
Chapter 3
Stochastic Scheduling for a Network
of Flexible Job Shops

Subhash C. Sarin, Hanif D. Sherali, Amrusha Varadarajan, and Lingrui Liao

Abstract In this chapter, we address the problem of optimally routing and
sequencing a set of jobs over a network of flexible machines for the objective of
minimizing the sum of completion times and the cost incurred, assuming stochastic
job processing times. This problem is of particular interest for the production
control in high investment, low volume manufacturing environments, such as
pilot-fabrication of microelectromechanical systems (MEMS) devices. We model
this problem as a two-stage stochastic program with recourse, where the first-
stage decision variables are binary and the second-stage variables are continuous.
This basic formulation lacks relatively complete recourse due to infeasibilities
that are caused by the presence of re-entrant flows in the processing routes,
and also because of potential deadlocks that result from the first-stage routing
and sequencing decisions. We use the expected processing times of operations
to enhance the formulation of the first-stage problem, resulting in good linear
programming bounds and inducing feasibility for the second-stage problem. In
addition, we develop valid inequalities for the first-stage problem to further tighten
its formulation. Experimental results are presented to demonstrate the effectiveness
of using these strategies within a decomposition algorithm (the L-shaped method) to
solve the underlying stochastic program. In addition, we present heuristic methods
to handle large-sized instances of this problem and provide related computational
results.

Keywords Stochastic scheduling • Flexible job shop • Multi-site scheduling
• L-shaped method • Branch-and-bound

S.C. Sarin (�) • H.D. Sherali • A. Varadarajan • L. Liao
Grado Department of Industrial and Systems Engineering, Virginia Tech,
Blacksburg, VA 24061, USA
e-mail: sarins@vt.edu

© Springer International Publishing Switzerland 2016
G. Rabadi (ed.), Heuristics, Metaheuristics and Approximate Methods
in Planning and Scheduling, International Series in Operations Research &
Management Science 236, DOI 10.1007/978-3-319-26024-2_3

45

mailto:sarins@vt.edu

46 S.C. Sarin et al.

3.1 Introduction: Problem Statement and Related Literature

The production in high investment, low volume manufacturing environments, such
as pilot-fabrication of microelectromechanical systems (MEMS) devices, gives rise
to several special features of the underlying scheduling problem. Due to high
prices of the processing equipments and complicated fabrication processes, it is
impractical to assign dedicated equipment to each processing step. The relatively
low volume of production during the pilot stage also implies that machine flexibility
is highly desirable so that multiple product types can share processing equipments.
Hence, each manufacturing facility is organized as a flexible job shop, serving
multiple processing routes with flexible machines. Furthermore, due to novelty of
the products and fabrication processes, a single facility often lacks the capability
of performing all the required processing steps for a product from start to finish.
To satisfy these special requirements, multiple manufacturing facilities are usually
organized into a distributed fabrication network, where a central service provider
coordinates production activities across facilities and directly deals with customers’
requirements. Products are shipped from one facility to another until all processing
requirements are met. For a given processing step, there may be multiple facilities
that can provide the required service. The flexibility of cross-facility routing not
only provides more pricing and quality options for the customers, but also makes
transportation time and cost an important aspect of the scheduling problem. We
designate this type of distributed fabrication network as the Network of Flexible Job
Shops (NFJS).

The management of operations for an NFJS involves two types of decisions:
(1) choosing a facility for each job operation (i.e., processing step) and assigning
it to a compatible machine within the facility (i.e., routing) and (2) stipulating
a processing sequence for the operations assigned to any given machine (i.e.,
sequencing). The routing decisions need to take transportation time and cost into
consideration, as they can be quite significant between geographically dispersed
facilities. On the other hand, sequencing decisions need to account for the fact
that sequence-dependent set-up times are required to prepare for the processing
of operations of different jobs on the same machine. In view of the pricing and
quality options that are available in an NFJS, the customer specifies for each job
a fixed budget, which can only be exceeded under a given penalty rate. The job
arrival times, number of operations for each job, machines capable of processing
each operation, transportation times and transportation costs between facilities,
sequence-dependent set-up times, and customer budgets are assumed to be known
(and thus, deterministic). On the other hand, since exact values of processing times
are expected to vary due to the novelty of fabrication technologies, they are assumed
to be stochastic. The problem that we address in this chapter can be succinctly stated
as follows:

Given a set of jobs and a network of flexible job shops, where operation processing times
are uncertain but the sequence in which to process the operations of each job is known a
priori, determine an allocation of job operations to facilities and a sequence in which to

3 Stochastic Scheduling for a Network of Flexible Job Shops 47

process these operations on the machines in the facility so as to minimize a function of the
completion times and the transportation and processing costs incurred.

The NFJS problem combines the characteristics of three well-known problems:
the multi-site planning and scheduling problem, the flexible job shop scheduling
problem, and the stochastic job shop scheduling problem. Multi-site planning
problems are extensions of capacitated lot-sizing problems, with emphasis on
transportation requirements and site-specific holding cost. Production is assigned
to machines at multiple sites to satisfy demands during each period of the time
horizon. The multi-site scheduling problem further addresses underlying production
issues, such as inventory interdependency and change-over setup. To deal with
the integrated multi-site planning and scheduling problem, iterative methods have
been applied that alternate between solving the long-term planning problem and
solving the short-term scheduling problem (see, for example, Roux et al. 1999;
Guinet 2001; Gnoni et al. 2003). Others have considered the monolithic approach,
either using the approach of variable time scale (Timpe and Kallrath 2000; Lin
and Chen 2006), or relying on heuristic methods (Gascon et al. 1998; Sauer et al.
2000; Jia et al. 2003) to handle the resulting complexity. Lee and Chen (2001)
provided a comprehensive study on scheduling with transportation considerations
for the single facility environment. They considered two particular cases pertaining
to transportation within a flow shop environment and transportation during final
product distribution. To the best of our knowledge, no previous research in the multi-
site planning and scheduling area has considered routing flexibility and stochastic
processing times, both of which are very pertinent to the NFJS problem.

In a flexible job shop environment, for each processing step of a job, there are
multiple alternative machines that are capable of providing the required service.
Various methods have been applied to solve problems of this type. For example,
Iwata et al. (1980) and Kim (1990) have considered dispatching rules; Nasr and
Elsayed (1990) have applied greedy heuristic methods, Hutchison et al. (1991) have
devised a hierarchical decomposition method that determines the assignment of
operations to machines and then generates sequences. With regard to iterative local
search methods, Brandimarte (1993) considered re-assignment and re-sequencing as
two different types of moves, while Dauzère-Pérès and Paulli (1997) and Mastrolilli
and Gambardella (2000) did not explicitly treat them as different. Subramaniam
et al. (2000) have performed a simulation study with dynamic job arrival and
machine break downs. One can also find applications of meta-heuristic methods
to solve this problem including, but not limited to, particle swam optimization (Xia
and Wu 2005) and genetic algorithms (Pezzella et al. 2008 and Wang et al 2005).
The routing flexibility that characterizes the flexible job shop problem is also present
in the NFJS problem, but with an important distinction that the alternative machines
may be located at different facilities (sites), thereby requiring consideration of
transportation time and cost into the scheduling problem.

The stochastic scheduling problem has been addressed in the literature in
the classical flow shop and job shop environments. Optimal policies, dominance
relations, and dispatching rules for two- and three-machine flow shop scheduling

48 S.C. Sarin et al.

problems having stochastic processing times have been developed by Ku and Niu
(1986), Weiss (1982), Mittal and Bagga (1977), Cunningham and Dutta (1973),
Bagga (1970), Talwar (1967), Makino (1965), Prasad (1981), Forst (1983), Pinedo
(1982), Jia (1998), Elmaghraby and Thoney (1999), and Kamburowski (1999,
2000). These studies vary either in the distribution of the processing times used,
or in the objective function, or in the amount of intermediate storage available
between machines. Optimal rules have also been developed by Foley and Suresh
(1984) and Pinedo (1982) to minimize the expected makespan for the m-machine
flow shop problem with stochasticity in processing times. For work in stochastic job
shops, see Golenko-Ginzburg et al. (1995, 1997, 2002), Singer (2000), Luh et al.
(1999), Kutanoglu and Sabuncuoglu (2001), Yoshitomi (2002), Lai et al. (2004),
and Tavakkoli-Moghaddam et al. (2005).

The remainder of this chapter is organized as follows. In Sect. 3.2, we model
the NFJS problem as a two-stage stochastic program and present the L-shaped
method for its solution. Besides developing the pertinent feasibility and optimality
cuts, we also introduce an alternative approach to induce second-stage feasibility. In
Sect. 3.3, the formulation of the first-stage problem is further tightened by using
three types of valid inequalities, all of which rely upon the special structure of
the NFJS problem. Computational results are provided in Sect. 3.4 to demonstrate
the efficacy of our model formulation and solution approach. For even large-
sized problem instances, we present heuristic methods and the results on their
performances in Sect. 3.5. Concluding remarks are made in Sect. 3.6.

3.2 Stochastic Model for a Network of Flexible Job Shops

We model the stochastic NFJS problem as a two-stage stochastic program with
recourse, where the first-stage variables are binary and pertain to the assignment of
job operations to machines and to the sequencing of job operations for processing
on these machines, while the second-stage variables are continuous and relate to
the completion times and budget over-runs of the jobs, and where the uncertainty in
processing time durations influences the job completion times. Multiple facilities are
incorporated in our formulation by assigning to each machine a unique identification
number that distinguishes it from the other machines in all the facilities, and
by appropriately considering the inter-machine transportation times and costs.
Stochastic processing times are modeled by a finite set of scenarios for the entire
problem, and each of these scenarios assigns durations to every possible processing
step and has an associated probability value.

