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Introduction

Planning and scheduling research has started at the early years of Operation
Research (OR) more than 50 years ago. Since then, people have been motivated
and challenged by the complexity of planning and scheduling problems. Most of
the research in this field is commonly published in various theoretical and applied
OR journals, which are also home to many other OR topics. Traditionally, planning
and scheduling problems are a class of discrete optimization problems, which have
mostly been addressed by linear and nonlinear mathematical programming models.
Despite all the progress achieved in mathematical programming methods and the
advancement in the computer technology, the vast majority of practical planning
and scheduling problems are NP-complete/NP-hard which are time-consuming to
solve via mathematical programming due to their computationally explosive nature.
Hence, the development in inexact methods and heuristics has been instrumental to
solving such problems especially for large instances.

The scope of this book is limited to heuristics, metaheuristics, and approximate
methods as applied to planning and scheduling problems. While it is not possible
to give a comprehensive treatment of this topic in one book, the aim of this work
is to provide the reader with a diverse set of planning and scheduling problems and
different heuristic approaches to solve them. The problems range from traditional
single stage and parallel machine problems to more modern settings such as
robotic cells and flexible job shop networks. Furthermore, some chapters deal
with deterministic problems, while some others treat stochastic problems. Unlike
most of the literature that deals with planning and scheduling problems in the
manufacturing and production environments, in this book the environments were
extended to nontraditional applications such as spatial scheduling (optimizing space
over time), runway scheduling, and surgical scheduling. The solution methods used
in the different chapters of the book also spread from well-established heuristics
and metaheuristics such as Genetic Algorithms, Simulated Annealing, and Tabu
Search to more recent ones such as Ant Colony Optimization, Meta-RaPS, and
Worm Optimization.
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viii Introduction

None of the chapters has been previously published in its totality and each
chapter offers a contribution to the body of the knowledge by presenting results
and insights from applying heuristics, metaheuristics, or approximate methods to
complex, recent, and diverse problems.

Norfolk, VA, USA Ghaith Rabadi
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Chapter 1
Approximation Algorithms for Spatial
Scheduling

Christopher Garcia and Ghaith Rabadi

Abstract Spatial scheduling problems involve a set of jobs which have spatial
dimensions in addition to traditional scheduling considerations such as due dates
or processing times. In these problems processing space is a limited resource,
and the scheduling decisions must determine both when and where the each job
will be processed as well as each job’s layout orientation. Spatial scheduling
problems find many real-world applications in industries such as shipbuilding and
aircraft assembly, where there is limited working space available and tasks utilize
significant amounts of spatial resources in their completion. In this chapter we
discuss spatial scheduling and present several heuristic and metaheuristic algorithms
for this problem class.

Keywords Spatial scheduling • Greedy algorithms • Metaheuristics • MetaRaPS

1.1 Introduction to Spatial Scheduling

Scheduling problems typically involve a set of jobs where each job has a due date, a
set of resource requirements (such as processing time or manpower requirements),
and a set of costs or profits. In spatial scheduling, physical space is viewed as a
limited resource and each job requires a certain amount of two-dimensional space.
Moreover, space is regarded as continuous (or approximately continuous) which
generally prohibits modeling spatial scheduling problems as simple assignment
problems. Spatial scheduling problems generally arise when there is a limited
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2 C. Garcia and G. Rabadi

amount of working space available and when each job requires a certain amount
of space for completion. Spatial scheduling problems are frequently encountered in
shipbuilding, aircraft assembly, and heavy industries.

There is a relatively small amount of literature on spatial scheduling compared
to other types of scheduling. Much of the applied spatial scheduling literature
addresses two related problems in shipbuilding: the block assembly problem and the
block painting problem. These problems both involve assigning polygonal objects to
specific work areas while simultaneously determining the start times and locations
within the assigned work area for each job. The block assembly problem was
addressed in Cho et al. (2001). In addition to spatial aspects, this problem also
has a workload balancing objective. They developed an approach involving an
operation strategy algorithm along with separate algorithms for block scheduling,
arrangement, and assignment. More recently, Caprace et al. (2013) applied a 3D
guided-search bin-packing algorithm to solve a similar spatial scheduling problem
within a shipyard. The block assembly problem was addressed in Lee and Lee
(1996) through the use of an expert system based on backtracking search and
adjustment rules. A related problem involving pre-scheduled jobs for which spatial
locations had to be determined was addressed by Varghese and Yoon (2005). They
developed a genetic algorithm for solving this problem.

In addition to specific applications, work has been done on more generalized spa-
tial scheduling models and related problems. Padberg (2000) examined the problem
of packing smaller boxes into a larger one. Because spatial scheduling problems
can be viewed as having two spatial dimensions and one time dimension, this
work provides an important conceptual foundation for spatial scheduling. Important
theoretical work in Duin and Van Sluis (2006) and Paulus and Hurink (2006) showed
that in general, scheduling problems which involve spatial constraints are NP-hard.
A generalized spatial scheduling model involving rectangular jobs with multiple
non-identical rectangular work areas was first addressed in Garcia (2010). This
problem class involved jobs with release times and due dates, and the objective
studied was to minimize the total tardiness. Integer programming (IP) models were
given for single and multiple-area versions of the problem and metaheuristics based
on simulated annealing and local search were developed. In Garcia and Rabadi
(2011), an algorithm based on the Metaheuristic for Randomized Priority Search
(Meta-RaPS) was developed for this problem class, and in Garcia and Rabadi
(2013) a fast non-iterative heuristic was developed. More recently, Srinivasan
(2014) studied a similar problem involving rectangular jobs and a single rectangular
processing area with the objective of minimizing the sum of completion times. IP
formulations were developed along with two heuristic algorithms. Additionally, this
work provided insights into when batching is advantageous and how it should be
applied.

In this chapter we show how heuristic and metaheuristic approximation algo-
rithms can be effectively applied to spatial scheduling problems. We use the
multiple parallel work area problem studied in Garcia and Rabadi (2013) as our
representative problem class. This involves rectangular jobs which have release
times and due dates and can be rotated 90ı, multiple non-identical processing
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areas, and an objective of minimizing the total tardiness. This problem class was
selected because it generalizes many other spatial scheduling problem classes.
For example, single-workspace problems simply use one processing area, fixed
orientations simply prohibit rotations, and the absence of due dates or release times
can be modeled by setting these values to zero for all jobs. Additionally, other
objective functions may also easily be incorporated. We present several heuristic
and metaheuristic approximation algorithms from the literature for this problem
class and provide a comparative analysis on a set of benchmark problems.

1.2 General Problem Formulation

The general spatial scheduling problem may be stated as follows. There is a set of
n jobs each having a width wj, height hj, processing time (duration) pj, due date
dj, and release time (or earliest start date) ej. Each job must be processed inside a
rectangular processing area k, and there are m available processing areas each having
a width Wk and height Hk. Jobs may be processed in parallel and any job may be
assigned to any processing area, provided it can fit inside. Furthermore, jobs may
be rotated by 90ı as needed. The objective is to assign each job a start time sj, a
processing area, and a location inside the assigned processing area together with an
orientation (i.e., one of two possible 90ı rotations) in order to minimize the total
tardy time. The tardiness for job j is defined as Tj D max

�
0;Cj�dj

�
where Cj is

the job’s completion time and dj is its due date. The objective will then be
Xn

jD1Tj

where n is the total number of jobs. A depiction of the scheduling of jobs within an
area is shown in Fig. 1.1 (taken from Garcia and Rabadi 2013).

It is seen in Fig. 1.1 that each job is assigned a specific location and orientation
inside a processing area, and remains there for the duration of its processing time.
A general IP formulation for this problem may be found in Garcia (2010).

Fig. 1.1 Scheduling jobs within a processing area
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1.3 Feasible Schedule Construction: The Bottom-Left
Time-Incrementing Heuristic

Under the general problem formulation there are multiple non-identical processing
areas which may be used in parallel. This use of multiple processing areas adds
a significant amount of complexity to the problem, as it requires assigning a
processing area to each job in addition to assigning a location and orientation within
the assigned area. In the sections that follow, several algorithms are developed which
use separate steps to first assign processing areas to the jobs and then assign start
times, locations, and orientations to each job. In this section we restrict our attention
to the sub-problem of constructing a feasible schedule for a single area given a list
of jobs assigned to that area. The resulting algorithm will then be used as a key
ingredient for the algorithms presented in subsequent sections.

A constructive method called the Bottom-Left-Time-Incrementing heuristic
(BLTI) was first developed in Garcia (2010) in order to generate a feasible schedule
for a single processing area. BLTI combines the well-known Bottom-Left (BL)
strip-packing heuristic developed by Baker et al. (1980) with a time-incrementing
mechanism for schedule construction. BL is a greedy rectangle-packing method
that places a set of rectangles into a strip or larger rectangle. BL sequentially
packs rectangles into the strip in the most bottom-left location where they fit. BLTI
employs BL but modifies it with a current time variable that is incremented as jobs
enter and leave the processing area. BLTI schedules jobs to the area in the order in
which they are given. Because the current time variable is always incremented and
never decremented, BLTI is guaranteed to construct feasible schedules regardless of
the input order. However, the schedule quality (in terms of the objective function) is
entirely dependent upon the input ordering of the jobs. The BLTI algorithm is shown
in Algorithm 1 below. It is assumed that each job in the input list can fit inside the
processing area.

Algorithm 1: BLTI with inputs Area and Jobs

Procedure BLTI(Area, JobsD 1 : : : n) DO:

CurrentTime 0

For each j in Jobs:

CurrentTime MAX(CurrentTime, ej)

Remove each job k from Area where sk C pk�CurrentTime

(X,Y) Pack j into Area using BL

While (X,Y)DNIL:

Select job k from Area with smallest sk C pk

CurrentTime sk C pk

Remove job k from Area

(X,Y) Pack j into Area using BL�
xj; yj

� (X,Y)

sj CurrentTime



1 Approximation Algorithms for Spatial Scheduling 5

In Algorithm 1, (xj, yj) designates the x- and y-coordinates assigned to the
bottom-left corner of job j. The BL packing procedure returns the bottom-left
coordinate of the next rectangle added, or NIL if this is not possible. When BLTI
attempts to pack a job into the processing area using BL, it is assumed to try both
orientations and pack the job using the first orientation which fits. In cases where
rotations are not permitted, this can easily be modified to restrict packing only for
the specified orientation.

1.4 The Packing Factor Heuristic

A fast, non-iterative heuristic algorithm for the multiple-area spatial scheduling
problem described above was developed in Garcia and Rabadi (2013), which we
present in this section. This algorithm, referred to as the Packing Factor Heuristic
(PFH), consists of three basic components: (1) an area assignment heuristic, (2)
BLTI for constructing feasible schedules for a single area at a time, and (3) a set
of input ordering rules. The complete scheduling algorithm executes a sequence of
four main steps:

1. A heuristic assigns each job to an area where it should be processed.
2. For each area, several different job input sequences are generated for the area’s

assigned jobs.
3. BLTI is used to construct candidate schedules for each area separately based

on the input sequences generated in step 2. The schedule resulting in the least
amount of total tardiness is retained for each area.

4. Since jobs are processed independently in the different areas, the resulting
schedules for each area are simply concatenated together to form the master
schedule.

1.4.1 Area Assignment Heuristic

The first and most complex step of this scheduling algorithm is to assign jobs
to processing areas. The general area assignment strategy aims to place jobs that
will likely have the least flexibility of location first while keeping the aggregated
space consumption fraction as small as possible within each area. In a purely two-
dimensional packing problem it is easy to see that larger rectangles generally have
less flexibility as to where they can be placed. Packing rectangles in a largest-first
order is an intuitive strategy which was also shown to be effective in the earlier
strip-packing literature (Hopper and Torton 2001). However, it is not as easy to see
what affords one job more flexibility than another in the type of spatial scheduling
problem under consideration. While a job may take up a significant amount of
2D space, it may also have a large amount of slack time in which it may be
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Fig. 1.2 Stretching the
processing volume (inner
box) results in S(j)

Fig. 1.3 A depiction of
V(Ak , Jk , t1, t2) as the sum of
inner box volumes between t1
and t2

processed without accruing tardiness which provides a mitigating effect. Garcia and
Rabadi (2013) combined these two ideas into a metric called the “stretched space
consumption” S(j) which balances a job’s 2D space with its slack time. This metric
is used to order jobs for area assignment in a manner analogous to largest-rectangle-
first.

A job j may be thought of as a 3D box based on its width wj, height hj, and
processing time pj. This results in a “processing volume” wjhjpj in 3D space-time.
A job may be processed at any time between its release time rj and due date dj

without accruing any tardiness. If processing volume is held constant and stretched
over the time interval [rj, dj], this results in a new 2D space consumption S(j) as
shown in Fig. 1.2 (taken from Garcia and Rabadi 2013). Thus, S(j) balances the
job’s 2D space requirement with its slack time, and is used to sequence jobs for area
assignment. S(j) is calculated as follows:

S.j/ D pj

dj � rj
wjhj (1.1)

Within any time interval [t1, t2], the total available volume for job processing inside
an area Ak with width Wk and height Hk is .t2 � t1/WkHk. In determining which
area to assign to a job, S(j) is used to estimate space consumption. Given a set
of jobs Jk assigned to area Ak, V(Ak, Jk, t1, t2) denotes the total estimated space
consumption over the time interval [t1, t2] based on the S(j) metric. This is illustrated
in Fig. 1.3 (taken from Garcia and Rabadi 2013), where the inner boxes represent the
“stretched” jobs over their available processing time [rj, dj]. Here, V(Ak, Jk, t1, t2) is
the sum of inner box volumes that intersect [t1, t2].
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To calculate V(Ak, Jk, t1, t2) it is necessary to identify the set of jobs J that
intersect with [t1, t2] as determined by their release times and due dates. Assuming
stretched space consumption, in any interval [t1, t2] the requested space RSj.t1; t2)
is defined as follows:

RSj .t1; t2/ D S.j/
ˇ
ˇŒt1; t2�\

�
rj; dj

�ˇˇ (1.2)

In (1.2),
ˇ̌
Œt1; t2�\

�
rj; dj

�ˇ̌
is used as shorthand to denote the length of the two

interval intersections. V(Ak, Jk, t1, t2) is then calculated follows:

V .Ak; Jk; t1; t2/ D
X

j2Jk

RSj .t1; t2/ (1.3)

Thus, V(Ak, Jk, t1, t2) is the total space consumption estimated during the time
interval [t1, t2] obtained by assuming each job j consumes S(j) two-dimensional
space over the time interval [rjj, dj]. The packing factor P(Ak, Jk, t1, t2) is then
defined as the fraction of estimated space consumption for area Ak during the time
interval [t1, t2]:

P .Ak; Jk; t1; t2/ D V .Ak; Jk; t1; t2/

.t2 � t1/ WkHk
(1.4)

The area assignment heuristic first sorts jobs in largest- S(j) -first order (analogous
to sorting rectangles in largest-first order for a 2D packing problem). The heuristic
uses a list of jobs assigned to each area, and jobs are assigned to areas one at a
time in largest- S(j) -first order. To assign each job j its processing area, j is first
added to all the areas’ assigned job lists. The packing factor is then calculated over
the time interval [rj, dj]. The area with the smallest packing factor over this time
interval retains j in its assigned job list, and j is deleted from the assigned job lists
of all other areas. As a result, this area assignment method is called PF as shown
in Algorithm 2. In the PF algorithm, a job fits inside of an area if its larger and
smaller dimensions are not greater than the area’s larger and smaller dimensions,
respectively.

1.4.2 Job Input Orderings

After areas are assigned to jobs using PF, BLTI is used to produce schedules for
each area separately. BLTI schedules jobs in the order in which they are given and
accordingly, the schedule quality produced is entirely dependent upon job input
ordering. Two separate ordering rules are used for inputting into BLTI: Earliest-
Due-Date-First (EDD) and Max-Slack. EDD is a simple and well-known heuristic
for machine scheduling problems with the objective of minimizing total tardiness.
Max-Slack is an ordering specifically devised for this problem. Max-Slack sorts
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Algorithm 2: PF with inputs Areas and Jobs

Procedure PF (AreasD 1 : : :m, JobsD 1 : : : n) DO:

Sort Jobs in Largest-First order based on S(j) metric

Jk Ø for k D 1 : : :m // Job-area assignments initialized to empty set

FOR j 1, j� n:

Best 1 // Initialize to first area

FOR k 2, k� m:

IF P
�
k; Jk[fJobs Œj�g ; rj; dj

�
<P

�
Best; JBest[fJobs Œj�g ; rj; dj

�

AND Jobs[j] Fits Inside area k:

Best k // This is the best area found so far

JBest  JBest[fJobs Œj�g // Assign Job j to Best Area

jobs on non-decreasing values of dj C rj, with the effect of giving priority to jobs
with smaller release times and due dates. For each area, separate schedules are
constructed using both EDD and Max-Slack and the better of the two is retained.
These area schedules are then concatenated into a single final master schedule.

