlay and C. de Hosson



a key role in the first phases of an investigation, when shaping the question and
delineating the object of study. How, then, can a research question framed by
didactical concepts make fruitful use of the history of science without mistaking
these concepts as tools for historical investigation (Barbin 1997)? We feel this
tension is structural and call for methodological vigilance. In this chapter, we
adopted an approach which is very close to Dorier’s, by using few and rather loose
concepts—such as aspect—when discussing direct contact between historical and
didactical investigations. This does not imply that, in another phase of research,
theoretical frameworks cannot play their part. Indeed, we feel a natural continuation
of the methodological discussion presented in this chapter would be the study of the
extent to which different theoretical frameworks assign a role to epistemological
investigation—and the role it might play.

As Artigue pointed out, discussing facts, knowledge and concepts cannot be all
there is when discussing the role of epistemological awareness for the researcher in
science education. Various forms of experience are also central, such as distancing
oneself from one’s own mathematical culture, or enabling one to see new dimen-
sions in otherwise rather flat and unproblematic elements of mathematics. We
would like to conclude with a quotation from Michel Foucault, who, in a different
context, strikingly described a similar experience:

As for what motivated me, it is quite simple; I would hope that in the eyes of some people it
might be sufficient in itself. It was curiosity – the only kind of curiosity, in any case, that is
worth acting upon with a degree of obstinacy: not the curiosity that seeks to assimilate what
is proper for one to know, but that which enables one to get free of oneself [se déprendre de
soi-même]. After all, what would be the value of the passion for knowledge if it resulted
only in a certain amount of knowledgeableness and not, in one way or another and to the
extent possible, in the knower’s straying afield [égarement] of himself? There are times in
life when the question of knowing if one can think differently than one thinks, and perceive
differently than one sees, is absolutely necessary if one is to go on looking and reflecting at
all. (Foucault 1990, p. 8)
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Chapter 9
Inquiry-Based Education (IBE): Towards
an Analysing Tool to Characterise
and Analyse Inquiry Processes
in Mathematics and Natural Sciences

Cécile Ouvrier-Buffet, Robin Bosdeveix and Cécile de Hosson

9.1 Introduction

Inquiry-based Education (IBE) is being promoted by most science and mathematics
curricula on an international level. This expansion is motivated by a political will to
challenge students’ interest and motivation by changing the way science and
mathematics are taught. The main goal of such promotion is to prevent the decline
in young people’s interest in key science and mathematics studies in society. This
goal explicitly governs the European Union’s request for generalising IBE in the
classroom. The Rocard report “for a renewed science education in Europe” (2007)
clearly deplores the failure of the “traditional” way of teaching science and pro-
motes IBE as a way of improving students’ interest in science and mathematics:
“the origins of this situation [i.e. the decline] can be found, among other causes, in
the way science is taught” (The Rocard report, European Commission 2007, p. 8).
In this context, many funded programs have been created to support institutions in
implementing IBE in the classroom.

Over the last decade, an important part of Michèle Artigue’s research activity has
been devoted to the monitoring and expert evaluation of educational projects that
focus on IBE in the specific fields of Science and Mathematics Education. Her
commitment to the Fibonacci project1 is likely one of the meaningful contributions
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of Michèle Artigue to IBE. Funded by the European Union under the 7th
Framework Program (for research and technological development), the Fibonacci
project aimed at a large dissemination of inquiry-based science and mathematics
education in Europe, through institutions such as universities, teachers training
centers and research institutions). The main aim of the Fibonacci project was to:

• assist students to develop concepts for understanding the scientific aspects of the
world around them through their own thinking, using critical and logical rea-
soning about evidence they have gathered, and

• help teachers lead students to develop the skills necessary for inquiry and the
understanding of science concepts through the students’ own activity and
reasoning.

Many IBE-promoting projects (like the Fibonacci project) relied on almost tacit
but certainly questionable assumptions: first, skills developed through IBE echo
those of science activity (in this regard, inquiry is supposed to be a method of
helping students develop a sophisticated understanding of the nature of science);
second, involving students in inquiry processes enables a more effective appro-
priation of scientific knowledge. In other words, through IBE, students would learn
science concepts more deeply, as well as develop their skills in practicing science.
Such assumptions have been widely discussed (see for example Lederman 2005;
Sandoval 2005; Kirschner et al. 2006; Pélissier and Venturini 2012) since many
political decisions for implementing IBE in science and mathematics curricula have
occurred largely independently of the research on teaching and learning (Lederman
2005), and also independently of the research on students’ beliefs about the nature
of science. Moreover, most of the teachers were neither prepared nor trained to
teach in accordance with IBE, and they have also faced (and still face) a shortage of
established and consensual framework that defines what IBE is from an operational
perspective.

Involving researchers in didactics (in mathematics and in sciences) in IBE
projects can address a part of this issue. In this regard, this chapter proposes to
highlight epistemological features of scientific processes aimed at researchers first
and teachers ultimately. The underlying goal is to value a characterisation of such
scientific processes that could fit with more open ways of learning, and then to put
forward an analysing tool to characterise and analyse inquiry processes in mathe-
matics and natural sciences. The desire to join science and mathematics in the same
educational framework (as promoted by several IBE projects) will form an essential
element of our purpose. In this chapter, a checklist is created as a characterising and
analysing tool for inquiry-based sequences that are implemented in science class-
rooms. This tool is elaborated upon through the definition of features chosen to fit
with both science and mathematics teaching sequences while respecting the
specificities of each area of knowledge involved in our paper (mathematics, biology
and physics).
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9.2 Inquiry-Based Education: An Overview

Dorier and Maass (2014) point out that various definitions of IBE exist. During the
2000s, the North-American National Science Education Standards (NSES) were
revised. Dorier and Mass attempted to summarise them in five points:

• “Students create their own scientifically oriented questions.
• Students give priority to evidence in responding to questions.
• Students formulate explanations from evidence.
• Students connect explanations to scientific knowledge.
• Students communicate and justify explanations” (Dorier and Maass 2014,

p. 301).

In the French curriculum, inquiry-based teaching in mathematics and science is
based on seven “key-moments”: the choice of a “situation-problème” (problem
situation); the appropriation of the problem by students; the formulation of con-
jectures, explanatory hypotheses, possible experimental designs; the investigation
or the solving of the problem led by students; the discussion argued around the
elaborated designs; the acquisition and the structuration of the knowledge, and the
mobilisation of the knowledge. Hypotheses and conjectures are emphasised.

In fact, IBE comes from science education: it is “not traditionally used in
mathematics education and its recent appearance seems to have fostered by the
proliferation of projects addressing both mathematics and science education”
(Artigue and Blomhøj 2013, p. 802).

Several didactical theories in mathematics education can enrich the implemen-
tation and the analysis of IBE in mathematics, as shown by Artigue and Blomhøj
(2013): for example, the problem solving tradition (arising from the work of Pólya
1957), the theory of didactical situations (Brousseau 1997), the realistic mathe-
matics education (initiated by Freudenthal), and the anthropological theory of
didactics (developed by Chevallard). The underlying epistemological backgrounds
of some of these didactical theories have some commonalities with science edu-
cation, such as the concept of “epistemological obstacle” (Bachelard 2002).

9.3 Inquiry Processes in Mathematics and Sciences:
The Role of Problems

Artigue (2012) underscores the apparent similarity between the inquiry process in
mathematics and in science, but warns against the features of these disciplines.

As pointed out in the Fibonacci Background Resource Booklet Learning Through Inquiry,
mathematical inquiry presents evident similarities with scientific inquiry as described
above. Like scientific inquiry, mathematical inquiry starts from a question or a problem,
and answers are sought through observation and exploration; mental, material or virtual
experiments are conducted; connections are made to questions offering interesting
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similarities with the one in hand and already answered; known mathematical techniques are
brought into play and adapted when necessary. This inquiry process is led by, or leads to,
hypothetical answers – often called conjectures – that are subject to validation.

(…)

Nevertheless, despite the existence of similarities with scientific inquiry, mathematical
inquiry has some distinct specificities, both regarding the type of questions it addresses and
the processes it relies on to answer them. (Artigue 2012, p. 4).

In fact, from an epistemological point of view, we have to study the specificities
of the problems studied by the disciplines themselves (mathematics and sciences),
and also the key features of each inquiry process. That being said, in each discipline
exist different branches and as many kinds of problems and inquiry processes.

Moreover, each didactic takes into account the epistemological features of the
different sciences. Some underlying ways of thinking about the evolution of sci-
ences (e.g., mathematics, physics, biology) used by mathematics and scientist
educators are common (see the work of Bachelard and Popper for instance).

We propose a modeling which retains a strong epistemological background and
which has a didactical impact. We first focus on both the definition of the problems
involved and the characterisation of the inquiry process that can put mathematics
and sciences closer for didactical purposes, and then, in the next part, we present the
features we retain in order to analyse inquiry processes in a common way
(mathematics and sciences).

In modern usage, the term “science” is often associated with the way scientific
knowledge is developed. Thus, it now seems difficult to separate science as a
knowledge about something from science as a process (sometimes called “scientific
method”) in which the mechanism of creating problems-to-be-solved plays a
leading role: “The formulation of the problem is often more essential than its
solution, which may be merely a matter of mathematical or experimental skill”
(Einstein and Infeld 1938, p. 29).

Placing the notion of problem as a key point for science teaching and learning
refers to a double epistemological and cognitive posture which points to the con-
struction of scientific knowledge as an act of creating and solving a problem
(Dewey 1938; Bachelard 2002): “A question well put is half answered; i.e. a
difficulty clearly apprehended is likely to suggest its own solution, -while a vague
and miscellaneous perception of the problem leads to groping and fumbling”
(Dewey 1938, p. 140). As a consequence, we will consider the construction of a
problem by students as a key element for implementing IBE.

Indeed, referring to Dewey’s views on science, inquiry cannot be viewed in
isolation from the process that governs the formulation of a problem: “Inquiry is a
progressive determination of a problem and its possible solution” (ibid., p. 110).
According to Dewey, inquiry is the controlled or directed transformation of an
indeterminate situation into one that is thus determinate. This transformation goes
through an intermediate step where the indeterminate situation becomes problem-
atic. Actually, “to see that a situation requires inquiry is the initial step in inquiry”
(ibid., p. 107).
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Such an epistemological stand which gives a central role to the problems in the
construction of scientific knowledge has strong implications in science teaching.
Thus, the sense of school knowledge lies in the link with the problems with which
they maintain a dynamic relationship (Bachelard 2002; Fabre 2009). To Lhoste
(2008, p. 55), it is the problem, its solution, and the relationship which links
problem and solution that constitute scientific knowledge. The problem does not
disappear with its resolution. Placing more importance on the problem which is not
given but built, some authors (such as Fabre and Orange 1997), propose to focus on
problem building (or ‘problematisation’) rather than problem solving.

Mathematics, physics and biology are recognised today as forming specific areas
of knowledge–as forming specific “disciplines”. In that sense, they incorporate
expertise, people, projects, communities, challenges, studies, inquiries, and research
areas that are strongly associated with academic areas of study or areas of pro-
fessional practice. It means that the three disciplines have a well-defined socio-
logical existence which echoes the consistency unit formed by sets of specialised
books, research articles and academic training and research programs, for example.
The three disciplines may share common features and purposes, and may also
address common problems or investigate common situations; however, their
specificities rely, in a substantial way, on objects, concepts, and languages that
carry normative relationships inside a consistent discursive space marked by rela-
tively permeable boundaries. It is necessary to explore the relevancy, which con-
sists in considering IBE as a cross-border epistemological and didactical concept.
The following paragraphs aim to provide some benchmarks that allow us to specify
the nature of the problems involved in the three disciplines we focus on.

9.3.1 Focusing on Problems in Physics

Physics can be defined as a domain of knowledge that explores “inanimate nature”
(Wigner 1960, p. 3), from infinitely large to infinitely small. This exploration can
deal with structure, organisation, and movement of matter; it can involve elemen-
tary objects or interactions between objects, for example. As a scientific activity,
physics is a corpus of knowledge (e.g., laws of mechanics, standard model, Lorentz
equations) and processes (or activities) leading to the discovery (or the creation) of
such knowledge. The generic process of the discovery of these laws is to translate
natural phenomena (observable or not) combining measurable quantity in order to
establish laws expressed mathematically. Whether theoretical or experimental,
digital and/or observational, physics is instituted by the connection it has with
experiment (taken here in the sense of empirical referent), which remains the
“judge” of any activity in physics. As a consequence, the validation of knowledge
in physics is absolutely based on “reproducibility”.

Indeed, in spite of the baffling complexity of the world, certain regularities have
been discovered. These regularities (immediate consequence of the invariance
principle) are independent of many conditions that could have an effect on them,
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and the exploration of the conditions, which do and which do not influence a
phenomenon, is part of the experimental process carried out by the physicist:

All the laws of nature are conditional statements, which permit a prediction of some future
events on the basis of the knowledge of the present, except that some aspects of the present
state of the world (…) are irrelevant from the point of view of the prediction. (ibid., p. 5).

The speech of the physicist applies to a system extracted from the real world. It is
structured by figures, graphs, mathematical symbols, or propositions formed by
words. It allows predictions and relies on causal relationships established through
measurements. In this context, the problems in physics are diverse: for example,
explanation, creation of phenomena, of objects, predictions of behaviour (seeHacking
1983). But globally, their solutions take the form of lawswhich are assumed to govern
the reason for the inanimate nature (why nature—matter, radiation—is as it is?), the
how of its past (how did it get there?) and its future (what would happen if?).

9.3.2 Focusing on Problems in Biology

Appearing at the beginning of the 19th century, the term “biology” designates the
science of life’s phenomena. Biology distances itself from the other natural sciences
by its studied object: life. But behind a term showing a unified character, biology
encompasses a set of various disciplines (such as anatomy, physiology, biochem-
istry, genetics, evolution, ecology) distinguishing themselves by the nature of
problems and the type of research method used/employed. Biology addresses two
types of explanatory questions: functional and historical problems. Mayr (1982)
describes this duality of biology as follows:

The two biologies that are concerned with the two kinds of causations are remarkably
self-contained. Proximate causes relate to the functions of an organism and its parts as well
as its development, from functional morphology down to biochemistry. Evolutionary,
historical, or ultimate causes, on the other hand, attempt to explain why an organism is the
way it is. (Mayr 1982, p. 68)

Functional biology shares a methodological similarity with physical sciences, as
it implements an experimental method, and acts on the real world to understand it.
However, historical biology distinguishes itself from physics, as E. Mayr and
S.J. Gould explain:

Evolutionary biology, in contrast with physics and chemistry, is a historical science—the
evolutionist attempts to explain events and processes that have already taken place. Laws
and experiments are inappropriate techniques for the explication of such events and pro-
cesses. Instead one constructs a historical narrative, consisting of a tentative reconstruction
of the particular scenario that led to the events one is trying to explain. (Mayr 1982, p. 80).
The issue of verification by repetition does not arise because we are trying to account for

uniqueness of detail that cannot, both by laws of probability and time’s arrow of irre-
versibility, occur together again. We do not attempt to interpret the complex events of
narrative by reducing them to simple consequences of natural law; historical events do not,
of course, violate any general principles of matter and motion, but their occurrence lies in a
realm of contingent detail. (Gould 1990, p. 275)
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Biology differs physical sciences by the nature of biological generalisations,
which do not have the status of authentic laws. J. Gayon describes this difference:

Are there laws in biology? If we understand by “laws” more or less evident regularities, we
cannot deny that life sciences discover laws. They are sometimes weak causal laws (be-
cause biological systems are open), sometimes laws of development, the latter being more
descriptive than explanatory. More fundamentally, the strong category of law, as universal
statement of unlimited reach, is philosophically problematic in biological sciences because
of the primary facts of the variation and the evolution of species. The ideal physical model
of the law is there ineffective in that we have to deal with systems rules which are the
product of a history, along with it requires of locality and contingency. Biological laws, if
they exist, are always partial and relative to a context. (Gayon 1993, pp. 56–57, our
translation)

On the one hand, biological generalizations almost always have exceptions, and are
limited to groups of given organisms (for example the genetic code is not really universal).
On the other hand, and more significantly, it is not possible to interpret them as meaning
that things should be so, even if the past history of life had not been what it has been on our
planet. (Gayon 2005, p. 5, our translation)

Besides the explanatory character of biological problems, some problems are
technical or practical. They answer the question “how can it be done?” (such as how
to treat a disease or how to improve agricultural returns). As with other scientific
disciplines, biology maintains a dialogical relationship to applied sciences. Indeed,
biological research has consequences for medical, agronomical, and biotechno-
logical research and, mutually, these disciplines are the source of new biological
problems.

9.3.3 Focusing on Problems in Mathematics

This broad area usually implies philosophical questionings and a kind of dominant
view of mathematics, including the following elements: mathematics is formal;
mathematics is theorem-proving, deductive logic, axiomatic method; mathematics
is a body of truth; the ontological issue of the existence of entities is crucial, and so
on. We agree with Cellucci (2006) who lists and demolishes 13 standard
assumptions about mathematics (what he calls “the dominant view”) and follow
Hersh’s vision of mathematics (1999). Hersh (1999) suggests that mathematics has
a “front”, which consists of polished results that we show to the world and a “back”
which consists of what we do to obtain these results. He argues that mathematics is
a collective human construction. The mathematicians choose the concepts that
interest them, but they do not get to choose how the concepts behave. Since
Aristotle has defined mathematics as “the science of quantity”, the focus of
mathematics has evolved through several rich and diverse branches. Each summons
up specific kinds of problems, concepts and ways of reasoning, from purely abstract
to utilitarian contents. The processes of exploring new problems, objects, structures,
and new ways of modeling, reasoning and proving, are always fundamental and a
challenge for mathematicians.
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The characterisation of problems, which are at the core of mathematical ques-
tionings, is a challenge too: we avoid the classical dichotomy (often criticised and
too general) between real-world problems and abstract problems in order to provide
some emblematic kinds of problems in mathematics. In fact, mathematical prob-
lems are very different in nature (they depend on the considered branch of math-
ematics) and they often involve different ways of reasoning. The following kinds of
problems demonstrate this wide variety: for example, existence problems, optimi-
sation problems, classification problems, axiomatic problems, modeling problems,
defining problems, decision problems, enumeration problems, inverse problems,
approximation problems.

In this section we have attempted to provide some features of what a problem is
in both mathematics and natural sciences considering that some of these features
could take place in a science classroom context. Actually, if one considers IBE to
echo with what scientists do in their laboratories, one would also expect to find
some of these features embodied in the way IBE is implemented in the classroom.
Specifically, IBE should favour the creation, by students themselves, of problems of
different natures. Moreover, the specificities of the different scientific disciplines
should also echo with specific features in the problems and solving processes at
stake in the classroom. In this regard, we can thus question the relevancy of a
unifying pedagogical framework for both mathematics and science education.
Nevertheless, since standards tend to unify science teaching under a unique
framework, we should be able to provide some guidelines that rest on some
common epistemological features.