We present the overall problem formulation and decompose it into two stages
using Benders’ decomposition (Benders 1962). Besides constructing the feasibility
cuts and optimality cuts, we further reinforce the first-stage problem by including
additional valid inequalities that induce feasibility in the second stage.

3 Stochastic Scheduling for a Network of Flexible Job Shops 49

3.2.1 Model Formulation for the NFJS Problem

Notation

Indices:

Job index: i D 1, : : : , N
Operation index for job i: j D 1, : : : , Ji

Machine index: m D 1, : : : , jMj (where M is the set of machines)
Scenario index: s D 1, : : : , S

Decision Variables

xm
(i,j) D

�
1; if operation j of job i is assigned to machine m;

0; otherwise:

ym
(i,j,k,l) D

8<
:

1; if operation j of job i directly precedes operation l of
job k on machine m;

0; otherwise:

v
.e;f /

.i;j;jC1/ D
8<
:

1; if operation j of job i is performed on machine e and
operation j C 1 of job i is performed on machine f ;

0; otherwise:
ts
(i,j) D completion time of operation j of job i under scenario s.

�s
i D budget over-run for job i under scenario s.

Parameters

H(m,s)
(i,j,k,l) D an appropriately large positive number; its value is specified in (3.16)
below.

wi D number of parts in job i.
M D set of all the machines.
�s D probability of occurrence for scenario s.
cm

(i,j) D cost per unit processing time of operation j of job i on machine m.

p(m,s)
(i,j) D processing time of operation j of job i on machine m under scenario s.

Zm D set of job operations that can be processed on machine m.
M(i,j) D set of machines capable of processing operation j of job i.
um

(i,j,k,l) D changeover time to switch from operation j of job i to operation l of job k
on machine m.

bi D budget for job i.
ri D ready time for the first operation of job i.
d(e,f) D transportation time between machines e and f.
q(e,f) D per part transportation cost between machines e and f.
˛i D cost coefficient for job i that is ascribed to its completion time.
ˇi D penalty coefficient for job i corresponding to its budget over-run.

50 S.C. Sarin et al.

Formulation NFJSP

Minimize z D
NX

iD1

˛i

SX

sD1

�st
s
.i;Ji/

!
C

NX
iD1

ˇi

SX

sD1

�s�
s
i

!

C
SX

sD1

�s

NX
iD1

JiX
jD1

X
m2M.i;j/

p.m;s/
.i;j/ xm

.i;j/

C
X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

um
.i;j;k;l/y

m
.i;j;k;l/

C
NX

iD1

Ji�1X
jD1

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/ (3.1)

subject to:

ts
.i;j/ C

X
m2M.i;jC1/

�
p.m;s/

.i;jC1/x
m
.i;jC1/

�
C

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/

� ts
.i;jC1/; 8i D 1; : : : ; N; j D 1; : : : ; Ji � 1; s D 1; : : : ; S

(3.2)

ri C
X

m2M.i;1/

�
p.m;s/

.i;1/ xm
.i;1/

�
� ts

.i;1/; 8i D 1; : : : ; N; s D 1; : : : ; S (3.3)

ts
.i;j/ C p.m;s/

.k;l/ C um
.i;j;k;l/ � ts

.k;l/ C
�
1 � ym

.i;j;k;l/

�
H.m;s/

.i;j;k;l/;

8m 2 M; 8 .i; j/ ¤ .k; l/ 2 Zm; 8s D 1; : : : ; S (3.4)

X
m2M.i;j/

xm
.i;j/ D 1; 8i D 1; : : : ; N; j D 1; : : : ; Ji8i D 1; : : : ; N; j D 1; : : : ; Ji

(3.5)
X

.i; j/ 2 Zm

.i; j/ ¤ .k; l/

ym
.i;j;k;l/ � xm

.k;l/; 8k D 1; : : : ; N; l D 1; : : : ; Jk; m 2 M.k;l/ (3.6)

X
.i; j/ 2 Zm

.i; j/ ¤ .k; l/

ym
.k;l;i;j/ � xm

.k;l/; 8k D 1; : : : ; N; l D 1; : : : ; Jk; m 2 M.k;l/ (3.7)

3 Stochastic Scheduling for a Network of Flexible Job Shops 51

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

ym
.i;j;k;l/ �

X
.i;j/2Zm

xm
.i;j/ � 1; 8 m 2 M (3.8)

JiX
jD1

X
m2M.i;j/

cm
.i;j/p

.m;s/

.i;j/ xm
.i;j/

C
0
@Ji�1X

jD1

X
e2M.i;j/

X
f 2M.i;jC1/

q.e;f /v
.e;f /

.i;j;jC1/

1
Awi � �s

i � bi;

8i D 1; : : : ; N; s D 1; : : : ; S (3.9)

v
.e;f /

.i;j;jC1/ � xe
.i;j/; v

.e;f /

.i;j;jC1/ � xe
.i;j/ C xf

.i;jC1/ � 1;

8i D 1; : : : ; N; j D 1; : : : ; Ji � 1; e 2 M.i;j/; f 2 M.i;jC1/ (3.10)

�s
i � 0; 8i D 1; : : : ; N; s D 1; : : : ; S (3.11)

xm
.i;j/ 2 f0; 1g ; 8i D 1; : : : ; N; j D 1; : : : ; Ji; m 2 M.i;j/ (3.12)

ym
.i;j;k;l/ 2 f0; 1g ; 8m D 1; : : : ; M; 8 .i; j/ ¤ .k; l/ 2 Zm (3.13)

v
.e;f /

.i;j;jC1/ 2 Œ0; 1� ; 8i D 1; : : : ; N; j D 1; : : : Ji � 1; e 2 M.i;j/; f 2 M.i;jC1/: (3.14)

The objective function (3.1) is composed of five terms. The first and the second
terms penalize the sum of job completion times and budget over-runs, respectively.
The penalty coefficients reflect the customer’s emphasis on the lead-time and costs
incurred, and they also scale the first two terms to be commensurate with the next
three terms, which are time based. The third term represents expected processing
time for the operations of all the jobs; the fourth term computes the total set-up time
on the machines, and the final term determines the sum of travel times incurred by
all the jobs. Note that the last three terms in the objective function support the first
term by aiding the achievement of lower completion times, while at the same time,
reflect costs incurred by consuming machine and transportation capacities of the
system. Constraints (3.2) capture precedence relationships between operations of
the same job. Specifically, they state that under each scenario s, the completion time
of operation j C 1 of job i, 8i D 1, : : : ,N, must be at least equal to the completion
time of operation j of that job plus the processing time of operation j C 1 and
any travel time incurred between the two operations (set-up time is assumed to be
job-detached, and hence, is not included here). Constraints (3.3) ensure (for each
scenario) that each job does not commence its first operation earlier than its ready
time. Constraints (3.4) establish relationships among the operations to be performed

52 S.C. Sarin et al.

on the same machine. Given two distinct job-operations, say (i, j) and (k, l) in Zm

for a certain machine m, if (i, j) were to directly precede (k, l), (i.e., ym
.i;j;k;l/ D 1),

then the completion time of (k, l) under any scenario s must be at least equal to
the completion time of (i, j) for that scenario, plus the processing time of (k, l)
and the sequence-dependent set-up time between the two operations. Observe that
when ym

(i,j,k,l) D 0, i.e., (i, j) does not directly precede (k, l), the constraint becomes

redundant by the choice of a suitably large value of H(m,s)
(i,j,k,l) (see (3.16) below).

Constraints (3.5) ensure that each job-operation is assigned to exactly one machine
out of the several alternative machines that can process it. Constraints (3.6) and
(3.7) state that if a job-operation, say (k, l), is assigned to a machine m, it can
be preceded (respectively succeeded) by at most one job-operation from the set
of operations that the machine is capable of processing. Note that if (k, l) is the
first operation to be processed on this machine, it will not be preceded by any other
operation; and likewise if (k, l) is the last operation to be processed, it will not
be succeeded by any other operation. In both of these cases, the left-hand sides
of (3.6) and (3.7) will be zero, which trivially yield valid relationships. Also, if
(k, l) is not assigned to machine m, then all the direct precedence y-variables that
relate (k, l) to other operations on machine m are validly set equal to zero by (3.6)
and (3.7). Constraints (3.8) guarantee that if a machine has some

X
.i;j/2Zm

xm
.i;j/

operations assigned to it for processing, then there must exist one less than this
number of direct precedence variables that are set equal to 1 for this machine.
These constraints are written as inequalities rather than as equalities to account
for the case where the number of operations assigned to a machine is actually
zero. Also, together with (3.6) and (3.7), these constraints establish the definitional
role of the y-variables. Constraints (3.9) enforce budgetary restrictions on each
job i under every processing time scenario s. These constraints permit the sum of
processing costs and travel costs for all operations of a job to exceed the budget
by an amount of �s

i , but with a corresponding penalty in the objective function.
Note that the travel cost for each job i is assumed to be proportional to the number
of parts, wi, in that job. Constraints (3.10) enforce the relationship between the
x- and v-variables according to v

.e;f /

.i;j;jC1/ D xe
.i;j/x

f
.i;jC1/ using a standard linearization

technique whereby v
.e;f /

.i;j;jC1/ D 1 if and only if both xe
(i,j) D 1 and xf

.i;jC1/ D 1. Note
that the v-variables account for the required transfer between the machines in the
objective function (3.1) and in Constraints (3.2) and (3.9). As such, because of the
positive coefficients associated with these variables in the objective function (3.1)
and the less-than-or-equal-to (�) relationships in (3.2) and (3.9), we could omit the
first two sets of � restrictions in (3.10) and have them automatically hold true at
optimality. Constraints (3.11), (3.12), (3.13), and (3.14) ascribe nonnegativity and
binary restrictions on the decision variables, while the v-variables will automatically
turn out to be binary-valued even though declared to be continuous on [0, 1]. Note
also that the nonnegativity on the t-variables is implied by (3.2), (3.3), (3.12), and
(3.13).