1.5 Local Search

In Garcia (2010) a number of heuristic and metaheuristic algorithms were developed
for this spatial scheduling problem, including local search and several variants
of simulated annealing. Extensive computational studies which compared the
performance of the different algorithms were performed on a large set of bench-
mark problems covering a wide range of problem characteristics. Interestingly,
local search (LS) was found to outperform the more sophisticated metaheuristic
algorithms in almost all cases. Conceptually, LS works by keeping track of a best-so-
far solution. A mutation operation is iteratively applied which randomly transforms
one solution into another, and whenever a better solution is encountered the best-so-
far is simply updated. LS was found to be a robust approach for spatial scheduling,
and we present it in this section.

The LS algorithm utilizes BLTI to construct schedules for individual processing
areas. As previously mentioned, the schedule quality generated by BLTI is entirely
dependent upon the set of jobs assigned to the area and the input ordering of these
jobs. Accordingly, LS performs a search by randomly mutating two attributes during
each iteration: (1) job area assignment and (2) job input ordering. A mutation
function applies these two operations to transform one solution into another,
facilitating the search. Two parameters are used correspondingly to control the
changing of job area assignments and job input ordering: Area Change Probability
and Swap Range. The Area Change Probability is the probability that a given job is
shifted to a new area. A master list of all jobs is kept by the LS algorithm which is
used to feed jobs into BLTI in specified order. To alter the input ordering, two jobs
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are randomly selected and their positions are swapped in the master list. The Swap
Range limits the maximum number of positions apart between two jobs selected to
swap positions. The mutate function is shown in Algorithm 3, and LS is shown in
Algorithm 4.

Algorithm 3: Mutate operator with input Job Sequence

Procedure Mutate (Job Sequence):

FOR job in Job Sequence :

Randomly change area assignment if Uniform Rand in [0,1] �Area Change Probability
.i; j/ Random positions in Job Sequence at most Swap Range apart

Swap jobs in positions i and j

Algorithm 4: Local Search with input Jobs

Procedure LS (Jobs):

Best Randomly order the elements in Jobs

Randomly assign a processing area to each job in Best

REPEAT Max Iteration TIMES:

Next Mutate(Best)

Best Next IF ObjectiveFunction(Next) is better than ObjectiveFunction(Best)

RETURN Best

In Algorithm 4, BLTI is applied when evaluating the objective function of a job
sequence. To evaluate the objective function of a job sequence the jobs are first
separated into subsets by assigned processing area while retaining their relative
sequence, then BLTI is applied for each subset, and finally the resulting schedules
for each subset are then concatenated into a single master schedule. The objective
function is then evaluated on the master schedule.

1.6 Metaheuristic for Randomized Priority Search
(Meta-RaPS)

The Metaheuristic for Randomized Priority Search (Meta-RaPS) is a search control
strategy that uses both construction and improvement heuristics to generate high
quality solutions. Meta-RaPS has shown excellent results for many combinatorial
optimization problems including the Resource Constrained Project Scheduling
Problem (DePuy and Whitehouse 2001), the Traveling Salesman Problem (DePuy
et al. 2005), the 0–1 Multidimensional Knapsack Problem (Moraga et al. 2005),
the Vehicle Routing Problem (Moraga 2002), and the Parallel Machine Scheduling
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Problem with Setup Times (Rabadi et al. 2006). More recently, Meta-RaPS was
applied to the spatial scheduling problem (Garcia and Rabadi 2011), and this
algorithm is presented in this section.

Meta-RaPS, like other metaheuristics, utilizes randomness as a mechanism to
prevent becoming trapped into local optima. Meta-RaPS is controlled by four basic
parameters: the number of iterations (I), the priority percentage (p%), the restriction
percentage (r%), and the improvement percentage (i%). During execution, the
number of iterations determines the number of feasible solutions constructed.
Each iteration consists of two stages: (1) a solution construction stage and (2) an
(optional) improvement stage. During the construction stage a heuristic builds a
new solution by systematically adding available jobs to the current schedule based
on a priority rule. Rather than strictly adhering to the priority rule, however, Meta-
RaPS deviates from this a certain percentage of the time to introduce diversity.
The p% parameter determines the percentage of time the next item is added to the
solution according to the priority rule. In the remaining time (100%� p%), the next
item added to the solution is randomly chosen from a candidate list that consists
of feasible items whose priority values are within the best r% of the best priority
value. This mechanism allows the algorithm to avoid becoming trapped in a local
optimum.

In the optional improvement stage, a solution improvement algorithm is included
and the i% parameter is used to control this process. This is typically a local
search or similar heuristic. The improvement heuristic is performed if the objective
function value of the solution most recently constructed is within the best (lowest in
this case) i% of the range between both best and worst unimproved solutions found
so far. By only improving the best i%, time is not wasted on unpromising solutions.
Meta-RaPS continues iterating between these two stages until the maximum number
of iterations is reached, and the best solution encountered over all iterations is
reported.

1.6.1 Construction Stage

In the construction stage a complete schedule is constructed from an empty solution
based on a heuristic rule. The heuristic rule used for this algorithm is to first sort
jobs into EDD order, and then place each job in the processing area resulting in the
earliest completion time. Jobs are placed in areas by using BLTI and diversification
is introduced by selecting a random element from a candidate list (1� p%) of
the time (instead of strictly adhering to the EDD ordering). The candidate list is
obtained by selecting all jobs whose end time is no greater than r% percent of the
difference between the minimum and maximum ending times of the remaining jobs.
An implicit job ordering is obtained by selecting all the jobs with this combination
of priority-based and randomized selection. This new job ordering is returned at the
end of the construction stage and is used in the improvement stage. The constructive
heuristic and candidate selection methods are described in Algorithm 5.
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1.6.2 Improvement Stage

In this spatial scheduling algorithm we use a local search procedure to improve
promising solutions. This procedure is a slightly modified version of the local
search in the previous section (specifically Algorithm 4). The key difference is that
there is no random initial solution; the jobs begin with the areas assigned by the
construction procedure and in the same sequence as generated by the construction.
The improvement procedure is shown in Algorithm 6.

Algorithm 5: Construct with input Jobs, %p, and %r

Procedure Construct (Jobs, %p, %r):

Sort Jobs into EDD order

New Job Order []

WHILE Jobs is not empty :

IF uniform random in [0,1] > %p: j RandomCandidate(Jobs, %r)

ELSE: j Next(Jobs)

Remove j from Jobs and add j to New Job Order

Best Area NIL

Best Time Infinity

FOR each area A where j fits inside A :

BLTI([j], A)

IF sj C pj <Best Time:

Best Area A

Best Time sj C pj

FOR each area A where A¤Best Area :

Undo BLTI([j], A)

Return New Job Order

// Auxiliary procedure used above

Procedure RandomCandidate(Jobs, %r):

Min End Min fsj C pj for j in Jobsg
Max End Max fsj C pj for j in Jobsg
List fj in Jobs where sj C pj�Min EndC [(Max End�Min End) �%r)]g
Return randomly selected element from List

Algorithm 6: Improve with input Jobs

Procedure Improve (Jobs):

Best Jobs

REPEAT Max Improvement Iteration TIMES:

Next Mutate(Best)

Best Next IF ObjectiveFunction(Next) is better than ObjectiveFunction(Best)

RETURN Best
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1.6.3 Complete Meta-RaPS Algorithm

The main algorithm applies Meta-RaPS to this spatial scheduling problem by
employing the construction and improvement heuristics as described above. As
previously discussed, Meta-RaPS uses four basic parameters: the priority percent
(p%) determines the percentage of time in the construction stage that a randomly
selected element from a candidate list is used versus the pure heuristic rule followed;
the restriction percent (r%) specifies the range of priorities that the candidate list
may contain as a fraction of the difference between the least and greatest priorities;
the number of iterations (I) specifies the number of solutions to be constructed and
possibly improved; and finally the percent improvement (i%) specifies a limit on
how good a solution must be for it to be considered for improvement. The main
Meta-RaPS spatial scheduling algorithm is shown in Algorithm 7.

Algorithm 7: Meta-RaPS-Schedule with input Jobs, %p, %r, I, and %i

Procedure MetaRaPS-Schedule(Jobs, %p, %r, I, %i):

Best NIL; Best Constructed NIL; Worst Constructed NIL

REPEAT I times:

Current Construct(Jobs, %p, %r)

IF in first iteration:

Best Constructed Current

Worst Constructed Current

IF ObjectiveFunction(Current) < ObjectiveFunction(Best Constructed):

Best Constructed Current

IF ObjectiveFunction(Current) > ObjectiveFunction(Worst Constructed):

Worst Constructed Current

Range ObjectiveFunction(Best Constructed) –

ObjectiveFunction(Worst Constructed)

IF ObjectiveFunction(Current) � ObjectiveFunction(Best Constructed)C (Range�%i):

Current Improve(Current)

IF ObjectiveFunction(Current) < ObjectiveFunction(Best):

Best Current

Return Best

1.7 Comparison of Methods: Computational Results
on Benchmark Problems

We compare the different algorithms discussed in this section to one another and
also to the IP using the CPLEX solver. In this undertaking, the benchmark problems
and experiment design from Garcia and Rabadi (2011) are used. Problems in this set
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were generated by using three design factors: Average Slack Time, Release Rate,
and Average Space Consumption. A job’s slack time may be thought of as the
difference between its processing time and the amount of time between its release
time and due date. A job with less slack time will have less flexibility as to when
it may be scheduled without accruing tardiness and consequently, a lower average
slack time value will increase the problem difficulty. The Release Rate is the average
number of jobs whose release times occur in a given time unit. A higher Release
Rate will result in more jobs becoming available for processing at any given time and
will likewise result in a more complex problem. Finally, a job’s Space Consumption
is the amount of 2D space required. A higher Average Space Consumption implies
fewer jobs on average may be placed inside the processing areas at a time which
also results in a more difficult problem. In this set of benchmark problems, each
design factor has two levels, low (�) and high (C), resulting in eight different
problem characteristic combinations. Thus, the full factorial experiment follows a
23 design. Each combination contains ten problem instances, resulting in a total
of 80 problems. Each problem consists of 50 jobs. A more detailed description of
the problem generation method is found below and all data are available at www.
SchedulingResearch.Com.

1.7.1 Problem Generation

Test problems were generated using the Average Slack Time, Release Rate,
and Average Space Consumption as discussed above. Each problem utilized
the same processing area configuration consisting of four processing areas with
width� height dimensions as follows: 30� 23; 17� 14; 12� 10; and 15� 15. The
problem generation parameters along with their descriptions are shown in Table 1.1.

Uniform distributions are commonly employed in the generation of scheduling
benchmark problems because they result in large levels of variance and thus subject
solution methods to the most unfavorable conditions (Rabadi et al. 2006). For
these reasons uniform distributions were utilized. The number of jobs used in all
problems was n D 50 and the average job processing time was held constant
at �p D 20. The levels used for each of the design factor parameter are as
follows: �a D 0:05 .�/ and 0:12 .C/; �s D 0:5 .�/ and 0:12 .C/; and finally
� D 0:05 .�/ and 0:12 .C/.

1.7.2 Parameter Settings and Algorithm Implementations

All algorithms were implemented in the Ruby programming language. Additionally,
the IP model for this spatial scheduling problem was implemented using IBM ILOG
OPL and solved using CPLEX 12.2 on a computer having a 2.5 GHz quad-core
processor with 6 GB of memory. A 20-min time limit was imposed on CPLEX and
in cases where the time limit was reached, the incumbent solution was reported.

www.SchedulingResearch.Com
www.SchedulingResearch.Com
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Table 1.1 Problem generation parameters

Parameter Distribution Description

n N/A Number of jobs
µa Uniform over

Œ�a � 0:4�a; �a C 0:4�a�
Average job size fraction. This is a number in (0, 1)
that denotes the fraction of total available
processing space taken by the average job. For
instance, if �a D 0:1 this means that each job on
average takes 10 % of total available processing
space

µs Uniform over
Œ�s � 0:4�s; �s C 0:4�s�

Average slack multiple. Slack time is generated by
a random number r with mean µs. The average
slack multiple µs is a multiple of a job’s processing
time pj, and the total amount of slack time for job j
is pjr

µp Uniform over�
�p � 0:4�p; �p C 0:4�p

� The average job processing time (or duration)

� N/A The release rate

For the LS algorithm, the following parameters were used: Swap RangeD 3;
Area Change ProbabilityD 0.05; and Max IterationsD 600. A time limit of 4 min
was imposed on the LS algorithm, and it was also set to terminate if it exceeded
40 consecutive iterations with no improvement. Additionally, two runs per problem
were performed and the best result of the two was reported in each case. LS was run
on a 2.5 GHz dual-core processor with 7.5 GB of memory.

For MetaRaPS, the following parameters were used: p%D 10 %; r%D 10 %,
i%D 10 %; ID 600; Area Change ProbabilityD 0.05; Swap RangeD 2; and
LSID 5. It is pointed out that the maximum number of iterations I is the same
for Meta-RaPS as for LS above, in order to allow proper comparison between the
two methods. Similarly, a time limit of 4 min was imposed on the Meta-RaPS
algorithm and it was also set to terminate if it exceeded 40 consecutive iterations
with no improvement. Two runs per problem were performed and the best result
of the two was reported in each case. Meta-RaPS was run on a 2.4 GHz quad-core
computer with 2 GB of memory.

The PF algorithm was run on a computer having a 2.5 GHz quad-core processor
with 6 GB of memory.

1.7.3 Results and Discussion

The results of the comparative experiments (in terms of average objective function
and solution time) are shown in Table 1.2. It is seen that PFH requires very small
amounts of processing time to in many cases produce solutions nearly as good as
LS. The best solutions were found by CPLEX and Meta-RaPS in the vast majority
of cases. Meta-RaPS produced the best solutions in most problem classes where
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Table 1.2 Summary of experiment results

Combination Avg. objective value Avg. solution time (s)
�s � �a CPLEX PFH LS Meta-RaPS CPLEX PFH LS Meta-RaPS

� � � 0 15.13 5.09 8.13 106.55 1.92 57.3 209.08
� � C 1338.1 2484.76 2053.61 1768.19 1199.73 2.64 57.58 183.24
� C � 389.51 410.25 378.95 306.31 1114.43 1.75 71.65 184.65
� C C 2973.7 3085.17 3078.89 2754.46 1199.74 2.27 61.92 218.91
C � � 0 0.88 0 0 43.62 1.89 5.64 66.54
C � C 541.12 1261.22 1077.41 943.92 1199.66 2.5 67.4 207.96
C C � 1.87 3.99 0.35 0.43 693.25 1.54 22.93 75.77
C C C 1270.2 1805.81 1808.28 1519.38 1199.76 2.1 66.27 195.95

CPLEX frequently reached the time limit (e.g., >1110 s average time). In one
problem class (CC�) LS trivially produced the best solutions on average.

All benchmark problems in this set consisted of 50 jobs. As clearly seen,
CPLEX took far more time in most cases than all the other methods and reached
the time limit in the majority of the problems in this set. This suggests that
problems of this size approach the upper limit of cases where IP can be used.
Meta-RaPS in many cases beat CPLEX in much smaller amounts of time and
seldom significantly underperformed it. Meta-RaPS appears to be a robust method
for solving spatial scheduling problems. Solutions to all instances are available at
www.SchedulingResearch.com.

1.8 Conclusion

In this chapter we have examined a general type of spatial scheduling problem
involving multiple non-identical processing areas used in parallel, with the objective
of minimizing total tardy time. Three approximation algorithms have been shown
for this problem: a non-iterative method PFH, local search (LS), and Meta-RaPS.
These three methods were compared to one another and to IP in using a set
of benchmark problems in a computational experiment. PF produced many good
solutions in a very short amount of time. Meta-RaPS showed consistently strong
performance and beat IP in many cases on more difficult problems.
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Chapter 2
Estimating the Costs of Planned Changes
Implied by Freezing Production Plans

Po-Chen Lin and Reha Uzsoy

Abstract The use of production planning algorithms on a rolling horizon basis
is very common in practice. However, this leads to frequent changes in planned
quantities for future periods which may adversely impact support activities such
as material preparation, staffing, and setup planning. In this chapter we examine
two widely used approaches for this problem, the use of change costs to penalize
changes in planned quantities and freezing of the plan by prohibiting any changes in
some number of periods in the near future. We use a linear programming model of a
single-product single-stage system to develop insights into the conditions when the
two approaches are equivalent. Specifically, we derive lower bounds on the values
of the change costs which will ensure freezing of the plan in a given planning epoch,
and present numerical results to illustrate our findings.

Keywords Rolling horizon • Production planning • Nervousness • Change
costs • Freezing

2.1 Introduction

Rolling horizon procedures, where an infinite horizon problem is approximated by
the solution to a sequence of finite horizon problems, are common in production
planning practice and research. We define the points in time at which a finite horizon
model is solved as a planning epoch s, and the interval of time consisting of the T
periods t D s; sC 1; : : : ; sC T � 1 covered by its planned decisions as the planning
window T. Thus at each epoch new values of key decision variables, especially
planned release quantities, are calculated, resulting in changes in the planned values
of these variables from one epoch to the next. The changes in planned release
quantities that occur in each period as new updated demand information becomes
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available may disrupt supporting activities such as staffing, material procurement,
and machine setup that are initiated based on plans developed in earlier periods.
This phenomenon, referred to in the literature as schedule nervousness or stability,
has been addressed by many researchers over the last several decades (Mather 1977;
Carlson et al. 1979; Blackburn et al. 1985, 1986; Sridharan et al. 1988; Narayanan
and Robinson 2010).