9.4 Our Tool to Analyse Inquiry Processes

9.4.1 How to Characterise and Analyse Inquiry Processes
in Mathematics and Science Education?

Dorier and Maass (2014) propose the model shown in Fig. 9.1, which integrates
what could be meant by an inquiry-based teaching practice in science and mathe-
matics. These essential ingredients in IBE make up a working definition of
inquiry-based education developed by the PRIMAS project.2

We can find other kinds of tables or figures in different projects and studies, each
of them focusing on one or more of the ingredients proposed in Fig. 9.1. For this
paper, we used this model from PRIMAS because it is a good synthesis of the
existing research in the field of IBE, as well as the inquiry-based learning processes
that PRIMAS lists in the document available on the project website. These pro-
cesses include the following (they are presented in a circle with overlapping fea-
tures), taking into account that “IBE [Inquiry Based Education] is a way of teaching

2http://www.primas-project.eu.
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and learning mathematics and science in which students are invited to work in the
way mathematicians and scientists work” (The PRIMAS Project 2011, p. 10):

(…) simplifying and structuring complex problems, observing systematically, measuring,
classifying, creating definitions, quantifying, inferring, predicting, hypothesizing, control-
ling variables, experimenting, visualizing, discovering relationships and connections, and
communicating. (The PRIMAS Project 2011, p. 10).

These actions belong to different levels, from the pragmatic to the theoretical.
We note that some features are transversal to the didactical analysis of inquiry

processes (i.e., transversal to mathematics and science) in international research
dealing with IBE: for example, the characterisation of the stages of the inquiry
process (with some local differences between mathematics and science); the char-
acterisation of the materials; the place of the written records; the composition of the
students’ groups; or the arrangement in the classroom. Furthermore, the Fibonacci
project, for instance, proposes several ways to analyse the inquiry through the
teacher’s role and the students’ activity. However, the epistemological characteri-
sation of the problems and of their potential evolution, as well as the commitment
of the teacher and the students in the evolution of both the problem and the
questions, are not highlighted in the diagrams or forms resulting from projects in
IBE. Yet a focus on the problems, on their evolution, and on the person who takes
responsibility for the evolution of the problems at different stages of the process,
would allow a better characterisation of the inquiry process itself.

In regard to the inquiry process, it is impossible to think about the method
independently of the content. Scientific knowledge cannot be seen as the result of
applying a stereotypical experimental method that addresses a scientific problem.
Orange (2002, p. 84) explains that the problem commonly serves as a launch and as
motivation, with an approach that aims to be general, and that the knowledge is a
product which, once formulated, has a propositional existence. Orange (ibid., p. 88)

Fig. 9.1 Essential ingredients in inquiry-based education (Dorier and Mass 2014, p. 302)
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questions the usual focus of science teaching on the experiment, which can lead to
neglect of an essential point: the construction of problems. Such an approach,
centered on the resolution of a problem, considerably limits the functions of the
empirical data in the construction of scientific knowledge.

The inquiry process can thus appear in varied ways but it implies the con-
struction and the putting in progressive tension between an empirical register, in
which the relevant constraints are identified or developed, and a register involving
explanatory models.

In order to develop a common point of view for mathematics and science to
analyse inquiry processes, we then choose the following features: an accurate
characterisation of the problems (in the discipline) and of their evolution during the
inquiry process, the place and the role of both the students and the teacher (or the
observer, or the researcher), the link between the stages of the inquiry process, and
the evolution of the problems.

9.4.2 Our Features Used to Analyse Inquiry Processes

The following features (i.e., the characterisation of the notion of “problem”, the
definition of the moments of the inquiry, the role of both the teacher and the
students, and the aims of the inquiry process) can be organised in a table. We
present and define them first.

9.4.2.1 A Characterisation of the Notion of “Problem”

Our challenge is the following: we have to find a characterisation of the problems,
which can lead to an inquiry process with a common viewpoint for both mathe-
matics and science.

From a didactical point of view, the efficiency of the definition of “problems”
arising from complexity theory has been proved through three research studies,
which investigated epistemological and didactical aspects of particular mathemat-
ical concepts: Giroud (2011) studied the experimental dimension of mathematics;
Modeste (2012) studied the concept of “algorithm”; and Ouvrier-Buffet (2013)
studied the modeling of the defining processes in mathematics. This definition of
“problem” is of course linked to the algorithmic notions of input and output, but it
has the advantage of formalising a problem in an epistemological manner which is
at first independent of didactical situations: this is a key point in our research on
modeling problems from the perspective of studying inquiry processes. The
didactical features can be integrated in this modeling of the concept of “problem” at
a later stage, depending on didactical questionings and constraints.

In complexity theory, a “problem” is defined in the following way:

For our purposes, a problem will be a general question to be answered, usually possessing
several parameters, or free variables, whose values are left unspecified. A problem is
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described by giving: (1) a general description of all its parameters, and (2) a statement of
what properties the answer, or solution, is required to satisfy. An instance of a problem is
obtained by specifying particular values for all the problems parameters. (Garey and
Johnson 1979, p. 4)

A problem is therefore a pair (I, Q) where I is the set of the instances of the
problem (what is given at the beginning), and Q a question (or several questions)
which integrate the instances (this question specifies the properties of the required
solution).

This definition of “problem” is interesting in our study for three reasons:

• it appears usable in our three disciplines;
• it allows the characterisation (and then the analysis) of the evolution of the

problem during an inquiry process, from an epistemological point of view:
besides, the characterisation of the problem with the pair (I, Q) is made within
the discipline and brings together the different stages of the problem;

• it connects the different stages of the problem with the different moments of the
inquiry process (we define these moments in the next section).

Moreover, we propose to connect each problem (i.e., each problem that can be
stated during an inquiry process) to the kinds of problems that exist in our disci-
plines. An overview of them is given above.

9.4.2.2 The Moments of the Inquiry Process and Their Aims

There is no unique characterisation of the inquiry processes in science and math-
ematics. We propose in this section a common vision of the inquiry process based
upon our epistemological view of our disciplines (as presented above) and our
crossed-view of the inquiry processes involved in our respective disciplines. In
order to go further than existing descriptions, found in the literature, of several
stages of an inquiry process, we define several moments: the aim(s) of each moment
of the inquiry process should be described. We then propose nine non-linear and
non-hierarchical moments of the inquiry process; it means that each moment can
appear several times (or can also not appear) along a teaching sequence, in a spiral
manner, following the chronological continuity of the inquiry.

The nine moments are:

• Exploration of the situation and construction of the problem
• Formulation of hypothesis/conjectures
• Test of hypothesis
• Modeling, for example, changing the model, the frame, or the scale
• Analysis, interpretation of the results, conclusion (first level of

conceptualisation)
• Communication of the results and of their impact
• Generalisation of the results, the processes at stake, and the reuse of the process

(second level of conceptualisation)
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• Statement of new problems for the discipline
• Bibliographical research.

The aims of each moment depend on the situation and on the concepts involved.
We can illustrate the aims of the moments of the inquiry process with the following
examples: to state a temporary knowledge in order to experiment; to choose a
relevant modeling; to valid or refute; to conceptualise; to generalise; or to prove.

To summarise, we have defined the moments of an inquiry process that are
common to science and mathematics. Their aims specify them, and then the defi-
nition of these aims can distinguish the disciplines.

In order to keep the features of each discipline unspoiled (such as the
counter-examples which appear mainly in mathematics), we decided to make these
specificities (we call them “indicators”, i.e., indicators of the process) appear in our
characterisation of the inquiry process through clarifying the actions of both the
teacher and the students.

9.4.2.3 Place and Role of the Teacher and of the Students—The
Importance of Their Gestures During the Inquiry Process

The role of the teacher promoted by the implementation of IBE situations in
classrooms is specific. In fact, several phases structure the activity of students when
an IBE situation is implemented in the classroom. It often follows this pattern:
individual work—cooperation with partners—presentation of ideas—discussion—
summary and presentation of results. A variety of teaching methods for IBE exists
and the goal of this paragraph is not to list these teaching methods. Instead, we
focus on the role of the teacher and of the students from a different point of view.

We remind the reader here of an interesting table (Anderson 2002, p. 5—see
Table 9.1), which compares a “traditional” transmissive teaching approach (called
“old orientation”) to an inquiry-oriented approach (called “new orientation”), taking
into account the teacher role, the student role and the student work. We consider
this table to be a good synthesis of the usual roles of the teacher and of the students,
often quoted during an inquiry process.

In our epistemological perspective, we would like to emphasise the role of the
teacher and the role of the students, regarding the previous moments of the inquiry
process and to connect them to the evolution of the problem studied (in science or
in mathematics). A central question for us is: “Who takes responsibility for the
process and for the evolution of the problem?” In this connection, the gestures (in
Gardes’ sense, (2013)3), which consist of stating the problem, the questions, and

3Gardes (2013) models the concept of “gesture” in order to analyse the practices of mathemati-
cians. This concept also appears relevant in considering the question of the transposition of the
work of mathematicians to the classroom (several levels are considered: primary, secondary and
university levels). Indeed, it can be used to analyse students’ processes during research of a
mathematical problem (the kind of problems used by Grades 2013 is mainly unsolved problems for
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choosing the instances of the problem, for instance, appear crucial to us. The next
paragraph synthesises our method for analysing an inquiry process.

9.4.2.4 Towards a Table to Characterise and Analyse Inquiry
Processes

Bearing in mind the aforementioned epistemological and didactical reasoning, we
structured our table for the characterisation and the analysis of inquiry processes
with 4 main columns:

Table 9.1 A synthesis of the role of the teacher and of the student (Anderson 2002, p. 5) in two
“opposite” teaching approaches

Predominance of old orientation Predominance of new orientation

Teacher Role:
As dispenser of knowledge As coach and facilitator

Transmits information
Communicates with individuals
Directs student actions
Explains conceptual relationships
Teachers knowledge is static
Directed use of textbook, etc.

Helps students process info
Communicates with groups
Coaches student actions
Facilitates student thinking
Models the learning process
Flexible use of materials

Student Role:
As passive receiver As self-directed learner

Records teacher’s information
Memorizes information
Follows teacher directions
Defers to teacher as authority

Processes information
Interprets, explains, hypoth
Designs own activities
Shares authority for answers

Student Work:
Teacher-prescribed activities Student-directed learning

Completes worksheets
All students complete same tasks
Teacher directs tasks
Absence of items on right

Directs own learning
Tasks vary among students
Design and direct own tasks
Emphasizes reasoning, reading and writing for
meaning, solving problems, building from existing
cognitive structures, and explaining complex problems

(Footnote 3 continued)

mathematicians, such as the Erdös-Straus conjecture). Gardes (2013) builds a new definition of
“gesture”, taking into account the research of Cavaillès (1994) and Châtelet and Longo (in Bailly
and Longo 2003), with a theoretical background inscribed in the contemporary epistemology. She
analyses the problem-solving process of mathematicians and students with several gestures, taking
into account the syntaxic/semantic categorisation (Weber and Alcock 2004). Then, Gardes (2013)
defines seven gestures during the exploration of the Erdös-Straus conjecture: to point out objects;
to reduce the problem to a specific set of numbers (prime numbers); to introduce a parameter; to
build examples and to explore them; to make local checks; to transform the starting/original
equation; to implement an algorithm.
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• the moments of the process;
• the aims of the moments;
• the characterisation of the problem from an epistemological point of view,

anchored in the involved discipline, with 3 sub-columns (instances, questions,
problem type);

• the indicators of the inquiry. These indicators follow the different moments of
the process and enrich its characterisation with more contextualised elements.

The last criterion provides a representation of the distribution of the roles during
the inquiry process (‘T’ for the teacher’s indicators and ‘S’ the students’). It pre-
sents elements regarding the role of the teacher and the work of the students in the
evolution of the inquiry, and more specifically, the entire process of the students
and the complete guidance of the teacher appear clearly. In our table, we do not
specifically develop the role of the teacher as coach and facilitator (the right-hand
column of Anderson’s table, see Table 9.1), which is clearly a necessary role of the
teacher in situations involving inquiry processes. Table 9.2 synthesises our afore-
said criteria.

In Table 9.2, the first column provides a non-linear and a non-hierarchical list of
the different potential moments of an inquiry process. Each one (of these moments)
can appear several times or not appear at all, and the description of these moments
is enriched by their aims. The list of these aims cannot be totally exhaustive but
moves towards a global view of potential aims in our three disciplines (physics,
biology, and mathematics). The column “Problems (in the discipline)—Type”
mainly provides examples too.

In the next section, we add a further feature with a description of the aims of the
inquiry process, in order to specify the place and the role of an inquiry process in a
classroom (mainly a long-term process).

9.4.2.5 The Aims of the Inquiry Process

The implementation of situations implying an inquiry process in the classrooms can
reveal several aims at different levels: from the level of the contents (concepts and
skills) of the discipline to a meta-level regarding the discipline itself.

We synthesise these aims in the following way:

• the construction of knowledge in a discipline;
• the construction of theories (it can be a local theory);
• the construction of skills

– specific to the inquiry process, or
– linked to the use of an instrument/tool;

• the construction of abilities and skills for the statement of processes and results:
this deals both with the scientific communication and written records;

• the learning and understanding of cultural and historical contents;

204 C. Ouvrier-Buffet et al.



T
ab

le
9.
2

Sy
nt
he
si
s
of

ou
r
fe
at
ur
es

to
de
sc
ri
be

an
d
an
al
ys
e
an

in
qu

ir
y
pr
oc
es
s

M
om

en
ts
of

th
e
in
qu
ir
y

pr
oc
es
s
(n
on
-l
in
ea
r
an
d

no
n-
hi
er
ar
ch
ic
al

m
om

en
ts
)

A
im

s
of

th
e
m
om

en
ts

Pr
ob
le
m
s
(i
n
th
e
di
sc
ip
lin

e)
In
di
ca
to
rs

of
th
e
in
qu
ir
y

pr
oc
es
s
an
d
sh
ar
in
g
of

ro
le
s

In
st
an
ce
s
I

Q
ue
st
io
ns

Q
T
yp
e

–
E
xp
lo
ra
tio

n
of

th
e

si
tu
at
io
n
an
d

co
ns
tr
uc
tio

n
of

th
e

pr
ob
le
m

–
Fo

rm
ul
at
io
n
of

hy
po
th
es
is
/c
on
je
ct
ur
es

–
T
es
t
of

hy
po
th
es
is

–
E
xp
lo
ra
tio

n
of

co
nj
ec
tu
re
s,
ex
am

pl
es
,

co
un
te
r-
ex
am

pl
es

–
M
od
el
in
g,

e.
g.
,

ch
an
gi
ng

th
e
m
od
el
,t
he

fr
am

e,
th
e
sc
al
e

–
A
na
ly
si
s,
in
te
rp
re
ta
tio

n
of

th
e
re
su
lts
,

co
nc
lu
si
on

(fi
rs
t
le
ve
l

of
co
nc
ep
tu
al
is
at
io
n)

–
Se
ar
ch

fo
r
a
pr
oo
f

–
C
om

m
un
ic
at
io
n
of

th
e

re
su
lts

an
d
of

th
ei
r

im
pa
ct

–
G
en
er
al
is
at
io
n
of

th
e

re
su
lts
,
th
e
pr
oc
es
se
s
at

st
ak
e,

th
e
re
us
e
of

th
e

pr
oc
es
s
(s
ec
on
d
le
ve
lo

f
co
nc
ep
tu
al
is
at
io
n)

–
Sh

if
tin

g
fr
om

an
in
de
te
rm

in
at
e
si
tu
at
io
n

to
a
pr
ob
le
m
at
ic

on
e

–
Fo

rm
ul
at
in
g
a

pr
el
im

in
ar
y/
te
m
po
ra
ry

kn
ow

le
dg
e
(f
or

an
ex
pe
ri
m
en
ta
l
te
st
in
g,

fo
r
in
st
an
ce
)

–
C
ho
os
in
g
a
re
le
va
nt

m
od
el
in
g
(a
nd

ch
an
gi
ng

th
e

m
od
el
in
g…

)
–
V
al
id
at
in
g
or

re
fu
tin

g
th
e
ch
os
en

m
od
el
in
g,

th
e
hy
po
th
es
is
,
th
e

co
nj
ec
tu
re

–
C
on
ce
pt
ua
lis
in
g

–
Id
en
tif
yi
ng

an
in
va
ri
an
t

(e
.g
.,
ph
en
om

en
on
,

pr
op
er
ty
)

–
Pr
ov
id
in
g
a
pr
oo
f

–
G
en
er
al
is
in
g

–
B
ui
ld
in
g
a
th
eo
ry

Se
to

f
th
e
in
st
an
ce
s
of

th
e

pr
ob
le
m

(w
ha
t
is
gi
ve
n
at

th
e
be
gi
nn
in
g)

Q
ue
st
io
n
(o
r
se
ve
ra
l

qu
es
tio

ns
)
w
hi
ch

in
te
gr
at
es

th
e
in
st
an
ce
s

(t
hi
s
qu
es
tio

n
sp
ec
ifi
es

th
e
pr
op
er
tie
s
of

th
e

re
qu
ir
ed

so
lu
tio

n)

–
St
ud
y
of

a
ph
en
om

en
on

–
Se
ek
in
g
an

or
de
r

re
la
tio

n
be
tw
ee
n

qu
an
tit
ie
s

–
Q
ua
nt
if
yi
ng

a
ph
en
om

en
on

–
D
efi
ni
ng

a
ne
w
va
ri
ab
le

–
E
xi
st
en
ce

pr
ob
le
m
s

–
O
pt
im

iz
at
io
n
pr
ob
le
m
s

–
C
la
ss
ifi
ca
tio

n
pr
ob
le
m
s

–
A
xi
om

at
ic

pr
ob
le
m
s

–
M
od
el
in
g
pr
ob
le
m
s

W
ha
ts
tu
de
nt
s
an
d
te
ac
he
r

sa
y
an
d
do

9 Inquiry-Based Education (IBE): Towards … 205



• the construction of interpersonal skills (speaking in public, respecting col-
leagues, and other social values);

• the understanding of what the discipline deals with, at a meta-level.

Clarifying the aims of an inquiry process is a necessary element which influ-
ences the way the analysis of this inquiry process should be performed.

9.5 Two Examples of the Use of Our Analysing Tool

The aim of this section is to provide examples of the use of our analysing tool in
two disciplines: physics and mathematics. In order to present and analyse the
situations, we first analyse the considered problem in the discipline, the potential
moments of the inquiry process, and the use in a classroom. The complete tables
appear in the appendices.

9.5.1 In Physics: Exploring the Bouncing Balls
Phenomenon

Dewey’s view on constructing problems in science has been turned into a didactic
framework for creating a science teaching sequence based on inquiry. We sought a
non-academic but familiar phenomenon—the bouncing balls—considered as a
potential indeterminate situation that could be transformed into a problematic one.
This bouncing balls phenomenon has been presented to prospective primary school
teachers in the framework of a 3-h pre-service training session (Martinez et al. 2015).
The students were asked to answer the following open-ended question: “You are
scientists; you wish to study the bouncing balls. What are you interested in?” Starting
from this question, the training session was divided into two different parts: in part 1,
students had to formulate one problem that could be answered experimentally without
support material (i.e., no balls, no measuring instruments); in part 2, after formulating
a problem to be explored, students were provided with support material: balls of
several kinds, of different volume and mass, measuring devices such as balances,
rulers, chronometers) in order to solve the problem they constructed in part 1.

