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Preface

This could be the plot of a novel: The main character is a shy, sickly, young mathematician,
living in poor conditions at a German university in the middle of the nineteenth century. He
does not succeed in establishing a closer contact with the greatest mathematical luminary
of his time. He is working toward his habilitation degree (a prerequisite for becoming
a candidate for a professorship at a university in Germany). Part of the process is a
colloquium. For such a habilitation colloquium, the candidate must propose three topics
from which the faculty can choose. The first two topics are derived from the significant
technical contributions that he has already made. He finds it difficult to decide what he
should choose for his third topic, partly because he believes that, as usual, the faculty
will select the first topic on the list anyway. As the third one, he offers a rather vague
natural philosophical theme. To his surprise and consternation, the faculty chooses that
one. Instead of now familiarizing himself with the state of art of the discipline and, in
particular the really significant prior discovery that shook the entire field, he immerses
himself in the work of a rather obscure philosopher. But his lecture then penetrates as
deeply as never before into a field that had occupied and challenged the greatest thinkers of
mankind since classical antiquity, and it even hints at the greatest discovery of the physics
of the following century. Even the contribution of the superstar of German science, who
had independently approached the same subject from a different point of view, faded into
insignificance in comparison with the depth of insight of our young mathematician. Other
famous scientists entered the stage with grotesque errors of judgment on the topic and
content of the habilitation lecture after it had been published by a friend after the untimely
death of our hero. Subsequent generations of mathematicians worked out the ideas outlined
in the brief lecture and confirmed their full validity and soundness and extraordinary range
and potential.

However, this is not a novel, because something similar did actually occur. We hope and
trust that readers forgive the author certain exaggerations, and, of course, in the following
pages, everything will be represented correctly. The young mathematician was Bernhard
Riemann, and the lecture was entitled “Ueber die Hypothesen, welche der Geometrie zu
Grunde liegen” (On the hypotheses which lie at the bases of geometry). The mathematical
genius was Carl Friedrich Gauss, the scientific superstar Hermann von Helmholtz, the
fundamental prior mathematical discovery non-Euclidean geometry, the philosopher the
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vi Preface

now forgotten Johann Friedrich Herbart, the discovery in physics the theory of general
relativity of Albert Einstein. The people who came up with completely wrong judgements
included the psychologist Wilhelm Wundt and the philosopher Bertrand Russell. The
friend who took care of the posthumous publication was the mathematician Richard
Dedekind. The generations of subsequent mathematicians for whose research Riemann’s
ideas were a major inspiration include the author of these lines.

Typically, scientists read a scientific text from the point of view of the current state of
science, interpret it in terms of subsequent developments, and seek at best unexplored
potential for current scientific problems. Historians, however, want to determine the
position of a text within the discourse of its time, reconstruct its origin and analyze the
history of its reception. Although in the current debate on the role of the humanities,
the importance of the historical sciences for understanding the present is emphasized,
mathematicians are interested in the timeless content and not in the historical contingencies
of scientific texts. Scientific projects that proved futile are either of no interest to the
scientist or constitute annoying obstacles on a path that could have been straighter. For
historians, in contrast, they can provide important insights into the history of ideas and the
dynamics of discourses. For the scientist, texts whose effect has faded are without interest.
For the historian this loss of interest is part of the reception history.

This edition of Riemann’s “Ueber die Hypothesen, welche der Geometrie zugrunde
liegen” tries to accept these challenges. The publisher is a professional scientist, not a
historian of science. Therefore, the history is also sometimes read backwards. In particular,
for this edition no thorough philological studies have been carried out.

Although there will also be a formal mathematical chapter, I shall mainly attempt to
explain the basic concepts and basic ideas in words, even if this will inevitably lead to
some loss of precision.

The current book is a somewhat expanded English translation of my original German
work. In particular, instead of also translating Hermann Weyl’s mathematical commentary
that had been included in the German version, I have written a more detailed mathematical
section. That section provides the mathematical background and puts Riemann’s reasoning
into the more general and systematic perspective achieved by his followers on the basis of
his seminal ideas. Readers who are not so much interested in mathematical details may skip
this section, since in another section, I have also explained Riemann’s reasoning verbally
as an alternative to mathematical deductions.

As mentioned before, I am not a historian of mathematics. Therefore, I am much
indebted to some historians of mathematics, namely Erhard Scholz, Rüdiger Thiele and
Klaus Volkert, for their very useful comments, corrections, suggestions and references. Of
course, the responsibility for any shortcomings rests with me alone. I am also grateful to
the Helmholtz expert Jochen Brüning for his insightful comments.

I thank Ingo Brüggemann, the librarian of the Max Planck Institute for Mathematics in
the Sciences, and his staff for their valuable and efficient assistance in the acquisition of
literature.



Preface vii

The largest amount of gratitude I owe to my friend, the late Olaf Breidbach, for his
initiative in establishing the series in which this edition of Riemann’s text may now appear,
as well as for the many discussions on a wide range of scientific topics over several
decades. After his untimely death, I am now alone in charge of this series of Classic Texts
in the Sciences and its German language counterpart, which we had founded together with
so much enthusiasm. I hope that I shall be able to preserve his spirit as one of the great
historians of science of our times.

Leipzig, Germany Jürgen Jost
August 2015
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1Introduction

A mathematical lecture without formulas, a geometric treatise without pictures or illus-
trations, a manuscript of only 16 pages that just came into being by chance, but a
text that has shaped mathematics like few others works, which were all significantly
longer, considerably more detailed, and much more carefully worked out. In this regard,
we might mention the “Methodus inveniendi” by Leonhard Euler,1 which founded the
calculus of variations; Carl Friedrich Gauss’ “Disquisitiones arithmeticae” that established
mathematics as an independent discipline2; Georg Cantor’s set theory, which introduced
the modern conception of the infinite in mathematics; the theory of transformation groups
of Sophus Lie, that is, the systematic study of symmetries that forms the mathematical
basis for quantum mechanics; the programmatic writings of David Hilbert on the axiomatic
foundation of various mathematical disciplines; or more recently the work of Alexander
Grothendieck on the systematic unification of algebraic geometry and arithmetic. We
are talking here of Bernhard Riemann’s “Ueber die Hypothesen, welche der Geometrie
zugrunde liegen” (“On the hypotheses which lie at the bases of geometry”), and this short
script, written in 1854, but only published in 1868 after Riemann’s death, whose wide
ranging effects even take it beyond these works. This is because its position is at the
intersection of mathematics, physics and philosophy, and it not only founds and establishes
a central mathematical discipline, but also paves the way for the physics of the twentieth
century and at the same time represents a timeless refutation of certain philosophical
conceptions of space. In the present volume, this key text of mathematics will be
edited, positioned in the controversies of its time, and its effects on the development of
mathematics will be analyzed and compared to those of its opponents. Riemann’s “Ueber

1I am also preparing an edition of this text for the current series.
2In the sense that it develops its problems autonomously and intrinsically, instead of obtaining them
from physics or other sciences.

© Springer International Publishing Switzerland 2016
B. Riemann, On the Hypotheses Which Lie at the Bases of Geometry,
Classic Texts in the Sciences, DOI 10.1007/978-3-319-26042-6_1
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2 1 Introduction

die Hypothesen, welche der Geometrie zugrunde liegen” has shaped and transformed
mathematics in a manner very different from, say, Euclid’s Elements, the writings of
Leibniz and Newton on the creation of the infinitesimalsimal calculus or the above-
mentioned works. It has, in a manner no less fundamental than those, influenced the
development of mathematics as a science. Moreover, this text is essential for Einstein’s
theory of General Relativity. More recently, it also provided the mathematical structure
underlying quantum field theory and its developments in theoretical Elementary Particle
Physics (superstring theory, quantum gravity etc.).

However, the history of its influence is not linear. Riemann’s programmatic writing
“Ueber die Hypothesen, welche der Geometrie zugrunde liegen” called to the scene the
leading German physicist of his time, Hermann Helmholtz (later knighted, therefore von
Helmholtz), the title of whose counter-essay “Über die Thatsachen, die der Geometrie
zugrunde liegen” (On the facts underlying geometry) already pointed out a conflicting
position and approach. (Though, in the text, the similarities with Riemann dominate3 and
its main thrust was not against Riemann, but against the Kantian concept of space.)4 It
would, however, be incorrect and misleading to view Helmholtz’ work on the foundations
of geometry simply as the by now obsolete and forgotten opposition of the established
authority against the young genius, of the representative of a conservative scientific
attitude against the protagonist of a novel scientific direction. Riemann’s work was partly
motivated by somewhat vague natural philosophical speculations—and in turn his text
did have major implications for natural philosophy—whereas the origin of Helmholtz’
considerations laid in sensory physiology—and his ideas remain highly relevant here.
Moreover, Helmholtz influenced another fundamental mathematical theory, the theory
of symmetry groups of Sophus Lie. Although Lie subjected the mathematical aspects
of Helmholtz’ work to a sharp criticism, he nevertheless adopted the latter’s conceptual
approach. Lie’s theory of symmetry groups has become one of the cornerstones of quantum
mechanics. The concepts of symmetry and invariance link the intuition of modern physics

3Helmholtz says that he had developed the essential elements of his consideration before learning
of Riemann’s work (which had been published with a four 10-year delay), but certainly later than
Riemann, who had his lecture delivered and script written in 1854.
4It might appear natural to contrast this work here with Riemann’s text. After giving this option
serious thought, however, in the end I refrained from it, because this work of Helmholtz did not
achieve the same depth and elegance as Riemann’s. Moreover, among the various writings of
Helmholtz on epistemological issues, this particular text is not the best and the clearest, and so,
by the choice of that particular work, the important physiologist and physicist Helmholtz would
have appeared in a wrong light. So if we had wanted to represent Helmholtz’ theory here by one of
his writings, then we should have selected another of his writings, namely “ Über den Ursprung und
die Bedeutung der geometrischen Axiome” (On the origin and the importance of the geometrical
axioms) or his inaugural address as Rektor (president) of the University of Bonn “Die Tatsachen in
der Wahrnehmung” (The facts in perception), but then we would have lost the close relationship with
Riemann’s habilitation address.
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with the mathematical frame of geometry in the sense of Riemann and Einstein. In this
sense, Helmholtz’ text contained an aspect that was visionary for modern physics, even
though this became clear only through the work of Lie and probably was quite different
from what Helmholtz himself may have had in mind.

Riemann was probably motivated by somewhat vague nature-philosophical
speculations—and his work then conversely had significant implications for the
philosophy of nature. In contrast, Helmholtz’s considerations firstly had their starting
point in sensory physiology—and his ideas remain relevant here—and secondly, they also
influenced a very important mathematical direction, namely the theory of symmetry
groups of Sophus Lie. Even though Lie sharply criticized the mathematical details
of Helmholtz’ treatises, he took over the latter’s conceptual approach. Lie’s theory of
symmetry groups became one of the essential foundations of quantum mechanics, and the
concepts of symmetry and invariance connect the physical intuition of modern physics
with the mathematical framework of geometry in the sense of Riemann and Einstein. In
this sense, also Helmholtz’ text played a pioneering role for modern physics. In contrast
to Riemann’s text, that text exerted its influence not directly, but only through the work
of Lie, and probably this influence was rather different from what Helmholtz himself had
imagined.

It is noteworthy that Riemann’s “Hypotheses” as one of the key texts in mathematics
proceeds without mathematical formulas (in the whole text, there is only a single
formula which is of only marginal importance). This sets Riemann’s text apart from
other foundational mathematical works, like the sophisticated and deeply thought out
symbolism of Leibniz or the formalization of the infinite of Cantor. Even his most
important precursor, Gauss’ “Disquisitiones generales circa superficies curvas”, which
founded modern differential geometry, the starting point of Riemannian Geometry, is
different in this respect. At least in this case, the history of mathematics is not simply
a progressive formalization, but it turns out that mathematical abstraction can in principle
rise well above formulas .5

Bernhard Riemann has decisively shaped modern mathematics to such a degree that
only the influence of Carl Friedrich Gauss is comparable with his. Not only did he found
modern geometry with his habilitation lecture published here—and the most important

5Of course, the occasion of Riemann’s text should be taken into account. It was a colloquium before
the Faculty of Arts, and Riemann certainly wanted to pay respect to the lack of mathematical
knowledge of most of the people in his audience. Among these, besides Gauss, who was not a
professor of mathematics, but a professor of astronomy and director of the observatory, mathematics
was represented only by the two Professors Ulrich (1798–1879) and Stern (1807–1894). However,
other such lectures or writings, like Klein’s Erlangen program with which he introduced himself to
the faculty in Erlangen, certainly could be much more formalized, and if the faculty had chosen one
of the other topics suggested by Riemann, the presentation would probably have been developed in
mathematical formulas.
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part of modern geometry is therefore called Riemannian geometry—but he has created
a number of basic theories and introduced many fundamental concepts that guided and
influenced many other areas of mathematics. His concept of a Riemann surface combined
in an ingenious manner complex analysis and the theory of elliptic integrals. This work was
at the same time the starting point for the development of topology, i.e., the investigation
of forms and shapes independent of metric properties, in contrast to Riemannian geometry.
It also had a decisive impact on modern algebraic geometry. On top of that, it introduced
completely novel analytical tools in the theory of functions of a complex variable. The
latter, even if initially, Weierstrass detected and pointed out essential analytical gaps
that could be closed only later by Hilbert, paved the way for the modern calculus of
variations and the existence theory for solutions of partial differential equations. Those in
turn, as implemented and controlled with the methods of numerical analysis, constitute a
fundamental tool of modern engineering. A novel and pathbreaking idea was that Riemann
no longer tried to approach analytic functions in the complex plane through an analytical
expression, but rather considered them as determined by their singularities (poles, i.e.,
points where they become infinite, or branch points). In this way he could assign to such
a function a so-called Riemann surface and then determine the qualitative properties of
the function in terms of the topology of that Riemann surface. This radiated in almost all
areas of modern mathematics, and for example, even revolutionized number theory, the
analytical expressions of which could then also be interpreted and treated by geometric
methods. It was likewise a pathbreaking aspect of the theory of Riemann surfaces that
Riemann not only looked at a single mathematical object, but conceptualized a class of
objects through the variability of parameters. This led to the theory of moduli spaces
which is basic for algebraic geometry. For this reason, Riemann surfaces also constitute
the basic objects of the currently perhaps most promising theory, string theory, for the
unification of the known physical forces. The so-called Riemann-Roch theorem (Gustav
Roch (1839–1866) was an early deceased student of Riemann, who completed Riemann’s
work on these issues) was one of the guiding principles of mathematics in the second
half of the twentieth century and resulted in the works of Hirzebruch, Atiyah-Singer and
Grothendieck that produced key results of modern mathematics. The Riemann hypothesis,
more than 150 years after its formulation, is still considered as the hardest and deepest
open problem of all of mathematics.

On Riemann’s Biography Bernhard Riemann, the son of a Lower Saxon protestant
minister, lived from 1826 to 1866. He remained very attached to his family which put
him in a difficult position due to many early deaths that led to unsecured financial
circumstances. Like most of the great of the history of mathematics, he showed an
extraordinary mathematical talent already as a schoolboy. After some hesitation, he
followed this talent and studied mathematics instead of theology as desired by his father,
in the scientific centers Göttingen and Berlin. His main academic teachers and role models



1 Introduction 5

were Carl Friedrich Gauss (1777–1855),6 with whom he received his doctorate in 1851,
and Peter Gustav Lejeune Dirichlet (1805–1859),7 of whom he attended many lectures

6Gauss was born in Brunswick in modest circumstances. Since his outstanding mathematical talent
was recognized early on, he was, however, generously supported by the Brunswick Duke. Already
at a young age he made significant mathematical discoveries, such as on the question of the
constructability of regular polygons. His Disquisitiones Arithmeticae, published in 1801, but written
already some years earlier, are considered as the work that founded modern mathematics as an
autonomous science. A spectacular success of his mathematical methods of error calculation was
the rediscovery of the minor planet (asteroid) Ceres in the same year. This minor planet had been
discovered by astronomers, but then again lost sight of until the Gaussian methods of path calculation
would permit prediction of its position with high enough precision so that the astronomers knew
to which position in the sky they had to turn their telescopes to find it. Since 1807, Gauss was
a professor in Göttingen and the director of the observatory. Gauss is considered the greatest
mathematician of all time, and he has influenced almost all areas of modern mathematics and even
founded many of them. Together with the physicist Wilhelm Weber (1804–1891) he constructed
the first telegraph. The mathematical methods developed by him are fundamental for astronomy
and geodesy. Especially in old age, Gauss was difficult to approach, undoubtedly also due to a not
very happy family life, and the shy Riemann could not establish direct personal contact with him.
Riemann therefore acquired the mathematical theories and discoveries of Gauss by self-study. A
recent biography of Gauss is Walter Kaufmann Bühler, Gauss. A biographical study, Berlin etc.,
Springer, 1981.
7Dirichlet was born in Düren in the Rhineland as a son of the local postmaster, whose father had
immigrated from the Walloon region in present-day Belgium, where the Romanesque name comes
from. During a stay in Paris from 1822 to 1827, as a foreigner, however, he was not allowed to
attend the courses of the then leading French mathematician Augustin Louis Cauchy (1789–1857)
at the Ecole Polytechnique. fortunately, he succeeded in gaining access to the circles of Jean-
Baptiste Louis Fourier (1768–1830), who, starting from physical problems of thermodynamics,
had introduced the famous series representations for periodic functions. Dirichlet proves a basic
result about these series expansions. Alexander von Humboldt (1769–1859), who after his famous
expeditions initially stayed in Paris and then held influential positions in Berlin, is impressed by
him and supports and encourages him and brings him as a professor to Prussia, first to Breslau and
then in 1829 to Berlin. Dirichlet and his friend and colleague Carl Gustav Jacob Jacobi (1804–1851)
turn the University of Berlin, which had been founded in 1810 by Wilhelm von Humboldt (1767–
1835) in the course of the reforms motivated and necessitated by the Napoleonic aggression against
Prussia, into a center of mathematical research. Dirichlet’s wife Rebecca was a granddaughter of
the philosopher Moses Mendelssohn (1729–1786), a niece of the author Dorothea (von) Schlegel
(1764–1839), who in turn was the wife of the writer and theorist of Romanticism Friedrich (von)
Schlegel (1772–1829), and a sister of the composer Felix Mendelssohn Bartholdy (1809–1847),
who as head of the Leipzig Gewandhaus Orchestra, initiated the rediscovery and renaissance of the
baroque music of Bach and Händel. In this way, Dirichlet’s life was intertwined with those of many
other prominent personalities. Dirichlet was friendly and open towards Riemann, and Riemann could
learn a lot from him. Dirichlet made in particular important contributions in number theory, and he
founded the analytic direction of number theory. A historically oriented introduction can be found
in W. Scharlau, H. Opolka, From Fermat to Minkowski. Lectures on the theory of numbers and its
historical development, New York, Springer, 22010 (translated from the German). The principles
applied by Dirichlet in the calculation of variations later played a central role in Riemann’s studies
on function theory and Riemann surfaces.
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in Berlin. Dirichlet in 1855 became the successor of Gauss in Göttingen, and in 1859,
Riemann in turn became his successor as a full professor in Göttingen after he had
been appointed in 1857 as an associate professor. He was shy and sickly, but impressed
the scientific world by the richness of his mathematical insight and the boldness and
originality of his mathematical theories. He developed closer personal contacts outside of
his family only with the younger mathematician Richard Dedekind (1831–1916).8 He went
through the steps of a standard academic career from the lectureship to a professorship
in Göttingen. The salary that came with this professorship eased his financial situation
considerably, especially because after the death of his parents and his brother he also
took over the responsibility for three unmarried sisters. Health problems necessitated
interruptions of this position by extended sojourns in Italy whose climate was more
suitable for him, but where he succumbed to lung disease before reaching the age of 40,
leaving behind his wife and a young daughter.

Riemann died neither as young as Niels Hendrik Abel (1802–1829) nor Evariste Galois
(1811–1832), who in their short lives could create only one important mathematical
theory (that of the Abelian integrals and group theory), nor did he reach the old age
of the often grumpy and withdrawn Gauss. He had neither the almost inexhaustible
vitality of Leonhard Euler (1707–1783) nor the active energy of Carl Gustav Jacob
Jacobi (1804- 1851) and Felix Klein (1849–1925). He could not rely on a group of
talented young students and collaborators as could David Hilbert (1862–1943), for the
requisite institutional conditions were established in Germany only later by Felix Klein
and others (and then destroyed again by the Nazis through expulsion and murder of Jewish
mathematicians and the exile of those who were not Jewish but only dissenting). But Gauss
and Riemann created the rise of mathematics in Germany and especially in Göttingen, that
in the first place made such an institutionalization possible.

As far as the author knows, there is no detailed biography of Riemann written for
general readers.9 Otherwise, biographies of prominent mathematicians are not rare and

8On Dedekind see Winfried Scharlau (ed.), Richard Dedekind. 1831|1981, Braun-
schweig/Wiesbaden, Vieweg, 1981. The letters printed there also contain biographical material on
Riemann, which can complement the picture in Dedekind’s biography of Riemann in the latter’s
collected works.
9In Riemann’s collected works edited by Heinrich Weber and Richard Dedekind, there is a 20 page
biography of Riemann, written by his friend and colleague Dedekind. Hans Freudenthal wrote a short
biography for the Dictionary of Scientific Biography. In addition to other short biographical sketches,
there are the scientific biographies of Michael Monastyrsky and Detlef Laugwitz in which the
development and impact of Riemann’s scientific work is placed in the context of the circumstances
of his life. The scientific biography of Laugwitz has been of great help to me at various places, and
it also contains a detailed description of Riemann’s life that is accessible to a general readership.
Various other such analyses can be found in the reissue of Riemann’s collected works edited by
Raghavan Narasimhan. A systematic research of the unpublished scientific notes and sketches and
the available biographical material on Riemann has been started by Erwin Neuenschwander. For
some results, see Erwin Neuenschwander, Riemanns Einführung in die Funktionentheorie. Eine
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in some countries constitute even an expression of national pride, like the biographies of
the Norwegian mathematicians Niels Hendrik Abel and Sophus Lie (1842–1899) by Arild
Stubhaug. In other cases, such as the biographies of David Hilbert and Richard Courant
(1888–1972) by Constance Reid that are very popular among mathematicians, their lives
under the often difficult and unfavorable circumstances of their times and the historical
events affecting them also arouse interest. Since Riemann’s life unfolded in a quiet time
without dramatic personal or historical events, there is no material for a spectacular tale.
Also, the cult of genius, for which Riemann should actually provide an excellent example,
did not take him up as it had the younger mathematicians Abel and Galois or the artists
Raphael, Mozart and Schiller who had a life span similar to that of Riemann.

The academic life of Bernhard Riemann appears unproblematic from today’s per-
spective if we leave the precarious financial circumstances aside in which the so-called
privatdozenten (private lecturers) had to live at that time. These privatdozenten were
doctoral or post-doctoral level scientists who did not have a regular professorship. The
ascent from lectureship to professorship was probably already in his time considered
as the usual academic career. It should be pointed out, however, that in many cases
there were deviations from this path, in both the positive and the negative sense. In
any case, the modern university system had been founded by Wilhelm von Humboldt
only half a century before Riemann, and the relocation of scientific research from the
scientific academies and learned societies of the 18th to the universities of the nineteenth
century and the establishment of appropriate academic career structures had needed some
time. In particular, in the initial phase, the university system could therefore typically
not form its next generation through internal university career paths, but had to recruit
university teachers often from outside, from the group of high-school professors or
that of the scientific practitioners, who worked in astronomical observatories, botanical
gardens, pharmacies or other institutions. Conversely, aspiring scientists could therefore
not necessarily build a purely academic career, but often had to take long biographical
detours. Thus, on one side, there were gifted and talented scientists who never in their
lives got a university position. On the other side, there were those who succeeded in
gaining entry into an academic career from an outsider position, or conversely, those
who from an early age were generously supported by noble sponsors or governments. The
latter category included Gauss, who was supported by his ruler, the Duke of Brunswick,
or Dirichlet, who at the initiative of Alexander von Humboldt was first sponsored in his
studies in Paris and then given a professorship in Berlin. A well-known example outside
of mathematics is the chemist Justus (von) Liebig (1803–1873), whom the Grand Duke of
Hesse enabled his studies in Paris and then, as early as 1824, made a professor at Giessen

quellenkritische Edition seiner Vorlesungen und einer Bibliographie zur Wirkungsgeschichte der
Riemannschen Funktionentheorie. Abhandlungen der Akademie der Wissenschaften zu Göttingen,
Math."=Phys. Klasse, Bd. 44, 1996. Various mathematical historical studies discuss the development
of geometry before, through and after Riemann, but usually not from a biographical perspective.
Sources can be found in the bibliography at the end of this book.
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where Liebig then established the institution of the chemical laboratory for teaching and
research.Notable examples of those, who through tough and sustained efforts managed
external access to and then achieved central positions in the German scientific system,
are the mathematician Karl Weierstrass (1815–1897), who had to spend many years as a
grammar school teacher in Deutsch-Krone in former West Prussia and in Braunsberg in
former East Prussia before he could gain scientific recognition by his mathematical work
on elliptic integrals, or Hermann (von) Helmholtz (1821–1894), who first had to work as a
military surgeon before he was able to start his academic career. Wilhelm Killing (1847–
1923) conducted his important studies on the foundations of geometry and the infinitesimal
transformation groups (Lie algebras) in the little time left by a huge teaching schedule that
comprised all sciences and on top of which he even had to serve for some periods as
the principal at the Lyceum Hosianum in Braunsberg in East Prussia, where his teacher
Weierstrass had worked before. In 1892, Killing became a professor in Münster. There,
however, his teaching and administrative tasks up to the office of the Rektor (University
President) and his caritative commitments that were rooted in his catholicism took so
much of his time that he could barely continue his mathematical research. Others, such as
the mathematician Hermann Grassmann (1809–1877), were denied scientific recognition
throughout their lives. Grassmann was a high school teacher in Stettin, and he founded
linear algebra, which is fundamental in today’s mathematical university education and
is taught from the very first semester. (Grassmann was also a major Sanskrit researcher
and studied in particular the Rigveda. In contrast to his mathematical work, these studies
obtained the recognition of the academic world.) A well-known example outside of
mathematics is of course the Augustinian monk Gregor Mendel (1822–1884), whose
discovery of the quantitative laws of inheritance, one of the deepest insights throughout
the history of biology, failed to gain the notice of the professional biologists, until after the
turn of the century they were rediscovered by several researchers, in a weaker form first,
and then became the foundation of the modern gene concept.

Previous editions (for details see the bibliography at the end):

• Collected Works (various editions, the most recent by Narasimhan);
• Weyl, with a detailed mathematical commentary



2Historical Introduction

2.1 The Space Problem in Physics, from Aristotle to Newton

Riemann’s text links in a novel manner different thematic threads that combine math-
ematics, physics and philosophy, and Helmholtz in addition brings the physiology of
the senses into the discussion. Therefore, in order to historically situate Riemann’s text,
let us first sketch the history of the space problem as developed in those sciences. The
starting point of geometrical research is Euclid (fl. 300 BC). As is well known, in his
Elements, from a few definitions, postulates and axioms, he developed a planar and spatial
geometry in a constructive manner. This then dominated the subsequent development of
geometry so strongly that often and for a long time, it was considered as being without
alternatives. While the relationship of Euclidean geometry to the philosophy of Plato was
unproblematic, it did not fit with Aristotelian physics. Euclidean space is homogeneous,
that is, any point in it is like any other, and isotropic, that is, in all directions it looks
the same. No point and no direction is in any way distinguished. Aristotle (384–322 BC)
in contrast thought of the world as a collection of places. According to him, the location
of an object is determined by its bounding surface. Every body has its natural place to
which it tries to move. Thus, the world is heterogeneous. Because objects naturally fall
downwards, the vertical direction is different from other directions. Thus, Aristotelian
space is not isotropic. Contrasting Euclid and Aristotle in this manner leads us already
to the fundamental question of the relationship between geometry and physics, or in a
slightly different formulation, to the question about the relation between the geometric
space and the objects filling it. From the point of view of physics, this also raises the
question about the existence of the vacuum, the empty space devoid of any content that
was required for the ancient atomic theory of Democritus (ca. 460–370 BC) and Leucippus
(fifth century BC), but which was considered impossible by Parmenides and Aristotle.

© Springer International Publishing Switzerland 2016
B. Riemann, On the Hypotheses Which Lie at the Bases of Geometry,
Classic Texts in the Sciences, DOI 10.1007/978-3-319-26042-6_2
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Euclidean space is infinite,1 and the question of the finiteness or infinity of physical space
was also controversial in antiquity, with Aristotle again standing on the opposing side.
For him, infinity could just exist as potentiality in time, but not actually in space. A
new point was then introduced by the artists and art theorists of the Italian Renaissance.
They wanted to represent objects no longer in their real, objective size or display persons
with size corresponding to their significance, but show them as they presented themselves
subjectively to the eye of the beholder. For this purpose, they had to utilize the objectively
valid laws of geometrical optics, which in turn follow the rules of Euclidean geometry. In
a certain sense, they replaced the physics of bodies by a physics of light rays which had
to correspond to Euclidean geometry. This may also have been facilitated or inspired by
the needs of cartography required for the rise of maritime trade, which was also concerned
with the adequate representation of spatial relations.2 Anyway, linear perspective, which
is said to have been discovered by the Florentine architect and artist Filippo Brunelleschi
(1377–1466) and which found its first representation, in the book “Della Pittura” (1435)
by the writer and scholar Leon Battista Alberti (1404–1472), is the Euclidean construction
of the projection from the three-dimensional space on a two-dimensional surface. This
inspired then Kepler (1571–1630) and Desargues (1591–1661) to a new treatment of conic
sections.3 In the hands of mathematicians, this led (only) in the first half of the nineteenth
century to the development of projective geometry,4 which then in connection with the
ideas developed by Riemann, Klein and other mathematicians of the second half of the
nineteenth century became a part of algebraic geometry.

The Italian natural philosophy of the sixteenth century also began to propose alterna-
tives to the hitherto dominant Aristotelian-scholastic worldview.5 Julius Caesar Scaliger
(1484–1558) revives the doctrine of the empty space of the ancient atomism, the

1The concept of infinity in antiquity, however, differed from the modern one which was shaped by
Cantor’s view of modern mathematics. The infinite was understood not as actually existing, but as
a potentiality, in the constructive sense that, for example, a straight line can be extended forever,
without reaching an end, but without having to assign to all points of this infinite straight line a
prior existence. For a systematic analysis of the historical development of the concept of infinity
s. J. Cohn, Geschichte des Unendlichkeitsproblems im abendländischen Denken bis Kant. Leipzig,
Wilhelm Engelmann, 1896.
2Samuel Y. Edgerton, The Renaissance Rediscovery of Linear Perspective, Basic Books, 1975.
3See for instance J. V. Field, The invention of infinity, Oxford, New York etc., 1997.
4See the detailed presentation by Kirsti Andersen, The Geometry of an Art. The History of the
Mathematical Theory of Perspective from Alberti to Monge. Berlin etc., Springer, 2007.
5For a systematic presentation of the entire historical development, we refer to E. Cassirer, Das
Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit, 4 vols, Darmstadt, Wiss.
Buchgesellschaft, 1974 (reprint of the 3rd edition of volumes 1,2 from 1922, of the 2nd edition of
volume 3 from 1923, and of the 2nd edition of volume 4 from 1957). A concise introduction to
the development of anti-Aristotelianism and mechanical philosophy until Newton is given by Daniel
Garber, Physics and foundations, in: Katherine Park, Lorraine Daston (eds.), The Cambridge History
of Science, Vol. 3, Early modern science, Cambridge, Cambridge Univ. Press 2006, pp. 21–69.
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precondition for space to become the container of objects. In contrast to Aristotle, the
location of an object is then no longer determined by its bounding surface, but becomes the
three-dimensional geometric content enclosed by such a boundary. Space thus no longer
surrounds objects, but objects fill space. Bernardino Telesio (1508/9-1588) developed a
dynamic anti-Aristotelian natural philosophy. For him, the (empty) space is incorporeal
and ineffective; it can merely receive objects.6 For Francesco Patrizi (1529–1597) space is
origin and source of quantity and it constitutes the basis of the world of things. Because
it shows no resistance, it is not physical, but at the same time distinguished from purely
spiritual entities by the feature of extension. Thus, space is here, in contrast to Aristotle,
not a reality inherent in the objects, but independent of them. The ideas just discussed
remained essential and effective for the further development of the concept of space.

The physics of Galileo Galilei (1564–1642), which establishes quantitative mathemat-
ical laws in contrast to the qualitative, logical reasoning of Aristotle,7 assumes Euclidean

6In addition to Cassirer, Vol. 1, loc .cit., see also the article on Telesio in R. Eisler, Philosophen-
lexikon, Berlin, 1912, p. 741f.
7Galileo put the focus on the empirically measurable development of physical processes instead
of their derivation from final principles. He believed that the world therefore cannot be readily
deduced from revealed principles, but can only be painstakingly explored empirically and needs to be
measured. With these views and the underlying atomistic conceptions, Galileo ultimately demolished
the scholastic natural philosophy of the Middle Ages that had been formed through the reception of
Aristotle. According to scholastic philosophy, the world was a structure with an order designed for
and revealed to man. (See, eg, the concise analysis of E.A. Burtt, The metaphysical foundations
of modern science. Mineola. Dover, 2003 (reprint of the 2nd ed., 1932)). This philosophy also
provided a foundation for the Aristotelian distinction between form and substance which in turn
was needed for the doctrine of the Eucharist. This was an important component of the worldview
of the Catholic Church that had hardened in the Counter-Reformation. This was a basic reason
for opposition of the Church against the Galilean conception of nature. This is in contrast to the
beginning of the dissolution of the Aristotelian world view in the Italian natural philosophy of
the sixteenth century, as outlined above, which had still encountered papal benevolence. Instead
of the Aristotelian substances, which could be given different forms, and which then in turn could
be converted while preserving their form in the miracle of transubstantiation, in the Galilean view,
there were only formless atoms whose qualitative properties such as color were constituted only in
the process of perception. Then such a miracle became impossible, or plausible, at best, as a crude
sensory illusion. And of course, also the Copernican heliocentric system did not harmonize with a
human-oriented plan of creation. These seem to be the deeper underlying reasons for the resistance
that Galileo encountered from the leading intellectual representatives of the Catholic Church. This
is different from popular expositions, where petty disputes about the literal interpretation of certain
biblical passages, like that where Joshua allegedly made the sun stand still when taking Jericho,
are presented as the reason for the persecution of Galileo by the church. Bible passages could well
be interpreted allegorically also by the Catholic Church, if this was deemed useful or necessary
for systematic reasons. Scriptures probably served rather as material for rhetorical tricks at a time
when the methods advocated by Machiavelli could also be employed in intellectual discussions.
Even with physical experiments it is often unclear whether they were actually carried out or their
results were only claimed on the basis of intuitive plausibility as evidence for a systematic theory,
see, eg, Alexandre Koyré, Galilée et l’expérience de Pise: À propos d’une legende, in: Annales de
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geometry. He considered idealized situations, like those of a ball rolling on an infinitely
extended inclined plane or the uniform acceleration-free movement in empty space, which
can be described mathematically in exact terms and at the same time approximate the
physical processes in the real world. The difference between the ideal and the real
movement is due (as opposed to Aristotle) to conceptually secondary effects such as
friction or drag. The uniformity of the idealized physical processes presupposes the
uniformity of the space in which it takes place. In modern terminology, the invariances
of physical movements can be reduced to transformations of space that do not change its
geometry. This is the so-called concept of Galilean invariance, that the laws of physics
are the same in all reference frames that move relatively to each other at a uniform
speed, without acceleration. This remains valid in Einstein’s special theory of relativity,
in which, however, the Galilei transformations are replaced by the relativistic Lorentz
transformations, in which not only the spatial positions, but also time is transformed
linearly. Such Lorentz transformations therefore no longer take place in three-dimensional
Euclidean Space, but in a space extended by the inclusion of time, the four-dimensional
Minkowski space.

So Galileo replaced the Aristotelian conception of an ordered and structured cosmos
by the uniform laws of a per se unstructured universe (already by Giordano Bruno (1548–
1600) enthusiastically propagated as infinite).8 This was not only the crucial breakthrough
of modern physics, but it also established the systematic questions and problems of modern
geometry, which then reached their culmination in the work of Riemann.

For the physics of Isaac Newton (1642–1727), Euclidean space was the invariant
container in which the physical objects, typically idealized as point masses, moved under
the influence of forces. This pioneering concept had, however, to battle against the
Cartesian idea that the characteristic criterion of matter was their extension9; to René
Descartes (1596–1650), the Newtonian concept of a mass point would have appeared
completely meaningless. Johannes Kepler prepared and Newton developed the notion of
bodies that are not characterized by their spatial extension,10 but rather by their dynamic

l’Université de Paris, 1937. Although Pietro Redondi, Galileo eretico, Torino, Einaudi, 1983 (English
translation: Galilei heretic, Princeton Univ. Press, 1987), found evidence that the church actually
saw justification of the doctrine of transsubstantion, which was central for the Counter-Reformation,
endangered by Galileo and reprimanded him for this, the consequences of this discovery are probably
not incorporated to their full extent in the history of science discussion.
8The classical treatment is Alexandre Koyré, From the closed world to the infinite universe,
Baltimore, Johns Hopkins Univ. Press, 1957. Cassirer, loc. cit., contains more material and in some
regards penetrates more deeply into the matter.
9For a modern account of Cartesian physics, see Daniel Garber, Descartes’ metaphysical physics,
Chicago, London, The University of Chicago Press, 1992.
10Newton held the view that the Cartesian conception of matter as characterized by expansion
just confuses the essential properties of space and bodies with each other. Newton considered
impenetrability as an important characteristic of the physical bodies and refuted the Cartesian theory
with physical arguments, Isaac Newton, Mathematical Principles of Natural Philosophy, 31726.
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force effects, that is, by space independent properties or possibilities of action. This made
it possible that bodies exert forces without direct spatial contact.11 Through this, Newton
took a step beyond the mechanistic natural philosophy of the seventeenth century which
wanted to admit only direct mechanical interactions between bodies.12 This step was
decisive for the further development of physics. This, however, leads to the question, which
Newton could not answer, how such a force can be exerted across a spatial distance.13

This led the deeply religious Newton to a theological pirouette. Whereas the heliocentric
model of Copernicus was rejected immediately and vehemently by Martin Luther, and
Pope Urban VIII, after much hesitation, finally, decided to have Galileo condemnated,
Newton’s idea that the gravitational effects across spatial distances constitute a proof for
the divine control of world affairs was received by enlightened Christians in England as
a splendid refutation of the ideas of Descartes that were considered as atheistic. In his
physical theory, Descartes had also attempted to explain gravity by vortex motions of
contacting and interacting matter particles, that is, by direct physical contact rather than
by action at a distance, and thus without any kind of divine agency.14 But even if the

Nevertheless, Alexandre Koyré, Newtonian Studies, Chicago, Univ. Chicago Press, 1965, argues for
a decisive influence of Descartes on Newton. Even historians of science seem to have their favorite
heroes. Newton’s struggle with the conceptions of Descartes can be seen perhaps most clearly from
the posthumous manuscript, which was probably written before the drafting of the Principia, which
is usually quoted by its opening words “De gravitatione. , , ” and which was first published with
English translation in A.R. Hall and M. Boas Hall, Unpublished scientific papers of Isaac Newton,
Cambridge, Cambridge Univ. Press, 1962, pp. 89–156.
11Kepler considered the attraction of the earth as a kind of magnetic force, inspired by the study of
magnetism by William Gilbert (1543–1603) and the latter’s discovery that the earth also behaves like
a magnet, which can explain the properties of the compass. Remarkably, to this day, physics has not
succeeded in capturing magnetism and gravitation in a unified theory, as we shall explain in more
detail below.
12For a succinct but very clear exposition see Richard S. Westfall, The construction of modern
science. Mechanisms and mechanics. John Wiley, 1971; Cambridge, Cambridge Univ. Press, 1977.
A detailed analysis of the Newtonian concept of force and its historical genesis and preparation
can be found in Richard S. Westfall, Force in Newton’s physics, London, MacDonald, 1971. See
also Ferdinand Rosenberger, Isaac Newton und seine physikalischen Prinzipien, Leipzig, Ambrosius
Barth, 1895, reprint Darmstadt, Wiss. Buchges., 1987.
13It is a noteworthy fact in the history of science that in the hands of Kepler, this idea was still
fertile and pioneering for physics. In particular, this lead to his insight into the cause of the tides.
While Galileo had wanted to explain the tides by the earth’s rotation and reversely believed to have
thereby found a proof for the earth’s rotation and thus for the correctness of the Copernican system
(although this argument contradicted his own principle of relativity ), Kepler attributed the tides to
the influence of the moon, that is, to an action over a spatial distance. Had this idea not been accepted,
the great system of Newton would not have been possible either. But when the general acceptance
of the Newtonian theory made the questioning of this idea difficult, the further progress of physics
was hindered.
14See for instance Koyré, Closed world, loc. cit. Such views were still advocated by the leading
scientists of the eighteenth century, Leonhard Euler, although Euler was deeply religious.
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theological twist that Newton had thus given the matter received a lot of support in England
at that time, this was of course a scientific impasse.

A central aspect of the following history of ideas and thus a certain guide for our
considerations is how this problem of spatial mediation of forces was modified by the
electrodynamical concept of a field. This concept replaced the remote with a near action.
Via Riemann’s new conception of space and its properties, it ultimately led to Einstein’s
idea of general relativity as a dynamic interaction between space and matter.

The time-dependent positions of these Newtonian mass points could be described by
Cartesian coordinates, i.e., by numbers on three mutually perpendicular coordinate axes.
Thus, it was by means of the parametrization of Euclidean space by Cartesian coordinates
that a fixed reference system for all physical processes was obtained. For Newton the
space—always thought of as Euclidean—thereby also acquired ontological priority over
the objects, and Newton then considered space as an attribute of God, as an expression of
His omnipresence.15 This absolute space of Newton was sharply criticized by Gottfried
Wilhelm Leibniz (1646–1716).16 Leibniz considered spatial relations as relations between
objects and came in this way to a relative concept of space.17 He could, however, not refute
Newton’s counter-argument that the rotational motions of liquids demonstrate the physical
effect of absolute space (this was not achieved until the nineteenth century when Ernst
Mach (1838–1916) explained such physical phenomena by the gravitational effects of the
fixed stars18). Although Leibniz’s ideas contained many seeds for the future development
of physics (e.g., the continuity principle and the action at proximity or the conservation of
energy), Newtonian physics won the day at the time because of its superior force concept.
In any case, it was a guiding principle of Newton that the true geometric facts are expressed

15The idea of space as an expression of God’s omnipresence had already been developed by the
Cambridge Platonists and, in particular, by Newton’s friend Henry More (1641–1687) and that of
time as an expression of God’s eternity and constant presence by Isaac Barrow (1630–1677), the
colleague of More and the teacher, colleague and friend of Newton. See the presentation in E.A.
Burtt, The metaphysical foundations of modern science, Mineola. Dover, 2003 (reprint of the 2nd
ed., 1932). For Newton, space and time even were the sensoria of God, and this naturally led to
God’s characterization as the self-perception of reality. Here, however, we cannot discuss such later
developments in detail.
16See the famous polemics between Leibniz and Newton follower Samuel Clarke (1675–1729), for
example reproduced in G.W. Leibniz, Hauptschriften zur Grundlegung der Philosophie, part I, pp.
81–182, translated by A. Buchenau, ed. by E. Cassirer, Hamburg, Meiner, 1996 (reissue of the 3rd
ed., 1966).
17For a systematic presentation and analysis of Leibniz’s concept of space in the context of his
philosophy, I refer to Vincenzo De Risi, Geometry and Monadology. Leibniz ’ Analysis Situs and
Philosophy of Space, Basel etc., Birkhauser, 2007, pp. 283–293. The structural considerations of
Leibniz went far beyond the discussion of his time, but because they were not systematically
published and therefore not properly understood by his contemporaries, they did not have a sustained
effect.
18But even this argument of Mach did not provide the final resolution. That was supplied only in the
general theory of relativity, as will be explained in more detail below.
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in the effects of forces. That the sun in the center of the planetary system we recognize
from the fact that it holds the planets in their orbits through its gravitational pull. Newton’s
mathematical formulation of the law of gravitation became the role model of a physical
theory, even if the underlying concept of space was problematic and Newton did not feel
himself at ease with the concept of action at a distance between remote objects through
empty space.19 The concept of action at a distance was, as already explained, later replaced
by the infinitesimal concept of a propagating field in the theories of Faraday and Maxwell.
These theories were concerned with electromagnetism, a physical force different from
gravity, but Einstein’s general theory of relativity then was a field theory of gravity.

It was certainly a major advance that both Leibniz and Newton, against Aristotle and
Descartes, carried out the conceptual separation of space and bodies, decisively, as it
seemed at the time. But in a certain sense, this conceptual separation is taken back by
the general theory of relativity.

Let me return once more to the dynamical aspects and the role of forces. In the physics
of Aristotle and his scholastic followers, a body is moving from its own propensity. A
stone is falling to the earth because it has the purpose to get to its natural position. Thus,
bodies are actively moving because of intrinsic final causes. The fundamental question
then was why when you throw a stone it keeps on moving after it has left your hand
that propelled it. For Galileo and Descartes, the question was reversed, that is, why a
stone once thrown does not keep on moving forever, but eventually comes to rest. In the
physics of Descartes, the physical world is a continuum of contiguous physical bodies,
and motion is a mode of a body. In contrast to Aristotle, who did not regard physical
motion as fundamentally different from other changes a body can undergo, Descartes
restricts the concept of motion to changes of local position, focussing on the relation of
a body to its immediate surroundings.20 The conceptions of both Newton and Leibniz are
fundamentally different from those of Aristotle, but in important ways also from those
of Descartes. In Newtonian physics, a body changes its state of rest or motion because
other, distant, bodies exert forces upon it, and not by its own propensity. What is left
is only the Galilean concept of a body’s inertia. These forces could be attractive, like
gravity, or repulsive, preventing a body from getting into the space occupied by other

19Newton did not allow himself in the “Principia” to pursue the question of the cause of gravitation.
According to his empiricist attitude, through careful observation of the phenomena, he wanted to
come inductively to laws which then in mathematical formulation and by mathematical methods
allowed for empirically testable prediction of further phenomena. In this sense we should understand
his famous quote “Hypotheses non fingo”. However, at other occasions, he did speculate about an
ether mediating gravity and other physical forces, see E.A. Burtt, loc. cit. For instance, on p. 350 of
the 1979 Dover republication of his Opticks, he speculates about an ether that mediates gravitation.
The standard version or interpretation of Newtonian physics where gravity acts immediately and
across empty space, that is, without the help of a medium, was developed by Newton’s followers and
derived in a philosophical framework by Kant.
20See Daniel Garber, loc. cit.
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bodies. Kant then worked out this dynamical view systematically, replacing concepts
like impenetrability of bodies by dynamical actions of such repulsive forces. For him,
matter was constituted from a balance between attraction and repulsion.21 Of course, in
Newtonian physics, the interactions between bodies are reciprocal, because of his third
law that action equals reaction, but forces are active across spatial distances, as described
above. The Leibnizian universe consists of a collection of coexisting monads, each of
which reflects the entire universe in itself, although in an imprecise manner. Thus, the
world is constituted by a web of interacting monads that feel each others’ influences
without the need of direct physical contact.22 In fact, the monads themselves are not spatial,
in sharp contrast to Cartesian bodies that are characterized by their spatial extension, but
space is only constituted from the web of their interrelations.23 Thus, for both Newton
and Leibniz, a concept of force (from gravity and inertia as empirically observed and
quantified as mass times acceleration in Newton’s case, intrinsic energy, quantified as
mass times the square of velocity and conserved, for Leibniz) is constitutive for matter,
in sharp contrast to only geometric extension for Descartes. Bodies are moving (or more
precisely, change their state of rest or uniform motion) because they feel the influence of
other, distant, bodies. In contrast to Descartes where a body could be influenced only by
those other bodies that were in direct physical contact with it, now a body is subjected to
the influence of all other bodies. This eventually led the focus from individual bodies to the
universe as a whole. This becomes evident, for instance, already in the natural philosophy
of Kant.24 Ultimately, of course, it culminated in Einstein’s general theory of relativity.
Before that, however, Einstein had first to develop his special theory of relativity where he
overcame the assumption of an instantaneous transmission of physical forces or influences
across the distance that was underlying Newton’s and, in particular, Leibniz’ conceptions.
Again, this was prepared by the field theories of electromagnetism, another force that is
not transmitted instantaneously, but at a finite speed, that of light.