Several approaches have been proposed to alleviate scheduling nervousness,
such as introducing ending conditions in the model solved at each epoch (Eilon
1975; Hung and Leachman 1996; Fisher et al. 2001; Voss and Woodruff 2006),
forecasting beyond the current planning horizon (Grinold 1980; Carlson et al. 1982;
Grinold 1983; Kropp et al. 1983; Blackburn et al. 1985, 1986), holding safety stock
(Kropp et al. 1983; Blackburn et al. 1985, 1986; Yano and Carlson 1987; Sridharan
and LaForge 1989; Metters and Vargas 1999; Bai et al. 2002; Sahin et al. 2013),
freezing the schedule by prohibiting changes in certain periods (Blackburn et al.
1985, 1986; Sridharan et al. 1987, 1988; Sridharan and Berry 1990; Zhao and Lee
1993; Zhao and Xie 1998; Zhao and Lam 1997; Xie et al. 2003), and introducing
change costs (Carlson et al. 1979; Kropp et al. 1983; Voss and Woodruff 2006)
and chance constraints (Johnson and Montgomery 1974; Bookbinder and Tan 1988;
Tarim and Kingsman 2004; Ravindran and Uzsoy 2011; Aouam and Uzsoy 2014).
In this chapter we focus on the link between two prominent methods: freezing
the schedule by prohibiting planned changes for some subset of the periods in the
current planning window, and introducing change costs in the objective function that
penalize planned changes, in a single-stage single-product system with fixed lead
time and limited capacity. We assume the planning problem solved at each epoch
of the rolling horizon procedure takes the form of a linear program, and analyze the
structure of optimal solutions to develop lower bounds on the values of change costs
that will guarantee zero planned changes in a given period of the current epoch, i.e.,
freezing the schedule, at optimality. We thus demonstrate the equivalence between
freezing the schedule and penalizing planned changes in the objective function.

In the next Sect. 2.2, we will briefly discuss the methods of freezing schedules
and introducing change costs. In Sect. 2.3, we present the primal and dual formula-
tions for a single-stage single-product production system. In Sect. 2.4, we analyze
the behavior of release changes for a single-product model. Detailed analysis of unit
release change costs to guarantee freezing is provided in Sect. 2.5. A computational
study illustrates the implications of our findings in Sect. 2.6. Section 2.7 summarizes
our conclusions and discusses future research directions.

2.2 Literature Review

In this section, we briefly introduce the rolling horizon approach used in this chapter,
and then discuss the methods of freezing the schedule and introducing change costs.
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2.2.1 Rolling Horizon Approach

In the most common application of the rolling horizon approach, time is considered
in discrete periods t D 1; : : : ;1. At the start of each planning epoch s, all relevant
information on the state of the production system and estimated future demand is
collected and a production plan developed for the next T periods s, sC1, . . . , sCT�1
using a finite horizon planning model whose nature may vary with the application
domain. The specific decisions usually involve planned material release quantities
Rt.s/ and production quantities Xt.s/ for each period as well as lot sizes in problems
involving setup times. The decisions for the current period s are implemented, and
time advances to the beginning of period s C 1, when the process of information
collection and planning recommences. We shall refer to each period s at which a
finite horizon plan is developed as a planning epoch, the set of periods s, sC 1, . . . ,
sC T � 1, as the current planning window, and the number of periods T considered
in the finite horizon model as the planning window length. We shall denote the set
of all information available for planning purposes at the start of period s as ˝.s/
and the solution obtained by the planning model solved at the start of period s as
R.s/ D ŒRs.s/;RsC1.s/; : : : ;RsCT�1.s/� where Rt.s/, 8t D 1; : : : ;K denotes the
values of the decision variables Rt.s/ computed for period t at planning epoch s,
s � t � sC T � 1. K is the final period of the entire planning horizon.

A natural consequence of this process is that the decision variables Rt.s/
associated with a given period t, t � s and 0 � s� t � T�1, are revised T�1 times
before actually being implemented in period t D s. The changes arise from the fact
that the finite horizon planning models used to develop plans at successive planning
epochs use different sets of information, i.e., ˝.s/ � ˝.sC 1/. A given period t,
t � s and 0 � s� t � T�1, will first be considered at planning epoch s D t�TC1,
yielding decision variable Rt.t � T C 1/. The next planning epoch will yield a new
set of decision variables Rt.t � T C 2/ for period t. Eventually, after new decisions
Rt.t� T C 1/, Rt.t� T C 2/, . . . , Rt.t� 1/ have been calculated at planning epochs
s D t � T C 1; : : : ; t � 1, the decision variable Rt.s/ will be implemented at epoch
s D t. The basic rolling horizon procedure we study is thus described as follows:

2.2.2 Algorithm RH

Step 1: Set s D 0, given the initial WIP level W0.s/ and finished goods inventory
(FGI) levels I0.s/.

Step 2: Increment s by 1.
Step 3: Solve the finite horizon problem with planning window length T involving

periods s to sC T � 1.
Step 4: Implement the releases Rs.s/ and production Xs.s/ as the realized plan.

Record the WIP Ws.s/ and FGI Is.s/ at the end of period s as initial values of
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WIP Ws.s/ D Ws.s C 1/ and FGI Is.s/ D Is.s C 1/ for the next window from
periods sC 1 to sC T.

Step 5: Update the demand forecasts for periods sC 1 to sC T.
Step 6: Return to Step 2 and repeat until epoch s D K � T C 1.

This repeated revision of the planning decisions for each period can cause
problems in practice. One of the purposes of production planning is to provide
visibility into future requirements for ancillary functions that support production,
such as staffing, maintenance, and purchasing. Frequent changes in planned release
and production quantities can lead to significant disruptions in these support
activities, often rendering the execution of the production plans infeasible and
leading to much wasted effort due to redundant updates. In the notation above, the
change in the planned release quantities Rt.s/ and Rt.sC 1/ from epoch s to epoch
sC 1 is given by:

4Rt.s; sC 1/ D Rt.sC 1/� Rt.s/:

We shall refer to these changes as planned changes in the production plan from
epoch s to the next epoch sC 1. In this study, we focus on planned changes in only
one set of decision variables, the release variables Rt.s/, because these decisions
affect both production planning and its supporting activities.

2.2.3 Freezing the Schedule Within the Planning Horizon

In many production environments it is important to maintain a stable production plan
where decisions for a given time period are not changed dramatically from epoch to
epoch. Frequent, large changes in previously announced plans will cause the users
of those plans to question their reliability; if they feel plans are unreliable, users
will tend to ignore any planned releases and production that they think are likely to
change in the future. Supporting activities such as staffing, machine preparation, and
materials procurement need time to respond to changes in planned releases, which
may cause longer cycle times for the entire production system. Therefore, a stable
plan is preferable.

Freezing the schedule fixes the production plans for the next several periods,
permitting no changes even when there are changes in demand. This has the
advantage of eliminating planned changes in the frozen periods, but also limits the
system’s ability to respond to demand changes. When demand forecasts are revised
upwards, freezing may result in unmet demand and reduced customer service levels.
When demand forecasts are revised down in the face of reduced demand, excess
inventories may accumulate. Plans associated with periods further in the future are
allowed to change.

Freezing the schedule was proposed with the aim of controlling schedule
nervousness (Sahin et al. 2013). This strategy aims to divide a single planning
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Fig. 2.1 Concept of freezing the schedule

window into two parts as shown in Fig. 2.1: frozen periods and a free interval.
The frozen periods, in turn, consist of two parts: lead time and additional freezing
periods. In a rolling horizon environment, the output for the first L periods is
determined by releases implemented in periods prior to the current planning window
and cannot be changed. Freezing a period implies a decision not to change the
planned release quantities even when demand has changed. We can only change
releases in periods in the free interval in response to demand changes.

Many researchers (Blackburn et al. 1985, 1986; Sridharan et al. 1987, 1988;
Sridharan and Berry 1990; Zhao and Lee 1993; Zhao and Xie 1998; Zhao and
Lam 1997; Xie et al. 2003) have proposed freezing schedules to provide more
stable production plans. There are two general freezing approaches, order-based
and period-based freezing (Sridharan et al. 1987; Zhao and Lee 1993). Under order-
based freezing we freeze specific orders, while period-based freezing freezes all
orders in the schedule for specified periods. In this chapter we consider the latter
approach. In terms of schedule stability, Zhao and Lee (1993) found that period-
based freezing with longer freezing periods outperforms order-based freezing in
terms of schedule changes, but with lower service level and higher costs. Sridharan
et al. (1987) found that in an uncapacitated system freezing up to 50% of the
planning window increases production changeover and inventory carrying costs
only slightly. Zhao and Lee (1993) further found that under deterministic demand,
longer freezing periods affect cost performance, production instability, and service
level only slightly. Sridharan and LaForge (1994a) also found that freezing part
of the schedule reduces the service level slightly. However, under stochastic
demand, longer freezing periods degrade all performance measures. They suggested
balancing schedule stability and service level by choosing an appropriate length of
the freezing period when demand is stochastic.

In order to increase the service level in the presence of frozen schedules, Yano
and Carlson (1987) and Sridharan and LaForge (1989) suggested holding safety
stock. In the presence of safety stock, Sridharan and LaForge (1989, 1994a,b)
found that freezing a part of the schedule may reduce the service level only
slightly. By specifying safety stock levels, Sridharan and Berry (1990) claimed
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that freezing the schedules can reduce schedule instability under both deterministic
and stochastic demand. Blackburn et al. (1985, 1986) presented a comprehensive
comparison of four different production strategies to improve schedule stability:
lot for lot, freezing the schedule, introducing change costs, and extending the
planning window by forecasting using the Wagner-Whitin algorithm and Silver-
Meal heuristic. They suggested that under most conditions, freezing the schedule
and implementing change costs yield better cost and schedule stability than the
other planning strategies. They also pointed out that when demand is uncertain with
fixed capacity and lead time, freezing the schedule only helps schedule stability. The
question of how to select proper values for freezing window length and change costs
is left open. Thus, there is a tradeoff between schedule stability, on the one hand,
and other performance measures such as service level and total cost, on the other.

2.2.4 Introducing Change Costs

The method of introducing change costs also aims to control schedule nervousness
by penalizing both positive and negative planned changes from one planning epoch
to the next (Voss and Woodruff 2006). Change costs represent a unit cost imposed on
any planned change from the planned quantity computed in the previous planning
epoch. Carlson et al. (1979) and Kropp et al. (1983) also proposed incorporating
schedule change costs into material requirement planning (MRP) using the Wagner-
Whitin (1958) algorithm in a rolling horizon environment with setup costs. They did
not consider unit change costs but focused instead on the introduction of additional
setups, without cancelling an existing setup. They suggested that with schedule
change costs an optimization model will choose the most economical solution, but
did not discuss how to set appropriate values for change costs. Kropp and Carlson
(1984) introduced change costs for adding or cancelling a setup and suggested,
following Carlson et al. (1979) and Kropp et al. (1983), that schedule change costs
can help to control the tradeoff between holding and setup costs in order to minimize
total overall costs. Based on the contributions of Carlson et al. (1979), Kropp
et al. (1983) and Kropp and Carlson (1984), Blackburn et al. (1985, 1986) further
modified the change costs to encourage new setups and discourage cancellation of
an already planned setup. They compared the change cost method to other strategies
such as lot sizing, freezing schedules, and holding safety stocks in a rolling horizon
environment, finding that adding change costs and freezing the schedule provide
better results. However, the problem of specifying appropriate values of the change
costs is critical to the effective use of this approach. Setting change costs too high
may result in increased costs due to excess inventories or backorders, while setting
them too low may permit unnecessary changes in planned quantities.

Braun and Schwartz (2012) examine three different methods to reduce schedule
nervousness in master production scheduling: (1) Freezing the schedule, (2) Move
suppression, and (3) Schedule change suppression. The frozen horizon approach
involves freezing the schedule for a certain number of periods in each planning
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window. Move suppression introduces a penalty cost on the changes from period
t � 1 to the next period t in the same planning epoch. Schedule change suppression
introduces unit change costs on any change made in any planned quantity from
one epoch to the next. Both move suppression and schedule change suppression are
controlled by a penalty factor trying to minimize the level of schedule nervousness,
defined as the maximum amount of change from period to period. Under this objec-
tive, move suppression performs the best, followed by schedule change suppression.
The frozen horizon approach creates the most nervousness because it needs to react
to fulfill demand. The penalty cost plays a critical role in controlling both the timing
and magnitude of schedule changes. However, determining a specific value for the
penalty cost requires considerable trial and error. In addition, the three approaches
do not consider capacity and holding cost, yielding no clues as to the impact of the
policies on backlogs and inventory costs.

Cost structure is also a critical factor that affects the performance of planning
systems. Several researchers (Sridharan et al. 1987; Sridharan and Berry 1990;
Zhao and Lee 1993; Kadipasaoglu and Sridharan 1995) have found that the ratio
of setup and FGI holding costs influences schedule stability, service level, and
total cost performance in MRP. A large setup to holding cost ratio produces fewer
setups, generating lower total cost and more stable plans. However, these findings
assume unlimited capacity and no backlogging. Voss and Woodruff (2006) impose
a common nonnegative change cost on both positive or negative changes. They also
suggest that a quadratic penalty function is more realistic and simpler, removing the
need to distinguish between positive and negative changes. However, this results in a
nonlinear objective and does not consider the different causes of positive or negative
changes. Thus we still lack clear insight into how to set change costs when planning
in a rolling horizon environment with capacity constraints.

The approach of introducing release change costs in the objective function is
equivalent to period-based freezing (Carlson et al. 1979; Kropp et al. 1983; Kropp
and Carlson 1984; Blackburn et al. 1985, 1986; Lin et al. 1994; Voss and Woodruff
2006; Braun and Schwartz 2012) by setting the change costs to infinity for the
frozen periods, and zero for the periods in the future where changes are permitted.
However, this limiting case does not assist us in setting appropriate values for
change costs. The costs of planned changes are hard to determine in practice, since
they are driven by the changes to planned activities that must be made due to changes
in production plans. Lin et al. (1994) set arbitrary unit change costs and found that
the length of the frozen periods increases as the unit change cost increases. Hence it
is useful to identify the minimum value of the change cost in a particular period that
will ensure that the schedule will be frozen in that period. If an accurate estimate of
this value could be computed, management could compare this estimate with their
knowledge of the system and the potential impacts of planned changes to assess
whether the decision to freeze the plan is justified.

In the next Sect. 2.3, we will begin our analysis of the release change cost LP
model with fixed lead time to provide comprehensive analysis of how to set unit
release change costs to guarantee freezing the schedule in the current epoch.
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2.3 Release Change Cost Model with Fixed Capacity

In this section, we present the mathematical model of a single-product single-stage
production system with a finite planning window.

2.3.1 Single-Product Model

In this section, we consider a single-stage single-item production system with a
deterministic production lead time of L periods and a capacity of C units per
planning period. We introduce unit release change costs to the model motivated
by Voss and Woodruff (2006) using the following notation:

Indices:

s: planning epoch s D 1; : : : ;K�TC1; also indicates the first period of a planning
epoch.

t: a planned period within the planning window from s to sC T � 1.

Parameters:

T: planning window length, the number of periods considered in a
planning epoch consisting of periods s to sC T � 1.

K: number of planning periods in the entire horizon.
C: maximum number of units the system can produce in a planning

period.
L: lead time-material released to the system in period t becomes available

as finished product in period tC L � 1.
Dt.s/: demand forecast made at the start of epoch s for period t, s � t �

sC T � 1.
!t: unit WIP holding cost.
't: unit FGI holding cost.
�t: unit backlog cost.
�t: unit release change cost.
R

0

t.s � 1/: release quantity planned for period t in planning epoch s � 1, which
is outside the current planning epoch s. These values correspond to
planned quantities from the previous decision epoch s � 1, and hence
are known with certainty at the start of the current planning epoch s.

Rt.s/: release quantity already implemented for period t D s�LC1; : : : ; s�1.
These are deterministic parameters that must be considered due to the
presence of the fixed lead time L.