This activity has been carried out several times between 2011 and 2013 in
France and in Colombia, involving a total of 13 groups of four people (8 French
groups and 5 Colombian groups). The analysis allowed us to understand the ele-
ments that prevented or favoured the emergence of problems able to give birth: (1)
to an investigation based on an effective experiment; and (2) to the construction of
knowledge associated with the bounce phenomenon, such as the influence of
physical parameters and the construction of characteristic quantities.
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The French theoretical framework of learning-through-problematization (Fabre
and Orange 1997) was applied to the analysis of the linguistic interactions between
the preservice teachers involved in the problem construction activity. Table 9.2 (as
used in Appendix 1) sums up and organises the different steps followed by one of
the groups who succeeded in constructing one of the characteristic quantities of the
physics of bounce: the coefficient of restitution. After wondering “why” balls
bounce, students switched to a more investigable question (i.e., a question that can
be answered with simple experiments and usual measuring devices), focusing on
“how”. They searched for a measurable quantity (the mass of the balls) that sup-
posedly influences the bouncing balls phenomena (i.e., the heavier the ball is, the
shorter the total length of time of the bounce). Noticing that the mass of the ball had
no influence on the bounce phenomenon, students switched to another investigable
problem: the ratio of two successive bounce heights.

The “bouncing balls” activity has been organised in order to favour possible
investigable questions from a very open situation, which is not so usual in science
teaching, which commonly provides problems to students. Here, the construction of
the problem is challenged in the sense of Dewey: students are successfully involved
in raising the indetermination of an indeterminate situation and the table we used
allows us (as researchers) to identity different dimensions of the inquiry process.

9.5.2 In Mathematics: An Example of a Defining Activity

9.5.2.1 Defining Activities and Inquiry Processes in Mathematics

In fact, in mathematics education, defining activities are usually evoked during the
study of proofs and of problem solving processes, rather than being studied on their
own. To place the definitions in the core of the mathematical activity (i.e., an
activity that builds new knowledge, brings new proofs and theories) actually reveals
an epistemological interest and a didactical interest; besides, the construction of
definitions is a component of the research process of mathematicians, as under-
scored by several authors (Lakatos 1976; Edwards and Ward 2008 for instance).

9.5.2.2 A Situation Involving a Defining Process

We chose to use the example of the construction of definitions of a particular math-
ematical object—the discrete straight lines—for several reasons. This object puts
everybody (students, teachers, and also researchers) on the same level: discrete
straight lines are accessible through their representations and are non-institutionalised
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in the classic curricula. Thus, students have neither preexistent definitions or prop-
erties or concept images of such objects nor expertise in problems involving discrete
objects. Moreover, the questions of their definitions and of the equivalence of such
definitions are crucial in ongoing mathematical research and can generate inquiry
processes at different levels (such as problems of the construction of such discrete
objects, recognising problems, axiomatic problems).

Studying defining situations of discrete objects is therefore interesting from an
epistemological point of view and also from a didactical point of view (it allows a
focus on the inquiry process). The epistemological and didactical study of the
implementation of defining activities involving discrete straight lines with first-year
university students is available in Ouvrier-Buffet (2006). Ouvrier-Buffet (2006)
points out the different kinds of defining problems involving discrete straight lines
and analyses the defining processes of students with epistemological tools involving
the construction of definitions. She emphasises the in-action moments in particular
(a kind of moment which comes before an explicit formulation of a property or a
definition). The use of our table focusing on the inquiry process will bring a new
perspective to the analysis of such situations.

9.5.2.3 The Use of Our Table

1. The problems in the discipline, described with Instances (I) and Questions (Q)

Following the mathematical elements presented in Ouvrier-Buffet (2006, p. 271)
about the problématiques, we can identify different problems in mathematics
involving discrete straight lines. The three types of problems described below
provide general classes of problems. They can be refined as:

– Type 1: Classification problem. The starting point (I) is a set of objects built
with coloured pixels on a regular squared table: some of them are examples of a
discrete straight line and the others are non-examples of a discrete straight line,
but they are non-identified as such. The question (Q) is linked to a classification
activity (an explicit definition is not necessarily requested). Two problématiques
can appear here: the first is to build discrete straight lines and the second is to
recognise discrete straight lines. These problématiques lead to different prop-
erties of the mathematical object.

– Type 2: Axiomatic problem. The starting point (I) is a more complex set of
objects than in Type 1 (e.g., discrete straight lines, discrete triangles and their
non-examples). The question (Q) deals with the existence of a discrete geometry
which could be in contradiction with the Euclidean axiomatics. The starting
point can also be a discrete table with no coloured pixels on it.
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– Type 3: Existence (and uniqueness) problem. The starting point (I) is the same
as in Type 1 (with examples and non-examples of discrete straight lines). The
question (Q) deals with the intersection of two discrete straight lines and of two
discrete objects in general, and also with the number of discrete straight lines
with two given pixels. It can lead to questions of Type 2.

2. The moments of the inquiry process

When one works on a defining activity, one can think that the only analysing tools
are focused on the defining process. In fact, our table also provides an analysing
tool for such situations in a wider perspective, with an explicit connection between
the processes and the problems.

The table presented in Appendix 2 is based on the results of an experiment
conducted with two groups of three first-year university students (the reader can
refer to Ouvrier-Buffet 2006, Group A, and for more details, Ouvrier-Buffet 2013).
This table underscores the evolution of the problems studied by the students and the
nature of their questionings. The emphasis of the problems and of their evolution
highlights the inquiry process and brings new elements to further expand the sit-
uation and to generate new inquiry processes through the definition of new prob-
lems in the discipline.

We do not focus on the scaffolding of the teacher, who clearly has the role of
coach and facilitator (she/he recalls what the students did in particular)—that is the
reason why the role of the teacher seems reduced.

9.6 Conclusion and New Perspectives

In this chapter, we have defined several features to study in both science and
mathematics inquiry processes. These features clearly provide questionings
regarding the epistemological backgrounds of our disciplines and the links between
them.

We then emphasised the significance of the problems in our respective disci-
plines and proposed a tool to characterise these problems through three elements
(Instances, Questions, Types). Focus then shifted to the formulation of problems
and on the evolution of the studied problems, with regards to what the problem was
in the considered discipline. Some emblematic problems in our three respective
disciplines were given as examples (the list cannot be totally exhaustive without a
complete epistemological analysis which depends on the considered concepts).

We also specified the moments of an inquiry process, in a common point of view
for mathematics-science, and considering their respective aims. The indicators of
the inquiry process allowed the characterisation of the role of both the teacher and
the students, and then the identification of the inquiry process followed by the
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students, and the nature of the guidance of the teacher. These indicators are linked
to the epistemological features which appear in the other columns of Table 9.2 (see
above or in the Appendices). We then designed a tool (through a table) without
taking into account the explanation of some pedagogical elements (e.g., how to
constitute the groups of students, how to manage the moments of the inquiry
process). Two main direct uses of such a tool can be:

• It allows a re-analysis of existing didactical materials: we have used the table to
reanalyse existing excerpts involving an inquiry process in our respective dis-
ciplines; the relevance of the features was then proven. Furthermore, the epis-
temological content was linked to the process developed by the students and the
problems they were able to generate. The process of the students was then
characterised, as well as the guidance of the teacher.

• It brings an epistemological framework for designing didactical materials.

This tool can also be used to identify teacher practices, profiles and conceptions.
Their view on the nature of mathematics and science can also be defined with
additional interviews. In fact, several projects dealing with IBE have used
Shulman’s model of knowledge (1986) to identify teachers’ content knowledge,
pedagogical knowledge and pedagogical content knowledge. Several questions
arise such as: What is the teachers’ knowledge regarding the disciplines
(mathematics/sciences)? What is their knowledge about students’ mathematical/
scientific conceptions? What is their knowledge about the ways of teaching
mathematics/science? Even if previous research on IBE took these aspects into
account (see for instance the PRIMAS project), the epistemology of the teachers is
not identified. The tool we propose in this article in one of the frameworks that we
can use to grasp a part of the epistemology of the teachers (of course, this epis-
temology is evolving and changing but a snapshot of it may be fruitful for didactical
purposes).

In the same vein, we can also use the tool developed in this chapter to design
pedagogical materials based on elements of the professional identity of teachers
(teaching practices in the IBE framework among others).

In future, it should now be possible to conceive further research in order to
preserve an epistemological background and to get to a finer analysis of inquiry
processes. A new gate is opened with our tool for teaching and learning in math-
ematics and science in a transversal perspective and for teacher education.
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Examples and counter-examples of discrete straight lines
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Chapter 10
The Researcher in the Wider Community

Jill Adler, Celia Hoyles, Jean-Pierre Kahane
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10.1 A Quality Mathematics Education for All

Jean-Baptiste Lagrange

This section aims to draw some lessons from the way Michèle Artigue took on
responsibilities in institutions at various levels in order to promote and enhance
mathematics education. Drawing on Jean-Pierre Raoult’s1 friendly address and Bill
Barton’s2 presentation during the International colloquium in honour of Michele
Artigue, two institutions in France and one at an international level are considered.
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10.1.1 Positioning Our Research Field in the French
Academic Setting

The first institution in France to be considered is the national peer-elected com-
mittee that discusses and makes decisions about the university teacher-researchers’
academic careers. Although not well known abroad, this institution is very
important for the development of a field of research in France, since a field cannot
develop when researchers have no access to academic positions. As a new field, the
“didactique des Mathématiques” needed to be recognised in a section existing in the
institution and distinct from the “general education sciences” section. In the years
since 1990, it was eventually decided that this section would be the “applied
mathematics” section, given that “pure mathematicians” were particularly reluctant
about acknowledging the field.

Statistician Jean-Pierre Raoult belonged to this section, as did Michèle Artigue, a
recognised researcher in “didactique des mathématiques”. Jean-Pierre Raoult recalls
that only one another didactician worked alongside her, and that the two of them
had difficulty processing all the didacticians’ files submitted to the section. In
addition, many mathematicians in the section were suspicious of mathematics
education as a field of research. Thus, the task of the two didacticians could have
been impossible. However, Michèle knew that a few members of the section,
including Jean-Pierre Raoult, did not share the common condescending view on
maths education. Research on mathematics teaching and learning appeared to
Raoult to be both a necessity and a real scientific field, provided that studies in this
domain relied on prior good quality field work, well-established frameworks, rig-
orous methods and finally on publications that would make sense outside the
domain. Thus, on several occasions, his task dealt with a maths education file in
collaboration with one of the two didacticians.

Most often, Jean-Pierre Raoult was interested in the maths education work he
read for this task. However, he often relied upon Michèle for explanations. He most
appreciated the way she answered him clearly, while leaving him free to make his
own judgement about the quality of the file. Certainly, Michèle’s participation in
this committee and the type of relationship she maintained with the “applied”
mathematicians on the committee was very important while the “didactique des
mathématiques” was building its recognition inside the French academic milieu,
allowing didacticians to obtain positions inside the newly created “Instituts
Universitaires de Formation des maîtres”.

10.1.2 Working in the IREMs Network

The second institution considered here is the network of “Instituts de Recherche sur
l’enseignement des Mathématiques” (IREMs) and particularly the scientific com-
mittee of this network. The IREMs were created in a period of time marked both by
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the “mai 68” events and the emergence of “new maths” (“mathématiques moder-
nes”) in the curriculum, as well as a large increase in the number of secondary
students. Starting in September 1969, IREM were created in each region. The
IREMs have been conceived as research institutes inside universities, bringing
together university and secondary teachers in the assumption that everyone would
bring specific knowledge to tackle the new maths “revolution”. Beyond teacher
training (“recyclage”), a central aim has been using research methods to produce
classroom resources. This is certainly “applied research”, but it also constitutes a
terrain on which more fundamental research can develop. This was a great benefit
for the French school of “didactique”.

The IREMS are federated in a network whose main structures are the Assemblée
des Directeurs d’IREM (ADIREM), and a scientific committee whose role is to
orient and evaluate research undertaken in the IREMs. Jean-Pierre Raoult was
appointed as a member to this scientific committee in 2001. Probability and
statistics teaching/learning was a growing topic of interest at secondary level,
particularly because the new curriculum included tasks of simulation. The IREMs’
scientific committee did not previously include a specialist in probability and
statistics, and Raoult was selected to address this gap.

While participating in committee meetings with Michèle, Raoult admired her
wide knowledge, both of international research and of practical teaching in class-
rooms, as well as her ability to orient discussions at a high level. He noticed that
Michèle rejected any dogmatism, instead favouring an inclusive approach to the
various fields involved. Her understanding of difficulties experienced by IREM
members, most often resulting from high teaching loads, did not prevent her from
exercising the necessary critique of work done in the IREMs. Finally, in complex
discussions, Michèle was able to propose synthesis that allowed the best conclusion
to be reached. Thus, when Jean-Pierre Raoult became president of the committee, it
was obvious to him that Michèle should be a member. She accepted in spite of her
growing load of research project supervision and her increasing involvement in a
number of international activities. Michèle had an eminent contribution to the
meetings, including relevant advice and fruitful connections.

When it was time to step down as president of the committee, Jean-Pierre Raoult
proposed Michèle as a successor and the committee approved. Consequently, at the
time of the colloquium held in her honour, Michèle Artigue was president of the
IREMs’ scientific committee. It was a difficult time for the IREMs network, in
parallel with the current poor state of the French educational system, especially in
regard to teacher preparation and in-service education. Difficulties existed not only
from the political environment, but also from the sociological evolution that
influences mathematics education: such as the growing influence of digital tech-
nologies and of distance education, the attraction of young people towards com-
puter science and other fields, and decreasing confidence towards schools compared
to other media. The way Michèle led the committee in this difficult context, in
addition to her intensive research activity, is a brilliant and prominent example of
how a researcher can take a role in the wider community. Jean-Pierre Raoult, along
with other researchers, keeps trying to take part in this endeavour.
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10.1.3 The International Committee for Mathematical
Instruction

The institution considered in this section is the International Committee for
Mathematical Instruction (ICMI). Michèle Artigue was president of ICMI from
2007 to 2009, followed by Bill Barton. In preparing to become president, Barton
had a number of opportunities to collaborate with Michèle in ICMI activities. He
reported on this collaboration during the colloquium in honour of Michèle Artigue.

The first example he gave occurred when the committee inspected Shanghai and
Seoul as sites for ICME-12. In Shanghai, Michèle and Bill had been entertained on
the Bund, taken to the Shanghai Circus, and had inspected the conference facilities.
They were trying to establish the level of support for what they realised was a
relatively trivial matter for Shanghai to host 4000 delegates for a week. Michèle
was at her presidential best: with dignity equalling the epitome of Chinese diplo-
macy, she spoke in exactly the right tone to express ICMI’s appreciation and
respect while discreetly evaluating the actual level of support for an ICME gath-
ering behind the politely expressed words.

A week later, in Seoul, the performance was repeated in what was, at the time, a
scarily different context. The visit to the city hall coincided with a huge demon-
stration, and the delegation had to make its way into the building through a throng
of chanting demonstrators, approach the four-deep cordon of riot police, thread
through the small gap they conceded, walk through corridors of fully armed sol-
diers, and meet with the mayor in a small anteroom. Yet again Michèle found the
right words and carefully observed protocol, while also eliciting the information
needed. According to Bill, Michèle’s confidence was epitomised as they sat in a
black-windowed limousine, unable to move and hemmed in by riot police and
protestors. With some experience from his student days in the 1960s, Barton rea-
lised that such a car would be the first target if things got out of control—and says
he was tremblingly nervous. Not so Michèle: she understood enough of interna-
tional protocol to realise that they would be, at that moment, the prime concern of
the authorities. Sure enough, the Chief of Police soon smilingly rapped on the
window and ushered the limousine through a gap that he had arranged in the
protestors’ cordon of minibuses.

Barton also related collaboration with Michèle during a two-day professional
development event that took place in New Zealand. Like all teachers, participants
were keen for the event to meet their expectations as they see their time as valuable,
and are critical of it being used in impractical ways. Bill Barton had arranged the
conference to coincide with the visit of the ICMI Executive and, of course, invited
Michèle to deliver the keynote address. Much of the success of the whole event
(and the $200,000 research project behind it) was in her hands. With the first hitch
of her arm, the first endearing smile to those in the front row, the first words of
engaging French English, and the first slide showing exactly how she would
address matters of interest, Michèle captured her audience. Bill says that she tou-
ched each person in some way, showing she understood their trials, and speaking of
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their concerns with recognition—and, with her own particular stroke of brilliance,
in a way that they received new insights about their classrooms. Here was a
researcher who communicated directly, insightfully, and right on target. As a result,
according to Bill, the two days were a “wild success”.

Finally, in his address, Bill Barton also evoked Michèle’s role in renewing a
strong relationship between ICMI and the United Nations Educational, Scientific
and Cultural Organization (UNESCO). In the 1970s, ICMI had a very strong
relationship with UNESCO through Ed Jacobsen, who was appointed by UNESCO
to focus on mathematics education. When Jacobsen left UNESCO he was not
replaced, and for more than two decades the opportunities offered by a relationship
languished unfulfilled. According to Bill, a major pillar of Michèle’s legacy to our
international community is that the links in the chain have been repaired. Michèle,
of course, does not do things by halves. An opportunity arose to assist UNESCO
with a report. Despite her already full schedule, Michèle took this massive task on
and completed it in such a way that it became a model for similar reports, and was
elevated to the status of White Paper and UNESCO-guiding document.

However, that was not enough. With her toe in the door, Michèle levered it wide
open, finding corridors to other sections of UNESCO so that the relationship was no
longer dependent on one individual. According to Barton, Michèle chose not only
to produce the UNESCO report, but to also form other relationships with UNESCO,
fundamentally because she deeply and thoughtfully felt the need for “a mathematics
education of quality for all”, a phrase she used to stress that it is not enough to get
students into a mathematics classroom, but that all students, and especially the
disadvantaged, need a quality mathematics education.

10.1.4 Two Lessons

Jean-Pierre and Bill’s talk that I drew on were full of genuine friendliness and
admiration for Michèle. Many other colleagues, including myself, share these deep
feelings and we are grateful to Jean-Pierre and Bill for finding the right words. I see
also some useful lessons in these talks for making sense of a researcher’s activity
beyond the strict production of knowledge in his or her field. The first lesson is that,
for a field like mathematics education research (or “didactique des
mathématiques”), there are crucial issues at stake and it would be a deep failure to
ignore these: such as finding ways to establish the academic position of our field;
maintaining relationships with school and university teachers in order to work
together to find practical solutions to teaching problems; and developing relation-
ships at an international level in order to promote mathematics education as a major
partner in formulating educational policy.

The second lesson is that to take up the associated challenges, a researcher needs
specific qualities and proficiencies, in addition to those that helped them to be
recognised as a productive researcher. One has to understand the outside world,
attending to the concerns of people interested in mathematics or education from a
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different point of view; and one has to be patient and collaborative, spending time
and effort on tasks not directly linked to his or her research interests.

The next sections are authored by colleagues who are also widely recognised for
the quality of their research and who also work beyond their field to the outside
world. They provide additional visions on why, how, and for what outcomes they
work.

10.2 Forging Bridges Between Research, Practice
and Policy in Mathematics Education

Celia Hoyles

This section draws on the author’s involvement as the first director of the National
Centre for Excellence in the Teaching of Mathematics (NCETM) in the UK, which
is in some aspects similar to the IREM network. It describes how the Centre started
(and the role Michele Artigue played in this), how it has evolved since 2006, the
invariant challenges and changes it has undergone, and what might be the Centre in
the future.