The value of H(m,s)
(i,j,k,l) used in (3.4) can be prescribed as follows. Note that, if

ym
.i;j;k;l/ D 0, then this constraint reduces to

3 Stochastic Scheduling for a Network of Flexible Job Shops 53

ts
.i;j/ C p.m;s/

.k;l/ C um
.i;j;k;l/ � ts

.k;l/ � H.m;s/
.i;j;k;l/: (3.15)

Hence, it is sufficient to assign to H(m,s)
(i,j,k,l) a valid upper bound on the left-hand side

expression in (3.15). Given conservative bounds for ts
(i,j) such that

�
ts
.i;j/

�
min

� ts
.i;j/ ��

ts
.i;j/

�
max

, we can set

H.m;s/
.i;j;k;l/ D

�
ts
.i;j/

�
max

C p.m;s/
.k;l/ C um

.i;j;k;l/ �
�

ts
.k;l/

�
min

: (3.16)

With respect to the bounds for ts
(i,j), we take

�
ts
.i;j/

�
min

D ri C
X
j0�j

min
m2M.i;j0/

n
p.m;s/

.i;j0/

o
C

X
2�j0�j

min
e 2 M .i; j0 � 1/

f 2 M .i; j’/

˚
d.e;f /

�
;

�
ts
.i;j/

�
max

D � s �
X
j’>j

min
m2M.i;j’/

n
p.m;s/

.i;j0/

o
�
X

j<j0�Ji

min
e 2 M .i; j0 � 1/

f 2 M .i; j0/

˚
d.e;f /

�
;

8i D 1; : : : ; N; j D 1; : : : ; Ji; s D 1; : : : ; S; (3.17)

where � s is some conservative upper bound on the overall makespan of all the jobs
under scenario s. We used the value of � s to be the sum of the processing times of
all the operations of the jobs.

3.2.2 The L-Shaped Method for the NFJS Problem

Formulation NFJSP can be decomposed into the following Stage-I (master) and
Stage-II (recourse) problems:

Stage-I: Master Problem
MP: Minimize

SX
sD1

�s

NX
iD1

JiX
jD1

X
m2M.i;j/

p.m;s/
.i;j/ xm

.i;j/ C
X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.i; j/ ¤ .k; l/

ym
.i;j;k;l/u

m
.i;j;k;l/

C
NX

iD1

Ji�1X
jD1

X
e2M.i;j/

X
f 2M.i;jC1/

v
.e;f /

.i;j;jC1/d.e;f /C
SX

sD1

�sQ .x; y; v; s/

(3.18)

54 S.C. Sarin et al.

subject to: (3.5), (3.6), (3.7), (3.8), (3.10), (3.12), (3.13), and (3.14), where
Q(x, y, v, s) is the recourse function corresponding to the optimal value of the
subproblem that minimizes the penalized sum of job completion times and budget
over-runs for a given assignment vector x, sequencing vector y, tracking vector v,
and for a processing time scenario s. The linear recourse subproblem for scenario s
is given by:

Stage-II: Recourse Problem

RP W Q .x; y; v; s/ D Min
NX

iD1

˛it
s
.i;Ji/

C
NX

iD1

ˇi�
s
i (3.19)

subject to: (3.2), (3.3), (3.4), (3.9), and (3.11).
We note that, in the decomposition outlined above for formulation NFJSP,

the master problem could generate an assignment and sequencing solution that
might not be feasible to the subproblem. There are three possible causes for
such infeasibility. First, the Stage-I formulation does not exclude “subtours” while
sequencing operations assigned to a particular machine. For example, suppose that
operations (a, b), (c, d), and (e, f) are assigned to machine m, so that

xm
.a;b/ D xm

.c;d/ D xm
.e;f / D 1:

One can verify that the following values of direct precedence variables are feasible
to the Stage-I formulation (in particular, satisfies Constraint (3.8)):

ym
.a;b;c;d/ D 1I ym

.a;b;e;f / D 0I
ym

.c;d;a;b/ D 1I ym
.c;d;e;f / D 0I

ym
.e;f ;a;b/ D 0I ym

.e;f ;c;d/ D 0:

However, due to the subtour between (a, b) and (c, d), this solution does not
represent a valid processing sequence. In the NFJSP formulation, this kind of
subtour is eliminated by Constraints (3.4), which are not included in the master
problem. Second, note that Constraints (3.2) in NFJSP, upon decomposition,
become part of the subproblem and capture the fact that the completion time of
a lower indexed operation of a job must be less than or equal to that for any higher
indexed operations of the same job. In NFJSP, Constraints (3.2) in conjunction with
other constraints that determine the value of the y-variables (Constraints (3.6), (3.7),
and (3.8)) ensure that, in the case of re-entrant flow, where a job visits a machine
for multiple operations, the lower indexed operations of a job are sequenced before
a higher indexed operation of the same job. However, since Constraints (3.2) are

3 Stochastic Scheduling for a Network of Flexible Job Shops 55

(a, b) (c, d)M1

M2 (c, h), h>d (a, f), f<b

Fig. 3.1 A deadlock configuration involving two machines

no longer a part of the master problem, its absence may result in an assignment
and sequencing vector that does not honor the re-entrant flow conditions. Third, the
assignment and sequencing vectors from the master problem may cause a deadlock.
This occurs in the face of a certain configuration of assignment and sequencing
decisions that result in a circuit or a cycle wherein each operation in the cycle waits
for another operation within the cycle to complete processing. This is illustrated
in Fig. 3.1. Note that on machine M1, (c, d) waits for (a, b) to finish processing
according to the sequencing decision. Operation (a, b) on machine M1 must follow
(a, f) on machine M2 owing to operating precedence constraints. However, on
machine M2, operation (a, f) follows (c, h), which, in turn, can begin only after
(c, d) on machine M1 has been completed. Thus, none of the four operations can
begin processing, resulting in a deadlock.

As a result of this potential infeasibility, the above decomposition of NFJS
problem does not possess the property of relatively complete recourse. In order to
render the first-stage solution feasible to the second-stage, it is necessary to obviate
the infeasibility due to subtours, re-entrant flows, and deadlocks. One way to achieve
this is through the use of artificial variables as described by van Slyke and Wets
(1969). These variables are inserted into the subproblems for every scenario and
feasibility cuts are developed that become a part of the master problem, which in
turn ultimately induce the master problem to generate solutions that are feasible to
the subproblems. Accordingly, for a given output (x, y, v) from the master problem,
the following augmented recourse problem (ARP) is solved, one for each scenario s:

ARP: Minimize

NX
iD1

JiX
jD1

as
1.i;j/C

X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

a.m;s/
2.i;j;k;l/ (3.20)

56 S.C. Sarin et al.

subject to:

ts
.i;j/ C

X
m2M.i;jC1/

�
p.m;s/

.i;jC1/x
m
.i;jC1/

�
C

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/ � as
1.i;jC1/ � ts

.i;jC1/;

8i D 1; : : : ; N; j D 1; : : : ; Ji � 1

(3.21)

ri C
X

m2M.i;1/

�
p.m;s/

.i;1/ xm
.i;1/

�
� as

1.i;1/ � ts
.i;1/; 8i D 1; : : : ; N (3.22)

ts
.i;j/ C p.m;s/

.k;l/ C um
.i;j;k;l/ � a.m;s/

2.i;j;k;l/ � ts
.k;l/ C

�
1 � ym

.i;j;k;l/

�
H.m;s/

.i;j;k;l/;

8m 2 M; 8 .i; j/ ¤ .k; l/ in Zm (3.23)

JiX
jD1

X
m2M.i;j/

cm
.i;j/p

.m;s/

.i;j/ xm
.i;j/ C

0
@Ji�1X

jD1

X
e2M.i;j/

X
f 2M.i;jC1/

q.e;f /v
.e;f /

.i;j;jC1/

1
Awi � �s

i � bi;

8i D 1; : : : ; N
(3.24)

as
1.i;j/ � 0; 8i D 1; : : : ; N; j D 1; : : : ; Ji (3.25)

a.m;s/
2.i;j;k;l/ � 0; 8m 2 M; 8 .i; j/ ¤ .k; l/ 2 Zm (3.26)

ts
.i;j/ � 0; 8i D 1; : : : ; N; j D 1; : : : ; Ji (3.27)

�s
i � 0; 8i D 1; : : : ; N: (3.28)

Note that artificial variables are included in Constraints (3.2), (3.3), and (3.4), which
now become (3.21), (3.22), and (3.23), respectively. Constraints (3.9) do not require
any artificial variables because they can always be satisfied by virtue of the budget
over-run variables �s

i , i D 1, : : : , N. Whereas the corresponding restrictions are
included in (3.24), they can be effectively omitted from Problem ARP.