U: estimated demand for all periods outside the current planning window,
corresponding to the estimated mean of future demand.
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Primal Decision Variables:

Rt.s/: release quantity planned in epoch s for period t, s � t � sCT � 1.
Wt.s/: WIP level planned in epoch s for period t, s � t � sC T � 1.
Xt.s/: production quantity planned in epoch s for period t, s � t � s C

T � 1.
It.s/: FGI planned in epoch s for period t, s � t � sC T � 1.
Bt.s/: backlog planned in epoch s for period t, s � t � sC T � 1.
4Rt.s � 1; s/: planned release change for period t between the consecutive

epochs s� 1 and s ,4Rt.s � 1; s/ D Rt.s/� R
0

t.s � 1/.
Using this notation we can formulate the single-product planning model solved at
each epoch of the rolling horizon procedure as follows:

2.3.2 Mathematical Model

Objective:

Minimize D
(

sCT�1X

tDs

Œ!tWt.s/C 'tIt.s/C �tBt.s/�C
sCT�2X

tDs

�t j4Rt.s � 1; s/j
)

:

Constraints:

RsCT�� .s/ � U; 8 � 2 .1;L/:

Wt.s/ D
L�1X

�D0
Rt�� .s/; 8 t 2 .s; sC T � 1/:

It.s/� Bt.s/ D It�1.s/ � Bt�1.s/C Xt.s/ �Dt.s/; 8 t 2 .s; sC T � 1/:
Xt.s/ � C; 8 t 2 .s; sC T � 1/:
Xt.s/ D Rt�L.s/; 8 t 2 .s; sC T � 1/:
4Rt.s � 1; s/ D Rt.s/ � R

0

t.s � 1/; 8 t 2 .s; sC T � 1/:
Xt.s/; Wt.s/; Rt.s/; It.s/; Bt.s/ � 0; 8 t 2 .s; sC T � 1/:

While the WIP costs are usually omitted in planning models with fixed lead times
(Missbauer and Uzsoy 2011), we include them in this model because of the role
of WIP holding costs in determining release change costs which will emerge from
our analysis. In order to analyze the structure of optimal solutions for this model,
we first rewrite the release change variable 4Rt.s � 1; s/, which is free in sign, as
the difference of two nonnegative decision variables representing the positive and
negative release changes:
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4Rt.s � 1; s/ D Rt.s/ � R
0

t.s � 1/
D 4RCt .s � 1; s/ �4R�t .s � 1; s/:

A positive release change4RCt .s � 1; s/ D max
h
Rt.s/� R

0

t.s � 1/; 0
i
> 0 means

that the period t release planned in epoch s exceeds that planned in epoch s � 1, so
it is necessary to increase the planned release quantity to account for this change.

On the other hand, 4R�t .s � 1; s/ D max
h
R

0

t.s� 1/� Rt.s/; 0
i
> 0 means it was

previously planned to release more material in epoch s � 1 than is now needed in
epoch s. We assign positive and negative release changes unit costs of �Ct and ��t ,
respectively, and rewrite variables Xt.s/, It.s/, and Rt.s/, in terms of4RCt .s � 1; s/
and4R�t .s�1; s/. This straightforward but tedious substitution yields the following
primal formulation:

2.3.3 Primal Model

Minimize D
sCT�1X

tDs

Œ.'t C �t/Bt.s/�C !sCT�1WsCT�1.s/

C
sCT�2X

tDs

(

4RCt .s� 1; s/
"

�Ct C
tCL�1X

�Dt

!t C
sCT�1X

�Dt

't

#)

C
sCT�2X

tDs

(

4R�t .s � 1; s/
"

��t �
tCL�1X

�Dt

!t �
sCT�1X

�Dt

't

#)

Primal Constraints:

RsCT�1.s/ � U; Œ˛sCT�1.s/� : (2.1)

4RCsCT�t.s � 1; s/�4R�sCT�t.s � 1; s/ � U � R
0

sCT�t.s � 1/
8 t 2 .2;L/; s � 2; L � 1; Œ˛sCT�t.s/� : (2.2)

tX

�DsCL

�4RCsCT�t.s � 1; s/�4R�sCT�t.s� 1; s/
�C Bt.s/ � Vt.s/;

8 t 2 .s; sC T � 1/; Œˇt.s/� : (2.3)
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�4RCsCT�t.s � 1; s/C4R�sCT�t.s� 1; s/ � �CC R
0

t.s � 1/;
8 t 2 .s; sC T � 1 � L/; Œ	t.s/� : (2.4)

4RCsCT�t.s � 1; s/�4R�sCT�t.s� 1; s/ � �R
0

sCT�t.s � 1/;
8 t 2 .s; sC T � 2/; Œ
t.s/� :

(2.5)

Bt.s/ > 0: (2.6)

RCsCT�t.s � 1; s/; R�sCT�t.s� 1; s/ � 0; 8 t 2 .s; sC T � 2/: (2.7)

where for brevity of notation we define the constants:

Vt.s/ D �Is�1.s/C Bs�1.s/C
tX

�Ds

D� .s/�
tX

�DsCL

R
0

��L.s/ �
sCL�1X

�Ds

R��L.s/: (2.8)

Constraint set (2.4) implies that release changes must be feasible with respect to
the residual capacity given by R

0

t.s � 1/ � C in each period t. The dual variables
associated with each constraint set are denoted by the Greek letters in square
brackets to the right of the constraints.

2.3.4 Dual Model

The dual of this model is as follows:

Maximize D U˛sCT�1.s/C
LX

tD2
˛sCT�t.s/

h
U � R

0

sCT�t.s � 1/
i

C
sCL�1X

tDs

(

ˇt.s/

"

�Is�1.s/C Bs�1.s/C
tX

�Ds

D� .s/C
tX

�Ds

R��L.s/

#)

C
sCT�1X

tDs

Vt.s/ˇt.s/C
sCT�1�LX

tDs

	t.s/
h
�CC R

0

t.s � 1/
i

�
sCT�2X

tDs

R
0

t.s � 1/
t.s/:

Dual Constraints:

˛sCT�1.s/ � !sCT�1; 8 t 2 .s; sC T � 1/; ŒRsCT�1.s/� : (2.9)
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ˇt.s/ � 't C �t; 8 t 2 .s; sC T � 1 � L/; ŒBt.s/� : (2.10)

�	t.s/C 
t.s/C
sCT�1X

�DtCL

ˇ�.s/ � QCt .s/;

8 t 2 .sC T � 1; sC T � 2/; �4RCsCT�t.s� 1; s/
�
:

(2.11)


t.s/C ˛t.s/ � �Ct C
tCL�1X

�Dt

!� ;

8 t 2 .s; sC T � 1 � L/;
�4RCsCT�t.s � 1; s/

�
:

(2.12)

	t.s/ � 
t.s/�
sCT�1X

�DtCL

ˇ�.s/ � Q�t .s/;

8 t 2 .sC T � 1; sC T � 2/; �4R�sCT�t.s � 1; s/
�
:

(2.13)

�
t.s/ � ˛t.s/ � ��t �
tCL�1X

�Dt

!� ;

8 t 2 .s; sC T � 1 � L/;
�4R�sCT�t.s � 1; s/

�
:

(2.14)

˛t.s/; ˇt.s/ � 0; 8 t 2 .s; sC T � 1/: (2.15)

	t.s/; 
t.s/ � 0; 8 t 2 .s; sC T � 2/: (2.16)

For constraint sets (2.12) and (2.14), we define the constants:

QCt .s/ D ��t C
tCL�1X

�Dt

!� C
tCL�1X

�Dt

'� ; 8 t 2 .s; sC T � 1 � L/:

and

Q�t .s/ D ��t �
tCL�1X

�Dt

!� �
tCL�1X

�Dt

'� ; 8 t 2 .s; sC T � 1 � L/

Before we start to analyze release changes, we will briefly discuss some of the
primal and dual constraints. Let us begin from constraint (2.3). When
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It.s/ D Bt.s/C
tX

�DsCL

�4RCt .s� 1; s/�4R�t .s� 1; s/
� � Vt.s/ > 0:

the system has positive FGI, implying ˇt.s/ D 0. In addition, at most one of
4RCt .s � 1; s/ and 4R�t .s � 1; s/ can be positive in a given period since their
associated columns in the constraint matrix are linearly dependent. In the capacity
constraint (2.4) �4RCt .s � 1; s/ C 4R�t .s � 1; s/ > �C C R

0

t.s � 1/ implies
that the planned release changes are not constrained by capacity, and hence the
associated dual variable 	t.s/ D 0. When 4RCt .s � 1; s/ > 0, we must have
4RCt .s � 1; s/ > �R

0

t.s � 1/ implying 
t.s/ D 0 from (2.5). For negative changes,
we cannot reduce the planned release quantity by more than R

0

t.s � 1/ units due
to the nonnegativity of release changes. Hence, 4R�t .s � 1; s/ < R

0

t.s � 1/ also
implies 
t.s/ D 0, unless demand is zero. 4RCt .s � 1; s/ > 0 also indicates
�	t.s/ C 
.s/ CPsCT�1

�DtCL ˇ�.s/ D QCt .s/ by constraint (2.11). 4R�t .s � 1; s/ > 0

implies 	t.s/ � 
.s/ �PsCT�1
�DtCL ˇ� .s/ D Q�t .s/ by constraint (2.13). If the backlog

variable Bt.s/ > 0, then ˇt.s/ D 'tC�t by constraint (2.10). These relationships will
be used in the following sections to develop bounds on the values of the change costs
that will guarantee freezing of schedules by eliminating planned release changes in
a given period. Specifically, we seek the values of the unit change costs for each
period that result in optimal values of zero for the planned release changes in that
period.

In the next Sect. 2.3.5, we describe our implementation of freezing the schedule
in the rolling horizon environment. In Sect. 2.4, we examine the behavior of release
changes in a planning epoch followed by some insights into the effects of unit
release change costs on the behavior of release changes from one epoch to the next.
We then derive the change costs that can freeze the schedule in Sect. 2.5.

2.3.5 Examples of Freezing the Schedules

Freezing the schedule in a particular planning epoch s for a specific number of
periods T such that t D s; : : : ; s C T � 1 means eliminating all planned release
changes in these periods, causing all release change variables for those periods to
take a value of zero. We seek the values of the unit change costs for each period that
will result in optimal values of zero for the planned release changes in each period.
We shall assume that if a given period sCk is frozen, all periods s; sC1; : : : ; sCk�1
prior to it in the planning window must also be frozen.

Figure 2.2 shows an example of freezing the schedule of release plans for the
third period sC 2 in epoch s in a T D 7 period planning window with a fixed lead
time of L D 1 period. With a lead time of one period, we must release work in
period s C 2 to meet demand in period s C 3. The orange colored cells labelled
(L) indicate the period with fixed pre-release based on future demand outside the
planning window. This period cannot be frozen because its releases must be planned
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Fig. 2.2 Example of freezing the schedule

based on demand information outside the current planning window. The red cells
labelled (F) indicate the periods we decide to freeze. For example, as Fig. 2.2a
shows, when we freeze the release plan in period s C 2 in epoch s, we also need
to freeze periods s and s C 1 prior to it which are labelled (E). In the next epoch
sC 1 as shown in Fig. 2.2b, we will freeze period sC 3 and all periods prior to it in
the current planning epoch.

2.4 Behavior of Positive and Negative Release Changes

In this section, we analyze the causes of release changes and how they affect the
production system. We begin our analysis by assuming that the only source of
variability from one planning epoch s to the next epoch sC 1 is the newly revealed
demand information in the last period s C T � 1 of each epoch. This assumption
implies that once the demand in a period is observed, it does not change. While this
assumption is often not realistic—demand forecasts for a future period can usually
be updated until the demand is realized—this simplified approach allows us to gain
insight from the study of a simpler problem. Later in this section we relax this
assumption, allowing demand changes at all periods within the current planning
window.

It is intuitive that a sufficiently high unit release change cost should completely
eliminate all release changes; a release cost of infinity corresponds to a constraint
setting all planned release changes to zero. Setting the unit cost of positive release
changes higher than the backlog cost will drive the primal model presented in
Sect. 2.3 to hold backlogs instead of modifying releases. Negative release changes,
on the other hand, may be eliminated by adjusting the associated change costs
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relative to the unit FGI and WIP holding costs, causing the model to hold inventory
instead of reducing releases. Thus, positive release change costs should take backlog
cost into consideration, while negative release costs ought to be driven by the cost of
holding FGI. Both positive and negative change costs should be related to the lead
time and the timing of changes.

When producing with a lead time of L periods in a rolling horizon environment,
we need to impose an ending condition on releases for future demand outside the
current planning window in order to prevent the model from setting releases to zero
and eliminating all production in periods beyond the current window. For there to
be no release changes at all, the newly revealed demand DsCT�1.s/must be satisfied
by the release quantities planned in the previous epoch. Thus, two general causes,
excess demand and excess pre-release, lead to release changes as discussed in the
subsequent sub-sections.

2.4.1 Excess Demand

If DsCT�1 > R
0

sCT�1�L.s � 1/ a positive release change is necessary for the new
demand to be met without backlogging, increasing the total amount of material
released in the planning window over that already planned for that period in the
previous epoch s � 1. In this case we have the following three scenarios based on
constraint (2.4) with residual capacity:

• DsCT�1.s/ � R
0

sCT�1�L.s � 1/ �
PsCT�1�L

tDs

h
C � R

0

t.s � 1/
i

In this case the excess demand is less than the cumulative residual capacity, so the
positive release change required to meet the excess demand is feasible and given by:

sCT�1�LX

tDs

4RCt .s � 1; s/ D DsCT�1.s/� R
0

sCT�1�L.s � 1/: (2.17)

Equation (2.17) implies, as expected, that excess demand in period sC T � 1 may
require positive planned release changes in period s to sC T � 1 � L to satisfy the
excess demand. This is because the excess capacity in period sC T � 1 may not be
sufficient for the necessary release changes, requiring us to release material earlier
and hold it in FGI until period sC T � 1.

• DsCT�1.s/ � R
0

sCT�1�L.s � 1/ >
PsCT�1�L

tDs

h
C � R

0

t.s � 1/
i
D 0

In this case, there is no residual capacity available to produce any of the additional
demand, all of which must be backlogged, yielding:

BsCT�1.s/ D DsCT�1.s/� R
0

sCT�1�L.s � 1/: (2.18)
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• DsCT�1.s/ � R
0

sCT�1�L.s � 1/ >
PsCT�1�L

tDs

h
C � R

0

t.s � 1/
i
> 0

In this situation, the maximum amount of the incremental demand that can be
accommodated with positive release changes is:

sCT�1�LX

tDs

4RCt .s� 1; s/ D
sCT�1�LX

tDs

h
C � R

0

t.s � 1/
i
; (2.19)

and the remainder must be backlogged. However, the entire amount given by (2.19)
need not necessarily be released; the model may decide to backlog some of this
material if the cost of positive release changes is sufficiently high. In this case the
backlogs will be at least:

BsCT�1.s/ � DsCT�1.s/ � R
0

sCT�1�L.s/ �
sCT�1�LX

tDs

h
C � R

0

t.s� 1/
i
: (2.20)

2.4.2 Excess Pre-release

DsCT�1.s/ < R
0

sCT�1�L.s/ implies that we planned to release more material in the
previous planning epoch than the new demand requires; our initial estimate U of
the demand in period s C T � 1 has been revised down to a lower number. The
optimal plan for epoch s will potentially have a negative release change in order
not to carry unnecessary WIP and hold extra FGI. With an appropriately specified
negative release change cost, the model will reduce releases only in period sC T �
1 � L by the amount:

4R�t .s� 1; s/ D max
h
R

0

sCT�1�L �DsCT�1.s/; 0
i
> 0: (2.21)

In conclusion, the causes of positive and negative changes are different. Without
positive release changes to satisfy excess demand, we will have backlogs, while
without negative release changes to eliminate unnecessary material from the system,
we will need to hold unnecessary inventory at additional cost. Thus, we should treat
positive and negative changes in different ways, suggesting that they need to be
assigned different unit change costs. When the only source of demand variability is
the new demand information in the final period sC T � 1 of the current epoch, we
will only have negative changes in period sCT�1�L ,since demand is not updated
in periods earlier than period sC T � 1. However, a high demand observation in the
final period s C T � 1 may cause positive release changes throughout the current
planning window.
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However, it is still not clear how to set change costs to guarantee freezing of the
schedule in specific periods. In addition, planning in a rolling horizon environment
complicates the cost settings: any decision in one epoch affects not just the current
epoch, but potentially also those in later epochs. Hence we seek a lower bound
on the values of change costs that guarantee freezing of the schedule in the current
epoch. However, these results are valid only for decisions made in the current epoch.
It remains possible that new demand information in some future epoch will call for
positive or negative release changes, even with the costs we specify. We will begin
with an analysis of negative release change costs, and then examine positive release
change costs.

From this point onward, we relax the assumption that the only source of potential
release changes is the new demand information in the end of each epoch; we will
allow updated demand forecasts for each period in each epoch.

2.5 Release Change Costs for a Single Product

In this section, we present the analysis for positive and negative release changes
from the last period sC T � 1 � L of epoch s backward to its first period s.