10.2.1 Introduction

Mathematics education researchers pursue their own specific research questions
without necessarily engaging with the practical and policy issues that have con-
siderable bearing on mathematics teaching and learning. It might be considered
important for the community to seek to enhance the relevance, utility, and accu-
mulation of mathematics education research findings, and find ways to communi-
cate messages from research to those that enact policy and practice (for a more
elaborated argument, see Hoyles and Ferrini-Mundy 2012). In addition, there are
benefits to exploiting the potential for engaging the mathematics education com-
munity in pursuing research questions that might have implications for policy.
Michele Artigue has made invaluable contributions to all of these agendas: in
France, but also more widely in international fora and the national debates that have
taken place within different countries.

My goal here is to outline the challenges faced in making research professionally
and publicly available in ways that might be used to inform the decisions and the
practices of policy makers and teachers. Mathematics is ‘problematic’ for policy
makers. The subject is highly regarded, tests tend to be high stakes and, in England
at least, mathematics is widely conceived as difficult and procedural by those
outside the mathematics community. An agenda for teaching and learning
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mathematics that is broader than calculation is often invisible to those outside the
mathematics community, especially to policy makers, who most likely place high
value (maybe their only value) on student and school test results and performance
measures. Yet I would argue (with others of course) that progress in improving
mathematics education can only be achieved when teachers resist narrowing the
mathematical diet of their students to procedures to pass tests. Rather, for robust
mathematical development, teachers must have the confidence to introduce a
broader range of goals and activities.

One way to achieve this goal in England has been through setting up a national
infrastructure for mathematics continuing professional development (CPD) in order
to confer status, priority and obligation for evidence-based professional learning
that is recognised and valued by all layers of the system and beyond. Thus the goal
was, and is, that mathematics professional development will be an expectation and a
responsibility for all those involved in teaching the subject, with politicians, local
leaders and head teachers in schools all supporting this agenda. Teachers would
then be supported in achieving a balance between helping their students perform
better in tests, examinations, and international comparisons, but without sacrificing
creativity and inquiry and without exerting so much pressure on students that they
do not engage with the subject as soon as they are offered the choice. At the policy
level, causes of a similar imbalance can be traced to the separation of the agenda for
teaching/learning and the agenda for standards. By considering these issues from
the perspective of the policy agenda in England, I will identify steps that have been
taken to better align research, policy and practice.

10.2.2 A First Step: Giving Mathematics a Policy Voice
Outside the Standards Agenda

The Advisory Committee on Mathematics Education (ACME) was established in
2007 by the Joint Mathematical Council of the United Kingdom and the Royal
Society (RS), with the explicit support of all major mathematics organisations
(www.acme-uk.org/). I was one of the founding members. ACME aims to act as a
single voice for the mathematical community. ACME was formed after a period of
many years during which there had been no conduit through which the mathematics
community could have dialogue with government, despite the existence of a
standards agenda that included mathematics.

Since its formation ACME has responded to all Government initiatives that
touch upon mathematics and—crucially—written its own ‘proactive’ reports. The
first of ACME’s reports was titled Continuing Professional Development for
Teachers on Mathematics (ACME 2002). This report identified a ‘closed loop’ in
mathematics teaching as a result of, what was then, diminishing numbers of stu-
dents choosing to study mathematics post-16 (when mathematics is no longer
compulsory) and following on to study undergraduate mathematics. It
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recommended the setting up of a sustained and developmental programme of CPD
for all teachers of mathematics, across all phases and at all stages of their careers.
This was to be provided through ‘a National Academy for Teachers of Mathematics
and local mathematics centres’. The ACME report was launched at an event in
London at which various influential members of the international mathematics
community spoke, including Michele Artigue from France, Jeremy Kilpatrick from
the United States of America, and Ruhama Even from Israel. The then Secretary of
State, Charles Clarke, came to the launch in a dramatic fashion to announce to the
large audience of teachers and policy makers that he supported the ACME proposal.
This was the birth of what became the National Centre for Excellence in the
Teaching Mathematics (NCTEM).

10.2.3 A Second Step: The National Centre for Excellence
in the Teaching of Mathematics (NCETM)

The NCETM was eventually set up in 2006 by the UK Government and continues
to operate at the time of writing (March 2012). I was the first Director. A new
contract was agreed for the Centre to continue to March 2015. The Centre has a
clear and ambitious vision. It aims to meet the professional aspirations and needs of
all teachers of mathematics so that they can realise the potential of learners (for
more detail, see Hoyles 2010). It is, however, a constant struggle to encourage
teachers to see professional learning not as a threat or a punishment for being in
some way deficient according to a standards agenda, but as an opportunity for new
learning and inspiration.

The NCETM set out to meet its objectives through supporting a wide variety of
mathematics education networks in the country, which include universities, subject
associations and the whole range of CPD providers. At the same time, the National
Centre encourages schools and colleges to learn from their own best practice
through collaboration among staff and by sharing good practice locally, regionally
and nationally. These collaborations take place face-to-face at national and regional
events and in local network meetings across England, virtually, through interactions
on the NCETM portal (www.ncetm.org.uk), and more recently through webinars.
All methods of communication aim to support professional communities to discuss
issues facing them (e.g., how to cope with new national initiatives such as a new
curriculum, as well as perennial issues around teaching and learning: how to ask
open questions in mathematics? how to design good formative assessments?).
A portal is crucial but has of course to be regularly updated and improved to
introduce new functionality (including Web 2.0), new design, and improved tools.
It also implements “behind-the-scenes” improved search facilities. The statistics for
the NCETM portal continue on an upward trend with over 80,800 registered users
in March 2012, growing by approximately 1000 per week.

226 J. Adler et al.

http://www.ncetm.org.uk


The NCETM signposts high quality CPD resources usually organised into
microsites, which include departmental workshops that help teachers examine
together a range of mathematical topics that “are hard to teach,” and sector-based
magazines that offer monthly articles that are stimulating and timely. The site also
points to useful CPD opportunities and courses offered by a range of providers in a
constantly updated Professional Development Calendar, which identifies providers
that hold a quality standard for CPD regularly monitored. The NCETM has
developed self-evaluation tools (SETs) in mathematics content knowledge and
mathematics-specific pedagogy. If teachers record limited confidence in any area,
they are sign-posted to possible activities, on and off the portal, with which they
might wish to engage to help them progress.

The NCETM has attempted to take forward into practice research indicating that
involving teachers in collaborative reflection and enquiry pays dividends in pro-
ducing real results in the classroom, and thus is an evidence-based initiative ripe for
the policy arena (see for example, Krainer 2011; Roesken 2011). The Centre has
organised a funded projects scheme, with over 300 projects funded and their reports
posted at www.ncetm.org.uk/enquiry/funded-projects/view-all. The funded projects
scheme provides resources to scaffold the research teachers may wish to carry out in
collaborative groups within or across schools and colleges. Teachers bid for funds
to pursue an enquiry and are provided with useful research “starting points” and
references to promote building on previous work in the research community. The
teachers write a report on their work, and reports and findings of the projects are
posted on the portal and disseminated at NCETM events. Thus, learning is shared,
and the impact maximised. Most, if not all, teacher groups find the experience of the
research and the communication to others invaluable.

Many independent evaluation studies of the Centre have been conducted and I
draw attention to just one (Gouseti et al. 2011). The authors noted that the modest
amounts of funding provided by NCETM could have been provided using internal
school funds. However, the researchers found clear benefits of having an external
organisation provide the funding as a lever on school and district management and
to confer status on the teachers’ work. Thus, funds and the recognition and vali-
dation of the process and outcomes through conferences, accreditation and award
schemes, together proved a powerful incentive for professional learning.

10.2.4 Concluding Remarks

There are similar Centres in several other countries, a recent one being in the
Federal Republic of Germany, where a national centre for mathematics teacher
education has been established, funded by the Deutsche Telekom Foundation. An
important research effort for the international mathematics education community
might be to assess the impact of these centres and identify factors underpinning any
successes that transcend national boundaries. Each country’s Centre has distinct
goals, strategies, funding regimes and expected outcomes, but meta-analyses might
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usefully document the successes and challenges, and tease out some overarching
principles and research findings that could have powerful implications for policy.

Many challenges remain: what type of evidence is needed to convince policy
makers about needed resources or infrastructure in any one country, and can
research form part of this evidence and, if it can, what form should it take? How can
the findings be mediated so as to be meaningful for policy makers? In England, the
picture of participation in mathematics post-16 and in university has shown quite
dramatic improvement since around 2004. Which of the many initiatives initiated
were critical for this upturn? Or, was it a matter of a cumulative effect? Those are
important questions, worthy of investigation by future research.

10.3 Collaboration and Emergence: Reflections on (Some)
Mathematics Education in Africa3

Jill Adler

This section focuses on key developments in mathematics education in Africa that
have emerged through the work of the International Commission on Mathematical
Instruction (ICMI), and been impacted on directly by the work of Michele Artigue.
These developments, their strengths and weaknesses, are discussed and related to
the influence of Michele.

10.3.1 Introduction

The past decade has seen increased mathematics education activity within and
across a wide range of countries in Africa. The International Commission on
Mathematics Instruction (ICMI), through its regional congresses and more recent
outreach activities, has been instrumental in this development. The ICMI activities I
focus on in this paper have all emerged during Michele Artigue’s tenure first as
Vice-President, then President, and currently Past President of ICMI. I joined
Michele as co-Vice-President of ICMI in 2003–2006, and between 2007 and 2009,
I continued as Vice-President under her presidency. During these years, and in
many ways spearheaded by Michele, ICMI had a clear project: to expand activity in
developing countries. “Espace Mathématique Francophone” (EMF) (discussed
below) was underway, and there was keen support for another regional congress of
ICMI, this time focused in and on Africa. AFRICME was launched with its first
Congress in Johannesburg in 2005. In this section, I reflect on the role of ICMI in

3An earlier version of this paper was presented at the ICMI Centennial. See Adler (2008).
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mathematics education activity in Africa, and conversely, on the role of mathe-
matics education in Africa in ICMI, with focus on the AFRICME congresses.

This focus backgrounds ICMI’s current development work. The Capacity and
Networking Project (CANP) was launched with the first ‘school’ (a two-week
workshop) held in Mali in September 2011. As elaborated on the ICMI website:

CANP is a major international initiative in the mathematical sciences in the developing
world to help exchange information, share the state of the art research, and identify
strategies for addressing barriers to enhance mathematics education and to conduct to
building a sustainable network for policy makers, scholars and practitioners across those
targeted regions.

Both EMF and CANP have been initiated from ‘outside’, though in collabora-
tion with, developing countries. Both contribute substantially to enabling net-
working across countries and continents. The inevitable tension is whether and how
such initiatives come to be embedded in local activity, and extend beyond initial
participants. Initiating, building and sustaining professional communities and col-
laborative activities can become even more pressing in contexts of poverty and
constrained human and material resources. AFRICME is no exception. I focus here
on mathematics education activity initiated and sustained within the continent.
AFRICME is one such ICMI related activity. I discuss its emergence and devel-
opment, and its strengths and weaknesses, as a fully regional activity. Of course,
being internally driven does not remove, but rather repositions relations of power.
For example, in the Southern African context in particular, the stronger South
African economy, and instability in some neighbouring countries has drawn mil-
lions from other countries into South Africa’s workforce, including many mathe-
matics teachers. I return to these issues later.

10.3.2 Mathematics Education Across Africa

AFRICME emerged and functions alongside a considerable range of organised
mathematical and mathematics education activity across Africa, some of which
have been in effect for many years. For example, the African Mathematical Union
(AMU) has a long history of activity on the continent, particularly through the Pan
African Mathematics Olympiad (PAMO), and AMU-CHMA, the commission on
the history of mathematics in Africa. The African Institute for Mathematical
Sciences (AIMS), which focuses on postgraduate mathematics study, recently
opened its second campus in Ghana. AIMS’ first campus is in Cape Town, and
these Institutes draw students from across the continent. More regionally, the
Southern Africa Mathematical Sciences Association (SAMSA), and the Southern
African Association for Research in Mathematics, Science and Technology
Education (SAARMSTE) have regular conferences, promoting academic net-
working across countries. There are many other regional and local mathematics
education activities and increasing collaboration and networking amongst academic
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colleagues. All the above initiatives are driven in and from Africa, and build
collaborations and networks internally and then outwards towards and with the
wider international community. It is beyond the scope of this chapter, and indeed
my expertise, to do justice to the expansive and expanding work across Africa. I do
not attempt such. I mention the above in order to provide some contextualisation for
ICMI work in Africa.

As noted, the past decade has seen the emergence of two different kinds of
regional ICMIs with conference-related activities involving participation in or from
African countries. First was the CFEM (Commission française pour l’enseignement
des mathématiques, the French Sub-Commission of ICMI)—an intervention driven
by shared language. The CFEM has held conferences every three years since 2000,
opening a space for communication on mathematics education across
French-speaking countries with strong links into French-speaking African coun-
tries. Alternate conferences take place on the continent. Explicit attention to
working in and across African countries is a central pillar of EFM, and one held up
by Michele during her office in ICMI. Michele provided strong support for net-
working the Francophone community through EMF and with others drove the
vision of paying critical attention to the African Francophone countries. The first
EMF in 2000 saw a strong delegation from Africa, with the following EMF in 2003
being held in Tunisia. Over the years, both as VP and President of ICMI, Michele
has been central in assuring this African presence at all conferences, as well as the
alternation between North and South as sites for the EMF conferences.

Second to emerge was AFRICME. As an initiative in and from Africa, it was
named the African regional congress of ICMI. In 2005, the first Africa regional
ICMI congress took place in Johannesburg, with active support from the entire
executive of ICMI, of which I was part. AFRICME1 marked the beginning of
greater interaction, collaboration and exchanges focused on mathematics education
among practitioners and researchers across the continent. AFRICME2, AFRICME3
and AFRICME4 have since followed in 2007 in Kenya, in 2010 in Botswana, and
in 2013 in Lesotho. The organisation and academic aspects of this initiative are
detailed below.

10.3.3 The Launch and Development of AFRICME

AFRICME1 was held at the University of the Witwatersrand, Johannesburg from 22
to 25 June 2005. One hundred and eighty delegates from sub-Saharan Africa, and
particularly Southern, Central and Eastern Africa, attended the Congress.
A considerable challenge in organising and hosting an Africa-focused Congress is
finance. Across the continent, most practitioners in the field do not have direct
access to travel funds. Fortunately, ICSU-South Africa contributed to congress
costs, enabling us to part-subsidise registration for participants from Lesotho,
Swaziland, Namibia, Botswana, Malawi, Mozambique, Zambia, Zimbabwe,
Uganda and Kenya. Additional funding from the IMU-CDE enabled participation
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from African countries further afield, particularly Tunisia and Burkina Faso. South
African participants had access to local funding. AFRICME1 set an agenda for this
regional congress, with aims to stimulate regional collaboration and activity; pro-
mote regional and global contributions and interactions; highlight issues pertinent
to mathematics education in developing countries; and share and showcase activ-
ities in and across countries in our region. These aims are aligned with overall ICMI
goals and inform ongoing AFRICME activity.

The Congress theme of Mathematics Teaching and Teacher Education in
Changing Times was supported by related national presentations. Participation was
further invited through inputs into four focus strands, the first three of which were
stimulated by an invited plenary panel presentation: Teacher Education (primary
and secondary; initial and in-service); Information and Communication Technology
(ICT) and Resources for teaching and learning; Indigenous Knowledge Systems
(IKS), Ethnomathematics and the Curriculum; Teaching and Learning Mathematics
(primary, secondary and tertiary). Members of the plenary panels were drawn from
across the region, as well as from relevant international experts.

The Congress program included a dedicated 2 h slot for national presentations.
Two problems surfaced as common across countries: the recruitment, retention and
support of mathematics teachers across levels; and the mathematics content
preparation of teachers. There are critical shortages of well-prepared mathematics
teachers as well as recognition that the mathematics courses teachers are currently
studying in their preparation years are not dealing with the kind of mathematical
know-how needed for quality teaching. Many participants talked of the contra-
dictory influence of the donor community in teacher education, particularly in
professional development programmes. An outcome of deliberation during the
Regional Meeting on the third day of the Congress was commitment to the
development of a monograph, based on national presentations. The monograph was
published and ready for distribution and sale at AFRICME2 (see Adler et al. 2007).
The contributors are themselves mathematics teacher educators and active in the
field of mathematics education across the continent and internationally. Their dis-
cussion of teacher education in their country is grounded in knowledge of practice,
as well as knowledge of debates that frame the field more widely. None are nor
claim to be systematically researched surveys. Each chapter offers the authors’
perspective on mathematics teacher education in their country. The monograph is
an important collective resource highlighting common challenges facing mathe-
matics teacher education across twelve African countries, and a direct product and
outcome of the emergence of AFRICME.

Reports on the congress identified key components of its resounding success.
Firstly, there was extensive interaction and sharing of problems and ideas between
mathematicians, mathematics educators and teachers across countries. This sharing
across domains of expertise is a strength of ICMI. In many countries and contexts,
mathematicians, tertiary level mathematics educators and government departments
typically work in separation and all too often in conflict. Yet, all, though in different
ways, are involved with the preparation of mathematics teachers, and all are con-
cerned with the quality of mathematical learners leaving school.
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Secondly, the Congress was Africa-focused i.e., the research, progress, problems
and challenges shared during Congress sessions assumed a shared concern with
conditions and challenges in and across African countries. This provided oppor-
tunity to grapple with real and large problems. For many of us who work exten-
sively in mathematics education internationally, it is a common experience that the
magnitude of the challenges we face in Africa is not easily appreciated. The scale
and challenges of Africa are too often romanticised, exoticised or pathologised. We
experienced a productive climate where we could share successes and challenges.

Third, this interaction across domains and across African countries enabled us to
identify key shared problems, a central one of which is the recruitment and
preparation, and then retention and professional support, for teachers. This is in turn
exacerbated by the language diversity in and across various countries, and their
particular colonial legacy. All are further affected by the prevalence and tragedy of
HIV-AIDS, and these shaped the theme of AFRICME2.

The language of the conference was English—a constraint on full participation
from, and discussion with, French and Portuguese speaking participants.
Simultaneous translation would have greatly increased the costs of the Congress.
This constraint is a weakness of AFRICME—to date all Congresses have been in
English and only English, deterring participation more broadly across the continent.

Energy released in 2005 carried into the organisation of AFRICME2 in Kenya,
Botwana in 2010, and Lesotho in 2013. At the same time, the relative economic
strength of South Africa became visible as both costs for AFRICME and difficulties
in raising funds in other countries increased. As is well known, travel across
African countries is neither easy nor cheap, and while electronic communication
improves daily, there were many more constraints in setting up AFRICME2, 3 and
4, and particularly in funding wide participation. Continuing with the aims and
purposes that guide AFRICME activity, the AFRICME2 attracted 70 participants.
Relatively large contingents attended from Kenya, South Africa, Nigeria and
Botswana, a function of the host country and relative ease of access to funding in
those countries. AFRICME3 and 4 drew greatest participation from Southern
African states, a function of ease of access from neighbouring countries. ICMI
provided start-up funding, and CDE funding enabled subsidisation of participants
from countries further afield, and while small, the AFRICME conferences have
included participation from Uganda, Burkina Faso, Malawi, Namibia, Zimbabwe,
Mozambique and Rwanda.