21Kant contrasts the mathematical approach of the mechanical philosophy which tries to explain
physics through the mathematical analysis of a priori concepts with his own metaphysical-dynamical
approach that uses forces as basic ingredients and therefore depends on experience. See Michael
Friedman, Kant’s construction of nature, Cambridge, Cambridge Univ. Press, 22012.
22Actually, Leibniz’ views are more complex, but this is not the place to go into details. See for
instance M. Guerault, Dynamique et métaphysique leibniziennes, Paris, Les Belles Lettres, 1934,
and many other texts dealing with Leibniz’ natural philosophy.
23See for instance Daniel Garber, Leibniz: Body, Substance, Monad, Oxford, Oxford Univ. Press,
2009, who, however, emphasizes the changes that Leibniz’ natural philosophy underwent during his
lifetime.
24See the comprehensive analysis of Kant’s natural philosophy by Michael Friedman, Kant’s
construction of nature, loc. cit.
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2.2 Kant’s Philosophy of Space

Newtonian physics and Leibniz’s ontology then were the starting point for Immanuel Kant.
Kant wanted to develop a philosophical justification of Newtonian physics. He dis-

solved the contrast between Leibniz’s pure relational understanding of space and Newton’s
absolute space by not locating space in the material world, but as a form of intuition into the
perceiving subject.25 In any case, Kant emphasized the relativity of space against Newton.
But Kant’s main point is that space as the possibility of coexistence is a precondition
of experience. For Kant, space in this sense is empirically real, but transcendentally
ideal because it does not constitute a basis for the things by themselves. Kant then goes
one major step further and considers statements about space as synthetic judgments a
priori, that is, constructions of the perceiving subject that lie before every experience
(and vice versa make experience as such possible). That they are synthetic means that
they cannot be simply obtained through an analysis of the concept of space, but rather are
autonomous constructions. For Kant, these synthetic judgments a priori include the axioms
of Euclidean geometry. Against Leibniz and Wolff (1679–1754), Kant thus emphasizes
and elaborates the axiomatic nature of geometry, i.e., that geometry has real axioms26 and
that the propositions of geometry cannot be obtained analytically from definitions. For
this essential insight that was also accepted by mathematics, the contacts of Kant with
the mathematician Johann Heinrich Lambert (1728–1777), a precursor of non-Euclidean
geometry, were probably also helpful. In particular, Euclidean geometry, for Kant, is not
logically necessary.

Moreover, Kant emphasizes the constructive nature of geometry and derives from
that the uniqueness of three-dimensional Euclidean geometry as intuitively constructible.
Whether Euclidean geometry thus in Kant’s view is logically necessary is a much
discussed issue of central importance for the interpretation of Kant. After all, Riemann
implicitly points out that the assumptions of Euclidean geometry are not necessary, but
represent specific geometric hypotheses, and Helmholtz makes this point the heart of his
epistemological argument. The orthodox Kantians therefore initially rejected the ideas of

25Immanuel Kant, Kritik der reinen Vernunft, 1781, in his Werkausgabe Bd. III/IV, ed. W.
Weischedel, Frankfurt, 1977. I shall use the translation Critique of Pure Reason by Paul Guyer
and Allen W. Wood, Cambridge etc., Cambridge University Press, 1998. This edition, like that of
Weischedel, gives the paginations for both the first (from 1781) and the second edition (from 1787)
of the Critique; for instance, A86/B118 means p. 86 of the first and p. 118 of the second edition.
26Where axioms here should not be interpreted in a modern sense, following Hilbert, as arbitrary
stipulations.
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Riemann and Helmholtz.27 But when the untenability of this position gradually became
clearer, efforts were made later to incorporate the arguments of Riemann and Helmholtz
into the Kantian system.28

Because this is an important aspect of the reception history, it is necessary to represent
the view of Kant in more detail. More precisely, this is the theory of space developed in the
Critique of Pure Reason; we should note that Kant’s concept of space has changed several
times in the course of his life, always wrestling with the relationship between Newtonian
physics with its absolute concept of space and Leibniz’s ontology in which space was
only a relation, and therefore not real, but rather ideal. This is all the more complicated
because both Newton and Leibniz mix this discussion with theological aspects. In his
early work, “Gedanken von der wahren Schätzung der lebendigen Kräfte” (Thoughts on
the True Estimation of Living Forces) Kant poses the hypothesis of a relationship between
the forces operating in space and its geometric structure, and in particular between the
law of gravitation and the three-dimensionality of the space. He also contemplates the
possibility of higher dimensional spaces.29

But in his dissertation, Kant then argued for the ontological priority of space over
the objects contained in it.30 He employs the example of the left and right hands (or
one hand and its mirror-image or a left and a right glove, or a left-handed and a right-

27In this context, it can only contribute to confusion when Paul Franks in the Oxford Handbook
of Continental Philosophy, Oxford etc., Oxford Univ. Press, 2007, pp. 243–286 (about Helmholtz
especially pp. 269–276), edited by Brian Leiter and Michael Rosen, classified Helmholtz as a Neo-
Kantian, because the so-called Neo-Kantians were his most important philosophical adversaries,
besides people like Hering whom he referred to as a nativist. Worth mentioning in this context
is G. Schiemann, Wahrheitsgewissheitsverlust. Hermann von Helmholtz’ Mechanismus im Anbruch
der Moderne. Eine Studie zum Übergang von klassischer zu moderner Naturphilosophie. Darmstadt,
Wiss. Buchges., 1997. Schiemann works out especially how Helmholtz’ approach of a justification of
experience in the conditions of physical measurements differs from the Kantian point of departure of
the transcendental subject, and examines the systematic changes that Helmholtz’ natural philosophy
’underwent in the course of his life. See also some essays in the anthology David Cahan (Ed.),
Hermann von Helmholtz and the Foundations of nineteenth-century science, etc. Berkeley, Univ.
California Press, 1993.
28See the references below in the reception history.
29This had already been contemplated by Leibniz, see De Risi, loc. cit. Leibniz then went on to
attempt to prove the three-dimensionality of space.
30Immanuel Kant, Von dem ersten Grunde der Unterschiede der Gegenden im Raume, 1768, in
ibid., Vorkritische Schriften bis 1768, Werkausgabe Bd. II, hrsg. v. W. Weischedel, Frankfurt, 1977,
S. 991–1000; English translation in Kant, Theorerical Philosophy, 1755–1770, transl. and ed. D.
Walford, with R. Meerbote, Cambridge, Cambridge Univ. Press, 1992. This example is taken up
again in ibid., Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten
können, 1783, in: the same , Schriften zur Metaphysik und Logik 1, Werkausgabe Bd. V, edited by
W. Weischedel, Frankfurt, 1977, pp. 111–264, §13; English translation in Kant, Prolegomena to Any
Future Metaphysics That Will Be Able to Come Forward as Science, transl. and ed. G. Hatfield,
Cambridge, Cambridge Univ. Press, rev. ed., 2004.
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handed screw), which by themselves are similar—in modern mathematical terminology
isomorphic to each other—but set apart from each other insofar as they cannot be made to
coincide in space. This means, according to Kant, that their properties are not completely
determined by themselves, but rather that there is an important property, handedness, that
is only assigned to them by space. The last and for Kant’s purposes important part of
the argument cannot be upheld, however. To see this, a deeper insight into the structure
of space is required that was not yet available to Kant. To understand this, consider a
dimensionally reduced version of a left and a right handprint in the Euclidean plane.
These figures cannot be converted into each other by a movement in the plane (or in a
different interpretation, by a movement of the plane). But this is not a property of the two
figures, but depends on the topological structure of the space. If we glue a planar strip
(which might contain our two figures) into a Möbius strip, it becomes possible in this
new geometric space to transform the two figures into each other. The difference between
the plane and the Möbius strip which both, as will be explained below, have the same
internal geometry, because the figures don’t get distorted by the construction of the Möbius
strip in any way, is that the latter is not orientable. This means that handedness can no
longer be assigned in a consistent manner. Therefore the geometrical difference between
the two figures disappears. Another possibility to transform one of the figures into the
other results if we move out of the plane into the surrounding space and flip the figures
over. Geometrically, this is a reflection of the plane across a straight line, an operation that
cannot be realized as a continuous motion in the plane itself, but only as a transformation
in three-dimensional space. So if we either deprive space of its orientation, that is, make
it nonorientable, or add a dimension, we can move the left into the right figure, and left
and right handedness cease to be properties of the figures. The same is possible in three-
dimensional space. Like the Möbius strip in two dimensions, you can also mathematically
define a three-dimensional non-orientable space with local Euclidean geometry, and you
can also make the transition from three-dimensional to four-dimensional space, to be able
to convert a left into a right hand by a movement in space. Handedness therefore is not
an absolute property of geometric objects that is assigned to them by (the) space, but the
possibility of a distinction between left and right handedness is a topological property
of space.31 In Kant’s example, this property of space is detected by observations on the
objects found in space. This precisely questions the ontological priority of space.32 This
issue, however, could be clarified only through the geometrical insights of Gauss (1777–
1855) and Riemann. Gauss33 argued in any case already against Kant, that Kant’s own

31See for example Hermann Weyl, Philosophy of Mathematics and Natural Science, Princeton,
Princeton Univ. Press, 1949, 2009 (translated from the German).
32For a comparison of the positions of Leibniz and Kant on this issue and a newer overview of the
literature on the subject, refer to Vincenzo De Risi, Geometry and Monadology. Leibniz’s analysis
situs and Philosophy of Space, etc. Basel, Birkhauser, 2007, pp. 283–293.
33Carl Friedrich Gauß, Werke, Göttingen, 1870–1927, reprint Hildesheim, New York, 1973; Vol. II,
p. 177.
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remarks that we can communicate our realization of this difference between left and right
to others only by its demonstration at really existing objects just proves that space must
have a real meaning which is independent of our intuitions. This argument is not (or
not only) directed against the ontological priority of space over objects, but against the
doctrine developed in the Critique of Pure Reason of space as pure intuition of external
experience which represents a significant change compared to Kant’s dissertation. In fact,
Kant famously argued that space is a necessary intuition a priori which is a precondition
for all external experience, because one can indeed imagine a space without objects, but
not that there is no space. Space is an intuition, not a concept, because we can reach non-
obvious conclusions about it, the geometrical propositions.34 It is furthermore a pure, not
an empirical intuition, because the geometrical propositions are apodictically true, i.e.,
associated with the insight into their necessity like, in particular, the three-dimensionality
of space. An example, to which we shall need to return below is “That the straight line
between two points is the shortest is a synthetic proposition. For my concept of the straight
contains nothing of quantity, but only a quality. The concept of the shortest is therefore
entirely additional to it, and cannot be extracted out of the concept of the straight line
by any analysis. Help must here be gotten from intuition, by means of which alone the
synthesis is possible.”35

In particular, the mathematical intuition about space is not empirical: “it is not images
of objects but schemata that ground our pure sensible concepts. No image of a triangle
would ever be adequate to the concept of it. For it would not attain the generality of the
concept, which makes this valid for all triangles, right or acute, etc., but would always be
limited to one part of this sphere. The schema of the triangle can never exist anywhere
except in thought, and signifies a rule of the synthesis of the imagination with regard
to pure shapes in space.”36 But since this intuition is not empirical, it must come from
the perceiving (or more precisely, according to Kant, the transcendental) subject. The
necessity of geometrical propositions thus has its origin in the perceiving subject, as
a condition for the possibility to organize the multitude of phenomena in their spatial
distinctiveness. In that regard and to that extent, the propositions of Euclidean geometry are
not logically necessary. For Kant, Euclidean geometry is only distinguished by the fact that
it is intuitively constructible. We humans necessarily imagine space to be Euclidean. Kant
utilizes the following example to bring this point home: “Thus in the concept of a figure
that is enclosed between two straight lines there is no contradiction, for the concepts of two
straight lines and their intersection contain no negation of a figure; rather the impossibility

34The fact that from mathematical axioms conclusions can be drawn that are not obvious, is a
central theme of the philosophy of mathematics. The Platonic approaches view mathematics as
an opportunity or a tool to discover eternal truths. Weyl, Philosophy, however, emphasizes the
constructive and creative nature of mathematics.
35Kant, Critique of Pure Reason, 2nd ed., Introduction, B16 (p. 145) (emphasis in the original).
36Ibid., A141/B180 (p. 273).
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rests not on the concept in itself, but on its construction in space, i.e., on the conditions of
space and its determinations; but these in turn have their objective reality, i.e., they pertain
to possible things, because they contain in themselves a priori the form of experience in
general.”37

However, the interpretation of Kant was quite fluid with regard to these points. One
reason, of course, is that Kant himself had changed his views on these matters several
times and the crucial arguments in the Critique of Pure Reason use terms that become
clear only from his later reasonings. On the other hand, it caused considerable difficulties
for the Kantians to develop an interpretation of relevant arguments of Kant that did not
conflict with subsequent mathematical and physical insights and findings.

2.3 Euclidean Space as the Basic Model

We now want to place some of the developments described above into the systematic
context opened up by Riemann’s work. Thus, in this section, we replace the historical by a
conceptual scheme. In the geometry of Riemann and his followers and successors, on the
one hand, the priority of Euclidean space is abandoned, but on the other hand, Euclidean
space continues to enjoy a special position as a reference model. As shall be explained
in Chapter 4 and mathematically formalized in Section 4.4, a Riemannian geometry
is characterized by the fact that it is infinitesimally, that is, regarding the infinitely
small, Euclidean. (It is, however, no longer necessarily locally Euclidean, because of the
possibility of curvature, nor globally, that is, on the large scale, because of the possibility
of other types of topological relations.) Curvature measures the local deviation from the
Euclidean model. Curvature is thus normalized in such a manner that the Euclidean space
has curvature equal to zero.38 After this anticipation of a basic concept of Riemannian
geometry, we want to once again return to the question of how the Euclidean space
historically could gain its role of a null model. Here again, different strands of development
merge.

1. We have already described the development of the linear, that is, Euclidean, perspective
in the theory and practice of Renaissance painting which in turn rested on the Euclidean
laws for the propagation of light rays. In the underlying idea of the projection of
Euclidean space onto a plane, parallel straight lines are conceived of as intersecting
at infinity, and such an intersection point that is infinitely far away, i.e., that represents
a pencil of parallel straight lines, is contracted into the vanishing point.

37Ibid., A221/B268 (p. 323).
38Euclidean space is also referred to as “flat”, and the word “curvature” should then simply express
the deviation from this plane, straight shape.
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2. We have also explained how the notion of Euclidean space as a carrier of physical
processes had emerged from gravitational theory. We want to pick this up again
because it is also essential for a deeper understanding of the basis of the subsequent
mathematical development. The law of inertia states that a body on which no external
forces act moves without acceleration and therefore in particular rectilinearly in a space
that is mathematically conceived as Euclidean and physically imagined as empty. It is
now important to realize that such a situation is actually unphysical because physical
processes by their very nature are interactions between bodies. Thus, Galileo had
refused to use such a situation as the basis of his physical theory. In his models he
places (in a later conceptualization, because Galileo of course did not possess a theory
of gravity) an otherwise force-free movement into a central gravitational field. So
he was not ready to accept a body on which no gravitational forces act as the most
basic situation, because such a body does not possess any physical reality.39 So in his
reasonings, he often replaced the infinite (Euclidean) plane by a spherical surface on
which a body that is solely exposed to a central gravitational force moves otherwise
freely. A crucial step which Galileo ultimately was not ready to take, thus was to
conceive a physical situation as a deviation from an unphysical null model. Newton,
in contrast, had, as described, attributed an ontological reality as absolute space to just
this null model.

3. Since the Euclidean space can be thought of as physically empty, in physical terms it
then is the vacuum, or mathematically, the substrate of the vacuum. The question of
the possibility of the vacuum now also touches on the basis of physical theory, and, as
outlined, for example, both Aristotle and Descartes rejected the vacuum, because it is
not compatible with their physical theories. Descartes failed as a physicist in particular
because his mathematical concepts did not fit together with his physical notions.
His great mathematical achievement was the introduction of the Cartesian coordinate
space for the systematic description and representation of algebraic equations.40 This
space then made possible the systematic treatment of functional relationships by
Cartesian graphs. The three-dimensional Cartesian space is a Euclidean space in
which the position of a point is determined by numerical values on three mutually

39Alexandre Koyré, Etudes galiléennes, Paris, Hermann, 1966, therefore tries to deny Galileo
knowledge of the law of inertia, even if this law is implicitly assumed and explicitly expressed
in the passages quoted by him from Galileo and his successors Cavalieri (1598–1647) and Torricelli
(1608–1647) and Gassendi (1592–1655) several times. Simply, unlike Newton, he did not make this
the basis of his physical theory, because he had considered a motion without the influence of other
bodies as unphysical.
40The Cartesian coordinates, however, are only implicit in the geometry of Descartes and were not
constructed by him explicitly. But since Descartes laid the conceptual foundations, it is still justified
to name these coordinates after him. See, for example Mariano Giaquinta, La forma delle cose,
Roma, Edizioni di Storia e Letteratura 2010 or A. Ostermann, G. Wanner, Geometry by Its History,
Berlin, Heidelberg, Springer, 2012 .
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perpendicular coordinate axes.41 The Cartesian space therefore is actually ideally suited
for the description of the vacuum, at least if it properly captures the topological and
dimensional properties of the vacuum, as was implicitly assumed at that time.42 The
physics of Descartes, however, was based on mechanical interactions due to collisions.
Physics was therefore not possible for him in a vacuum. Galileo, however, is in
the tradition of atomism, which had been proposed and developed in antiquity by
Leucippus (fifth century BC), Democritus (ca. 460–370 BC) and Epicurus (341–270
BC) (but rather as a natural-philosophical speculation without any concrete physical
basis), and for him, the vacuum is therefore unproblematic. The Newtonian theory then,
as explained, raised the question as to what extent empty space can be the carrier of
physical forces.

4. The Euclidean space is not only empty, but also unbounded and infinite. The difference
between these two properties again was not clear before the work of Riemann, who
clarified that manifolds need not have a boundary without necessarily having to be
infinite (in modern terminology, this would be compact closed manifolds such as the
spherical surface and their higher-dimensional analogues, see the explanatory notes to
Riemann’s text below). The infiniteness of space had also been rejected for a long time
from natural philosophical and theological considerations, from Aristotle to Kepler.
The idea of an infinite space was prepared by Nicholas of Cusa (1401–1464) and
emphatically embraced by Giordano Bruno as a liberation from the limitations of the
medieval world view.43 It is then remarkable that such an infinite space could become
the reference model for finite spaces (compact Riemannian manifolds).

5. The infinitesimal calculus introduced by Leibniz and Newton can be considered and
utilized as a linear approximation scheme for possibly nonlinear processes. A process
is thus infinitesimally linear in this scheme, and the linear structure at a given time t
is determined by its derivative with respect to t. Locally, however, the process deviates
from this linear approximation due to interactions. Differential calculus, which thus had
originally been developed for analyzing temporal processes, then became a general tool

41As we shall explain below, the actual logical relationship is rather the other way around: One
obtains the metrical structure of Euclidean space by interpreting the magnitudes of coordinate
differences on each coordinate axis of a Cartesian space as distances and by declaring different
coordinate axes as perpendicular to each other. Thus, Euclidean space possesses a metric structure
which as such is not yet contained in the Cartesian concept, while the Cartesian coordinate space
is determined in a way not provided by the Euclidean concept. The clear separation of geometric
facts and their different descriptions in different coordinate systems is then just one of the essential
achievements of Riemann.
42The question of whether it is appropriate to attribute to the vacuum the geometric structure of
Euclidean space leads into modern physics, which will be discussed below.
43On this, see Alexandre Koyré, From the closed world to the infinite universe, Baltimore, Johns
Hopkins Press, 1957. It is remarkable that cosmology today returns to the idea of a finite cosmos,
amongst other reasons, to “explain” the emergence of the universe from a singular beginning, the Big
Bang, and thus to regain the historical dimension in contrast to a truly infinite, but static universe.
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for approximating also static structures, in particular in the hands of Leonhard Euler
(1707–1783), the mathematician who dominated the eighteenth century. Differential
geometry and in particular Riemannian geometry will then model a general spatial
structure as infinitesimally linear and quantify the local deviation in the vicinity of
a given point p from its linear approximation by the curvature of that space at p.
The Euclidean-Cartesian space is then distinguished in that it globally and not only
infinitesimally carries a linear structure (it is a vector space in modern mathematical
terminology). Thus again, Euclidean spaces becomes the model space with which
a general space can be compared.44 Furthermore, Riemann will transfer the global
coordinatisation of Cartesian space into the local coordinate description of a manifold
(a Riemannian concept illustrated below). Coordinates thus become, rather than an
ontological basis, a conventional description of geometrical relations and physical
processes. This will then in turn lead to the fundamental question of Einstein’s theory
of relativity, to identify the geometrical and physical properties that are independent of
the choice of coordinates. The rules for the transformation between different coordinate
descriptions, which were in particular systematically developed by the successors
of Riemann, and Riemann’s idea of curvature invariants provide the mathematical
foundation for Einstein’s theory.

6. The space-time underlying Einstein’s theory of special relativity is Minkowski space-
time, a version of four-dimensional Euclidean space, but with a relativistic metric
where time and space carry opposite signs, but which retains the vector space structure
of Euclidean space, and which contains three-dimensional Euclidean space as a
subspace. In Einstein’s theory of general relativity, Minkowski space-time still plays
a fundamental role as a reference space. In particular, it is a vacuum solution of the
Einstein field equations. It is not the only vacuum solution, but it is nevertheless the
simplest and most basic such solution.

7. The Hilbert space of quantum mechanics is an infinite-dimensional Euclidean space. In
particular, it carries a Euclidean metric structure.

After this somewhat lengthy anticipation, we shall now return to the historical
development before Riemann.

44However, more general spatial concepts were then introduced after Riemann, which give up this
condition of the approximability by a Euclidean space. An example are the so-called topological
spaces. Also the concept of Riemannian manifold is later developed to the extent that only so-
called differentiable manifolds, but no longer more general manifolds satisfy this approximability
condition. Thus, Euclidean space will finally lose its special role. More details will be presented
below, when we analyze Riemann’s text.
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2.4 The Development of Geometry: Non-Euclidian and Differential
Geometry

A guiding problem in the development of geometry was the parallel problem. The 5th
postulate or 11th axiom of Euclid states that “If a line segment intersects two straight lines
forming two interior angles on the same side that sum to less than two right angles, then
the two lines, if extended indefinitely, meet on that side on which the angles sum to less
than two right angles”.45

When one assumes the other Euclidean axioms, an equivalent formulation of the
Euclidean parallel postulate, sometimes named after the Scottish mathematician John
Playfair (1748–1819), is: “In a plane, given a line and a point not on it, at most one line
parallel to the given line can be drawn through the point”. This is in turn equivalent to that
the sum of the angles is exactly 180ı in each triangle. The parallel postulate obviously has
a special position within Euclid’s work, and therefore the question arose whether it can
be derived from the other axioms and postulates, and thus would not be independent from
these. After intense but ultimately unsuccessful attempts to deduce a contradiction from the
assumption that this axiom does not hold, and thus to demonstrate its dependence on the
others, it slowly dawned that an alternative to Euclidean geometry is logically possible, in
which the parallel axiom is not valid. After the major precursor Johann Heinrich Lambert
(1728–1777), the first person who fully realized this was Carl Friedrich Gauss, who,
however, for fear of being misunderstood by his contemporaries, did not want to make
his findings public, and then non-Euclidean geometry was independently discovered by
Nikolai I. Lobatchevsky (1792–1856) and Janos Bolyai (1802–1860) in the years before
1830.46 The founders of non-Euclidean geometry came to realize that which geometry is
valid, a Euclidean or a non-Euclidean one, is an empirical question that could be decided
by angle measurements in triangles in space. Even on an astronomical scale, however, with
the measurement accuracy available at the time, no deviation from the Euclidean angle sum
could be found.47

45See Euclid, The Thirteen Books of Euclid’s Elements. Translated from the Text of Heiberg with
Introduction and Commentary by Sir Thomas L. Heath, 3 Vols, Reprint of the 2nd edition, Dover,
1956, 2000.
46English translations in Roberto Bonola, Non-Euclidean Geometry. A Critical and Historical Study
of its Developments, Dover, 1955. For more information, please refer to the bibliography.
47For details, see for instance B.R. Torretti, Philosophy of Geometry from Riemann to Poincaré,
Dordrecht, Boston, Lancaster, 21984, 63f, 381.
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However, the geometric starting point of Riemann was not the non-Euclidean geometry,
of which Riemann apparently had not even taken note,48 but rather the theory of surfaces
developed by Carl Friedrich Gauss.49

When conducting a geodesic survey of the Kingdom of Hanover, Gauss wanted to
penetrate this problem from a theoretical perspective and therefore examined the geometry
of surfaces in Euclidean space. Of far-reaching importance was his distinction between
geometric quantities that can be determined already by measurements on the surface itself,
and those for whose determination measurements outside the surface in the surrounding
space are needed. This is the distinction between the internal and the external geometry
of surfaces in space. As a fundamental quantity of internal geometry Gauss identified that
quantity which was later named Gaussian curvature or Gauss curvature. For this quantity,
Riemann then gave a novel interpretation and a far-reaching generalization. The initial
starting point for Gauss were quantities of the external geometry, the so-called principal
curvatures of a surface S at a given point P. For their determination, one considers the
planes that perpendicularly intersect S at P. The intersection between such a plane and
S (also called a normal section) is then (near P) a curve c on S. This curve then has a
curvature k (measured with a sign, that is, it can be positive or negative) at P. Among all
these curves of intersection, there is a smallest curvature k1 and a largest curvature k2 .50

These two principal curvatures in general depend on the shape of the surface in space.
Gauss then derived the remarkable result (which he called the Theorema egregium) that
the product K D k1 � k2 no longer depends on how the surface sits in space. Thus, it is
a quantity of the internal geometry. In particular, the Gaussian curvature is thus invariant
under bending the surface, as long as one does not stretch or compress it. For example,
one can roll a piece of paper into a cylinder or a cone-shaped container, and this does not
change the Gaussian curvature, which in this case is and remains 0. In contrast, a spherical
surface has positive Gaussian curvature K, and the curvature is the greater, the smaller the
radius of the sphere (K is inversely proportional to the square of the radius). Because the
Gaussian curvature is bending invariant it follows from the different values of K for the
plane and the sphere that a flat surface cannot be brought into a spherical shape without
stretching. A saddle-shaped surface has negative Gaussian curvature, because in this case,

48See E. Scholz, Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der
Geometrie, Arch. Hist. Exact Sciences 27, 1982, 213–282.
49C. F. Gauß, Disquisitions générales cira superficies curas. Commentationes Societatis Gottingen-
sis, 1828, 99–146; Werke, Bd. 4, 217–258; English translation in Peter Dombrowski, 150 years after
Gauß’ “Disquisitiones generales circa superficies curvas”, Astérisque 62, Paris, 1979.
50This was first shown by Leonhard Euler (1707–1783), see Opera omnia, Leipzig, Berlin, Zurich,
1911–1976, 1st series, vol. XXVIII, pp. 1–22. Unless all the normal sections have the same
curvature, these two intersection curves of extremal curvature are uniquely determined and intersect
each other at right angles.
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the two principal curvatures are of opposite sign, since the two perpendicular intersections
with planes curve in opposite directions.51

Gauss then also established a relationship between the sum of the angles in a triangle
formed by shortest lines on a surface and the integral of K over this triangle (Theorema
elegantissimum). Here, then, there is a direct relation with the non-Euclidean plane. This
plane is nothing but the intrinsic geometry of a surface of constant negative curvature, and
the sum of the angles in a triangle is therefore less than 180ı. Gauss himself has probably
already seen this connection, but its real significance became clear only by the work of
Riemann (although Riemann had not even taken notice of non-Euclidean geometry).

2.5 The Story of Riemann’s Habilitation Address

While Riemann, in addition to his proper mathematical research, had immersed himself
also into natural philosophical speculations and thereby, in many respects, had considered
mathematics, physics and natural philosophy as a whole,52 the fact that the text presented
here saw the light nevertheless came about rather by a coincidence. As is still common
today in German universities, Riemann had to submit three different themes for his

51For a modern presentation, see for instance J. Eschenburg, J. Jost, Differentialgeometrie und
Minimalflächen, Heidelberg, Berlin, 32013.
52In his private notes, Riemann cited in particular the philosopher Johann Friedrich Herbart (1776–
1841) and mentions him also at the beginning of his habilitation address, see the same, Sämtliche
Werke in chronologischer Reihenfolge herausgegeben von Karl Kehrbach und Otto Flügel, 19 vols.,
Langensalza, 1882–1912, reprinted Aalen, Scientia Verlag, 1964, in particular Psychologie als
Wissenschaft., 2 parts, Vol. 5, 177–402, and Vol. 6, 1–339 (originally published in 1824/25). In
1809 Herbart became Kant’s successor as the chair for philosophy in Königsberg and in 1834 took
over the chair of philosophy in Göttingen. He represents the transition from idealism to realism in
German philosophy of the nineteenth century. He criticizes Kant from an empiricist and association
psychology position. The individual being is for him a unit, a feature bundle that by coming together
with others acquires different characteristics that in each case can represent different continua.
Thus snow is white, when the eye sees it, cold, when the hand touches it. These continua can be
conceived spatially. He emphasizes in particular the historical contingency and conditionality of the
notion of space, which for him, according to his considerations just presented, was only an example
of a continuous sequel. The relationship between the ideas of Herbart and the concepts Riemann
is discussed in Benno Erdmann, Die Axiome der Geometrie. Eine philosophische Untersuchung
der Riemann-Helmholtzschen Raumtheorie, Leipzig, Leopold Voss, 1877, pp. 29–33, Luciano Boi,
Le problème de l’espace mathématique, Berlin, Heidelberg, Springer, 1995, pp. 129–136. Erhard
Scholz, Herbart’s influence on Bernhard Riemann, Historia Mathematica 9, 413–440, 1982, on
the other hand comes to the conclusion that ultimately the influence of Herbart’s thoughts on the
Riemannian manifold concept was rather minor, even if Riemann may have been guided by some
general principles of Herbart, as that for each area of science a main concept needs to be worked out,
or that ideas such as tone or color are not only quantitatively different, but also subject to different
types of mathematical laws and consequently should be investigated by the methods of mathematics.
In this context, we also refer to the presentation in Pulte, Axiomatik und Empirie, pp. 375–388.
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habilitation address that the faculty could choose from. But usually the first topic was
selected. Riemann then chose the first two topics from his current mathematical research
and then named as the third theme the one of the foundations of geometry. To his
surprise, at the instigation of Gauss,53 the faculty chose the last topic, and to prepare the
corresponding lecture within the prescribed period caused Riemann considerable effort.
The lecture was held on June 10, 1854. Gauss, otherwise very difficult to impress, was
extremely impressed by Riemann’s lecture. Nevertheless, Riemann could not bring himself
to publish this lecture; this was only done posthumously in 1868 by Richard Dedekind.

53See the corresponding quote from the Dean’s Office Archive in Laugwitz, Riemann. p. 218.
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I am aware of three English translations of Riemann’s habilitation address. The first one
was presented by the eminent British geometer William Kingdon Clifford (1845–1879)
in Nature, Vol. VIII, Nos. 183, 184, 1873, pp. 14–17, 36, 37, and is reproduced in W.
Clifford, Mathematical papers, edited by Robert Tucker, with an introduction by H.J.
Stephen Smith, London, MacMillan and Co., 1882, pp. 55–71.

The second translation was carried out by Henry S. White for the collection David E.
Smith, A source book in mathematics, McGraw-Hill, 1929, and Mineola, N. Y., Dover,
1959, pp. 411–425. In this translation, the only formula from Riemann’s text, that which
gives the constant curvature metrics, is badly garbled. Therefore, I have not chosen this
one for the present volume.

Finally, there is a more recent translation with a detailed commentary by the differential
geometer Michael Spivak in his A comprehensive introduction to differential geometry,
Vol. 2, Berkeley, Publish or Perish, 1970. Spivak’s textbook is readily available in
mathematical libraries.

The English of Clifford may appear somewhat old-fashioned for a modern reader. For
instance, he writes “manifoldness” instead of the simpler modern translation “manifold”
of Riemann’s term “Mannigfaltigkeit”. But Riemann’s German sounds likewise somewhat
old-fashioned, and for that matter, “manifoldness” is the more accurate translation of
Riemann’s term. In any case, for historical reasons, I have selected that translation here.
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ON THE HYPOTHESESWHICH LIE AT THE BASES
OF GEOMETRY

(Translated by William Kingdon Clifford)

Plan of the Investigation.

IT is known that geometry assumes, as things given, both the notion of space and the
first principles of constructions in space. She gives definitions of them which are merely
nominal, while the true determinations appear in the form of axioms. The relation of these
assumptions remains consequently in darkness; we neither perceive whether and how far
their connection is necessary, nor, a priori, whether it is possible.

From Euclid to Legendre (to name the most famous of modern reforming geometers)
this darkness was cleared up neither by mathematicians nor by such philosophers as
concerned themselves with it. The reason of this is doubtless that the general notion
of multiply extended magnitudes (in which space"=magnitudes are included) remained
entirely unworked. I have in the first place, therefore, set myself the task of constructing the
notion of a multiply extended magnitude out of general notions of magnitude. It will follow
from this that a multiply extended magnitude is capable of different measure"=relations,
and consequently that space is only a particular case of a triply extended magnitude.
But hence flows as a necessary consequence that the propositions of geometry cannot
be derived from general notions of magnitude, but that the properties which distinguish
space from other conceivable triply extended magnitudes are only to be deduced from
experience. Thus arises the problem, to discover the simplest matters of fact from which
the measure"=relations of space may be determined; a problem which from the nature
of the case is not completely determinate, since there may be several systems of matters
of fact which suffice to determine the measure"=relations of space – the most important
system for our present purpose being that which Euclid has laid down as a foundation.
These matters of fact are – like all matters of fact – not necessary, but only of empirical
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certainty; they are hypotheses. We may therefore investigate their probability, which within
the limits of observation is of course very great, and inquire about the justice of their
extension beyond the limits of observation, on the side both of the infinitely great and of
the infinitely small.

I. Notion of an n-ply extendedmagnitude.

In proceeding to attempt the solution of the first of these problems, the development of
the notion of a multiply extended magnitude, I think I may the more claim indulgent
criticism in that I am not practised in such undertakings of a philosophical nature where
the difficulty lies more in the notions themselves than in the construction; and that besides
some very short hints on the matter given by Privy Councillor Gauss in his second memoir
on Biquadratic Residues, in the Göttingen Gelehrte Anzeige, and in his Jubilee-book, and
some philosophical researches of Herbart, I could make use of no previous labors.

§1. Magnitude"=notions are only possible where there is an antecedent general
notion which admits of different specialisations. According as there exists among these
specialisations a continuous path from one to another or not, they form a continuous or
discrete manifoldness: the individual specialisations are called in the first case points,
in the second case elements, of the manifoldness. Notions whose specialisations form
a discrete manifoldness are so common that at least in the cultivated languages any things
being given it is always possible to find a notion in which they are included. (Hence
mathematicians might unhesitatingly found the theory of discrete magnitudes upon the
postulate that certain given things are to be regarded as equivalent.) On the other hand,
so few and far between are the occasions for forming notions whose specialisations make
up a continuous manifoldness, that the only simple notions whose specialisations form
a multiply extended manifoldness are the positions of perceived objects and colours. More
frequent occasions for the creation and development of these notions occur first in the
higher mathematic.

Definite portions of a manifoldness, distinguished by a mark or by a boundary, are
called Quanta. Their comparison with regard to quantity is accomplished in the case of
discrete magnitudes by counting, in the case of continuous magnitudes by measuring.
Measure consists in the superposition of the magnitudes to be compared; it therefore
requires a means of using one magnitude as the standard for another. In the absence of
this, two magnitudes can only be compared when one is a part of the other; in which
case also we can only determine the more or less and not the how much. The researches
which can in this case be instituted about them form a general division of the science of
magnitude in which magnitudes are regarded not as existing independently of position and
not as expressible in terms of a unit, but as regions in a manifoldness. Such researches have
become a necessity for many parts of mathematics, e.g., for the treatment of many-valued
analytical functions; and the want of them is no doubt a chief cause why the celebrated
theorem of Abel and the achievements of Lagrange, Pfaff, Jacobi for the general theory
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of differential equations, have so long remained unfruitful. Out of this general part of the
science of extended magnitude in which nothing is assumed but what is contained in the
notion of it, it will suffice for the present purpose to bring into prominence two points; the
first of which relates to the construction of the notion of a multiply extended manifoldness,
the second relates to the reduction of determinations of place in a given manifoldness to
determinations of quantity, and will make clear the true character of an n-fold extent.

§2. If in the case of a notion whose specialisations form a continuous manifoldness, one
passes from a certain specialisation in a definite way to another, the specialisations passed
over form a simply extended manifoldness, whose true character is that in it a continuous
progress from a point is possible only on two sides, forwards or backwards. If one now
supposes that this manifoldness in its turn passes over into another entirely different, and
again in a definite way, namely so that each point passes over into a definite point of the
other, then all the specialisations so obtained form a doubly extended manifoldness. In
a similar manner one obtains a triply extended manifoldness, if one imagines a doubly
extended one passing over in a definite way to another entirely different; and it is easy
to see how this construction may be continued. If one regards the variable object instead
of the determinable notion of it, this construction may be described as a composition of
a variability of n C 1 dimensions out of a variability of n dimensions and a variability of
one dimension.

§3. I shall now show how conversely one may resolve a variability whose region is
given into a variability of one dimension and a variability of fewer dimensions. To this
end let us suppose a variable piece of a manifoldness of one dimension – reckoned from
a fixed origin, that the values of it may be comparable with one another – which has
fur every point of the given manifoldness a definite value, varying continuously with the
point; or, in other words, let us take a continuous function of position within the given
manifoldness, which, moreover, is not constant throughout any part of that manifoldness.
Every system of points where the function has a constant value, forms then a continuous
manifoldness of fewer dimensions than the given one. These manifoldnesses pass over
continuously into one another as the function changes; we may therefore assume that out
of one of them the others proceed, and speaking generally this may occur in such a way
that each point passes over into a definite point of the other; the cases of exception (the
study of which is important) may here be left unconsidered. Hereby the determination
of position in the given manifoldness is reduced to a determination of quantity and to
a determination of position in a manifoldness of less dimensions. It is now easy to show
that this manifoldness has n�1 dimensions when the given manifoldness is n-ply extended.
By repeating then this operation n times, the determination of position in an n-ply extended
manifoldness is reduced to n determinations of quantity, and therefore the determination
of position in a given manifoldness is reduced to a finite number of determinations of
quantity when this is possible. There are manifoldnesses in which the determination
of position requires not a finite number, but either an endless series or a continuous
manifoldness of determinations of quantity. Such manifoldnesses are, for example, the
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possible determinations of a function for a given region, the possible shapes of a solid
figure, &c.

II. Measure relations of which amanifoldness of n dimensions is
capable on the assumption that lines have a length independent
of position, and consequently that every linemay bemeasured
by every other.

Having constructed the notion of a manifoldness of n dimensions, and found that its true
character consists in the property that the determination of position in it may be reduced
to n determinations of magnitude, we come to the second of the problems proposed above,
viz. the study of the measure"=relations of which such a manifoldness is capable, and of
the conditions which suffice to determine them. These measure"=relations can only be
studied in abstract notions of quantity, and their dependence on one another can only be
represented by formulæ. On certain assumptions, however, they are decomposable into
relations which, taken separately, are capable of geometric representation; and thus it
becomes possible to express geometrically the calculated results. In this way, to come
to solid ground, we cannot, it is true, avoid abstract considerations in our formulæ, but at
least the results of calculation may subsequently be presented in a geometric form. The
foundations of these two parts of the question are established in the celebrated memoir of
Gauss, Disquisitiones generales circa superficies curvas.

§1. Measure"=determinations require that quantity should be independent of position,
which may happen in various ways. The hypothesis which first presents itself, and
which I shall here develop, is that according to which the length of lines is independent
of their position, and consequently every line is measurable by means of every other.
Position"=fixing being reduced to quantity"=fixings, and the position of a point in the
n-dimensioned manifoldness being consequently expressed by means of n variables
x1; x2; x3; : : :xn, the determination of a line comes to the giving of these quantities as
functions of one variable. The problem consists then in establishing a mathematical
expression for the length of a line, and to this end we must consider the quantities x
as expressible in terms of certain units. I shall treat this problem only under certain
restrictions, and I shall confine myself in the first place to lines in which the ratios of
the increments dx of the respective variables vary continuously. We may then conceive
these lines broken up into elements, within which the ratios of the quantities dx may
be regarded as constant; and the problem is then reduced to establishing for each point
a general expression for the linear element ds starting from that point, an expression which
will thus contain the quantities x and the quantities dx. I shall suppose, secondly, that
the length of the linear element, to the first order, is unaltered when all the points of this
element undergo the same infinitesimal displacement, which implies at the same time that
if all the quantities dx are increased in the same ratio, the linear element will vary also
in the same ratio. On these suppositions, the linear element may be any homogeneous
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function of the first degree of the quantities dx, which is unchanged when we change the
signs of all the dx, and in which the arbitrary constants are continuous functions of the
quantities x. To find the simplest cases, I shall seek first an expression for manifoldnesses
of n�1 dimensions which are everywhere equidistant from the origin of the linear element;
that is, I shall seek a continuous function of position whose values distinguish them from
one another. In going outwards from the origin, this must either increase in all directions
or decrease in all directions; I assume that it increases in all directions, and therefore
has a minimum at that point. If, then, the first and second differential coefficients of this
function are finite, its first differential must vanish, and the second differential cannot
become negative; I assume that it is always positive. This differential expression, then,
of the second order remains constant when ds remains constant, and increases in the
duplicate ratio when the dx, and therefore also ds, increase in the same ratio; it must
therefore be ds2 multiplied by a constant, and consequently ds is the square root of an
always positive integral homogeneous function of the second order of the quantities dx,
in which the coefficients are continuous functions of the quantities x. For Space, when
the position of points is expressed by rectilinear co-ordinates, ds D pP

. dx/2; Space
is therefore included in this simplest case. The next case in simplicity includes those
manifoldnesses in which the line-element may be expressed as the fourth root of a quartic
differential expression. The investigation of this more general kind would require no really
different principles, but would take considerable time and throw little new light on the
theory of space, especially as the results cannot be geometrically expressed; I restrict
myself, therefore, to those manifoldnesses in which the line-element is expressed as the
square root of a quadric differential expression. Such an expression we can transform into
another similar one if we substitute for the n independent variables functions of n new
independent variables. In this way, however, we cannot transform any expression into any
other; since the expression contains 1

2
n.n C1/ coefficients which are arbitrary functions of

the independent variables; now by the introduction of new variables we can only satisfy n
conditions, and therefore make no more than n of the coefficients equal to given quantities.
The remaining 1

2
n.n � 1/ are then entirely determined by the nature of the continuum

to be represented, and consequently 1
2
n.n � 1/ functions of positions are required for

the determination of its measure"=relations. Manifoldnesses in which, as in the Plane
and in Space, the line-element may be reduced to the form

pP
dx2, are therefore only

a particular case of the manifoldnesses to be here investigated; they require a special
name, and therefore these manifoldnesses in which the square of the line-element may be
expressed as the sum of the squares of complete differentials I will call flat. In order now to
review the true varieties of all the continua which may be represented in the assumed form,
it is necessary to get rid of difficulties arising from the mode of representation, which is
accomplished by choosing the variables in accordance with a certain principle.

§2. For this purpose let us imagine that from any given point the system of shortest lines
going out from it is constructed; the position of an arbitrary point may then be determined
by the initial direction of the geodesic in which it lies, and by its distance measured along
that line from the origin. It can therefore be expressed in terms of the ratios dx0 of the
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quantities dx in this geodesic, and of the length s of this line. Let us introduce now instead
of the dx0 linear functions dx of them, such that the initial value of the square of the line-
element shall equal the sum of the squares of these expressions, so that the independent
variables are now the length s and the ratios of the quantities dx. Lastly, take instead of the
dx quantities x1; x2; x3; : : :xn proportional to them, but such that the sum of their squares
D s2. When we introduce these quantities, the square of the line-element is

P
dx2 for

infinitesimal values of the x, but the term of next order in it is equal to a homogeneous
function of the second order of the 1

2
n.n�1/ quantities .x1 dx2�x2 dx1/; .x1 dx3�x3 dx1/: : :

an infinitesimal, therefore, of the fourth order; so that we obtain a finite quantity on
dividing this by the square of the infinitesimal triangle, whose vertices are .0; 0; 0; : : : /,
.x1; x2; x3; : : : /, .dx1; dx2; dx3; : : : /. This quantity retains the same value so long as the x
and the dx are included in the same binary linear form, or so long as the two geodesics
from 0 to x and from 0 to dx remain in the same surface"=element; it depends therefore
only on place and direction. It is obviously zero when the manifold represented is flat,
i.e., when the squared line-element is reducible to

P
dx2, and may therefore be regarded

as the measure of the deviation of the manifoldness from flatness at the given point in
the given surface"=direction. Multiplied by � 3

4
it becomes equal to the quantity which

Privy Councillor Gauss has called the total curvature of a surface. For the determination
of the measure"=relations of a manifoldness capable of representation in the assumed
form we found that 1

2
n.n � 1/ place-functions were necessary; if, therefore, the curvature

at each point in 1
2
n.n � 1/ surface"=directions is given, the measure"=relations of the

continuum may be determined from them – provided there be no identical relations
among these values, which in fact, to speak generally, is not the case. In this way the
measure"=relations of a manifoldness in which the line-element is the square root of
a quadric differential may be expressed in a manner wholly independent of the choice
of independent variables. A method entirely similar may for this purpose be applied also
to the manifoldness in which the line-element has a less simple expression, e.g., the fourth
root of a quartic differential. In this case the line-element, generally speaking, is no longer
reducible to the form of the square root of a sum of squares, and therefore the deviation
from flatness in the squared line-element is an infinitesimal of the second order, while in
those manifold"=nesses it was of the fourth order. This property of the last-named continua
may thus be called flatness of the smallest parts. The most important property of these
continua for our present purpose, for whose sake alone they are here investigated, is that
the relations of the twofold ones may be geometrically represented by surfaces, and of
the morefold ones may be reduced to those of the surfaces included in them; which now
requires a short further discussion.

§3. In the idea of surfaces, together with the intrinsic measure"=relations in which only
the length of lines on the surfaces is considered, there is always mixed up the position
of points lying out of the surface. We may, however, abstract from external relations if
we consider such deformations as leave unaltered the length of lines – i.e., if we regard
the surface as bent in any way without stretching, and treat all surfaces so related to
each other as equivalent. Thus, for example, any cylindrical or conical surface counts as
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equivalent to a plane, since it may be made out of one by mere bending, in which the
intrinsic measure"=relations remain, and all theorems about a plane – therefore the whole
of planimetry – retain their validity. On the other hand they count as essentially different
from the sphere, which cannot be changed into a plane without stretching. According to
our previous investigation the intrinsic measure"=relations of a twofold extent in which
the line-element may be expressed as the square root of a quadric differential, which is
the case with surfaces, are characterized by the total curvature. Now this quantity in the
case of surfaces is capable of a visible interpretation, viz., it is the product of the two
curvatures of the surface, or multiplied by the area of a small geodesic triangle, it is equal
to the spherical excess of the same. The first definition assumes the proposition that the
product of the two radii of curvature is unaltered by mere bending; the second, that in the
same place the area of a small triangle is proportional to its spherical excess. To give an
intelligible meaning to the curvature of an n-fold extent at a given point and in a given
surface"=direction through it, we must start from the fact that a geodesic proceeding from
a point is entirely determined when its initial direction is given. According to this we
obtain a determinate surface if we prolong all the geodesics proceeding from the given
point and lying initially in the given surface"=direction; this surface has at the given point
a definite curvature, which is also the curvature of the n-fold continuum at the given point
in the given surface"=direction.

§4. Before we make the application to space, some considerations about flat manifold-
nesses in general are necessary; i. e., about those in which the square of the line-element is
expressible as a sum of squares of complete differentials.