If the value of the objective function (3.20) in ARP equals zero for all the
subproblems, then it indicates that the solution from the master program (first-
stage) is feasible to the recourse (second-stage) problem. However, if there exists
a scenario, say s, such that the subproblem corresponding to this scenario has a
positive optimal objective value, then a feasibility cut is generated so as to elim-
inate the corresponding solution from the master program, as follows. Rewriting
Constraints (3.21), (3.22), and (3.23) as “�” inequalities, we associate nonnegative
dual variables �s

.i;j/, �s
i , �

.m;s/

.i;j;k;l/ with these respective constraints. Note that (3.24) has
been dropped from Problem ARP. Then, we derive the following feasibility cut for
scenario s:

3 Stochastic Scheduling for a Network of Flexible Job Shops 57

NX
iD1

Ji�1X
jD1

�s
.i;j/

0
@ X

m2M.i;jC1/

p.m;s/
.i;jC1/x

m
.i;jC1/ C

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/

1
A

C
NX

iD1

�s
i

X
m2M.i;1/

p.m;s/
.i;1/ xm

.i;1/ C
X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

�
.m;s/
.i;j;k;l/H

.m;s/

.i;j;k;l/y
m
.i;j;k;l/

� �
NX

iD1

�s
i ri C

X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

�
.m;s/
.i;j;k;l/

�
H.m;s/

.i;j;k;l/ � p.m;s/
.k;l/ � um

.i;j;k;l/

�
:

(3.29)

This feasibility cut is appended to the master program. Whenever the objective
function values for all the augmented subproblems equal zero, the Stage-I solution
yields feasible Stage-II recourse problems, whence we either verify optimality or
generate optimality cuts as described next.

3.2.3 Optimality Cuts

When a Stage-I solution (x; y; v) is feasible for the separable Stage-II problems,
the latter effectively determine optimal values for the completion time and budget
over-run variables for each scenario. This yields the expected recourse value of

the Stage-II objective function as given by Q .x; y; v/ �
XS

sD1
�sQ .x; y; v; s/.

This value is then compared with the lower bound (� , say) on the recourse value
as previously obtained by solving the master problem. Note that (3.18) evaluated
for (x; y; v) provides an upper bound for the NFJS problem given the feasibility
of (x; y; v), and can be used to update the incumbent objective function value. If
� � Q .x; y; v/, we have that (x; y; v) is an optimal solution to the NFJS problem.
Otherwise, if � < Q .x; y; v/, we generate an optimality cut to help close the gap
between the two bounds. Letting 	s

(i,j), 	s
i , 	

(m,s)
(i,j,k,l), and !s

i be the nonnegative dual
variables associated with respect to Constraints (3.2), (3.3), (3.4), and (3.9) written
as � restrictions, the optimality cut is given as follows, where, as mentioned above,
� is used to represent the final term in the objective function (3.18) of the master
program:

58 S.C. Sarin et al.

� �
SX

sD1

�s

8<
:

NX
iD1

Ji�1X
jD1

	s
.i;j/

0
@ X

m2M.i;jC1/

p.m;s/
.i;jC1/x

m
.i;jC1/ C

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/

1
A

C
NX

iD1

	s
i

X
m2M.i;1/

p.m;s/
.i;1/ xm

.i;1/ C
X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

	
.m;s/
.i;j;k;l/H

.m;s/

.i;j;k;l/y
m
.i;j;k;l/

C
NX

iD1

!s
i

2
4 JiX

jD1

X
m2M.i;j/

cm
.i;j/p

.m;s/

.i;j/ xm
.i;j/ C

0
@Ji�1X

jD1

X
e2M.i;j/

X
f 2M.i;jC1/

q.e;f /v
.e;f /

.i;j;jC1/

1
Awi

3
5

C
NX

iD1

	s
i ri �

X
m2M

X
.i;j/2Zm

X
.k; l/ 2 Zm

.k; l/ ¤ .i; j/

	
.m;s/
.i;j;k;l/

�
H.m;s/

.i;j;k;l/ � p.m;s/
.k;l/ � um

.i;j;k;l/

�
�

NX
iD1

!s
i bi:

(3.30)

The optimality cut is appended to the MP and the revised MP is re-solved. The
iterations continue in this fashion until the lower and upper bounds converge (or
come within a desired optimality tolerance).

Note that the master problem and the linear programs corresponding to the
subproblems need to be re-solved every time a new feasibility or optimality cut is
added. This can lead to a lengthy process in case a large number of feasibility cuts
are required to generate a feasible solution. Therefore, it is helpful to a priori include
suitable valid inequalities in the master problem to induce second-stage feasibility.
We present such inequalities next.

3.2.4 Alternative Valid Inequalities for Inducing Stage-II
Feasibility That Also Provide a Stage-I Lower Bound

The alternative set of valid inequalities derived in this section relies on the fact
that for any fixed value of (x, y, v), the feasibility of the Stage-II problem does
not depend on a particular scenario. In other words, if the routing and sequencing
decisions are feasible for a given scenario, then they are also feasible for any
other scenario, because changes in job processing times can be accommodated
by adjusting completion times while maintaining the feasibility of the subproblem
constraints. Consequently, variables and constraints of the subproblem for a given
scenario can be included in the master problem to induce feasibility of the

3 Stochastic Scheduling for a Network of Flexible Job Shops 59

subproblems for all the scenarios. The next result indicates that the particular
scenario that use the expected values of processing times provides a lower bound
on � � Q .x; y; v/.

Proposition 1 The optimal objective value of the subproblem with expected

processing times yields a lower bound on Q .x; y; v/ �
XS

sD1
�sQ .x; y; v; s/.

Proof For any fixed values of x, y, and v, the recourse function Q(x, y, v, s) is only a
function of s. We rewrite this as Q(ps), where ps is the vector of operation processing
times.

Let pE D
XS

sD1
�sps. The fact that Q

�
pE
� D Q

�XS

sD1
�sps

�
�
XS

sD1
�sQ .ps/

is easily established because Q(ps) is a convex function of ps, due to fixed recourse
(see Theorem 5 in Birge and Louveaux 2000, p. 89.) �

Accordingly, we define the following variables:

tE
(i,j) D completion time of operation j of job i under expected processing times.

�E
i D budget over-run for job i under expected processing times.

Then, by Proposition 1 and Constraints (3.2), (3.3), (3.4), and (3.9), we include
the following set of restrictions in the Stage-I master program:

� �
NX

iD1

˛it
E
.i;Ji/

C
NX

iD1

ˇi�
E
i (3.31)

tE
.i;j/ C

X
m2M.i;jC1/

�
p.m;E/

.i;jC1/x
m
.i;jC1/

�
C

X
e2M.i;j/

X
f 2M.i;jC1/

d.e;f /v
.e;f /

.i;j;jC1/ � tE
.i;jC1/;

8i D 1; : : : ; N; j D 1; : : : ; Ji � 1 (3.32)

ri C
X

m2M.i;1/

�
p.m;E/

.i;1/ xm
.i;1/

�
� tE

.i;1/; 8i D 1; : : : ; N (3.33)

tE
.i;j/ C p.m;E/

.k;l/ C um
.i;j;k;l/ � tE

.k;l/ C
�
1 � ym

.i;j;k;l/

�
H.m;E/

.i;j;k;l/;

8m 2 M; 8 .i; j/ ¤ .k; l/ 2 Zm (3.34)

JiX
jD1

X
m2M.i;j/

cm
.i;j/p

.m;E/

.i;j/ xm
.i;j/ C

0
@Ji�1X

jD1

X
e2M.i;j/

X
f 2M.i;jC1/

q.e;f /v
.e;f /

.i;j;jC1/

1
Awi � �E

i � bi;

8i D 1; : : : ; N
(3.35)

tE
.i;j/ � 0; tE

.i;j/ � 0; 8i D 1; : : : ; N; j D 1; : : : ; Ji (3.36)

�E
i � 0; 8i D 1; : : : ; N: (3.37)

60 S.C. Sarin et al.

Note that p.m;E/

.i;j/ �
XS

sD1
�sp

.m;s/

.i;j/ , and that H(m,E)
(i,j,k,l) is pre-calculated similar to that in

(3.16) and (3.17), with p(m,E)
(i,j) replacing p(m,s)

(i,j) in the expressions.
Also note that the infeasibility caused by re-entrant flow will be eliminated by

Constraints (3.32), (3.33), and (3.34), since they enforce a proper ordering (via the
tE
(i,j) -variables) among the operations of the same job. These constraints also prevent

the occurrence of a deadlock as follows. Consider the situation depicted in Fig. 3.1,
where we have xM1

.a;b/ D xM1
.c;d/ D xM2

.c;h/ D xM2
.a;f / D 1 and yM1

.a;b;c;d/ D yM2
.c;h;a;f / D 1.

Since h > d and f < b, the constraint set (3.32) asserts that tE
.c;h/ > tE

.c;d/ and tE
.a;f / <

tE
.a;b/. On the other hand, the constraint set (3.34) enforces tE

.a;b/ < tE
.c;d/ and tE

.c;h/ <

tE
.a;f /. Clearly, these four inequalities lead to a contradiction, and consequently, the

corresponding values of the x- and y-variables would be infeasible to the master
problem augmented with Constraints (3.32) and (3.34).

Note that (3.34) also serves to eliminate subtours among the operations processed
on a machine. These are essentially the MTZ-type of subtour elimination constraints
(Miller et al. 1960), and they can be weak in the sense that they lead to loose LP
relaxations. However, they can potentially be strengthened through the use of flow-
based valid inequalities as shown by Sherali et al. (2006).