The theme of AFRICME2 was Embracing Innovative Responses to Challenges
in Mathematics Instruction. National presentations took this focus, and ranged from
developments in Rwanda, to embracing technology in Botswana, and large national
teacher development programmes across East Africa. As programme chair for
AFRICME1, and in my role on the ICMI Executive, I was on the scientific com-
mittees for AFRICME2, and visited Kenya on two occasions as part of the congress
and programme development. A principle we have tried to uphold is that there is

232 J. Adler et al.



some continuity across scientific committees from one congress to the next, so that
experience and wisdom informs planning. The main organisers in Kenya however,
were, for a range of complex reasons, not able to take on this role. Thus, I was also
advisor to the scientific committee of AFRICME3, in a less direct role, also because
my tenure in the executive ended at the end of 2009. AFRICME4 was supported by
Prof Mellony Graven, the ICMI regional rep for South Africa. AFRICME4 par-
ticipants from Kenya undertook to develop and maintain a newsletter and so
facilitate ongoing collaboration and processes for the following conference.

In addition to this working committee, there are other visible spin-offs from
AFRICME activity. Local communities are strengthened, and collaboration and
networking across communities have started to develop. Kenya’s mathematics
education research community hosted a week’s research workshop in July 2012,
where scholars and postgraduate students interacted with invited scholars. A similar
week’s research workshop was held in Tanzania in November 2011, hosted and
supported by the Aga Khan University. This workshop involved a range of par-
ticipants in mathematics, science and language education research from predomi-
nantly East African countries, including Kenya, and it was encouraging to interact
with emerging graduate students and young scholars.

In addition to the illumination of shared interests and concerns across countries,
and the space and environment in which to discuss these with colleagues from other
countries with similar or pertinent experience, open discussion in the Congresses
has made visible some of the negative aspects of donor funding, particularly on
social practices related to professional development. That donor led projects are
largely not sustained once funding runs out is well known. Less evident are other
impacts from ‘aid’. One of the more contentious sessions at AFRICME2 was a
presentation about the significance of professional associations—and a view pre-
sented in a plenary was that as professionals, teachers need to be encouraged to
support their professional growth from their own resources, at least in part. Issues of
dependency and entitlement versus independence and commitment were vigorously
discussed, reflecting different orientations to, and effects of, ‘aid’ or ‘support’.

AFRICME1 had wide participation, and while each of the following AFRICME
congresses has drawn participants from a range of countries, numbers are still
relatively small. I have already drawn attention to the two key constraints at work
here. First are human resources, that is, sufficient numbers of local active scholars
and practitioners who together can organise and support the logistics of an
inter-national congress (albeit ‘regional’), and be instrumental in its academic
development. Second are financial resources. Each Congress has had start-up
financial support from ICMI and some funds from the CDE for participation from
African countries further afield. However, without additional local funding and
support, wide participation is unlikely. AFRICME1 was able to draw substantial
funding from research agencies in South Africa. Such resources are less accessible
for countries that have since hosted the Congress.
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10.3.4 Some Concluding Comments

In her role as both Vice and then President of ICMI, Michele Artigue brought a
sensitivity and openness to working with African colleagues. She actively sup-
ported the development of AFRICME, and her collaboration with mathematics
educationists in Francophone Africa enabled initial bridging across the language
divides. She managed the demands of growing and shaping ICMI at the same time
as ensuring ICMI’s dominant work—its congresses and studies—broadened its
gaze to include attention to the majority of the world’s children who learn math-
ematics in conditions of poverty. Her detailed and insightful manuscript on basic
mathematics education for UNESCO (Artigue 2011) has been influential in the
setting up of CANP, and her two weeks of teaching and support in Mali are the
clearest evidence that with respect to international collaboration and networking,
and to both supporting and learning from those she works with, she walks her talk.

10.4 The Work of the Researcher, and Mathematics
in CIVIC Life

Jean-Pierre Kahane

This last section discusses more generally the role and position of researchers,
especially mathematicians, in contemporary society. After considering the place
that mathematics has in civic life, the section concludes by emphasising the eminent
social role of mathematics education.

10.4.1 A Preliminary Note About Language

Due to editorial constraints all chapters in this book are written in English. The
colloquium in honour of Michele Artigue was delivered in three languages and it
was appreciated as a success. There are many ways to speak of Michèle Artigue,
and drawing on different languages, each with its own colour, could contribute to a
satisfactory painting. My talk was in French, and Jean-Baptiste Lagrange was kind
enough to translate into the present English version. If I had been asked to give my
talk in English, the content would have been different. It was the case in another
conference; I had already prepared a talk in French and was asked to give it in
English just the night before. I had to entirely change the introduction and the
conclusion, though it was essentially a mathematical talk. This is likely a common
experience to many of us. In educational matters the use of English as the only
possible language is a choice, not a necessity.
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10.4.2 The Researcher is Primarily a Worker

Since there are millions of researchers and many research domains around the
world, “the researcher” is an abstraction, like “the worker” is. Actually, the
researcher is primarily a worker, and characterising the work of research is easier
than characterising the work of the researcher. In any case, researchers are workers
and their place in a community depends on the place of workers in this community.
Recent experience in France is evidence that when the workers’ recognition
declines, so does the researchers’ recognition.

Our hope is that workers will have a better position in the world, and so the
researchers’ position will also improve. Reciprocally, is it true that when
researchers are better off, the entire body of workers will also make progress? The
answer is not straightforward. For centuries, research undertaken in prominent
capitalist countries and recently, in European Community treaties, is seen as a
weapon in the economic competition.

The link between research and innovation is not only a slogan; it actualises in the
exploitation of researchers’ work for financial profit. As in sport, research is often
dignified by emphasising individual performance, far from the actual research
terrains where so many researchers work humbly. Society can recognise a small
number of researchers as eminent, without recognising the role of the research work
and more largely of the whole body of work.

Rather than highlight individuals’ achievements, I would like to support the idea
of exemplarity of researchers’ work in general. This work combines personal ini-
tiative, collective work, cooperation and emulation, audacious projects, and con-
stant world-wide peer evaluation. It involves debating, exchanging, communicating
and publishing results and methods. In France for several decades, a stable envi-
ronment allowed for efficient and flexible research. This, we should not only
defend, but also promote. The French philosopher Montesquieu said that, in
democracy, the citizens retain sovereignty and must do themselves what they know
how to do. This is true also for workers and is of interest for all workers. Acting as
an efficient professional is a civic obligation and this is what all researchers aim for.
The researchers’ commitment to their work has value for all workers.

10.4.3 Mathematical Sciences

Mathematics is multifaceted and so is civic life. In this section I will explore some
interconnections. Mathematics evolves as other sciences do, but with specific fea-
tures. One feature is the intimate link with teaching; another is that ancient notions
like numbers and figures retain a permanent and ever new interest; and another
feature is the articulation between imagination and rigour.

In recent evolution, structures, models, and interactions inside mathematics and
with other disciplines have been essential concerns. Attention is now placed on
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“mathematical sciences” as reflected by the work of the committee in which
Michèle Artigue eminently contributed.4 What is it about? In the committee, there
were researchers in physical sciences and in computer science who did not have the
same opinion on the role of informatics. Informatics plays an eminent role in
modern life, as electronics does. Electronics is constitutive of physical sciences, so
why separate computer science from mathematics? There was a danger of dwelling
too long on this question. In contrast, the whole committee agreed that today
mathematics is produced by physics and computer scientists as well as by mathe-
maticians, even at the level of concepts and methods. Today, mathematical sciences
come from everywhere, particularly from physics and computer sciences, and
mathematics works like a sort of noria drawing from many sources: concentrating,
distilling, simplifying, and making useable, ideas that often come even from outside
the sources. For example, telephone engineers had no direct influence upon
molecular biology; in contrast, the mathematical theory of information drew from
telephone engineers’ ideas that molecular biology found useful.

In mathematics, beauty is a guide. The beauty of a theorem has always been
enjoyed. Etymologically, a theorem is something before what people stop and
contemplate. In mathematics, beauty is mostly in simplicity. Henri Poincaré con-
sidered that definitions in science are chosen principally because they are easy to
use. One can discuss this with regard to natural sciences. In contrast, it is a truth in
mathematics. For example, defining a sphere by way of a centre and a radius
provides a foundation, although it is counterintuitive with regard to ordinary
experience: the centre of a spherical balloon cannot be reached. Children and adults,
however, easily admit this abstraction because it is simple, beautiful and useful.

The cycle of conferences “one text, one mathematician”5 organised by the
French Mathematical Society is a true success. Themes play a role in this success,
but another reason is that speakers succeed in being as direct and understandable as
possible when addressing topics very new for the audience. They convey an
excellent image of the mathematician in society.

10.4.4 Mathematics in Civic Life

In what dimensions does mathematical work concern civic life? What is its role
now, and what can it be in the future?

Present-day mathematics’ main contribution, if we want to be caustic, is to
weapons and finance. All kind of mathematics is actually involved: financial
mathematics as well as military mathematics are true and often bright mathematics,
although directed by present dominant interests. My belief is that our grandchildren

4CREM, commission de réflexion sur l’enseignement des mathématiques (see Kahane 2002).
5http://smf.emath.fr/cycle_texte_mathematiciens.
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will have to work for a balanced world and for solidarity, and then we will start to
see research in more varied directions. We already see new mathematics created and
developed for mastering the data arising from other sciences. New mathematics will
appear and old mathematics will reappear.

Mathematicians can valuably advise other citizens not to restrict research on
matter immediately useful. For example, Euclide’s prime numbers had no appli-
cation for 20 centuries, and they continue to be the object of research with no
visible application. Other advice is that nothing is garbage. We know how much
past mathematics remains a source of inspiration and examples. We hope that the
mathematics created today does not fall down and die because nobody takes over
and continues the research.

Mathematics education is actually the main route by which collective values can
expand to include present-day developments in mathematics. Teaching and learning
mathematics, especially at university level, is crucial in order to ensure the tran-
sition between discovery and assimilation by society.

References

ACME. (2002). Continuing professional development for teachers of mathematics. http://www.
acmeuk.org/media/1463/continuing%20professional%20development%20for%20teachers%
20of%20mathematics.pdf

Adler, J. (2008 March). ICMI in Africa and Africa in ICMI: The development of AFRICME. In
Proceedings of the ICMI Centennial Conference, Rome.

Adler, J., Kazima, M., Mwakapenda, W., Nyabanyaba, T., & Xolo, S. (Eds.). (2007). Mathematics
teacher education: Trends across twelve African countries. Johannesburg: Marang/ICMI.

Artigue, M. (2011). Current challenges in basic mathematics education. France: UNESCO.
Gouseti, M., Noss, R., Potter, J., & Selwyn, N. (2011). Assessing the impact and sustainability of

networks stimulated and supported by the NCETM’ report. London Knowledge Lab, Institute
of Education, University of London.

Hoyles, C. (2010). Creating an inclusive culture in mathematics through subject-specific teacher
professional development: A case study from England. The Journal of Mathematics and
Culture, 5(1), 43–61.

Hoyles, C., & Ferrini-Mundy, J. (2012). Policy Implications of developing mathematics education
research in clements. In M. A. (Ken), A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.),
Third international handbook of mathematics education. Berlin: Springer.

Kahane, J.P. (2002). /L'enseignement des sciences mathématiques : Commission de réflexion sur
l'enseignement des mathématiques/. Paris: Odile Jacob. https://fr.wikipedia.org/wiki/Jean-
Pierre_Kahane

Krainer, K. (2011). Teachers as stakeholders in mathematics education research. In B. Ubuz (Ed.),
Proceedings of the 35th Conference of the International Group for the Psychology of
Mathematics Education (Vol. 1, pp. 47–62). Ankara, Turkey: International Group for the
Psychology of Mathematics Education.

Roesken, B. (2011). Hidden dimensions in the professional development of mathematics teachers:
In-service education for and with teachers. The Netherlands: Sense Publishers.

10 The Researcher in the Wider Community 237

http://www.acmeuk.org/media/1463/continuing%20professional%20development%20for%20teachers%20of%20mathematics.pdf
http://www.acmeuk.org/media/1463/continuing%20professional%20development%20for%20teachers%20of%20mathematics.pdf
http://www.acmeuk.org/media/1463/continuing%20professional%20development%20for%20teachers%20of%20mathematics.pdf
https://fr.wikipedia.org/wiki/Jean-Pierre_Kahane
https://fr.wikipedia.org/wiki/Jean-Pierre_Kahane


Chapter 11
Preparing Young Researchers
in Mathematics Education:
Beyond Simple Supervising

Mariam Haspekian, Rudolf Straesser and Ferdinando Arzarello

11.1 Introduction

Preparing young people for research and supervising doctoral theses are two major
ingredients of a researcher’s activities. Whilst there are probably as many traditions
as there are supervisors for carrying on this non-simple activity, there are certainly
some essential processes and steps. What are these required keys to help a student
become a scholar? Much more than concerning only two individuals—the student
and the supervisor—the question is of community concern, as it is actually about
how to make the doctoral student eventually gain the recognition of their peers.

The Artigue Colloquium offered an opportunity for discussing this researcher
mission. This aspect, seldom considered in scientific debates, was taken up within a
panel session, coined the Artigue School,1 involving a few invited speakers and
former students of Michèle—but the session also had as an aim to pay a tribute to
Michèle Artigue’s personal work as a supervisor of doctoral theses. Consequently,
the expression ‘Artigue School’ intended not only to represent all those persons that
Michèle Artigue has accompanied on the path of research, but also to emphasise
ideas generated through such support and supervision. The session thus faced a
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delicate mission, as it aimed both at recognising a great professor, echoing the
whole ‘Artigue School’, and at questioning in general terms the mentoring of
students towards research in mathematics education. Moreover, the session was
expected to be serious—but not boring, to offer some general reflection—but also
remain personal, to be a true scientific activity—but also light and lively!

With these aims in mind, the session was composed of two parts. First, a
presentation and homage to this specific activity, in which Michèle Artigue was
herself strongly involved, offered by two of her former students, Mariam Haspekian
and Avenilde Romo-Vázquez. Second, a more general reflection on preparing to
research in mathematics education in the form of a roundtable, chaired by
Ferdinando Arzarello, with two guests: Uffe Jankvist, a young researcher and
representative of the YERME2 group, and Rudolf Straesser, an experienced
researcher and supervisor.

Building on what was presented at the Colloquium, this chapter aims to reflect
these two strands, using the observations made about Michèle’s supervising activity
as an occasion for raising the general issue of preparing young researchers to
conduct research in mathematics education.

11.2 From Michèle Artigue’s Supervising Activity to More
General Questions

11.2.1 The Diversity at the Heart of the Artigue School

The tribute given to Michèle Artigue was presented in the form of a two-voice
dialogue echoing testimonies and reactions collected for the occasion from former
doctoral students. A selection of these reactions was then used to sketch questions
to be discussed in more general terms in the roundtable. We report here on these
questions—but in a less personalised style than at the colloquium presentation.

We begin with a few interesting facts to describe the Artigue School (using data
up to the year 2013):

• Michèle supervised some thirty theses (doctoral and habilitation) over 20 years,
authored by 15 females and 12 males (Appendix 2 lists the doctoral theses)

• a total amount of about 11,500 pages, each one read several times by Michèle,
• Michèle supervised students from more than a dozen different countries.

But what is the actual activity hidden behind these numbers and facts? The
various testimonies collected in Michèle’s case show that supervising doctoral
studies can be seen as an activity carrying a threefold—at least—responsibility:
professional, scientific and human.

2Young European Researchers in Mathematics Education, a strand within the ERME community.
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First, supervision is a professional responsibility for all university professors in
connection to their employment. Supervising young researchers is an activity quite
demanding in terms of time and work, but is also one of the basic duties of an
expert researcher. Depending on the country, this duty may be more or less offi-
cially inscribed in institutional texts.

However, these ‘administrative’ aspects are not always the ones that come to
mind first: mentoring is, above all, a scientific responsibility assumed in reference to
the community of researchers. This activity is essential for the very existence of
research; it addresses the needs of new topics in the research field, and of devel-
oping future research strands.

The third window through which the preparation of young researchers can be
analysed—and one strongly emphasised amongst the reactions to Michèle’s work—
is the human facet. This responsibility should not be underestimated. It is a difficult
human activity to help a person become a researcher, facing all the various situa-
tions that a student may encounter throughout his/her personal life and position. In
this context, there are two sets of constraints that are more often raised at the level
of doctoral studies than at other levels: financial and family constraints. Such
studies imply a minimum of financial ‘security’. Moreover, in such a context, the
student is typically not ‘only’ a student, living alone or with parents, but very often
also with additional family constraints. Because of these fundamental constraints,
the student’s personal situations or difficulties frequently also become the super-
visors’—at least to a certain extent.

These three crucial aspects relate to numerous and different qualities expected
from the supervisor. Here are some (non-exhaustive) examples: tenacity, determi-
nation and engagement are needed for the first, professional, responsibility;
open-mindedness, advisement, adaptability, diversity and expertise for the scientific
responsibility; and humanity, respect for ideas and confidence, are needed for the
final, human, responsibility. It is interesting that while all these words reflect
Michèle’s qualities as a supervisor, we can clearly use the same terms to qualify her
own exceptional activity as a researcher per se.

Consequently, a central question is the interrelationship between these two
activities of supervising young researchers and carrying out high level research: is
one a condition for the other? This issue of interrelationship can also be seen
through the diversity of research subjects in which Michèle was involved, either as
a supervisor or as a researcher. The doctoral theses that she supervised concern the
following areas: technology; university-level mathematics; transition from sec-
ondary school to university; teachers’ practices and professional development;
epistemology and didactics; transition to post-secondary mathematics; algebra;
functions and analysis; geometry; modelisation; and connecting and integrating
theoretical frameworks.

In conclusion, while many words could be used to describe the professional,
scientific and personal activity of supervising, Michèle’s involvement can also be
characterised by another term: ‘diversity’—diversity of ideas, diversity of places,
and diversity of people. Michèle supervised many different types of students,
including: a range of age groups; novice researchers as well as experienced
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teachers; people from different cultures; and those working across continents. Her
students also prepared dissertations on a wide variety of topics, and utilised a range
of methods, such as quantitative, qualitative and mixed methods.

11.2.2 Four Dimensions of Questions

One of the authors of this chapter (Haspekian) has previously been engaged in a
reflection, with two other colleagues (Christine Chambris and Julie Horoks), on the
mentoring of young researchers by experienced supervisors. While comparing
perceptions and experiences of young researchers being mentored by different
supervisors and looking for common, invariant questions, four dimensions were
identified in order to evoke the task to be accomplished in such a context by the
supervisor3 (unpublished work). For the colloquium session, we borrowed these
four dimensions as a good way to both pay tribute to an exceptional supervisor and
to launch the discussion on learning to become a researcher in mathematics
education:

1. Degree of filiation: this dimension refers to the interactions with the supervisor’s
own research;

2. Productivity: this dimension questions the way the supervisor fosters the pro-
gress of his or her student’s work;

3. Risk-taking and psychological stress of the supervisor: this dimension indicates
the fact that agreeing to mentor a doctoral student is also a kind of ‘gambling’—
on a person and on a topic;

4. Handing over the reins: this dimension points to a particular and crucial moment
for a supervisor—when the student becomes a researcher on his/her own (and
before in turn becoming a supervisor).