2.5.1 Negative Release Change Costs

• Freezing Period s+T-1-L When Excess Pre-release occurs in Epoch s

When there is excess pre-release in period sC T � 1, we will only have negative
release changes in period sCT�1�L. A high enough negative release change cost
that makes negative release changes unattractive results in4R�sCT�1�L.s�1; s/ D 0
so that constraint (2.13) takes the form:

	sCT�1�L.s/ � 
sCT�1�L.s/ � ˇsCT�1�L.s/ � ��sCT�1�L � L! � ': (2.22)

Since we are considering a negative release change in a single-product model, the
capacity constraint (2.4) in period sCT �1�L is not binding, so 	sCT�1�L.s/ D 0.
In order to derive a lower bound on the negative change cost that will result in zero
negative changes at optimality, we note that the maximum value of �
sCT�1�L.s/ is
zero.4R�sCT�1�L.s�1; s/ D 0 in an optimal solution means carrying the excess pre-
release as FGI, implying IsCT�1�L.s/ > 0. The complementary slackness condition
applied to constraint (2.3) gives ˇsCT�1�L.s/ D 0. Thus the negative release change
cost to guarantee freezing period sC T � 1 � L in epoch s must satisfy:

��sCT�1�L � L! C ': (2.23)
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Note, however, that freezing the schedule in period s C T � 1 � L in epoch s will
create an excess pre-release in period sC T � 1 in epoch sC 1, impacting decisions
in the next epoch sC 1.

We now consider the negative change costs required to freeze the schedule in
period s C T � 2 � L in epoch s, given updated demand information in period
sC T � 2 only.

• Freezing Period s+T-2-L When Excess Pre-release occurs in Epoch s

In order to eliminate negative changes in period s C T � 2 � L due to excess
pre-release in period s C T � 2 in epoch s, the worst case situation is to carry all
the excess pre-release as FGI for both periods s C T � 2 and s C T � 1. When
4R�sCT�2�L .s � 1; s/ D 0 at optimality the complementary slackness condition
for (2.13) yields:

	sCT�2�L.s/� 
sCT�2�L.s/ �
sCT�1X

�DsCT�2
ˇ� .s/

� ��sCT�2�L � L! �
sCT�1X

�DsCT�2
':

(2.24)

Since the capacity constraints are not binding in period s C T � 2 � L and we
wish to have zero negative release change in the optimal solution, we must have
	sCT�2�L.s/ D 0 by constraint (2.4). We set �
sCT�2�L.s/ D 0 to obtain a lower
bound on the negative change cost. Freezing excess pre-releases results in positive
FGI IsCT�2.s/ > 0, implying ˇsCT�2.s/ D 0 by (2.3) and thus:

��sCT�2�L � L! C 2' � ˇsCT�1.s/: (2.25)

Freezing excess pre-releases in period sCT�2�L may affect the decision in period
sC T � 1 � L under the following two conditions:

1. IsCT�1.s/ D 0: ˇsCT�1.s/ D L! C '
2. IsCT�1.s/ > 0: ˇsCT�1.s/ D 0
If eliminating negative release changes in period s C T � 2 � L will not require
holding FGI in period sC T � 1 � L from (2.25) we obtain:

��sCT�2�L � ': (2.26)

On the other hand, if the freezing period sCT�2�L requires holding FGI in period
s C T � 1, we need higher negative change costs to freeze the schedule in period
sC T � 2 � L, since the change cost must offset the additional cost of carrying the
excess material for an additional period in period sC T � 1 � L, yielding:

��sCT�2�L � L! C 2': (2.27)
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Table 2.1 Negative release change costs required to freeze the
schedule

Freezing the schedule in epoch s

Period Worse-case periods Unit negative change cost

s T � L ��

s � L! C .T � L/'

T � L� 1 ��

s � .T � L� 1/'
:
:
:

:
:
:

2 ��

s � 2'
1 ��

s � '
:
:
:

:
:
:

:
:
:

sC T � 2� L 2 ��

sCT�2�L � L! C 2'
1 ��

sCT�2�L � '
sC T � 1� L 1 ��

sCT�1�L � L! C '

Table 2.2 Negative release change costs
guaranteeing freezing of plan

Freezing the plan in epoch s

Period Unit negative change cost

s ��

s � L! C .T � L/'
:
:
:

:
:
:

sC T � 2� L ��

sCT�2�L � L! C 2'
sC T � 1� L ��

sCT�1�L � L! C '

This is a lower bound on the negative release change cost required to guarantee
freezing of the schedule under all circumstances. The approach can be applied to
periods sCT�3�L; : : : ; s. We summarize the minimum unit negative release change
costs required to freeze the schedule in each period of an epoch s in Table 2.1.
In Table 2.1 “Worst-Case Periods” indicates the maximum number of periods for
which FGI must be carried if negative release changes are eliminated in this period.

We emphasize once again that to guarantee elimination of negative changes in
the current epoch under all circumstances, we need to set the change cost to at least
the lower bound specified in Table 2.2. Recall also that these lower bounds only
guarantee the freezing of the schedule in the current epoch, not that there will be no
release changes in the specified period in any future epoch.

2.5.2 Positive Release Change Costs

When updated demand forecast information reveals increased demand, we need to
use available residual capacity within the current planning window consisting of
periods s; : : : ; s C T � 1 � L to satisfy unmet demand and reduce backlogging. In
a T period planning window with a lead time of L periods, it is quite possible to
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have positive changes in all T � L periods because of unmet excess demand. We
will begin the analysis from period sC T � 1 with excess demand in epoch s first.
We will then extend the analysis to the rest of the periods in epoch s.

• Freezing Period s+T-1-L When Excess Demand Occurs in Period s+T-1

When there is excess demand in period sC T � 1, we may have positive release
changes in all periods from period s to period s C T � 1 � L depending on the
availability of residual capacity in these periods. If there is no capacity available in
period s C T � 1 � L, there will never be a positive release change for that period
in an optimal solution. If there is residual capacity in that period, freezing period
s C T � 1 � L in epoch s implies 4RCsCT�1�L.s � 1; s/ D 0 and BsCT�1.s/ > 0,
which in turn implies ˇsCT�1.s/ D � C ' by (2.10). Applying the complementary
slackness condition to constraint (2.12), we obtain:

�	sCT�1�L.s/C 
sCT�1�L.s/C ˇsCT�1.s/ � �CsCT�1�L C L! C ': (2.28)

Since we freeze the positive changes for period s C T � 1 � L, the capacity
constraint (2.4) is not binding, implying 	sCT�1�L.s/ D 0. Freezing the positive
changes also makes constraint (2.5) not binding so that 
sCT�1�L.s/ D 0 since
0 > �R

0

sCT�1�L.s/. Based on these, we obtain a lower bound on the positive release
change cost required to freeze positive changes in period sC T � 1 � L as:

�CsCT�1�L � � � L!: (2.29)

• Freezing Period s+T-2-L When Excess Demand Occurs in Period s+T-2

A positive release change in period sC T � 2� L may stem from excess demand
in period s C T � 1, in period s C T � 2, or both. When we decide to eliminate
positive release changes in period sCT �2�L, in the worst case we will cause two
periods of backlogging in periods sC T � 2 and sC T � 1. Since freezing period
sC T � 2 � L in epoch s assumes there is residual capacity in that period, we have
4RCsCT�2�L.s � 1; s/ D 0 and BsCT�2.s/ > 0, which implies:

� 	sCT�2�L.s/C 
sCT�2�L.s/C ˇsCT�2.s/C ˇsCT�1.s/

� �CsCT�2�L C L! C 2'
(2.30)

and ˇsCT�2.s/ D � C ' by constraints (2.12) and (2.10). When freez-
ing the schedule causes constraints (2.4) and (2.5) not to be binding,
	sCT�2�L.s/ D 
sCT�2�L.s/ D 0. The positive release change cost to freeze period
sC T � 2 � L due to excess demand in period sC T � 2 in epoch s is obtained as:

�CsCT�2�L � � � L! � ' C ˇsCT�1.s/: (2.31)
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Table 2.3 Positive release change costs to freeze the schedule

Freezing the schedule in epoch s

Period Worse-case periods Unit positive change cost

s T � L �C

s � .T � L/� � L!

T � L� 1 �C

s � .T � L� 1/�
:
:
:

:
:
:

2 �C

s � 2�
1 �C

s � �
:
:
:

:
:
:

:
:
:

sC T � 2� L 2 �
C

sCT�2�L � 2� � L!

1 �
C

sCT�2�L � �
sC T � 1� L 1 �

C

sCT�1�L � � � L!

If freezing changes in period sC T � 2� L causes backlogging in period sC T � 1,
then ˇsCT�1.s/ D � C ' by (2.10) so that:

�CsCT�2�L � 2� � L!: (2.32)

If freezing changes in period sC T � 2� L does not cause backlogging and FGI in
period sC T � 1, then ˇsCT�1.s/ D L! C ' yielding:

�CsCT�2�L � �: (2.33)

If we want to guarantee freezing period sCT�2�L in an epoch s, we need to set the
positive change cost to at least 2� � L!. The results of the same procedure applied
to the rest of the analysis to eliminate positive release changes are summarized in
Table 2.3. The “Worse-Case Periods” in Table 2.3 represents the maximum number
of periods for which backlogs must be carried. For example, if we decide to freeze
period s in epoch s, it may cause backlogging in up to T�L periods. From Table 2.3,
we observe that setting positive release change cost to eliminate positive release
change in period t in epoch s must consider how freezing affects the future periods
within the current planning epoch. The costs to guarantee elimination of positive
changes for each period are summarized in Table 2.4. However, recall also that
these lower bounds on the positive release change cost only guarantee the freezing
of the schedule in the current epoch, and do not guarantee that there will be no
release changes in a specified period in future epochs.
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Table 2.4 Positive release change costs
guaranteeing to freeze the schedule

Freezing the schedule in epoch s

Period Unit positive change cost

s ��

s � .T � L/� � L!
:
:
:

:
:
:

sC T � 2� L ��

sCT�2�L � 2� � L!

sC T � 1� L ��

sCT�1�L � � � L!

Fig. 2.3 An example of freezing the schedule across epochs

2.5.3 Freezing Costs Inside an Epoch or Across Epochs

In the previous two sub-sections, we have shown how to set positive and negative
release change costs to guarantee freezing the schedule for a given period in a
specific planning epoch s. For example, if we choose to freeze the schedule in period
sC 2 with T D 6 planning periods in epoch s as Fig. 2.3a shown, we not only need
to freeze period sC2 but also all periods preceding it in the epoch s. This means we
need to freeze the three periods from period s to sC 2 in each epoch s.

If we decide to freeze period sC 2 in epoch s in an environment with lead time
of L D 1 period, we can use Tables 2.2 and 2.4 to set the change costs for period
sC 2 in epoch s as:

�CsC2.s/ � 3� � ! (2.34)

and
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��sC2.s/ � 3' C !: (2.35)

In the next epoch s C 1 as shown in Fig. 2.3b, we also need to freeze the three
periods sC 1, sC 2, and sC 3. How can we set the change cost for period sC 2 in
epoch sC 1? Based on Tables 2.2 and 2.4, we need to set the change cost for period
sC 2 in epoch sC 1 as:

�CsC2.sC 1/ � 4� � ! (2.36)

and

��sC2.sC 1/ � 4' C !: (2.37)

From (2.36) and (2.37), the associated positive and negative changes costs for period
sC 2 in epoch sC 1 are higher than (2.34) and (2.35). This is because in a rolling
horizon environment, we truncate the planning problem by considering information
only within the current planning window of T periods. Thus, we will obtain lower
change costs to guarantee freezing period sC2 in epoch s since we ignore the impact
of release changes in the current epoch on periods outside the current planning
window. If we extend the planning window length to T D 7 periods with L D 1

period in an epoch as shown in Fig. 2.3c, we still can use Tables 2.2 and 2.4 to set
the change costs to freeze period sC 2 in epoch s. Since we have one more period
sC 6 in epoch s, the associated change costs to freeze period sC 2 are now:

�CsC2.s/ � 4� � ! (2.38)

and

��sC2.s/ � 4' C !: (2.39)

The change costs to freeze period s C 2 in this condition are equal to those in a
six period example in epoch s C 1. In summary, the freezing decision affects not
only planning periods in the current epoch but also future periods as yet outside
the current planning window. However, we cannot assess the impact of freezing
decisions on periods currently outside the planning window until we know their
demand information.

2.6 Numerical Examples

In this section, we present numerical examples for the single-product model with
fixed lead time and capacity analyzed in the previous sections.
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Table 2.5 Costs of single-product model

Backlog cost (�) FGI cost (') WIP cost (!)

$110 $12 $6

2.6.1 Settings and Assumptions

We assume that the length of the planning window in a planning epoch is T D 6

periods. The overall planning period is 400 periods, giving 395 planning epochs.
The overall capacity for each period is 70 units. For each planning epoch, we allow
updated demand forecast for all periods. We also assume the demand is normally
distributed with mean of 60 units and standard deviation of 27 units, implying
an average capacity utilization of 0.86. We generate the demand by using Arena
Input Analyzer without allowing negative values. The lead time is L D 2 periods
and producing one unit of output requires one unit of capacity. The associated cost
values are shown in Table 2.5.

In this section we want to confirm that the derived lower bounds on the release
change costs can guarantee freezing of the schedule under all circumstances. In our
example in any epoch s, periods s, . . . , sC 3 may have release changes so that we
can define the overall positive changes in any period s as:

4RC.s/ D
X

s

4RCs .s � 1; s/;8s 2 .1;K � T C 1/: (2.40)

If we want to measure all positive release changes in any period sC 3 in any epoch
s, the latest period in which release changes can take place, we can define as:

4RC.sC 3/ D
X

s

4RCsC3.s� 1; s/;8s 2 .1;K � T C 1/: (2.41)

Similar expressions can be defined to compute the analogous quantities for negative
release changes.

2.6.2 Examples of Setting Release Change Costs

Since we have a common lead time of L D 2 periods, we may have release changes
in periods s through sC 3 in epoch s. Thus, from Tables 2.4 and 2.2 we can set the
release change costs as shown in Table 2.6. From Table 2.6, positive change cost
is significantly higher than negative change cost in each period and freezing earlier
periods in an epoch requires higher change costs. For example, if we want to freeze
period sC 1 in epoch s, we must set positive and negative change costs to $318 and
$48, respectively. In the next epoch sC 1, can we still set the release change costs
for period sC 1 in this manner to guarantee freezing? The answer is “No.”
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Table 2.6 Release change cost in epoch s

Epoch=Period s s+1 s+2 s+3 s+4 s+5

Positive s $428 $318 $208 $98

Negative s $60 $48 $36 $24

Table 2.7 Release change cost in epoch sC 1
Epoch=Period s s+1 s+2 s+3 s+4 s+5

Positive s $428 $318 $208 $98
s+1 $428 $318 $208 $98

Negative s $60 $48 $36 $24
s+1 $60 $48 $36 $24

Table 2.8 Release change cost when T D 7 periods in epoch s

Length=Period s s+1 s+2 s+3 s+4 s+5

Positive T D 6 $428 $318 $208 $98
T D 7 $538 $428 $318 $208 $98

Negative T D 6 $60 $48 $36 $24
T D 7 $72 $60 $48 $36 $24

From the analysis in Sect. 2.5.3, we must increase the associated release change
costs to guarantee freezing of the schedule in epoch sC 1. Table 2.7 clearly shows
how to set the release change costs from epoch s to epoch sC 1. For example, we
need to increase both change costs in period sC 1 to $428 and $60, respectively, in
contrast to $318 and $48 for this period under the previous planning epoch s. This is
because we truncate the infinite horizon planning problem into a sequence of finite
horizon problems. In epoch s, period s C 1 does not need to consider the effect of
freezing on period sC 4; however, in epoch sC 1, we need to consider the period
sC 4 that causes the increase in costs. We also see a similar trend in release change
costs on other periods in different planning epochs.

When we extend the planning window length from T D 6 to T D 7 periods, in
epoch s, we also need to increase the associated release change costs for periods s
to sC 3. Table 2.8 shows the cost settings for planning window lengths of T D 6 to
T D 7 periods based on the analysis in Sect. 2.5.3. When we have one more period
in an planning epoch, we need to increase the positive and negative release change
costs, for example in period s, from $428 and $60 to $538 and $72, respectively.

By setting the release change costs slightly higher than the derived release
change costs to prevent multiple optimal solutions, we can guarantee elimination
of either positive or negative release changes. Figure 2.4 presents the results of
release changes when we apply different change costs to freeze different periods
in any epoch. Blue bars represent the results of positive release changes and red
bars represent the results of negative release changes.
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Fig. 2.4 Results of freezing single product

Figure 2.4a shows that when there are no change costs we observe release
changes in all periods. When we set the change costs using the derived lower
bounds, we can eliminate all release changes in period s, which is shown in Fig. 2.4b.
When we want to freeze periods s and sC1, the derived lower bound for period sC1
also holds. We find zero release change in period sC1 as shown in Fig. 2.4c. We also
find the same results for guaranteeing elimination of release changes when we set
the change costs equal to the derived lower bounds to freeze period sC 2 and sC 3
in Fig. 2.4d, e. Thus, the numerical results confirm that we can freeze the schedule
by setting the release change costs to the derived lower bound.