3.3 Valid Inequalities for Further Tightening
the Model Formulation

In this section, we develop three classes of valid inequalities by exploiting the
inherent structure of the NFJS problem. These inequalities are added to the MP
to tighten its continuous relaxation and provide better lower bounds for use in the
branch-and-bound algorithm for solving NFJSP. The first type of inequalities arises
from the flow balance-type constraints that capture the movement of operations
among the machines. The other two types of inequalities are formulated to obviate
infeasibility caused by re-entrant flow and deadlock, respectively. They are based
on a new formulation for the asymmetric travelling salesman problem (ATSP)
presented in Sarin et al. (2005).

3.3.1 Flow-Balance Constraints

In the NFJSP formulation, we used the variable v
.e;f /

.i;j;jC1/ to represent the transfer of
job i from machine e to machine f when performing the respective operations j and
j C 1. This definitional role of v

.e;f /

.i;j;jC1/ is enforced by (3.10). We can further tighten
the continuous relaxation of the model by introducing the following flow-balance
constraints (FBC):

3 Stochastic Scheduling for a Network of Flexible Job Shops 61

X
f 2M.i;2/

v
.e;f /

.i;1;2/ D xe
.i;1/; 8i D 1; : : : ; N; e 2 M.i;1/ (3.38)

X
e2M.i;j�1/

v
.e;f /

.i;j�1;j/ D
X

g2M.i;jC1/

v
.f ;g/

.i;j;jC1/; 8i D 1; : : : ; N; j D 2; : : : ; Ji � 1; f 2 M.i;j/

(3.39)
X

e2M.i;Ji�1/

v
.e;f /

.i;Ji�1;Ji/
D xf

.i;Ji/
; 8i D 1; : : : ; N; f 2 M.i;Ji/: (3.40)

Constraints (3.38) assert that if the first operation of job i is assigned to machine e,
then job i must be transported from machine e to some machine f that is capable
of processing the second operation of job i. Constraints (3.39) capture the fact that
if machine f is chosen for processing the jth operation of job i, 1 < j < Ji , then
job i is necessarily transferred from some previous machine, e, and is transported
to a succeeding machine, g, while performing the respective operations j � 1 and
j C 1. Similarly, Constraints (3.40) require job i to be transferred from some previous
machine e in case its last operation is processed on machine f.

3.3.2 Re-Entrant Flow-Based Constraints

In the case of re-entrant flows, the lower indexed operations of any job must precede
the higher indexed operations of that job for the sequence to be feasible. For the sake
of convenience, we designate an order ord(i, j) for elements of Zm; 8m 2 M; such
that the ordering of operations from the same job is maintained. For instance, if
Zm D f(1, 1), (2, 2), (1, 2)g, we can assign ord(1, 1) D 1, ord(2, 2) D 2, and ord(1,
2) D 3. Based on this definition, we let

hm
.i;j;k;l/ � xm

.i;j/x
m
.k;l/; 8m 2 MI .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/

We can linearize the foregoing relationship between the h- and the x-variables by
using the following logical constraints:

hm
.i;j;k;l/ � xm

.i;j/; hm
.i;j;k;l/ � xm

.k;l/; hm
.i;j;k;l/ � xm

.i;j/ C xm
.k;l/ � 1;

8m 2 M; .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/ : (3.41)

We also define certain indirect precedence variables as follows:

gm
.i;j;k;l/ D

8<
:

1; if operation j of job i is processed sometime before
operation l of job k on machine m;

0; otherwise:

62 S.C. Sarin et al.

Then, we have,

gm
.i;j;k;l/ C gm

.k;l;i;j/ D hm
.i;j;k;l/; 8m 2 M; .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/

(3.42)

gm
.i;j;
;�/ � gm

.i;j;k;l/ C gm
.k;l;
;�/ � 1; 8m 2 M; 8distinct .i; j/ ; .k; l/ ; .
; �/ 2 Zm

(3.43)

gm
.i;j;i;l/ D 0; 8m 2 M; .i; j/ ; .i; l/ 2 Zm W j > l: (3.44)

Constraints (3.42) state that given two job-operations on a machine, one of
them must either precede or succeed the other. Constraints (3.43) represent the
transitivity property; that is, for any triplet of job-operations (i, j), (k, l), and (
 , �)
on machine m, if operation (i, j) is scheduled somewhere before operation (k, l)
and operation (k, l) is scheduled somewhere before operation (
 , �), then operation
(i, j) must necessarily be scheduled before operation (
 , �). Finally, the re-entrant
flow Constraints (3.44) ensure that if two operations of the same job are assigned
to a machine, then the lower indexed job operation precedes the higher indexed
operation.

Also, we have the following logical constraints connecting the indirect and the
direct precedence variables:

gm
.i;j;k;l/ � ym

.i;j;k;l/; 8m 2 M; 8 .i; j/ ¤ .k; l/ in Zm: (3.45)

Hence, the re-entrant flow constraints that can be accommodated into the master
(Stage-I) program are given by (3.41), (3.42), (3.43), (3.44), and (3.45). Note that by
introducing the gm

(i,j,k,l) -variables, we also eliminate infeasibility caused by subtours
in operation sequencing, since the indirect precedence enforced by the gm

(i,j,k,l) -
variables precludes the occurrence of subtours.

3.3.3 Deadlock Prevention Constraints

Next, we develop valid inequalities to prevent the occurrence of a deadlock. For the
sake of brevity, we only present inequalities for the prevention of 2-machine dead-
locks and establish their validity. For a detailed development of the corresponding
results for the general case of m-machine deadlocks, see Varadarajan (2006).

Consider the following situation in a job shop environment: operations (a, b) and
(c, d) are assigned to machine m; and operations (a, f) and (c, h), where f < b and
h > d, are assigned to machine n. If (a, b) precedes (c, d), then (a, f) must necessarily

3 Stochastic Scheduling for a Network of Flexible Job Shops 63

precede (c, h) to avoid a deadlock (see Fig. 3.1, where machines m and n are denoted
by M1 and M2, respectively). Then, we have the following result:

Proposition 2 Two-machine deadlocks are prevented by including the following
additional inequalities:

gn
.a;f ;c;h/ � gm

.a;b;c;d/ C hn
.a;f ;c;h/ � 1;

8 m; n 2 M; .a; b/ ; .c; d/ 2 Zm; .a; f / ; .c; h/ 2 Zn;

f < b and h > d:

(3.46)

Proof If hn
.a;f ;c;h/ D 0, then gn

.a;f ;c;h/ D 0 by (3.42), and gm
(a,b,c,d) can be 1 without

causing any deadlock. If hn
.a;f ;c;h/ D 1 and gm

.a;b;c;d/ D 0, then gn
.a;f ;c;h/ � 0, and the

schedule is deadlock free. On the other hand, if both gm
(a,b,c,d) and hn

(a,f,c,h) are equal
to 1, then (a, b) is processed sometime before (c, d) on machine m, and (a, f) and
(c, h) are processed on the same machine n. To yield a deadlock-free schedule under
this situation, (a, f) must be processed sometime before (c, h) on machine n, which
is enforced by (3.46). �

Note that to apply the above deadlock prevention constraints to the master
problem, we need to also include Constraints (3.41), (3.42), (3.43), and (3.44), so
that g- and h-variables take their definitional roles in the model.

3.4 Computational Results

We now present results of computational experimentation to demonstrate the
effectiveness of our feasibility-inducing and model-tightening inequalities within
the framework of the L-shaped method for the solution of NFJS problem. In this
method, the Stage-I master problem is solved using a branch-and-bound algorithm.
Whenever an integer solution is obtained for a node problem’s LP relaxation, the
Stage-II problem is solved to verify its feasibility and optimality. If any of these
conditions are not met, a feasibility cut or an optimality cut is generated and added
to the Stage-I problem, and the branch-and-bound process continues.

There are several ways in which the valid inequalities pertaining to the expected
value scenario (EVS), the re-entrant flows (RF), and deadlock prevention (DP)
(developed in Sects. 3.2.4, 3.3.2, and 3.3.3, respectively) can be applied. We can
either use them separately, or we can apply the EVS inequalities in conjunction
with selected members of the RF and DP inequalities in order to tighten the
underlying relaxation. Our preliminary investigation has shown that the use of the
EVS inequalities always leads to shorter CPU times. The question, then, is how (if
at all) to apply the RF and DP inequalities in addition to the EVS inequalities. Note
that, to achieve the full potential of the RF and DP inequalities, we need to consider
re-entrant flows and deadlocks among all the machines, which would require a large
number of extra variables and constraints that may overburden the master program
and deteriorate its computational performance. Therefore, we choose to apply these

64 S.C. Sarin et al.

inequalities to a proper subset of machines, as investigated in Sect. 3.4.2 below.
Furthermore, we explore the optional addition of the flow-balance constraints FBC
of Sect. 3.3.1.

3.4.1 Design of Test Problems

To represent routing flexibility, we group machines into work centers; operations
assigned to a work center are allowed to be processed by any machine in that
work center. Due to this feature, the manner in which workload is assigned to the
machines within a work center is not determined until a solution is obtained. To
indicate the potential workload on a machine, we define a load factor to be the total
number of visits of all the jobs to that machine on average, assuming that all the
machines within a work center equally share the workload. According to the load
factor, we differentiate machines into two categories: low-number-of-visit (LNV)
machines (with two potential visits on average), or high-number-of-visit (HNV)
machines (with three potential visits on average). Consequently, three job-visiting
patterns are considered, pertaining to different distributions of workload on the
machines. These are: f“LC•H�,” “L•H,” “L�•HC”g. The letters “L” and “H” refer
to the LNV and HNV machines, respectively; the plus/minus signs in the superscript
indicate that, relatively, there are higher or lower number of machines in a category
than those in the other. We consider test problems of various sizes, involving 6, 8,
or 10 machines. Their basic specifications are listed in Table 3.1.