In a flat n-fold extent the total curvature is zero at all points in every direction; it
is sufficient, however (according to the preceding investigation), for the determination
of measure"=relations, to know that at each point the curvature is zero in 1

2
n.n � 1/

independent surface"=directions. Manifoldnesses whose curvature is constantly zero may
be treated as a special case of those whose curvature is constant. The common character
of these continua whose curvature is constant may be also expressed thus, that figures
may be moved in them without stretching. For clearly figures could not be arbitrarily
shifted and turned round in them if the curvature at each point were not the same in all
directions. On the other hand, however, the measure"=relations of the manifoldness are
entirely determined by the curvature; they are therefore exactly the same in all directions
at one point as at another, and consequently the same constructions can be made from it:
whence it follows that in aggregates with constant curvature figures may have any arbitrary
position given them. The measure"=relations of these manifoldnesses depend only on the
value of the curvature, and in relation to the analytic expression it may be remarked that if
this value is denoted by ˛, the expression for the line-element may be written

1

1C 1
4
˛
P

x2

rX
dx2 :
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§5. The theory of surfaces of constant curvature will serve for a geometric illustration.
It is easy to see that surfaces whose curvature is positive may always be rolled on a sphere
whose radius is unity divided by the square root of the curvature; but to review the entire
manifoldness of these surfaces, let one of them have the form of a sphere and the rest
the form of surfaces of revolution touching it at the equator. The surfaces with greater
curvature than this sphere will then touch the sphere internally, and take a form like the
outer portion (from the axis) of the surface of a ring; they may be rolled upon zones of
spheres having less radii, but will go round more than once. The surfaces with less positive
curvature are obtained from spheres of larger radii, by cutting out the lune bounded by
two great half-circles and bringing the section-lines together. The surface with curvature
zero will be a cylinder standing on the equator; the surfaces with negative curvature will
touch the cylinder externally and be formed like the inner portion (towards the axis) of the
surface of a ring. If we regard these surfaces as locus in quo for surface"=regions moving
in them, as Space is locus in quo for bodies, the surface"=regions can be moved in all these
surfaces without stretching. The surfaces with positive curvature can always be so formed
that surface"=regions may also be moved arbitrarily about upon them without bending,
namely (they may be formed) into sphere"=surfaces; but not those with negative curvature.
Besides this independence of surface"=regions from position there is in surfaces of zero
curvature also an independence of direction from position, which in the former surfaces
does not exist.

III. Application to Space.

§1. By means of these inquiries into the determination of the measure"=relations of an n-
fold extent the conditions may be declared which are necessary and sufficient to determine
the metric properties of space, if we assume the independence of line-length from position
and expressibility of the line-element as the square root of a quadric differential, that is to
say, flatness in the smallest parts.

First, they may be expressed thus: that the curvature at each point is zero in three
surface"=directions; and thence the metric properties of space are determined if the sum
of the angles of a triangle is always equal to two right angles.

Secondly, if we assume with Euclid not merely an existence of lines independent of
position, but of bodies also, it follows that the curvature is everywhere constant; and then
the sum of the angles is determined in all triangles when it is known in one.

Thirdly, one might, instead of taking the length of lines to be independent of position
and direction, assume also an independence of their length and direction from position.
According to this conception changes or differences of position are complex magnitudes
expressible in three independent units.

§2. In the course of our previous inquiries, we first distinguished between the relations
of extension or partition and the relations of measure, and found that with the same
extensive properties, different measure"=relations were conceivable; we then investigated
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the system of simple size-fixings by which the measure"=relations of space are completely
determined, and of which all propositions about them are a necessary consequence;
it remains to discuss the question how, in what degree, and to what extent these
assumptions are borne out by experience. In this respect there is a real distinction between
mere extensive relations, and measure"=relations; in so far as in the former, where the
possible cases form a discrete manifoldness, the declarations of experience are indeed
not quite certain, but still not inaccurate; while in the latter, where the possible cases
form a continuous manifoldness, every determination from experience remains always
inaccurate: be the probability ever so great that it is nearly exact. This consideration
becomes important in the extensions of these empirical determinations beyond the limits of
observation to the infinitely great and infinitely small; since the latter may clearly become
more inaccurate beyond the limits of observation, but not the former.

In the extension of space"=construction to the infinitely great, we must distinguish
between unboundedness and infinite extent, the former belongs to the extent relations,
the latter to the measure relations. That space is an unbounded three-fold manifoldness, is
an assumption which is developed by every conception of the outer world; according to
which every instant the region of real perception is completed and the possible positions
of a sought object are constructed, and which by these applications is for ever confirming
itself. The unboundedness of space possesses in this way a greater empirical certainty than
any external experience. But its infinite extent by no means follows from this; on the other
hand if we assume independence of bodies from position, and therefore ascribe to space
constant curvature, it must necessarily be finite provided this curvature has ever so small
a positive value. If we prolong all the geodesics starting in a given surface"=element, we
should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat
manifoldness of three dimensions would take the form of a sphere, and consequently be
finite.

§3. The questions about the infinitely great are for the interpretation of nature useless
questions. But this is not the case with the questions about the infinitely small. It is
upon the exactness with which we follow phenomena into the infinitely small that our
knowledge of their causal relations essentially depends. The progress of recent centuries in
the knowledge of mechanics depends almost entirely on the exactness of the construction
which has become possible through the invention of the infinitesimal calculus, and
through the simple principles discovered by Archimedes, Galileo, and Newton, and
used by modern physic. But in the natural sciences which are still in want of simple
principles for such constructions, we seek to discover the causal relations by following the
phenomena into great minuteness, so far as the microscope permits. Questions about the
measure"=relations of space in the infinitely small are not therefore superfluous questions.

If we suppose that bodies exist independently of position, the curvature is everywhere
constant, and it then results from astronomical measurements that it cannot be different
from zero; or at any rate its reciprocal must be an area in comparison with which the range
of our telescopes may be neglected. But if this independence of bodies from position does
not exist, we cannot draw conclusions from metric relations of the great, to those of the



40 3 Riemann’s Text

infinitely small; in that case the curvature at each point may have an arbitrary value in
three directions, provided that the total curvature of every measurable portion of space
does not differ sensibly from zero. Still more complicated relations may exist if we no
longer suppose the linear element expressible as the square root of a quadric differential.
Now it seems that the empirical notions on which the metrical determinations of space are
founded, the notion of a solid body and of a ray of light, cease to be valid for the infinitely
small. We are therefore quite at liberty to suppose that the metric relations of space in the
infinitely small do not conform to the hypotheses of geometry; and we ought in fact to
suppose it, if we can thereby obtain a simpler explanation of phenomena.

The question of the validity of the hypotheses of geometry in the infinitely small is
bound up with the question of the ground of the metric relations of space. In this last
question, which we may still regard as belonging to the doctrine of space, is found the
application of the remark made above; that in a discrete manifoldness, the ground of its
metric relations is given in the notion of it, while in a continuous manifoldness, this ground
must come from outside. Either therefore the reality which underlies space must form
a discrete manifoldness, or we must seek the ground of its metric relations outside it, in
binding forces which act upon it.

The answer to these questions can only be got by starting from the conception of
phenomena which has hitherto been justified by experience, and which Newton assumed
as a foundation, and by making in this conception the successive changes required by facts
which it cannot explain. Researches starting from general notions, like the investigation
we have just made, can only be useful in preventing this work from being hampered by
too narrow views, and progress in knowledge of the interdependence of things from being
checked by traditional prejudices.

This leads us into the domain of another science, of physic, into which the object of
this work does not allow us to go to-day.

Synopsis.

PLAN of the Inquiry:

I Notion of an n-ply extended magnitude.
§ 1. Continuous and discrete manifoldnesses. Defined parts of a manifoldness are called

Quanta. Division of the theory of continuous magnitude into the theories,
(1) Of mere region"=relations, in which an independence of magnitudes from

position is not assumed;
(2) Of size-relations, in which such an independence must be assumed,

§ 2. Construction of the notion of a one-fold, two-fold, n-fold extended magnitude.
§ 3. Reduction of place-fixing in a given manifoldness to quantity"=fixings. True

character of an n-fold extended magnitude.
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II Measure"=relations of which a manifoldness of n-dimensions is capable on the
assumption that lines have a length independent of position, and consequently that
every line may be measured by every other.

§ 1. Expression for the line-element. Manifoldnesses to be called Flat in which the
line-element is expressible as the square root of a sum of squares of complete
differentials.

§ 2. Investigation of the manifoldness of n-dimensions in which the line-element may
be represented as the square root of a quadric differential. Measure of its deviation
from flatness (curvature) at a given point in a given surface"=direction. For the
determination of its measure"=relations it is allowable and sufficient that the
curvature be arbitrarily given at every point in 1

2
n.n � 1/ surface directions.

§ 3. Geometric illustration.
§ 4. Flat manifoldnesses (in which the curvature is everywhere D 0) may be treated as

a special case of manifoldnesses with constant curvature. These can also be defined
as admitting an independence of n-fold extents in them from position (possibility of
motion without stretching).

§ 5. Surfaces with constant curvature.
III Application to Space.

§ 1. System of facts which suffice to determine the measure"=relations of space assumed
in geometry.

§ 2. How far is the validity of these empirical determinations probable beyond the limits
of observation towards the infinitely great?

§ 3. How far towards the infinitely small? Connection. of this question with the
interpretation of nature.
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4.1 Short Summary

In his work, Riemann analyzed the mathematical structure of space in a conceptually
novel way. Through Riemann’s work, physical space gets firstly empirically determinable
characteristics and secondly loses its uniqueness as a mathematical space. For this
purpose, Riemann first introduces the concept of a multiply extended variety or manifold.
A manifold is characterized in that its sufficiently small parts can be fully and non-
redundantly described by n coordinates. That number n is then the dimension of the
manifold. It is fundamental that this manifold structure determines in modern terminology
only the topology, i.e. the qualitative aspects of position, but does not yet provide for any
measurements. Riemann thus recognizes that in order to measure lengths and angles, an
additional structure is required which is of a quantitative nature. This additional structure
is arbitrary (obeying certain natural constraints). This structure can then be restricted on
the one hand by conditions of simplicity and on the other hand by empirical testing if it
is supposed to describe the actual physical space. Riemann then describes the quantitative
structure by a so-called metric tensor,1 which for simplicity is chosen as quadratic (this
will be explained later). Using this metric tensor, one can then determine curve lengths
and distances between points and sizes of angles, that is the usual metric quantities. But
since a manifold can be described locally by coordinates in different ways, it becomes
the central task of geometrical investigations to identify quantities that do not depend on
the choice of coordinates. This then are the invariants of the manifold provided with a

1In Riemann’s treatise, the concept of the tensor is not yet introduced, so that a subsequent
development is anticipated by this formulation. That development is described in detail in Karin
Reich, Die Entwicklung des Tensorkalküls. Vom absoluten Differentialkalkül zur Relativitätstheorie.
Basel, Birkhäuser, 1997.
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metric. Riemann thus goes on to identify a complete set of invariants under his conditions.
This set of invariants is represented by the curvature tensor. This represents a far-reaching
generalization of the Gaussian theory of surfaces. Through additional requirements on the
geometric properties, the curvature tensor can be more narrowly constrained. In particular,
it follows from the requirement of the free mobility of rigid bodies that the curvature
of the space has to be constant, a result which Helmholtz will later put at the center
of his considerations. The Riemannian spaces of constant negative curvature turn out to
be models of the non-Euclidean geometry of Bolyai and Lobatchevsky, as subsequently
emphasized by Beltrami. Riemann therefore had found a new and much more general
approach to non-Euclidean geometry, of which, incidentally, he had apparently not even
been aware of when composing his work. For Riemann, this generality is particularly
important from natural philosophical reasons because he already hints at the relationship,
fundamental for Einstein’s general theory of relativity, between the geometry of space and
the forces caused by the objects contained in it. This extends far beyond the class of spaces
of constant curvature, since then bodies moving in space affect the latter’s geometry and
then, conversely, the geometry can determine the motion of bodies.2

4.2 TheMain Results of the Text

Riemann distinguishes between the qualitative manifold structure and the quantitative
measurement structure, that is, between the topological and the metric structure of space,
and develops the mathematical concepts needed for this purpose. The manifold structure
refers only to the neighborhood structure and to the relative positions, i.e. to the qualitative
aspects. The unboundedness of space, i.e., that it has no boundary, is an example of a
topological property. For his concept of a manifold, Riemann assumes that the space can be
locally described by coordinates, i.e., that it can be locally related to a (Cartesian) number
space. This makes it possible to locally investigate a manifold with the tools of algebra
and calculus. The number of independent coordinates that are necessary for this purpose
then is the dimension n of the manifold. This dimension is not restricted to the number 3 of
the realm of daily ordinary experience, but may take any value. As a result, the manifold
concept also becomes a formal tool for the description of parameter-dependent structures
of higher mathematics. Except for the requirements of independence and completeness that
determine the dimension, the local coordinates describing space can be chosen arbitrarily.
It is then the task of geometry to find invariants of a given manifold that are independent
of such an arbitrary description.

2Pulte, Axiomatik und Empirie, pp. 399–401, on the basis of his penetrating analysis of the natural
philosophical and physical ideas of Riemann, however, is very critical with regard to the claim
frequently expressed in the literature, for instance by Weyl in his commentary on Riemann’s work,
that Riemann had already intuitively guessed or anticipated important aspects of the general theory
of relativity. See 118 below.
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A manifold can carry an additional structure, a quantitative metric structure that
makes it possible to measure distances and angles. In order to obtain a concept that is
sufficiently rich in content, Riemann assumes that this metric structure, when one looks
at it infinitesimally, reduces to a Euclidean metric structure, so that infinitesimally the
Pythagorean theorem applies. Locally, such a metric structure, however, generally deviates
from the Euclidean one, which is exemplified by the fact that the sum of the angles in
a triangle formed by geodesics does not have to be necessarily � . The deviation from
the Euclidean structure is measured by the curvature of surfaces in space. From these
curvatures, Riemann obtains a complete system of independent invariants to characterize
the metric structure. Figures or bodies can be freely moved around in such a Riemannian
manifold without stretching or compressing them precisely when the curvature is constant,
that is, in every point and in every surface direction is the same. Among these spaces of
constant curvature are the non-Euclidean geometries, which Riemann, however, does not
discuss.

From the fact that the metric structure is an additional structure that is not included
in the concept of a manifold, Riemann concludes that the metric of the space of our
experience comes from outside, from physical forces. This anticipates the central idea of
the general theory of relativity of Einstein, which identifies the curvature of space with the
gravitational forces of the masses located or moving in it. Riemann and his successors, who
formally elaborated and developed his geometric concepts, create the mathematical basis
for the theory of general relativity with the principle of the independence of geometric
relationships from their coordinate description and with the tensor calculus of Riemannian
geometry.

For Riemann, mathematical space is the manifold, the multiply extended variety that
can be represented in coordinates. The physical space of vision and touch, where we
find the sensory objects, is an example, the color space another. This already exhausted
the physical examples for Riemann. A mathematically profound and formative idea of
Riemann is then that in mathematics, there are many such structures that can be considered
as spaces. Here Riemann distinguishes two aspects, first, pure positional relationships and
secondly the metric relations. The former leads into the realm of topology, still called
Analysis Situs by Riemann (after Leibniz who had coined that term), for which he also
created important foundations, whereas the latter leads into (Riemannian) geometry.

4.3 Riemann’s Reasoning

The text consists of an introduction, in which the plan of study is presented, and three
chapters which are sub-divided into paragraphs. The first chapter deals with the qualitative
topological notion of a manifold, the second with the quantitative metric relations that can
be given to a manifold, and then the third with applications to the (physical) space.

In the introduction, Riemann first discusses the relationship between nominal defi-
nitions which define the concept of space and specify the basic constructions in space
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on one hand, and axioms that contain the essential determinations on the other. It is
not clear whether their relation is necessary nor whether it is possible.3 In order to
clarify this relationship, Riemann will first construct the concept of a multiply extended
variety (manifold) in a general manner. This structure contains no metric, but only pure
positional relationships, or in other words, the possibility of representing a point by
specifying its coordinates by n real numbers. The metric relations can be obtained only
empirically. These are facts that are not necessary, but only empirically certain, therefore,
they are hypotheses—which explains his title.4 Helmholtz will then write about the facts
underlying geometry, as something fixed (the only empirically determined parameter that
is left according to him is the value of the—for him, necessarily constant—curvature
of space). Riemann, however, acknowledges the possibility of multiple systems that are
sufficient to determine the metric properties of space, the Euclidean one being the most
important. In particular, there is the question to what extent such a system can preserve its
validity beyond the limits of observation, both small and large.

It may seem as somewhat surprising that Riemann considers empirical facts as
hypotheses. The idea is that if the metric properties of the space do not necessarily follow
from its structure, then the space can carry several possible metrics, and the mathematician
then can specify any such hypothetical relations and examine the resulting structures and
distinguish them with regard to their characteristics. Hilbert will then raise this as the
axiomatic method to a systematic program.

After these preliminary considerations, the first part is devoted to the notion of the
multiply extended variety, the manifold. The basis is “a general term . . . that allows
various modes of determination, ” i.e., something that can be specified in different ways,
that can assume different values. This concept constitutes the manifold, and its possible

3“Necessary” here probably means a necessity of thought in the Kantian sense, “possible” the logical
possibility in the Leibnizian sense.
4However, in one of the posthumous philosophical fragments Riemann writes in the context of a
discussion of the concept of causality and the positions of Kant and Newton “It is now customary to
mean by a hypothesis everything that is added to the phenomena by thought” s. Werke, 2nd edition,
p. 525 (or p. 557 of the Narasimhan edition), my translation and emphasis. How much reflected the
use of the word “hypothesis” by Riemann really is, is difficult to decide for me. It is the question
of whether Riemann intended a reference to the relativization of the validity claim that Osiander
in his unauthorized foreword to the work of Copernicus had produced by declaring astronomical
theories as pure hypotheses without further claim to truth, to the claim of Kepler that he had created
an astronomy without hypotheses, or to the statement of Newton “hypotheses non fingo” that did not
resolve the difficulty about what is the cause for the physical ability of bodies to exert an attractive
force on other bodies without spatial contact or a mediating medium (for a recent discussion within
the history of ideas, see for example, Hans Blumenberg, Die Genesis der kopernikanischen Welt,
Frankfurt, Suhrkamp, 42007, pp. 341–370). In any case, Riemann’s cited quote corresponds to the
view that in the described line of discourse finally had been formed, not without substantial and
not completely eliminated resistances, namely that physics should uncover the mathematical laws
underlying the observed phenomena without hypotheses about the nature of the bodies involved and
that herein lies its claim to reality.
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values provide the points or elements of this manifold. The discrete case where the
manifold consists of elements that can be counted—in modern terminology, this would
be a discrete set—requires no further explanation. The continuous case, where the values
vary continuously and the parts can be measured, constitutes, however, the basic concept
of the text. The values can have multiple independent degrees of freedom, and their
number n is then the dimension of the manifold. There are only a few real-life examples of
this, according to Riemann only the locations of the sensory objects, that is, the possible
positions of points in the sensory space—which have three degrees of freedom, the three
dimensions of space—and the colors—where the determination of the number of degrees
of freedom is no longer so obvious. One of the key insights of Riemann is the relevance
of the concept of a manifold for higher mathematics. For example, Riemann himself, by
the geometric interpretation of a multivalued function by means of a branched covering
surface, the so-called Riemann surface, completely transformed and revolutionized the
entire field of complex analysis and the theory of elliptic integrals. This made a conceptual
synthesis of analytic, geometric and algebraic aspects possible that to this day has
decisively shaped the further development of mathematics.5 The concept of a manifold
does not yet imply any determination of a measure, and thus no possibility to compare
geometric quantities (objects in the manifolds, subsets of the manifold) independently of
their position. Geometric quantities can therefore at first only be compared when one is a
part of the other, and even then one can only say that the first is smaller than the other, but
one cannot specify how much it is smaller. Without a device for measuring there is only
the relation of containment; this results in set-theoretic topology, a branch of mathematics
which acquired a foundational status in twentieth century mathematics. Riemann already
recognizes the importance of such concepts for different areas of mathematics, and cites
as an example the multivalent analytic functions. The concept of a manifold, however,
is more subtle than it might seem from the foregoing. The position of a point in an n-
dimensional manifold is described by specifying its coordinates. One will probably think
here first about or in terms of the Cartesian coordinates in the three-dimensional Euclidean
space, where the position of a point in space is described by three real numbers, which are
located on three mutually orthogonal coordinate axes. But it is important to realize that
herein several arbitrary conventions are hidden and additional structures are utilized. First
of all, the Euclidean space contains no distinguished zero point or origin of the coordinates
as the intersection of the three Cartesian coordinate axes. So this origin must be chosen
arbitrarily, to determine the coordinates. With a different choice of the origin, one and the
same point in space would get other coordinates. Similarly, the three coordinate directions
are constrained only by the requirement of orthogonality, as they should be perpendicular
to each other, and are otherwise arbitrary. Another choice of directions would again assign
the same point in space different coordinate values. The choice of a unit on each coordinate

5For a modern introduction see for instance J. Jost, Compact Riemann Surfaces. An Introduction to
Contemporary Mathematics, Berlin, Heidelberg, 32006.
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axis, that is, the scale, is a mere convention. Finally, the requirement that the coordinate
axes should be perpendicular is based on the possibility to measure angles. Here, thus,
a metrical structure, the possibility of a measurement, is drawn into the picture, which,
as Riemann points out, is not yet included in the concept of a manifold. If one does not
assume any angle measurement, we can only specify that the three coordinate axes point in
different directions. Likewise, the fact that the coordinate axes should be straight, assumes
a notion, that of the straight line, that is not contained in the concept of a manifold as such.

Take another instructive example: The earth’s surface is a two-dimensional manifold
that can be represented in idealized form by a spherical surface. On this sphere, the
position of a point can be determined by specifying its longitude and latitude. Longitude
and latitude thus are its coordinates. The curves of constant latitude are curves of constant
distance from the poles, the meridians great circles passing through these poles. The null
meridian by convention is fixed as the meridian through Greenwich in England. Not only
that, but also the position of the poles on the spherical surface is a convention (on the globe,
the poles are not determined geometrically, but kinematically, as the points of intersection
with the axis of revolution). The distance from the poles as the notion of great circles (these
are determined by the fact that the shortest paths on the surface of the sphere run along
great circles) in turn require the possibility of measurements, and thus do not emerge out
of the manifold concept.

Coordinates are thus a convenient means for a description of the position of points
in a manifold, but require additional arbitrary rules and conventions. The points of the
manifold are given independently of any coordinates. They can therefore be described
by different sets of coordinates. This raises a problem. If the choice of coordinates
is arbitrary, we can arbitrarily switch between different descriptions, and if the same
object is presents itself quite differently, depending on the description, it seems that all
invariant content is lost. However, the Riemannian geometry solves this problem. An
object presents itself in a given description in a specific manner, but when changing the
description this representation is transformed according to definite rules. What makes
up the object thus are not its coordinate descriptions, but the transformation rules it
experiences when the coordinate description changes. This is the basic principle of the
theory of general relativity of Einstein, namely that the laws of physics are independent
of specific coordinate descriptions, in the sense that they transform under a change of
coordinates according to fixed rules. This is the principle of covariance—not invariance
because the representation is precisely not invariant—and its universality explains the
name of the theory. Physical phenomena are relative in the sense that they depend on the
choice of a reference system, but satisfy general transformation rules under the transition
to another reference system.

If all depended on the choice of the description, it might even be the case that the
dimension n of the manifold depends on the choice of coordinates. This number n is the
number of those coordinate values that are at least required for specifying a point in the
given manifold. This means that we choose the coordinates independently, so that none of
the coordinate values can be calculated as a function of other coordinate values of the same
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point, because those coordinate values that can be determined from others and are thus
redundant may be omitted without impairing the complete determination of the point. It
was then shown by Luitzen Egbertus Jan Brouwer (1881–1966) that this requirement of the
minimal number of independent coordinates already fixes the dimension n of a manifold.
Therefore, the dimension of a manifold is independent of the choice of coordinates.6

Riemann determines this dimension inductively. From an n-fold extended manifold, we
obtain an .n C 1/-fold extended one by adding an additional degree of freedom, as one
can pass from the two-dimensional Euclidean plane by the addition of a dimension to
three-dimensional space. Conversely, when on an n-dimensional manifold one specifies a
continuous function, one obtains .n � 1/-dimensional manifolds as its level sets, that is,
as the subsets on which the function assumes a fixed value. Conversely, if you change this
value continuously, it generates the original n-dimensional manifold as a single-parameter
family of .n � 1/- dimensional manifolds. (Riemann points out that in this procedure,
one encounters in general exceptional, singular, sets of smaller dimension than n � 1,
as the level sets of a continuous function on an n-dimensional manifold need not all be
.n � 1/- dimensional manifolds. For example, the curves of constant latitude on the two-
dimensional sphere, i.e. the level sets of the distance to the North Pole, shrink to points
at the poles, hence lose one dimension. A more detailed investigation of the relationship
between such singularities and the global topology of the underlying manifold has become
an important branch of mathematics of the twentieth century.)

Riemann also provides for the possibility of infinite dimensional manifolds, for
example, the manifold of all functions on a given region. Such a function has an infinite
number of degrees of freedom, namely its values at the infinitely many points of the region.
This points forward to another important research branch of mathematics of the twentieth
century, functional analysis.

Before we explain the idea of a Riemannian metric, we want to illustrate the problem
once more in the example of curved surfaces in three-dimensional space as analyzed
already by Gauss.

As explained, a manifold describes only the juxtaposition of points. The concept of
a manifold, however, constrains such a juxtaposition by the requirement that it can be
locally mapped by coordinates onto a region in a Cartesian number space. Except for the
dimension, this is not further determined, but arbitrary, and only continuity conditions must
be guaranteed for a transition from one coordinate system to another. Globally, however,
the manifold carries a topological structure, which in particular (apart from cases that are
regarded as trivial in this context) prevents the whole manifold from being covered by a
single coordinate system, also called a chart. The sphere is a clear and easily visualized
example of a two-dimensional manifold. Parts of it can be represented in coordinate
systems, as in the maps or charts of an atlas of the earth’s surface, as we have already

6Luitzen E. J. Brouwer, Beweis der Invarianz der Dimensionszahl, Math. Annalen 70, 161–165,
1911.
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explained. The entire spherical surface can, however, not be so represented. In cartography
therefore one uses a globe instead of the maps of an atlas. One can only compose the
whole of the surface from the different charts, but one cannot capture it in a single chart.
These are still purely topological aspects. The same applies to any other surface of the
same topological type, that is, for all closed surfaces without holes, for example, ellipsoids
or ovaloids. Likewise, closed surfaces of a different topological type, such as an annular
surface, that is, the surface of a circular tube, or a pretzel surface, cannot be captured by a
single chart. Here, the situation is even more complicated than for the sphere. An important
insight, which also resulted from Riemann’s considerations, not only those in geometry,
but also those in complex analysis and elliptic integrals, which then led the theory of
Riemann surfaces, is that the concept of a manifold already includes qualitative positional
relationships, and that, consequently, different manifolds can be distinguished by different
positional relationships. An important example may illustrate this: A closed curve in the
Euclidean plane or on a sphere divides that surface into two parts; in the Euclidean plane,
these two parts can also be distinguished from each other as the interior and the exterior of
the curve. On an annular surface, however, there are closed curves, such as the generating
curves that go around once and for which this is not the case, i.e., they do not decompose
the surface into two parts. After Riemann this is expressed by saying that the connectivity
of an annular surface is different from that of a sphere or a the plane. By such qualitative
relationships surfaces of annular type can be topologically distinguished from spherical
surfaces.

This is independent of a metric. Without the possibility of quantitative measurements,
however, a spherical and oval surfaces, for instance as purely topological objects, are not
distinguishable from each other, because they can be mapped to each other in a reversible
manner. In particular, they both share the same connectivity. That a sphere and an oval
surface cannot be topologically distinguished from each other, is probably intuitively hard
to grasp for the reason that we always visualize them as metric objects. By being visualized
in three-dimensional Euclidean space and not as abstract objects, they always already carry
a metric, the one induced by the ambient Euclidean space. Since we can measure the
lengths of curves in Euclidean space, we can also measure lengths of curves lying on
surfaces in Euclidean space. The distance between two points on a surface is then the
shortest possible length of all the curves that connect these two points on the surface.
The fact that we take into account only curves that run entirely on the surface makes the
distance between the points on the surface greater than that measured in Euclidean space
without such a constraint on the connecting curves. In Euclidean space, we can connect
the two points by a straight line segment, and its length is then the Euclidean distance.
Since the line segment does not typically lie on the surface, the distance on the surface is
greater, because on the surface, the two points are then connected to each other only by
curves that are all longer than the Euclidean line segment.

After this insertion which is hopefully useful for the geometric intuition we now turn
to the second part of Riemann’s text. Only through Riemann’s conceptual analysis can
we gain the full understanding of the above exposition of surfaces in space, precisely and



4.3 Riemann’s Reasoning 51

perhaps somewhat paradoxically as he completely abstracts from the fact that a surface
may be located in Euclidean space.7 This of course builds on the distinction between
external and internal geometry already taken by Gauss. Only the external geometry takes
the position in space into account, while the internal geometry is solely concerned with
metric relations on the surface itself.

This second part of Riemann’s text now deals in a more abstract manner with the
metric relations with which an n-dimensional manifold can be equipped. Mathematics
will later develop the general concept of a metric space, i.e., that of a set in which the
distance d.P;Q/ between any two points P and Q can be measured. This distance should
be always positive, if P and Q are different, moreover symmetric in P and Q, that is,
d.P;Q/ D d.Q;P/, and, finally, the triangle inequality d.P;Q/ � d.P;R/Cd.R;Q/ should
hold for any three points P;Q;R. The triangle inequality implies that the distance cannot
decrease if an intermediate point is inserted. This is an axiomatic characterisation of a
general distance concept. Riemann, however, proceeds differently and comes to the notion
of what will be later named a Riemannian metric after him. He obtains his distance notion
by measuring the lengths of curves. If one can measure the lengths of curves, the distance
between two points is the length of the shortest curve joining them.8 (In Euclidean space,
this is the straight line connecting the two points concerned; in a general Riemannian
space, this is called a geodesic curve.9) Riemann’s notion of distance is thus a derived
one, and assumptions about the determination of the length of curves lead Riemann to
his metric concepts. The possibility of length determination naturally implies that each
curve can be measured by each other, that is, that a length scale can be transported in the
manifold, without changing its length. Curves are thereby considered as one-dimensional
objects, and the length scale is therefore also a one-dimensional object, and not a rigid
body. Helmholtz later demanded the free mobility of rigid bodies as a fundamental
geometric fact. This then leads necessarily to a much more specific form of geometry

7Gauss had incidentally also pointed to the fact that the German language, in contrast to Latin,
where there is only the term “superficies”, and the Western European languages, where there is
only the derived term “surface”, distinguishes between “Fläche” (a two-dimensional manifold) and
“Oberfläche”(a surface bounding a three-dimensional body). (Gauss to Schumacher, 07/31/1836
(Gesammelte Werke,, Vol. 3, pp. 164f) and 03.09.1842 (Collected Works, Vol 4, pp. 83f). I thank
Rüdiger Thiele for this observation.) This is of course essential for the Gaussian surface theory,
because in particular, he can speak about the bending of a surface without having to think at the
same time about the deformation of a body.
8For mathematical correctness: It does not follow from the general concepts that it is always the case
that for every two points on a manifold equipped with a Riemannian metric, there exists shortest
connection between them. Assuming that there exists a connection at all (i.e. that the manifold is
path-connected), it is possible to define the distance as the infimum of the lengths of all connecting
curves.
9This name indicates the origin of modern differential geometry in the investigations of Gauss,
Disquisitiones, loc. cit., for land surveying.
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than Riemann’s approach. More precisely, it implies that an n-dimensional space where an
n-dimensional rigid body moves freely, is necessarily a Riemannian manifold of constant
curvature. According to Riemann, this actually follows already from the assumption that
two-dimensional figures are freely movable, without having to stretch, compress or distort
them. The Riemann curvature concept will be explained below, but the essential point is
that a general Riemannian manifold can have curvatures that vary from point to point and
from surface direction to surface direction. Thus, the Riemannian approach is considerably
more general than that of Helmholtz. This may initially be viewed as a disadvantage,
insofar as Helmholtz unlike Riemann managed to determine the structure of the physical
space completely from empirical facts (the still free curvature constant can also be in
principle empirically determined by the sum of the angles in geodesic triangles), while
the general Riemannian space has many contingent degrees of freedom. It turned then
out, however, that this is exactly the structure required for the general theory of relativity.
In that theory, the curvature of space is determined by Einstein’s equations through the
gravitational forces of masses located in it, and conversely, precisely the degrees of
freedom available in the Riemannian structure are needed to ensure that the gravitational
forces can unfold.

Thus Riemann’s approach is based on the possibility of invariant length measure-
ments. This, however, appears to him to be too general (although mathematics has later
investigated structures of such generality), and he is therefore looking for meaningful
additional requirements. The first such requirement is that the length measurement is
reduced to infinitesimal measurements, so that one measures the length of infinitesimal
curve elements (we would today speak of tangent vectors) and then computes the length
of a continuously differentiable curve by integrating these infinitesimal lengths along the
curve. Riemann’s conception thus finds its natural place in the context of mathematical
analysis, differential and integral calculus.10

We want to express this still differently: A curve connects two points with each other,
and it is ultimately the distance between these two points that is to be calculated. The
analysis proceeds by considering at each point on the curve its direction, that is, its tangent
vector, and determining the latter’s length. Summation (integration) of these infinitesimal
lengths over all points of the curve then yields its length. This greatly simplifies the task,
because instead of two points we now need to consider just a point and the directional
elements (tangents) at this point. The Riemannian metric is then the prescription according
to which the length of a directional element at a point is determined. So there enter two
different types of variables into the metric, the points of the manifold and the directional
elements at these points. The dependence of the metric on the points of the manifold is

10S. Lie will later criticize this as an approach that is ill-suited for axiomatic purposes because it is
not elementary. See the comments below on Lie’s reworking of Helmholtz’s approach.
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arbitrary11—herein lies the universality of Riemann’s concept. However, the metric is
required by Riemann to be linearly homogeneous as a function of the directional elements.
This means that, when the directional element in question is stretched or compressed by
some factor, its length changes by the same factor. In addition, the length should not
change when the direction is reversed, because the length of a curve must not depend
on the direction in which it is traversed. Even under these restrictions there are still several
possibilities, and Riemann then opts for the simplest, namely that the length is obtained
as the square root of a quadratic expression in the possible displacement directions.12

Riemann justifies this choice as follows: At a given point P on the manifold one would
like to have a function that reconstructs the distance from P. This function should be
differentiable. Since all other points have a positive distance from P, therefore the function
must assume its minimum value 0 in P. According to the rules of differential calculus.
therefore its first derivatives must vanish in P. Furthermore, the second derivatives
must be non-negative there, and Riemann then assumes that they are positive. In a first
approximation, the requested function is therefore quadratic at P, i.e., it is essentially the
square of the distance from P. The distance itself is therefore obtained as the square root
of this quadratic function.

The requirement that the length element be obtained from the square root of a
quadratic expression in the possible directions of displacement has the consequence that,
infinitesimally, the Theorem of Pythagoras, and thus the rules of Euclidean geometry
apply. (This raises the question whether therefore in the context of the Riemannian
theory a special position of Euclidean geometry results. In particular, also the non-
Euclidean geometries are described by using this method. In the further development of
differential geometry, this then finds the expression that the tangent space at each point
of a (differentiable) manifold carries a linear structure, so the methods of linear algebra
apply. Thus, the tangent spaces of a Riemannian manifold then also carry a Euclidean
metric structure. The tangent space at a point expresses the infinitesimal aspects of the
geometry and it is therefore a tool for an approximate description of the local geometry.
Euclidean geometry can therefore assume this task of an approximate description of the
local Riemannian geometry particularly well, because it builds upon the linear structure
of the Cartesian space; this was developed by Hermann Grassmann. That the Euclidean
geometry is a useful tool of description, does not imply its conceptual priority over other
geometries. Riemann himself does not even speak of a Euclidean structure, but refers to
this possibility of approximation as flatness in the smallest parts.) The deviation from

11Except that its components must be differentiable functions (although Riemann did not state the
precise differentiability assumptions explicitly, for the calculation of the Riemann curvature tensor,
the second derivatives of the metric with respect to the point on the manifold are needed).
12The general case was taken up and developed in the Göttingen dissertation of Paul Finsler, Über
Kurven und Flächen in allgemeinen Räumen, 1918. He thereby founded the research field of Finsler
geometry.
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Euclidean geometry shows up only when moving from one point to another and finds its
analytical expression in the dependence of the metric on the points of the manifold.

Riemann then examines how many degrees of freedom there exist for this dependency.
At each point there are as many independent displacement directions as the number

n of dimensions the manifold has. Then there are n.n C 1/=2 different products of
these directions (because products are independent of the order of the factors). By
transformations of the n coordinates, one can then produce n relations between these
(i.e., n of these degrees of freedom come from the choice of coordinates, and therefore
do not contain coordinate-independent information about the metric structure). Hence
n.n C 1/=2 � n D n.n � 1/=2 degrees of freedom are left, which then characterize
the metric structure of the manifold. Riemann identifies these degrees of freedom with
his curvature quantities and obtains a geometric description of a metric structure on
a manifold. These curvature values are calculated from the second derivatives of the
metric tensor with respect to the points of the manifold. They represent invariants of
the Riemannian manifold, therefore coordinate independent quantities. From the first
derivatives of the metric, in contrast, no invariants can be obtained.

If coordinates can be chosen arbitrarily, they can also be selected in the most convenient
manner. That means that coordinates can be constructed in which geometric relationships
are expressed in a particularly simple manner or where they show themselves most
clearly. Riemann employs this to his advantage and introduces special coordinates, which
then were later called normal coordinates and which have become a very useful tool in
the geometric tensor calculus. In these coordinates, starting from an arbitrarily selected
reference point P the location of another point Q in its vicinity is described by its distance
from P and the direction of the shortest connection from P to Q at P. In Euclidean
space, this provides the well-known polar coordinates, and in a first approximation in a
Riemannian space at the reference point P the metric looks like the Euclidean metric. In
general, this is strictly true only for this point P itself, but because one can perform this
construction at every point, this is sufficient for the intended purpose.

Why, then, have coordinates chosen by Riemann so favorable properties? This rests
first of all on the fact that in one dimension, there is no difference between Euclidean and
Riemannian geometry. Each curve equipped with a measure is in itself indistinguishable
from a Euclidean straight line. By virtue of a suitable choice of coordinates, the curve
can be put into the Euclidean form. To do this, simply uniformly choose the coordinates
adapted to the measure, i.e., such that equal distances on the curve correspond to the
same coordinate differences. When one conceives the passage of the coordinate values as
traversing through the curve, the curve is traversed in this way with constant speed, because
the ratio of the length, measured along the curve, to the time, measured in the coordinates,
remains constant. A piece of a curve therefore possesses no geometric invariants in itself,
except its length. Curves thus do not differ in their intrinsic geometry from each other, but
one and the same piece of a curve can only be described differently by different coordinates
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or parameterizations. It is the objective of geometry in the sense of Gauss and Riemann to
exhibit geometric properties of objects that are independent of the chosen description.

Since, as explained, in one dimension, there are no intrinsic differences between a
curve and a Euclidean straight line, this also applies to the shortest path from P to Q, a
so-called geodesic curve in a Riemannian manifold. The only coordinate that this curve
therefore contributes is its length, i.e., the distance between P and Q. Now this curve is
not an arbitrary curve, but a geodesic one, a shortest connection. Like a straight line in
the Euclidean plane, it therefore does not have any lateral deviation in the manifold, but
steers from P directly to its target Q. Thus, it sits in the manifold like a straight line in
the Euclidean plane. Here, too, if we move away from the inner geometry of the curve
and consider its location in the ambient manifold, in the first approximation we cannot
detect any differences to the Euclidean situation. In order to detect differences and thereby
gain invariants, we have to move to a two-dimensional situation, a surface. According to
the insights and findings of Gauss presented above, to which Riemann refers here, we
know that a surface regardless of its position in an external surrounding space possesses
an inner geometric invariant, its (Gauss) curvature. The idea of Riemann now consists
in constructing a complete set of geometric invariants for a manifold at some point P
from the intrinsic curvatures of different surfaces in that manifold. These surfaces can be
obtained with the help of his coordinates discussed above. For this purpose, he considers
the surfaces that consist of all geodesic curves emanating from P and whose directions at P
lie in the same plane. Each infinitesimal plane at P , that is, the choice of two independent
coordinate directions in P, therefore yields a surface in the manifold. The curvatures of
these surfaces, called the sectional curvatures, at the point P then determine the geometry
of the manifold at this point. Now, there are n.n � 1/=2 independent plane directions
in an n-dimensional space, and therefore Riemann obtains exactly the correct number of
invariants in order to determine the geometry of a manifold in a unique and non-redundant
manner.

This can also be imagined geometrically as follows: We consider besides P not only
one other point Q, but two others, Q and R, both of which have the same distance from P,
and the shortest connections from P to Q and R. Then we can also examine the distance
between Q and R. If we vary the common distance to P, that is, vary the points Q and R, but
keep their directions from P fixed, then in Euclidean geometry, the distance between Q and
R grows proportionally to their distance to P. On a curved surface this is no longer true. In
the case of positive curvature, this distance is growing at a lower rate, while for negative
curvature it grows faster (even exponentially). In the case of positive curvature, geodesic
lines thus do not move apart as Euclidean straight lines at a linear rate, but like the great
circles on the sphere finally even come together, whereas they diverge exponentially for
negative curvature. The curvature also shows up in the comparison of area with Euclidean
reference objects. In some Riemann manifold, take as a surface the circular disk of radius r
formed by the geodesics up to the distance r emanating from P with initial directions lying
in a fixed plane. The area of this surfaces then differs from the area of a Euclidean disc of
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the same radius, that is, from �r2 by a fourth-order correction term which is proportional
to the curvature of this plane direction at P.

For a better understanding of this issue and of the geometric meaning of curvature we
shall now introduce a concept, which is not found in Riemann, but only in Christoffel,
Ricci and Levi-Civita (1873–1941) in their further elaboration of the Riemannian theory.
This is the concept of parallel transport.13 In Euclidean space we can identify a direction
at point A with the parallel direction in another point B, because after the corresponding
Euclidean postulate or axiom, for each direction at A, there is exactly one parallel direction
at B. Through the concept of parallelism we thus obtain a natural correspondence between
the directions in two different points. We can therefore easily identify the infinitesimal
geometry at A as given by the different directions in A with the infinitesimal geometry at
B. And if we then identify the geometry at B with that at a third point C, and finally, that
at C in turn with that at A, we recover the original geometry at A. This works in the sense
that if we transport a specific direction at A to B, then to C and finally back to A, we again
obtain our initial direction at A, and not another direction at the point A. Now, the Euclidean
parallel postulate no longer holds in a Riemannian manifold, that is to a direction in a point
P, we can no longer unequivocally assign a parallel direction at another point Q, such that
the geodesics starting in corresponding directions are parallel to each other in a suitable
sense. (Parallelism might mean here, as in the discussion of the non-Euclidean geometry,
that the geodesic lines in question do not meet; but then, depending on the specific structure
of the Riemannian manifold, none or an infinite number of such parallels might exist.)
In a Riemannian manifold there is therefore no direct comparison possible between the
geometric situations in different points P and Q. In fact, this is not surprising, because any
relationship between P and Q should somehow depend on the points lying between them.
This is the same as in physics where an instantaneous action at a distance between two
points is unfortunately postulated in Newtonian physics, but nevertheless is conceptually
unsatisfactory and therefore was then replaced in the theories of Faraday, Maxwell and
Einstein by a field concept. However, initially there is a substantial difference between the
physical transmission of an effect through a field and the geometric transport along the—
or a—shortest connecting curve between two points. In a field, the effect spreads in all
directions from P and can therefore also reach the point Q on all possible paths, whereas
the process of parallel transport will take place along a specific path. In modern physics,
the two concepts then later achieved a synthesis, which can be seen particularly well in the
Feynman path integral approach.

13A historical treatment of the corresponding development can be found in U. Bottazzini, Ricci and
Levi-Civita: from differential invariants to general relativity. In: J. J. Gray (Hrsg.), The Symbolic
Universe: Geometry and Physics 1890–1930, Oxford Univ. Press, 1999.
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In this sense, Hermann Weyl14 took up the concept of parallel transport by Levi-
Civita and generalized it, in order to eliminate, or better to derive from an infinitesimal
concept, the comparison of magnitudes in different points that was unmotivated for him in
Riemann’s theory and to thereby develop a Riemannian geometry that is consistently based
only on infinitesimal concepts and operations. By means of a so-called affine connection
geometric relations in different points can be compared, and if such a connection
respects the metric, then even magnitudes can be compared. Thus, there is no longer a
remote comparison at a distance, but this is obtained by the integration of infinitesimal
comparisons along curves.

In order therefore to explain the parallel transport in a Riemannian manifold, we again
consider the Euclidean situation, but now under an infinitesimal point of view. To this end,
we connect the points A and B by a straight line g. Along g we then have a distinguished
direction, namely its own direction. We can then identify the initial direction of g at A with
its final direction at B. This is evident, but the crucial insight is now that we can use this
direction as the reference direction. We can in fact transport any direction (any vector) v
in A along g into a direction at B, by requiring that during this transport, the length of
v and the angle of v with the direction of g always remain constant and that during this
transport process also v does not rotate around g. In principle, this transport process could
even be performed along any curve between A and B, not only along the straight line g,
but it is clear that the result of the transport of one and the same vector from A to B will
then depend on the final direction of the curve at B. The straight line is distinguished from
the other curves by the fact that its own direction along its course remains parallel to itself,
because the straight line does not curve away from its own direction.

This infinitesimal transport principle can now be transferred to a Riemannian manifold.
We connect the points P and Q in question by the—or more precisely, a (because there
may be several)—shortest geodesic curve c. Again we use the own direction (tangential
direction) of this curve as a reference direction, and then transport other tangent directions
from P to Q, stipulating that their lengths and their angle with the tangential direction
of c remain constant and that they should also not rotate about c. A geodesic curve in a
Riemannian manifold, like a Euclidean straight line (whose generalization it represents
because of this property), is distinguished by the fact that it does not bend away from its

14Hermann Weyl, Reine Infinitesimalgeometrie, Math. Zeitschrift 2, 384–411, 1918; the same,
Gravitation und Elektrizität, Sitzungsber. Kgl.-Preuß. Akad. Wiss. 1918, 465ß–480; ders., Raum,
Zeit, Materie, Berlin, Julius Springer, 1918; 7th ed. (ed. Jürgen Ehlers), Berlin, Springer, 1988; an
English translation of the 4th edition is Hermann Weyl, Space, time, matter, Mineola NY, Dover,
1952. For this, see Erhard Scholz (ed.), Hermann Weyl’s RAUM-ZEIT-MATERIE and a General
Introduction to His Scientic Work. Basel, Birkhäuser, 2001. The concept of a connection was
developed further in particular by Elie Cartan and Charles Ehresmann, s. Charles Ehresmann, Les
connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie, Bruxelles,
29–55, Liège, Thone, 1951.
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own direction, as otherwise it would run a detour and lose its shortest property. In this
manner, the concept of parallel transport in a Riemannian manifold is found. However,
the result of parallel transport now in general depends on the choice of a connecting curve,
because as the example of the different great circles on the sphere, which connect the north
pole to the south pole, shows there may be more than one such connection.

The main difference from the Euclidean case now is that for a transport from P to Q,
then from Q to R, and finally again back from R to P, the end result when one has returned
to P, will in general be different from the original direction that one had started with at P.
This result also depends on the two points Q and R as well as on the connecting geodesics.
Expressed more concisely, the result depends on the path traversed before returning to
the starting point. It turns out that this path dependence of the parallel transport can be
measured by the Riemann curvature.

Through these constructions, we can also offer an explanation why only second, but not
first derivatives of the Riemannian metric can provide geometric invariants (the curvature
is calculated from the second derivatives). The first derivative refers to the change from
point to point, that is, expresses how the metric changes when one, for example, runs
from P to Q. But now, as we have analyzed, the relationship between the geometric
relations in two different points is not invariant, but must be established by additional
constructions such as parallel transport. This is also reflected in the freedom of choice of
coordinates. There is no correlation that needs to be respected and no invariant relationship
between coordinates in different points, but the geometric relations in different points can
be described independently in coordinates. On the other hand, of course, the geometric
relations at a point can be compared with themselves, just as in the parallel transport along
a closed triangle, we could compare the final result with the initial state. Infinitesimally,
the return to a point along a closed path is expressed by second derivatives. In this way,
the curvature calculated from second derivatives of the metric then provides geometric
invariants, and as Riemann had concluded by counting the available degrees of freedom,
as explained above, we then have found all the invariants of a Riemannian metric.