11.2.2.1 Degree of Filiation

The first dimension thus concerns the interactions with the supervisor’s own
research, passions, and the topics she is working on (or worked on some time ago,
but reconsiders for the thesis). It can also concern the choice of a theoretical
framework and/or methodology. Interactions with the supervisor’s personal
research are inevitable. The responsibility of supervising a thesis may lead the
supervisor, more or less consciously, to push the student towards questions and
methods with which she was or is struggling herself. This in turn raises two issues.
In advance, the supervisor certainly perceives a range of possibilities for giving
direction to the student—to what extent has she developed a sensible vision of the

3We wish to also thank Véronique Battie for the elaboration of these four dimensions.
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future work? On the student’s side, this also raises the more general question of the
student’s freedom, such as the freedom of choosing a research topic, e.g., a theo-
retical framework and/or a methodology. This question can vary greatly according
to the supervisor/student relationship, but also depending on the institutional and
cultural environment. Different countries may have different traditions about
research, and may be more or less financed by private grants, eventually putting this
element of freedom in danger.

11.2.2.2 Productivity

The second dimension is a more practical one: it concerns the stages and timeline of
the supervising actions. How does the supervisor foster the progress of her student’s
work in the time available? What means does she use in order to help the student to
write? What about the first production(s), the intermediate ones, and the
read-through process (the comments on the written part)? What about the working
meetings? Does a timeline exist?

The possible techniques are surely very different and to a large extent personal,
but it should be possible to point out some invariants: designing a three-year plan,
developing a good set of questions, getting the student to adopt a theoretical
framework and a methodology, providing references, reading-through, receiving a
well-structured text after the first drafts. However, these invariants must be more or
less adapted to the student’s personal constraints. Moreover, due to the specificity
of the field of mathematics education, it is not unusual to meet doctoral students
who are already teachers themselves, which often implies professional and family
constraints on the student’s side. Consequently, doctoral studies demand adaptation
to a new environment, both in terms of culture and climate. Here again, the
experience with Michèle raises two more general questions: the question of a
timeline of doctoral stages, often organised differently according to the institutional
culture, and the question of adaptability, which is not only a question of a subject’s
personality, but also one of institutional possibilities. How does the supervisor
adapt to the different situations a doctoral student faces: for instance, a student or
young teacher who wants to be better educated in the didactics of mathematics
versus an experienced practitioner who wants to spend her ‘leisure time’ writing a
doctoral thesis…? Is there a place for the latter type of doctoral student in every
country?

11.2.2.3 Risk-Taking and Psychological Stress of the Supervisor

The level of a supervisor’s stress is strongly connected to the risk-taking that thesis
supervision represents. While the student, in the course of the doctoral study, is
emotionally tested, the same is true of the supervisor, who in fact experiences a
double insecurity, gambling both on a person and on a topic. This dimension is
probably the most personal one, deeply dependent on the supervisor’s character. It
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is certainly not a simple question of loving risk or loving gambling. It is more a
question of trust in life, trust in every person. In Michèle Artigue’s case, one can
say that she acts as if nothing is impossible—and this, in return, creates conditions
for wellbeing and makes the student feel more confident in the work to be
accomplished. But Michèle’s case does not seem to reflect the general case.
According to Stubb (2012, p. 1):

the number of doctoral students who never finish their degree is quite high in many
countries. Depending partly on the discipline and the country in question, the numbers
range between 30% and 50% (…), with some sources suggesting even higher attrition rates.

Thus, in the general case, three questions can be asked in order to limit risk and
to deal with the time aspect when the doctoral process becomes problematic: How
far ahead can the supervisor foresee the work to come when accepting a mentoring
role? How does the supervisor manage when the research does not advance? How
can the supervisor be of help to the student in overcoming personal difficulties?

11.2.2.4 Handing Over the Reins

The last dimension relates to the scientific future of the student, and her/his
autonomy in research. How does the doctoral work prepare the student as a
researcher? How does the experience as a Ph.D. student nurture the work of
becoming both a future researcher and a future supervisor?

One of Michèle’s techniques to address this issue is the immersion of the student
in one of the supervisor’s real-world research projects. Such an immersion is a good
way of helping the student to grow on the research pathway. Most of Michèle’s
students heavily benefitted from the geographical and institutional proximity with
the IREM4 structure. This calls into question the influence of institutional (local and
national) constraints on the supervisor’s task, which may play out positively, but
may also act as negative constraints in some cases. It is only within the complex
webbing of these constraints that a supervisor can act (and be successful as Michèle
was!). New questions are thus being addressed here: How important for the
supervisor’s job is the role played by local, institutional and national constraints?

4An IREM—Institut de Recherche sur l’Enseignement des Mathématiques—is a structure, par-
tially financed by the Ministry of Education, where researchers in mathematics education, math-
ematics teachers and teacher educators can meet in order to carry out different activities together:
research, teacher education sessions, or production and dissemination of teaching resources or
innovations. There are 28 local IREMs throughout France.
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11.3 Reflecting on the Education of Young Researchers
in the Didactics of Mathematics

The preparation of young mathematics education researchers is an aspect seldom
considered, although not totally inexistent, in scientific debates. Among the
researchers who have already considered this issue are McAlpine and Amundsen
(2011, 2012), Stubb (2012) and Pyhältö et al. (2009). One can also refer to the
outcomes of the conference, One Field, Many Paths: US Doctoral Programs in
Mathematics Education (Reys and Kilpatrick 2001). In this section, we aim to
introduce some additional perspectives to complete the characteristics of this
threefold activity, as we have presented it above.

We use as a starting point for our discussion the four dimensions structuring the
supervisor’s task, as introduced above, and then add perspectives arising from other
studies.

11.3.1 The Questions Discussed in the Roundtable

The following four questions are related to the dimensions introduced in Sect. 11.2.2.

What is the interrelationship between the supervising activity and the supervisor’s own
research?

According to one of the panellists (Straesser), an obvious and necessary tension
can be observed between the supervisor’s research and a thesis: starting from the
assumption that a doctoral student is an adult who has to somehow work on the
‘same’ question for a substantial number of years, it is absolutely necessary that
he/she can personally identify with the topic and methods (the ‘problématique’) of
the thesis to be written. The chosen subject can be strongly oriented by the theo-
retical approach chosen. This can be in line with, but also in contrast to, the
supervisor’s ideas, experience and preferences, sometimes requiring a delicate
balance. For instance, in France the two major theoretical approaches, namely the
‘TAD’ (sensu Chevallard) and the ‘TDS’ (sensu Brousseau), shed different lights on
information and enable different analyses. The potential tensions, between the
preferences of the supervisor and those of the student, can sometimes be reduced by
bringing in a co-supervisor—quite common in some of the Nordic countries.
However, a co-supervisor can also complicate the general balance by introducing an
additional element into the communication/cooperation process between the doc-
toral student and the supervisor.

How does the supervisor foster the progress of her student’s work?

Such a question about a possible ‘timeline’ or ‘stages’ on the road leading to a
doctoral thesis, though not necessary in general for structuring the student’s work,
may presuppose a specific environment. In some places—and surely in the French
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‘écoles doctorales’—there may be a set of (obligatory) doctoral courses and stages
to follow on the way towards the defence of a doctoral thesis. This structure may be
additionally strengthened by institutional constraints in certain local graduate
schools and/or national regulations. Such structures and constraints may vary
substantially from one country to another. For example, the structure of doctoral
studies in Germany is quite different from, and less organised than, the way the
process is handled in France. It is obvious that a delicate balance has to be found
between wise institutional, maybe even national, regulations, and the possibilities
and constraints of the (sometimes very) individual case of the doctoral student.
A particular consideration in this respect is the role of courses for doctoral students
offered on a national (or even international, as shown by courses in Denmark) basis.
In a less developed environment (for a student, say, at a small university), such
institutions can be crucial.

If there is a ‘standard’ timeline, which may even be strengthened by external,
financial constraints (like stipends from different agents), questions about the inner
organisation become crucial (such as the search for references; the choice of
research methodology—maybe even at variance with the supervisor’s habits, as
mentioned above; learning and developing scientific writing; attending international
conferences; and publishing in journals before graduation). The form of the dis-
sertation may be an additional issue—awarding, for instance, a Ph.D. not for a
‘book’, but for a set of refereed journal publications collated together with a
summary.

Another possible situation concerns the experienced ‘practitioner’, an able,
scientifically well-educated teacher, who can afford, and wants, to spend her/his
‘leisure time’ writing a doctoral thesis (such cases really exist!). Is there a place in
the ‘system’ for such doctoral ‘students’? (Going back to the first dimension: Will
she/he be accepted by a ‘normal’ supervisor closely linked to one of the dominant
paradigms of the discipline?). This case often occurs in the research field of
mathematics education. In France, however, there is no institutional help to facil-
itate doctoral studies by teachers. These doctoral studies then take 5 or 6 (or more)
years, are self-financed, and carried out in conditions that are very different from
‘direct’ students, financed by doctoral funds, with no ‘other’ profession to fulfil
than studying, and finishing in 3 years. Even if the quality, at the end, is the same,
the financial impact is completely different between these two cases, the second
student entering (and then progressing) a research career much more quickly than
the first student.

There is also a gender issue, observable in Germany but which may be also valid
in other countries: to put it in crude terms, is the ‘normal’ doctoral student male?
The gender gap may be not too wide in mathematics education, but there are at least
national differences in terms of family support, which often impact on the gender
issue. To provide just one example from Germany—to a certain degree in contrast
to France or Sweden—the societal support systems are not as helpful for female
doctoral students (see the statistics in Mills et al. 2014, especially the low German
provision of childcare for children up to three years of age—the graph on p. 6 of
Mills et al. is reproduced in Appendix 1). Comparable constraints may be present to
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a certain degree in France, at least in the post-doctoral phase (see the fourth
dimension, as discussed below).

What about the risk-taking and stress of the supervisor?

Both persons, the doctoral student and the supervisor, are caught in a linked
gambling situation—and both should endeavour to make it a win-win situation.
Apart from the nitty-gritty details (see some examples below), creating a win-win
situation is most important, even if in some cases, the gambling develops into a
lose-lose situation which is difficult to escape. If the deterioration is due to personal
characteristics of the Ph.D. student and/or the supervisor, co-supervisors may again
be a way out of this unwanted situation.

What about the student becoming a researcher on his/her own? How to accompany and
guide this transition, from novice in research to an expert?

From the experience of one of the panellists (Straesser) at the Colloquium, there
should be as many different ways as possible of achieving a Ph.D. thesis and
becoming a recognised researcher. If writing a thesis can remain an ‘affair’ between
the doctoral student and the supervisor—as is often the case in Germany—be-
coming a researcher needs more academic support and recognition. This can be
helped by local or national doctoral programs—as was the case with the doctoral
school sponsored by the Riksbankens Jubileumsfond in Sweden. In most cases, this
implies for the doctoral student certain duties, if not compulsory courses, not
directly linked to the topic of the dissertation, but helping with a certain standard for
the dissertation and the overall research education of the doctoral student. Personal,
local, institutional and national affordances and constraints are most important in
the delicate balance inside a ‘doctoral family’. It is interesting to note that in
Germany, the expression ‘Doktorvater’ (doctoral father) is traditionally used to
designate the supervisor—nowadays duly enlarged to ‘Doktormutter’ (doctoral
mother) so to reflect both the appropriate ‘role model’ and the actual situation. As is
the case in parenting, everything has to be done in order to help the doctoral student
maintain this delicate balance, to further her/his success in academic life, and to
empower her/him to educate in turn ‘doctoral children’ by her/himself.

Additional questions can also be raised, related to the issue of the education of
researchers beyond the supervisor, and even beyond the university. Such questions
can be connected to other studies.

11.3.2 Perspectives from Other Studies

A panel session at a recent PME conference (PME 37, Kiel 2013) was devoted to
the discussion of issues concerning the education of young mathematics education
researchers (Liljedahl et al. 2013). From a synthesis of different studies providing
recommendations for the improvement of doctoral education, the contributors
listed a number of different questions that can be explored (Liljedahl et al. 2013,
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pp. 1–71): the composition and housing of mathematics education Ph.D. pro-
grams; the research preparation of mathematics education Ph.D. students; their
mathematical preparation; their mathematics education preparation; their teaching
preparation; and the policy pertaining to the mathematics education of Ph.D.
students.

Two main issues were then raised:

• the education of young mathematics education researchers goes beyond Ph.D.
programs and beyond universities; and

• young researchers need mentorship from their supervisors and, more broadly,
from the field of mathematics education.

These issues arising from the conference can relate to our questions, particularly
to the question of freedom (what is the actual freedom in research for a Ph.D.
student?—see the discussion under the first dimension in Sect. 11.2.2), the question
of external/internal constraints (which can influence the productivity of a Ph.D.
student), and the question of turning the student into a recognised researcher (entered
into an international research community and able to suitably develop her/his own
research project). But they also point, more strongly than we did, to the importance
of the political dimension. According to Liljedahl et al. (2013, pp. I–71):

young researchers need mentorship not only from their supervisors but also from, and
within, the field of mathematics education. In this regard, consideration as to whether or not
an organization actively partakes in the mentorship of young researchers becomes a
political one.

In a similar spirit, Stubb (2012) stresses the importance of communities
(scholarly communities or communities of practice, as defined by Lave and Wenger
(1991) for helping undergraduates to move “from the periphery to the centre of
research activity”:

This environment provides the grounds for learning competencies such as understanding
one’s own discipline, the ways to conduct research, and the ways to communicate the
research to others, both inside and outside the scholarly community. (Stubb 2012, p. 18)

Thus, one key process in supervision is certainly to promote this dynamic
integration of the student within various communities, including the central aca-
demic research community. But this needs to be put into balance with the fact that
pertinent research results can also stem from dissensions between current practices
and an individual’s thinking.

These studies also suggest that the question of supervising is not merely a
one-person question, but should be inscribed in the more general question of “how
doctoral students are taken as members of academic communities” (Stubb 2012,
p. 81).

While these issues underline the importance of local/national politics for edu-
cation to research, the PME panel also stressed—of course—the importance of the
supervisor’s own work. It may be helpful to remember the (impressive) list of
needed qualities that were evoked during that panel. These can be seen as
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complementing those discussed in the Artigue School roundtable, and fit well into
our four-dimension scheme delineating the preparation of young researchers in
mathematics education:

For the first dimension (Degree of filiation), one can quote the following needed
qualities or actions: find areas of personal interest of the doctoral student, discuss
anything the student is finding problematic, and learn about the student’s own
research (or communities).

For the second dimension (Productivity): become familiar with the scientific
discourse in mathematics education, help with networking, invite the student into a
research study and into other research projects, encourage the student to attend
sessions organised by national grant bodies, provide significant feedback, provide
support, do not leave the student on their own, aid cooperation with other doctoral
students, provide resources, and encourage other researchers with expertise in the
subjects to assist.

For the third dimension (Risk-taking and psychological stress): reward learning
processes, be flexible without ready-set roles or traditions, do not be too rigid in
providing advice, help in finding financial support, and consider mentorship not
only about cognitive processes but also for wellbeing.

Finally, for the fourth dimension (Handing over the reins): develop professional
identity for the student beyond being a school teacher or a teacher educator, treat
the Ph.D. student as a collaborator rather than a student, introduce the students to
other researchers during conferences and through international organisations, and
provide opportunities for ongoing conversations at international conferences, by
email, or face-to-face.

The panorama would not be complete, however, if we do not refer to another
issue, one rarely mentioned in studies (for instance, in McAlpine and Amundsen
2011, p. 37): that of ‘pleasure’. The feeling of fulfilment that goes with the
accomplishment and defence of a thesis is undoubtedly a feeling shared by both the
student and the supervisor.

Returning to Michèle Artigue, who so intensively put all of these points into
practice in her contact with her students, we can say that far more than the simple
title of ‘supervisor’ printed on the theses, in reality, Michèle embodies remarkably
well the PME panel conclusion: “Mentorship of young scholars goes beyond simple
supervising.”

How and when did Michèle learn how to endorse this role? Our chapter defi-
nitely demonstrates to what extent mentoring is a multifaceted task, requiring a
triple responsibility and complexified by a particular teacher-student relationship—
while, at the same time, hardly reducible to only this relationship—and subject to
local, national, internal and external constraints. However, there seems to be no
formal political regard to this complexity and no preparation for researchers to
navigate this complex task—sometimes even its institutional recognition is weak.
The entire academic world acts as if supervising comes naturally. In practice,
without receiving any formal professional accompaniment, most supervisors
‘learned’ from peers, sometimes from observing experienced colleagues, or learned
alone, from their own experience as a former doctoral student, in a learn-by-doing
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process. Consequently, our chapter concludes by emphasising the importance of
professionally preparing academics to take up this triple responsibility of super-
vising doctoral students.

Acknowledgements The authors express their gratitude to Uffe Thomas Jankvist and Avenilde
Romo-Vazquez. Special thanks go to Bernard Hodgson—this text would have never been written
without his appropriate and gentle push to actually write it.

Appendix 1

Appendix 2: 20 years of supervision

List of theses directed or codirected by Michèle Artigue [from 1993 to 2013]

Fig. A.1 Percentage of children up to three years of age cared for by formal arrangements by
weekly time spent in care, 2010. Source Eurostat, ilc_caindformal, extracted: 12 December 2013.
Note Eurostat has flagged that for Finland (FI) there has been a break in the time series for both
data points (From Mills et al. 2014, p. 6)
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Antoine Dagher Environnement Informatique et apprentissage de
l'articulation entre registres graphique et algébrique de
représentation des fonctions

1993

Michelle Lauton Enjeux et réalités de l'enseignement des mathématiques
en IUT dans les départements de gestion : le cas des
mathématiques financières

1994

Maha
Abboud-Blanchard

L'intégration de l'outil informatique à l'enseignement
secondaire des mathématiques : symptômes d'un malaise :
Un exemple : l'enseignement de la symétrie orthogonale
au collège

1994

Brigitte Grugeon Etude des rapports institutionnels et des rapports
personnels des élèves à l'algèbre élémentaire dans la
transition entre deux cycles d'enseignement : BEP et
Première G

1995

Georges Kargiotakis Contribution à l'étude de processus de contrôle en
environnement informatique : le cas des associations
droites-équations

1997

Marléne Alves Dias Les problèmes d'articulation entre points de vue cartésien
et paramétrique dans l'enseignement de l'algèbre linéaire

1998

Badr Defouad Etude de genèses instrumentales liées à l'utilisation de
calculatrices symboliques en classe de Première S

2000

Fréderic Praslon Continuités et ruptures dans la transition terminale S/deug
sciences en analyse : le cas de la notion de dérivée et son
environnement

2000

Agnès Lenfant De la position d'étudiant à la position d'enseignant :
l'évolution du rapport à l'algèbre de professeurs stagiaires

2002

Michela Maschietto
(Ferdinando Arzarello)

L'enseignement de l'analyse au lycée : les débuts du jeu
local-global dans l'environnement des calculatrices

2002

Caroline Bardini
(Michel Serfati)

Le rapport au symbolisme algébrique : une approche
didactique et épistémologique

2003

Véronique Battie
(Michel Serfati)

Spécificités et potentialités de l'arithmétique élémentaire
pour l'apprentissage du raisonnement mathématique

2003

Analia Bergé Un estudio de la evolución del pensamiento matemático:
el ejemplo de la conceptualización del conjunto de los
números reales y de la noción de completitud en la
enseñanza universitaria

2004

Eric Laguerre
(François Colmez)

Une ingénierie didactique pour l'enseignement du
théorème de Thalès au collège

2005

Mariam Haspekian Intégration d'outils informatiques dans l'enseignement des
mathématiques : étude du cas des tableurs

2005

Avenilde
Romo-Vazquez
(Corine Castela)

La formation mathématique des futurs ingénieurs 2009

Sonia Ben Nejma
(Lalina Coulange and
Faouzi Chaabane)

D'une réforme à ses effets sur les pratiques enseignantes -
Une étude de cas : l'enseignement de l'algèbre dans le
contexte scolaire tunisien

2009

(continued)
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Jean-Philippe Georget Activités de recherche et de preuve entre pairs à l'école
élémentaire : perspectives ouvertes par les communautés
de pratique d'enseignants

2009

Laurent Souchard Les logiciels tuteurs fermés: institutions d'apprentissage et
d'enseignement ? : le cas du début du secondaire

2009

Ridha Najar
(Houcine Chebbi)

Effets des choix institutionnels d'enseignement sur les
possibilités d'apprentissage des étudiants. Cas des notions
ensemblistes fonctionnelles dans la transition
Secondaire/Supérieur

2010

Grégory Train
(Maha
Abboud-Blanchard)

Le tableau blanc interactif, un outil pour la classe de
mathématiques ?