With respect to routing flexibility, three cases are considered. In Case �1, all
HNV machines are grouped into one work center, while no routing flexibility exists
among the LNV machines. In Case �2, all LNV machines are grouped into one
work center; no routing flexibility exists among the HNV machines. In Case �3, no
routing flexibility exists.

Table 3.1 Specifications for various problem sizes

Number of
machines

Job-visiting
pattern

Number of
LNV machines

Number of
HNV machines

Number
of jobs

Total number
of operations

6 LC•H� 4 2 3 14
L•H 3 3 3 15
L�•HC 2 4 3 16

8 LC•H� 5 3 4 22
L•H 4 4 4 24
L�•HC 3 5 4 26

10 LC•H� 6 4 5 28
L•H 5 5 5 30
L�•HC 4 6 5 32

3 Stochastic Scheduling for a Network of Flexible Job Shops 65

For each of the above 3 � 3 � 3 D 27 combinations of numbers of machines,
job-visiting patterns, and routing flexibility, we constructed 20 test problems with
randomly generated job routings and processing times. For the 6-machine problems,
we considered the following numbers of scenarios: f100, 200, 300, 400g. The larger-
sized problems (involving 8 and 10 machines) were solved using 400 scenarios to
reveal the effectiveness of the proposed strategy.

All experimental runs were implemented using AMPL-CPLEX 10.1 and per-
formed on a Pentium D 3.2 GHz CPU computer with 2 GB memory.

3.4.2 Experimental Results

We first compare the performance of solving NFJSP directly by AMPL-CPLEX
(designated as Method I) with that of our decomposition approach (designated as
Method II), which includes the EVS inequalities but not the RF and DP inequalities.
Results of the L-shaped method without any additional inequalities, i.e., only with
the standard feasibility and optimality cuts (3.29) and (3.30) (designated as Method
III) are also provided for comparison. In addition, we considered the option of either
adding or not adding the FBC inequalities of Sect. 3.3.1 to these three methods. The
6-machine problems were solved to optimality; the 8- and 10-machine problems
were run until an integer solution was obtained within an optimality gap of 5 %.
Since the superiority of Method II was observed in our preliminary study, we
adopted the following approach to avoid excessive run times: Method II was used
to solve the test problems first. Since there are two options (with or without the
FBC inequalities), we record the CPU time as t2’ and t2”, respectively, for these
options. Let t2 D maxft2’, t2”g. For Methods I and III, we set an upper bound on the
CPU time of maxf1.2 � t2, tcg, where the value of tc is 1500, 2000, and 2500 s,
respectively, for the 6-, 8-, and 10-machine problems. The first term (1.2 � t2)
is used to provide a reasonable (20 %) margin to demonstrate the superiority of
Method II over the other two methods. The second term (tc) is included to ensure
that the effectiveness of adding the FBC inequalities is not obscured by stopping
prematurely.

The results obtained are presented in Table 3.2. Note that the inclusion of the
FBC inequalities results in shorter CPU times for Methods I and II in most cases.
Therefore, in the following discussion, we only provide results for the case where
the FBC inequalities have been added to the NFJSP formulation. From these results,
it is also evident that Method II is substantially faster than Methods I and III.

To further illustrate how this dominance varies with an increasing number of
scenarios, we present, in Fig. 3.2, the results for 6-machine problems with four
different numbers of scenarios, namely, 100, 200, 300, and 400. The arrow and
the number next to a data point indicate the percentage of test problems that
consume CPU times more than the limit of 1500 s. Note that Method II substantially
dominates the other methods as the number of scenarios increases from 100 to
400. This pattern is observed not only for the average values that are depicted in

66 S.C. Sarin et al.

Table 3.2 Computational results for Methods I, II, and III for 400 scenarios

Average CPU time (in seconds)
Method I Method II Method III

Number of machines w/o FBC w/ FBC w/o FBC w/ FBC w/o FBC w/ FBC

6 207.53 196.26 21.38 22.41 266.82 270.63
8 742.29 707.98 27.42 25.09 1365.04 1379.96
10a 1315.04 1306.59 82.81 54.63 2244.51 2242.22
10b – – 123.55 109.87 2273.06 2271.03

aTwenty-one (out of 180) 10-machine problems could not be solved by Method I due to
excessive memory requirements. The average values in this row are calculated based on the
remaining 159 test problems
bOne (out of the 180) 10-machine problem could not be solved by Method III due to
excessive memory requirements. The average values in this row are calculated based on
the other 179 test problems

0

50

100

150

200

250

300

Number of Scenarios

Av
er

ag
e

C
PU

 T
im

e
in

 s
ec

on
ds

Method I Method II Method III

Method I 56.95 112.76 168.48 196.26

Method II 6.11 12.56 16.85 22.41

Method III 149.31 209.98 231.49 270.63

100 200 300 400

8.3

10.6

7.8

7.8
8.3

3.9

Fig. 3.2 Average CPU times for 6-machine problems for various numbers of scenarios

Fig. 3.2, but also for all combinations of job-visiting patterns and cases of routing
flexibility. For the sake of brevity, we illustrate this behavior in Fig. 3.3 by using the
combination “L•H” � “�2”. Clearly, Method II dominates the other two methods
for all numbers of scenarios considered. Moreover, as the number of scenarios

3 Stochastic Scheduling for a Network of Flexible Job Shops 67

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Av
er

ag
e

C
PU

 T
im

e
in

 s
ec

on
ds

Number of Scenarios

Method I Method II Method III

Fig. 3.3 Average CPU times required by the combination “L•H” � “(ii)” for 6-machine problems
for various numbers of scenarios

increases, the CPU time required by Method II increases almost linearly, while that
for Method I increases superlinearly. Although the CPU time for Method III also
increases almost linearly, it does so at a much higher rate than that for Method II.
Hence, the dominance of Method II becomes more prominent with an increase in
the number of scenarios. Also, note that Method III begins to dominate Method I
for larger number of scenarios.

Next, we investigated the impact of adding the RF and DP inequalities to
Method II. There are several options that we can consider. The default option is
Method II with the FBC inequalities. We can either add to this default option the RF
and DP inequalities separately, or we can add them both at the same time. Another
aspect to consider is the set of machines to which these inequalities are applied. We
considered two options in this respect, namely, their application to only the HNV
machines, or to only the LNV machines. Our preliminary investigation showed that
the application of the RF and DP inequalities to the HNV machines results in the
addition of a large number of extra variables and constraints to the Stage-I master
problem, which leads to greater CPU times in comparison with the default option.
Therefore, in the following discussion, we only consider the addition of the RF and
DP inequalities to the LNV machines. To compare the performances of different
model configurations, we fixed the number of scenarios at 400. The average CPU
times and the ratio between the values of the LP solution and the 1. best-found
solution, under different job-visiting patterns and cases of routing flexibility, are
summarized in Tables 3.3 and 3.4.

68 S.C. Sarin et al.

Table 3.3 Average CPU times and percentage improvements over Model A

Model A (default)
B (default
C RF)

C (default
C DP)

D (default
C RFC DP)

Number
of
machines

Job-visiting
pattern

Routing
flexibility Average CPU time (in seconds), percentage improvement

6 LC•H� �1 7.48 7.7 7.64 7.7
�2 17.48 22.12 25.52 23.6
�3 1.74 1.77 1.74, 0.1 % 1.77

L•H �1 27.05 28.31 26.4, 2.4 % 28.32
�2 7.75 9.73 9.36 9.85
�3 3.09 3.09 3.11 3.13

L�•HC �1 130.12 123.66, 5.0 % 124.15, 4.6 % 123.95, 4.7 %
�2 4.16 4.49 4.25 4.49
�3 2.8 2.77, 0.8 % 2.81 2.78, 0.8 %

8 LC•H� �1 3.81 4.08 3.84 3.95
�2 5.78 8.97 6.85 9.44
�3 0.93 0.94 0.95 0.94

L•H �1 29 22.86, 21.2 % 33.37 22.94, 20.9 %
�2 4.67 5.74 6.92 6.6
�3 0.97 0.94, 3.0 % 0.97, 0.1 % 0.94, 3.1 %

L�•HC �1 176.92 196.35 160.16, 9.5 % 195.94
�2 2.93 2.81, 4.0 % 2.78, 5.1 % 3.03
�3 0.76 0.77 0.78 0.77

10 LC•H� �1 178.09 74.69, 58.1 % 252.17 76.01, 57.3 %
�2 18.91 29.81 51.57 42.7
�3 1.21 1.23 1.29 1.23

L•H �1 2227.97 1066.2, 52.1 % 2170.97, 2.6 % 1086.73, 51.2 %
�2 29.2 47.37 41.36 36.74
�3 1.6 1.62 1.85 1.62

L�•HC �1 549.05 476.28, 13.3 % 662.12 536.86, 2.2 %
�2 11.21 10.89, 2.9 % 15.28 15.37
�3 1.55 1.51, 2.4 % 1.54, 1.1 % 1.51, 2.6 %

Total
average

127.64 79.88 134.06 83.29

We highlight in bold, in Table 3.3, the CPU times that turn out to be shorter than
that for the default model (A) for a given combination of job-visiting pattern and
routing flexibility. For each such case, the percentage improvement in CPU time
over the default model is also presented along with the CPU time. In view of these
results, we can make the following observations: Simlarly a higher ratio between
the values of the LP solution and the best-found solution obtained for a method over
default is highlighted in Table 3.4