2.7 Conclusion

In this chapter we have analyzed the relation between two different approaches for
improving schedule stability, the use of change costs to penalize planned changes
and the freezing of the plan in certain periods by prohibiting any planned changes.
We formulate the planning problem to be solved at each epoch as a linear program,
and analyze the structure of the optimal solutions to derive lower bounds on the
values of the unit change costs that will ensure zero release changes. We find that
the unit change costs required to ensure freezing in a given period is lower for
later periods in the epoch. This is intuitive since any excess inventory and backlogs
associated with earlier periods in the epoch will be held longer. We also find that
freezing positive release changes require higher unit change costs than freezing
negative changes, since the former are driven by backlog costs and the latter by
inventory holding costs.

Although the production system we have considered is very simple compared to
practical industrial systems, we believe this work provides useful insights. First of
all, it allows a rough-cut analysis of the change costs required to ensure schedule
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freezing, allowing management to assess at least qualitatively, whether they believe
the impact of the planned changes will indeed result in costs of this magnitude. The
formulation of the planning problem at each epoch in terms of planned changes
rather than gross release quantities also provides a basis for further analysis of the
problem. Of particular interest is the extension of the analysis in this chapter to
systems with multiple products. In this case we conjecture that the unit costs derived
in this paper will not be sufficient to eliminate all planned changes, since the change
costs must also offset the benefit obtained by reallocating capacity between products
as demand information is updated. The analysis applied in this paper is based on the
optimality conditions for linear programs, which cannot be applied to problems with
setup times that require mixed-integer programming formulations. Nevertheless, the
ideas from this work could be applied numerically to obtain estimates of change
costs that would freeze schedules in this environment also. Finally, the extension of
this approach to multiple stage production systems involving different capacitated
resources is also of interest.
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Chapter 3
Stochastic Scheduling for a Network
of Flexible Job Shops

Subhash C. Sarin, Hanif D. Sherali, Amrusha Varadarajan, and Lingrui Liao

Abstract In this chapter, we address the problem of optimally routing and
sequencing a set of jobs over a network of flexible machines for the objective of
minimizing the sum of completion times and the cost incurred, assuming stochastic
job processing times. This problem is of particular interest for the production
control in high investment, low volume manufacturing environments, such as
pilot-fabrication of microelectromechanical systems (MEMS) devices. We model
this problem as a two-stage stochastic program with recourse, where the first-
stage decision variables are binary and the second-stage variables are continuous.
This basic formulation lacks relatively complete recourse due to infeasibilities
that are caused by the presence of re-entrant flows in the processing routes,
and also because of potential deadlocks that result from the first-stage routing
and sequencing decisions. We use the expected processing times of operations
to enhance the formulation of the first-stage problem, resulting in good linear
programming bounds and inducing feasibility for the second-stage problem. In
addition, we develop valid inequalities for the first-stage problem to further tighten
its formulation. Experimental results are presented to demonstrate the effectiveness
of using these strategies within a decomposition algorithm (the L-shaped method) to
solve the underlying stochastic program. In addition, we present heuristic methods
to handle large-sized instances of this problem and provide related computational
results.
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3.1 Introduction: Problem Statement and Related Literature

The production in high investment, low volume manufacturing environments, such
as pilot-fabrication of microelectromechanical systems (MEMS) devices, gives rise
to several special features of the underlying scheduling problem. Due to high
prices of the processing equipments and complicated fabrication processes, it is
impractical to assign dedicated equipment to each processing step. The relatively
low volume of production during the pilot stage also implies that machine flexibility
is highly desirable so that multiple product types can share processing equipments.
Hence, each manufacturing facility is organized as a flexible job shop, serving
multiple processing routes with flexible machines. Furthermore, due to novelty of
the products and fabrication processes, a single facility often lacks the capability
of performing all the required processing steps for a product from start to finish.
To satisfy these special requirements, multiple manufacturing facilities are usually
organized into a distributed fabrication network, where a central service provider
coordinates production activities across facilities and directly deals with customers’
requirements. Products are shipped from one facility to another until all processing
requirements are met. For a given processing step, there may be multiple facilities
that can provide the required service. The flexibility of cross-facility routing not
only provides more pricing and quality options for the customers, but also makes
transportation time and cost an important aspect of the scheduling problem. We
designate this type of distributed fabrication network as the Network of Flexible Job
Shops (NFJS).

The management of operations for an NFJS involves two types of decisions:
(1) choosing a facility for each job operation (i.e., processing step) and assigning
it to a compatible machine within the facility (i.e., routing) and (2) stipulating
a processing sequence for the operations assigned to any given machine (i.e.,
sequencing). The routing decisions need to take transportation time and cost into
consideration, as they can be quite significant between geographically dispersed
facilities. On the other hand, sequencing decisions need to account for the fact
that sequence-dependent set-up times are required to prepare for the processing
of operations of different jobs on the same machine. In view of the pricing and
quality options that are available in an NFJS, the customer specifies for each job
a fixed budget, which can only be exceeded under a given penalty rate. The job
arrival times, number of operations for each job, machines capable of processing
each operation, transportation times and transportation costs between facilities,
sequence-dependent set-up times, and customer budgets are assumed to be known
(and thus, deterministic). On the other hand, since exact values of processing times
are expected to vary due to the novelty of fabrication technologies, they are assumed
to be stochastic. The problem that we address in this chapter can be succinctly stated
as follows:

Given a set of jobs and a network of flexible job shops, where operation processing times
are uncertain but the sequence in which to process the operations of each job is known a
priori, determine an allocation of job operations to facilities and a sequence in which to
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process these operations on the machines in the facility so as to minimize a function of the
completion times and the transportation and processing costs incurred.

The NFJS problem combines the characteristics of three well-known problems:
the multi-site planning and scheduling problem, the flexible job shop scheduling
problem, and the stochastic job shop scheduling problem. Multi-site planning
problems are extensions of capacitated lot-sizing problems, with emphasis on
transportation requirements and site-specific holding cost. Production is assigned
to machines at multiple sites to satisfy demands during each period of the time
horizon. The multi-site scheduling problem further addresses underlying production
issues, such as inventory interdependency and change-over setup. To deal with
the integrated multi-site planning and scheduling problem, iterative methods have
been applied that alternate between solving the long-term planning problem and
solving the short-term scheduling problem (see, for example, Roux et al. 1999;
Guinet 2001; Gnoni et al. 2003). Others have considered the monolithic approach,
either using the approach of variable time scale (Timpe and Kallrath 2000; Lin
and Chen 2006), or relying on heuristic methods (Gascon et al. 1998; Sauer et al.
2000; Jia et al. 2003) to handle the resulting complexity. Lee and Chen (2001)
provided a comprehensive study on scheduling with transportation considerations
for the single facility environment. They considered two particular cases pertaining
to transportation within a flow shop environment and transportation during final
product distribution. To the best of our knowledge, no previous research in the multi-
site planning and scheduling area has considered routing flexibility and stochastic
processing times, both of which are very pertinent to the NFJS problem.

In a flexible job shop environment, for each processing step of a job, there are
multiple alternative machines that are capable of providing the required service.
Various methods have been applied to solve problems of this type. For example,
Iwata et al. (1980) and Kim (1990) have considered dispatching rules; Nasr and
Elsayed (1990) have applied greedy heuristic methods, Hutchison et al. (1991) have
devised a hierarchical decomposition method that determines the assignment of
operations to machines and then generates sequences. With regard to iterative local
search methods, Brandimarte (1993) considered re-assignment and re-sequencing as
two different types of moves, while Dauzère-Pérès and Paulli (1997) and Mastrolilli
and Gambardella (2000) did not explicitly treat them as different. Subramaniam
et al. (2000) have performed a simulation study with dynamic job arrival and
machine break downs. One can also find applications of meta-heuristic methods
to solve this problem including, but not limited to, particle swam optimization (Xia
and Wu 2005) and genetic algorithms (Pezzella et al. 2008 and Wang et al 2005).
The routing flexibility that characterizes the flexible job shop problem is also present
in the NFJS problem, but with an important distinction that the alternative machines
may be located at different facilities (sites), thereby requiring consideration of
transportation time and cost into the scheduling problem.

The stochastic scheduling problem has been addressed in the literature in
the classical flow shop and job shop environments. Optimal policies, dominance
relations, and dispatching rules for two- and three-machine flow shop scheduling
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problems having stochastic processing times have been developed by Ku and Niu
(1986), Weiss (1982), Mittal and Bagga (1977), Cunningham and Dutta (1973),
Bagga (1970), Talwar (1967), Makino (1965), Prasad (1981), Forst (1983), Pinedo
(1982), Jia (1998), Elmaghraby and Thoney (1999), and Kamburowski (1999,
2000). These studies vary either in the distribution of the processing times used,
or in the objective function, or in the amount of intermediate storage available
between machines. Optimal rules have also been developed by Foley and Suresh
(1984) and Pinedo (1982) to minimize the expected makespan for the m-machine
flow shop problem with stochasticity in processing times. For work in stochastic job
shops, see Golenko-Ginzburg et al. (1995, 1997, 2002), Singer (2000), Luh et al.
(1999), Kutanoglu and Sabuncuoglu (2001), Yoshitomi (2002), Lai et al. (2004),
and Tavakkoli-Moghaddam et al. (2005).

The remainder of this chapter is organized as follows. In Sect. 3.2, we model
the NFJS problem as a two-stage stochastic program and present the L-shaped
method for its solution. Besides developing the pertinent feasibility and optimality
cuts, we also introduce an alternative approach to induce second-stage feasibility. In
Sect. 3.3, the formulation of the first-stage problem is further tightened by using
three types of valid inequalities, all of which rely upon the special structure of
the NFJS problem. Computational results are provided in Sect. 3.4 to demonstrate
the efficacy of our model formulation and solution approach. For even large-
sized problem instances, we present heuristic methods and the results on their
performances in Sect. 3.5. Concluding remarks are made in Sect. 3.6.

3.2 Stochastic Model for a Network of Flexible Job Shops

We model the stochastic NFJS problem as a two-stage stochastic program with
recourse, where the first-stage variables are binary and pertain to the assignment of
job operations to machines and to the sequencing of job operations for processing
on these machines, while the second-stage variables are continuous and relate to
the completion times and budget over-runs of the jobs, and where the uncertainty in
processing time durations influences the job completion times. Multiple facilities are
incorporated in our formulation by assigning to each machine a unique identification
number that distinguishes it from the other machines in all the facilities, and
by appropriately considering the inter-machine transportation times and costs.
Stochastic processing times are modeled by a finite set of scenarios for the entire
problem, and each of these scenarios assigns durations to every possible processing
step and has an associated probability value.

We present the overall problem formulation and decompose it into two stages
using Benders’ decomposition (Benders 1962). Besides constructing the feasibility
cuts and optimality cuts, we further reinforce the first-stage problem by including
additional valid inequalities that induce feasibility in the second stage.
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3.2.1 Model Formulation for the NFJS Problem

Notation

Indices:

Job index: iD 1, : : : , N
Operation index for job i: jD 1, : : : , Ji

Machine index: mD 1, : : : , jMj (where M is the set of machines)
Scenario index: sD 1, : : : , S

Decision Variables

xm
(i,j)D

�
1; if operation j of job i is assigned to machine m;
0; otherwise:

ym
(i,j,k,l)D

8
<

:

1; if operation j of job i directly precedes operation l of
job k on machine m;

0; otherwise:

v
.e;f /
.i;j;jC1/D

8
<

:

1; if operation j of job i is performed on machine e and
operation jC 1 of job i is performed on machine f ;

0; otherwise:
ts
(i,j)D completion time of operation j of job i under scenario s.
�s

i D budget over-run for job i under scenario s.

Parameters

H(m,s)
(i,j,k,l)D an appropriately large positive number; its value is specified in (3.16)
below.

wiD number of parts in job i.
MD set of all the machines.
�sD probability of occurrence for scenario s.
cm

(i,j)D cost per unit processing time of operation j of job i on machine m.

p(m,s)
(i,j) D processing time of operation j of job i on machine m under scenario s.

ZmD set of job operations that can be processed on machine m.
M(i,j)D set of machines capable of processing operation j of job i.
um

(i,j,k,l)D changeover time to switch from operation j of job i to operation l of job k
on machine m.

biD budget for job i.
riD ready time for the first operation of job i.
d(e,f )D transportation time between machines e and f.
q(e,f )D per part transportation cost between machines e and f.
˛iD cost coefficient for job i that is ascribed to its completion time.
ˇiD penalty coefficient for job i corresponding to its budget over-run.
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Formulation NFJSP

Minimize z D
NX

iD1
˛i

 
SX

sD1
�st

s
.i;Ji/

!

C
NX

iD1
ˇi

 
SX

sD1
�s


s
i

!

C
SX

sD1
�s

NX

iD1

JiX

jD1

X

m2M.i;j/

p.m;s/.i;j/ xm
.i;j/

C
X

m2M

X

.i;j/2Zm

X

.k; l/ 2 Zm

.k; l/ ¤ .i; j/

um
.i;j;k;l/y

m
.i;j;k;l/

C
NX

iD1

Ji�1X

jD1

X

e2M.i;j/

X

f2M.i;jC1/

d.e;f /v
.e;f /
.i;j;jC1/ (3.1)

subject to:

ts
.i;j/ C

X

m2M.i;jC1/

�
p.m;s/.i;jC1/x

m
.i;jC1/

�
C

X

e2M.i;j/

X

f2M.i;jC1/

d.e;f /v
.e;f /
.i;j;jC1/

� ts
.i;jC1/; 8i D 1; : : : ;N; j D 1; : : : ; Ji � 1; s D 1; : : : ; S

(3.2)

ri C
X

m2M.i;1/

�
p.m;s/.i;1/ xm

.i;1/

�
� ts

.i;1/; 8i D 1; : : : ;N; s D 1; : : : ; S (3.3)

ts
.i;j/ C p.m;s/.k;l/ C um

.i;j;k;l/ � ts
.k;l/ C

�
1 � ym

.i;j;k;l/

�
H.m;s/
.i;j;k;l/;

8m 2 M;8 .i; j/ ¤ .k; l/ 2 Zm; 8s D 1; : : : ; S (3.4)

X

m2M.i;j/

xm
.i;j/ D 1; 8i D 1; : : : ;N; j D 1; : : : ; Ji8i D 1; : : : ;N; j D 1; : : : ; Ji

(3.5)
X

.i; j/ 2 Zm

.i; j/ ¤ .k; l/

ym
.i;j;k;l/ � xm

.k;l/; 8k D 1; : : : ;N; l D 1; : : : ; Jk; m 2 M.k;l/ (3.6)

X

.i; j/ 2 Zm

.i; j/ ¤ .k; l/

ym
.k;l;i;j/ � xm

.k;l/; 8k D 1; : : : ;N; l D 1; : : : ; Jk; m 2 M.k;l/ (3.7)
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X

.i;j/2Zm

X

.k; l/ 2 Zm

.k; l/ ¤ .i; j/

ym
.i;j;k;l/ �

X

.i;j/2Zm

xm
.i;j/ � 1; 8 m 2 M (3.8)

JiX

jD1

X

m2M.i;j/

cm
.i;j/p

.m;s/

.i;j/ xm
.i;j/

C
0

@
Ji�1X

jD1

X

e2M.i;j/

X

f2M.i;jC1/

q.e;f /v
.e;f /
.i;j;jC1/

1

Awi �
s
i � bi;

8i D 1; : : : ;N; s D 1; : : : ; S (3.9)

v
.e;f /
.i;j;jC1/ � xe

.i;j/; v
.e;f /
.i;j;jC1/ � xe

.i;j/ C xf
.i;jC1/ � 1;

8i D 1; : : : ;N; j D 1; : : : ; Ji � 1; e 2 M.i;j/; f 2 M.i;jC1/ (3.10)


s
i � 0; 8i D 1; : : : ;N; s D 1; : : : ; S (3.11)

xm
.i;j/ 2 f0; 1g ; 8i D 1; : : : ;N; j D 1; : : : ; Ji;m 2 M.i;j/ (3.12)

ym
.i;j;k;l/ 2 f0; 1g ; 8m D 1; : : : ;M;8 .i; j/ ¤ .k; l/ 2 Zm (3.13)

v
.e;f /
.i;j;jC1/ 2 Œ0; 1� ; 8i D 1; : : : ;N; j D 1; : : : Ji � 1; e 2 M.i;j/; f 2 M.i;jC1/: (3.14)

The objective function (3.1) is composed of five terms. The first and the second
terms penalize the sum of job completion times and budget over-runs, respectively.
The penalty coefficients reflect the customer’s emphasis on the lead-time and costs
incurred, and they also scale the first two terms to be commensurate with the next
three terms, which are time based. The third term represents expected processing
time for the operations of all the jobs; the fourth term computes the total set-up time
on the machines, and the final term determines the sum of travel times incurred by
all the jobs. Note that the last three terms in the objective function support the first
term by aiding the achievement of lower completion times, while at the same time,
reflect costs incurred by consuming machine and transportation capacities of the
system. Constraints (3.2) capture precedence relationships between operations of
the same job. Specifically, they state that under each scenario s, the completion time
of operation jC 1 of job i, 8iD 1, : : : ,N, must be at least equal to the completion
time of operation j of that job plus the processing time of operation jC 1 and
any travel time incurred between the two operations (set-up time is assumed to be
job-detached, and hence, is not included here). Constraints (3.3) ensure (for each
scenario) that each job does not commence its first operation earlier than its ready
time. Constraints (3.4) establish relationships among the operations to be performed
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on the same machine. Given two distinct job-operations, say (i, j) and (k, l) in Zm

for a certain machine m, if (i, j) were to directly precede (k, l), (i.e., ym
.i;j;k;l/ D 1),

then the completion time of (k, l) under any scenario s must be at least equal to
the completion time of (i, j) for that scenario, plus the processing time of (k, l)
and the sequence-dependent set-up time between the two operations. Observe that
when ym

(i,j,k,l)D 0, i.e., (i, j) does not directly precede (k, l), the constraint becomes

redundant by the choice of a suitably large value of H(m,s)
(i,j,k,l) (see (3.16) below).