At this point, the following consideration naturally offers itself: In an axiomatic
foundation of geometry, one could also directly start from the concept of parallel transport
without the need for a metric. Parallel transport would then simply be a rule for identifying
directions at two different points of a manifold along and depending on a connecting curve,
with certain consistency requirements, which then lead to the axioms. Such a concept
is also called a connection because it establishes the link or connection between the
various points of a manifold. In particular, a connection permits a new metric-independent
definition of geodesic curves, namely as those curves whose direction along itself always
remains parallel. In this context, Kant’s remark appears in a surprising new light, by which
he supported his view that the proposition that the straight line (in Euclidean space) is
the shortest connection between their endpoints, constitutes an example of a “synthetic a
priori judgment”: “For my concept of the straight contains nothing of quantity, but only
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a quality. The concept of the shortest is therefore entirely additional to it, and cannot be
extracted out of the concept of the straight line by any analysis.”15

This conceptual contrast, however, between straightness and shortest property had
already been discussed long before Kant, since classical antiquity, where these two
definition possibilities of a straight line passing, either through an inner quality or through
an external metric were put forward by Euclid and Archimedes. Leibniz then analyzed in
great detail the various determinations of a straight line and reached significant insights
which, however, because not systematically published, could not influence the subsequent
development.16 In mathematical terms, the facts are as follows: As the axiomatic notion
of a connection shows, the concept of a straight line (in the sense of a geodesic curve)
can be introduced by a purely infinitesimal concept, the self-parallelism of its tangent
direction, without recourse to a distance and a shortest property. Conversely, the condition
that a curve in a Riemannian manifold be geodesic in the sense of being self-parallel can
also be derived from the requirement that it represent the shortest connection between any
two of its points. Only, there is no general reason that the two concepts of a geodesic
curve, self-parallelism, i.e., straightness, and shortest property have to match. For the
concept of the connection is designed such that it is not derived from a metric and
therefore, in a specific case, it need not be derived from a metric. Metric and connection
are logically independent concepts. Although a metric defines a particular connection
(the so-called Levi-Civita connection), for which parallel transport leaves the metric
relations unchanged, nevertheless, on a given manifold, also other connections can be
introduced that satisfy all axioms required for this concept, but without respecting the
metrical conditions. The geodesics of such a connection then no longer possess the shortest
property.

After this digression, which we hope will be useful for a fuller understanding, we return
now to the considerations of Riemann.

Riemann refers to those manifolds whose curvature is everywhere zero, as flat. He
avoids at this point, however, to speak of a Euclidean structure, possibly because he
had not taken note of the discussion about the non-Euclidean geometries. Instead, he
assigns the manifolds of vanishing curvature to the larger class of manifolds of constant
curvature. (The non-Euclidean geometries of Gauss, Bolyai and Lobatchevsky are just
the Riemannian geometries of constant negative curvature, while the geometries of
constant positive curvature describe the spherical surfaces and the projective planes
which are obtained from them by the identification of antipodal points, as well as their
higher dimensional analogues. In particular, Riemann, apparently without knowing the

15Immanuel Kant, Critique of Pure Reason, loc. cit., B16 (p. 145). This argument is criticized, for
instance, by G. F. W. Hegel, Wissenschaft der Logik, I, p. 239f. Frankfurt edition, Suhrkamp, 1986.
16For a detailed exposition of Leibniz’ reasonings, see V. De Risi, Geometry and Monadology.
Leibniz’s Analysis Situs und Philosophy of Space, Basel, Birkhäuser, 2007.
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contemporary debate,17 arrived by his own way at the non-Euclidean spaces. While these
spaces for their creators provide alternatives to the Euclidean space that simply rest in
themselves, for Riemann, in contrast, they emerge as special cases of a much more general
theory that operates with general metric conditions and works in arbitrary dimensions.)
Riemann then concludes that these spaces of constant curvature are precisely those in
which figures can move without distortion. Since surfaces of different curvature differ in
their inner geometric relations, the curvature must be the same at any point and in any two-
dimensional direction at this point, for figures to move and rotate freely in space without
thereby suffering any distortions. But since on the other hand, according to Riemann’s
considerations, the geometry is completely determined by the curvature, therefore also
the geometry of a space of constant curvature has to be the same at every point and in
each direction. Consequently, figures in such a space do not feel any difference caused by
their position and thus can be moved freely. (Conversely, the free mobility of bodies was
the starting point of geometric considerations of Hermann von Helmholtz which in the
beginning were carried out without knowing about Riemann’s theory, but which then led
him to the constant curvature spaces.) Riemann also provides the formula for the metric
of constant curvature a, which, incidentally, is the only real formula in his text. Finally,
Riemann introduces geometric models to visualize the surfaces, i.e., the two-dimensional
spaces, of constant curvature.

In the third and last part of his lecture, Riemann then turns his thoughts to physical
space. A flat space is characterized by the fact that its curvature vanishes everywhere,
which is equivalent to the fact that the sum of the angles in any triangle is exactly �
(180ı). Under the assumption that the shape of bodies is independent of their positions,
which Riemann here attributes to Euclid, the curvature is constant and this then determines
the sum of the angles in triangles.

He then distinguishes between discrete space structures in which in principle exact
determinations are possible, and continuous ones, in which each measurement is nec-
essarily fraught with uncertainty, so that for reasons of principle no completely exact
determinations of the metric structure are possible.

He also points to the important conceptual distinction between unboundedness and infi-
nite extension. The former simply means that the space has no boundary. In particular, the
spherical surface is one example of an, although finite, but unbounded, two-dimensional

17On this issue, see E. Scholz, Riemanns frühe Notizen, as quoted in footnote 48 on p. 26. Riemann
mentioned Legendre, probably referring to the statements derived from Legendre that without using
the Euclidean parallel postulate one may deduce from the other axioms that the angle sum cannot
exceed 180ı in a triangle and that if there is a triangle in which this angle sum is exactly 180ı,
this also applies to all other triangles. (The latter is just the Euclidean case, in the non-Euclidean
geometry, the sum of the angles in each triangle is always less than 180ı.) These assertions of
Legendre are among the precursors of non-Euclidean geometry, and as Scholz argues, the fact that
Riemann mentions Legendre can only be understood if Riemann did not know the proper works on
non-Euclidean geometry.
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space. (Today, one calls such a manifold closed.) Unboundedness is a purely topological
property, independent of the metric structure. Infinity, i.e., infinite extension, on the other
hand is a metric property because it means for example that you can move arbitrarily large
distances away from any point.

The last paragraph contains Riemann’s ideas about the physical causes for the metric
properties of space. In a footnote at the end of his text, he states that this section still
requires a revision and further elaboration. Thus, although Riemann’s thoughts are here
only very briefly sketched, he has nevertheless intuitively grasped significant aspects
of the physics of the twentieth century. Based on the one hand on the mathematical
methods of calculus and on the other hand on the experimental perspectives, which the
microscope has opened, Riemann poses the question of the metric relations of space at
the unmeasurably small scale, as he calls it. Although the independence of the bodies,
i.e. the physical objects, from their position requires the constancy of the curvature of
space, as Riemann has pointed out, the underlying empirical concepts of a solid body and
a light beam seem to lose their validity in the infinitely small, so that the geometrical
assumptions that he has made may no longer apply in that situation. One possibility is that
space is ultimately discrete at a very small scale. Whether and to what extent this is the
case is not yet finally resolved even in modern, contemporary physics. This results in the
problems of quantum gravity, where the debates between various competing theories have
not yet reached their decisive conclusion. In any case, with a purely discrete structure,
we find ourselves in the realm of counting instead of measuring, so that the problem of an
external justification for the metric structure here no longer poses itself for Riemann. In the
case of a continuous spatial structure, however, according to Riemann, the reason for the
basic metric relations must be sought outside, in binding forces acting thereon. Riemann
therefore thinks of space as such only as a manifold without any further structure.18 The
additional structure of a Riemannian metric on the space is not a priori predefined, but
is determined by physical forces. So, if these forces change, so do the metric properties
of space. Physics does not take place in a given metric space, but as the spatial structure
influences the course of the physical processes, so conversely, the physical forces by their
effects shape space. In retrospect, this leads to the central idea of the general theory of
relativity of Einstein, who in his field equations directly connects the curvature of space
with the attractive forces of the masses contained in it, i.e., relates force to the curvature
of space. It is of course a difficult and ultimately undecidable question of interpretation,
how much of this Riemann really has already guessed. However, what cannot be denied
is Riemann’s ingenious intuition of the relationship between the metric structure of space
and the physical forces acting in it or on it, i.e. the necessary deep connection between
geometry and physics, on the basis of his novel conceptual analysis of spatial structure.

18This position has been called manifold realism, a special variant of structure realism, see Stewart
Shapiro, Philosophy of mathematics, Oxford, Oxford Univ. Press, 2000.
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In any case, Riemann and his successors provided the mathematical foundation for the
general theory of relativity.

As stated, Riemann’s text did not need or employ formulas. That, however, he
was able to implement the presented conceptual considerations also algorithmically. he
demonstrated in his 1861 Prize Essay submitted to the Paris Academy on heat propagation.
But alas, this document did not meet a favorable fate. The prize was not granted to
Riemann’s essay because not all details of the proofs were provided. Accordingly, also
this work was only posthumously published in the Collected Works,19 after Riemann’s
successors Christoffel and Lipschitz had already developed a similar formalism (see
below). Consequently, this work could not exert a profound influence. In the second edition
of the collected works it was then extensively commented by the editor Heinrich Weber.
Richard Dedekind had even worked out a still more extensive elaboration that anticipated
some later developments, but likewise did not get20 published either.

4.4 Mathematical Commentary

After the verbal and somewhat informal discussion of Riemann’s argumentation and
its context in the preceding section, I shall now turn to a more formal and rigorous
mathematical treatment. In some parts, I shall not closely follow Riemann’s reasoning,
but rather present a systematic mathematical derivation that makes use also of insights
developed by Riemann’s successors Lipschitz, Christoffel, Ricci, Levi-Civita and Weyl,
hoping to make Riemann’s seminal ideas thereby clearer for a modern reader. Of course,
in contrast to the previous one, this section will presuppose some mathematical knowledge.
In compiling this section, I have used Heinrich Weber’s commentary on Riemann’s
Paris Academy Essay (pp. 405–423 of the second edition of Riemann’s collected works
(pp. 437–455 of the Narasimhan edition)), Hermann Weyl’s commentary that is also
reproduced in Riemann’s collected works (see the bibliography in Chapter 7 for details),
the detailed treatment of Michael Spivak, A comprehensive introduction to differential
geometry, Vol. 2, Berkeley, Publish or Perish, 1970, as well as my own Riemannian
geometry and geometric analysis, Berlin etc., Springer, 62011, and my German textbook

19Commentatio mathematica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi
propositae: “Trouver quel doit être l’état calorifique d’un corps solide homogène indéfini pour qu’ un
système de courbes isothermes, à un instant donné, restent isothermes après un temps quelconque,
de telle sorte que la température d’un point puisse s’exprimer en fonction du temps et de deux autres
variables indépendantes”, in Gesammelte Werke, 2nd ed., pp. 423–436, with detailed comments by
the editor, ibid. pp. 437–455.
20Now available in M.-A. Sinaceur, Dedekind et le programme de Riemann, Rev. Hist. Sci. 43, 221–
294, 1990; see also the discussion in Laugwitz, Bernhard Riemann.
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written in collaboration with Jost Eschenburg, Differentialgeometrie und Minimalflächen,
Berlin, Heidelberg, Springer, 32014.

4.4.1 The Concept of a Manifold

In a manifold of dimension n, the position of a point p is determined by the values of n
variable scalar quantities x1; x2; : : : ; xn. The values x1. p/; x2. p/; : : : ; xn. p/ are called the
of p. Different values of one or several of the xi yield a different point. The choice of
the coordinates is arbitrary, however. For different coordinates y1; y2; : : : ; yn, the values
y1. p/; y2. p/; : : : ; yn. p/ for one y1. p/; y2. p/; : : : ; yn. p/ for one and the same point p
become different. Also, coordinates apply only locally, that is, in sufficiently small regions
of the manifold, but not necessarily globally. Different coordinates may apply in different
regions, but these regions may overlap. The important point is that in the vicinity of
every point, suitable coordinates exist. (This is precisely the situation that arises when
we represent parts of the globe (the surface of the earth), as an example of a manifold, by
charts in an atlas. The same piece can be represented in different charts that overlap in that
piece, but these charts can be of different scale, we take the same Cartesian coordinates on
each page of our atlas (in practice, in an atlas, one utilizes something coarser, a rectangular
grid, and the positions of objects in a chart are provided in the index of the atlas only
through the corresponding grid values), then one and the same point on the globe will
have different coordinate values in different charts.)

This requires some topological precision, and the modern mathematical definition of a
manifold is ascribed to Hermann Weyl.21 We do not enter into the details here, but need to
point out at least the following. Riemann requires continuity, that is, the coordinate values
x1. p/; x2. p/; : : : ; xn. p/ vary continuously when the point p varies continuously.22 Later
on, he also assumes differentiability, that is, the transition from one system of coordinates
x D .x1; x2; : : : ; xn/ to another system y D .y1; : : : ; yn/ is differentiable. Therefore,
quantities depending on the point p of a manifold can unambiguously be differentiated
in local coordinates. That is, when they are represented in one set of coordinates, like a
function F. p/ D f .x1. p/; x2. p/; : : : ; xn. p//, and if f is differentiable w.r.t. x1; : : : ; xn,
then the same applies to their representation in other coordinates. For instance, if we
represent the same function F in other coordinates as F. p/ D g.y1. p/; : : : ; yn. p//, then g
is likewise a differentiable function of the coordinates y1; : : : ; yn. In fact, if in the region
of overlap of the two coordinate charts, we have the relation x D �.y/ (or with indices

21Hermann Weyl, Die Idee der Riemannschen Fläche, Leipzig, Berlin, Teubner, 1913, Stuttgart,
Teubner, 31955. For further references, see Footnote 60 on p. 145.
22It then remains to specify what the latter means, a continuous variation of p, but in order to make
this precise, one needs the concepts of set theoretical topology as developed by Felix Hausdorff.
Riemann works with intuitive notions.
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xi D � i.y1; : : : ; yn/; i D 1; : : : ; n), then g.y1. p/; : : : ; yn. p// D f .�1. p/; : : : ; �n. p//, and
therefore by the chain rule

@g.y/

@y j
D

nX

iD1

@f .x/

@xi

@� i.y/

@y j
: (4.1)

In particular, we see that for this to be valid, we need to require that the coordinate change
x D �.y/ be differentiable.

Both @g
@y j and @f

@xi represent the derivatives of the function F. p/ in local coordinates. The
values of these derivatives, however, are not the same, but are related by the transformation
@�i

@y j . This is a fundamental principle. When we change coordinates (in a differentiable
manner), then abstract properties like differentiability of a function are preserved, but the
values of such objects change according to specific transformation rules.

Coordinate transformations need to be invertible. That is, when x D �.y/, then the
transformation � has an inverse  D ��1, and y D  .x/. This is compatible with the
transformation rule (4.1). The reason is that we have the relation

�@ j

@xi

�

i;jD1;:::;n D
�@� i

@y j

��1
i;jD1;:::;n (4.2)

for the matrices of the partial derivatives of a map and its inverse, or equivalently

nX

iD1

@ j

@xi

@� i

@yk
D ı

j
k WD

8
<

:
1 for j D k

0 else:
(4.3)

ı
j
k is called the Kronecker symbol. Thus, with this relation, (4.1) is converted into

@f .x/

@xi
D

nX

jD1

@g.y/

@y j

@ j.x/

@xi
: (4.4)

In a shorter, but more intuitive notation, we can write this as

@f .x/

@xi
D

nX

jD1

@g.y/

@y j

@y j

@xi
; (4.5)

suggesting that simply a cancellation between the @y j in the numerator and the denomina-
tor takes place. With this short-hand notation, the relation (4.3) becomes

nX

iD1

@y j

@xi

@xi

@yk
D @y j

@yk
D ı

j
k; (4.6)
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and this makes that relation obvious. In the sequel, we shall frequently use (4.6) without
expliciting mentioning it.

The background example against which we can view the concept of a manifold is Rn

with its Cartesian coordinates x1; : : : ; xn. There, we have a single, and apparently natural,
coordinate chart. Nevertheless, it is sometimes expedient to also employ other coordinates,
like the polar coordinates. On R

2 with its Cartesian coordinates x1; x2, we write

x1 D r cos'; x2 D r sin 'I (4.7)

we note that this coordinate change is singular at the origin x1 D x2 D 0, thus violating
our general requirement of invertibility for coordinate changes, and therefore suitable care
has to be exercised when extending computations to the origin. For later use, we state the
formulae for the derivatives:

@x1

@r
D cos';

@x2

@r
D sin ';

@x1

@'
D �r sin ';

@x2

@'
D r cos': (4.8)

Of course, polar coordinates can also be introduced in dimensions n > 2, by analogous,
but somewhat more complicated formulae.

Let us consider another example. The sphere Sn WD f.z1; : : : ; znC1/ 2 R
nC1 WPnC1

˛D1.z˛/2 D 1g is a manifold of dimension n: Charts can be given by stereographic
projections from the north and the south pole onto the tangent plane of the opposite
pole, that is, onto the planes fznC1 D �1g, fznC1 D 1g, resp. For that purpose, on
U1 WD Snnf.0; : : : ; 0; 1/g we put

x.z1; : : : ; znC1/ WD .x1.z1; : : : ; znC1/; : : : ; xn.z1; : : : ; znC1//

WD
�

2z1

1 � znC1 ; : : : ;
2zn

1 � znC1

�
(4.9)

as shown in the following figure (where N D .0; : : : ; 0; 1/ is the north pole).23

E
n

N

0

xi

Sn
zn+1

zi

23We also see that we could have projected as well on the equatorial plane E
n, in which case we

would have simply left out the factor 2 in the formulae for the xi. We project here on the tangent
plane of the south pole to conform with the formulae obtained below for constant curvature spaces.
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Likewise, on U2 WD Snnf.0; : : : ; 0;�1/g,

y.z1; : : : ; znC1/ WD .y1.z1; : : : ; znC1/; : : : ; yn.z1; : : : ; znC1//

WD
�

2z1

1C znC1 ; : : : ;
2zn

1C znC1

�
: (4.10)

Thus, we have two coordinate charts that overlap in the region Snnf.0; : : : ; 0; 1/; .0; : : : ;
0;�1/g. The z1; : : : ; znC1 with the constraint

PnC1
˛D1.z˛/2 D 1 also parametrize the sphere,

but they are not coordinates in the technical sense, because there are n C 1 of them, while
the dimension of Sn is only n. Nevertheless, it is often obviously useful to carry out the
computations in those z˛ . For later purposes, we compute

1 D
nC1X

˛D1
z˛z˛ D

nX

iD1

1

4
xixi.1 � znC1/2 C znC1znC1

hence

znC1 D
1
4

Pn
iD1 xixi � 1

1
4

Pn
iD1 xixi C 1

and then

zi D xi

1C 1
4

Pn
iD1 xixi

.i D 1; : : : ; n/;

and then

@zj

@xk
D ıjk

1C 1
4

Pn
iD1 xixi

�
1
2
xjxk

.1C 1
4

Pn
iD1 xixi/

2
for j D 1; : : : ; n; k D 1; : : : ; n

@znC1

@xk
D xk

.1C 1
4

Pn
iD1 xixi/

2
; (4.11)

and by the chain rule, we could then also compute

@y`

@xk
D
X

˛

@y`

@z˛
@z˛

@xk
:

In a simpler manner, from (4.9), (4.10), we have the coordinate transition formula

yk D 4xk

Pn
iD1 xixi

;
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and so

@yk

@xj
D 4ıjkPn

iD1 xixi
� 8xjxk

�Pn
iD1 xixi

�2 : (4.12)

Before proceeding, we should make the following general remark. While Riemann is
clearly aware of the global aspects, his habilitation address is essentially concerned with
purely local issues. Thus, for instance, the geometry on the surface of a cylinder is locally
the same as that in the plane, because the latter can be rolled onto a cylinder without
stretching or other deformations. Globally, or as one also says, topologically, these two
surfaces are different. In the plane, every closed curve can be continuously contracted
into a point, but this is not possible for a curve going around the cylinder. A space in
which all closed curves can be contracted to points is called simply connected. While the
cylinder itself thus is not simply connected, we can find sufficiently small regions on it
that are. Thus, locally it is simply connected, like any manifold, and the considerations to
follow can be confined to such regions. In this sense, we shall also always assume that the
manifolds under consideration be connected.

There is one comment on global aspects that Riemann does make. This concerns
the distinction between unboundedness and infinite extent. Euclidean space is infinitely
extended and has no boundary. The sphere, in contrast, is only of finite extension, but still
does not have a boundary. Thus, unboundedness does not require infinite extent.

4.4.2 Tensor Calculus

The tensor calculus systematically incorporates relations like (4.6). It originated from the
work of Riemann himself and Lipschitz and Christoffel and was fully developed by Ricci
and turned out to be a most convenient tool for Einstein when working out his general
theory of relativity. Although in its fully developed form, it is not yet present in Riemann’s
own work, I shall nevertheless employ it here for systematic reasons.24

The conventions of tensor calculus are carefully adapted to the transformation prop-
erties of the objects concerned, and because of this, it allows for rapid and automatic
calculations. In that sense, it might be comparable to the ingenious notation that Leibniz
had devised for the calculus, so that the chain rules for differentiation and integration are
implemented algorithmically into the calculus.

As will become clear subsequently, in tensor calculus it is important to distinguish
between upper and lower indices, as they indicate opposite transformation behavior.
The coordinates carry upper indices, like xi, and so do their infinitesimal versions, the

24There also exists an alternative to Ricci’s tensor calculus, the method of moving frames of Elie
Cartan, but I shall not explain that here.
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differentials or covectors dxi. In contrast, the index i of the vector @
@xi is considered as a

lower index because it appears in the denominator below the fraction sign.
A basic convention then is that when the same index appears both in an upper and

in a lower position in a product, it is to be contracted, and since this is a general rule,
the summation indicating that contraction is usually left out. This is called the Einstein
summation convention. Thus,

aibi WD
nX

iD1
aibi; (4.13)

and this convention persists in the presence of other indices. For instance

cikai D
nX

iD1
cikai or cijd

ijk D
nX

i;jD1
cijd

ijk:

In the first example, only the index i appears twice in the product, whereas in the second
example, both i and j, and hence both are to be summed over.

In principle, we could then also leave out the summation indices entirely and simply
write ab or cka; cdk. But the positions of the indices may remind us of the types of the
tensors involved and therefore are not completely superfluous.

The Kronecker symbol introduced in (4.3) is particularly expedient; for instance, we
have

ıi
kv

k D vi: (4.14)

Also, we can freely change the name of a summation index; thus, for instance

aibi D akbk: (4.15)

A tangent vector then is a linear combination of the @
@xi , whereas a covector is a linear

combination of the differentials dxi. That is, they are objects of the form

V D vi @

@xi
and ! D !idxi; (4.16)

with the summation convention applied (note the positions of the indices of the coefficients
vi and !i).

Let now x D �.y/; y D  .x/ as above, that is, consider a coordinate transformation.
Then

@

@xi
D @

@y j

@y j

@xi
(4.17)
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as in (4.5) or (4.6), and similarly

dxi D @xi

@y j
dy j: (4.18)

We note that in (4.17), the index i always appears in a lower position. Since we also want
to have y j in a lower position, we also have to have it in an upper position, in order to take
a sum, and therefore we have to take the derivative of y w.r.t. x. In (4.18), this is the other
way around, and we take the derivative of x w.r.t. y. In other words, vectors and covectors
have the opposite transformation behavior. For the vector V in (4.16), this then means

V D vi @y j

@xi

@

@y j
DW wj @

@y j
; (4.19)

that is, the coefficients satisfy a so-called contravariant transformation rule,

wj D vi @y j

@xi
: (4.20)

For the covector ! in (4.16), we have the opposite, covariant transformation rule,

! D !i
@xi

@y j
dy j D �jdy j (4.21)

with

�j D !i
@xi

@y j
: (4.22)

Covectors and vectors are dual to each other in the sense that one can pair them to get a
scalar quantity,

!.V/ WD vi!k.
@

@xi
; dxk/ D vi!i with .

@

@xi
; dxk/ D ık

i ; (4.23)

the Kronecker symbol from (4.3). The crucial point is that this is not affected by coordinate
changes. In fact, according to (4.19)–(4.22), we have

wj�j D vi @y j

@xi
!i
@xi

@y`
.
@

@y j
; dy`/

D vi!iı
j
`.
@

@y j
; dy`/

D vi!iı
j
`ı
`
j

D vi!i

D !.V/:
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Thus, the opposite transformation behavior of vectors and covectors ensures that the result
of their pairing, which is a scalar quantity, remains invariant under coordinate changes.

We now see the general principle. Objects like vectors or covectors are operators.
Vectors can operate on functions by taking derivatives,

V. f / D vi @f

@xi
; (4.24)

or vectors and covectors can operate on each other by dual pairing.
There is an important difference between (4.23) and (4.24). (4.23) depends only on the

values of the objects involved, the vector V and the covector ! in this example, but not
on their derivatives. In contrast, in (4.24), we take the derivative of the function f (but
not of the vector V). Therefore, the operation (4.24) is not tensorial with respect to f , but
only with respect to V . Later on, in Section 4.4.7, a crucial step will be the construction of
tensors from such non-tensorial quantities by taking suitable differences.

The result of an operation as in (4.23) or (4.24) is a scalar quantity, that is, a number. The
operational roles of V or ! do not depend on specific coordinates, but their representations
(4.16) in those coordinates do. In order to leave the results of the operations invariant—
numbers are numbers and should not depend on the representation—the representations
therefore need to transform appropriately under coordinate changes, according to the
specific rules (4.20) and (4.22). In other words, one and the same geometric object
looks different in different coordinate representations, and conversely, the transformation
rules between different coordinate representations ensure the invariant character of the
object. This is one of the fundamental insights that emerged from Riemann’s concept of a
manifold, even though the details of the calculus were only worked out by his successors.
It is a fundamental principle in Einstein’s theory of general relativity, called the principle
of covariance. Note that it is not called the principle of invariance, as it expresses the
fact that the representations do not stay invariant, but rather change according to general
transformation rules.

We next analyze tensors with more than one index. In particular, when we discuss
Riemannian metrics below, we shall need tensors of the form

A D aijdxidxj: (4.25)

Such an object operates on a pair of vectors V D vk @
@xk ;W D w` @

@x`
to produce a scalar,

A.V;W/ D aijdxidxj.vk @

@xk
;w`

@

@x`
/

D aijv
kw`dxi.

@

@xk
/dxj.

@

@x`
/

D aijv
kw`ıi

kı
j
`

D aijv
iwj: (4.26)
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Again, as we have seen in this computation, the positions of the indices incorporate the
algorithmic rules. They also indicate the transformation behavior, which is

aijdxidxj D aij
@xi

@yk

@xj

@y`
dykdy`: (4.27)

Since the indices thus determine the type of a tensor, we shall often only write the
coefficients to express a tensor; for instance, we shall simply speak of aij as a tensor,
instead of writing aijdxidxj.

We now turn to symmetries of tensors. A tensor with two indices might be symmetric
or antisymmetric, that is,

aji D aij or bji D �bij for all i; j: (4.28)

From any such tensor dij, we can construct a symmetric or an antisymmetric one,

1

2
.dij C dji/ or

1

2
.dij � dji/: (4.29)

A tensor with three or more indices could have further symmetries, for instance

cijk C cjki C ckij D 0 for all i; j; k: (4.30)

Products of tensors with opposite symmetries vanish. For instance, if aji D aij; bji D �bij,
then

aijb
ij D ajib

ij D �ajib
ji D �aijb

ij; (4.31)

where in the last step, we have simply renamed the indices in the summations, see (4.15).
Thus, the expression in (4.31) has to vanish. We can also reformulate this observation in
the following manner. If aij is a symmetric tensor, that is, aji D aij, then for any tensor cij,
we have

cijaij D 1

2
.cij C cji/aij; (4.32)

that is, we may assume that cij is likewise symmetric. By the same token, when bij is
antisymmetric, that is, bji D �bij, we have

cijbij D 1

2
.cij � cji/bij; (4.33)

that is, we may now assume that cij is antisymmetric.
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Analogously, when the tensor cijk satisfies (4.30), and if we form a product

dijkcijk; (4.34)

then we may assume that dijk also satisfies (4.30), that is, becomes 0 under cyclic
permutations of the indices. In fact, we have, by renaming indices again,

.dijk C djki C dkij/c
ijk D dijk.c

ijk C cjki C ckij/ D 0:

Thus, the simple trick of renaming indices allows us to transfer a symmetry from one factor
to the other in a product. We shall use this frequently in Section (4.4.5) below.

4.4.3 Metric Structures

The next step consists in introducing a metric structure. The concept of a manifold does
not yet contain any quantitative notions, and in fact, the preceding might even suggest
that no quantitative notions are possible because all objects transform under coordinate
changes. Fortunately, however, quantities are numbers, and as we have emphasized in the
preceding, numbers should stay invariant after all. In particular, distances or lengths of
curves are such numerical quantities.

Now, according to Riemann, measurements should be independent of the position
where they are taken. This is a general principle, and Riemann then makes some
additional assumptions to make it more specific. First, the lengths of curves in different
positions should be comparable, that is, we should be able to measure the length of one
curve through another one. In other words, he requires that line elements, that is, one-
dimensional objects can be carried around freely in the manifold as measuring devices.
He does not assume the same for higher-dimensional objects. Rather, the free mobility
of rigid bodies in space is an additional requirement that is satisfied only for Riemannian
manifolds of constant curvature, as we shall see below.

He then considers differentiable curves, that is, he lets the coordinates x1.t/; : : : ; xn.t/
depend differentiably on a scalar parameter t. He then seeks a line element ds for
infinitesinal length measurement, that is, in modern terminology, he wishes to measure
the length of the tangent vector Px.t/ D dx

dt at some point p on the curve. The length
element should then be a function of the position p and of the directions at that point. More
precisely, since we want to obtain a scalar quantity from directions, the length element
should contain the covectors dx1; : : : ; dxn at p, according to the principles set forth in
Section 4.4.2. Also, when we scale a line element, its length should scale by the same
factor, and therefore, the length element should be a homogeneous function of the first
degree of those dxi.

Next, he invokes the .n � 1/-dimensional manifolds that have constant distance from p
in the n-dimensional manifold under consideration. Since distances are measured in terms
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of lengths, he seeks a function that expresses that distance. When one requires that this
function be 0 at p and be positive elsewhere and furthermore differentiable, then its first
derivatives at p vanishes and its second derivatives are nonnegative, and he assumes that
they are positive. The natural such function is the square f .y/ D dist2. p; q/, where x stands
for the coordinates of the variable point q, of the distance from p whose coordinates we
suppose to be x0. Its second derivatives then yield the tensor

gij.x0/dxidxj WD 1

2

@2

@xi@xj
f .x/dxidxj at x D x0; that is, at the point p: (4.35)

Such an expression gij.x/dxidxj is called a Riemannian metric. It is the fundamental object
of Riemannian geometry.

We record the basic requirements:

1. The metric tensor is symmetric, that is, gji D gij.
2. It is positive definite, that is, gijv

ivj > 0 whenever .v1; : : : ; vn/ ¤ 0.
3. gij.x/ depends twice differentiably on the coordinate x (this property will be needed to

define the curvature).

The line element then is

ds D
q

gij.x0/dxidxj; (4.36)

and for the special case of Euclidean space, this reduces to

ds D
rX

.dxi/2: (4.37)

He briefly contemplates other possibilities, like taking the fourth root of a quartic
expression, instead of the square root of a quadratic one as in (4.36), but he then proceeds
with (4.36) as being the simplest.

Since second derivatives commute for a smooth function, the tensor gij in (4.35) is
symmetric, gji D gij, as already stipulated above. It therefore has n.nC1/

2
independent

components. Since, however, we have n coordinate degrees of freedom to transform
that tensor, only n.nC1/

2
� n D n.n�1/

2
degrees of freedom have independent geometric

content. These geometric degrees of freedom will subsequently be identified as sectional
curvatures.

In particular, in general, there is no coordinate transformation that reduces a given
metric tensor gij.x/ at a point x to the Euclidean form (4.37). Riemann calls a metric tensor
whose line element is of the form (4.37) flat, and the flat metrics therefore are particular
Riemannian metrics. They are characterized by the fact that all their sectional curvatures
vanish.
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Let

gijdxidxj with gji D gij (4.38)

thus be a metric tensor. We can now introduce further conventions for tensor calculus. First
of all, we denote the inverse of gij as a matrix by gij. That gij and gij are inverses of each
other is expressed by the relation

gijgjk D ıi
k: (4.39)

(Note that the notation would become more systematic if we wrote gi
k in place of ıi

k.)
We then introduce the following conventions for raising or lowering indices of tensors.

vi D gijvj and vi D gijv
j: (4.40)

Also, as in (4.26), we can utilize a more abstract notion for the metric product of two
vectors and put

g.V;W/ D gijv
iwj: (4.41)

The behavior of the metric tensor under coordinate transformations will be the main
object of the subsequent considerations. As an example, let us represent the Euclidean
metric dx1dx1 C dx2dx2 of R2 in polar coordinates r; ' (4.7). We obtain, using (4.8),

.dx1/2 C .dx2/2

D
��@x1

@r

�2 C .
�@x2

@r

�2�
dr2 C 2

�@x1

@r

@x1

@'
C @x2

@r

@x2

@'

�
drd' C

��@x1

@'

�2 C .
�@x2

@'

�2�
d'2

D dr2 C r2d'2: (4.42)

From (4.11), we can also compute the metric on the sphere Sn in our coordinates
x1; : : : ; xn as

nC1X

˛D1
dz˛dz˛ D �

ık`
@zk

@xi

@z`

@xj
C @znC1

@xi

@znC1

@xj

�
dxidxj D ıij

.1C 1
4

P
.xi/2/2

dxidxj (4.43)

where the indices k; ` run from 1 to n. In the y-coordinates of (4.10), the metric looks the
same.

4.4.4 Geodesic Curves

Whereas in the preceding section, we have followed Riemann’s text closely, we now turn
again to a systematic treatment, in order to develop the framework within which Riemann’s
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ideas can be analyzed in formal terms. In any case, the constructions to follow were known
since the work of Euler, Lagrange, and Jacobi, and so were also familiar to Riemann.

Let Œa; b� be a closed interval in R, c W Œa; b� ! M a differentiable curve. We
abbreviate the coordinate representation .x1.c.t//; : : : ; xn.c.t/// as .x1.t/; : : : ; xn.t//, as in
the previous section, and put

Pxi.t/ WD d

dt
.xi.t//:

The length of c then is defined as

L.c/ D
Z b

a

q
gij.x.t//Pxi.t/Pxj.t/ dt: (4.44)

By the chain rule, the length of c is unaffected by reparametrizations, that is, if � W Œ˛; ˇ� !
Œa; b� is differentiable with nonvanishing derivative, then

L.c ı �/ D L.c/: (4.45)

We want to investigate shortest curves, for instance, shortest connections between two
points p and q in M. That means that the curve c W Œa; b� ! M with c.a/ D p; c.b/ D q
satisfies

L.c/ � L.�/ for all �Œa; b� ! M with �.a/ D p; �.b/ D q: (4.46)

In particular, we can compare the length of c with that of other curves in its vicinity, that
is, with curves �	 of the form

x.t/C 	
.t/ with 
.a/ D 0 D 
.b/ (4.47)

in our local coordinates, for some 	 of small absolute value j	j. In particular, the curves �	
constitute a variation of c, since �0 D c, and �	.a/ D p; �	.b/ D q for all 	. Thus, since c
as the shortest such curve minimizes the length L, we have

L.�0/ � L.�	/ for all 	: (4.48)

Therefore, at such a minimum,

d

d	
L.�	/j	D0 D 0: (4.49)

Definition 4.1 A curve c that satisfies (4.49) for all such variations (4.47) is called a
geodesic.
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In particular, shortest, that is, length minimizing curves are geodesics, because we have
derived (4.49) from the length minimizing property.

We now want to derive the differential equation that a geodesic has to satisfy from the
relation (4.49). The structure of the reasoning becomes clearer when we consider a more
general situation, that is, an integral of the form

I.c/ D
Z b

a
f .Px.t/; x.t//dt , again with the abbreviation x.t/ D x.c.t//: (4.50)

For our example, from (4.44) of course

f .Px.t/; x.t// D
q

gij.x.t//Pxi.t/Pxj.t/: (4.51)

As in (4.49), we assume

0 D d

d	
I.�	/j	D0 D d

d	

Z b

a
f .Px.t/C 	 P
.t/; x.t/C 	
.t//dtj	D0 (4.52)

for all variations as in (4.47). This implies

0 D
Z b

a

�
fPxi.Px.t/; x.t// P
 i.t/C fxi.Px.t/; x.t//
 i.t/

�
dt; (4.53)

where a subscript like Pxi indicates the argument of f with respect to which a partial
derivative is taken. Integrating (4.53) by parts and using that 
.a/ D 0 D 
.b/, we get

0 D
Z b

a

�
� d

dt
fPxi.Px.t/; x.t//C fxi.Px.t/; x.t//

�

 i.t/dt: (4.54)

Since this holds for all variations 
.t/, we conclude that

� d

dt
fPxi.Px.t/; x.t//C fxi.Px.t/; x.t// D 0 for all i; (4.55)

or writing the derivative with respect to t out,

fPxi Pxk .Px.t/; x.t//Rxk.t/C fPxixk.Px.t/; x.t//Pxk.t/ D fxi.Px.t/; x.t// for all i: (4.56)

The equations (4.56) are called the Euler-Lagrange equations for the variational problem
given by the variational integral I from (4.50). They are named after Leonhard Euler who
first derived them by a different method and Joseph Louis Lagrange (1736–1813) who
found the elegant derivation that we have presented here.
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Returning to our geodesic problem and inserting (4.51) into (4.55) yields

1

f

�
gij.x.t//Rxj.t/C @

@xk
gij.x.t//Pxk.t/Pxj.t/

�
� 1

f 2
df

dt
gij.x.t//Pxj.t/D 1

2f

@

@xi
gkj.x.t//Pxk.t/Pxj.t/

(4.57)

for i D 1; : : : ; n.
In order to simplify this system of equations, we assume that

f .Px.t/; x.t// D
q

gij.x.t//Pxi.t/Pxj.t/ � const: (4.58)

This simply means that the length of the tangent vector Px.t/ is constant, that is, the curve
x.t/ is traversed with constant speed. This can always be achieved by a reparametrization

as in (4.45), that is, we can choose �.�/ such that
q

gij.x.�.�///
dxi.�.�//

d�
dxj.�.�//

d� � const, as

long as dx.t/
dt ¤ 0. Of course, when dx.t/

dt � 0, the curve is constant and its length is 0. When
this derivative vanishes only at some points or in some intervals, the reasoning needs to
be a little more careful, but we suppress this technical issue here.25 Thus, we assume that
(4.58) is valid. Then df

dt � 0 and (4.57) simplifies:

gij.x.t//Rxj.t/C @

@xk
gij.x.t//Pxk.t/Pxj.t/ � 1

2

@

@xi
gkj.x.t//Pxk.t/Pxj.t/ D 0: (4.59)

We write

@

@xk
gij.x.t//Pxk.t/Pxj.t/ D 1

2

� @
@xk

gij.x.t//Pxk.t/Pxj.t/C @

@xj
gik.x.t//Pxj.t/Pxk.t/

�

utilizing the rules explained in Section 4.4.2, see (4.32). We insert this into (4.59) and use
the abbreviation

gj`;k D @

@xk
gj`

to obtain

gij.x.t//Rxj.t/C 1

2

�
gij;k C gik;j � gkj;i

�Pxk.t/Pxj.t/ D 0:

25For a detailed treatment of the calculus of variations in general and the geodesic equations in
particular, see for instance Jürgen Jost and Xianqing Li-Jost, Calculus of variations, Cambridge,
Cambridge Univ. Press, 1998.
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We then multiply by g`i to get

Rx`.t/C �`jk.x.t//Pxj.t/Pxk.t/ D 0; ` D 1; : : : ; n (4.60)

with

�`jk D 1

2
g`i.gji;k C gik;j � gkj;i/: (4.61)

The expressions �`jk are called Christoffel symbols, after Elwin Bruno Christoffel, and so
are the quantities obtained by pulling down the upper index,

�ijk D 1

2
.gji;k C gik;j � gkj;i/: (4.62)

Later on, we shall need

Lemma 4.1 For any p 2 M and any tangent vector V at p, there exists a unique geodesic
c W Œ0; 	/ ! M for some 	 > 0, that is, a solution of (4.60), with

c.0/ D p; Pc.0/ D v: (4.63)

This follows from standard results about solutions of systems of second order ordinary
differential equations (the Picard-Lindelöf Theorem) such as (4.60).26

For consistency, we also compute

d

dt
.gij.x.t//Pxi Pxj/ D gijRxi Pxj C gijPxi Rxj C gij;k Pxi Pxj Pxk

D �.gjk;` C g`j;k � g`k;j/Px` Pxk Pxj C g`j;k Pxk Px` Pxj by (4.60)

D 0

and therefore

gij.x.t//Pxi.t/Pxj.t/ � const; (4.64)

that is, (4.58) holds. (4.64) simply means that the length of the tangent vector of a geodesic
is constant.

26See for instance Jürgen Jost, Postmodern analysis, Berlin, Heidelberg, Springer, 32005, p. 68.
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4.4.5 Normal Coordinates

Riemann then used the freedom of the choice of coordinates to introduce special coordi-
nates around a given point p. These coordinates are analogous to the polar coordinates in
Euclidean space (see (4.7)). In those Euclidean polar coordinates, the position of a point A
is described by its distance t from the origin 0 and the direction 
 of the straight line from
the origin 0 to A. That is, we center everything at 0 and then describe any other point by
how far and in which direction we have to go from 0 to reach that point. The direction 

can be described by a vector with components 
1; : : : ; 
n with

nX

iD1

 i
 i D 1; (4.65)

that is, a direction is determined by a point on the unit sphere. Thus, we can represent A
by a direction 
 and its distance t from the origin. (At the origin itself, that is, for A D 0,
the direction 
 is undetermined, but that will cause no problems in the sequel.)

Riemann then transfers this scheme to a Riemannian manifold M. Let p 2 M. A
preliminary step consists in choosing coordinates for which p corresponds to the origin
0 2 R

n and for which the metric tensor at p, that is, in the coordinates at 0 is given by the
identity matrix,

gij.0/ D ıij WD
8
<

:
1 if i D j

0 else:
(4.66)

This can be achieved by a linear transformation that diagonalizes the metric tensor at 0.
Anyway, the metric structure in the tangent space TpM when identified with R

n through
our coordinates in which (4.66) holds then is the Euclidean one. We therefore choose
the unit directions 
 D .
1; : : : ; 
n/ satisfying (4.65). For each such 
, we consider the
geodesic curve c
.s/ that starts at 0 with the direction given by 
, that is,

c
.0/ D p; Pc
.0/ D 
: (4.67)

According to Lemma 4.1, such a geodesic c
.s/ exists for sufficiently small s > 0. And
conversely, every point q 2 M that is sufficiently close to p can be reached from p by
a unique such short geodesic, that is, q D c
.t/ for some 
 with (4.65) and some small
t � 0. Therefore, we can characterize such a point q by a direction 
 and its distance
t � 0 from p. Thus, we can use 
 and t as the coordinates for q. These are the Riemann
normal coordinates that (after solving some minor technical problems over which Riemann
glosses, but which are not hard) can be introduced in the vicinity of any point p 2 M. p
is a distinguished point for this particular coordinate system (of course, we can introduce
such coordinates around any point in our manifold), because it corresponds to 0 2 R

n in
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our coordinates, and at p, (4.66) holds. That is, the coordinates of a point in the vicinity of
p are given by

xi D t
 i; i D 1; : : : ; d: (4.68)

For the understanding of the sequel, it will now be crucial to careful distinguish what
will hold at 0 (that is, at p) only and what will be valid across the entire coordinate chart
that we are going to construct. For instance, unless the metric is Euclidean, we can achieve
(4.66) only at a single point p, here identified with the origin 0, but not at all other points
of the chart.

The crucial point is that in those coordinates, any geodesic starting from 0 becomes a
straight line, that is,

c
.s/ D s
: (4.69)

With (4.66), (4.64) then yields

gij.x/x
ixj D gij.0/x

ixj D
X

i

xixi: (4.70)

Again, we point out that, unless the metric is Euclidean, formulas like (4.69), (4.70) hold
only for geodesics starting at 0, but not necessarily for other geodesics connecting different
points in our coordinate chart.

(4.69) implies

Pc
.s/ D 
; Rc
.s/ D 0; (4.71)

and hence the geodesic equation (4.60) implies

�`jk.t
/

j
k D 0 for all ` D 1; : : : ; n (4.72)

and all 
; t in our coordinate chart, or by pulling down the index i,

0 D �ijk.t
/

j
k for all i and all 
: (4.73)

We first explore (4.73) for t D 0 to get

�ijk.0/ D 0 for all i; j; k (4.74)

because �ijk is symmetric in the indices j; k. Thus

gji;k.0/C gki;j.0/� gjk;i.0/ D 0 (4.75)
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and adding the relation

gkj;i.0/C gij;k.0/� gki;j.0/ D 0 (4.76)

which follows by a cyclic permutation of the indices, we get

gij;k.0/ D 0 for all indices: (4.77)

and hence of course also

� i
jk.0/ D 0 for all i; j; k (4.78)

which, however, already follows from (4.74) or directly from (4.72).
Thus, at the center 0 of our coordinates, not only is the metric tensor diagonal (4.66),

but also all its first derivatives vanish. In particular, since therefore we can make the
first derivatives of the metric tensor disappear at any given point by a suitable choice
of coordinates, these first derivatives cannot contain any geometric invariants that can
distinguish a Riemannian metric from a Euclidean one.

We now explore (4.73) at other points in our coordinate chart, in order to eventually
arrive at invariants in terms of the second derivatives of the metric tensor at 0. To simplify
our notation, we shall usually omit the argument from our expressions, that is write for
instance gij instead of gij.x/ or gij.t
/.