3 Stochastic Scheduling for a Network of Flexible Job Shops 69

Table 3.4 Comparing quality of LP relaxation

Model A (default)
B (default
C RF)

C (default
C DP)

D (default
C RFC DP)

Number of
machines

Job-visiting
pattern

Routing
flexibility LP relaxation value/Best solution found

6 LC•H� �1 92.52 % 92.52 % 92.52 % 92.52 %
�2 93.52 % 94.13 % 93.85 % 94.13 %
�3 95.00 % 95.00 % 95.00 % 95.00 %

L•H �1 94.00 % 94.00 % 94.00 % 94.00 %
�2 92.62 % 92.96 % 92.80 % 92.96 %
�3 91.58 % 91.58 % 91.58 % 91.58 %

L�•HC �1 94.45 % 94.45 % 94.45 % 94.45 %
�2 92.59 % 92.78 % 92.75 % 92.78 %
�3 92.46 % 92.46 % 92.46 % 92.46 %

8 LC•H� �1 93.92 % 93.92 % 93.92 % 93.92 %
�2 92.88 % 93.25 % 93.10 % 93.25 %
�3 93.95 % 93.95 % 93.95 % 93.95 %

L•H �1 94.83 % 94.83 % 94.83 % 94.83 %
�2 92.74 % 93.00 % 92.91 % 93.00 %
�3 94.48 % 94.48 % 94.48 % 94.48 %

L�•HC �1 93.24 % 93.24 % 93.24 % 93.24 %
�2 93.70 % 93.80 % 93.78 % 93.80 %
�3 93.99 % 93.99 % 93.99 % 93.99 %

10 LC•H� �1 94.19 % 94.19 % 94.19 % 94.19 %
�2 92.98 % 93.29 % 93.20 % 93.29 %
�3 94.31 % 94.31 % 94.31 % 94.31 %

L•H �1 93.59 % 93.59 % 93.59 % 93.59 %
�2 93.78 % 94.03 % 93.94 % 94.03 %
�3 93.12 % 93.12 % 93.12 % 93.12 %

L�•HC �1 92.38 % 92.38 % 92.38 % 92.38 %
�2 92.69 % 92.87 % 92.82 % 92.87 %
�3 94.47 % 94.47 % 94.47 % 94.47 %

1. On average, the addition of the RF inequalities alone (Model B) and the addition
of both types of inequalities (Model D) help in achieving a shorter CPU time.
This is particularly true when routing flexibility occurs on the HNV machines
(Case �1) because it leads to fewer conflicts for a large number of operations.
This phenomenon appears to become more prominent with an increase in the
number of machines, where savings of up to 58.1 % are achieved by Model B
and up to 57.3 % by Model D for the 10-machine problems.

2. The benefit of adding the RF and DP inequalities is more evident for the harder
problems, i.e., when the default model (Model A) takes a longer time to solve a
problem, the addition of the RF and DP inequalities is more likely to help reduce
the CPU time.

70 S.C. Sarin et al.

3.5 Heuristic Methods for the Solution of the NFJS Problem

Several heuristic methods can be used for the solution of the NFJSP that rely on
work presented above. Six such viable procedures are described and investigated
below.

1. Expected Value Problem Heuristic (EVP)

1. Assume processing times to be deterministic and equal to their expected values,
and solve the model to optimality record the solution.

2. Evaluate solution using all scenarios.

2. Mixed Heuristic (Mixed)

Note that, even if all the scenarios are considered in the determination of budget
over-runs, the resulting model is still relatively easy to solve (as the number of
relevant constraints/variables is equal to NS). Hence, we can consider all scenarios
in the determination of budget over-runs, while using expected processing times for
the determination of job completion times. We call the resulting model a mixed-type
model. Since this is a closer approximation of the original problem, we expect it to
yield better solutions than the expected value heuristic.

For large-sized problem instances, even the mixed-type model becomes very
difficult to solve. Therefore, we further relax the sequencing variables to be
continuous and solve the mixed-type model to obtain assignment decisions. Then,
we determine job sequences by considering the outcomes of all scenarios.

1. Solve the mixed-type model with sequencing variables relaxed as continuous;
(assignment step).

2. Determine the processing sequences using the assignment decisions fixed in Step
1; (sequencing step).

3. Mixed C Shortest Processing Time (SPT)
The second step of the mixed heuristic is still difficult to solve for large-sized
problems, hence we can apply the SPT dispatching rule to determine the job
sequence. That is, whenever a machine is released by a previous operation, we
choose the operation that has the shortest processing time on that machine from
among the waiting operations. Note that, if an operation can be processed on
multiple machines, it is considered to be waiting on all the compatible machines.
Its assignment is determined based on which machine first chooses it as the next
operation to be processed. Note that the SPT rule is based on the expected processing
times.

4. Mixed C Least Work Remaining (LWKR)

This approach is similar to “Mixed C SPT,” except that we use the least-work-
remaining-first rule to dispatch operations.

3 Stochastic Scheduling for a Network of Flexible Job Shops 71

5 and 6. Mixed C Shifting Bottleneck Heuristic (SBN)

As a first step, we use Step 1 of the Mixed Heuristic to determine the assignment
of operations to the machines. The remaining sequencing problem is modeled
as a disjunctive graph. In the beginning, all disjunctive arcs are relaxed and job
completion times are recorded and regarded as due dates. The ready time and due
date of each operation are determined by following the forward and backward passes
along the critical paths (for the completion time problem, there are usually multiple
critical paths). Next, each machine is considered individually to fix its operation
sequence using a heuristic rule. The machine that yields the largest change in the
total completion time is chosen, and the corresponding sequence (set of disjunctive
arcs) is fixed. The procedure continues until all the machines are sequenced. Note
that after the sequence of operations on each machine is fixed, a re-sequencing
step is implemented by adjusting the sequences of operations on previously fixed
machines.

We employ the following two heuristic rules to determine the sequence in which
to process the jobs on a machine:

5. SBN_ATC Determine the following Apparent Tardiness Cost (ATC) priority
index (Pinedo and Singer 1999):

Iij D
NX

kD1

1

pij
exp

�dk

ij � pij C �
rij � t

�C
Kp

!
; 8i 2 M; j D 1; : : : ; N;

where t is the scheduling time, K D 2, and p is the average of the processing times of
the jobs assigned to machine i, and ready time rij and local due date dk

ij of operation
j of job k assigned to machine i are determined as explained in Pinedo and Singer
(1999).

6. SBN_PRTT Choose the operation that has the lowest value of Chu and
Portmann (1992):

PRTTij D max
�
rij; t

�C max
˚
max

˚
rij; t

�C pij; mink
˚
dk

ij

��
;

8i 2 M; j D 1; : : : ; N:

This is a single machine sequencing rule, and we use the values of rij and dk
ij

as determined above. Additionally, insert the earliest available operation, if the
operation chosen by the above rule leaves enough idle time before itself.

The relative performances of these heuristic methods are presented in Tables 3.5
and 3.6 for 6 machines (with three jobs) and 10 machines (with 15 jobs), respec-
tively. Optimal gap is determined with respect to the solution of mixed-method,
which serves as a lower bound. Note that, although EVP gives the best results with
the least CPU time for the first set of problems, it becomes impractical for larger-
sized problems (second set) due to its large number of binary sequencing variables.
Mixed C LWKR heuristic gives the best results on larger-sized problem instances.

72 S.C. Sarin et al.

Table 3.5 Results on
6-machine problems (with 3
jobs)

Approach Optimality gap CPU time (seconds)

EVP 0.49 % 0.33
Mixed – 0.27 (Step 1)
Mixed C SPT 1.46 % 1.63
Mixed C LWKR 1.42 % 1.64
Mixed C SBN_ATC 1.89 % 0.91
Mixed C SBN_PRTT 1.27 % 0.90

Table 3.6 Results on 10-machine problems (with 15 jobs)

Approach Objective value CPU time (seconds)

Mixed 2049.72 2.15 (Step 1)
Mixed C LWKR 2796.85 (37.16 %) 13.12
Mixed C SBN_ATC 2872.97 (40.79 %) 45.35
Mixed C SBN_PRTT 2804.47 (37.47 %) 47.32

3.6 Concluding Remarks

In this chapter, we have presented a stochastic programming approach for the NFJS
(Network of Flexible Job Shops) problem. This problem arises in a distributed
fabrication environment that has recently emerged to serve the evolving needs of
the high investment, low volume MEMS industry. The problem is modeled as a
two-stage stochastic program with recourse, where the uncertainty in processing
times is captured using scenarios. The first-stage routing and sequencing variables
are binary whereas the second-stage completion time and budget over-run variables
are continuous. Since the NFJS problem lacks relatively complete recourse, the
first-stage solution can be infeasible to the second-stage problem in that it might
generate subtours, violate the re-entrant flow conditions, or create a deadlock. In
the standard L-shaped method, feasibility cuts are iteratively added to the first-
stage problem upon the discovery of these infeasibilities. As an alternative, we have
provided certain expected-value-scenario-based inequalities to induce feasibility
of the second-stage problem that greatly help reduce the effort required by the
L-shaped method. To further tighten the first-stage problem formulation, we have
also developed three types of valid inequalities: flow-balance constraints, re-entrant
flow-based constraints, and deadlock prevention constraints. Our computational
results reveal that: (a) our decomposition approach is substantially superior to the
direct solution of the NFJSP using CPLEX; (b) the expected-value-scenario-based
inequalities are significantly more effective than the use of standard feasibility
cuts in the master problem; and (c) the judicious additional use of the re-entrant
flow and deadlock prevention inequalities in conjunction with the expected-value-
scenario-based inequalities further improves the overall algorithmic performance,
particularly for more difficult problem instances. Furthermore, we have proposed
heuristic methods for the solution relatively larger instances of NFJS and have
presented results of their implementation.