Constraints (3.5) ensure that each job-operation is assigned to exactly one machine
out of the several alternative machines that can process it. Constraints (3.6) and
(3.7) state that if a job-operation, say (k, l), is assigned to a machine m, it can
be preceded (respectively succeeded) by at most one job-operation from the set
of operations that the machine is capable of processing. Note that if (k, l) is the
first operation to be processed on this machine, it will not be preceded by any other
operation; and likewise if (k, l) is the last operation to be processed, it will not
be succeeded by any other operation. In both of these cases, the left-hand sides
of (3.6) and (3.7) will be zero, which trivially yield valid relationships. Also, if
(k, l) is not assigned to machine m, then all the direct precedence y-variables that
relate (k, l) to other operations on machine m are validly set equal to zero by (3.6)
and (3.7). Constraints (3.8) guarantee that if a machine has some

X

.i;j/2Zm
xm
.i;j/

operations assigned to it for processing, then there must exist one less than this
number of direct precedence variables that are set equal to 1 for this machine.
These constraints are written as inequalities rather than as equalities to account
for the case where the number of operations assigned to a machine is actually
zero. Also, together with (3.6) and (3.7), these constraints establish the definitional
role of the y-variables. Constraints (3.9) enforce budgetary restrictions on each
job i under every processing time scenario s. These constraints permit the sum of
processing costs and travel costs for all operations of a job to exceed the budget
by an amount of �s

i , but with a corresponding penalty in the objective function.
Note that the travel cost for each job i is assumed to be proportional to the number
of parts, wi, in that job. Constraints (3.10) enforce the relationship between the
x- and v-variables according to v.e;f /.i;j;jC1/ D xe

.i;j/x
f
.i;jC1/ using a standard linearization

technique whereby v.e;f /.i;j;jC1/D 1 if and only if both xe
(i,j)D 1 and xf

.i;jC1/D 1. Note
that the v-variables account for the required transfer between the machines in the
objective function (3.1) and in Constraints (3.2) and (3.9). As such, because of the
positive coefficients associated with these variables in the objective function (3.1)
and the less-than-or-equal-to (�) relationships in (3.2) and (3.9), we could omit the
first two sets of � restrictions in (3.10) and have them automatically hold true at
optimality. Constraints (3.11), (3.12), (3.13), and (3.14) ascribe nonnegativity and
binary restrictions on the decision variables, while the v-variables will automatically
turn out to be binary-valued even though declared to be continuous on [0, 1]. Note
also that the nonnegativity on the t-variables is implied by (3.2), (3.3), (3.12), and
(3.13).

The value of H(m,s)
(i,j,k,l) used in (3.4) can be prescribed as follows. Note that, if

ym
.i;j;k;l/ D 0, then this constraint reduces to
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ts
.i;j/ C p.m;s/.k;l/ C um

.i;j;k;l/ � ts
.k;l/ � H.m;s/

.i;j;k;l/: (3.15)

Hence, it is sufficient to assign to H(m,s)
(i,j,k,l) a valid upper bound on the left-hand side

expression in (3.15). Given conservative bounds for ts
(i,j) such that

�
ts
.i;j/

�

min
� ts

.i;j/ ��
ts
.i;j/

�

max
, we can set

H.m;s/
.i;j;k;l/ D

�
ts
.i;j/

�

max
C p.m;s/.k;l/ C um

.i;j;k;l/ �
�

ts
.k;l/

�

min
: (3.16)

With respect to the bounds for ts
(i,j), we take

�
ts
.i;j/

�

min
D ri C

X

j0�j

min
m2M.i;j0/

n
p.m;s/.i;j0/

o
C

X

2�j0�j

min
e 2 M .i; j0 � 1/
f 2 M .i; j’/

˚
d.e;f /

	
;

�
ts
.i;j/

�

max
D � s �

X

j’>j

min
m2M.i;j’/

n
p.m;s/.i;j0/

o
�
X

j<j0�Ji

min
e 2 M .i; j0 � 1/
f 2 M .i; j0/

˚
d.e;f /

	
;

8i D 1; : : : ;N; j D 1; : : : ; Ji; s D 1; : : : ; S; (3.17)

where � s is some conservative upper bound on the overall makespan of all the jobs
under scenario s. We used the value of � s to be the sum of the processing times of
all the operations of the jobs.

3.2.2 The L-Shaped Method for the NFJS Problem

Formulation NFJSP can be decomposed into the following Stage-I (master) and
Stage-II (recourse) problems:

Stage-I: Master Problem
MP: Minimize

SX

sD1
�s

NX

iD1

JiX

jD1

X

m2M.i;j/

p.m;s/.i;j/ xm
.i;j/ C

X

m2M

X

.i;j/2Zm

X

.k; l/ 2 Zm

.i; j/ ¤ .k; l/

ym
.i;j;k;l/u

m
.i;j;k;l/

C
NX

iD1

Ji�1X

jD1

X

e2M.i;j/

X

f2M.i;jC1/

v
.e;f /
.i;j;jC1/d.e;f /C

SX

sD1
�sQ .x; y; v; s/

(3.18)
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subject to: (3.5), (3.6), (3.7), (3.8), (3.10), (3.12), (3.13), and (3.14), where
Q(x, y, v, s) is the recourse function corresponding to the optimal value of the
subproblem that minimizes the penalized sum of job completion times and budget
over-runs for a given assignment vector x, sequencing vector y, tracking vector v,
and for a processing time scenario s. The linear recourse subproblem for scenario s
is given by:

Stage-II: Recourse Problem

RP W Q .x; y; v; s/ D Min
NX

iD1
˛it

s
.i;Ji/
C

NX

iD1
ˇi


s
i (3.19)

subject to: (3.2), (3.3), (3.4), (3.9), and (3.11).
We note that, in the decomposition outlined above for formulation NFJSP,

the master problem could generate an assignment and sequencing solution that
might not be feasible to the subproblem. There are three possible causes for
such infeasibility. First, the Stage-I formulation does not exclude “subtours” while
sequencing operations assigned to a particular machine. For example, suppose that
operations (a, b), (c, d), and (e, f ) are assigned to machine m, so that

xm
.a;b/ D xm

.c;d/ D xm
.e;f / D 1:

One can verify that the following values of direct precedence variables are feasible
to the Stage-I formulation (in particular, satisfies Constraint (3.8)):

ym
.a;b;c;d/ D 1I ym

.a;b;e;f / D 0I
ym
.c;d;a;b/ D 1I ym

.c;d;e;f / D 0I
ym
.e;f ;a;b/ D 0I ym

.e;f ;c;d/ D 0:

However, due to the subtour between (a, b) and (c, d), this solution does not
represent a valid processing sequence. In the NFJSP formulation, this kind of
subtour is eliminated by Constraints (3.4), which are not included in the master
problem. Second, note that Constraints (3.2) in NFJSP, upon decomposition,
become part of the subproblem and capture the fact that the completion time of
a lower indexed operation of a job must be less than or equal to that for any higher
indexed operations of the same job. In NFJSP, Constraints (3.2) in conjunction with
other constraints that determine the value of the y-variables (Constraints (3.6), (3.7),
and (3.8)) ensure that, in the case of re-entrant flow, where a job visits a machine
for multiple operations, the lower indexed operations of a job are sequenced before
a higher indexed operation of the same job. However, since Constraints (3.2) are
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(a, b) (c, d )M1

M2 (c, h), h>d (a, f ), f<b

Fig. 3.1 A deadlock configuration involving two machines

no longer a part of the master problem, its absence may result in an assignment
and sequencing vector that does not honor the re-entrant flow conditions. Third, the
assignment and sequencing vectors from the master problem may cause a deadlock.
This occurs in the face of a certain configuration of assignment and sequencing
decisions that result in a circuit or a cycle wherein each operation in the cycle waits
for another operation within the cycle to complete processing. This is illustrated
in Fig. 3.1. Note that on machine M1, (c, d) waits for (a, b) to finish processing
according to the sequencing decision. Operation (a, b) on machine M1 must follow
(a, f ) on machine M2 owing to operating precedence constraints. However, on
machine M2, operation (a, f ) follows (c, h), which, in turn, can begin only after
(c, d) on machine M1 has been completed. Thus, none of the four operations can
begin processing, resulting in a deadlock.

As a result of this potential infeasibility, the above decomposition of NFJS
problem does not possess the property of relatively complete recourse. In order to
render the first-stage solution feasible to the second-stage, it is necessary to obviate
the infeasibility due to subtours, re-entrant flows, and deadlocks. One way to achieve
this is through the use of artificial variables as described by van Slyke and Wets
(1969). These variables are inserted into the subproblems for every scenario and
feasibility cuts are developed that become a part of the master problem, which in
turn ultimately induce the master problem to generate solutions that are feasible to
the subproblems. Accordingly, for a given output (x, y, v) from the master problem,
the following augmented recourse problem (ARP) is solved, one for each scenario s:

ARP: Minimize

NX

iD1

JiX

jD1
as
1.i;j/C

X

m2M

X

.i;j/2Zm

X

.k; l/ 2 Zm

.k; l/ ¤ .i; j/

a.m;s/
2.i;j;k;l/ (3.20)
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subject to:

ts
.i;j/ C

X

m2M.i;jC1/

�
p.m;s/.i;jC1/x

m
.i;jC1/

�
C

X

e2M.i;j/

X

f2M.i;jC1/

d.e;f /v
.e;f /
.i;j;jC1/ � as

1.i;jC1/ � ts
.i;jC1/;

8i D 1; : : : ;N; j D 1; : : : ; Ji � 1
(3.21)

ri C
X

m2M.i;1/

�
p.m;s/.i;1/ xm

.i;1/

�
� as

1.i;1/ � ts
.i;1/; 8i D 1; : : : ;N (3.22)
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.i;j/ C p.m;s/.k;l/ C um

.i;j;k;l/ � a.m;s/
2.i;j;k;l/ � ts

.k;l/ C
�
1 � ym

.i;j;k;l/

�
H.m;s/
.i;j;k;l/;

8m 2 M;8 .i; j/ ¤ .k; l/ in Zm (3.23)
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Awi �
s
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8i D 1; : : : ;N
(3.24)

as
1.i;j/ � 0; 8i D 1; : : : ;N; j D 1; : : : ; Ji (3.25)

a.m;s/
2.i;j;k;l/ � 0; 8m 2 M;8 .i; j/ ¤ .k; l/ 2 Zm (3.26)

ts
.i;j/ � 0; 8i D 1; : : : ;N; j D 1; : : : ; Ji (3.27)


s
i � 0; 8i D 1; : : : ;N: (3.28)

Note that artificial variables are included in Constraints (3.2), (3.3), and (3.4), which
now become (3.21), (3.22), and (3.23), respectively. Constraints (3.9) do not require
any artificial variables because they can always be satisfied by virtue of the budget
over-run variables �s

i , iD 1, : : : , N. Whereas the corresponding restrictions are
included in (3.24), they can be effectively omitted from Problem ARP.

If the value of the objective function (3.20) in ARP equals zero for all the
subproblems, then it indicates that the solution from the master program (first-
stage) is feasible to the recourse (second-stage) problem. However, if there exists
a scenario, say s, such that the subproblem corresponding to this scenario has a
positive optimal objective value, then a feasibility cut is generated so as to elim-
inate the corresponding solution from the master program, as follows. Rewriting
Constraints (3.21), (3.22), and (3.23) as “�” inequalities, we associate nonnegative
dual variables 
s

.i;j/, 

s
i , 


.m;s/

.i;j;k;l/ with these respective constraints. Note that (3.24) has
been dropped from Problem ARP. Then, we derive the following feasibility cut for
scenario s:
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(3.29)

This feasibility cut is appended to the master program. Whenever the objective
function values for all the augmented subproblems equal zero, the Stage-I solution
yields feasible Stage-II recourse problems, whence we either verify optimality or
generate optimality cuts as described next.

3.2.3 Optimality Cuts

When a Stage-I solution (x; y; v) is feasible for the separable Stage-II problems,
the latter effectively determine optimal values for the completion time and budget
over-run variables for each scenario. This yields the expected recourse value of

the Stage-II objective function as given by Q .x; y; v/ �
XS

sD1�sQ .x; y; v; s/.

This value is then compared with the lower bound (� , say) on the recourse value
as previously obtained by solving the master problem. Note that (3.18) evaluated
for (x; y; v) provides an upper bound for the NFJS problem given the feasibility
of (x; y; v), and can be used to update the incumbent objective function value. If
� � Q .x; y; v/, we have that (x; y; v) is an optimal solution to the NFJS problem.
Otherwise, if � < Q .x; y; v/, we generate an optimality cut to help close the gap
between the two bounds. Letting �s

(i,j), �
s
i , �

(m,s)
(i,j,k,l), and !s

i be the nonnegative dual
variables associated with respect to Constraints (3.2), (3.3), (3.4), and (3.9) written
as� restrictions, the optimality cut is given as follows, where, as mentioned above,
� is used to represent the final term in the objective function (3.18) of the master
program:
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(3.30)

The optimality cut is appended to the MP and the revised MP is re-solved. The
iterations continue in this fashion until the lower and upper bounds converge (or
come within a desired optimality tolerance).

Note that the master problem and the linear programs corresponding to the
subproblems need to be re-solved every time a new feasibility or optimality cut is
added. This can lead to a lengthy process in case a large number of feasibility cuts
are required to generate a feasible solution. Therefore, it is helpful to a priori include
suitable valid inequalities in the master problem to induce second-stage feasibility.
We present such inequalities next.

3.2.4 Alternative Valid Inequalities for Inducing Stage-II
Feasibility That Also Provide a Stage-I Lower Bound

The alternative set of valid inequalities derived in this section relies on the fact
that for any fixed value of (x, y, v), the feasibility of the Stage-II problem does
not depend on a particular scenario. In other words, if the routing and sequencing
decisions are feasible for a given scenario, then they are also feasible for any
other scenario, because changes in job processing times can be accommodated
by adjusting completion times while maintaining the feasibility of the subproblem
constraints. Consequently, variables and constraints of the subproblem for a given
scenario can be included in the master problem to induce feasibility of the
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subproblems for all the scenarios. The next result indicates that the particular
scenario that use the expected values of processing times provides a lower bound
on � � Q .x; y; v/.

Proposition 1 The optimal objective value of the subproblem with expected

processing times yields a lower bound on Q .x; y; v/ �
XS

sD1�sQ .x; y; v; s/.

Proof For any fixed values of x, y, and v, the recourse function Q(x, y, v, s) is only a
function of s. We rewrite this as Q(ps), where ps is the vector of operation processing
times.

Let pE D
XS

sD1�sps. The fact that Q
�
pE
� D Q

�XS

sD1�sps
�
�
XS

sD1�sQ .ps/

is easily established because Q(ps) is a convex function of ps, due to fixed recourse
(see Theorem 5 in Birge and Louveaux 2000, p. 89.) �

Accordingly, we define the following variables:

tE
(i,j)D completion time of operation j of job i under expected processing times.
�E

i D budget over-run for job i under expected processing times.

Then, by Proposition 1 and Constraints (3.2), (3.3), (3.4), and (3.9), we include
the following set of restrictions in the Stage-I master program:

� �
NX

iD1
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E
.i;Ji/
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E
i (3.31)
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.i;j/ � 0; 8i D 1; : : : ;N; j D 1; : : : ; Ji (3.36)


E
i � 0; 8i D 1; : : : ;N: (3.37)
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Note that p.m;E/.i;j/ �
XS

sD1�sp
.m;s/
.i;j/ , and that H(m,E)

(i,j,k,l) is pre-calculated similar to that in

(3.16) and (3.17), with p(m,E)
(i,j) replacing p(m,s)

(i,j) in the expressions.
Also note that the infeasibility caused by re-entrant flow will be eliminated by

Constraints (3.32), (3.33), and (3.34), since they enforce a proper ordering (via the
tE
(i,j) -variables) among the operations of the same job. These constraints also prevent

the occurrence of a deadlock as follows. Consider the situation depicted in Fig. 3.1,
where we have xM1

.a;b/ D xM1
.c;d/ D xM2

.c;h/ D xM2
.a;f / D 1 and yM1

.a;b;c;d/ D yM2
.c;h;a;f / D 1.