Further properties of Riemannian normal coordinates may best be seen by using polar
coordinates, instead of the Euclidean ones. We therefore introduce on R

n the standard
polar coordinates

.r; '1; : : : ; 'n�1/;

where ' D .'1; : : : ; 'n�1/ parametrizes the unit sphere Sn�1. In the two-dimensional
case, we have introduced polar coordinates already in (4.7), and the general case is not
substantially different. The precise formula for ' will be irrelevant for our purposes, and
we simply view them as a nonredundant version of the directions 
1; : : : ; 
n that needed to
satisfy the constraint

P
.
 i/2 D 1, in order to reduce their number of degrees of freedom

from n to n�1, so that together with the radial variable r, we have the correct total number
n of degrees of freedom. We express the metric in polar coordinates and write grr instead
of g11; because of the special role of r. We also write gr' instead of g1`; ` 2 f2; : : : ; ng;
and g'' as abbreviation for .gk`/k;`D2;:::;n: In particular, in these coordinates at 0 (which
corresponds to the chosen point p 2 M/

grr.0/ D 1; gr'.0/ D 0 (4.79)

by (4.66) and since this holds for Euclidean polar coordinates.
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We now utilize the geodesic equation (4.60) in a similar manner as before. In polar
coordinates, the geometry of this equation becomes more transparent. In fact, the radial
lines ' � const: are geodesic, and their formula (4.68) now becomes x.t/ D .t; '0/; '0
fixed, and from (4.72), writing � i

rr instead of � i
11 (that is, using r now also as an index),

� i
rr D 0 for all i;

which means

gik.2grk;r � grr;k/ D 0; for all i;

thus

2grk;r � grr;k D 0; for all k: (4.80)

From this, we first obtain for k D r

grr;r D 0;

and with (4.79) then

grr � 1: (4.81)

Inserting this now into (4.80), we get

gr';r D 0;

and then again with (4.79)

gr' � 0: (4.82)

Therefore, we can write the metric in polar coordinates in the abbreviated form

dr2 C g''.r; '/d'
2: (4.83)

with

g''.0; '/ D 0 and g'';r.0; '/ D 0; (4.84)

by (4.77).
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After this general observation, which will be useful in Section 4.4.10 below, we now
embark upon a computation that will reveal important identities satisfied by the second
derivatives of the metric tensor. Putting

yi D gijx
j; (4.85)

we get

gij;kxj D @yi

@xk
� gik; (4.86)

hence with (4.73)

0 D @yi

@xk
xk � gikxk � 1

2
.
@yk

@xi
xk � gkix

k/

D @yi

@xk
xk � 1

2
.
@yk

@xi
xk C yi/ using (4.85)

D @yi

@xk
xk � 1

2

@ykxk

@xi

D @yi

@xk
xk � xi since ykxk D gikxixk D

X
xixi by (4.70)

D @.yi � xi/xk

@xk
:

If now xi D t
 i by (4.68), this yields

d

dt
.yi � xi/ D 0;

and since yi � xi D 0 for t D 0, it has to vanish for all t, and we get

yi D gikxk D xi: (4.87)

This implies in turn

@gik

@xj
xk D ıij � gij; (4.88)

and since the right-hand side is symmetric in i and j, so then is the left hand side, and we
obtain

@gik

@xj
xk D @gjk

@xi
xk: (4.89)
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When we use this in (4.73), we can split that relation into two equations, and divide by t2

to get

@gik.t
/

@xj

 j
k D 0 and (4.90)

@gjk.t
/

@xi

 j
k D 0: (4.91)

We now consider the second derivatives of the metric tensor at the origin 0.

gij;k` WD @2gij

@xk@x`
.0/: (4.92)

This expression is symmetric in i and j (because gij is symmetric), and in k and ` (because
the derivatives with respect to xk and x` commute), and we shall use this freely in the
sequel. We differentiate (4.90) with respect to t and get at t D 0

gik;j`

j
k
` D 0 (4.93)

and by differentiating this with respect to 
m, we obtain

gim;k`

k
` C gij;m`


j
` C gij;km

j
k D 0; (4.94)

that is, using symmetries,

gim;k` C gik;`m C gi`;mk D 0 (4.95)

for all indices i;m; k; `. Similarly, from (4.91) we obtain

gim;k` C gmk;i` C gki;m` D 0: (4.96)

(4.95) and (4.96) then also yield the symmetry

gim;k` D gk`;im: (4.97)



4.4 Mathematical Commentary 85

We now Taylor expand gij at 0 to second order.27 Following Weyl, we write here ıx
instead of x, as Riemann does, for the variable with respect to which we expand near 0,
because subsequently, dx and ıx will both be interpreted geometrically as infinitesimal
vectors. With the formulae (4.66), (4.77) and the definition (4.92), we thus have

gij.ıx/ D ıij C 1

2
gij;k`ıx

kıx` C o.jıxj2/ for small jıxj: (4.98)

We thus have the expansion of the metric tensor

gij.ıx/dxidxj D ıijdxidxj C 1

2
gij;k`ıx

kıx`dxidxj C o.jıxj2/: (4.99)

We now put

Rjik` WD 1

2

�
gj`;ik C gik;j` � gjk;i` � gi`;jk

�
: (4.100)

(We shall subsequently identify the Rijk` as the components of the Riemann curvature
tensor.) We observe that these quantities possess the following symmetries

Rijk` D �Rjik` (4.101)

Rji`k D �Rjik` (4.102)

Rjik` C Rikj` C Rkji` D 0 (4.103)

Rk`ji D Rjik` (4.104)

We now state

Theorem 4.1 We can write (4.99) in the form

gij.ıx/dxidxj D ıijdxidxj � 1

3
Rjik`xijxk` C o.jıxj2/ (4.105)

27Taylor expansion means that we write a function f that is defined in some neighborhood of 0 2 R
n

and that is sufficiently often differentiable as

f .ıx/ D f .0/C @f

@xm
.0/ıxm C 1

2

@2f

@xk@x`
.0/ıxkıx` C o.jıxj2/

where o.jıxj2/ stands for a quantity with limıx!0
o.jıxj2
jıxj2 D 0, but is otherwise unspecified.
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with

xrs WD 1

2
.ıxrdxs � ıxsdxr/: (4.106)

The xrs are the components of the surface element representing the triangle with
vertices 0; ıx; dx. The square of the area of that triangle is

1

16
.gikgj` � gi`gjk/xijxk` (4.107)

The products xijxk` satisfy the same symmetries (4.101)–(4.104) as the Rjik`. This
matches with the general considerations in Section 4.4.2, and if we instead we start with
the expansion (4.105) and impose those symmetries on the coefficients Rjik`, then they are
uniquely determined.

Proof By (4.95), (4.97), we can write

gij;k` D 2

3
gij;k` C 1

3
gij;k` D 1

3
.gij;k` C gk`;ij/� 1

3
.gik;`j C gi`;jk/ (4.108)

and so

gij;k`ıx
kıx`dxidxj D

�
1

3
.gij;k` C gk`;ij/� 1

3
.gjk;`i C gi`;jk/

�
ıxkıx`dxidxj

exchanging i; j in the third term

D
�
1

3
.gik;j` C gj`;ik/� 1

3
.gkj;`i C gi`;kj/

�
dxiıxjdxkıx`

exchanging j; k: (4.109)

ut

4.4.6 Riemann’s Abstract Reasoning

Before we proceed with our tensor computations, and in order to put them into the
general context, let us turn to the more abstract arguments that Riemann presents in his
text. In (4.105), we have identified the second order term in the expansion (4.99) of
the metric tensor. In contrast to the first derivatives of the metric tensor which can be
made to vanish in appropriate coordinates, e.g., normal coordinates, and therefore do not
carry any invariant geometric content, that second order term has an invariant geometric
interpretation and therefore will not vanish for a general Riemannian metric. We shall
also see below that for a two-dimensional manifold, i.e., a surface, in Euclidean 3-space,
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it coincides with the Gauss curvature of that surface, a geometric invariant identified by
Gauss. For an n-dimensional manifold, it provides an invariant, later called the sectional
curvature, to each surface direction at a point. Since the number of linearly independent
two-dimensional subspaces of an n-dimensional vector space (taken as the tangent space at
the point under consideration) is n.n�1/

2
, we thus have found that many invariants attached

to the metric tensor at each point of the manifold. And conversely, when we evaluate that
curvature on n.n�1/

2
general, independent surface directions at a point, the entire curvature

tensor at that point is determined. But this, according to Riemann’s count, is precisely the
right number of invariants that the metric tensor can contain. As already explained, the
metric tensor gij, being symmetric, that is, gji D gij, has n.nC1/

2
independent components,

but as we have the freedom of choosing the n coordinate functions, we can eliminate
n degrees of freedom, and so, n.n�1/

2
remain. And as we have just argued, this is the

number of degrees of freedom provided by the surface curvatures. In particular, the higher
order terms (o.jıxj2/) do not hide any further geometric invariants beyond those already
contained in the curvature tensor. (We need to be somewhat careful here, however. A
quadratic form .hij/i;jD1;:::;n is not determined when we evaluate it on n linearly independent
vectors. For instance, the quadratic form in two dimensions

.hij/ D
 
1 0

0 �1

!

evaluated on a vector .v1; v2/ via

vihijv
j

yields the value 0 for both vectors .1; 1/ and .1;�1/, without being equivalent to the

form

 
0 0

0 0

!

itself. Something analogous occurs for curvature tensors as constructed in

Section 4.4.7. We can take the product of a surface S1 of constant curvature 1 and another
surface S�1 of constant curvature �1 (see Section 4.4.10). The result is a 4-dimensional
Riemannian manifold M. At each point p 2 M, for all 6 surface directions spanned by two
tangent vectors V1 ˙ V�1, with V˛ tangent to S˛, the curvature in that direction is 0. Still,
the manifold is not flat.28 It seems to me that Riemann was aware of such examples—
certainly, he knew the theory of invariants of quadratic forms as developed by Gauss—and
wanted to exclude them by his appeal to general situations and independent measurements
at different points. The important point is that the directions taken at different points should
not be systematically related.)

28See Antonio Di Scala, On an assertion in Riemann’s Habilitationsvortrag, L’Enseignement
Mathematique, 47 (2001), 57–63, who asserts that Riemann’s corresponding assertion was incorrect.
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For a Euclidean metric, all these invariants have to vanish, as in that case, we have
gij.ıx/dxidxj D ıijdxidxj in (4.105). Riemann calls such a metric flat. Now, since the
curvatures are geometric quantities and therefore independent of the coordinates chosen,
they have to remain invariant under coordinate changes. Thus, when a metric is written in
some coordinates and we want to check whether we can bring it into the Euclidean form
gij.x/ D ıij, that is, if we want to find out whether our metric is simply the Euclidean metric
in disguise, it is necessary and sufficient to check whether all its sectional curvatures,
or equivalently, whether its sectional curvatures in n.n�1/

2
general, independent surface

directions vanish. More generally, when we want to check whether two metrics gij.x/dxidxj

and hk`.y/dykdy` in different coordinates are the same, we simply check whether their
curvatures are the same.

In somewhat more abstract terms, for finding out whether there exists a coordinate
transformation x D x.y/ so that gij.x/dxidxj D gij.x.y//

@xi

@yk
@xj

@y`
dykdy` D hk`.y/dykdy`, that

is, whether one tensor can be transformed into the other, it is necessary and sufficient
to check whether another tensor, the curvature tensor, is the same for the two metrics.
In formulae, when we denote the curvature tensor in the y-coordinates by Sk`rs, the
condition is

Rijpq.x/dxidxjdxpdxq D Sk`rs.x.y//dykdy`dyrdys: (4.110)

Of course, it needs to be verified that this Rijpq possesses the correct transformation
behavior for a tensor, but from abstract principles this is plausible, if not evident.

Riemann’s parameter counting argument, on which the preceding reasoning depends,
is somewhat heuristic, and so far, nobody has really made it mathematically precise.
Therefore, the detailed mathematical reasoning of Riemann himself in his unpublished
Paris Academy essay and of his successors (who did not know that essay) proceeded
somewhat differently. One derives the necessary and sufficient conditions for a metric
in local coordinates to be flat, or more generally, for two metrics to be the same, from an
analysis of the transformation formula for a metric under coordinate changes and finds a
tensor composed of certain second and first derivatives of the metric as containing those
conditions. In normal coordinates, this tensor is seen to reduce to (4.100). In that way, the
covariant form of the curvature tensor is found, and it is shown, indeed, to provide the
necessary and sufficient conditions for the equivalence of two metrics. We shall now turn
to that mathematical reasoning.

4.4.7 Flatness and Curvature

In this section, we want to verify Riemann’s claim that the curvature determines the metric
by a computation. Riemann himself carried out such a computation in his Paris Academy
essay for the case of a flat metric. More precisely, he showed that a metric gij.x/dxidxj can
be transformed into the flat metric ık`dykdy` by some coordinate transformation y D y.x/
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if and only if its curvature tensor vanishes. We shall first present here the reasoning in
Riemann’s Paris essay, which replaces the abstract arguments of the habilitation address
by concrete tensor type computations. Although some of the conventions and rules of
tensor calculus were established only by Riemann’s successors, we shall utilize them here.
This will not affect the essence of the argument. Likewise, some of the details will be
arranged somewhat differently than Riemann did.

Given a Riemannian metric gij.x/dxidxj in the coordinates x1; : : : ; xn, we ask whether
there exists a coordinate transformation x D x.y/ so that in the coordinates y1; : : : ; yn,
the metric has the Euclidean form

P
k dykdyk which we can also write as ık`dykdy` with a

Kronecker symbol ık` to avail ourselves of the summation convention of tensor calculus.
We cannot directly read this off from the coefficients gij.x/. We rather need to derive
differential conditions and check whether we can solve them. The question is whether
there exists a solution to the transformation

gpq.x.y//
@xp

@yk

@xq

@y`
dykdy` D ık`dykdy`: (4.111)

Equating coefficients in (4.111) and multiplying by @y`

@xj yields

gpq.x.y//
@xp

@yk

@xq

@y`
@y`

@xj
D ık`

@y`

@xj
;

that is,

gpj.x.y//
@xp

@yk
D @yk

@xj
; (4.112)

and multiplying by @yk

@xi then yields

gij D
X

k

@yk

@xi

@yk

@xj
: (4.113)

Alternatively, this formula could have been derived also from the analogue of (4.111) for
the inverse transformation y D y.x/, that is,

gijdxidxj D ık`
@yk

@xi

@y`

@xj
dykdy`: (4.114)

From (4.112), we also obtain by multiplication with gmj

@xm

@yk
D gmj @yk

@xj
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and by further multiplication with @xi

@yk and renaming the index m to j then

gij D ık` @xi

@y`
@xj

@yk
; (4.115)

and from (4.115) in turn by the same procedure

gij @y`

@xi

@yk

@xj
D ık`: (4.116)

Upon some reflection, the relations that we have obtained so far are more or less obvious,
and in fact, constitute easy applications of tensor calculus, but we now need to interpret
and solve them. (4.113) is a system of differential equations for the coordinates y1; : : : ; yn

as functions of the x1; : : : ; xn. In order to solve it, we differentiate it with respect to xm to
get

X

k

@2yk

@xi@xm

@yk

@xj
C
X

k

@2yk

@xj@xm

@yk

@xi
D gij;m: (4.117)

Since the same equations obtain for gim;j; gmj;i, we obtain

X

k

@2yk

@xi@xj

@yk

@xm
D 1

2

�
gim;j C gjm;i � gij;m

�
: (4.118)

We multiply this by @y`

@xp gpm and use (4.116) to obtain

@2y`

@xi@xj
D 1

2
gpm

�
gim;j C gjm;i � gij;m

�@y`

@xp
D �

p
ij

@y`

@xp
: (4.119)

As a side remark that will be needed later, we point out that with the computational scheme
established, we can also compute the general transformation formula for the Christoffel
symbols of an arbitrary metric under a change of coordinates y D y.x/. Denoting the
Christoffel symbols for the y-coordinates by Hq

`m, the result is

�k
ij D @y`

@xi

@ym

@xj

@xk

@yq
Hq
`m C @2yq

@xi@xj

@xk

@yq
; (4.120)

or, equivalently, in the other direction,

Hq
`m D @xi

@y`
@xj

@ym

@yq

@xk
�k

ij C @2xk

@ym@y`
@yq

@xk
: (4.121)
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This formula shows that the Christoffel symbols do not transform as tensors, because the
transformation rule involves also the second derivatives of the coordinate change.

We now want to check under which conditions the equations (4.119) can be solved.
Necessary conditions come from the commutativity of derivatives. First, we see that the

condition @2y`

@xi@xj D @2y`

@xj@xi is satisfied because the Christoffel symbols are symmetric, �p
ij D

�
p
ji . Now we test for the commutativity of third derivatives, @3y`

@xi@xj@xk D @3y`

@xi@xk@xj . Thus, we
need to differentiate the right hand side of (4.119) with respect to xk and then take the

analogous equations for @2y`

@xi@xk and differentiate them with respect to xj. The results should
then agree, which leads us to the condition

0 D �@�p
ij

@xk
� @�

p
ik

@xj

�@y`

@xp
C �

p
ij

@2y`

@xp@xk
� �

p
ik

@2y`

@xp@xj

D �@�q
ij

@xk
� @�

q
ik

@xj

�@y`

@xq
C �

�
p
ij�

q
pk � �p

ik�
q
pj

�@y`

@xq
(4.122)

by using (4.119) once more in the last step and renaming an index from p to q. These

relations have to hold for all `, and since for each q, there is at least one ` with @y`

@xq ¤ 0 as
the transformation y D y.x/ is invertible, we conclude the necessary condition

@�
q
ij

@xk
� @�

q
ik

@xj
C �

p
ij�

q
pk � �

p
ik�

q
pj D 0 for all i; j; k; q: (4.123)

This is the central result. We have seen that this condition is necessary for solving (4.119)
and hence for finding a transformation with (4.111), that is, for transforming the given
Riemannian metric gij.x/ into a flat metric. In fact, the conditions (4.123) are also sufficient
for this in the following sense. In general, one can solve a system of equations of the form

@g

@xj
D �j (4.124)

for given functions �j and an unknown function g in a simply connected domain if and only

if the conditions for the commutativity of the second partial derivatives of g, @2g
@xj@xk D @2g

@xk@xj ,
that is,

@�j

@xk
D @�k

@xj
for all j; k (4.125)

are satisfied. This general result is known as the Theorem of Frobenius, but obviously,
some version of it was already known to Riemann and his contemporaries.29 And in fact,

29Georg Frobenius, Ueber das Pfaffsche Problem, J. Reine Angew. Math. 82 (1877), 230–315,
proves a general theorem that puts several previous results into a systematic perspective.
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(4.123) precisely provides the integrability conditions (4.125) for the differential equations

(4.119) for the functions @y`

@xi . Thus, (4.123) is the necessary and sufficient local condition
for gij.x/ to be Euclidean, indeed.

Moreover, if we define

Definition 4.2 The Riemann curvature components

Rq
ikj WD @�

q
ij

@xk
� @�

q
ik

@xj
C �

p
ij�

q
pk � �

p
ik�

q
pj

and R`ijk WD g`qRq
ijk; (4.126)

then in normal coordinates, we have

R`ijk D 1

2

�
gk`;ij C gij;k` � gik;j` � gj`;ik

�
; (4.127)

which is the same as (4.100). Thus, if we can verify that (4.126) defines a tensor, the
Riemann curvature tensor

R`ijkdx`dxidxjdxk; (4.128)

then everything fits together. That is, (4.126) will give the formula for the curvature tensor
(4.105) in arbitrary coordinates, and in turn, Theorem 4.1 and the discussion around
provide us with a geometric explanation of curvature. In order to see that (4.126) defines
a tensor, we need to check that it correctly transforms under coordinate changes. This
can either be done directly from the formula given, but this is a rather cumbersome
computation, or it can be derived from more general arguments. A natural possibility is
to generalize the question that we have addressed, to obtain a criterion whether a given
metric gijdxidxj is Euclidean, and ask for a criterion when two metrics

gij.x/dxidxj and hrs.y/dyrdys (4.129)

can be locally transformed into each other. This can, of course, be done along the lines just
presented. In the course of the resulting computations, you will see that the necessary and
sufficient condition is that their curvatures agree, and those computations will also uncover
the tensorial transformation behavior of the curvature.30

30These computations were first provided by Elwin Bruno Christoffel, Ueber die Transformation
der homogenen Differentialausdrücke zweiten Grades, J. Reine Angew. Math. 70, pp. 48–70,
1869, and Rudolf Lipschitz, Untersuchungen in Betreff der ganzen homogenen Functionen von n
Differentialen, J. Reine Angew. Math. 70, pp. 71–102, 1869, that is, in two articles in the same
journal issue.
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Instead of proceeding in that manner, I shall now present the general computation
within a more abstract framework. A reader who is interested only in the historical aspects
may therefore wish to skip the rest of this section. Its purpose is to clarify the geometric
content. The fundamental concept will be that of the covariant derivative. That concept
was not yet present in Riemann’s work, but only emerged from the work of Riemann’s
successors, that is, Lipschitz, Christoffel, Ricci, Levi-Civita and Weyl. In that sense, the
approach is somewhat anachronistic, as not yet contained in Riemann’s own work, but only
representing a further development of his seminal ideas. However, one can also simply
view it as a systematic and efficient way to organize the computations that are needed to
show that curvature transforms as a tensor under coordinate changes and that two metrics
are equivalent under a coordinate change if and only if their curvature tensors are the same.
That latter fact is the key for Riemann’s reasonings.

The concept of the covariant derivative of Levi-Civita that we are now going to
introduce will provide a geometric interpretation to the Christoffel symbols.31

Definition 4.3 Let V.x/ D v.x/i @
@xi be a vector field, that is, a family of tangent vectors

depending smoothly on the position x. The covariant derivative of V in the direction @
@xj

then is

r @

@xj
V WD @vi

@xj

@

@xi
C vi�k

ij

@

@xk
: (4.130)

(4.130) is also called the Levi-Civita connection.

At this point, the reader should be warned that this is a definition of the �k
ij that need

not have anything to do or be compatible with our earlier definition (4.61). But we shall
see in a moment that the �k

ij as defined in (4.130) transform by the same rule (4.119) as
those defined in (4.61) did. Therefore, we can indeed use our old Christoffel symbols in
the Definition (4.130). To see this, from (4.130), we have

r @

@xj

@

@xi
D �k

ij

@

@xk
: (4.131)

For new coordinates y D y.x/, we denote their Christoffel symbols by Hq
`m, and they thus

satisfy

r @

@y`

@

@ym
D Hq

`m

@

@yq
: (4.132)

31The concept of such a derivative was already essentially contained in the work of Christoffel. It is
named after Levi-Civita because the latter then developed a notion of parallel transport from such a
covariant derivative.



94 4 Presentation of the Text

On the other hand, rewriting (4.132) in the old coordinates and writing @
@xj D @yq

@xj
@
@yq etc.

yields

Hq
`m

@

@yq
D r @xi

@y`
@

@xi

� @xj

@ym

@

@xj

�

D @xi

@y`
@xj

@ym

@yq

@xk
�k

ij

@

@yq
C @2xj

@ym@y`
@yq

@xj

@

@yq
;

that is,

Hq
`m D @xi

@y`
@xj

@ym

@yq

@xk
�k

ij C @2xj

@ym@y`
@yq

@xj
; (4.133)

which is the same as (4.121), but obtained more easily.
When the Christoffel symbols vanish, the covariant derivative reduces to the ordinary

derivative. In other words, the covariant derivative is a scheme of taking the derivative of a
vector field in the context of a Riemannian metric, as we shall now explain in more detail.

First of all, instead of @
@xj , we can use a general vector W D wj @

@xj and put

rwj @

@xj
V WD wj @v

i

@xj

@

@xi
C viwj�k

ij

@

@xk
: (4.134)

In this way, the derivative becomes tensorial with respect to the direction W in which it is
taken. It is not tensorial with respect to V , however, as it involves taking derivatives of the
coefficients of V . Rather, like any derivative, it satisfies a Leibniz product rule

r @

@xj
f .x/V.x/ D @f .x/

@xj
V.x/C f .x/r @

@xj
V.x/ (4.135)

when f .x/ is a differentiable function. Of course, the covariant derivative as such
transforms correctly. That means that when we change coordinates from x to y and
correspondingly transform the vectors W and V , then the covariant derivative rWV is
transformed into the covariant derivative of the transformed vectors, constructed with
the Christoffel symbols in the new coordinates. A consequence is that the Christoffel
symbols themselves then cannot transform as tensors. Their transformation rule (4.133)
also involves derivatives of the coordinate change. This fits with the results of Section 4.4.5
where we have seen that we can always transform them to 0 at a given point, and that they
therefore cannot encode geometric invariants.

Like the ordinary derivative, the covariant derivative (4.130) satisfies a commutation
property:

r @

@xj

@

@xi
D �k

ij

@

@xk
D �k

ji

@

@xk
D r @

@xi

@

@xj
; (4.136)



4.4 Mathematical Commentary 95

because the Christoffel symbols are symmetric with respect to the lower indices. In fact,
we also see that even if the Christoffel symbols were not symmetric and we could put

Tij WD r @

@xj

@

@xi
� r @

@xi

@

@xj
; (4.137)

but this then would no longer vanish. Still, this does not yet define a tensor, because the
derivatives of the coefficients do not yet drop out, even though we take the difference. But
we can remedy this. For vector fields W.x/ D wj.x/ @

@xj ;Z.x/ D zk.x/ @
@xk , we define the Lie

bracket

ŒZ;W� WD zk @wj

@xk

@

@xj
� wj @zk

@xj

@

@xk
: (4.138)

We then put

T.Z;W/ WD rZW � rWZ � ŒZ;W� (4.139)

D zkwjr @

@xk

@

@xj
C zk @wj

@xk

@

@xj
� wjzkr @

@xj

@

@xk
� wj @zk

@xj

@

@xk

�zk @wj

@xk

@

@xj
C wj @zk

@xj

@

@xk

D zkwj
�r @

@xk

@

@xj
� r @

@xj

@

@xk

�
:

Thus, by subtracting the Lie bracket from the difference of the covariant derivatives,
we have made all derivatives of the coefficients disappear, and consequently, T defines
a tensor.32 This observation, that we can restore a tensorial transformation behavior by
taking differences, will be important in a moment. Since Œ @

@xk ;
@
@xj � D 0, the coefficients

of the tensor T from (4.139) are given by (4.137). Of course, to repeat, for our covariant
derivative r, the torsion tensor T vanishes identically. We have introduced it here only in
order to explain a general point that will become relevant for the curvature tensor R which
in general does not vanish.

The reason behind the definition (4.130) involving the Christoffel symbols of a metric
g D .gij/ is that in that way, the covariant derivative satisfies a product rule for that metric
(using the notation (4.41)):

@

@xj
g.V;W/ D g.r @

@xj
V;W/C g.V;r @

@xj
W/; (4.140)

32In the general theory of connections, as developed by Hermann Weyl and others, one defines an
operation of the form (4.130) with abstract symbols �k

ij that need not come from a metric and that
need not be symmetric. The tensor Tij then is called the torsion tensor of the connection.
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as one readily checks. We can also interpret the relation (4.140) by saying that when we
take a derivative of g.V;W/, then there are three objects involved, the vectors V;W and
the metric g, but the rule is such that we only need to differentiate V and W, but not g,
that is, the derivative of g vanishes. One also expresses this by saying that g is covariantly
constant.

This also allows us to check the consistency with the earlier definition (4.61). Indeed,
in local coordinates, inserting V D @

@xi ;W D @
@xk , (4.140) says

gik;j D g`k�
`
ij C gi`�

`
jk; (4.141)

which is equivalent to the definition (4.61) of the Christoffel symbols . (Conceptually,
the issue is slightly different. We could have defined a covariant derivative (4.130) with
arbitrary symbols �k

ij that need not have anything to do with a metric nor even satisfy
(4.136). Only when we relate the Christoffel symbols to the metric tensor via (4.61) do
we get both relations (4.136) and (4.140). The theory of general such covariant derivatives
that were introduced by Weyl, also called affine connections, while important in modern
geometry and theoretical physics, however, goes beyond what is contained in Riemann’s
text, and will therefore not be further explored here.33)

We return to (4.131). This formula shows that the Christoffel symbols are the
coefficients of the covariant derivative, or putting it the other way around, the Christoffel
symbols define a notion of a derivative. We can interpret the non-tensorial transformation
formula (4.133) as an equation that the second derivatives of a coordinate transformation
have to satisfy,

@2xj

@ym@y`
D Hq

`m

@xj

@yq
� @xi

@y`
@xh

@ym
�

j
ih: (4.142)

This equation will become important in a moment, and so, it might be useful to reflect a
little about its conceptual status. Of course, as such, a coordinate transformation can be
arbitrary, and will not satisfy any constraint. Here, however, we have a metric tensor gij

with Christoffel symbols �h
ij , and we have another one, hk` with Christoffel symbols Hq

k`,
and we shall ask that the transformation x D x.y/ transform the latter into the former. That
is, we ask that the two metrics gij and hk` be the same, just written in different coordinates.
And in that case, the coordinate transformation needs to satisfy the constraint (4.142).
Conversely, we can then ask under which conditions on the two collections of Christoffel
symbols we can solve (4.142).

For this purpose, we start with the following observation. We have seen in (4.136) that
first covariant derivatives commute. This no longer is the case for second derivatives. We

33See, for instance, J. Jost, Riemannian geometry and geometric analysis, Berlin, Heidelberg,
Springer, 62011.



4.4 Mathematical Commentary 97

set out to compute their difference. We put �k
ij;` WD @�k

ij

@x`
. Then

r @

@xk
r @

@xj
.vi @

@xi
/ D @2vi

@xk@xj
@
@xi C vi�`km�

m
ij

@

@x`
C vi�m

ij;k
@
@xm

C�m
ij
@vi

@xk
@
@xm C �`ki

@vi

@xj
@

@x`
;

and hence

r @

@xk
r @

@xj
.vi @

@xi
/� r @

@xj
r @

@xk
.vi @

@xi
/ D vi

�
�`ij;k � �`ik;j C �`km�

m
ij � �`jm�m

ik

� @
@x`

DW viR`ikj

@

@x`
; (4.143)

that is, defining the curvature coefficients R`ikj as the commutators of second covariant
derivatives. This is tensorial in V , and in order to obtain the tensorial transformation
behavior also with respect to the other entries, we proceed as with the tensor T above.

Definition 4.4 The Riemann curvature tensor is

R.Z;W/V WD rZrWV � rWrZV � rŒZ;W�V: (4.144)

and

R.Z;W;V;Y/ WD g.R.Z;W/V;Y/ (4.145)

with the Riemannian metric g.

We also write down the formulae in local indices once more, as in Definition 4.2,

R`ikj D �`ij;k � �`ik;j C �`km�
m
ij � �`jm�

m
ik (4.146)

Rmikj D gm`R
`
ikj: (4.147)

In normal coordinates as constructed in Section 4.4.5, all the Christoffel symbols vanish
at the point under consideration, and since the metric tensor is given by the identity matrix
there, we also have

�k
ij;` D 1

2
.gik;j` C gjk;i` � gij;k`/; (4.148)

and we therefore obtain

Rmikj D 1

2
.gjm;ik C gik;jm � gij;km � gkm;ij/; (4.149)
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which agrees with (4.100). Thus, the Rjik` appearing in the expansion (4.105) are the
coefficients of the curvature tensor in normal coordinates. Thus, Theorem 4.1 provides
us with a geometric interpretation of the curvature tensor.

We now return to (4.142) and ask under which conditions we can solve it. To recall, we
have two Riemannian metrics gijdxidxj and hk`dykdy` with their corresponding Christoffel
symbols , and we ask when we can find a coordinate transformation x D x.y/ that
transforms one into the other. We have identified (4.142) as a necessary condition. (4.142)
prescribes all the second derivatives of the coordinate transformation. Now, for any smooth
function, its derivatives commute. We first observe that (4.142) implies that the second
derivatives commute,

@2xj

@y`@ym
D @2xj

@ym@y`
I (4.150)

indeed, this follows from the symmetry of the Christoffel symbols with respect to their
lower indices, see (4.136). We now check under which conditions also third derivatives
commute, that is, when we have

@3xj

@ym@y`@yr
D @3xj

@ym@yr@y`
: (4.151)

For that purpose, we differentiate (4.142) and get

@3xj

@ym@y`@yr
D Hq

`m;r

@xj

@yq
C Hq

`m

@2xj

@yq@yr

� @xi

@y`
@xh

@ym
�

j
ih;f

@xf

@yr
� @2xi

@y`@yr

@xh

@ym
�

j
ih � @xi

@y`
@2xh

@ym@yr
�

j
ih

D Hq
`m;r

@xj

@yq
C Hq

`mHp
qr

@xj

@yp

�Hq
`m

@xi

@yq

@xh

@yr
�

j
ih

� @xi

@y`
@xh

@ym
�

j
ih;f

@xf

@yr

�Hq
`r

@xi

@yq

@xk

@ym
�

j
ih � Hq

rm

@xh

@yq

@xi

@y`
�

j
ih

C @xh

@ym
�

j
ih

@xf

@y`
@xh

@yr
� i

fh C @xi

@y`
�

j
ih

@xk

@yr

@xf

@ym
�h

kf ;
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where we have inserted the equation (4.142) for the second derivatives. Likewise,

@3xj

@ym@yr@y`
D Hq

rm;`

@xj

@yq
C Hq

rmHp
q`

@xj

@yp

�Hq
rm

@xi

@yq

@xh

@y`
�

j
ih

� @xi

@yr

@xh

@ym
�

j
ih;f

@xf

@y`

�Hq
r`

@xi

@yq

@xk

@ym
�

j
ih � Hq

`m

@xh

@yq

@xi

@yr
�

j
ih

C @xh

@ym
�

j
ih

@xf

@yr

@xh

@y`
� i

fh C @xi

@yr
�

j
ih

@xk

@y`
@xf

@ym
�h

kf ;

We observe that the mixed terms, with products of the Christoffel symbols � and H, are
the same in both expressions, again because of the symmetry � j

ih D �
j
hi. Therefore, they

will drop out when we take the difference. For the same reason, the first terms in the last
lines agree. Renaming some summation indices, we therefore can write the difference as

@3xj

@ym@y`@yr
� @3xj

@ym@yr@y`

D Hq
`m;r

@xj

@yq
� Hq

rm;`

@xj

@yq
C Hp

rmHq
p`

@xj

@yq
� Hp

rmHq
p`

@xj

@yq

�
�
�

j
ih;k

@xi

@y`
@xh

@ym

@xk

@yr
� �

j
kh;i

@xi

@y`
@xh

@ym

@xk

@yr
C �

j
kf�

f
ih

@xk

@yr

@xi

@y`
@xh

@ym
� �

j
if�

f
kh

@xi

@y`
@xk

@yr

@xh

@ym

�
:

When we denote the curvature tensor in the y-coordinates by Sq
`rm and recall (4.146), we

can write this as

@3xj

@ym@y`@yr
� @3xj

@ym@yr@y`
D Sq

`rm

@xj

@yq
� Rj

ikh

@xi

@y`
@xh

@ym

@xk

@yr
: (4.152)

Thus, the condition that the third derivatives commute becomes

Sq
`rm D Rj

ikh

@xi

@y`
@xk

@yr

@xh

@ym

@yq

@xj
; (4.153)

that is, the curvature tensor in the y-coordinates is the transform of the curvature tensor in
the x-coordinates. This condition is equivalent to the condition (4.110) given above (see
(4.18)), and it thus is a necessary condition for transforming the metric hk`dykdy` into the
metric gijdxidxj. In fact, the conditions (4.153) are also sufficient for this in the following
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sense. As we have already explained above, according to the Theorem of Frobenius, one
can solve a system of equations of the form (4.124)

@g

@xj
D �j (4.154)

for given functions �j and an unknown function g in a simply connected domain if and only

if the conditions for the commutativity of the second partial derivatives of g, @2g
@xj@xk D @2g

@xk@xj ,
that is,

@�j

@xk
D @�k

@xj
for all j; k (4.155)

are satisfied. And as before, (4.153) precisely provides the integrability conditions (4.155)

for the differential equations (4.142) for the functions @y`

@xi . Thus, (4.153) is the necessary
and sufficient local condition for the existence of the desired transformation, indeed.

Thus, we can conclude Riemann’s fundamental result.

Theorem 4.2 Two Riemannian metrics gijdxidxj and hk`dykdy` can be transformed into
each other by a change of coordinates if and only if their curvature tensors can be
transformed into each other. Thus, a Riemannian metric is fully determined by its curvature
tensor.

Again, we point out that this is a local result, valid for transformations of local
coordinates. No claim is made here about the global topology of a manifold. While the
issue of the global topology also emerges from Riemann’s work (more precisely, from his
work on what now are called Riemann surfaces), the habilitation text does not address
those issues.

Following Riemann, we now define

Definition 4.5 A Riemannian metric gijdxidxj is called flat if it can be transformed into
the Euclidean metric ık`dykdy`.

We then have the following important special case of Theorem 4.2.

Corollary 4.1 A metric is flat if and only if its curvature tensor vanishes.

As mentioned in the beginning of this section, in his Paris essay, Riemann presented the
calculation, which we have first described along Riemann’s original lines and then worked
out here in general terms for the proof of Theorem 4.2, only for flat metrics, that is, for
the situation covered by Corollary 4.1. The corollary is the most interesting case of the
theorem. While the general theorem only reduces the question of the equivalence of two
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metric tensors to that of two other tensors, their curvature tensors, the corollary makes use
of the invariant properties of the latter, namely that for a flat metric, it is zero in arbitrary
coordinates whereas the form of the metric tensor depends on those coordinates.

Putting it somewhat differently, from the curvature tensor, we can derive invariants,
like the sectional curvatures to be introduced in Section 4.4.9, that do not change when we
change the coordinates. The metric tensor itself, however, is not invariant under coordinate
changes. It is this property that makes the curvature tensor so useful.

4.4.8 Submanifolds of Euclidean Space

Riemannian geometry removes a conceptual inconsistency of classical differential geom-
etry that considered curves on surfaces in Euclidean space. In the context of Riemannian
geometry, one can consider surfaces as two-dimensional Riemannian manifolds in general
three- (or higher-)dimensional Riemannian manifolds, not just Euclidean spaces. That is,
the submanifold now belongs to the same category as the manifold that it is contained
in. We can thus systematically investigate what geometry the ambient manifold induces
on a submanifold, and conversely, what the geometry of submanifolds tells us about
the geometry of the ambient space. In particular, as we shall see, the curvatures of
particular surfaces in a general Riemannian manifold determine the latter’s geometry. This
constitutes one of the fundamental insights of Riemann.

Thus, the geometry of surfaces in three-dimensional Euclidean space is a rather
special case of Riemannian geometry. We shall now apply the general constructions of
Riemannian geometry to this special case. This will lead us, in particular, to a conceptual
explanation of the fundamental theorem of Gauss on the geometry of surfaces, what
he called the Theorema egregium, stating that the Gauss curvature of a surface, even
though defined in terms of its embedding into Euclidean space, does not depend on that
embedding, but only on the intrinsic geometry of the surface in question.

We denote Euclidean three-space by E
3. It is globally coordinatized by R

3 D
f.z1; z2; z3/g, and it carries the Euclidean metric ı˛ˇ,

hV;Wi D ı˛ˇv
˛wˇ D v1w1 C v2w2 C v3w3 for V D v˛

@

@z˛
;W D w˛

@

@z˛
: (4.156)

We then want to study the local geometry of immersed surfaces in E
3. Thus, we consider

an injective smooth mapping f D . f 1; f 2; f 3/ from some two-dimensional domain U with
coordinates x1; x2 into E

3. The vectors X1.x/ WD @f .x/
@x1
;X2.x/ WD @f .x/

@x2
then are tangent

vectors of the local surface f .U/ at the point f .x/ in E
3. We put

gij.x/ WD hXi.x/;Xj.x/i: (4.157)
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This is the restriction of the Euclidean metric of E3 to the surface f .U/. In other words,
it is the metric on the surface induced by the ambient Euclidean metric. It thus defines a
Riemannian metric g on U, with

gij DW g.
@

@xi
;
@

@xj
/: (4.158)

We point out that while the Euclidean tangent vectors @
@z˛ are orthonormal, that is,

h @
@z˛ ;

@

@zˇ
i D ı˛ˇ, this is not the case for the intrinsic tangent vectors @

@xi of the surface,
and therefore gij in general is not the identity matrix.

Note that the definition of this metric involves only the tangent vectors of the surface
f .U/, but not its normal vector which indicates the direction in E

3 orthogonal to those
tangent vectors.

The metric defined by (4.157) is evaluated on the surface f .U/ in E
3, whereas (4.158)

is defined on U. We can simply switch between these two perspectives by identifying @
@xi

with Xi.x/ D @f .x/
@xi , that is, the intrinsic tangent vector on the two-dimensional domain

U with its image in E
3. The concrete metric on f .U/ induced by the Euclidean metric is

identified with an abstract metric on the coordinate domain U.
The vector Xi is a vector in E

3 and therefore, it has three components,

Xi D X˛i
@

@z˛
D @f ˛.x/

@xi

@

@z˛
; (4.159)

where ˛ runs through the values 1, 2, 3. This also yields the classical formula for what is
called the first fundamental form of the surface in E

3,

gij D
X

˛

@f ˛.x/

@xi

@f ˛.x/

@xj
; (4.160)

confirming again the remark that gij in general is not the identity matrix.
Moreover, in E

3, we have the standard derivative

D @
@z˛

�
vˇ.z/

@

@zˇ
� D @vˇ.z/

@z˛
@

@zˇ
; (4.161)

which, of course, satisfies the rules of Definition 4.3. This then also induces a derivative
on our surface (in the same way that the Euclidean metric on E

3 induced a metric on U),
via

D @

@xi

�
vˇ.. f .x//

@

@zˇ
� WD DXi

�
vˇ.. f .x//

@

@zˇ
� D @vˇ. f .x//

@xi

@

@zˇ
: (4.162)
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The problem, however, is that even if V D vˇ.. f .x// @

@zˇ
is a tangent vector to the surface

f .U/, that is, a linear combination of X1 and X2, then D @

@xi
V need not be tangent to f .U/.

It could have a nonvanishing component in the third direction, the direction normal to
the surface. In particular, DXi Xj need not be tangent. But there is a simple solution to this
problem: Project D @

@xi
V. f .x// onto the tangent plane of f .U/ at f .x/. That tangent plane is

spanned by X1 and X2, and so we put

r @

@xi
V D rXi V WD gk`hDXiV;X`iXk: (4.163)

Theorem 4.3

rXiXj D �k
ijXk: (4.164)

Thus, the projection of the Euclidean derivative onto the surface f .U/ coincides with the
covariant derivative on that surface induced by the metric gij.

Proof We have

@

@xi
gj` D @

@xi
hXj;X`i D hDXiXj;X`i C hXj;DXi X`i

and hence

@

@xi
gj` C @

@xj
gi` � @

@x`
gij D 2hDXiXj;X`i

and so

rXiXj D gk`hDXiXj;X`iXk D �k
ijXk from (4.61).

ut

I should point out that the presentation given here reverses the historical order of the
discoveries. Riemann’s followers like Christoffel and Levi-Civita first found that one can
define an intrinsic notion of derivative by (4.164) for submanifolds of Euclidean spaces. A
version of Definition 4.3 was only formulated later.

We now return to the Euclidean derivative (4.161) and compare it with its projection
(4.163) onto the surface. That projection simply discards the direction normal to the
surface. Thus, if we let � be a unit normal vector to the surface at the point under
consideration, that is

h�. f .x//;Xi. f .x//i D 0 for i D 1; 2; and h�. f .x//; �. f .x//i D 1; (4.165)
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we may write

DXiXj D rXiXj C hij�; (4.166)

where the coefficients hij of the second fundamental form are given by

hDXiXj; �i D �hXj;DXi�i (4.167)

by differentiating the identity hXj; �i D 0 from (4.165). Moreover, since X` is tangential
to the surface, we have hDXirXj Xk;X`i D hrXirXj Xk;X`i, and therefore differentiating
(4.167) yields

hDXiDXjXk;X`i D hDXirXj Xk C DXi.hjk�/;X`i D hrXirXjXk;X`i � hjkhi`: (4.168)

Since DXi DXj D DXjDXi (covariant derivatives commute in the flat Euclidean space), we
obtain

Theorem 4.4 (Theorema Egregium of Gauss) The Gauss curvature of the surface f .U/
in E

3 satisfies

R1212
g11g22 � g212

D h.DX1DX2 � DX2DX1 /X2;X1i
g11g22 � g212

D h11h22 � h212
g11g22 � g212

DW K (4.169)

Of course, the first identity is simply the definition of the sectional curvature which we
shall present in a moment in Section 4.4.9, and the last identity is the classical definition
of the Gauss curvature K in terms of the second fundamental form. Thus, the definition
seems to depend not only on the intrinsic geometry of the surface as encoded by the first
fundamental form, that is, its Riemannian metric, but also on the second fundamental form,
that is, how the surface sits in E

3. Gauss’ fundamental discovery then was that K can be
expressed in solely intrinsic terms, that is, from derivatives of the gij. Riemann recovers
this result and puts it in the general context of his concept of curvature. In fact, analogous
constructions apply to submanifolds of Euclidean spaces of any dimensions. Moreover,
the Gauss curvature can be defined in this manner, as the left hand side of (4.169), for
any surface in any Riemannian manifold. This will provide Riemann with an important
interpretation of the sectional curvature introduced in Section 4.4.9.

4.4.9 Sectional Curvature

We now wish to explain another fundamental insight of Riemann. In Section 4.4.6, we
have presented Riemann’s argument that n.n�1/

2
scalar quantities should suffice to uniquely

determine a Riemannian metric up to coordinate transformations. In Theorem 4.2, we
have seen that the curvature tensor determines the metric up to coordinate transformations.
When looking at (4.146) or (4.147), the curvature tensor seems to possess more than n.n�1/

2
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independent components, however. As we shall discuss in this section, this is not so. The
algebraic symmetries that the curvature tensor possesses reduce the number of independent
components to n.n�1/

2
. Moreover, these independent components can be identified with the

curvatures in the sense of Theorem 4.4 of certain surfaces in the manifold. Since there are
precisely n.n�1/

2
independent surface directions in an n-dimensional manifolds, we obtain

the predicted number of parameters, and moreover, this then fits with the interpretation of
curvature provided in Theorem 4.1.

We now derive the symmetries of the curvature tensor. These are precisely the
symmetries that we have already found above in (4.101)–(4.104) of Section 4.4.5.

Lemma 4.2 For vector fields X;Y;Z;W; we have

R.X;Y/Z D �R.Y;X/Z; i.e. Rk`ij D �Rk`ji; (4.170)

R.X;Y/Z C R.Y;Z/X C R.Z;X/Y D 0; i.e. Rk`ij C Rkij` C Rkj`i D 0; (4.171)

hR.X;Y/Z;Wi D �hR.X;Y/W;Zi; i.e. Rk`ij D �R`kij; (4.172)

hR.X;Y/Z;Wi D hR.Z;W/X;Yi; i.e. Rk`ij D Rijk`: (4.173)

(4.171) is called the first Bianchi identity.

Proof Since we are dealing with a tensor, it suffices to verify all claims for coordinate
vector fields @

@xi :We may thus assume that all Lie brackets (4.138) of X;Y;Z and W vanish.
(4.170) then follows directly from (4.146). For (4.171), we observe

R.X;Y/Z C R.Y;Z/X C R.Z;X/Y

D rXrYZ � rY rXZ C rYrZX

� rZrYX C rZrXY � rXrZY

D 0;

since rY Z D rZY etc. by (4.136).
For (4.172), we shall show hR.X;Y/Z;Zi D 0 for all X;Y;Z; i.e. Rkkij D 0.

hrXrYZ;Zi DXhrYZ;Zi � hrYZ;rXZi since r is metric

D1

2
XYhZ;Zi � hrYZ;rXZi for the same reason

D1

2
YXhZ;Zi � hrYZ;rXZi assuming again w.l.o.g. ŒX;Y� D 0

DhrYrXZ;Zi C hrYZ;rXZi � hrYZ;rXZi going backwards

DhrYrXZ;Zi;
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which, recalling that we assume ŒX;Y� D 0, implies that hR.Y;X/Z;Zi vanishes, as
desired.

It is left to prove (4.173), which as we shall see, is a consequence of the other
symmetries. From (4.170), (4.171)

hR.X;Y/Z;Wi D �hR.Y;X/Z;Wi
D hR.X;Z/Y;Wi C hR.Z;Y/X;Wi;

(4.174)

and from (4.171), (4.172)

hR.X;Y/Z;Wi D �hR.X;Y/W;Zi
D hR.Y;W/X;Zi C hR.W;X/Y;Zi:

(4.175)

From (4.174), (4.175)

2hR.X;Y/Z;Wi D hR.X;Z/Y;Wi C hR.Z;Y/X;Wi
C hR.Y;W/X;Zi C hR.W;X/Y;Zi:

(4.176)

Analogously,

2hR.Z;W/X;Yi D hR.Z;X/W;Yi C hR.X;W/Z;Yi
C hR.W;Y/Z;Xi C hR.Y;Z/W;Xi

D 2hR.X;Y/Z;Wi

by applying (4.170) and (4.172) to all terms. ut

Alternatively, we could have derived these symmetries directly from the formula for
the curvature in normal coordinates, that is, (4.149) or (4.100). Since the symmetries
that we have obtained in Lemma 4.2 are the same that we had already found in
Section 4.4.5, this suggests that we return to the interpretation of the curvature tensor given
there. That interpretation involved surface elements, and we now formulate the abstract
concept.
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Definition 4.6 The sectional curvature of the plane spanned by the (linearly independent)
tangent vectors V D vi @

@xi ;W D wi @
@xi 2 TxM of the Riemannian manifold M is

K.V ^ W/ W D hR.V;W/W;Vi 1

jV ^ Wj2

D Rijk`v
iwjvkw`

gikgj`.vivkwjw` � vivjwkw`/

D Rijk`v
iwjvkw`

.gikgj` � gijgk`/viwjvkw`

(4.177)

(jV ^ Wj2 D hV;VihW;Wi � hV;Wi2).

Remark

1. The sectional curvature of the plane V ^ W is a scalar quantity, being the quotient of
two tensors, the curvature tensor and the square of the metric tensor. Numerator and
the denominator are both evaluated twice on the vectors V and W, and therefore the
transformation factors in the numerator and the denominator cancel. Thus, the sectional
curvatures are invariant under coordinate changes. Only scalar quantities can yield
invariants, as (other) tensors transform nontrivially under coordinate changes. Thus,
importantly, we do not get invariants from either the metric or the curvature tensor
alone, but we need to form a suitable quotient in order to obtain scalar invariants.

2. There is an important exception, however: When the curvature tensor vanishes, then it
is simply zero regardless of what the metric tensor looks like in the chosen coordinates.
This is the case of a flat metric, and so, we can detect flatness in arbitrary coordinates
by simply looking at the curvature tensor.