3 Stochastic Scheduling for a Network of Flexible Job Shops 73

Acknowledgements This work has been supported by the National Science Foundation under
Grant CMMI-0856270.

References

Bagga PC (1970) N jobs, 2 machines sequencing problems with stochastic service times. Oper Res
7:184–197

Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik 4:238–252

Birge JR, Louveaux F (2000) Introduction to stochastic programming. Springer, New York
Brandimarte P (1993) Routing and scheduling in a flexible job shop by tabu search. Ann Oper Res

41:157–183
Chu C, Portmann MP (1992) Some new efficient method to solve the n T ri ˙ iwiTi problem.

Eur J Oper Res 58:404–413
Cunningham AA, Dutta SK (1973) Scheduling jobs with exponentially distributed processing

times on two machines of a flow shop. Nav Res Log Q 16:69–81
Dauzère-Pérès S, Paulli J (1997) An integrated approach for modeling and solving the general

multiprocessor job-shop scheduling problem using tabu search. Ann Oper Res 70:281–306
Elmaghraby SE, Thoney KA (1999) The two machine stochastic flowshop problem with arbitrary

processing time distributions. IIE Trans 31:467–477
Foley RD, Suresh S (1984) Stochastically minimizing the makespan in flow shops. Nav Res Log

Q 31:551–557
Forst FG (1983) Minimizing total expected costs in the two machine, stochastic flow shop. Oper

Res Lett 2:58–61
Gascon A, Lefrancois P, Cloutier L (1998) Computer-assisted multi-item, multi-machine and

multi-site scheduling in a hardwood flooring factory. Comput Ind 36:231–244
Gnoni MG, Iavagnilio R, Mossa G, Mummolo G, Di Leva A (2003) Production planning of multi-

site manufacturing system by hybrid modelling: a case study from the automotive industry. Int
J Prod Econ 85:251–262

Golenko-Ginzburg D, Gonik A (1997) Using “look-ahead” techniques in job-shop scheduling with
random operations. Int J Prod Econ 50:13–22

Golenko-Ginzburg D, Gonik A (2002) Optimal job-shop scheduling with random operations and
cost objectives. Int J Prod Econ 76:147–157

Golenko-Ginzburg D, Kesler S, Landsman Z (1995) Industrial job-shop scheduling with random
operations and different priorities. Int J Prod Econ 40:185–195

Guinet A (2001) Multi-site planning: a transshipment problem. Int J Prod Econ 74:21–32
Hutchison J, Leong K, Snyder D, Ward P (1991) Scheduling approaches for random job shop

flexible manufacturing systems. Int J Prod Res 29(11):1053–1067
Iwata K, Murotsu Y, Oba F, Okamura K (1980) Solution of large-scale scheduling problems for

job-shop type machining systems with alternative machine tools. CIRP Ann Manuf Technol
29:335–338

Jia C (1998) Minimizing variation in a stochastic flowshop. Oper Res Lett 23:109–111
Jia HZ, Nee AYC, Fuh JYH, Zhang YF (2003) A modified genetic algorithm for distributed

scheduling problems. J Intell Manuf 14(3–4):351–362
Kamburowski J (1999) Stochastically minimizing the makespan in two-machine flowshops without

blocking. Eur J Oper Res 112:304–309
Kamburowski J (2000) On three machine flowshops with random job processing times. Eur J Oper

Res 125:440–449
Kim Y-D (1990) A comparison of dispatching rules for job shops with multiple identical jobs and

alternative routings. Int J Prod Res 28(5):953–962

74 S.C. Sarin et al.

Ku PS, Niu SC (1986) On Johnson’s two-machine flowshop with random processing times. Oper
Res 34:130–136

Kutanoglu E, Sabuncuoglu I (2001) Experimental investigation of iterative simulation-based
scheduling in a dynamic and stochastic job shop. J Manuf Syst 20(4):264–279

Lai T-C, Sotskov YN, Sotskova N, Werner F (2004) Mean flow time minimization with given
bounds of processing times. Eur J Oper Res 159:558–573

Lee C-Y, Chen Z-L (2001) Machine scheduling with transportation considerations. J Sched 4:3–24
Lin JT, Chen Y-Y (2006) A multi-site supply network planning problem considering variable time

buckets–A TFT-LCD industry case. Int J Adv Manuf Technol 33:1031–1044
Luh PB, Chen D, Thakur LS (1999) An effective approach for job-shop scheduling with uncertain

processing requirements. IEEE Trans Robot Autom 15(2):328–339
Makino T (1965) On a scheduling problem. J Oper Res Soc Jpn 8:32–44
Mastrolilli M, Gambardella LM (2000) Effective neighbourhood functions for the flexible job shop

problem. J Sched 3:3–20
Miller C, Tucker A, Zemlin R (1960) Integer programming formulation of traveling salesman

problems. J ACM 7:326–329
Mittal BS, Bagga PC (1977) A priority problem in sequencing with stochastic service times. Oper

Res 14:19–28
Nasr N, Elsayed EA (1990) Job shop scheduling with alternative machines. Int J Prod Res

28(9):1595–1609
Pezzella F, Morganti G, Ciaschetti G (2008) A genetic algorithm for the flexible job-shop

scheduling problem. Comput Oper Res 35:3202–3212
Pinedo M (1982) Minimizing the expected makespan in stochastic flow shops. Oper Res 30:

148–162
Pinedo M, Singer M (1999) A shifting bottleneck heuristic for minimizing the total weighted

tardiness in a job shop. Nav Res Log 48:1–17
Prasad VR (1981) n � 2 flowshop sequencing problem with random processing times. Oper Res

18:1–14
Roux W, Dauzère-Pérès S, Lasserre JB (1999) Planning and scheduling in a multi-site environment.

Prod Plan Control 10(1):19–28
Sarin SC, Sherali HD, Bhootra A (2005) New tighter polynomial length formulations for the

asymmetric traveling salesman problem with and without precedence constraints. Oper Res
Lett 33(1):62–70

Sauer J, Freese T, Teschke T (2000) Towards agent based multi-site scheduling. In: Proceedings of
the ECAI 2000 workshop on new results in planning, scheduling, and design, pp 123–130

Sherali HD, Sarin SC, Tsai P (2006) A class of lifted path and flow-based formulations for
the asymmetric traveling salesman problem with and without precedence constraints. Discret
Optim 3(1):20–32

Singer M (2000) Forecasting policies for scheduling a stochastic due date job shop. Int J Prod Res
38(15):3623–3637

Subramaniam V, Lee GK, Ramesh T, Hong GS, Wong YS (2000) Machine selection rules in a
dynamic job shop. Int J Adv Manuf Technol 16:902–908

Talwar TT (1967) A note on sequencing problems with uncertain job times. J Oper Res Soc Jpn
9:93–97

Tavakkoli-Moghaddam R, Jolai F, Vaziri F, Ahmed PK, Azaron A (2005) A hybrid method for
solving stochastic job shop scheduling problems. Appl Math Comput 170:185–206

Timpe CH, Kallrath J (2000) Optimal planning in large multi-site production networks. Eur J Oper
Res 126(2):422–435

van Slyke R, Wets RJ-B (1969) L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM J Appl Math 17:638–663

Varadarajan A (2006) Stochastic scheduling for a network of MEMS job shops. Ph.D. Dissertation,
Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia

Wang L, Zhang L, Zheng D-Z (2005) A class of hypothesis-test based genetic algorithms for
flowshop scheduling with stochastic processing times. Int J Adv Technol 25(11–12):1157–1163

3 Stochastic Scheduling for a Network of Flexible Job Shops 75

Weiss G (1982) Multiserver stochastic scheduling. In: Dempster M, Lenstra JK, Rinooy-Kan A
(eds) Deterministic and stochastic scheduling. D. Reidel, Dordrecht, Holland

Xia W, Wu Z (2005) An effective hybrid optimization approach for multi-objective flexible job-
shop scheduling problems. Comput Ind Eng 48:409–425

Yoshitomi Y (2002) A genetic algorithm approach to solving stochastic job-shop scheduling
problems. Int Trans Oper Res 9:479–495

	3 Stochastic Scheduling for a Network of Flexible Job Shops
	3.1 Introduction: Problem Statement and Related Literature
	3.2 Stochastic Model for a Network of Flexible Job Shops
	3.2.1 Model Formulation for the NFJS Problem
	3.2.2 The L-Shaped Method for the NFJS Problem
	3.2.3 Optimality Cuts
	3.2.4 Alternative Valid Inequalities for Inducing Stage-II Feasibility That Also Provide a Stage-I Lower Bound

	3.3 Valid Inequalities for Further Tightening the Model Formulation
	3.3.1 Flow-Balance Constraints
	3.3.2 Re-Entrant Flow-Based Constraints
	3.3.3 Deadlock Prevention Constraints

	3.4 Computational Results
	3.4.1 Design of Test Problems
	3.4.2 Experimental Results

	3.5 Heuristic Methods for the Solution of the NFJS Problem
	3.6 Concluding Remarks
	References