2013
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Chapter 12
Epilogue. A Didactic Adventure

Michèle Artigue

The conference from which this book originated was for me especially emotional,
as the reader can easily understand. As I write these lines after reading the revised
versions of the different chapters and also the text I had prepared for the closing
lecture, the same emotion arises again. My first words will be to express my deepest
gratitude to all those who make it possible for me to experience such an unfor-
gettable moment in which I was surrounded by so much esteem and affection, and
the associated feelings of scientific collaboration and shared values.

Beyond the homage, the festive moments and the pleasure of meeting so many
colleagues and friends, this conference was remarkable for the quality of scientific
exchanges between participants from very diverse horizons and fields of expertise,
crossing world regions and generations. Many themes of major interest for me were
addressed in the lectures, roundtables and workshops. Purposely selected by the
scientific committee, the themes reviewed the main lines of my scientific engage-
ment. During the conference, we could measure the important progression in
thinking modes and didactic knowledge on each theme over the last few decades,
and the resulting book reflects this progression beautifully. In this chapter, I come
back to some of these themes as I did in the closing lecture, intertwining my
comments with a more general reflection on the didactic adventure through my
personal experience. Such a conference, indeed, is an occasion for retrospective
reflection on the person who is honoured, and also an opportunity for conveying to
the new generations of didacticians1 some elements of a history which has shaped
their field of study.

M. Artigue (&)
LDAR (EA 4434), Université Paris Diderot, Paris, France
e-mail: michele.artigue@univ-paris-diderot.fr

1In this chapter, I purposely use the word “didactician”, a literal translation of the French word
“didacticien” instead of the word “mathematics educator” usual in the Anglo-Saxon literature.
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12.1 First Steps in Didactics: Audacity and Ingenuity

In this section, I discuss elementary school mathematics—numbers, magnitudes,
computation, geometry—that I began to seriously work on as educational issues in
the mid seventies. I completed this work under the leadership of André Revuz, who
was the first director of the IREM Paris 7 created in 1969. These first steps took
place at the elementary school Almont 1, an experimental school attached to the
IREM whose functioning was inspired by the school Michelet attached to the
COREM,2 recently created by Guy Brousseau in Bordeaux. Together with François
Colmez and Jacqueline Robinet, we were responsible for the organisation of
mathematics teaching in that school and we were given a lot of freedom. This was
our experimental terrain. At that time, I was a young university lecturer with a
recent Ph.D. in logic, full of certitude and thinking everything possible. I worked
part-time in the IREM for a few years, acculturating in-service teachers to the
modern mathematics introduced by the 1970 curricular reform.

Our didactic audacities were fed by the COREM realisations that we accessed
through the “Colmez connection”. François Colmez’s father was the Director of the
IREM of Bordeaux and François was an old friend of Guy Brousseau. Thanks to
these privileged relationships, I had the chance to experiment with situations and
learning progressions that would later become “classics”: the extension of the
number field from whole numbers to rational and decimal numbers through the
measure of the thickness of sheets of paper (Brousseau et al. 2014); the teaching of
multiplication from counting the number of cells in rectangular grids to the teaching
of the algorithm per gelosia (Brousseau 1973); and the initiation of grade 3 pupils to
random phenomena through predicting the composition of opaque bottles con-
taining red and blue bowls (Brousseau 1972; Brousseau et al. 2002). Our audacities
were also reinforced by the parallel work developed by Marie-Jeanne Perrin and
Régine Douady in an elementary school in Montrouge with an exceptional teacher,
Mrs. Latour. We introduced letters and formulas to express generality and depen-
dences from grade 3 (Artigue et al. 1979). We used electric boxes built by my
husband at the Technological Institute in Cachan to introduce the students to
Boolean logic, Escher’s tiling to approach geometrical transformations and the
associated invariants, and so on. These didactic audacities, implemented by com-
petent and passionate teachers with whom we spent at least one day per week, were
almost systematically successful. At the time didactics was emerging as a scientific
field, and experiencing the power of its constructions in the terrain of schools, as far
as they were developed, was fascinating. This is, I think, difficult for those who
enter the field today to understand what it meant for a young researcher (as I was at
that time) to engage in the didactic adventure in such conditions.

2COREM: Centre d’Observation et de Recherche pour l’Enseignement des Mathématiques, cre-
ated in 1973 (cf. http://guy-brousseau.com/le-corem/).
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That didactic audacity was valuable and productive. I do not disavow it, but it
went along with a lot of ingenuity. At that time, for instance, I did not suspect that
generalisation could be a problematic process; I was unconscious of the networks of
constraints conditioning the life of ordinary didactic systems. In the experimental
school, we did not hesitate to free ourselves from these constraints, with the support
of teachers and parents, thanks to the indisputable legitimacy given to our actions
by the IREM institution. I was even more unconscious of the social and cultural
forces of which I was, as were so many others, the instrument. Regarding gener-
alisation, no researcher today would dare to show such ingenuity. Even at that time,
many researchers, and especially our mentor Guy Brousseau, were not so naïve.
This is fortunate because we have all learnt the high price to pay for naïve actions in
educational systems. We have learnt, and we have built conceptual and method-
ological tools that help us approach the complexity of didactic action.

The up-scaling issue, while still open, is unanimously considered one of the
major challenges we have to face as a community. And we are well aware that, to
address it efficiently, we must be creative; in particular, we must distance ourselves
from the forms of dissemination of didactic knowledge that have prevailed up to
now. All around the world, innovation and research is developing in this area, often
within projects transcending national frontiers as has been the case in Europe in
recent years with projects aimed at the large scale dissemination of inquiry-based
teaching practices such as those evoked in the chapter co-authored by Robin
Bosdeveix, Cécile de Hosson and Cécile Ouvrier-Buffet [cf. also (Maaß and
Artigue 2013)].

12.2 Generalisation and Reproducibility

It was only in the eighties that I realised the difficulty of generalisation in the
educational field, first through the theoretical work I carried out on reproducibility
for my doctorate, then through research and development at undergraduate level.
Quite early, in fact, Guy Brousseau questioned the reproducibility of didactic sit-
uations, and exhibited the phenomenon of didactic obsolescence at play in the
reproduction of the didactic constructions elaborated in the COREM by the same
teachers, year after year. In my doctorate, I approached this issue from a mathe-
matical perspective. I investigated the vision of reproducibility of didactic situations
conveyed, more or less explicitly, by the didactic literature; I tried then to build a
mathematical model of it to study (Artigue 1986). This was a stochastic model
simple enough to make possible some direct computations that I complemented by
using simulations. The results were clear. They invalidated the vision of repro-
ducibility conveyed by the literature and showed that, if such reproducibility was
observed, it could not generally result from the reasons and characteristics invoked.
Other forces were at play whose action and mechanisms remained tacit. Obviously,
the model allowed researchers to expect the appearance of some regularities but, as
is the case in complex dynamic systems, situated at other structural levels than those
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usually expected. This led me to articulate a kind of principle of incertitude between
internal reproducibility (a priori aimed at, conserving the meaning of actions and
discourses despite possible variations in the trajectories) and external repro-
ducibility (at the more superficial level of classroom trajectories). According to this
principle, any effort made to ensure external reproducibility had a systematic cost in
terms of internal reproducibility. This result showed that the phenomenon of
obsolescence identified by Guy Brousseau was not at all due to a specific
conjuncture.

However, even if the modeling process had been supported by experimental data
collected in previous research, this was pure theoretical work. In order to progress, I
had to come back to the terrain. At that time, I was no longer involved in the piloting
of the elementary school Almont 1, and had engaged in research and development
work at undergraduate level. The motive had been the creation of an experimental
mathematics and physics course for first year university students, still under the
auspices of the IREM (Artigue 1981). Once again, this was a very innovative design
and during the first year of collaboration with physicists we met only one serious
problem: the coordination of our respective perspectives regarding the teaching of
differentials. This was the origin of my interest in the didactics of calculus and
analysis, one of the conference themes with a devoted chapter in this book,
co-authored by Asuman Oktaç and Laurent Vivier. While being oriented towards a
specific perspective—that of interactions between semiotic systems of representation
—the chapter overcomes the limitations potentially induced. In this area that has
been extensively investigated over more than three decades, the authors beautifully
show how the fundamental questions raised by the teaching and learning of key
concepts (such as those of real number with the topological dimension so crucial in
analysis, function of real variables, limit, derivative and integral), are regularly
reworked, mobilising new approaches, exploiting technological advances. They also
demonstrate how knowledge accumulates progressively. However, in reading this
chapter, one can also measure up to what point knowledge is still fragmented and
partial, and often in an insufficient state of consolidation, to inform curricular choices
and teaching practices in a convincing way.

Returning to reproducibility issues, the connection between my research in the
didactics of analysis and my theoretical work only occurred some years later. The
context was that of the description, reproduction and dissemination of didactical
engineering for the teaching of differential equations that I developed together with
Marc Rogalski and his team for the experimental section they created at the
University of Lille 1 (Artigue 1989; Artigue and Rogalski 1990). I made this
connection by thinking in terms of types of situations rather than particular situ-
ations, and by questioning the conditions for robustness of these types of situations.
I tried to overcome the trap of linear descriptions and to open the dynamics of these
situations, envisaging, for instance, possible bifurcations. I also tried to approach
more explicitly the key issue of the sharing of mathematical responsibility between
teacher and students than was usual in classical engineering design.

In fact, the research carried out evidenced the existence of obstacles to gener-
alisation in that precise case. These resulted from the following characteristic of the
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didactical engineering. In order to ensure its viability with first year students, we
were obliged to legitimate theorems and proofs combining graphical and analytical
formulations and arguments, which violated the didactic contract prevailing in
analysis university courses at that time. At the University of Lille 1, in the
experimental section, an important work was carried out at the beginning of the
academic year on the graphical register of representation, resulting in a change of
status of this register; the rules of the standard didactic contract were broken and
some graphical arguments became legitimate.

However, we had to acknowledge that this situation was exceptional. This state
of affairs in fact resulted in uses of this didactical engineering that, with the
exception of the experimental section, were systematically reduced to the first
situations of the qualitative approach, despite the acknowledged interest of the
whole design. This clearly showed that the ecological viability of this particular
didactical engineering depended on conditions regulating the teaching of analysis
and, more globally, the status given to graphical representations in mathematics
education. These conditions were situated at higher levels of the hierarchy of
didactic codetermination than the didactical engineering itself, as I can express
today by using a construct of the Anthropological Theory of Didactics (ATD) that
did not exist at that time (Chevallard 2002). This example illustrates the fact that the
extension of any didactical engineering, beyond the experimental and ecologically
protected environment where it has generally been developed and tested, must
seriously take into account these different levels. All those today engaged in design
research in mathematics education are sensitive to this point, even if they do not use
the same words to express this sensitiveness (Swan 2014).

Difficulties of generalisation in didactics are not limited to those evoked so far,
in some sense internal to a given didactical system, and which can be grasped
through a “vertical” analysis as the one we have sketched above. Their nature is
also “horizontal” according to the distinction introduced in Artigue and Winslow
(2010), because mathematics education is a field geographically and culturally
situated. We all know today, even when we belong to dominant cultures—and mine
is certainly one of them in the field of mathematics education—how our insufficient
sensitivity to the diversity of social and cultural contexts has been the source of
hegemonic visions, of abusive generalisations and exportations. We have built, and
continue to build, the necessary tools to better include this cultural and social
diversity. We are supported and even pushed in that direction by the changing
balances in the world, by the multiplication of regional networks, and also by the
vigilance exerted by researchers in mathematics education relying on critical and
socio-political approaches (Skovsmose 2014).

Obviously a lot remains to be done but visions have changed and the conference
evidenced this change. This book reflects it in diverse ways. I will mention here the
chapter entitled “Didactics goes travelling”, with the interesting perspectives
developed by Abraham Arcavi and Luis Radford, for whom, personally, didactic
cross-breeding has been consubstantial to the didactic adventure, as well as the
contribution by Jeremy Kilpatrick focusing on linguistic issues, and that by Paolo
Boero. Boero, for instance, shows how the Italian didactic culture, a didactic culture
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geographically close to the French didactic culture and with which it has strong
links over decades, is also very distant from it, and he identifies sources of this
distance situated at different levels of the hierarchy of codetermination mentioned
above. During the conference, I also found very insightful the first words by Luis
Radford pointing out how the relationship with history could be different for
researchers from Latin America whose cultures have been denied by colonisation
and researchers from colonial countries, and how this shaped their historical and
epistemological sensitiveness. The linguistic issue addressed by Jeremy Kilpatrick
is also essential and, due to the domination of English as the language for scientific
communication, it creates a form of cultural domination transcending the usual
distribution between dominants and dominated. Voluntarily, the conference was
thus trilingual, and voluntarily I used its three languages during my closing lecture.

Jeremy Kilpatrick is right when describing the loss which often accompanies
translation, saying: “When didactique is translated from the French milieu to that of
English, it loses not only poetry but also clarity and nuance”. This is the main
rationale for the project Lexicon launched in 2014 by David Clarke from the
University of Melbourne, in which my laboratory is engaged together with labo-
ratories from eight other countries. The idea for this project emerged from
observing the diversity of didactical and pedagogical terms existing in different
languages and cultures to express what happens in a mathematics classroom, and
the fact that many of these terms do not have an English equivalent. The project
aims to create a multi-linguistic lexicon that will combine national lexicons and
where each national term will be precisely defined and illustrated by insightful
examples. An English international lexicon will then be established and coordinated
with the multi-lingual lexicon. It is not by chance that the ICMI, about a decade
ago, decided to establish a new regional network, EMF, the Francophone
Mathematical Space, for the first time organised around a linguistic community.

12.3 Epistemology, History of Sciences and Didactics

One of the themes of the conference was the relationship between epistemology,
history and didactics, and the article that I published on this theme in 1990 was used
by several contributors as a starting point (Artigue 1990). Epistemological reflec-
tion, relying both on mathematical and historical inquiries, is indeed for me an
essential component of didactical work. It is essential to the understanding of the
mathematical or scientific concepts that mathematics education wants to make the
students learn, and to the understanding of their rationale. It helps understand some
of the difficulties raised by the learning of these. It provides ideas to design learning
trajectories and teaching situations. Beyond that, as accurately stressed in the
corresponding chapter of the book co-authored by Renaud Chorlay and Cécile de
Hosson, it also has a function of vigilance regarding the educational world, and
helps question its naturalisations and evidences. As made clear in this chapter, to
carry such an epistemological reflection, the didactician does not need to become an

258 M. Artigue



historian or an epistemologist of mathematics. Even if this were her(his) desire, this
would most often remain out of range. The two forms of scientific work, including
their problématiques, their methodologies, their material and conceptual resources,
are quite different, making the double acculturation demanding and costly.
However, epistemological reflection requires that communication be possible,
aware and respectful of differences and specificities.

I had the opportunity to evolve in environments that allowed and even favoured
such communication, and was thus offered the possibility of cultivating epistemo-
logical sensitiveness. This happened first at the IREM of Paris where, quite early,
Jean-Luc Verley created the group M.:A.T.H. (Mathematics: Approach through
Historical Texts) with secondary teachers passionate about the history of mathe-
matics, and where Michel Serfati also created a seminar of epistemology. From the
year 2000, this potential was enriched by the creation of a new Doctorate School in
my university, in charge of doctoral studies both in epistemology and history of
sciences, and in didactics. Attached to this School are my didactic laboratory and one
of the best laboratories in the history and philosophy of sciences, the laboratory
SPHERE.3

With Maryvonne Hallez from M.:A.T.H., I carried out the historical inquiry
which supported research into the notion of differential developed within the
GRECO Didactique4 (Groupe Maths et Physique – Enseignement supérieur 1989).
The article published in 1990 (mentioned above) and the work on complex numbers
referred to in the chapter by Renaud Chorlay and Cécile de Hosson were directly
inspired by the work carried out in the master course entitled “History and didactics
of mathematics” created by Régine Douady, Jean-Luc Verley and I at the mathe-
matics department of the University Paris 7 in 1985.

I learnt a lot from Jean-Luc Verley and his prodigious culture but, unfortunately,
he had no interest at all in didactics as a research field, which certainly limited the
possible results from our collaboration. The situation became clearly different
when, in early 2000, I collaborated with Michel Serfati in the supervision of
Véronique Battie’s Ph.D. on the teaching of arithmetic (Battie 2003) and Caroline
Bardini’s Ph.D. on the relationship to algebraic symbolism (Bardini 2003). The
resulting theses, defended before juries including historians and epistemologists of
mathematics, attest to the fecundity of these interactions between didactics and
epistemology. Today in our laboratory, interactions are certainly favoured by the
existence of the doctoral school and also by the importance of the history of science
in the research of didacticians such as Cécile de Hosson. The contributions at the
conference and the chapter she co-authored with Renaud Chorlay from the

3www.sphere.univ-paris-diderot.fr/.
4The GRECO Didactique was a temporary collaborative structure created by the National Center
for Scientific Research (CNRS) to support research projects in the didactics of mathematics and
physics.
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laboratory SPHERE provide a good vision of the progression of reflection on the
potential of interactions between history, epistemology and didactics, and also of
the conditions to be satisfied in order to realise this potential.

In fact, during the conference, epistemological reflection was not confined to the
activities of the thematic group devoted to these issues, which is described in the
chapter mentioned above. It was more widely present in the work on the didactics
of analysis already evoked, and also in the reflection developed around the idea of
inquiry-based learning. The chapter co-authored by Cécile Ouvrier-Buffet, Cécile
de Hosson and Robin Bosdeveix evidences the importance of such a reflection to
understand what is likely to unify investigative approaches in the different scientific
fields, but also to understand their specificities in individual fields. In recent years,
we particularly developed this reflection in the modeling group of the IREM of
Paris to which Robin Bosdeveix belongs, and I also tried to foster it in the different
European projects on inquiry-based education in which I have participated as a
scientific expert since 2010.5

12.4 Theories, Their Roles and Interactions

During the conference, a lot of attention was devoted to theoretical issues, in
particular through references to the instrumental approaches of technology inte-
gration on the one hand, and through questions of interaction and networking
between theoretical frameworks on the other hand. This attention to theoretical
issues is like a filigree along the book chapters, but is especially central to three of
them: those respectively co-written by Paul Drijvers and Carolyn Kieran; by Ivy
Kidron and Angelika Bikner-Ahsbahs; and by Corine Castela, Juan Diaz Godino
and Brigitte Grugeon-Allys.