3. The curvature tensor essentially captures the geometric information contained in the
second derivatives of the metric tensor, see Section 4.4.5. Thus, the sectional curvatures
are essentially a quotient of the second derivatives of the metric by a quadratic
expression in the metric tensor itself.

4. The denominator in (4.177) is the area of the parallelogram spanned by V and W in the
tangent space under consideration. Equivalently, it is twice the area of the triangle with
vertices 0;V;W. As already seen in Section 4.4.5, the sectional curvature expresses the
deviation of the area of an infinitesimal triangle in the manifold from that in the tangent
space.

We can now easily verify the fundamental result of Riemann that the sectional
curvatures determine the whole curvature tensor, or more precisely, all the quantities
hR.V;W/Z;Yi (note that these quantities involve the metric tensor).
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Lemma 4.3 With

K.V;W/ WD K.V ^ W/jV ^ Wj2 D hR.V;W/W;Vi; (4.178)

we have

hR.V;W/Z;Yi D 1

6

�
K.V C Y;W C Z/ � K.V C Y;W/ � K.V C Y;Z/

� K.V;W C Z/ � K.Y;W C Z/ C K.V;Z/C K.Y;W/

� K.W C Y;V C Z/C K.W C Y;V/C K.W C Y;Z/

C K.W;V C Z/ C K.Y;V C Z/ � K.W;Z/ � K.Y;V/
�
:

(4.179)

Proof This follows by a direct computation from Lemma 4.2, systematically inserting
(4.178) into (4.179). ut

From (4.149), we also see that in normal coordinates, we have the simple expression

K.
@

@xi
;
@

@xj
/ D hR.

@

@xi
;
@

@xj
/
@

@xj
;
@

@xi
i D Rjiji D 1

2

�
2gij;ij � gii;jj � gjj;ii

�
: (4.180)

A version of this formula occurs in Riemann’s Paris essay.
Riemann provides the following geometric interpretation of the sectional curvatures.

At the point p of the Riemannian manifold M under consideration, take a tangent plane
spanned by two independent vectors V and W and consider the surface in M formed by
all geodesics starting at p with initial directions in that tangent plane, that is, with initial
directions that are linear combinations of V and W. The Gauss curvature of this surface at
p then is the sectional curvature of the tangent plane spanned by V and W.

We can therefore utilize the properties of the Gauss curvature to obtain the geometric
interpretation of sectional curvature. We shall proceed to do so. We start with the metric in
geodesic polar coordinates (4.83), which we write as

dr2 C m2d'2: (4.181)

Since the metric in normal coordinates is diagonal at the origin, and all first derivatives
vanish, we obtain from the formula for transforming those coordinates into polar coordi-
nates that

m.0/ D 0;
@m

@r
.0/ D 1: (4.182)
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When we let the index 1 correspond to r and 2 to ', we have

g11 D 1; g12 D 0; g22 D m2: (4.183)

By Definition 4.2 and (4.177), the sectional curvature of our plane then is

K WD R1212
g11g22 � g212

D 1

m2

�
�122;1 � �112;2 C �1p1�

p
22 � �1p2�p

12

�
: (4.184)

From (4.183), and denoting a derivative of m by a subscript, for instance m1 D @m
@r , we also

compute (4.62),

�122 D �mm1; �212 D �221 D mm1; �222 D mm2; all other �k
ij D 0:

Thence

�122;1 D �122;1 D �.m2
1 C mm11/; �122�

2
12 D �122

1

m2
�212 D �m2

1;

while all other terms in (4.184) vanish. Thus, the sectional curvature is simply

K D �m11

m
: (4.185)

Of course, this becomes undefined at r D 0, but we can obviously take the limit r ! 0,
as when the curvature is continuous there, we also need to have m11.0/ D 0, in addition to
the relations m.0/ D 0;m1.0/ D 1 from (4.182), and hence by L’Hôpital’s rule

K.0/ D �@
3m

@r3
.0/: (4.186)

This yields the expansion

m D r � K.0/
r3

6
C o.r3/: (4.187)

Therefore, the length L.�/ of the circle r � � can be expanded as

L.�/ D
Z 2�

0

md' D 2�� � K.0/
��3

3
C o.�3/; (4.188)

yielding the formula

K.0/ D 3

�
lim
�!0

2�� � L.�/

�3
(4.189)
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as a geometric interpretation of curvature in terms of the length of the circle at distance �
from the point under consideration. Similarly, when we denote by A.�/ the area of the disc
fr � �g, we have

K.0/ D 12

�
lim
�!0

��2 � A.�/

�4
: (4.190)

We now derive Gauss’ formula, called Theorema elegantissimum by him, for the relation
between curvature and angle sum in a geodesic triangle which also comes up in Riemann’s
text.

Theorem 4.5 (Theorema Elegantissimum of Gauss) Let  be a triangle contained in
some coordinate neighborhood whose three sides are geodescic arcs, with angles �1; �2; �3
at the vertices. Let K denote the Gauss curvature. Then

Z



Kmdrd' D
3X

jD1
�j � �: (4.191)

Of course, this includes the Euclidean result that the sum of the angles in a triangle is
� . mdrd' is simply the area element, and so Gauss’ Theorem says that the deviation of the
angle sum from � in a geodesic triangle is measured by the integral of the Gauss curvature
in that triangle.

Remark This result also holds globally, without the restriction that the triangle be
contained in a geodesic polar coordinate region, and also for other geodesic polygons. The
general result is called the Theorem of Gauss-Bonnet. The general result can be readily
obtained from the preceding one by decomposing a geodesic polygon into sufficiently
small geodesic triangles.

We sketch the Proof. We assume (for purely technical reasons, see the preceding
remark) that the triangle is so small that we can introduce geodesic polar coordinates
at each vertex so that  is contained in that coordinate region. From (4.185), we get in
geodesic polar coordinates

Z



Kmdrd' D �
Z



@2m

@r2
drd'

D �
Z

@

@m

@r
d':

We take geodesic polar coordinates at a vertex Pj. Thus, two of the sides of  then are
radial geodesics emanating from Pj. On each of these two sides, ' thus is constant, and
so, d' vanishes there. However, in order to evaluate the above integral, we also need to
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consider the jump that ' makes at Pj when passing from one to the other side. This jump
is the outer angle at Pj, that is, � � �j. Since @m

@r .0/ D 1 by (4.182), this then also is the
contribution of the jump in the integral. Thus, in the above integral, we do not get any
contribution from the sides, but just contributions from the vertices. But since we turn
around by a total angle of 2� when we traverse the triangle once, we need to subtract 2�
in our accounting. This means that

Z

@

@m

@r
d' D

X

j

.� � �j/ � 2�

which yields the result. ut
We return to the consideration of general Riemannian manifolds. The curvature tensor

satisfies one further symmetry, the second Bianchi identity. Although this identity does
not yet appear in Riemann’s work, we present it here as it reflects an important property of
the Riemann curvature tensor.

Lemma 4.4 (Second Bianchi Identity)

r @

@xh
Rk`ij C r @

@xk
R`hij C r @

@x`
Rhkij D 0: (4.192)

Proof We work in normal coordinates at the point under consideration and utilize the
formula (4.149) for the components of the curvature tensor in normal coordinates,

Rk`ij D 1

2
.gjk;`i C gi`;kj � gj`;ki � gik;`j/:

Since we all terms involving first derivatives of the metric vanish in normal coordinates,
we then also get

Rk`ij;h D 1

2
.gjk;`ih C gi`;kjh � gj`;kih � gik;`jh/: (4.193)

Thus

Rk`ij;h C R`hij;k C Rhkij;` D 1

2

�
gjk;`ih C gi`;kjh � gj`;kih � gik;`jh

C gj`;hik C gih;`jk � gjh;`ik � gi`;hjk

C gjh;ki` C gik;hj` � gjk;hi` � gih;kj`
�

D 0:

ut
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4.4.10 Spaces of Constant Curvature

Definition 4.7 The Riemannian manifold M is called a space of constant sectional
curvature, or a space form, if K.X ^ Y/ D K � const. for all linearly independent
X;Y 2 TxM and all x 2 M: A space form is called spherical, flat, or hyperbolic, depending
on whether K > 0;D 0;< 0:

From Corollary 4.1 and Lemma 4.3, we know that the Riemannian manifolds of
vanishing sectional curvature, the flat ones, are those that possess local coordinates for
which the coordinate vector fields @

@xi satisfy

gij D h @
@xi
;
@

@xj
i � ıij:

From the second Bianchi identity, we shall now deduce

Theorem 4.6 (Schur) Let the dimension n of the Riemannian manifold be at least 3. If
the sectional curvature of M is constant at each point, i.e.

K.X ^ Y/ D f .x/ for X;Y 2 TxM; (4.194)

then f .x/ � const and M is a space form.

Proof Let K be constant at every point x, i.e. K.X ^ Y/ D f .x/: From Lemma 4.3, we
obtain

Rijk` D f .x/.gi`gjk � gikgj`/:

By Lemma 4.192, with normal coordinates at x, and with fh WD @
@xh .f /, we obtain

0 D Rijk`;h C Rjhk`;i C Rhik`;j

D fh.ıi`ıjk � ıikıj`/C fi.ıj`ıhk � ıjkıh`/C fj.ıh`ıik � ıhkıi`/:

Since we assume dim M � 3; for each h, we can find i; j; k; ` with i D `; j D k; h ¤
i; h ¤ j; i ¤ j. It follows that 0 D fh. Since this holds for all x 2 M and all h; we conclude
f � const. ut

An important aspect of Schur’s theorem is that a pointwise property implies a global
one. If at each point all directions are geometrically indistinguishable, then also all points
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are geometrically indistinguishable. Expressed in a general terminology, an isotropic
Riemannian manifold is homogeneous.

After having discussed Schur’s theorem, which should be helpful for the general
perspective, we return to Riemann’s reasoning.

From the fact that the sectional curvatures (in n.n�1/
2

general surface directions)
determine the metric, that is, the local geometry, we can now immediately draw important
consequences. When the curvature is the same in every surface direction, then also the
geometry is the same in any such direction. And if the curvature is the same at different
points (which, incidentally, by Schur’s theorem already follows when the curvature at each
point is the same in every surface direction), then also the geometry is the same at those
points. Therefore, in a space of constant curvature, any body can be freely moved and
rotated without distortions. (In modern terminology, for any two points in such a manifold,
there exist local isometries between suitable neighborhoods of them.) Conversely, if we
can freely move a body without distortion, then the geometry must be the same at each
point, and in particular, the areas of geodesic triangles need to coincide, as otherwise, there
would be distortions of local surfaces. But we have seen in Theorem 4.1 in Section 4.4.5
that such areas of triangles are given in terms of the curvature. Therefore, for bodies to
move freely, we need to have constant curvature.

This reasoning is very simple and beautiful. It remains to explicitly give a Riemannian
metric of constant curvature k, for any k 2 R. Riemann states a formula for such a metric
in local coordinates, and we shall now explain and derive that formula.

We write the metric again in geodesic polar coordinates (4.83)

dr2 C m2d'2; (4.195)

and where we treat ' as one-dimensional, because for the sectional curvature, it suffices
to consider surfaces. By (4.185), the sectional curvature of our plane then is

k D �m11

m
: (4.196)

Of course, this becomes undefined at r D 0, but we can obviously take the limit r ! 0,
as when the curvature is continuous there, we also need to have m.0/ D 0;m1.0/ D
1;m11.0/ D 0 (see (4.182)). When k is constant, the solution of (4.196) then is

mk.r/ D

8
ˆ̂
<̂

ˆ̂
:̂

sin.
p

kr/p
k

for k > 0

r for k D 0

sinh.
p�kr/p�k

for k < 0:

(4.197)
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Thus, in geodesic polar coordinates, a constant curvature metric is of the form

dr2 C mk.r/
2d'2 (4.198)

with mk from (4.197).
We can now apply this to constant curvature metrics in dimension n and derive

Riemann’s formula. Since constant curvature metrics look the same in every surface
direction, we can then let ' stand for the collection 
1; : : : ; 
n with

P
.
 i/2 D 1 of

directional variables on the sphere Sn�1 in (4.198), as in Section 4.4.5. For k > 0, we
then put

xi WD 2
 i

p
k

tan

p
kr

2
(4.199)

to get

X
.xi/2 D 4

k
tan2

p
kr

2

X
.dxi/2 D dr2

cos4
p

kr
2

C 4

k
tan2

p
kr

2

X
.d
 i/2

ds D cos2
p

kr

2

rX
.dxi/2

D 1

1C k
4

pP
.xi/2

rX
.dxi/2: (4.200)

We note that (4.199) is the stereographic projection of the sphere of radius
p

k as in (4.10),
when we take the north pole as the center of our coordinates and observe that r then is
the distance from the north pole measured on the sphere whereas the ' i parametrize an
.n � 1/-dimensional subsphere centered at the north pole. In particular, for k D 1, the
metric tensor is the same as that given in (4.43). Thus, the metric on the sphere Sn induced
by that of the ambient Euclidean space of dimension n C 1 has sectional curvature � 1.
It is geometrically clear that in such a sphere, we can move and rotate bodies without
distortion, a crucial property of constant curvature spaces pointed out by Riemann. The
case of other positive k thus is simply obtained by a scaling of the unit sphere.

In the case of k < 0, we use

xi WD 2
 i

p�k
tanh

p�kr

2
(4.201)
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to arrive at the same formula (4.200). Of course, this formula is also valid for k D 0.
(4.200) is the formula given by Riemann for a constant curvature metric. In the case of
k < 0, we need to restrict the values of x to the open ball fP.xi/2 < 4

�k g. In particular, we
can realize a Riemannian metric of curvature �1 on the open unit ball.

4.5 Going Through Riemann’s Text

Equipped with the preceding, we can now go through Riemann’s text and understand his
arguments.

In the introduction, Riemann explains that he wants to clarify the relation between
axioms and geometric constructions. He says that what is needed is the concept of a
multiply extended magnitude. On such an object, different notions of measurement can be
introduced. Which of them is realized in our ordinary physical space, which is threefold
extended magnitude, then cannot be deduced a priori, but needs to be found empirically.
The most important, but definitely not the only example is Euclidean space.

In Chapter 1, he then develops that notion of an n-fold extended magnitude. (Clifford
translates Riemann’s German word “Mannigfaltigkeit” as manifoldness, which is the most
literal translation, but in the sequel, I shall use the simpler manifold which is the by now
generally established term.) Riemann says that he can only draw upon the work of Gauss
on the differential geometry of surfaces and on some work by the philosopher Herbart, but
apart from that, he has to explore a completely new territory. Such manifolds arise naturally
when an object can admit different qualifications, like the different positions of a point in
space or the different colors of an object. Such manifolds could be either discrete, whence
quanta can be counted, or continuous, the realm of measurement, and in his text, Riemann
will investigate the latter case, as discussed in Section 4.4.1. Such continuous manifolds
are also useful in mathematics, for the treatment of multi-valued analytic functions or for
differential equations. n-dimensional manifolds are locally represented by n independent
coordinate functions. In Section 4.2, he iteratively constructs a manifold of dimension
n C 1 from one of dimension n, by adding a degree of freedom. In Section 4.3, conversely,
he explains that generically the level set of a function on an n-dimensional manifold
is an .n � 1/-dimensional submanifold. From these considerations, the dimension of a
manifold can be built up iteratively. (As I have mentioned on p. 49, there are some technical
difficulties associated with the concept of the dimension of a manifold. These difficulties
disappear when we assume the manifold to be differentiable, as Riemann implicitly does
in the sequel and as we have systematically done in our commentary.) There also exist
infinite dimensional manifolds, like spaces of functions in a given region or the possible
shapes of a solid figure.

In Chapter 2, he introduces metrics as described in Section 4.4.3 as a tool for performing
measurements on a manifold. A Riemannian metric enables one to measure the length of a
curve independently of its positions and thereby to compare the lengths of different curves.
In his habilitation address, Riemann will not present the formulae needed for a rigorous
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development of the theory, but only explain the geometric results in abstract terms. In
Section 4.1, the concept of what is now called a Riemannian metric is introduced, as treated
in Section 4.4.3. While more general notions are possible, Riemann justifies his choice as
the formally simplest, but contentful and nontrivial generalization of the Euclidean metric.
The Euclidean metric is called flat, and much of his subsequent reasoning is concerned
with the criterion for when a metric given in arbitrary coordinates is flat. As the metric
on an n-dimensional manifold is given by a symmetric tensor .gij/i;jD1;:::;n, there are n.nC1/

2

degrees of freedom, but n of them are only apparent, as we can choose the n coordinate
functions. Thus, there remain n.n�1/

2
real degrees of freedom. In Section 4.2, he then

introduces normal coordinates as described in Section 4.4.5 and formulates the result of
Theorem 4.1, and he identifies the crucial term in the expansion with the Gauss curvature.
(Riemann employs a somewhat different normalization, and so he gets a factor � 3

4
.) Thus,

the expansion of the metric to second order is determined by the Gauss curvatures of
surfaces. Since at a point in an n-dimensional manifold, there are n.n�1/

2
independent

surface directions, this gives precisely the right number of degrees of freedom, according
to his count. That is, in general, a Riemannian metric is determined when we know n.n�1/

2

independent surface curvatures at each point. As explained in Section 4.4.6, one needs to
read his text carefully here, as these surface directions need to be general and independent
(in Section 4.4, he also makes the somewhat cryptic remark “whose curvature measures
are independent of each other”, which is not reproduced in any of the three English
translations, including Clifford’s).

In Section 4.3, he recalls the geometric interpretations of Gauss curvature, as given by
Gauss in his Theorema egregium 4.4 as the product of the two principal curvatures of a
surface in space and in his Theorema elegantissimum 4.5 in terms of the deviation of the
sum of the angles in a geodesic triangle from � (see Section 4.4.4 for the notion of a
geodesic curve; a geodesic triangle is one whose three sides are all geodesic). Thus, when
he constructs a surface in a manifold from all the geodesic emanating from a given point in
directions given by linear combinations of two tangent vectors, that is, in all the directions
given by a two-dimensional plane in the tangent space, the curvature of that surface can be
interpreted geometrically.

Thus, the sectional curvatures determine the metric, and in particular, in Section 4.4,
he says that flat metrics are characterized by the vanishing of their sectional curvatures,
a theorem that we have derived in Section 4.4.7. More generally, (as described in
Section 4.4.10) metrics of constant sectional curvature are precisely those in which bodies
can be arbitrarily moved around without distortion, and he gives the formula (4.200) for
such a constant curvature metric.

In Section 4.5, he describes the local geometry of surfaces of constant curvature. Take
as a reference surface the unit sphere in Euclidean 3-space, which has constant curvature
1 (see Section 4.4.10). We then take piece of surfaces of other constant curvature values k
that touch that sphere along the equator. Such surfaces with k > 1 touch the equator from
the inside, like the outer curve of a suitable torus of revolution. For 0 < k < 1, take a larger
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sphere (of radius 1p
k
, cut out the piece between two suitable great half circles through the

poles, with the distance of their intersection points with the equator being 2� , and glue
those two half circles together to form a surface that can be made to touch the equator
of the unit sphere from the outside. This surface then lies between the unit sphere and a
vertical cylinder touching it also at the equator; the latter has curvature 0, as follows for
instance from the Theorema egregium 4.4. Finally, a piece of surface of negative curvature
touching the unit sphere at the equator would lie outside that cylinder, looking like the
region around the inner curve of a suitable torus of revolution. In a surface of constant
curvature, two-dimensional figures can be moved around with stretching. Since surfaces
of positive curvature can be realized as spheres in Euclidean 3-space, figures can then
also moved around in them without bending. Moreover, Riemann says that zero curvature
surfaces are distinguished by the fact that in them also directions are independent of
position. He seems to hint at the fact that in Euclidean space, we can unambigously identify
the tangent spaces at different points by parallel transport. While in other spaces, one can
also develop a notion of parallel transport (based on the covariant derivative introduced in
Section 4.4.7), this parallel transport from one point to another will then depend on the
choice of a connecting curve joining these two points, and therefore not be unambiguous
or canonical.

Chapter 3 is devoted to applications to (physical) space. In Section 4.1, he provides
various criteria for a Riemannian metric to be flat, that is, Euclidean. First, as developed in
Section 4.4.7, we have the vanishing of the sectional curvatures in three independent and
general surface directions at each point. According to the Theorema elegantissimum 4.5,
this holds if the sum of the angles in any geodesic triangle is � . Secondly, when bodies are
freely movable, the curvature is constant, and in order to find its value, we only need to
check the sum of the angles in a single geodesic triangle, again appealing to the Theorema
elegantissimum 4.5. Finally, as explained in my comment on Section 4.5 of the preceding
chapter, one could also require that not only the lengths, but also the directions of curves
do not depend on their position.

In Section 4.2, he argues that measurements in continuous manifolds can never be
exact. Therefore, the determination of a Riemannian metric, say through its curvature, by
measurements remains always inaccurate, which is an issue when going to smaller scales,
for instance with the help of a microscope. When going to larger scales, up to the infinitely
large, the distinction between infinite extent and unboundedness, as explained at the end
of Section 4.4.1, becomes relevant. While we can reasonably assume that physical space
is unbounded, we do not know whether it is also of infinite extent. In fact, should physical
space have constant positive curvature, its diameter would necessarily be finite.

in Section 4.3, Riemann argues that while questions about the infinitely great are useless
for the interpretation of nature, this is by no means so for the infinitely small. Progress
in mechanics depends on the infinitesimal calculus and on the principles discovered by
Archimedes, Galileo, and Newton, and for other, less exact sciences, the microscope
offers us a glimpse into small scales for detecting the basic principles. When the metric of
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physical space has constant curvature, astronomical measurements so far do not indicate
a deviation from the value 0. But when we abandon the assumption that bodies can freely
move, that is, according to the preceding, that the curvature be constant, there can be
deviations of the curvature from 0 in the small that cannot be detected by our measurements
which, because of their finite precision, can only yield local averages.

Riemann then makes the visionary remark that we cannot be certain that the empirical
notions on which our metrical determinations of space are based, that of a solid body and
of a light ray, are still valid in the infinitely small. Thus, the infinitesimal structure of
space could in principle be very different. The question of the validity of the hypotheses
of geometry is linked to that of the reason for its metric relations. In the case of a discrete
manifold, the metric relations are contained in that structure, but in the case of a continuous
manifold, they must come from outside. And he says “Either therefore the reality which
underlies space must form a discrete manifoldness, or we must seek the ground or its
metric relations outside it, in binding forces which act upon it.”34 Deciding this question
requires empirical investigations and the development of theories explaining their results.
Theoretical groundwork as in this text is important for providing a general conceptual
framework within which that can take place. But this leads into the realm of physics,
which is outside the scope of this text.

34Let me also present the original German wording, because this is the key sentence when people
discuss the vision of the unification of geometry and physics that Riemann may have had in mind:
“Es muss also entweder das dem Raume zu Grunde liegende eine discrete Mannigfaltigkeit bilden,
oder der Grund der Massverhältnisse ausserhalb, in darauf wirkenden bindenden Kräften, gesucht
werden.”
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5.1 Helmholtz

For the understanding of Riemann’s lecture and its importance, the comparison with
the reasonings of the physiologist and physicist Hermann von Helmholtz1 is particularly
important.

1Hermann Helmholtz was born in 1821 as the son of a school teacher. For financial reasons, he
initially had to work as a military surgeon, but had been able to study in Berlin with the leading
anatomist and physiologist of his time, Johannes Müller (1801–1858). Having stepped forward with
studies on the formation and propagation speed of nerve impulses and the paper “Über die Erhaltung
der Kraft” (On the Conservation of Force) (i.e., energy conservation), in 1849, he became professor
of physiology in Königsberg, then in Bonn and Heidelberg. Among his significant achievements
in sensory physiology were measuring the velocity of propagation of electrical nerve stimulations
and the development of the ophthalmoscope. His monographs Handbuch der Physiologischen Optik
(Handbook of Physiological Optics), Leipzig, Leopold Voss, in three installments from 1856 to 1867,
and Die Lehre von den Tonempfindungen als physiologische Grundlage der Musik, (The Theory of
Sensations of Tone as a Physiological Basis of Music), Braunschweig, Fr. Vieweg. Sohn in 1863,
laid the foundations of systematic sensory physiology. The physiological research of Helmholtz and
his colleague and friend Emil du Bois-Reymond (1818–1896) (brother of the mathematician Paul du
Bois-Reymond (1831–1887)), the founder of electrophysiology and successor of Müller in Berlin,
led to the final overcoming of the vitalist ideas, which their teacher Müller had still vehemently
defended. Helmholtz’ sensory-physiological investigations led him to an empiricist epistemology
and on this basis to systematic considerations about the concept of space; these will be discussed
in more detail in the text below. It is remarkable that the physiologist Helmholtz, who was only
a mathematical autodidact, could penetrate so deeply into a basic question of mathematics, even
if the details did not always withstand the professional criticism of the mathematician Sophus Lie
(others, especially Felix Klein in his Vorlesungen, , Vol. 1, pp. 223–230, judged the contribution of
Helmholtz significantly more generously than Lie, who could be unusually sharp also in disputations
with other mathematicians who he took as his competitors, like Killing or Klein). Helmholtz,
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Helmholtz dealt in several journal articles and lectures with epistemological issues,
in particular addressing the question of what we can learn about the structure of the
world from our sensory experiences. His question thus was completely different from
Riemann’s natural philosophical question. Remarkably, his conclusions go first in the
same direction as those of Riemann, but then take a different turn, because he makes
a substantial additional assumption which he considers to be empirically evident, but
which ultimately prevents him from reaching the generality of the theory of Riemann.
Nonetheless this assumption turned out to be fruitful for the development of mathematics
because it provided a major impulse for Lie’s theory of transformation groups, which
together with Riemannian geometry became fundamental for modern physics. In fact,
the thrust of Helmholtz’ arguments was directed against Kant’s philosophy of space as
a synthetic a-priori construction, rather than against Riemann’s theory.

We refer here to Helmholtz’s writings “Über den Ursprung und die Bedeutung der
geometrischen Axiome” (On the Origin and Importance of geometrical axioms), “Über
die tatsächlichen Grundlagen der Geometrie” (About the factual basis of Geometry) “Über
die Tatsachen, die der Geometrie zugrunde liegen” (On the facts on which geometry
rests)”, that article which most clearly relates to Riemann and already in its title (which
replaces Riemann’s “hypotheses” by “facts”) seems to contain a criticiam against him,
and finally “Die Tatsachen in der Wahrnehmung” (The facts in Perception), together

who in the course of his career turned more and more to issues of physics, had in fact earlier
obtained an important and difficult mathematical result in hydrodynamics. He proved that vortices
are conserved in a frictionless fluid. For that work, incidentally, Riemann’s theory of conformal
mappings had been an important inspiration. His work, and that of his student Heinrich Hertz,
contributed decisively to a general acceptance of the Faraday-Maxwell theory of electrodynamics.
Helmholtz’ approach to derive the electrodynamic field equations from a principle of least action
was an important precursor for development of the theory of relativity, even if Helmholtz’s own
theoretical approach, although it led to the prediction of the existence of the electron, ultimately
proved to be futile, because it was based on the existence of the ether. In 1871, Helmholtz became
professor of physics in Berlin. He was ennobled in 1883 (and his family name was changed into
von Helmholtz as part of this procedure). In 1888, he was appointed president of the newly founded
Physikalisch-Technische Reichsanstalt (Physico-Technical State Institute), a pioneering large scale
research institution both through its research agenda and its organizing principles. Helmholtz died
in 1894. Helmholtz was the great universal scientist of the second half of the nineteenth century,
and he also enjoyed the corresponding social recognition and prestige. His position in German
science can perhaps be compared with that of Alexander von Humboldt in the first half of the
nineteenth century. For his biography and scientific role and achievements, see Leo Koenigsberger,
Hermann von Helmholtz, 3 vols., Braunschweig, Vieweg, 1902/3. A recent study is G. Schiemann,
Wahrheitsgewissheitsverlust. Hermann von Helmholtz’ Mechanismus im Anbruch der Moderne. Eine
Studie zum Übergang von klassischer zu moderner Naturphilosophie. Darmstadt, Wiss. Buchges.,
1997. There exists an extensive literature on Helmholtz. I mention only the more recent work of
Michel Meulders, Helmholtz. From Enlightenment to Neuroscience, MIT Press, 2010 (translated
from the French and edited by L. Garey).
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with their three supplements.2 (To elucidate the epistemological position of Helmholtz,
also his later article “Zählen und Messen, erkenntnistheoretisch betrachtet (Counting and
measuring, epistemologically considered) is useful. There Helmholtz, incidentally, shows
himself much more conciliatory towards Kant, by accepting the basic idea of space as a
transcendental form of intuition and only attacks a special position which according to him,
is an unfortunate later addition by Kant’s followers.) We treat the documents mentioned
here as a unit, even if in the course of time, the thinking of Helmholtz certainly evolved.
In particular, at the beginning he was not yet aware of the possibility of non-Euclidean
(hyperbolic) geometry.3

The fundamental problem (Geometrie, p. 618) that Helmholtz poses is that of a
distinction between the objective content of geometry and that part that is or may be
set by definitions or that depends on the form of presentation, for example the choice
of coordinates, and that is consequently not invariant. Helmholtz aimed primarily against
the idea of space that Kant had developed in his critical writings and that we have outlined
above, namely that space is an a priori given form of all external intuition.4 Helmholtz
works out the difference between a purely formal scheme, “in which any content of
experience would fit,”5 and one whose perceptible content is limited or constrained from
the outset. The first one he can accept, the second, however, he rejects. He agrees with Kant
that the general form of spatial intuition is transcendentally given. For him, this ultimately
means that space is a continuous manifold that makes the coexistence of different bodies
possible, and thus their juxtaposition,6 and in which magnitudes can be compared.
However, more detailed determinations have to be taken from experience, instead of
being given before all possible experience.7 Helmholtz begins his argumentation8 with
the axioms of Euclidean geometry. Axioms cannot be proved, and he therefore raises the
question of why we nevertheless accept these axioms as correct. (Hilbert will elaborate

2For references see the bibliography at the end. In the sequel, I shall cite these references in
abbreviated form as Axiome, Grundlagen, Geometrie and Wahrnehmung, the first and the last and
also the commentaries by Hertz and Schlick with the page numbers of the edition of F. Bonk, the
others from Wissenschaftlichen Abhandlungen, Vol. II.
3For example Grundlagen, p. 613, 615. This is corrected only in the supplement to this article.
likewise Geometrie, pp. 637–639, where it is corrected in footnotes inserted in Wissenschaftlichen
Abhandlungen .
4To what extent Helmholtz has misunderstood the Kantian notion of synthetic a priori judgment
by not recognizing the difference between logical and descriptive necessity was indeed an essential
aspect of the argumentation of the Kantians, but may be left open here. See also the remarks of
Schlick, p. 49.
5“in welches jeder beliebige Inhalt der Erfahrung passen würde”, in Axiome, p. 16.
6Concerning this issue, modern mathematics has then gone even further in the direction taken by
Helmholtz, insofar as also topological and not only metric properties of space may be contingent.
7Wahrnehmung, p. 159.
8In Axiome.
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later that axioms are arbitrary postulates, which in some sense eliminates the reason for
Helmholtz’ question.) In his response he is guided by the fundamental proof scheme of
Euclidean geometry, the demonstration of the congruence of two- or three-dimensional
geometric figures. This is based on the assumption that geometric objects can be moved
freely in space without changing their shape. That, however, and this constitutes the central
point of Helmholtz’ argument, is not a logical necessity, but an empirical fact.9

What we can imagine is limited by the structure of our sensory organs, which are
adapted to the space in which we live. More precisely, we construct the space from the
data on our two-dimensional retina. First, this provides a new empirical turn to the old
philosophical argument of Leibniz for the relativity of space, namely that it is not possible
to determine if all objects are moved or enlarged in the same manner, because such a
change would also affect our sensory organs. Second, this reconstruction is flexible to some
extent. Just as someone who puts glasses in front of his eyes that convexify everything
so that he sees objects as they would appear in the hyperbolic space,10 after a short
while will adapt himself to this new visual experience and have no problems orienting
himself in space, we could also become used to living in a non-Euclidean geometry.
What is important is the internal consistency of the perception of space, as long as no
other physical phenomena come into play. (A well-known example is an experiment with
reversing eyeglasses. A person who is given such reversal glasses, which have the effect
of reversing top and bottom, so that everything seems to stand on its head, will get used
to it after a while and then find his bearings in the world again without any problem. In

9Apparently Helmholtz was not aware that it had already been an essential postulate of Leibniz that
every body needs to be thought of as movable in space without change of form, see pp. 161, 168
in Volume V of Leibnizens mathematische Schriften, ed. C. I. Gerhardt, Vols. III-VII, Halle a. d. S.,
1855–1860. This is constitutive for Leibniz’s constructive approach in his geometry of position, s.
Ernst Cassirer, Leibniz’ System in seinen wissenschaftlichen Grundlagen, Hamburg, Felix Meiner,
1998 (based on the edition of 1902). For Leibniz, however, what seemed clear to Helmholtz as an
empirical fact, was still a mathematical and philosophical problem, s. V. De Risi, loc. cit. Leibniz
carefully analyzed the difference between similarity and congruence of geometric figures. Without
a direct comparison with respect to a common scale, one can determine only the similarity, i.e. the
equality of the internal relations of two figures, but not their congruence, i.e. the absolute equality
of their magnitudes. Leibniz does not argue with the mobility of the rigid scale, but with that of
the figures to be examined, which of course also leads to the homogeneity of space. Kant is also
familiar with these issues. One could now, casually speaking, think that the physicist walking around
with a yardstick in the field simply ignores a pseudo-problem of the mathematician struggling with
the penetration of Euclidean geometry or of the philosopher speculating in his study. However, the
situation is not that simple. As will be explained in Section 5.4, Weyl later proposed to allow even
a path-dependent gauge freedom in the measurement units, so that lengths can change when a body
is transported in space. This idea was ultimately rejected by physicists, for example by reference to
the absolute length scale of atomistics. But as explained in Section 5.4, this idea had become central
for modern elementary particle physics in a somewhat different way.
10Helmholtz shows at this point a deep understanding of the geometric model of non-Euclidean
space by Beltrami cited below (at that time and also by Helmholtz called pseudospherical geometry).
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particular, all movements and actions are matched to what is seen through the reversing
glasses. When taking off the reversal glasses, the test person needs some time again to
get familiar with the world, i.e. until the objects cease to seem to stand on the head.)
For Helmholtz, it is therefore crucial that our perception of space be constructed from
perceptions and sensations that are consistent among each other and in themselves. To the
physiologist Helmholtz we owe in fact the fundamental insight that the brain constructs an
image of the outside world out of local electrical activities, which are propagated with a
measurable, finite rate along nerves (“The sensations are for our consciousness signs, and
to learn to understand their meaning is left to our intellect” or “Insofar as the quality of
our sensation is a message for us of the peculiarity of the external influence, by which it is
excited, it can be taken as a sign of the same latter, but not as an image. . . . A sign need not
have any kind of similarity to what it stands for. The relationship between the two is limited
to that the same object, acting under the same circumstances, causes the same sign”),11

and this then leads into modern constructivism as an approach to philosophy building on
neurobiological insights.12 However, according to Helmholtz, the law of causality has to be
presupposed for the interpretation of our experiences.13 Experiences thus are not arbitrary,
but refer to an external world, the physics and geometry of which is to be reconstructed.

However, such an adaptation to the geometric relations of the outside world has specific
limitations caused by the structure of our sensory organs. In particular, this concerns the
dimension of space.

To illustrate this, Helmholtz invokes the conceptual model of rational beings that
live on a surface, i.e., in a two-dimensional world, and therefore cannot imagine a third
dimension.14 A way out for the flatlanders, which want to conceive the third dimension, as

11“Die Sinnesempfindungen sind für unser Bewußtsein Zeichen, deren Bedeutung verstehen zu ler-
nen unserem Verstande überlassen ist”, in Hermann von Helmholtz, Handbuch der Physiologischen
Optik, Vol. III, Heidelberg, 1867; 3rd ed., Hamburg, Leipzig, Leopold Voss, 1910, p. 433 (emphasis
in the original) or “Insofern die Qualität unserer Empfindung uns von der Eigentümlichkeit der
äußeren Einwirkung, durch welche sie erregt ist, eine Nachricht gibt, kann sie als ein Zeichen
derselben gelten, aber nicht als ein Abbild. . . . Ein Zeichen aber braucht gar keine Art der Ähnlichkeit
mit dem zu haben, dessen Zeichen es ist. Die Beziehung zwischen beiden beschränkt sich darauf,
daß das gleiche Objekt, unter gleichen Umständen zur Einwirkung kommend, das gleiche Zeichen
hervorruft”, in Wahrnehmung, p. 153 (emphasis in the original).
12On the history of neuroscience, see Olaf Breidbach, Die Materialisierung des Ichs. Zur Geschichte
der Hirnforschung im 19. und 20. Jahrhundert, Frankfurt/M., Suhrkamp, 1997. Here, we cannot
discuss the development of sensory physiology before, by, and after Helmholtz, or the influence of
Lotze’s theory of local signs (“Lokalzeichen”) or the dispute between empiricists like Helmholtz
and nativists like Hering (for Helmholtz’ position, see e.g. Wahrnehmung, p. 163f.) and other such
issues.
13Wahrnehmungen, p. 171f, p. 191.
14This idea was later elaborated and popularized by Edwin A. Abbott in his Flatland. A romance of
many dimensions, Seeley & Co., 1884 (Reprint, with an introduction by A. Lightman, New York etc.,
Penguin, 1998) which he published under the pseudonym A. Square. Actually, before Helmholtz, this
idea had already been mentioned by Gauss, see Sartorius von Waltershausen, Gauß zum Gedächtnis,



124 5 Reception and Influence of Riemann’s Text

we like to think of the fourth dimension, is offered by the formal computational methods
of mathematics that can perform constructions in any dimensions without constraints. The
measurements in the empirically given space can then also be compared with the results
of calculations in coordinate systems in constructed spaces, and in this way the special
properties of empirical space can then be identified. This is what Helmholtz considers
as Riemann’s approach. In particular, according to Helmholtz, the empirical space is not
a general three-dimensional manifold in Riemann’s sense, but determined by additional
properties, firstly, of the free mobility of bodies without change in shape to all points and
in all directions15 and second, the vanishing of the curvature. In fact, from the free mobility
of bodies there follows, first, the infinitesimal validity of the Theorem of Pythagoras,
as assumed by Riemann, and this is a major mathematical contribution of Helmholtz.
Second, there even already follows the constancy of the curvature, and this is also a
important mathematical result (although this had already, as stated above, been found by
Riemann, but Helmholtz based his analysis on a different set of axioms than Riemann, so
that Helmholtz’ results do not directly follow from those of Riemann), even if Lie later
criticized the stringency of Helmholtz’ mathematical deductions. That the curvature must
be constant, thus follows, according to Helmholtz, already from a general principle of
experience, while the exact value of the curvature then is the result of a specific empirical
measurement.16

Helmholtz also notes that the free mobility of bodies is not a purely geometric property.
Namely, if all bodies changed in the same way when changing location, we would have
no way to determine this, because also all measuring devices would change with the
bodies. So here an additional physical principle is needed again. This is a subtle point,
however. For what is rigid can ultimately neither be derived from principles nor determined
empirically. In order to verify that a body is rigid, we would need to verify that the
distances between the individual points in this body do not change, but for that purpose we
would need again a rod that has already been verified as rigid. According to Einstein,
the determination of what is rigid can therefore be based only on a convention. The

Leipzig, 1856, S. 81. But even before Gauss, the founder of psychophysics, Gustav Theodor Fechner
(1801–1887), had proposed a similar idea, s. Rüdiger Thiele, Fechner und die Folgen außerhalb der
Naturwissenschaften, in: Ulla Fix (Ed.), Interdisziplinäres Kolloquium zum 200. Geburtstag Gustav
Theodor Fechners, Tübingen, Max Niemeyer Verlag, 2003, 67–111.
15Helmholtz also works out the monodromy principle that a body after a rotation by 360ı again
returns to its original position and shape. Lie then later criticized that this is not an independent
axiom, as Helmholtz believed , but that it follows from the other axioms of Helmholtz.
16This again is part of a long line of discussion. That the curvature of space must be empirically
measurable, was already known to Gauss. Whether the curvature of space actually vanishes on a
cosmic scale, leads into the even today still ongoing discussion about the cosmological constant of
Einstein, which recently has been revived. This came about because of some phenomena that cannot
be explained by established cosmological physics. This leads to the search for so-called dark matter
and dark energy.
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physical principle can then only be the simplicity of explanation,17;18 while Helmholtz still
believes that he can use the physical behavior of inertial bodies. At this point perhaps also
the main difference from the approach of Riemann becomes clear. Helmholtz’ reasoning
depends on the assumption of the existence of rigid bodies while Riemann assumes
only consistent length scales. The physical principle of rigid bodies, which Helmholtz
introduces, prevented him from coming to the principle of general relativity, where the
behavior of bodies and the geometry of space become intertwined. For Riemann, the metric
field of space is not necessarily rigid, but can interact with the matter located in space. As
Riemann has set up the theory, it is in particular possible that a body carries the metric
field along. The metric field is then determined or can be altered by the body during its
motion. In this way, the motion of rigid bodies becomes possible also in an inhomogeneous
geometry. The geometry would thus become time-dependent, again a central point in
Einstein’s theory. For Helmholtz, however, this entanglement of the geometry of space and
the behavior of bodies instead takes place only in perception. Although it is a consequence
of the empiricist assumptions of Helmholtz that he admits that the spatial independence
of the mechanical and physical properties of bodies could in principle also be refuted by
experience, he does not seem to have seriously considered that this assumption of position
independence might actually be empirically false. His concern is rather the anti-Kantian
argument that the perception of objects and their spatial relationships is derived empirically
and not given prior to all experience.

In his Geometrie , Helmholtz then deduced from four axioms, which he had already
outlined in his Grundlagen, that a space satisfying those axioms, which are compatible
with the empirical intuition, necessarily is a space of constant curvature in the Riemannian
sense. These axioms are (see Grundlagen, p. 614f.)

1. Specified dimension n and representability by coordinates that change continuously
under the continuous motion of a point (in Riemann’s terminology, this just means that
space is an n-dimensional manifold).

2. Existence of bodies that can move and are rigid in the sense that the distances between
any two of their points remain invariant.

17Concerning this issue, see the explanations of Schlick, p. 52.
18This is the philosophical direction of conventionalism (see below). Martin Carrier,Geometric facts
and geometric theory: Helmholtz and 20th-century philosophy of physical geometry, in L. Krüger
(ed.), Universalgenie Helmholtz. Rückblick nach 100 Jahren, Berlin, Akademie"=Verlag, 1994, 276–
291, concludes that Helmholtz has thus stimulated several different directions of the philosophy of
physical geometry because his views both can be interpreted in such a way that both the free mobility
of rigid bodies is an empirical fact, and that it provides a useful convention, and finally, that it is the
precondition of physical and geometrical measurements. A detailed description of the history of
ideas of the arguments of conventionalism is found in Martin Carrier, Raum-Zeit, Berlin, de Gruyter,
2009.
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3. Free mobility: bodies can move as a whole (but not within themselves, that is,
internally), i.e. motions are only constrained by the invariances of the interior distances
as postulated in 2), and congruence between two bodies does not depend on their
position in space.

4. Monodromy: The full rotation about an axis brings a body back to itself.

On the necessity and independence of these axioms see the investigations of Lie and the
comments of Hertz. The mathematical deductions of Helmholtz, which incidentally are
restricted to the case of dimension 3, are no longer of interest for us for the reasons already
set out.

Even apart from the fact that the physical assumption of rigid bodies turned out to
be an obstacle and unfortunate in the light of the subsequent development of physics,
the Helmholtz approach, already in the explicit opposition between “facts” versus
“hypotheses” in the respective titles, takes back that aspect of Riemann’s approach that
was pioneering not only for the development of mathematics. This is the investigation of
ideal “spaces”, in the sense that they are freely constructed by our imagination, instead
of only empirically given ones. And as will be explained below, this conceptual step of
Riemann then also opens up fundamentally new perspectives for physics.

In the further discourses, the strands from mathematics, physics, philosophy and
sensory physiology that came together through the work of Riemann and Helmholtz
then parted again. Therefore, the reception history consists of multiple parallel strands,
often even within the participating sciences. In the following, we shall try to describe and
analyze some of them. We shall, however, not discuss in detail the many objections to the
considerations of Riemann and Helmholtz that are typically based on misunderstandings or
false reasonings,19 even if they were prominent in the discussion of their times and thus in a
certains sense also important for the reception history. In fact, since Helmholtz had directly
challenged the philosophers of Kantian obedience, diverse criticisms were raised not only
against him, but also against Riemann’s considerations, which Helmholtz had invoked.
One of the first critics was the Göttingen philosopher Hermann Lotze (1817–1881), who,
although he had probably been already present at Riemann’s habilitation lecture, had
recognized its importance apparently only from the philosophical turn which Helmholtz
had given to the discussion, and was then alarmed by it. In particular, Lotze rejected the
relation, postulated by Riemann and Helmholtz, between space and the physical processes
taking place in it, and therefore also the possibility of an empirical examination of the
properties of space. His argument was that, even if the behavior of physical bodies at
the astronomical scale should show a deviation from Euclidean geometry, instead of
abandoning our idea of a Euclidean space, we rather should adopt a new physical force
which causes a deviation of the propagation of light rays from the Euclidean straight
line. This argument continued to play a role in the conventionalism of Henri Poincaré

19Many examples are presented and analyzed in Torretti, Philosophy of geometry, loc. cit.
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(see below). Lotze’s attempts to engage in a real mathematical reasoning appear clumsy,
however. Likewise, the arguments of other critics, such as the psychologist Wilhelm Wundt
(1832–1920) or the French neo-Kantian Charles Renouvier (1815–1903), were found to be
unsound. Also the philosopher Bertrand Russell (1873–1970) later dealt with little success
and some fallacies with the matter.20

So much for a brief sketch of the discussions at that time. One might nevertheless
suspect that, despite the rather hopeless attempts of the contemporary philosophers and
followers of Kant, the situation today, one and a half centuries later, perhaps looks different
and Kant ultimately could still have gained the upper hand against Helmholtz. After all,
Kant has survived the course of time significantly better than Helmholtz. Kant is (still or
again) recognized as one of the greatest if not the greatest philosopher of modern times.
Helmholtz is considered as an eminent physicist, indeed, but today, he is viewed more
as a figure of transition, whose contributions shaped the future of physics less than those
of Maxwell, whose theory of electromagnetism remains valid today and constituted an
essential basis of Einstein’s special theory of relativity, or Boltzmann, whose reflections
on statistical physics initiated an entirely new way of thinking which remains highly
significant for current physics. Helmholtz’ importance shrinks further when compared
to the great achievements of twentieth century physics, Einstein’s theory of relativity
and quantum physics, which is connected with the names of Planck, Bohr, Heisenberg
and Schrödinger. Even theorists of neurophysiology, the field that Helmholtz founded
and profoundly shaped both experimentally and conceptually through his considerations
and experiments on the processing of sensory stimuli and on the representation of the
external world in the nervous system of the brain, today talk more often about Kant than
about Helmholtz. How can Helmholtz’s critique of Kant then be evaluated today? For
this purpose, we must draw upon both what has been set forth already and what remains
still to be discussed, but perhaps such a combination of retrospection and anticipation
at this point might be useful for the understanding of the situation of the problem and
the historical context of the old discussion. Newton’s theory of gravitation, prepared by
Kepler, proposed the interaction of bodies in space. This was much more than just a
juxtaposition of objects, such as in the theories of Aristotle and Descartes. By his ontology
of absolute space, Newton prevented himself from developing the radical explosive
power of this concept. Newton’s antagonist Leibniz shifted attention to the consistency
of the relations of objects with each other, but did not have an appropriate notion of
physical force in order to translate this into a physical theory. Kant then examined the
preconditions in the perceiving subject for perception of such coherent relations, but
again consisting only in a juxtaposition and not in an actual causal relationship. (For

20See Bertrand Russell, An essay on the foundations of geometry, Cambridge, Cambridge Univ.
Press, 1897, reprinted New York, Dover, 1956, and the same, Sur les axiomes de la géometrie,
Revue de Métaphysique et de Morale 7, 684–707, 1899, and the penetrating analysis of Torretti, loc.
cit.
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Kant, the force of attraction belonged to the realm of dynamics, which in contrast to
geometry, which is synthetic a priori, depended on empirical perceptions.) Helmholtz
objected against this that these conditions not only lie in the perceiving subject, but have
to be determined by physical measurements. Here, physics wants to wrestle a piece of
reality out of the hands of philosophy. But this piece of physics is only about position,
but not about causal interactions, and those were even made impossible by founding it on
the assumption of rigid bodies. In this sense, Helmholtz’ objection is indeed justified, but
does not penetrate to the actual physical heart of the matter. Riemann on the other hand,
who by the way is not well known outside the circles of mathematicians, but remains
recognized within mathematics as one of the greatest even today without any diminution,
had an approach that was motivated by questions of natural philosophy, but was more
general and mathematically and structurally conceived. His approach laid the basis that
the gravitational effects of bodies upon each other could be modelled geometrically in
the theory of general relativity. This poses difficulties for both Kant and Helmholtz, and
perhaps this also is the answer to our question.

5.2 The Further Development of Riemannian Geometry
and Einstein’s Theory of Relativity

In mathematics, Riemann’s geometric considerations were taken up by Elwin Bruno
Christoffel (1829–1900) and Rudolf Lipschitz (1832–1903) in Germany and by Eugenio
Beltrami (1835–1900) and Gregorio Ricci-Curbastro (1853–1925) in Italy. Beltrami, who
had already developed geometric realizations of the non-Euclidean geometry of Bolyai
and Lobatschewsky,21 then also was the first to identify non-Euclidean geometry as a
special case of the general Riemannian geometry.22 Felix Klein (1849–1925) embedded
these geometries in a comprehensive geometric program.23 However, the general geometry

21Eugenio Beltrami, Saggio di Interpretazione della Geometria Non-euclidea, Giornale di Matem-
atiche VI, 284–312, 1868.
22Eugenio Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali di Matematica
pura ed applicata series II, Bd. II, 232–255, 1868.
23Felix Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen (Erlanger
Programm), Erlangen, A. Düchert, 1872, reprinted Leipzig, Akad. Verlagsges., 1974, with additions
published in Math. Annalen 43, 63–100, 1893, reprinted in K. Strubecker (ed.), Geometrie,
Darmstadt, Wiss. Buchges., 1972, pp. 118–155; Klein, Über die sogenannte Nicht-Euklidische
Geometrie, Mathematische Annalen 4, 573–625, 1871. For this articles and others by Klein, see
also Felix Klein, Gesammelte mathematische Abhandlungen, 3 vols., Berlin, Springer, 1921–23, and
the posthumously published monograph Felix Klein, Vorlesungen über nicht-euklidische Geometrie,
Berlin, Springer, 1928. On the programs of Lie and Klein see also Thomas Hawkins, The Emergence
of the Theory of Lie Groups. An Essay in the History of Mathematics 1869–1926. Berlin etc.,
Springer (here in particular Chap. 4) and Thomas Hawkins, The Erlanger Programm of Felix Klein:
Reflections on its place in the history of mathematics. Historia Mathematica 11, 442–470, 1984.
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conceived by Klein, projective geometry, is different from that of Riemann. In contrast to
Riemannian geometry, it is not based on lengths and distances, but rather on proportions.
Although the projective space also carries a Riemannian metric, for Klein, the transforma-
tion properties instead of the metric relations were fundamental. Klein’s approach, which
was very influential at the time,24 may have hindered the intensive reception of the ideas of
Riemann in Germany at first. Nowadays, however, the approaches of Riemann and Klein
are no longer seen as incompatible or competing with each other.25

Ricci and Levi-Civita developed the tensor calculus of Riemannian geometry in the
form that is essentially still used today. This tensor calculus then formed the mathematical
basis of the general theory of relativity of Einstein. Subsequently, Riemannian geometry
has been further developed by Elie Cartan (1869–1951) and Hermann Weyl (1885–1955)
and many others and experienced a great boost and a momentum that is unbroken until
today.26 The considerations of Weyl on infinitesimal geometry and the concept of an affine
connection have already been mentioned in the context of Riemann’s lecture, see p. 96. In
particular, his book “Space, Time, Matter” has been very influential for the mathematical
and conceptual foundations of general relativity. The development of Einstein’s theory
itself will not be detailed here, because the basic papers of Einstein will be published and
commented in another volume in this series, as will be Weyl’s “Space, Time, Matter”. In
Einstein’s theory, the geometry of space-time is determined by the gravitational effects of
the masses contained therein. In Newtonian physics, the inertial mass of a body originated
in its resistance to changes in motion, while its gravitational mass expressed the response
to the attractive forces of other bodies. Why the two were always proportional and thus
by suitable normalization could be equated with each other, the theory could not explain.
In Einstein’s theory, however, the two concepts coincide. Einstein realized that the effects
of acceleration and gravity cannot be distinguished. Both inertial and gravitational mass
are derived from the resistance to motion changes. The reference motions, however, with
respect to which a change is relevant, no longer are the uniformly accelerated motions in a
space that is conceived as Euclidean, absolute and therefore also independent of the masses
located in it. Those reference motions rather are the movements along geodesic paths in
a certain Riemannian space-time determined by the gravitational effects of the masses
contained in it. Gravity thus does not act instantaneously and unmediated through empty,

For the further development of Klein’s program e.g. R. Sharpe, Differential geometry. Cartan’s
generalization of Klein’s Erlangen program, New York, Springer, 1997.
24Hawkins, The Erlanger Programm, however, comes to the conclusion that Klein’s manifest itself
actually did not exert a significant influence, but that programmatically related ideas were developed
more or less independently not only by Lie, but also by Eduard Study, Wilhelm Killing and
Henri Poincaré. Anyway, like Klein’s, neither of these approaches granted a fundamental role to
Riemannian metrics.
25This is due in particular to the geometer Elie Cartan, see below, p. 133.
26For a presentation of the current state, see for instance J. Jost, Riemannian Geometry and
Geometric Analysis, Berlin etc., Springer, 6th ed., 2011.
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absolute space on distant bodies, but locally determines the geometry of space-time, which
in turn determines the motion of bodies. In short, in Newtonian physics, bodies move under
the influence of gravitational forces on curved paths in a linear (i.e. non-curved, Euclidean)
space. In Einstein’s physics, however, they move on straight lines (i.e. geodesic curves)
in a curved space. Gravity no longer bends the trajectories of bodies, but the space in
which they move. Einstein’s field equations couple the Riemannian curvature of space-
time with the energy-momentum tensor of matter. The presence of matter thus changes the
geometry of space-time, and acceleration is measured now in relation to this Riemannian
geometry instead of an independent absolute Euclidean one. The Einstein field equations
are themselves derived from symmetry principles, specifically from the requirement of
general covariance, namely that the physical laws should apply regardless of the chosen
coordinates and therefore the field and motion equations expressed in coordinates must
transform under coordinate changes suitably, i.e. obeying specific rules.27 Precisely this
coordinate independence of geometric relationships and physical laws had been one of
the central ideas of Riemann’s theory, and it had found its formal expression in the tensor
calculus developed and refined by the successors of Riemann. This made the Riemannian
geometry so useful for Einstein. It was important here, of course, that the Riemannian
formalism could be naturally extended from space to space-time problems, despite the
essential difference that the metric tensor then is no longer positive in all directions, but
the spatial and temporal directions get opposite signs. The corresponding structures are

27At this point, one needs to actually argue a little deeper. The issue is not only the principal
indistinguishability and thus equivalence of different descriptions. Rather, the old Leibnizian idea
surfaces again that the homogeneity of space is a formlessness that leads to the indifference of its
parts or elements against each other. Thus, there is no rational justification for specific positionings in
space (or in time). Without the assignment of physical attributes, spatial points cannot be rationally
distinguished from each other. This was probably also what Riemann’s concept of a manifold was
intended to express, a general term that admits different modes of determination. Any physical
theory must actually be independent of the description of the underlying objects insofar as these
descriptions record the same aspects and display them only in different coordinate systems. Central
for a physical theory is to work out, however, through which physical properties these objects can
be distinguished from each other at all. The manifold concept of Riemann incorporates both aspects,
i.e. the same point in the manifold can be described and represented in different coordinates, and
in a manifold, unless an additional structure enters, all points are similar and can be converted
into each other by transformations of the manifold into itself (homeomorphisms in mathematical
terminology). The manifold concept thus captures the variety of points, but provides no criterion
for their identification or differentiation. A metric then yields distinctive relations between points,
and curvature quantities can assign specific features to individual points. As Riemann has seen, this
is exactly why this geometry cannot be recovered from the manifold concept alone, but requires a
physical determination. This is exactly what Einstein’s theory achieves in a systematic and principled
manner. In quantum theory, however, this aspect is being turned around by Heisenberg. Here the
same object shows itself in different modes of appearance. Physically accessible are only these
phenomena, but not the object itself.
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then called Lorentzian (instead of Riemannian) manifolds. The reference space is here no
longer the Euclidean, but the Minkowski space.28

Before going to work out other aspects of the reception history, let us pause and try
once more to get an overview of the position of this theory in the history of physics.
General relativity theory solves the perhaps most fundamental problem of physics, that of
motion. According to Aristotle, motions were purpose-driven, but the circular motions of
the celestial bodies and the rectilinear motion of a body belonged to qualitatively different
areas in which different laws of motion were effective. For Aristotle motion was a process.
However, the Aristotelian theory led to difficulties in the explanation and analysis of
throwing and falling motions. The scholastic philosophers of the late Middle Ages had
then struggled with the question of how such a process can be maintained. In particular,
the question of why a falling body experiences an acceleration instead of slowing down
could not be satisfactorily resolved in this context. The analysis of these difficulties then
led to the impetus theory of Oresme and Buridan, who thought in terms of some entrained
causality that was carried along during the motion29 (in the physics of Galileo30 and
Einstein, motion, however, is a state, and the problem, with which scholasticism had
struggled, disappears.)

When Copernicus then assigned to the earth the position of a planet in the solar
system, however, he eliminated the requirement for the conceptual distinction between
physical motions on the earth and the astronomical motion of celestial bodies. Therefore,
Kepler conceived the motions of the celestial bodies no longer only geometrically, but
also physically, by assigning the sun the role of a power center of the planetary system.
At the same time Galileo analyzed falling and throwing motions and introduced the
principle of inertia, which distinguished the straight unaccelerated motion. Newton then
developed, as already stated, a unified theory of physical motion, which included both

28Hermann Minkowski, Raum und Zeit, Phys. Zeitschr. 10, 104–111, 1909, and Jahresber. Deutsche
Mathematiker-Vereinigung 18, 75–88, 1909; reprinted e.g. in C. F. Gauß/B. Riemann/H. Minkowski,
Gaußsche Flächentheorie, Riemannsche Räume und Minkowskiwelt. Edited and with an appendix
by J. Bohm and H. Reichardt, Leipzig, Teubner-Verlag, 1984, 100–113.
29The extensive investigations of Pierre Duhem, Le système du Monde. Histoire des doctrines
cosmologiques de Platon à Copernic, 5 vols., Paris, 1914–17, have been corrected in several essential
aspects by Anneliese Maier, Das Problem der intensiven Größe in der Scholastik, Leipzig, 1939;
Die Impetustheorie der Scholastik, Wien, 1940 (an extended new edition of these two works
appears in : Zwei Grundprobleme der scholastischen Naturphilosophie, Roma, 31968); An der
Grenze von Scholastik und Naturwissenschaft, Essen, 1943, Roma, 21952; Die Vorläufer Galileis
im 14. Jahrhundert. Studien zur Naturphilosophie der Spätscholastik, Rom, 1949; Metaphysische
Hintergründe der spätscholastischen Naturphilosophie, Roma, 1955, Zwischen Philosophie und
Mechanik. Studien zur Naturphilosophie der Spätscholastik, Roma, 1958. Building upon this, see
also E. J. Dijksterhuis, Die Mechanisierung des Weltbildes, Berlin etc., Springer, 1956, reprint 1983.
30In particular, Alexandre Koyré, Etudes galiléennes, Paris, Hermann, 1966, particularly p. 102.
refuted Duhem’s , loc cit, claim of the continuity of the development of the medieval impetus to the
Galilean momentum.
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the unaccelerated or inertial motion of Galileo and the circular, or according Kepler more
precisely ellipsoidal, orbits of the planets around the sun.31 The attraction of the sun which
acts without a mediating medium in this system explained the deviation of the planetary
orbits from straight lines. This is thus a kind of external disturbance that by some distant
effect, which is not further explained, forces deviations of motions from their natural path
in absolute space.32

A strange phenomenon within this theory, however, was the fact that the inertia of a
body, which determined its tendency to persist in its natural path, was exactly proportional
to its susceptibility to the attractions of other bodies. Therefore, there had to exist a more
intimate relationship than in Newton’s theory. As explained, Einstein solves this problem
by putting gravity and space-time structure into a physical relationship. This requires the
concept of a Riemannian geometry with metric properties varying from point to point
which then precisely reflect the effects of the masses situated in space, together with the
merger of space and time in a four-dimensional continuum. Einstein already achieved
the latter in his special theory of relativity, and this was then systematically elaborated
by Minkowski. The decisive factor that then makes the identification of gravitational
and inertial mass possible is the physical construction of Einstein that requires in the
general theory of relativity that the space-time continuum also carries a variable metric
of Riemannian type.

31From the extensive literature, we only mention the document collection of Alexandre Koyré, A
documentary history of the problem of fall from Kepler to Newton, Philadelphia, 1955.
32The German idealist philosopher Georg Wilhelm Friedrich Hegel (1770–1831) in his Enzyklopädie
der philosophischen Wissenschaften (cf. the edition byb F. Nicolin und O. Pöggeler on the basis of
the version 1830, Hamburg, Felix Meiner, 81991, or that of E. Moldenhauer und K. M. Michel of
the second part, that is, the natural philosophy, with the oral additions from the lectures of Hegel,
Frankfurt a. M., Suhrkamp, 1978; for our present purposes, §§ 262–271 are elevant) rejected the
idea of a force-free body, moving without influence from other bodies, as non sensical, because in
the absence of other bodies, we can neither sensibly ascribe a motion to a body nor even reasonably
an existence. Between inertia as internal characterization of a body as passive and its susceptibility
to external gravitational influences of other bodies, which are thereby conceived as active, he
sees a contradiction, and this leads him to strong polemics against Newton while praising Kepler
instead. Hegel sees this contradiction resolved in that the basic motion of a body is not the linear
inertial one, rejected by him as absurd, but Kepler’s elliptical motion around a center of gravity,
ultimately, the center of gravity of all masses of the universe. In the Hegelian dialectic, matter, as
a principle of isolated externality and therefore not yet determinate by itself, requires other matter
for its constitution and therefore reciprocally gains its inner principle through gravity. That is, it can
ultimately determine itself via the detour through other matter. This might be an attractive idea, but
it raises the question of its value for physics. Thus, the reflections of Hegel on inertia and gravitation
have been judged very differently, in particular in retrospect after the theory of relativity. We quote
here only the benevolent or positive evaluations from D. Wandschneider, Raum, Zeit, Relativität,
Frankfurt, Klostermann, 1982, and depending on those, the ones of V. Hösle in Hegels System, single
volume edition, Hamburg, Felix Meiner, 1988, and E. Halper, Hegel’s criticism of Newton, in: The
Cambridge Companion to Hegel and nineteenth-century philosophy (ed. F. Beiser), Cambridge etc.,
Cambridge Univ. Press, 2008, pp. 311–343.
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5.3 Lie and the Theory of Symmetry Groups

Sophus Lie took up the considerations of Helmholtz and Riemann to determine the
geometries in which objects can move freely within the framework of his theory of
transformation groups. On the one hand via precursors like Moritz Pasch (1843–1930)
this led to the axiomatic foundation of geometry by David Hilbert, which opened up a
research direction that dominated large parts of the mathematics of the twentieth century.
On the other hand, this led to the modern theory of invariance, which is fundamental
in quantum mechanics, for instance. In the theory of principal bundles over Riemannian
manifolds Riemannian geometry then is combined with the theory of Lie groups. This
then becomes the formal language of theoretical elementary particle physics.33 For this,
the theories of Weyl and Cartan are essential.34 Cartan combines the group theoretical
considerations of Lie with the geometric concepts of Riemann. Lie groups carry a certain
Riemannian metric, which is determined by their structure and characterized by the fact
that it is left invariant by the group operations. The group operators are considered as
geometric operations of the group on itself. Multiplication of all group elements by a fixed
group element h thus yields a transformation of the group G. Each element g is therefore
transformed into the element hg. Since such a transformation leaves the metric invariant, it
is an isometry of the group considered as a Riemannian manifold. If we now let the element
h generating such a transformation vary in a subgroup H of G, we obtain a whole family
of such transformations. For a given group element g, we obtain an orbit Hg of new group
elements, namely all elements of the form hg, where h is contained in the subgroup H. If
we identify now all the elements of such an orbit with each other, i.e., consider them as
equivalent to each other, we obtain a so-called quotient space G=H. Such a space is called
a homogeneous space, and like the group G itself, it carries a natural Riemannian metric
with respect to which the group G acts by isometries. These homogeneous metrics has
been studied systematically by Cartan. A particularly important subclass of homogeneous
spaces are the so-called symmetric spaces, which, as the name suggests, are characterized
by a particularly high degree of symmetry. These spaces have been classified in the
works of Killing and Cartan.35 In addition to such a geometric characterization, they
also admit a purely group-theoretical description. Consequently, their structure becomes
particularly rich.36 It has then been found that on the one hand these symmetric spaces
constitute the most important class of examples of Riemannian manifolds (for instance,
the spheres and the hyperbolic spaces are symmetric), and on the other hand they also

33See e.g. J. Jost, Geometry and Physics, Berlin etc., Springer, 2009.
34Here, I sketch the considerations of Weyl and Cartan from the historical perspective. The
systematic aspect will be taken up in Section 5.4.
35See S. Helgason, Differential geometry, Lie groups, and symmetric spaces, New York etc.,
Academic Press, 1978.
36For details, refer to J. Jost, Riemannian Geometry and Geometric Analysis.
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include spaces that are central for Klein’s conception of geometry. In this way Cartan could
harmonize the approaches of Riemann and Klein which in the nineteenth century had still
been seen as competing. In addition, Cartan also developed an alternative to the Ricci
tensor calculus, that of the moving coordinate frames. This makes some aspects of tensor
calculus geometrically more transparent and formally easier. Nowadays, mathematicians
working in or utilizing Riemannian geometry usually employ an invariant calculus that
combines the formalism of the covariant derivative, which has evolved from the parallel
transport of Levi-Civita and Weyl, with the differential form calculus developed by Cartan
because the coordinate independent meaning of the geometric expressions becomes most
transparent in that calculus. Most physicists, however, continue to favor Ricci’s tensor
calculus, developed in Section 4.4.2, as a convenient formalism. When using the tensor
calculus, one need not account for the geometric meaning of the symbols employed, but
can apply the formalism in an almost mechanical and automatic manner.

5.4 Weyl and the Concept of the Connection on aManifold

Hermann Weyl, as already explained above on page 96, introduced the concept of an affine
connection.37 This also leads to a natural relation between Riemannian geometry and the
theory of Lie groups, but in an entirely different direction than the symmetric spaces
studied by Cartan, which are Riemannian manifolds defined by Lie groups. According
to Klein’s conception, a geometry is characterized by its invariances, namely the group
of those transformations that leave the geometric structure unchanged. On a Riemannian
manifold, the geometric structure is the metric. Invariance transformations would here be
those transformations that leave the distances between points unchanged. Thus, if P and
Q are two points in a Riemannian manifold, then the distance between the two images
gP and gQ under a transformation g has to be equal to the distance d.P;Q/ between
the two original points. But the concept of a Riemannian manifold is so general that
for a given such manifold M, except for the trivial transformation that leaves all points
fixed, no such distance-preserving transformation g needs to exist. Thus, the notion of
a Riemannian manifold does not fit into the Klein scheme. Now Riemann’s notion of
distance is obtained from an infinitesimal concept, the quadratic form that allows us to
quantify the lengths of tangent vectors (direction elements) and angles between such
vectors in a given point P. However, this is a notion that leads to a Euclidean measure
on the space of direction elements, the tangent space, at the point P. This is where the
invariance group acts, the group of Euclidean motions. In this view, the crucial aspect of
Riemannian geometry now is that this infinitesimal action varies from point to point. The

37We refer to the literature cited in Footnote 14 on p. 57; also Erhard Scholz, Weyl and the theory
of connections, in: Jeremy Gray (ed.), The symbolic universe. Geometry and Physics 1890–1930,
Oxford etc., Oxford Univ. Press, 1999, pp. 260–284.
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relationship between these actions according to Weyl is then achieved by a connection,
that is, the possibility of setting infinitesimal structures in different points in relationship
by transport along connecting curves. This relationship, however, depends in general on
the choice of connecting curve. This effect is infinitesimally measured by the Riemann
curvature tensor. A Riemannian manifold can be regarded in this approach thus as a set of
points, to each of which an infinitesimal Euclidean structure is assigned, which then can
be compared with those of other points in a path dependent manner. The important point
is not so much the infinitesimal Euclidean structure at the individual points, because this
is abstract and for all points the same, but rather the concrete possibility of comparison
of these structures as encoded in the manifold structure. So, although identical as such,
these structures at the individual points can be related to each other in a variable manner.
Here, an important abstraction step offered itself to Weyl. A Euclidean structure is an
example of a Klein geometry. The same procedure can also be performed when based on
another Klein geometry. Riemann himself had clarified the difference between a manifold
as an object that contains only positional relationships, and a Riemannian manifold which
carries an additional metric structure. Applying now the described Weyl method on a
manifold, we initially have only a linear infinitesimal structure, the structure of a vector
space in which vectors can be added and stretched or compressed, but where one cannot
yet assign a length to them. The comparison of the infinitesimal linear structures at the
various points of a manifold leads to the Weyl concept of an affine connection. So this is
more general than the concept of a metric connection which is connected to the structure
of a Riemannian manifold. There are also intermediate cases. Particularly important are
the conformal structures. Here angles can be measured, but no lengths. The transition
from one point to another leaves a scalar factor undetermined. Weyl interpreted this as a
gauge freedom, so that at each point the length scale can be independently calibrated or
gauged. This idea became extraordinarily fruitful for the development of geometry and
physics, although the approach that Weyl himself had developed in this way for a unified
field theory was not successful. Weyl wanted to combine Einstein’s theory of gravity
with Maxwell’s electrodynamics and needed a gauge freedom in the transition between
points. However, since the resulting gauge factor depends on the connecting path, this
led to unacceptable physical consequences. But later, when the approach was modified
so that the gauge factor was no longer a length factor, but a phase factor, and also more
general invariance groups and gauge possibilities were included, this created the Yang-
Mills theory which became the foundation of modern elementary particle physics. This
will be explained in more detail in the next chapter. Ironically, Weyl’s motivation and
point of departure was the general theory of relativity, but the development he launched
led to the modern quantum field theory, which so far has not succeeded in including the
general theory of relativity in its program of the unification of the physical forces.

In abstract terms, the aim of modern physics is to derive a part of the phenomenal
world, which might at first appear and seem to be very heterogeneous, from a few
basic principles. In particular, a good physical theory should contain as few as possible
free, contingent parameters, i.e., parameters that are not specified within the theory, even
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though it seems that every physical theory needs some not derivable, contingent constants.
An example is the speed of light, which defines the relationship between space and
time measurements. For example, the standard model of elementary particle physics is
perceived as unsatisfactory by today’s physicists due to the relatively large number of
such indetermined parameters, despite its impressive predictive power. This seems to be
a problem for Riemannian geometry to be a description of physical space, for a curvature
that varies from point to point then poses the problem of how to determine it. If one
only says that the structure of the space is determined by its curvature then nothing is
explained physically. This was the starting point of Helmholtz. He derived, as explained
above, much further structural constraints of space from a simple principle, that of the free
mobility of bodies in space. Since this principle, as stated by Helmholtz, necessarily leads
to a space of constant curvature, there is only a single parameter that is not theoretically
derived, but only empirically determinable, namely the value of this constant curvature.
However, it was the far reaching vision of Riemann that the explanation of the quantitative
relations given by the metric must be sought not intrinsically, but in external forces acting
oh it.38 Thus, in Riemann’s vision, the curvature tensor and thus the structure of space
have to be determined from physical principles, which then eliminated the problem of
contingent parameters. Initially, this idea was not understood or not taken seriously, until
later when it was confirmed by Einstein in a spectacular manner. One exception was the
British mathematician W.K. Clifford (1845–1879), who translated Riemann’s text (see
Chapter 3) and wrote “this variation of the curvature of space is what really happens in the
phenomenon which we call the motion of matter”.39

5.5 Spaces as Tools for the Geometric Representation of Structures

There is one more essential difference between Riemann and Helmholtz, between the
“hypotheses” and the “facts”, that is central for understanding modern physics, even if it
did not play a prominent role in the reception history. Helmholtz’s goal was an ontological
one, in the sense that he wanted to explore the nature and properties of the physical,
the actual space in which we live and about which we obtain knowledge by gathering
sensory data and performing physical measurements.40 For Riemann, in contrast, a space
is a mathematical structure, and the physical space is just one of many mathematically
possible spaces. Therefore, Riemann’s geometry can become the organizing principle

38“we must seek the ground of its metric relations outside it, in binding forces which act upon it”,
Riemann, Hypotheses, Chap. 3, p. 69.
39W. K. Clifford, On the space-theory of matter (abstract), Cambridge Philos. Soc., Proc., II, 1876,
p. 157f, also in his Mathematical Papers, ed. R. Tucker, London, 1882, p. 21f.
40See, however, Schiemann, Wahrheitsgewissheitsverlust, for an analysis of the transition from an
ontological to a phenomenological conception of physics also in the views of Helmholtz.
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of all possible “manifolds” of diverse, but comparable objects. Something like this had
already indicated itself in the Cartesian coordinate descriptions and the phase spaces of
mathematical physics as introduced and considered by Euler, Lagrange, Hamilton and
Jacobi. Also, the introduction of the Gaussian complex plane can be seen in this light.
This complex plane had inspired the idea of Riemann surfaces in Riemann’s seminal work
on complex function theory and on Abelian integrals. Relations between the (imaginary,
not necessarily physically realized) objects or elements of any ensemble can then be
represented and visualized by their position relative to each other in an abstract space.
In the wake of Riemann, geometry could then penetrate almost all areas of mathematics,
and this development continues in contemporary mathematics. The Hilbert space organizes
the quantum mechanical states, Banach spaces contain the possible solutions of differential
equations and variational problems, and Grothendieck conceived a geometric description
of number theory, from which in recent decades major break-throughs in this mathematical
field have emerged. The concept of the graph is used in various applications for the
representation and visualization of possibly abstract relations between discrete elements.

Modern theoretical high-energy physics interprets the results of scattering experiments
of elementary particles as representations of invariance groups describing these particles
in a vector space. In the contrasting approaches to the conceptual unification of the
known physical forces, this phenomenological approach clashes with the ontologically
oriented theory of general relativity, without a definitive solution having emerged so far.
It is probably an irony in the history of science that the Riemannian approach became
fundamental for the perspective of the ontologically oriented and committed theory of
Einstein that is aimed at uncovering the structure of space-time, while Lie’s theory of
invariance groups, which partially emerged from the desire of a mathematical clarification
of the ontological approach of Helmholtz, found its way into the phenomenological
perspective of quantum field theory whose spatial constructions are purely hypothetical
in nature.

5.6 Riemann, Helmholtz and the Neo-Kantians

However, this already anticipates later developments which will be illustrated in more
detail below, and we turn now to the initial reception of Riemann and Helmholtz.

As already mentioned, orthodox Kantians at first rejected the considerations of
Riemann and Helmholtz. They were concerned with the three-dimensionality of space and
its infinite extension as well as the role of non-Euclidean geometry. However, the rejection
was not entirely unanimous. One, at the time very influential, group of spiritualist natural
philosophers took up the idea of a four-dimensional space with great enthusiasm. When
in England a popular magician by an apparently never fully uncovered trick made people
believe that he could convert left to right-handed objects, it was thought that he achieved
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this by moving objects in an additional fourth spatial dimension,41 that is, that he was a
medium with access to the fourth dimension.42

Only with Einstein’s general theory of relativity did Riemann’s central idea, the
question of the foundation and determination of the metric of space, come into the center
of the discussion. A later generation of philosophers tried on this basis to incorporate the
arguments of Riemann and Helmholtz into the Kantian system.43 Ernst Cassirer and Hans
Reichenbach are prominent representatives of an attempt at a philosophical penetration of
the theories of Riemann and Einstein.

We now turn to some of these intellectual directions.

5.7 The Axiomatic Foundation of Geometry

Sophus Lie presents and treats the problem of an axiomatic foundation of geometry under
group theoretical aspects.44 Since he seeks concepts that are basic and as elementary as
possible, Riemann’s approach appears less suitable for his purposes than Helmholtz’.
Riemann obtains the local properties of space by integrating the infinitesimal line element,

41See also above, on p. 19, the analysis of the Kantian argument of the relationship between
handedness and spatial structure.
42The spiritualist medium was Henry Slade (1840–1904). Among the scientists who were taken in
by him, was, for instance, Karl Friedrich Zöllner (1834–1882), the founder of astrophysics, who
thereby ruined his scientific reputation. For details, we refer to Rüdiger Thiele, Fechner und die
Folgen außerhalb der Naturwissenschaften, in: Ulla Flix (Ed.), Interdisziplinäres Kolloquium zum
200. Geburtstag Gustav Theodor Fechners, Max Niemeyer Verlag, Tübingen, 2003, 67–111 or Klaus
Volkert, http://www.msh-lorraine.fr/fileadmin/images/preprint/ppmshl2-2012-09-axe6-volkert.pdf.
Helmholtz, however, remained skeptical. A contemporary presentation can be found in F. Klein,
Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, and for example a fairly free
story by the theoretical physicist Michio Kaku Hyperspace: A Scientific Odyssey Through Parallel
Universes, Time Warps, and the 10th Dimension, Oxford, Oxford Univ. Press, 1994, who presents
the possibility of higher space dimensions as the essential and at the time sensational discovery of
Riemann. A systematic mathematical analysis of spaces of arbitrary dimension had already been
conducted before Riemann in a different context by H. Grassmann, Die lineale Ausdehnungslehre,
Leipzig, 1844, a work which founded linear algebra.
43L. Nelson, Bemerkungen über die Nicht-Euklidische Geometrie und den Ursprung der mathe-
matischen Gewißheit, Abh. Friessche Schule, Neue Folge, Vol. I, 1906, 373–430; W. Meinecke,
Die Bedeutung der Nicht-Euklidischen Geometrie in ihrem Verhältnis zu Kants Theorie der
mathematischen Erkenntnis, Kantstudien 11, 1906, 209–232; P. Natorp, Die logischen Grundlagen
der exakten Wissenschaften, Leipzig, 21921, 309f.; G. Martin, Arithmetik und Kombinatorik bei
Kant, Itzehoe, 1938; the same, Immanuel Kant, Berlin, 4th ed., 1969.
44S. Lie, Über die Grundlagen der Geometrie, Ber. Verh. kgl."=sächs. Ges. Wiss. Lpz., Math.-Phys.
Classe, 42. Band, Leipzig, 1890, 284–321, and S. Lie, Theorie der Transformationsgruppen, Dritter
und Letzter Abschnitt, unter Mitwirkung von F. Engel, Leipzig, Teubner, 1888–1893, New York,
Chelsea, 21970, Abtheilung V. Lie stated himself that he had been made aware of the work of
Riemann and Helmholtz already in 1869 by Klein, pointing out that in these studies the concept

http://www.msh-lorraine.fr/fileadmin/images/preprint/ppmshl2-2012-09-axe6-volkert.pdf
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and neither line element nor integration are sufficiently elementary notions for axiomatic
purposes. Helmholtz, while starting from elementary axioms about the mobility of bodies
in space, is criticized by Lie because he proceeds in a mathematically unjustified fashion
from the local to the infinitesimal properties of transformation groups and on top of that
does not possess the appropriate group concept. In addition, the monodromy axiom as
established by Helmholtz turns out to be superfluous, as already contained in the other
axioms. Lie then presents his own set of axioms about the free infinitesimal mobility
of bodies in space, and then proves that a space which allows such flexible mobility
in three and higher dimensions is necessarily either locally Euclidean, hyperbolic or
spherical (in the terminology of his time, these two latter geometries were combined
under the label non-Euclidean). Therefore, it is a space of constant Riemannian curvature,
but this interpretation was not pursued by Lie. In two dimensions, however, there are
other possibilities. In any case, the transition to more than three dimensions is already a
mathematical matter of course for Lie that requires no longer any justification or discussion
of physical or philosophical nature. If the infinitesimal assumptions are replaced by local
ones, the problem becomes more difficult, and Lie succeeds only in solving it in the three-
dimensional case.45 It is the central assumption for Lie that the possible motions of a body
constitute a group, meaning that the successive application of two motions yields again a
motion and any motion can be reversed by applying its inverse.

It would be incorrect, however, to see in Lie the mathematician that translated the
ideas about the structure of space which Helmholtz had imprecisely formulated and
formally unsatisfactorily elaborated into a mathematically exact form. Lie rather turns
the problem around. Helmholtz wanted to derive the structure of space from empirically
justified axioms. Lie, in contrast, from the outset wants to provide an axiomatic foundation
of a particular class of geometries: “The Riemann-Helmholtz problem . . . requires the
identification of those properties of the family of Euclidean and the two families of non-
Euclidean motions that are common to them and which distinguish these three families
from all other such families.”46 For Lie, the aim of the axiomatics is no longer the metric
of space, but a characterization of the motion group. This naturally fits into the context of
Lie’s research program, the theory of transformation and symmetry groups. The intentions

of a continuous group was implicitly contained, but he himself did not turn to the considerations of
Riemann and Helmholtz until 1884, when he had already worked out systematically his own theory
of continuous groups (S. Lie, Transformationsgruppen, p. 397). Somewhat strangely, in Hawkins,
Lie groups, Helmholtz does not appear in the presentation of the mathematical development of Lie,
but only in that of Killing.
45Lie, Transformationsgruppen, pp. 498–523.
46“Das Riemann-Helmholtzsche Problem . . . verlangt die Angabe solcher Eigenschaften, die der
Schaar der Euklidischen und den beiden Schaaren von Nichteuklidischen Bewegungen gemeinsam
sind und durch die sich diese drei Schaaren vor allen anderen möglichen Schaaren von Bewegungen
auszeichnen.” (My translation) Lie, Transformationsgruppen, p. 471 (emphasis in the original), and
a similar formulation p. 397 ibid.
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of the theory of invariance groups of Felix Klein went in a similar direction. Here, however,
I shall not analyze the complex relationship between the programs of Lie and Klein.

The axiomatic foundation of geometry was then developed most notably by David
Hilbert.47 Hilbert in his “Grundlagen der Geometrie” (Foundations of Geometry) lists five
groups of axioms, which together found three-dimensional Euclidean Geometry. These are
the axioms of

1. composition, which link together the basic terms point, line and plane (e.g., that any
two distinct points lie on exactly one line),

2. arrangement, which in particular define the term “between” and stipulate that a line that
enters into a triangle will also exit from that triangle,

3. congruence, which also defines the notion of motion and makes the comparison of
distances and angles possible,

4. parallels, the axiom that is equivalent to the old Euclidean parallel postulate that through
a point outside a line there is precisely one line that does not intersect the former,

5. continuity, firstly, the so-called Archimedean axiom that one, when sufficiently often
repeating a predetermined reference distance, can cover any other predetermined
distance, and second, the completeness axiom that the given system of points, lines
and planes cannot be extended by adding further elements without violation of at least
one of the other axioms.

Thus, the completeness axiom specifies that there is a maximal set of elements that
satisfy the axioms. That this may be required, is however by no means self-evident, but
is consistently possible, as Hilbert explained, only upon acceptance of the Archimedean
axiom. The main aim of Hilbert is then the proof of consistency and independence
of the axioms. The consistency is achieved by constructing a model in which all the
axioms are valid. In the present case, the model is of course just the three-dimensional
Euclidean geometry. The independence is shown by replacing one of the axioms with

47David Hilbert, Grundlagen der Geometrie, Leipzig, Teubner, 1899; 13th ed., Stuttgart, Teubner,
1987 (with 5 supplements, in which several articles of Hilbert are reprinted, as well as supplements
by Paul Bernays) and 14th ed., Leipzig, Teubner, 1999, with the essay Michael Toepell, Zur
Entstehung und Weiterentwicklung von David Hilberts Grundlagen der Geometrie, that treats the
developments prior to and after Hilbert’s axiomatic approach to geometry; concerning the 7th ed.,
see also Arnold Schmidt, Zu Hilberts Grundlegung der Geometrie, in: David Hilbert, Gesammelte
Abhandlungen. Vol. 2, Berlin etc., Springer, 21970, pp. 404–414. Furthermore Michael Hallett,
Ulrich Majer (Eds.): David Hilbert’s Lectures on the Foundations of Geometry, 1891–1902. Berlin
etc., Springer , 2004, which not only reprints the original 1899 version, but also the other publications
of Hilbert on the foundations of geometry. Hilbert’s original text was edited for the present series
with an extensive historical commentary by Klaus Volkert, Berlin, Heidelberg, Springer Spektrum,
2015.



5.7 The Axiomatic Foundation of Geometry 141

another and then constructing another consistent model. For example, the models of non-
Euclidean geometry prove independence of the axiom of parallels from the others. Hilbert
then investigated systematically which of the above axioms are required to prove basic
geometric theorems and which ones can be dispensed with for the individual results. For
example, the Euclidean theory of proportions does not require the Archimedean axiom.

Above, the axiom of continuity was placed at the end. In Appendix IV of his
Grundlagen Hilbert conversely places this axiom at the beginning of his considerations and
then obtains a new systematic approach to Lie’s theory of transformation groups, which
does not require the infinitesimal constructions of Lie, which must assume differentiability
conditions. Overall, the approach of Hilbert led mathematics into a different direction than
what Riemann or Helmholtz had had in mind. For Hilbert, axioms are more or less arbitrary
stipulations, instead of hypotheses that are in need of and amenable to an empirical test.48

Hilbert’s criterion is instead the internal consistency of a collection of axioms. The further
development of Hilbert’s program of a formalization of all of mathematics, therefore, is not
part of our subject. It should however be noted that Hilbert’s objective of a formalization
and the corresponding role of axioms in mathematics and partly also in physics has been
discussed very controversially and continues to be so discussed.

Hilbert inspired the approach of Nicolas Bourbaki, the pseudonym for a group of
French mathematicians, that was particularly influential in the 50s and 60s of the twentieth
century. Bourbaki developed and carried out a program of the systematic foundation and
construction of all of mathematics from basic axioms. These axioms are selected solely
because of their internal coherence and their theory-generating power. Against the formal
approach of Bourbaki, there were always different voices that pointed to the intuitive
foundations of mathematics or to its motivation by physical facts and discoveries and
critically put this against a pure formalism for its own sake. Also in modern theoretical
high energy physics, the axiomatic approach to quantum mechanics49 and quantum field
theory50 could not really enforce itself.

48Pirmin Stekeler-Weithofer, Formen der Anschauung, Berlin, de Gruyter, 2008, in contrast,
analyzes the relationship between the formal logical validity and the truth of geometrical statements
based on real constructibility propositions with recourse to Kant’s concept of a synthetic a priori
validity. This quote must suffice here as a new example for a very extensive and controversial
discussion.
49John von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, Springer, 1932;
English translation Mathematical foundations of quantum mechanics, Princeton, Princeton Univ.
Press, 1955.
50See Arthur Wightman, Hilbert’s sixth problem: Mathematical treatment of the axioms of physics,
Proc. Symp. Pure Math. 28, 147–240, 1976.
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5.8 Conventionalism

The eminent mathematician Henri Poincaré (1854–1912) developed the so-called con-
ventionalism as an alternative to both the apriorism of Kant and the empiricism of
Helmholtz.51 His intention was to analyze how the idea of space and its geometry orig-
inates from a mental effort for comparison and classification of sensory data. According
to Poincaré, geometry is nevertheless not an empirical science, because it is not revised
by sensory experiences and is exact rather than approximate like all statements that are
empirically obtained. The criterion for determining the geometry is instead the simplicity
of the description of sensory experiences. In principle, these could be geometrically
described in very different ways, but most of these descriptions are much too complicated
and are therefore discarded. This will then also play an important role in the considerations
of Einstein.

Conventionalism52 was then further developed in the 1st half of the twentieth century,
especially by Hans Reichenbach. To me, it seems, however, that key assertions of this
approach partly express a triviality and partly are based on a misunderstanding. An
argument that was essential for conventionalism, and which has been addressed already
above in the discussion of the considerations of Helmholtz, was, for example, that we
cannot say whether there are rigid measuring rods because to find this out, we would still
need other tools which we need to take as rigid, and so on. But this seems irrelevant,
because as long as we cannot find any physical difference between a situation in which
rigid rods can be freely moved around in a space of constant curvature, and one in which
space and rods are deformed alike, such a distinction has no physical content, but only
refers to a different representation of the same facts. This aspect is elaborated in the field
interpretation of gravity that was significantly influenced by Weyl.53 Or if we consider
the question under geometric aspects, we can draw upon the basic insight of Riemann
that one and the same manifold, that is, one and the same geometrical situation, can be
represented differently in different coordinate systems. If we represent the Euclidean space
in curvilinear coordinates, then also the Euclidean straight lines appear as curved. But this
does not constitute a different geometry, only another coordinate representation of the

51Henri Poincaré, La science et l’hypothèse, Paris, Flammarion, 1902; Reprint Paris, Flammarion,
1968; English translation Science and hypothesis, Walter Scott Publ. Comp. Ltd, 1905, reprinted by
Dover, 1952. See also the detailed analysis of Torretti, Philosophy of Geometry from Riemann to
Poincaré.
52See the extensive discussion in Martin Carrier, Raum-Zeit. Berlin, de Gruyter, 2009.
53Hermann Weyl, Raum, Zeit, Materie, Berlin, Julius Springer, 1918; 7th ed. (ed. Jürgen Ehlers),
Berlin, Springer, 1988.
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same geometry.54 It was precisely one of the main results of Riemann that from different
representations of the same geometrical situation one can derive invariants, quantities
that are independent of the chosen representation. In Riemann’s theory, these were the
curvatures, but the principle is more general. These quantities then reflect the underlying
geometry, and the non-invariant aspects of the coordinates are only tools of representation.
For example, we use the maps in an atlas to represent the curved earth’s surface, although
this inevitably leads to distortions, because such a flat two-dimensional representation
is particularly convenient for many purposes. The conventionalist argument thus says
only that the same geometrical or physical facts can be represented differently, and then
obviously the simplest and clearest representation is the best, or else the argument confuses
invariant facts with their variable representation.

Helmholtz wanted to determine the actual geometry, or according to the above
clarification perhaps rather the best representation, by the observation of physical forces.
For this reason, the heliocentric planetary system of Copernicus is preferable to that of
Ptolemy or more precisely to that of Tycho Brahe. In Brahe’s system, the other planets are
orbiting around the sun, but the sun then moves around the earth. Copernicus’ system is
preferable because the sun, but not the earth, is the center of gravity of the system.

Now, although a particular choice of coordinates is distinguished in a standard geometry
like the Euclidean or hyperbolic one, in which the geometric facts are represented
particularly simply, in a more general geometric situation, as for example in the general
theory of relativity, this in general is no longer so. Reichenbach therefore proposed criteria
for the choice of representation as well as for experiments to verify the infinitesimal
deformation of physical objects, in order to test the question of the rigidity of rods and
objects empirically.55

54A good example can be found in Carrier, cited above. The Hollow Earth theory says that the
Earth is a hollow sphere, enclosing the heavens. Geometrically, one can simply pass from the usual
Euclidean geometry to such a hollow geometry by an inversion at the surface of the globe. This
inversion maps the point at infinity of Euclidean space into the center of the sphere. If the laws
of motion of Newtonian mechanics are transformed as well according to the rules of coordinate
transformations (tensor calculus), then all the physical laws of mechanics hold as before, and no
empirical difference can be found. Thus, the same physical facts have been represented in different
coordinates. As we have applied a nonlinear coordinate transformation, however, in these new
coordinates the laws of motion become complicated, and the Euclidean coordinates are therefore
preferable. That’s all. The question of whether the hollow geometry is the real geometry, is in this
context pointless, because it confuses reality with its description.
55Hans Reichenbach, Philosophie der Raum-Zeit-Lehre, Berlin and Leipzig, de Gruyter, 1928;
reprinted as Vol. 2 of his Gesammelte Werke, Braunschweig, Vieweg, 1977; English translation The
Philosophy of space and time, Dover, 1957.
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5.9 Abstract Space Concepts

Modern mathematics further proceeded and advanced in the conceptualization of space
from the basis established by Riemann.56 Starting from the ideas of Riemann, Richard
Dedekind and Georg Cantor (1845–1918) developed the concept of a set, a more abstract
concept than that of a manifold.57 A set is simply a collection of elements,58 initially
without further structure. From a set G, one can then construct a topological space by
defining neighborhood relations between the elements. Such a structure is characterized
by axioms. For this purpose, certain subsets of the set are distinguished as open. The
conditions that must be satisfied are that both the empty set and the entire set G itself are
open and that furthermore the intersection of finitely many and the union of countably
many open sets are open again. These are the axioms of a topological space, a concept
introduced and developed by Felix Hausdorff (1868–1942). Otherwise, everything is
arbitrary, quite in Hilbert’s sense. In particular, no substantive interpretation of this formal
structure is required. Even trivial extreme examples are not excluded. For example, the
open sets of a topology can consist only of G itself and the empty set, or vice versa,
all subsets of G could be open. These examples are important for an understanding of
the scope of the concept. Also, the n-dimensional Euclidean space becomes a topological
space, when we declare all distance balls, that is, all sets B.p; r/ of points that have a
Euclidean distance less than a certain positive number r from a given point p, as open, and
then further, all sets obtained from iterated finite intersections or countable unions of such
distance balls. A mapping f between topological spaces is then called continuous if the
inverse image of every open set U, i.e. the set of points which are mapped by f to U, is
again an open set.59 ;60 In particular, the concept of continuity is thus a topological, not a
purely set-theoretic concept.

Other conditions that can be imposed, but which go beyond continuity, require
additional structure on the topological space G. Here the mathematics of the twentieth
century offered many opportunities and examined many structures. Based on Riemann’s
considerations, the formal concept of a manifold has been made formally precise by David

56A reference for this section is Jürgen Jost, Mathematical concepts, Berlin etc., Springer, 2015.
57On the history of the set concept, see for example José Ferreiros, Labyrinth of Thought. A History
of Set Theory and its Role in Modern Mathematics. Basel, Birkhäuser, 1999.
58The foundational issues connected with the set concept are not relevant for our purposes.
59This includes and generalizes the well-known Weierstrass "� ı-criterion of analysis, see below.
60Extensive material on these notions and their history can be found in the new edition of Felix
Hausdorff, Grundzüge der Mengenlehre (1914) at http://www.hausdorffedition.de with detailed
commentaries on the background in Walter Purkert, Historische Einführung, and a description of
the evolution of the neighborhood axioms in Frank Herrlich e. a. Zum Begriff des topologischen
Raumes. Section 3.2, Fundamentaleigenschaften von Umgebungssystemen, treats the relationship
discussed in the text with the neighborhood axioms in R

n historically, on the basis of Hausdorff’s
own presentation in his course of the summer term 1912.

http://www.hausdorffedition.de
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Hilbert, Hermann Weyl and others.61 A manifold M of dimension n is a topological space
that is characterized by the following property: Locally, by local coordinates, it can be
bijectively related to the model space, the Euclidean space of dimension n, and the various
such possibilities, that is, different choices of local coordinates, depend continuously
on one another. This is now no more a simple concept, and the example which we
have invoked already several times may illustrate this. We look at the earth’s surface,
represented by a spherical globe. Portions of this globe can be represented as maps in
an atlas. The map image is two-dimensional Euclidean, and one can pass from one to
another map through a transformation of their mutual overlap that is continuous in both
directions.

A few more comments on the mathematical problem of the manifold concept62: For
general topological spaces, it makes no sense to speak of a dimension. The concept of
dimension arises only from the coordinate reference to a model space underlying the
manifold concept. That the dimension of a manifold is uniquely determined is not evident,
however. There is, in principle, the possibility that a manifold could be coordinatized
locally by Euclidean spaces of different dimensions. As already explained above on p. 49,
Luitzen E.J. Brouwer (1881–1966) in 1911 succeeded in excluding such an ambiguity.
Thus, each manifold possesses a unique dimension. Felix Hausdorff, the founder of
topological set theory, pointed out that the condition has to be included in the axioms that
any two different points of the manifold must possess disjoint coordinates neighborhoods,
i.e. that the coordinate descriptions must be fine enough to separate points from each other.