The chapter co-written by Paul Drijvers and Carolyn Kieran focuses on the
instrumental approaches of technology integration. This is supplemented by the
chapter authored by Maha Abboud-Blanchard, who approaches the same integra-
tion issue from the perspective of teaching practices and teacher education, and who
also ascribes a key role to instrumental approaches and provides an excellent
overview of the topic. My name is usually attached to the development of such
approaches from the mid-90s, particularly because of an article published in the
International Journal of Computers for Mathematical Learning (Artigue 2002)
which had a notable impact. However, as rightly stressed by Drijvers and Kieran,
this development was a collective enterprise. In my opinion, it illustrates how
research develops quite well:

5These are the projects Fibonacci (www.fibonacci-project.eu), Primas (www.primas-project.eu),
Mascil (www.mascil-project.eu) and Assist-Me (www.assistme.ku.dk).
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• the construction of a problématique, nurtured by knowledge and experience, but
also by the identification of shortcomings and obstacles, in that case, for
instance, the technical-conceptual opposition;

• decisive encounters, in that case, with cognitive ergonomy, through the
insightful book published by Pierre Rabardel in 1995 (Rabardel);

• sudden intuitions (like that of imbalance between the pragmatic and epistemic
valence of techniques induced by the use of digital technologies);

• the testing of ideas and conjectures through their organised confrontation with
the empirical world; and

• the unexpected facts that this confrontation produces (for instance, the important
time spent by students in solving technical problems generated by the interac-
tion with CAS software, the productivity of what we called “fishing strategies”,
the change in status and role given to the different CAS applications (symbolic,
graphic) accompanying instrumental genesis, the underestimated importance of
the mathematical needs of instrumental genesis, the poor institutional treatment
of instrumented techniques), and the resulting progression of inquiry and
knowledge.

The development of this approach shows the alternating moments of empirical
research and structuration of knowledge, the rebounds of research, the progressive
extension of problématiques, the dissemination of ideas and results, along with a
proliferation of contributions, constructions, interpretations, and so on. It also
illustrates the power gained by introducing words to express intuitions and ideas,
for example, how simply assigning epistemic and pragmatic values to techniques
has opened a multiplicity of new perspectives.

The instrumental approach is certainly a theoretical construction, but the most
important, and the chapter by Drijvers and Kieran makes it clear, is that it made
possible a change in vision that, for me, became unavoidable when I started
working on the integration of CAS. From this point of view, this approach turned to
be a fabulous tool; however, I did not expect that it would disseminate so easily. In
retrospect, the reason is probably that this construction met a need more broadly
shared in the research community, and also that it only relied on a few concepts and
was thus relatively easy to appropriate. It is also worth noticing that although many
researchers contributed to its development, so far the construction has kept its
global consistency through successive extensions. In the literature, the focus is
often put on the theoretical side of the construction. I will come back to this point in
the next section, but would like to emphasise here once again that what really
makes this construction valuable is its functionality and the results it has made
accessible via the research praxeologies it contributed to, since its emergence
twenty years ago.

Also stressed in these chapters the instrumental approach to which I contributed
results from a theoretical combination between cognitive ergonomy and the
Anthropological Theory of Didactics (ATD). This combination generated some
tensions, especially between a cognitive entry through the idea of scheme and an
institutional entry through the idea of technique. These two entries are in some
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sense incommensurable. The tensions generated were extensively discussed and
differently managed by researchers, but they did not impact on the productivity of
the instrumental approach. This kind of combination, in fact, appears quite fre-
quently in didactics and does not make me a pioneer on networking issues. Since
the eighties, within the French didactic community we have regularly combined
theoretical approaches, for instance, the theory of didactical situations, the theory of
conceptual fields, the tool-object dialectics, the theory of semiotic registers of
representation, and ATD. The Summer Schools of Didactics of Mathematics gave
us regular opportunities to collectively question some of these connections. In her
contribution to the chapter cited above, Brigitte Grugeon describes several con-
vincing examples, including from her own research. Reading this contribution
reminded me of a memorable theoretical experience of my own. Supervising
Brigitte’s Ph.D. in the early nineties, I measured for the first time how a shift in
perspective, in that case from a standard cognitive perspective on the teaching and
learning of algebra to an institutional perspective supported by ATD, could radi-
cally change the perception of a problem and open the researcher to explanations
and solutions that would have remained inaccessible otherwise. This crucial
experience had a decisive influence on my vision of transition issues in mathematics
education.

The combining of theoretical approaches is thus not a recent practice. What is
certainly more recent is the international awareness of the difficulties created by the
so-called fragmentation of the mathematics education field—something I never felt
within my own didactic community—and the development of networking between
theoretical frameworks as a proper problématique in the field. This problématique
may appear to some, especially those who are at the periphery of the research
world, as something non-essential, academic and “nombrilist”, without potential
impact on practice. And it is true that this networking can easily drift towards a
purely intellectual game. As a community, we have to be vigilant to avoid such
perversion. However, in my opinion, it answers a deep need for both fundamental
research and didactic action.

Many times, in recent years, due to my ICMI responsibilities I have been
confronted with questions about existing knowledge on particular educational
issues that might inform teaching practices, curricular decisions or teacher educa-
tion. Faced with such questions, most often I was unable to give a clear answer, and
often even unable to orient my interlocutor towards a set of references that would
help her(him) develop a coherent and synthetic vision. Of course, things are not so
simple in education as in mathematics. We must accept that most of the certainties
we acquire are, except for the most general ones, situated both in time and space,
and that it is difficult to know their exact domain of validity. The question of how
research knowledge may inform practice in particular contexts is a difficult ques-
tion, still insufficiently addressed. Nevertheless, the theoretical explosion of the
field, the diversity of approaches, constructions, discourses, and the lack of con-
nection, substantially increases the difficulties of capitalisation and dissemination.
For that reason, I am convinced that we must work to overcome the current state,
and that this must be a collective enterprise, identified as such. As is clear from the
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chapters in this book mentioned above, and from the detailed publications they refer
to, in recent years evident progress has been made, although the results remain
local. The different projects developed at a European level in which I was involved
have clearly helped to take the measure of the task, of its difficulty, to build
methodologies, to establish categories and illustrate them, and also to build many
connections and show their interest.

These studies have also revealed to what extent theoretical diversity deeply
permeates our research practices, making connection efforts directly situated at the
level of theoretical objects hopeless. We certainly underestimated this point until
recently. Personally in the last decade, I have learnt the price to pay in order to
overcome the current state, the necessary effort of decentration, and the uncom-
promising questioning required to understand the actual use we make of theoretical
frameworks beyond their mere ritual invocation. I have also learnt the necessity of
developing specific devices that can allow us to take our research practices as
objects of study without distorting them, as well as the importance of developing
metalanguages to support joint work and communication. One example is the
metalanguage of key concerns, initially created in the TELMA European team, then
refined in the project ReMath, which I also used as a guide when, together with
Morten Blomøj, I investigated what the major didactic approaches have to offer to
the conceptualisation of inquiry-based learning in mathematics education (Artigue
and Blomøj 2013). As explained by Ivy Kidron and Angelika Bikner-Ahsbahs in
their chapter, with Marianna Bosch and Josep Gascón, we made the conjecture that
ATD, which was familiar to us, could support such awareness and work. In ATD,
theories are indeed inserted in praxeologies, and as I wrote at the beginning of this
paragraph, what needs to be connected are not just theoretical constructs, but the
praxeologies these constructs contribute to and which, in return, contribute to their
development. Once again, this may appear an insignificant change of perspective,
but this reframing of networking issues proved useful for analysing the networking
efforts undertaken so far, as well as their outcomes and potential, but also their
limitations, as shown in the chapter co-written with Marianna Bosch (Artigue and
Bosch 2014).

I also learned how this collaborative work, for it is necessarily collaborative
work, can be exciting and enriching when engaged with seriously and with an open
mind. When, at the end of the CERME5 Conference, Angelika Bikner-Ashbahs
proposed the creation of a small research group to address networking issues, I
could not imagine either that we would work so many years together on the same
video, nor that this work would take us so far from where we began. As can be
expressed using the language of the theory of didactical situations, for each of us
the group acted as an antagonist (although empathic) milieu, where approximate
statements were no longer possible, where the functionality of theoretical objects
and their power, were systematically questioned. It was really productive as shown
in (Bikner-Ahsbahs and Prediger 2014). Perhaps, in the future, this type of work,
which is still in an emerging state, will help didactics to better travel and make
exchanges more effective. Perhaps it will help us to better capitalise didactic
knowledge, and to make it more usable by people other than those directly engaged
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in its production or close to the production sites. However, in this area too, much
remains to be done.

Regarding this issue of theoretical frameworks and the importance attached to
them, in closing this section I would like, however, to express some concerns. In
my opinion, internationally, our community overvalues theoretical work. Using the
language of ATD, I would say that, regarding research praxeologies, there is a
dangerous overvaluation of the logos block with respect to the praxis block. Such a
concern may surprise, after having read in the chapter co-written by Carolyn Kieran
and Paul Drijvers that I am passionate about theory. However, this is not the image
I have of myself and of my work as a researcher. Rather, I have the impression that,
unlike other colleagues, I quickly get tired of theoretical work and that, with a
certain pragmatism, I just do what seems to me to be necessary in order to think and
act. Due to my culture, my needs in this area may be higher than the international
average, which can lead to this impression. However, I could not, for instance, like
Juan Diaz Godino, spend years building a construction like the EOS approach
(Entidades primarias de la ontología y epistemología) that he presents in the book,
in the quest for a theory integrating cognitive, semiotic and institutional perspec-
tives. The contribution by Corine Castela seems to me especially insightful in
deepening the reflection on such overvaluation of theoretical work. Relying on
Bourdieu’s work, Corine accurately and beneficently attracts our attention to the
underground of the theoretical game, and the power relationships and identity
issues it involves, that the reflection should not neglect. It is also interesting to read
what Renaud Chorlay writes in the chapter already mentioned that he co-authored
with Cécile de Hosson: “Even though some historians occasionally borrow con-
cepts from some theoretical frameworks,6 they usually feel they have no use for
theoretical frameworks from MER, because they don’t use theoretical frameworks
at all!”. The shift thus highlighted necessarily challenges us.

12.5 The Didactician in the City

The life of a didactician is, however, much more than the academic life of a
researcher, and at seeing the conference program, I was happy to discover that one
of its themes was “The researcher in the city”. As was recalled at the beginning of
the conference, my first area of research was mathematical logic. My Ph.D. dealt
with issues of recursion, and then I worked on non-standard models of arithmetic
and, perhaps a prescient choice, on bicommutability between theories. However,
despite the pleasure I found in mathematical research, as I engaged in didactic
activities, participated in the emergence of this new scientific field and was

6For instance, in the workshop on Epistemology and didactics at the conference, the historians
Dominique Tournès and Renaud Chorlay mentioned their use (or their interest) in concepts such as
‘change of setting’, ‘register of representation’, ‘viewpoint’, ‘meta-level’, ‘tool-object dialectics’.
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captivated by the enthusiasm and debates accompanying this emergence, and as I
engaged in the innovative projects of the IREM Paris 7, I could not help but
contrast these two types of activity from the point of view of their social engage-
ment and role. I do not deny that the mathematician has a role to play in the city, as
argued eloquently by Jean-Pierre Kahane at the conference, but s(he) can easily
forget that role, relegating it to the background of her(his) activity. Some may
disagree with me, but I claim here that this is not possible for a didactician,
especially for a didactician of mathematics. Even if the constraints imposed today
upon research, whatever its domain, create harmful tensions, there is no doubt that
the quest for knowledge in this field remains primarily fed by external motivations
and a profound desire to contribute to improving the teaching and learning of
mathematics.

How could a didactician forget the problematic relationship to mathematics of a
large proportion of the population? How could s(he) forget that this problematic
relationship is not a law of nature, that school also has a huge responsibility for it?
How could s(he) be blind to the fact that, in our educational systems, mathematics
as a discipline is engaged in complex power games and that often, instead of being
an emancipation tool, it is one of the levers of school exclusion with all the resulting
consequences? How could a didactician not wish his(her) research would help
improve the teachers’ professional life? How could s(he) not be engaged in the city?

As individuals and as a community, we thus have specific responsibilities that
we cannot escape. In the context in which I lived, such awareness came quickly,
probably because of the existence of the original structure of the IREM and its
values: the links it wove among communities, between didactic research and the
school terrain, although a privileged terrain, that of the classes of the IREM edu-
cators. Also contributing to this awareness was the early establishment of an
autonomous didactic community and its institutionalisation in the early 1980s, with
the creation of the journal Recherches en Didactique des Mathématiques, of the
National Seminar and of the Summer School of Didactics of Mathematics, and
beyond that, the role I played for 12 years as a didactician member of the National
Council of Universities in charge of the qualification, recruitment and promotion of
university academics, in the section “Applied mathematics and mathematical
applications” to which most French didacticians were attached.

However, I also believe that the strength of these structures and their associated
culture, while promoting local awareness and commitment, has also generated a
tendency to autarky and self-sufficiency within this community, which I think has
been less positive. I became aware of it gradually, as I observed the gap between the
work that many colleagues undertook to publicise their research nationally and their
limited efforts to communicate more widely, particularly outside the spheres of the
traditional influence of French didactics and when communication required the use
of English. For a long time, I had the impression that many researchers actually did
not feel such a need for several reasons: their problématiques were sufficiently
nourished by a very dynamic environment; the conceptual resources that this
environment offered for research grew steadily making unnecessary the need to
look for external resources; effective structures existed to share, discuss,
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communicate and disseminate research; and the tyranny of publishing in high
impact factor international journals was much lower than in many other countries.
The situation, of course, has evolved and the creation of the European Society for
Mathematics Education (ERME) played a decisive role in this change with its
regular conferences every two years, and its summer schools for young researchers.

Personally, I dived early into the international pool, participating in the estab-
lishment of doctoral courses in Spain since the 1980s, and interacting with Latin
American researchers in Brazil, Mexico and Colombia. In these tasks, my knowl-
edge of Spanish helped me greatly. I was also elected in 1990 to the International
Committee of the International Group PME (Psychology of Mathematics
Education), and became involved in the organisation of topic study groups at ICME
congresses from 1988. However, my election to the Executive Committee of ICMI
in 1998, at a moment of tension between ICMI and its mother structure, the
International Mathematical Union (IMU), was for me a radical turn. The world
suddenly expanded; the cultural dimension of educational issues in mathematics
and the associated games of power and domination, intruded on my consciousness.
Didactics took a more political dimension, that was unthinkable to understand
through the lenses of a particular educational culture, whatever its acknowledged
qualities. These responsibilities within ICMI, and the actions and encounters they
allowed in a multiplicity of countries, with a multiplicity of actors beyond the
educational sphere alone, have reinforced my vision of the role of the didactician in
the city. They also reinforced my conviction that the strength of the solidarities and
synergies among cultures, among communities and generations that ICMI tries to
promote, is the only one able to move us towards a better world, to make us resist
headwinds. They confirmed my desire to strengthen these synergies and solidarities
at all levels, at all scales, and of course in the first place within my own culture
while contributing to its necessary openness.

I felt this strength and the hope it conveys during the conference. We shared the
desire and pleasure for fostering communication between our respective
problématiques and knowledge; we lived a form of solidarity and aspirations that
transcended our differences; and we also showed the ability of the didactic com-
munity to dialogue and collaborate with neighboring scientific communities, those
of mathematicians, epistemologists and historians of science, didacticians of other
disciplines, researchers in educational sciences, and more broadly, with all those
without whom research advances would only benefit a small minority of individ-
uals, either students or teachers. All this is clearly visible in this book that results
from the conference.

12.6 Conclusion

As I wrote at the beginning of this chapter, a conference such as the one from which
this book originated is, for the person honoured, an occasion to reflect on her/his
professional life. When I reflect on my own professional life, I realise how lucky I

266 M. Artigue



was to connect with this field of mathematics education in its infancy, and to
participate in the adventure of its emergence within a community so particular,
thanks to the existence of the IREMs, to the support of mathematicians such as
André Revuz, Georges Glaeser and many others, and to the creative power and the
passionate commitment of researchers such as Guy Brousseau and Gérard
Vergnaud. It is, I think, impossible for young researchers entering the field today to
imagine the first summer schools of didactics or the early years of the national
seminar, when our community was building and forging its identity, or to imagine
the enthusiasm, the warmth of the relationships and at the same time, the heated
debates, Homeric and endless.

For a long time I tried to reconcile this burgeoning passion for didactic research
with the pleasure I took in mathematical research, even if my research was modest.
It was definitely easier at that time because the didactic field was less professional
than it is now. Then, one could start investigating quickly without lengthy reading
and training, and stay aware of the main advances in the field without too much
difficulty; at least I had this impression. This contact maintained with mathematics,
beyond the sole educational sphere, was precious for me in many respects. It
supported my epistemological questioning and associated vigilance; it was also a
source of inspiration. For instance, the work I undertook with Véronique Gautheron
and Emmanuel Isambert on the bifurcations of differential systems prompted me to
think of the class system as a dynamic system, and to wonder about the stability
levels, structures and patterns which might emerge in its dynamics. This relation-
ship to mathematics surely also reinforced my desire that mathematicians and
didacticians communicate and work together to serve the cause of mathematics
education, and succeed in countering the forces that tend to separate their respective
communities. It supported my ongoing commitment in this area.

As also pointed out in this chapter, my didactic adventure has been profoundly
marked by the didactic community in which I grew up, but also, and particularly in
the last two decades, by the encounters and the experiences I have lived and
continue to live beyond this community, especially in countries on the periphery,
which were a major source of questioning and enrichment. They showed me at what
point some of my concerns and perspectives were limited and European-centered
concerns of the privileged. They opened my mind to issues insufficiently addressed
in French didactic research, such as those regarding mathematics education in
multicultural, multi-lingual contexts, and to research and development advances
that no educational system can now overlook with the current diversification of the
school population that is occurring worldwide. Often also, the energy, commitment
and human warmth that I met in less privileged countries and contexts have allowed
me to recharge my batteries, to regain confidence and hope. This was precious
because confidence and hope are needed in a field like ours. There is no doubt that
knowledge accumulates, that our understanding of the complex teaching and
learning processes progresses, and that efforts are being made daily to put these
advances at the service of teacher education and didactic action. However, one
cannot escape the impression that the same problems constantly re-emerge. One
cannot fail to observe how, despite laudable declarations, educational systems are
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often abused and forced by inconsistent policies. Progressions and regressions
intertwine in an endless battle whose outcome often seems uncertain. We also need
resilience!

I will end this text with a personal note. In my closing lecture at the conference, I
evokedmy parents, and the fact that duringmy childhood and youth I wore their hope,
and especially my father’s hope that, through education, his children would enter a
world whose access had been forbidden to him. I evoked the confidence they have
shown in me, the freedom they gave me. They helped me to grow and to consider life
with confidence and optimism. I alsomentionedmy family sofirmly united, especially
when life becomes difficult. But I would also like to express here my deepest gratitude
to all those who have accompanied my didactic adventure and made it so rewarding:
my didactician friends and colleagues around the world, the many teachers I have
workedwith, and all those with whom I have worked within the ICMI andmany other
institutions, not to mention my students from whom I learned so much and whose
voice was beautifully expressed with irresistible humor by Mariam Haspekian and
Avenilde Romo Vasquez at the conference. My didactic adventure is not over, but
while continuing to work and to contribute, I am also pleased to pass the baton to the
new generations, to my didactic children and grandchildren. They inherit from our
history but I am sure that theywill also be able to get free ofmuch heaviness andmany
ways of seeing which prevented us from going further.
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