Also, an alternative, combinatorial approach to the manifold concept has been devel-
oped. Here the manifold, instead of being covered by coordinates neighborhoods, i.e.
being locally described by n independent functions, is seamlessly assembled from
topologically identical pieces, the so-called simplices, which can only touch at their faces,
but otherwise are disjoint. For example, a two- dimensional manifold like the already
discussed sphere can be assembled from small curvilinear triangles. In higher dimensions,
however, difficulties arise the investigation of which led to the development of the field of
combinatorial topology.

Finally, we speak of a differentiable manifold if the transitions between different
coordinate systems are always differentiable. The remarkable thing about this concept
is that the differentiable structure is not seen from consideration of a single coordinate
system, but only from the relations between two coordinate systems. Thus, the condition
means that different coordinate descriptions have to be structurally compatible with each
other. A manifold thus carries a differentiable structure when it admits a set of coordinate
descriptions that are structurally compatible with each other and cover the entire manifold.

61For a detailed historical analysis see Erhard Scholz, The concept of manifold, 1850–1950. In: I.
James (Hrsg.), History of Topology, Amsterdam etc., Elsevier 1999, pp. 25–64.
62For details, we refer to Scholz, Manifold.
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The question under which conditions this is possible gives rise to the mathematical field
of differential topology.

A structure which is at first completely different is that of a metric space. Again, one
starts from a set G and assumes that one can define a distance function, which assigns
to two points P and Q from G a distance d.P;Q/. This distance then has to satisfy the
following axioms: The distance between two different points is always positive (only the
distance of a point to itself is zero). The distance is symmetric, i.e. the distance from P
to Q is the same as that from Q to P. For any three points P;Q;R the triangle inequality
has to hold , i.e., d.P;Q/ is not greater than the sum of d.P;R/ and d.R;Q/. These axioms
are again fulfilled for the Euclidean distance. Thus, the Euclidean space becomes a metric
space in the sense of this definition. Every metric space is a topological space, since, as
explained above in the Euclidean case, we can define the distance balls B.p; r/ and all
other sets generated from them by taking finite intersections and arbitrary unions as open
sets to satisfy the axioms. A mapping f between metric spaces is then continuous when
the usual 	-ı-criterion of analysis is fulfilled, i.e. when for every ball of radius 	 > 0 in
the image of f , we can find a ball of some radius ı > 0 that contains the preimage of the
former ball under f . In other words, we need to be able to always achieve that the images
of two points under f have an arbitrarily small distance from each other, as long as these
points themselves have a small enough distance.

Any Riemannian manifold is a metric space, since a metric in the sense of Riemann’s
conditions on a differentiable manifold generates a distance function that satisfies the
above axioms. However, the local coordinate representations of a differentiable manifold
are not given in metric terms, because the Euclidean distances in the local Euclidean
charts need not coincide with those on the manifold itself. In our example above, this
is the problem of cartography, namely that the mapping between the globe and the chart
in the atlas does not and, in fact, cannot, preserve distances, but necessarily distorts some
distance ratios.

Similarly, modern mathematics has axiomatically introduced a variety of different
geometric structures. This approach, which is particularly associated with Hilbert, was
systematised by Bourbaki (the pseudonym of a group of French mathematicians) after
the Second World War, as already mentioned above, and declared the basis for all of
mathematics. Although later, counter-movements were formed and the influence of this
structural and axiomatic direction has by now significantly declined, it has nevertheless
influenced the development of mathematics in many ways, especially in the areas of
algebraic geometry, arithmetic and functional analysis. As outlined, Riemann, by his
elaboration of abstract conceptual aspects, should be considered as the first pioneer of
modern structure mathematics. In Riemannian geometry itself, however, this abstract
approach has then become less important, at least in recent times. Here a significant
question guiding research is the relationship between the curvature of a Riemannian
manifold, which is an infinitesimal quantity, and the global topological structure of this
manifold, that is, the relationship between the two main basic concepts that Riemann had
introduced.
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Riemannian geometry today is a central and essential part of mathematics, with many
connections to other fields. This is uncontroversial. The philosophical debates and
controversies are largely decided. Although modern physics is still struggling with
the fundamental problem of the unification of all forces, specifically on one hand the
electromagnetic, weak and strong interactions, which are already unified in the so-called
Standard Model, and gravity on the other hand, it is also undisputed that Riemannian
geometry provides an essential formalism for this purpose.

A sketch of the state of research can therefore only mean to outline the basic ideas
and statements of the various contemporary research directions to the extent that this is
at all possible without the use of a specialized research formalism and a correspondingly
developed terminology.

The purpose of this section can thus consist only in explaining the key concepts and
results, but not in tracing their historical development. For details and literature references,
we need to refer to the monographs and surveys listed in the bibliography.

6.1 The Global Structure of Manifolds

A central and guiding question of more recent research is the relationship between the
topological structure of a manifold and the Riemannian metrics that it can carry. We
had already explained in the presentation of Riemann’s considerations that the spherical
surface, a certain two-dimensional manifold, cannot carry any metric with negative
or vanishing curvature. It was then natural to ask corresponding questions in higher
dimensions. However, it then needs to be specified in the first place what we mean by
negative or positive curvature because the Riemannian curvature is given by a tensor
in higher dimensions and not by a single number. From this tensor, numbers can be

© Springer International Publishing Switzerland 2016
B. Riemann, On the Hypotheses Which Lie at the Bases of Geometry,
Classic Texts in the Sciences, DOI 10.1007/978-3-319-26042-6_6
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obtained in different ways. The most important possibility, which also is consistent with
how Riemann himself had conceived the curvature, as explained in Section 4.4.9, is
to measure the curvature of two-dimensional substructures of the manifold. This is the
so-called sectional curvature, i.e. the curvature of infinitesimal planes spanned by two
independent directions. Because these planes are surfaces, i.e. two-dimensional structures,
their curvatures are reduced to single real numbers. One says then that the Riemannian
manifold carries negative sectional curvature if in all points for all such planes, the
curvature is negative. With this notion, one can then show that, for example, the higher-
dimensional analogues of the spherical surface, the so-called spheres, likewise cannot
carry a metric of negative curvature. More generally, the existence of a metric with
sectional curvature of fixed sign, whether this is positive or negative, leads to strong
topological constraints on the underlying manifold. This is important for an understanding
of possible space structures. The theory of negatively curved metrics also has an intimate
connection to the theory of dynamical systems. The reason is that, with negative curvature,
geodesics, i.e. shortest connections, i.e. analogues of Euclidean straight lines that start
at the same point, diverge exponentially instead of only linearly as in the Euclidean
case. This exponential divergence corresponds exactly to the exponential amplification of
even the smallest differences, which is characteristic of so-called chaotic dynamics. The
geodesic flow, i.e. the tracing of geodesic lines, in spaces of negative curvature is therefore
an example of a chaotic dynamical system, and as a result, the mathematical methods
developed for this purpose can be applied for the study of such geometries, and vice versa.
Riemannian geometry thus provides an important example of a chaotic dynamical system
from which new insight into chaos can be obtained. The theory of Riemannian manifolds
of positive curvature, on the other hand, leads in a completely different direction. If the
curvature is not only positive but also almost constant, the underlying space must have
the topological structure of a sphere, as we know since the basic spheres theorems of
Rauch, Klingenberg and Berger from the 1960s. Nevertheless the theory of spaces of
positive curvature currently is far less completed than that of negatively curved spaces. The
spheres themselves in any case even carry a metric of constant curvature, and the spaces of
constant curvature spaces are important models in geometry, with whose properties then
those of other Riemannian manifolds can be compared. The classification of spaces of
constant curvature itself, be it positive, negative, or zero, the so-called space forms, has
been completed long ago. As had already been recognized by Riemann and Helmholtz,
these are precisely those spaces in which the free mobility of rigid bodies is possible. The
issue here, however, was essentially a topological or group theoretical one. The core of the
problem was that one can obtain new spaces of constant curvature and more complicated
topological types from a model space, i.e. the sphere or the Euclidean or hyperbolic
space, by forming quotients. Consider for illustration a two-dimensional example, which,
however, generalizes to any dimensions in the same way. We take the sphere and identify
diametrically opposed points, the so-called antipodes, with each other. For instance, we
identify the north pole with the south pole. In this manner, we construct a new space,
the so-called projective plane, or the space of elliptic geometry, each point of which
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corresponds to a pair of points, namely a pair of antipodes, on the spherical surface that
we started with. The group-theoretical aspect of this structure arises from the fact that
the motion of the sphere which transports each point to its antipode leaves the distance
relationships unchanged, as the distance between two points is the same as that between
their antipodes. Such motions of a space that leave the distance relationships invariant are
called isometries. The isometries form a group, because the successive application of two
isometries is an isometry again. This was already the underlying ideas of the theories of
Felix Klein and Sophus Lie.

Similarly, the shifts (translations) of the Euclidean plane form a group. A subset
of this translation group is, for example, formed by those translations that change the
two coordinates of a point by integer amounts (rather than by general real amounts),
because the composition of two such integer shifts again yields an integer shift. If one
now identifies any two points in the plane that can be transferred into each other by
such an integer translation, or, what amounts to the same thing according to the above,
whose coordinates differ only by integers from each other, we obtain a new surface of
the connectivity conditions of the ring surface. Such a surface is called a torus. Just as
the Euclidean plane, such a torus also carries a metric of zero curvature (although this
cannot be a realized as the metric of a surface in three-dimensional Euclidean space; it
can, however, be realized in four-dimensional Euclidean space, simply as the product of
two circles in two Euclidean planes). The hyperbolic non-Euclidean plane also permits
such quotients. In particular, this yields an intimate connection with the probably most
important of the mathematical theories developed by Riemann, that of the Riemann
surfaces, so named in his honor. In fact, each such quotient carries in a natural way
the structure of a Riemann surface, and the collection of such surfaces then leads to
Riemann’s concept of a moduli space. In any case, the classification of spaces of constant
curvature, or in a group-theoretic formulation of the classification of discrete subgroups
of the isometry group of the sphere, Euclidean and hyperbolic space, have been solved
by mathematicians.1 The relationship between Riemannian geometry and group theory is,
however, more general. In addition to the model spaces of constant curvature, there are
also other Riemannian manifolds with transitive isometry groups, i.e. , where any point
can be mapped to any other by a suitable isometry. This leads then to the classification
theory of Lie groups, because isometry groups are groups of transformations in the sense
of Lie, and the theory of symmetric spaces,2 because this is the name of such spaces, and
their quotients by discrete groups of isometries. These theories have been developed in
particular by Killing, Cartan and Weyl. The symmetric spaces represent an important class

1See, for example, the collection Raumtheorie, ed. Hans Freudenthal, Darmstadt, Wiss. Buchges.,
1978, which, however, leads into research directions that are somewhat off the main courses
of modern geometry, or the more mainstream treatment in Joseph A. Wolf, Spaces of constant
curvature, New York, McGraw-Hill, 1967.
2See p. 133 above.
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of model spaces in Riemannian geometry. In addition, they also have deep relationships
with number theory which have turned out to be important for mathematical research in
the twentieth century. This will not be pursued here, however. Recalling the fact that above
we have constructed the torus with the help of the integers must suffice here as a simple
example. Anyway, this indicates a deep and fundamental unity of algebraic, geometric and
analytic structures which has been decisively inspired by the life work of Riemann, and it
has motivated the probably most important parts of modern mathematical research.

We have presented the Riemannian sectional curvature concept as a way to express
the curvature behavior of a manifold in terms of numbers. For a Riemannian manifold of
dimension n, we obtain in this way for each point n.n � 1/=2 numbers, because there are
that many independent plane directions at a point (see Section 4.4.9 for the mathematical
details). Averaging can reduce this to fewer numbers. Averaging over all planes containing
a fixed direction, we get the so-called Ricci tensor, which at each point and in each
coordinate frame is then given by n numbers, the number of independent directions at
each point. By averaging over all these directions, we obtain a single number at each
point, the so-called scalar curvature. If we finally integrate the scalar curvature over the
points of the manifold, then only a single number remains for the entire manifold, the so-
called total curvature. Of course, each such averaging step is a coarsening. Accordingly,
the object classes become more general. For example, there are many more manifolds
that can carry a metric of positive scalar or Ricci curvature, than those with positive
sectional curvature. In dimensions greater than 2, surprisingly, as shown by Lohkamp,
each manifold can even carry a metric of negative Ricci curvature. This means that the
existence of a metric of negative Ricci curvature implies no structural restrictions on a
manifold. The situation is different with positive Ricci curvature. An important current
research activity systematically studies those spaces that permit a metric with positive
Ricci curvature. By now, many mathematical methods have been developed and many
insights into the structure of such spaces have been obtained. Somewhat surprisingly,
the picture here is much clearer than for spaces with a Riemannian metric of positive
sectional curvature, although the latter is a stronger condition than the former. If we were
to summarize the current state of research in Riemannian geometry and its extensions, then
we should say that the structural theory of spaces that admit either negative (or, somewhat
more generally, nonpositive) sectional curvature or positive Ricci curvature is quite well
developed. Also, the investigation of the Ricci curvature for manifolds of dimension 3 has
recently led to the solution of one of the most difficult problems of topology and one of
the most famous problems in mathematics in general, the so-called Poincaré conjecture, by
Perel’man. Although not every three-dimensional manifold can carry a metric of positive
Ricci curvature, nevertheless by a change of the metric toward constant Ricci curvature, the
underlying manifold can be broken up into parts that can then be equipped with constant
Ricci curvature metrics and which for this reason can be classified in three dimensions.
Here we see a fundamental idea, especially developed by Shing-Tung Yau, that brings
topology, geometry and calculus together, and which has also led to the solution of many
other important problems. The concept of a manifold as such does not yet contain a metric.



6.2 Riemannian Geometry and Modern Physics 151

One can then turn this around in the sense that one and the same manifold as a topological
object can carry many different Riemannian metrics. Now one can try, and this is the
fruitful idea, to select among these many possible metrics a particularly favorable metric
by means of an optimization principle. If one has found such a metric, and this is usually
the essential technical difficulty, such a metric as a solution of an optimization problem
then possesses specific properties, which make it then possible to draw conclusions on the
structure of the underlying manifold. It should be noted that this is not a logical circle,
because in order to demonstrate the existence of an optimal metric, one needs to use the
properties of the manifold. The optimal metric allows one then to derive other properties
from these underlying properties which by using alternative methods are typically much
more difficult or impossible to gain. In the reverse direction, one can also use topological
methods to obtain a lot of geometric information on Riemannian manifolds, as has been
demonstrated in particular by Mikhail Gromov.

6.2 Riemannian Geometry andModern Physics

The concepts of Riemannian geometry are fundamental not only for the general theory of
relativity, but also essential for the modern quantum field theory and theoretical elementary
particle physics, from the so-called standard model to the latest developments, such as
string theory.

To discuss this, we need an important generalization of the concept of a manifold,
that of a fiber bundle. As explained earlier, a manifold is a collection of distinct points
with qualitative positional relationships. This concept can now be extended by taking
another object instead of a point. Examples of such objects that are particularly important
for geometry and theoretical physics are Lie groups and vector spaces. Such an object
represents the model of what is called a fiber and a fiber bundle is then a collection of
copies of the fiber, in a manner analogous to a manifold. If we suppress the structure of
the fiber and understand those copies only as points, we obtain a manifold again. This
manifold parametrizes the collection of fiber specimens. However, the relative positions
of the various fibers have yet to be specified. This means that one must also specify how
to pass from a specific element of one fiber to a certain element of another fiber. The
concept that expresses this is called the connection of the fiber bundle. It can be seen as
a generalization of the above-discussed parallel transport of Levi-Civita, which expresses
how to transport a directional element at a point into a directional element at another
point, by parallel transport of this element along a given curve (see Definition 4.3 and the
subsequent discussion in Section 4.4.7). The directional elements provide an important
example of a fiber bundle, the so-called tangent bundle of the manifold. The directional
elements at a point of the manifold form the fiber belonging to this point, called the
tangent space of the point. The abstract fiber here is a vector space of the same dimension
as the underlying manifold, as the number of linearly independent directions at a point,
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i.e. the dimension of the tangent space, provides just the dimension of the manifold. More
generally, a fiber bundle whose fibers are vector spaces is a vector bundle

We thus have seen one of the most important examples of a fiber, namely a vector
space. The other example is a Lie group. The two examples are interdependent, because the
structure-preserving transformations of a vector space form a Lie group, and conversely,
a Lie group can operate on a vector space. One speaks here of a representation of the Lie
group.

The Lie group as an abstract object thus becomes concrete through its operation, its
representation on a vector space. This is now fundamental for theoretical particle physics.
An elementary particle, or better, a particle type as the electron or a particular quark, is
conceptualized by its symmetries and thus distinguished from other particles with other
symmetries. The symmetries can in turn by expressed via a Lie group. But the particle
is only realized through the action of this group on a vector space, and the observation
data of particle scattering experiments are interpreted in this framework. The particle as
such is invariant, but in the observation that invariance is broken, and one finds a particular
element of the fiber of a vector space bundle. The fiber thus expresses the various possible
manifestations of the particle. This might now suggest a certain analogy with the concept
of a manifold as a juxtaposition of points, even if the viability of this analogy is rather
unclear and leads into basic issues of the unification of the fundamental forces. In the same
manner as the elements of the fiber correspond to the different concrete manifestations of
a particle which by its intrinsic nature is symmetric, that is, to the observed or possible
breakings of this symmetry, a point in a Lorentzian manifold could likewise be interpreted
as a concrete phenomenal appearance of a state that by itself is indifferent regarding its
position in space and time.

However, the unification of the fundamental forces seems to be more difficult. One of
the currently most popular approaches, string theory, no longer operates with pointlike
particles, but its elementary objects, the strings, have the structure of a loop. Different
particles then correspond to the different excitation or vibrational states of such strings. If
such a loop, i.e. a one-dimensional object, moves in space-time, it sweeps out a surface
which can be interpreted again as a Riemann surface. Since, according to the principles
of quantum mechanics, we cannot specify which surface is traversed, but only know that
smaller areas, more precisely those surfaces with a smaller action integral, are more likely
than larger ones, we have to form a so-called Feynman integral over all possible Riemann
surfaces. The underlying mathematical structure leads to a fascinating convergence of
a wide range of mathematical fields. The consideration of an additional symmetry, the
so-called supersymmetry, between bosonic or interaction particles on the one hand and
fermionic or matter particles or on the other hand leads to superstring theory. This requires,
however, for reasons of mathematical consistency, no longer a four-dimensional, but
rather a ten-dimensional space-time continuum. The six extra dimensions are thought to
be so tiny that they are macroscopically not visible. Because of the occurring particle
symmetries, these small spaces have to carry a certain Riemannian metric with vanishing
Ricci curvature, named after their discoverers the Calabi-Yau metric.
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Riemann had the vision of uniting geometry, physics, and natural philosophy. He
himself could not realize this dream. Today, 150 years later, we still have not fully
achieved this unification, but we may have come somewhat closer to it. Whatever has been
accomplished depends in essential ways on the fundamental concepts and is permeated by
the remarkable ideas that were put forward by Riemann.



7Selected Bibliography with Commentaries

This bibliography is not intended to be complete. Literature concerning special aspects is
listed in the footnotes. A superscript in front of a year denotes the number of the edition;
for instance, 21990 means “2nd ed., 1990”.

7.1 Different Editions of the Text

The original source is Riemann’s habilitation lecture on June 10, 1854. It was published
only after Riemann’s death by Richard Dedekind in 1868:

Bernhard Riemann, Über die Hypothesen, welche der Geometrie zu Grunde liegen.
(Aus dem Nachlaß des Verfassers mitgetheilt durch R. Dedekind). Abh. Ges.
Gött., Math. Kl. 13 (1868), 133–152

Reprinted in
Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nach-

lass. Herausgegeben unter Mitwirkung von Richard Dedekind von Heinrich
Weber, 1. Aufl., Leipzig, Teubner-Verlag, 1876, 254–269; 2. Aufl. bearbeitet von
Heinrich Weber, Leipzig, Teubner-Verlag, 1892, 272–287

On the basis of the edition of collected works from 1892 and the supplements from
1902 (Bernhard Riemann, Gesammelte mathematische Werke. Nachträge. Herausgegeben
von M. Noether und W. Wirtinger. Leipzig, Teubner-Verlag, 1902), there are the more
recent editions

Bernhard Riemann, Collected works, with a new introduction by Hans Lewy, New York,
Dover, 1953

Bernhard Riemann, Gesammelte mathematische Werke und wissenschaftlicher Nach-
lass und Nachträge. Collected Papers. Nach der Ausgabe von Heinrich Weber
und Richard Dedekind neu herausgegeben von Raghavan Narasimhan, Berlin etc.,
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Springer-Verlag, and Leipzig, Teubner-Verlag, 1990, 304–319 (this edition has a
double pagination, in addition to the sequential one also a reproduction of the
Weber-Dedekind edition from 1892)

Riemann’s habilitation lecture is also reproduced as Bernhard Riemann. Über die
Hypothesen, welche der Geometrie zu Grunde liegen. Neu herausgegeben und
erläutert von H. Weyl, Berlin, Springer-Verlag, 1919, 31923.

This edition with Weyl’s commentary is reproduced in turn in: Das Kontinuum und
andere Monographien, New York, Chelsea Publ. Comp., 1960, 21973. The preface and
the commentary by Hermann Weyl are also reprinted in the Narasimhan edition, 740–768

C. F. Gauß/B. Riemann/H. Minkowski, Gaußsche Flächentheorie, Riemannsche Räume
und Minkowskiwelt. Herausgegeben und mit einem Anhang versehen von J. Böhm
und H. Reichardt, Leipzig, Teubner-Verlag, 1984, 68–83

Translations can be found in
Bernhard Riemann, Œuvres mathématiques, traduites par L. Langel, avec une préface

du M. Hermite et un discours de M. Félix Klein, Gauthier-Villard, Paris, 1898,
reprinted by Ed. Jacques Gabay, Paris, 1990, 2003, also available from Univ.
Michigan Press, 2006

William Kingdon Clifford (1845–1879) in Nature, Vol. VIII, Nos. 183, 184, 1873, pp.
14–17, 36, 37; reproduced in W. Clifford, Mathematical papers, edited by Robert
Tucker, with an introduction by H.J. Stephen Smith, London, MacMillan and Co.,
1882, pp. 55–71 (this translation is reproduced here)

David E. Smith, A source book in mathematics, McGraw-Hill, 1929, and Mineola,
N. Y., Dover, 1959, 411–425

Michael Spivak, A comprehensive introduction to differential geometry, Vol. 2, Berke-
ley, Publish or Perish, 1970 (with commentary).

Riemann’s article on heat diffusion, Commentatio mathematica, qua respondere ten-
tatur quaestioni ab Illma Academia Parisiensi propositae: “Trouver quel doit être l’état
calorifique d’un corps solide homogène indéfini pour qu’ un système de courbes isother-
mes, à un instant donné, restent isothermes après un temps quelconque, de telle sorte
que la température d’un point puisse s’exprimer en fonction du temps et de deux
autres variables indépendantes”, in which Riemann translates his geometric concepts
into a mathematical formalism, can be found in Gesammelte Werke, 2. Aufl., 423–436,
with extensive commentaries by the editors, ibid. 437–455 (according to Narasimhan’s
pagination). There is a German translation of the Latin text by O. Neumann in the
volume edited by Böhm and Reichardt, pp. 115–128. A partial translation with a detailed
commentary is in Spivak, Vol. 2.1 + The texts of Helmholtz appeared originally as

1As Spivak writes in his preface “the fact that I don’t know Latin didn’t hinder me much”, you
should not expect high philological accuracy.
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Hermann Helmholtz, Ueber die thatsächlichen Grundlagen der Geometrie, Verhand-
lungen des naturhistorisch-medicinischenVereins zu Heidelberg, Bd. IV, 197–202,
1868; Zusatz ebd. Bd. V, 31–32, 1869

Hermann Helmholtz, Ueber die Thatsachen, die der Geometrie zu Grunde liegen,
Nachrichten der Königl. Gesellschaft der Wissenschaften zu Göttingen 9, 193–
221, 1868,

quoted here after
Hermann Helmholtz, Wissenschaftliche Abhandlungen, Bd. 2, Leipzig, Johann Ambro-

sius Barth, 1883.2

Moreover
Hermann Helmholtz, Ueber den Ursprung und Sinn der geometrischen Axiome, in:

Populäre wissenschaftliche Vorträge, Heft III, 21–54, and in ders., Vorträge und
Reden, Bd. II, Braunschweig, 1–31, 1884, which I quote after

Hermann von Helmholtz, Schriften zur Erkenntnistheorie. Kommentiert von Moritz
Schlick und Paul Hertz. Herausgegeben von Ecke Bonk, Wien/New York,
Springer, 1998, which is the reprint of the edition on the occasion of the 100th
anniversary of his birth, Berlin, Springer, 1921. Another new edition is

Hermann von Helmholtz, Schriften zur Erkenntnistheorie. Herausgegeben von Moritz
Schlick und Paul Hertz, Saarbrücken, Dr. Müller, 2006

Furthermore
Hermann Helmholtz, Ueber den Ursprung und Sinn der geometrischen Sätze; Antwort

gegen Herrn Professor Land, in his, Wiss. Abh., Vol. II (An English translation
appeared in Mind 3, 212–225, 1878),

also reproduced together with his other writings on the subject in
Hermann von Helmholtz, Ueber Geometrie, Darmstadt, Wiss. Buchges., 1968.
A slightly shortened version can also be found in the appendix of
Hermann von Helmholtz, Die Thatsachen in der Wahrnehmung, Berlin, A. Hirschwald,

1879, which in turn is reproduced in his Schriften zur Erkenntnistheorie
Hermann Helmholtz, Gesammelte Schriften, mit einer Einleitung herausgegeben von

Jochen Brüning, 7 Vols. in 19 Subvols., Hildesheim, Olms, 2001ff
is not yet complete.

2On p. 610, however, the year of publication of the thatsächlichen Grundlagen seems incorrect,
1866 instead of 1868. In particular, Helmholtz mentions there, on p. 611, already the publication of
Riemann’s text, which took place only in 1868.
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7.2 Bibliographies

There is an extensive bibliography on Riemann, compiled by W. Purkert and E. Neuen-
schwander, in Narasimhan’s edition of the collected works. The mathematical research
articles on Riemannian geometry are far too numerous to list them in a bibliography.
Newer contributions are collected in the preprint server http://arXiv.org in the category
Differential Geometry

7.3 Introductions

The essential source for Riemann’s life remains the biography written by Dedekind for the
collected works. Some further biographical details can be found in

Erwin Neuenschwander, Lettres de Bernhard Riemann à sa famille, Cahiers du
Séminaire d’Histoire des Mathématiques 2, 85–131, 1981

Scientific biographies of Riemann are
Felix Klein, Riemann and his significance for the development of modern mathematics,

Bull. Amer. Math. Soc. 1, no. 7, 165–180, 1895 (translated from the German
Riemann und seine Bedeutung für die Entwicklung der modernen Mathematik,
J-Ber. Deutsche Mathematiker-Vereinigung 4, 71–87, 1894/95, reprinted in the
same , Gesammelte mathematische Abhandlungen, Bd. 3, 482–497, Berlin,
Springer, 1923)

Hans Freudenthal, Riemann, Georg Friedrich Bernhard, Dictionary of Scientific
Biography, Vol. 11, New York, 447–456

L.Z. Ji, S.T. Yau, What one should know about Riemann but may not know?, to appear
Detlef Laugwitz, Bernhard Riemann 1826–1866. Turning points in the conception of

mathematics, (translated from the German), Boston, Birkhäuser, 2008
Michael Monastyrsky, Riemann, topology, and physics, Boston etc., Birkhäuser, 32008

The influence of Riemann’s ideas is also discussed in
Krysztof Maurin, The Riemann legacy. Riemannian ideas in mathematics and physics

of the 20th century, Dordrecht, Kluwer, 1997

We now mention some treatises on the history of mathematics.
The still most important one for our topic remains

Felix Klein, F. Klein, Development of mathematics in the 19th century, with a preface
and appendices by Robert Hermann. (Translated by M. Ackerman from the
German Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert,
2 Vols., Berlin, Springer, 1926/7, reprinted as a single vol., Berlin etc., Springer,
1979.) Lie Groups: History, Frontiers and Applications, IX. Math. Sci. Press,
Brookline, Mass., 1979. About Riemann, see in particular pp. 175–180. Klein
was not only an important mathematician himself, but he was also in the position
to present the development of mathematics from his personal acquaintance with
most of the key protagonists.

http://arXiv.org
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For a general and comprehensive history of mathematical thinking, we refer to
Morris Kline, Mathematical thought. From ancient to modern times, 3 vols., Oxford,

Oxford Univ. Press, 21990
A short treatise on the history of mathematics is

Dirk Struik, A concise history of mathematics, New York, Dover, 41987
From a group of authors:

Jean Dieudonné, Abrégé d’histoire des mathématiques: 1700–1900, revised ed., Editons
Hermann, Paris, 1996 (German translation of the original edition, Paris, Her-
mann, 1978: Geschichte der Mathematik 1700–1900. Ein Abriß, Braunschweig,
Wiesbaden, Vieweg, 1985); in particular Paulette Libermann, Chap. 9: Géometrie
differentielle

On non-Euclidean geometry, with translations of the original articles on non-Euclidean
geometry by Bolyai and Lobachevski

Roberto Bonola, Non-Euclidean geometry. A critical and historical study of its develop-
ment, translated from the Italian and with additional appendices by H.S. Carslaw.
With an introduction by Federico Enriques. With a supplement containing the
Dr. George Bruce Halsted translations of The science of absolute space by John
Bolyai and The theory of parallels by Nicholas Lobachevski, New York, Dover,
1955

Several aspects of non-Euclidean geometry were anticipated by earlier mathematicians, in
particular Gerolamo Saccheri and Johann Heinrich Lambert, see

Gerolamo Saccheri, Euclid vindicated from every blemish, edited and annotated by
Vincenzo De Risi. Translated by G.B. Halsted and L. Allegri. In: Classic Texts
in the Sciences (O. Breidbach, J. Jost, eds.), Basel, Birkhäuser, 2014

and
Johann Heinrich Lambert, Theorie der Parallellinien, edited and annotated by Vincenzo

De Risi. In: Classic Texts in the Sciences (O. Breidbach, J. Jost, eds.), Basel,
Birkhäuser, to appear

Further detailed bibliographical references are for example given in
Felix Klein, Vorlesungen über nicht-euklidische Geometrie, Berlin, Springer, 1928, in

particular p. 275f., and concerning the role of Riemannian geometry, pp. 288–293
Some newer presentations of this topic:

J.J. Gray, Ideas of Space. Euclidean, Non-Euclidean, and Relativistic. Oxford Univ.
Press, 21989,

J.J. Gray, Worlds Out of Nothing. A Course in the History of Geometry in the 19th
Century. Berlin etc., Springer, 2007.

An introduction to the theory of relativity by its creator:
Albert Einstein, Relativity. The special and general theory, translated from the German

by R. Lawson, New York, Henry Holt, 1920; various subsequent editions and
reprints.

The history of ideas aspects are treated in Oskar Becker, Grundlagen der Mathematik,
loc. cit.
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This leads us to some works that analyze the problem of space from the perspective of the
history of ideas. A fundamental treatise is

Max Jammer, Concepts of space: History of theories of space in physics, Cambridge
MA, Harvard Univ. Press, 21980

A wealth of material is contained in
Alexander Gosztonyi, Der Raum. Geschichte seiner Probleme in Philosophie und

Wissenschaften, 2 Vols., Freiburg, München, Karl Alber, 1976
A more recent work that develops the relevant physical ideas and the different natural
philosophical positions is

Martin Carrier, Raum-Zeit, Berlin, de Gruyter, 2009
On the philosophy of mathematics, we quote the fundamental monograph

Hermann Weyl, Philosophy of mathematics and natural science, translated from the
German by O. Helmer, Princeton, Princeton Univ. Press, 22009

as well as
Léon Brunschvicg, Les étapes de la philosophie mathématique, Paris, Presses Univ.

France, 31947
Roberto Torretti, The philosophy of physics, Cambridge, Cambridge Univ. Press, 1999,

pp. 157–168, contains a thorough discussion of Riemann’s Hypothesen. Riemann
is also treated in detail in

Helmut Pulte, Axiomatik und Empirie. Eine wissenschaftstheoriegeschichtliche Unter-
suchung zur Mathematischen Naturphilosophie von Newton bis Neumann. Darm-
stadt, Wiss. Buchges., 2005, pp. 359–401.

We also mention
Peter Mittelstaedt, Philosophische Probleme der modernen Physik, Mannheim, Biblio-

graph. Inst, 21966

7.4 Important Monographs and Articles

On issues concerning the history of mathematics and philosophy
Luciano Boi, Le problème mathématique de l’espace, Berlin, Heidelberg, Springer,

1995
Joël Merker, Sophus Lie, Friedrich Engel, et le problème de Riemann-Helmholtz,

arXiv:0910.0801v1, 2009, a French translation with commentary of the Theorie
der Transformationsgruppen (Dritter und letzter Abschnitt, Abtheilung V) of
Lie and Engel with a detailed treatment of the considerations of Riemann and
Helmholtz

Karin Reich, Die Geschichte der Differentialgeometrie von Gauß bis Riemann (1828–
1868), Archive for History of Exact Sciences 11, 273–382, 1973

Erhard Scholz, Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré,
Boston etc., Birkhäuser, 1980
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Erhard Scholz, Herbart’s influence on Bernhard Riemann, Historia Mathematica 9,
413–440, 1982

Erhard Scholz, Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den
Grundlagen der Geometrie, Archive for History of Exact Sciences 27, 213–232,
1982

Andreas Speiser, Naturphilosophische Untersuchungen von Euler und Riemann, Jour-
nal für die reine und angewandte Mathematik 157, 105–114, 1927

Roberto Torretti, Philosophy of geometry from Riemann to Poincaré, Dordrecht etc.,
Reidel, 1978

André Weil, Riemann, Betti and the birth of topology, Archive for History of Exact
Sciences 20, 91–96, 1979; Postscript in Archive for History of Exact Sciences 21,
387, 1980

On the theory of general relativity and its mathematical penetration and its influence on
the development of geometry

Albert Einstein, Die Feldgleichungen der Gravitation, Sitzungsber. Preußische
Akademie der Wissenschaften 1915, 844–847

David Hilbert, Die Grundlagen der Physik, Königl. Gesellschaft der Wissenschaften
Göttingen, Mathematisch-Physikalische Klasse, 395–407, 1915; 53–76, 1917; a
revised version is reprinted in

David Hilbert, Die Grundlagen der Physik, Math. Annalen 92, 1–32, 1924, and in
David Hilbert, Gesammelte Abhandlungen, Bd. III, Berlin etc., Springer, 21970, S. 258–

289
Albert Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der

Physik 49, 769–822, 1916
The articles of Einstein on the theory of relativity are reprinted in
Albert Einsteins Relativitätstheorie. Die grundlegenden Arbeiten. Herausgegeben und

erläutert von Karl von Meyenn, Braunschweig, Vieweg, 1990
Hermann Weyl, Space, time, matter, translated from the German, revised ed., Mineola

NY, Dover, 1952 (a more recent version of the German original is Raum, Zeit,
Materie, ed. by Jürgen Ehlers, Berlin, Springer, 71988)

Hermann Weyl, Mathematische Analyse des Raumproblems, Berlin, Springer, 1923
Charles Misner, Kip Thorne and John Archibald Wheeler, Gravitation, New York,

Freeman, 1973

There exists an extensive literature on the history and the impact of the general theory of
relativity. Here, we only cite the collection

Jürgen Renn (ed.), The Genesis of General Relativity. Sources and Interpretations.
4 Bde. Berlin etc., Springer, 2007

with its detailed commentaries.
Some attempts at a philosophical analysis of contemporary physics are

Sunny Y. Auyang, How is quantum field theory possible?, New York, Oxford, Oxford
Univ. Press, 1995
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Bernard d’Espagnat, On physics and philosophy, Princeton, Oxford, Princeton Univ.
Press, 2006

Bernulf Kanitscheider, Kosmologie, Stuttgart, Reclam, 1984

On the current state of research in geometry and theoretical physics
Marcel Berger, A panoramic view of Riemannian geometry, Berlin etc., Springer, 2003
Pierre Deligne et al. (eds.), Quantum fields and strings: A course for mathematicians,

2 Bde., Princeton, Amer. Math. Soc., 1999
M. B. Green, J. H. Schwarz und E. Witten, Superstring theory, 2 Bde., Cambridge etc.,

Cambridge Univ. Press, 1987
S. W. Hawking und G. F. R. Ellis, The large scale structure of space-time, Cambridge

etc., Cambridge Univ. Press, 1973
Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, New York

etc., Academic Press, 1978
Jürgen Jost, Riemannian geometry and geometric analysis, Berlin etc., Springer, 62011
Jürgen Jost, Geometry and physics, Berlin etc., Springer, 2009
Jürgen Jost, Mathematical concepts, Berlin etc., Springer, 2015
Wilhelm Klingenberg, Riemannian geometry, Berlin, New York, de Gruyter, 1982
Roger Penrose, The road to reality. A complete guide to the laws of the universe,

London, Jonathan Cape, 2004
Steven Weinberg, The quantum theory of fields, 3 vols., Cambridge etc., Cambridge

Univ. Press, 1995, 1996, 2000
Eberhard Zeidler, Quantum field theory, 3 vols., Berlin etc., Springer, 2006 ff.



Glossary

Manifold Term for the continuous juxtaposition of points or elements, provided that
sufficiently small parts can be mapped bijectively, i.e. in an invertible manner, to a
portion of the Cartesian space by a tuple of numbers, the coordinates. The concept
of a manifold is purely topological, in the sense that it does not presuppose a metric
structure, and involves therefore only qualitative relations situation. Although a spatial
concept, the space imagined does not need to be the physical space. For instance, the
different color values constitute the elements of a manifold, the color space.

Coordinates Representation of a portion of a manifold by a domain in a Cartesian
space. The position of a point in an n-dimensional Cartesian space is specified by n
real numbers. These n numbers are then called the coordinates of the point on the
manifold corresponding to this point in the Cartesian space. coordinates thus provide
the possibility to describe the position of a point in a manifold by real numbers. This
description or specification of a point in a manifold is, however, not inherent in the
point, but only a convention. In different coordinates, one and the same point is
described by different numbers.

Dimension How many real numbers are required to represent each point in a manifold
uniquely by coordinates.

Metric Determination of the distances between the points of a manifold (or of a more
general metric space); axiomatically given mathematical structure formulating the
conditions for the notion of a distance (any two distinct points must always have a
positive distance from each other, which does not depend on the order of the two points.
and the triangle inequality holds, i.e. that the distance of two points from each other
cannot be larger than the sum of their distances from a third point).

Riemannian metric Quadratic form on a manifold, which allows for the computation of
the length of curves by integration along them. Moreover, when lengths can be assigned
to curves, the distance between two points is the smallest length among all the curves
connecting them. More precisely, we should speak of the quadratic form defining the

© Springer International Publishing Switzerland 2016
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metric , since the latter is an infinitesimal notion in distinction to the distance notion
that yields the metric.

Riemannian manifold manifold equipped with a Riemannian metric.
Curvature Measure for the deviation of a surface, or more generally, a manifold from a

flat, Euclidean shape.
Invariant Quantity that does not change under a class of transformations or that remains

the same in different descriptions. For instance, the dimension or the curvature of
a manifold do not depend on the choice of coordinates and are hence coordinate
invariant.

Surface theory Theory for the description of two-dimensional objects.
Non-Euclidean geometry Space structure in which the parallel postulate does not hold,

but all the other Euclidean axioms hold.
Parallel transport Transport of direction elements (tangent vectors) from one point of a

V Riemannian manifold to another one along some curve, such that their lengths and
the angles between them remain invariant.

Topology Theory of the qualitative relations between the points of a mathematical space.
Metric relations, however, are of a quantitative nature and therefore do not fall into the
realm of topology.



Biographical Outline and Chronological Table1

The historical events of the Napoleonic wars and the establishment of the German Reich
frame the life span of Riemann and the aftermath of the first and the preparations for the
second shaped the political and economic situation of the time, in which Riemann lived.
Of obvious importance for the understanding of the scientific development and the life of
Riemann was the situation in the German universities, especially Göttingen and Berlin, and
of course the general development of mathematics. This will be reflected in the following
chronological table.

1737: Opening of the University of Göttingen, where the role of science is
highlighted.

1801: Carl Friedrich Gauss’ “Disquisitiones arithmeticae” appear.
1806: Formal end of the Holy Roman Empire of the German Nation, as Emperor

Francis II. under the pressure of Napoleon lays down the German imperial
crown. Collapse of Prussia after the battle of Jena and Auerstädt. Napoleon
enters Berlin.

1807: In response to the inferiority of Prussia against Napoleon’s aggression
introduction of far-reaching reforms in Prussia by the Baron vom Stein.

1810: In the wake of these reforms Wilhelm von Humboldt initiates the founding
of the University of Berlin. His university constitution will become decisive
for the academic life in the nineteenth century in Germany.

1813: Beginning of the wars of liberation against France, in which also Riemann’s
father participates. Napoleon’s defeat in the Battle of the Nations near
Leipzig.

1The following facts about Riemann’s life are mostly taken from his biography written by Dedekind
in the Collected Works of Riemann. I have also used Laugwitz, Riemann. However, I did not check
the original sources systematically.
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1815: Final defeat of Napoleon and reorganization of Europe in the Congress
of Vienna. Founding of the German Confederation. The beginning of the
Restoration period shaped by the Austrian Chancellor Metternich.

1817: Establishment of the Ministry of Culture in Prussia, with Altenstein as its
the first and longtime head.

1818: Prussian Customs Act creates the conditions for the advancement of Prussia
as a leading economic power.

1819: Kingdom of Hanover receives Constitution.
1820: Vienna Final Act completed constitution of the German Confederation.
1826: Birth of Georg Friedrich Bernhard Riemann on September 17 as the eldest

son of the local Protestant minister in Breselenz near Dannenberg on the
river Elbe in the Kingdom of Hanover. Childhood in nearby Quickborn in
the Elbe lowland, where the father becomes head of the Parish and teaches
his children.

1827: Carl Friedrich Gauss’ “Disquisitiones generales circa superficies curvas”
create modern differential geometry.

1831: Student riots in Göttingen. Death of Hegel, which marks the end of
the height of German idealism. Faraday discovers the electromagnetic
induction.

1832: Goethe dies, bringing the Weimar Classicism to its end.
1834: German Zollverein under Prussian leadership. Death of Schleiermacher, the

founder of modern Protestant theology. Jacobi founds in Königsberg the
first Mathematical and Physical Seminar in Germany.

1837: End of the personal union between Hanover and Great Britain, since
Hanover does not allow the female succession of the British Queen
Victoria. The new Hanoverian King Ernest Augustus drives a reactionary
turn. Dismissal of the “Göttingen Seven” which include the physicist
Wilhelm Weber who had collaborated with Gauss, because of their protest
against the violation of the Constitution.

1840: Frederick William IV King of Prussia. He disappoints the expectations
placed on him for a liberal policy and pursues instead a conservative-
reactionary course. Riemann visits Hanover high school (until 1842) and
lives there with his Grandmother.

1841: Death of the architect Schinkel, who had built Berlin on behalf of the
Prussian Royal Family as a modern European capital with recourse on
many architectural styles.

1842: After the death of his grandmother Riemann attends Gymnasium in
Lüneburg (until 1846), whose director Schmalfuss recognizes and promotes
Riemann’s great mathematical talent.

1846: Death of Riemann’s mother. Riemann begins his studies at the University
of Göttingen, on his father’s wish first of theology, but soon switches to
mathematics.
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1847: Riemann moves to the University of Berlin and attends the Lectures of
Dirichlet and Jacobi and gets in contact with Eisenstein, which, however,
for personal reasons is not very fertile.

1848: The “Communist Manifesto” by Marx and Engels appears. Beginning of
revolutions in various countries, notably France, Austria (fall of Metter-
nich) and Prussia. Frankfurt National Assembly in St. Paul’s Church. The
annexation of Schleswig by Denmark leads to the 1st German-Danish War.
The Prussian National Assembly is dissolved. Election of Louis Napoleon
President of France.

1849: The Prussian King Friedrich Wilhelm IV rejects the imperial crown of
Lesser Germany offered by the Frankfurt National Assembly. Suppression
of uprisings in support of the constitution in various German states.
Riemann is an eyewitness to the March Revolution in Prussia and accepts
a short guard duty as a member of the student corps. Dissolution of
the National Assembly. Riemann returns to the University Göttingen,
where Weber regains his physics professorship and also promotes Riemann
personally.

1850: Under pressure from Austria, Friedrich Wilhelm IV abandons his efforts
concerning a new constitution for Germany. A Prussian Constitution comes
into effect. Clausius formulates the Second Law of Thermodynamics.
Riemann enters into the recently founded mathematical-physical seminar
in Göttingen. Dedekind begins his studies in Göttingen and becomes
Riemann’s lifelong friend.

1851: PhD of Riemann with Gauss.
1852: Louis Napoléon becomes the French Emperor Napoleon III. Dirichlet visits

Göttingen in the fall; many scientific discussions with Riemann.
1854: Habilitation of Riemann at the Faculty of Philosophy of the University of

Göttingen; Habilitation colloquium on June 10 on the subject “Ueber die
Hypothesen, welche der Geometrie zu Grunde liegen”.

1855: Riemann’s father and one of his four sisters die. Death of Gauss and
appointment of Dirichlet as his successor in Göttingen.

1856: Heine dies in Paris.
1857: Riemann becomes an associate professor in Göttingen. Death of Riemann’s

younger brother Wilhelm. Riemann takes over the financial care of his three
surviving sisters. The work “Theorie der Abelschen Funktionen” gives
Riemann high scientific recognition.

1858: Prince William takes over the government in Prussia for his incapacitated
brother Frederic William IV who is declared as unfit for government.
Riemann meets the Italian mathematicians Brioschi, Betti and Casaroti,
who visit the Göttingen. Dedekind accepts a chair at the Polytechnic in
Zürich and leaves Göttingen.
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1859: “On the Origin of Species” by Darwin founds modern evolutionary biology.
Death of Dirichlet and appointment of Riemann as his successor as chaired
professor. Riemann corresponding member of the Bavarian Academy and
the Berlin Academy; Travel to Berlin, accompanied by Dedekind. Riemann
full member of the Society of Sciences in Göttingen.

1860: Risorgimento and the Unification of Italy under the leadership of Piedmont.
Riemann visita Paris for a month and comes into contact with Parisian
mathematicians.

1861: Proclamation of the Kingdom of Italy. Due to an amnesty Wagner can
return to Germany, which he had had to leave for his participation in the
failed revolution of 1849 in Saxony.

1862: Bismarck appointed Prime Minister of Prussia. Marriage of Riemann with
Elise Koch. A pleurisy causes permanent damage to his lungs. First trip to
Italy, in the hope that the local mild climate is beneficial for his health.

1863: On the way back to Göttingen Riemann gets in close contact with the
mathematician Enrico Betti in Pisa. After two months in Göttingen new trip
to Italy, where his daughter Ida is born. Declines a position at the University
of Pisa. Riemann becomes a full member of the Bavarian Academy.

1864: 2nd German-Danish War. Maxwell formulates his theory of electromag-
netism.

1866: Prussia attains German supremacy after victory in the war against Austria.
Dissolution of the German Confederation. Prussia takes over the Kingdom
of Hanover. Riemann becomes a foreign member of the Paris Academy and
the Royal Society in London. During the first days of the war, he goes on a
new journey to Italy. Riemann dies on July 20 in Selasca at Lake Maggiore.

1867: Creation of the North German Confederation with Prussia as a hegemonic
power.

1868: Posthumous publication of Riemann’s habilitation lecture on the initiative
of Dedekind. Helmholtz’s “Ueber die Thatsachen, die der Geometrie zu
Grunde liegen” appears.

1871: After Prussia’s victory against France establishment of the German Empire
under Prussian leadership.

1876: The collected works of Riemann appear.
1884: Riemann’s daughter Ida (1863–1929) marries Carl David Schilling (1857–

1932) who had obtained his Ph.D. with Hermann Amandus Schwarz
(1843–1921) in Göttingen and will later become Director of the Seefahrtss-
chule in Bremen whence in 1890 also Riemann’s wife and his only
surviving sister Ida will move. The couple will have 5 children.

1892: 2nd edition of the collected works of Riemann.
1907–1916: Einstein is working on the general theory of relativity.
1990: New edition of the collected works of Riemann.
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