Since h > d and f < b, the constraint set (3.32) asserts that tE
.c;h/ > tE

.c;d/ and tE
.a;f / <

tE
.a;b/. On the other hand, the constraint set (3.34) enforces tE

.a;b/ < tE
.c;d/ and tE

.c;h/ <

tE
.a;f /. Clearly, these four inequalities lead to a contradiction, and consequently, the

corresponding values of the x- and y-variables would be infeasible to the master
problem augmented with Constraints (3.32) and (3.34).

Note that (3.34) also serves to eliminate subtours among the operations processed
on a machine. These are essentially the MTZ-type of subtour elimination constraints
(Miller et al. 1960), and they can be weak in the sense that they lead to loose LP
relaxations. However, they can potentially be strengthened through the use of flow-
based valid inequalities as shown by Sherali et al. (2006).

3.3 Valid Inequalities for Further Tightening
the Model Formulation

In this section, we develop three classes of valid inequalities by exploiting the
inherent structure of the NFJS problem. These inequalities are added to the MP
to tighten its continuous relaxation and provide better lower bounds for use in the
branch-and-bound algorithm for solving NFJSP. The first type of inequalities arises
from the flow balance-type constraints that capture the movement of operations
among the machines. The other two types of inequalities are formulated to obviate
infeasibility caused by re-entrant flow and deadlock, respectively. They are based
on a new formulation for the asymmetric travelling salesman problem (ATSP)
presented in Sarin et al. (2005).

3.3.1 Flow-Balance Constraints

In the NFJSP formulation, we used the variable v.e;f /.i;j;jC1/ to represent the transfer of
job i from machine e to machine f when performing the respective operations j and
jC 1. This definitional role of v.e;f /.i;j;jC1/ is enforced by (3.10). We can further tighten
the continuous relaxation of the model by introducing the following flow-balance
constraints (FBC):
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e2M.i;Ji�1/

v
.e;f /
.i;Ji�1;Ji/

D xf
.i;Ji/

; 8i D 1; : : : ;N; f 2 M.i;Ji/: (3.40)

Constraints (3.38) assert that if the first operation of job i is assigned to machine e,
then job i must be transported from machine e to some machine f that is capable
of processing the second operation of job i. Constraints (3.39) capture the fact that
if machine f is chosen for processing the jth operation of job i, 1 < j < Ji , then
job i is necessarily transferred from some previous machine, e, and is transported
to a succeeding machine, g, while performing the respective operations j� 1 and
jC 1. Similarly, Constraints (3.40) require job i to be transferred from some previous
machine e in case its last operation is processed on machine f.

3.3.2 Re-Entrant Flow-Based Constraints

In the case of re-entrant flows, the lower indexed operations of any job must precede
the higher indexed operations of that job for the sequence to be feasible. For the sake
of convenience, we designate an order ord(i, j) for elements of Zm;8m 2 M; such
that the ordering of operations from the same job is maintained. For instance, if
ZmDf(1, 1), (2, 2), (1, 2)g, we can assign ord(1, 1)D 1, ord(2, 2)D 2, and ord(1,
2)D 3. Based on this definition, we let

hm
.i;j;k;l/ � xm

.i;j/x
m
.k;l/;8m 2 MI .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/

We can linearize the foregoing relationship between the h- and the x-variables by
using the following logical constraints:

hm
.i;j;k;l/ � xm

.i;j/; hm
.i;j;k;l/ � xm

.k;l/; hm
.i;j;k;l/ � xm

.i;j/ C xm
.k;l/ � 1;

8m 2 M; .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/ : (3.41)

We also define certain indirect precedence variables as follows:

gm
.i;j;k;l/ D

8
<

:

1; if operation j of job i is processed sometime before
operation l of job k on machine m;

0; otherwise:
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Then, we have,

gm
.i;j;k;l/ C gm

.k;l;i;j/ D hm
.i;j;k;l/; 8m 2 M; .i; j/ ; .k; l/ 2 Zm W ord .i; j/ < ord .k; l/

(3.42)

gm
.i;j;�;
/ � gm

.i;j;k;l/ C gm
.k;l;�;
/ � 1; 8m 2 M;8distinct .i; j/ ; .k; l/ ; .�; 
/ 2 Zm

(3.43)

gm
.i;j;i;l/ D 0; 8m 2 M; .i; j/ ; .i; l/ 2 Zm W j > l: (3.44)

Constraints (3.42) state that given two job-operations on a machine, one of
them must either precede or succeed the other. Constraints (3.43) represent the
transitivity property; that is, for any triplet of job-operations (i, j), (k, l), and (� , 
)
on machine m, if operation (i, j) is scheduled somewhere before operation (k, l)
and operation (k, l) is scheduled somewhere before operation (� , 
), then operation
(i, j) must necessarily be scheduled before operation (� , 
). Finally, the re-entrant
flow Constraints (3.44) ensure that if two operations of the same job are assigned
to a machine, then the lower indexed job operation precedes the higher indexed
operation.

Also, we have the following logical constraints connecting the indirect and the
direct precedence variables:

gm
.i;j;k;l/ � ym

.i;j;k;l/; 8m 2 M;8 .i; j/ ¤ .k; l/ in Zm: (3.45)

Hence, the re-entrant flow constraints that can be accommodated into the master
(Stage-I) program are given by (3.41), (3.42), (3.43), (3.44), and (3.45). Note that by
introducing the gm

(i,j,k,l) -variables, we also eliminate infeasibility caused by subtours
in operation sequencing, since the indirect precedence enforced by the gm

(i,j,k,l) -
variables precludes the occurrence of subtours.

3.3.3 Deadlock Prevention Constraints

Next, we develop valid inequalities to prevent the occurrence of a deadlock. For the
sake of brevity, we only present inequalities for the prevention of 2-machine dead-
locks and establish their validity. For a detailed development of the corresponding
results for the general case of m-machine deadlocks, see Varadarajan (2006).

Consider the following situation in a job shop environment: operations (a, b) and
(c, d) are assigned to machine m; and operations (a, f ) and (c, h), where f < b and
h > d, are assigned to machine n. If (a, b) precedes (c, d), then (a, f ) must necessarily
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precede (c, h) to avoid a deadlock (see Fig. 3.1, where machines m and n are denoted
by M1 and M2, respectively). Then, we have the following result:

Proposition 2 Two-machine deadlocks are prevented by including the following
additional inequalities:

gn
.a;f ;c;h/ � gm

.a;b;c;d/ C hn
.a;f ;c;h/ � 1;

8 m; n 2 M; .a; b/ ; .c; d/ 2 Zm; .a; f / ; .c; h/ 2 Zn;

f < b and h > d:

(3.46)

Proof If hn
.a;f ;c;h/ D 0, then gn

.a;f ;c;h/ D 0 by (3.42), and gm
(a,b,c,d) can be 1 without

causing any deadlock. If hn
.a;f ;c;h/ D 1 and gm

.a;b;c;d/ D 0, then gn
.a;f ;c;h/ � 0, and the

schedule is deadlock free. On the other hand, if both gm
(a,b,c,d) and hn

(a,f,c,h) are equal
to 1, then (a, b) is processed sometime before (c, d) on machine m, and (a, f ) and
(c, h) are processed on the same machine n. To yield a deadlock-free schedule under
this situation, (a, f ) must be processed sometime before (c, h) on machine n, which
is enforced by (3.46). �

Note that to apply the above deadlock prevention constraints to the master
problem, we need to also include Constraints (3.41), (3.42), (3.43), and (3.44), so
that g- and h-variables take their definitional roles in the model.

3.4 Computational Results

We now present results of computational experimentation to demonstrate the
effectiveness of our feasibility-inducing and model-tightening inequalities within
the framework of the L-shaped method for the solution of NFJS problem. In this
method, the Stage-I master problem is solved using a branch-and-bound algorithm.
Whenever an integer solution is obtained for a node problem’s LP relaxation, the
Stage-II problem is solved to verify its feasibility and optimality. If any of these
conditions are not met, a feasibility cut or an optimality cut is generated and added
to the Stage-I problem, and the branch-and-bound process continues.

There are several ways in which the valid inequalities pertaining to the expected
value scenario (EVS), the re-entrant flows (RF), and deadlock prevention (DP)
(developed in Sects. 3.2.4, 3.3.2, and 3.3.3, respectively) can be applied. We can
either use them separately, or we can apply the EVS inequalities in conjunction
with selected members of the RF and DP inequalities in order to tighten the
underlying relaxation. Our preliminary investigation has shown that the use of the
EVS inequalities always leads to shorter CPU times. The question, then, is how (if
at all) to apply the RF and DP inequalities in addition to the EVS inequalities. Note
that, to achieve the full potential of the RF and DP inequalities, we need to consider
re-entrant flows and deadlocks among all the machines, which would require a large
number of extra variables and constraints that may overburden the master program
and deteriorate its computational performance. Therefore, we choose to apply these
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inequalities to a proper subset of machines, as investigated in Sect. 3.4.2 below.
Furthermore, we explore the optional addition of the flow-balance constraints FBC
of Sect. 3.3.1.

3.4.1 Design of Test Problems

To represent routing flexibility, we group machines into work centers; operations
assigned to a work center are allowed to be processed by any machine in that
work center. Due to this feature, the manner in which workload is assigned to the
machines within a work center is not determined until a solution is obtained. To
indicate the potential workload on a machine, we define a load factor to be the total
number of visits of all the jobs to that machine on average, assuming that all the
machines within a work center equally share the workload. According to the load
factor, we differentiate machines into two categories: low-number-of-visit (LNV)
machines (with two potential visits on average), or high-number-of-visit (HNV)
machines (with three potential visits on average). Consequently, three job-visiting
patterns are considered, pertaining to different distributions of workload on the
machines. These are: f“LC•H�,” “L•H,” “L�•HC”g. The letters “L” and “H” refer
to the LNV and HNV machines, respectively; the plus/minus signs in the superscript
indicate that, relatively, there are higher or lower number of machines in a category
than those in the other. We consider test problems of various sizes, involving 6, 8,
or 10 machines. Their basic specifications are listed in Table 3.1.

With respect to routing flexibility, three cases are considered. In Case �1, all
HNV machines are grouped into one work center, while no routing flexibility exists
among the LNV machines. In Case �2, all LNV machines are grouped into one
work center; no routing flexibility exists among the HNV machines. In Case �3, no
routing flexibility exists.

Table 3.1 Specifications for various problem sizes

Number of
machines

Job-visiting
pattern

Number of
LNV machines

Number of
HNV machines

Number
of jobs

Total number
of operations

6 LC•H� 4 2 3 14
L•H 3 3 3 15
L�•HC 2 4 3 16

8 LC•H� 5 3 4 22
L•H 4 4 4 24
L�•HC 3 5 4 26

10 LC•H� 6 4 5 28
L•H 5 5 5 30
L�•HC 4 6 5 32
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For each of the above 3� 3� 3D 27 combinations of numbers of machines,
job-visiting patterns, and routing flexibility, we constructed 20 test problems with
randomly generated job routings and processing times. For the 6-machine problems,
we considered the following numbers of scenarios: f100, 200, 300, 400g. The larger-
sized problems (involving 8 and 10 machines) were solved using 400 scenarios to
reveal the effectiveness of the proposed strategy.

All experimental runs were implemented using AMPL-CPLEX 10.1 and per-
formed on a Pentium D 3.2 GHz CPU computer with 2 GB memory.

3.4.2 Experimental Results

We first compare the performance of solving NFJSP directly by AMPL-CPLEX
(designated as Method I) with that of our decomposition approach (designated as
Method II), which includes the EVS inequalities but not the RF and DP inequalities.
Results of the L-shaped method without any additional inequalities, i.e., only with
the standard feasibility and optimality cuts (3.29) and (3.30) (designated as Method
III) are also provided for comparison. In addition, we considered the option of either
adding or not adding the FBC inequalities of Sect. 3.3.1 to these three methods. The
6-machine problems were solved to optimality; the 8- and 10-machine problems
were run until an integer solution was obtained within an optimality gap of 5 %.
Since the superiority of Method II was observed in our preliminary study, we
adopted the following approach to avoid excessive run times: Method II was used
to solve the test problems first. Since there are two options (with or without the
FBC inequalities), we record the CPU time as t2’ and t2”, respectively, for these
options. Let t2Dmaxft2’, t2”g. For Methods I and III, we set an upper bound on the
CPU time of maxf1.2� t2, tcg, where the value of tc is 1500, 2000, and 2500 s,
respectively, for the 6-, 8-, and 10-machine problems. The first term (1.2� t2)
is used to provide a reasonable (20 %) margin to demonstrate the superiority of
Method II over the other two methods. The second term (tc) is included to ensure
that the effectiveness of adding the FBC inequalities is not obscured by stopping
prematurely.

The results obtained are presented in Table 3.2. Note that the inclusion of the
FBC inequalities results in shorter CPU times for Methods I and II in most cases.
Therefore, in the following discussion, we only provide results for the case where
the FBC inequalities have been added to the NFJSP formulation. From these results,
it is also evident that Method II is substantially faster than Methods I and III.

To further illustrate how this dominance varies with an increasing number of
scenarios, we present, in Fig. 3.2, the results for 6-machine problems with four
different numbers of scenarios, namely, 100, 200, 300, and 400. The arrow and
the number next to a data point indicate the percentage of test problems that
consume CPU times more than the limit of 1500 s. Note that Method II substantially
dominates the other methods as the number of scenarios increases from 100 to
400. This pattern is observed not only for the average values that are depicted in
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Table 3.2 Computational results for Methods I, II, and III for 400 scenarios

Average CPU time (in seconds)
Method I Method II Method III

Number of machines w/o FBC w/ FBC w/o FBC w/ FBC w/o FBC w/ FBC

6 207.53 196.26 21.38 22.41 266.82 270.63
8 742.29 707.98 27.42 25.09 1365.04 1379.96
10a 1315.04 1306.59 82.81 54.63 2244.51 2242.22
10b – – 123.55 109.87 2273.06 2271.03

aTwenty-one (out of 180) 10-machine problems could not be solved by Method I due to
excessive memory requirements. The average values in this row are calculated based on the
remaining 159 test problems
bOne (out of the 180) 10-machine problem could not be solved by Method III due to
excessive memory requirements. The average values in this row are calculated based on
the other 179 test problems
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Fig. 3.2 Average CPU times for 6-machine problems for various numbers of scenarios

Fig. 3.2, but also for all combinations of job-visiting patterns and cases of routing
flexibility. For the sake of brevity, we illustrate this behavior in Fig. 3.3 by using the
combination “L•H”� “�2”. Clearly, Method II dominates the other two methods
for all numbers of scenarios considered. Moreover, as the number of scenarios
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Fig. 3.3 Average CPU times required by the combination “L•H”� “(ii)” for 6-machine problems
for various numbers of scenarios

increases, the CPU time required by Method II increases almost linearly, while that
for Method I increases superlinearly. Although the CPU time for Method III also
increases almost linearly, it does so at a much higher rate than that for Method II.
Hence, the dominance of Method II becomes more prominent with an increase in
the number of scenarios. Also, note that Method III begins to dominate Method I
for larger number of scenarios.

Next, we investigated the impact of adding the RF and DP inequalities to
Method II. There are several options that we can consider. The default option is
Method II with the FBC inequalities. We can either add to this default option the RF
and DP inequalities separately, or we can add them both at the same time. Another
aspect to consider is the set of machines to which these inequalities are applied. We
considered two options in this respect, namely, their application to only the HNV
machines, or to only the LNV machines. Our preliminary investigation showed that
the application of the RF and DP inequalities to the HNV machines results in the
addition of a large number of extra variables and constraints to the Stage-I master
problem, which leads to greater CPU times in comparison with the default option.
Therefore, in the following discussion, we only consider the addition of the RF and
DP inequalities to the LNV machines. To compare the performances of different
model configurations, we fixed the number of scenarios at 400. The average CPU
times and the ratio between the values of the LP solution and the 1. best-found
solution, under different job-visiting patterns and cases of routing flexibility, are
summarized in Tables 3.3 and 3.4.
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Table 3.3 Average CPU times and percentage improvements over Model A

Model A (default)
B (default
CRF)

C (default
CDP)

D (default
CRFC DP)

Number
of
machines

Job-visiting
pattern

Routing
flexibility Average CPU time (in seconds), percentage improvement

6 LC•H� �1 7.48 7.7 7.64 7.7
�2 17.48 22.12 25.52 23.6
�3 1.74 1.77 1.74, 0.1 % 1.77

L•H �1 27.05 28.31 26.4, 2.4 % 28.32
�2 7.75 9.73 9.36 9.85
�3 3.09 3.09 3.11 3.13

L�•HC �1 130.12 123.66, 5.0 % 124.15, 4.6 % 123.95, 4.7 %
�2 4.16 4.49 4.25 4.49
�3 2.8 2.77, 0.8 % 2.81 2.78, 0.8 %

8 LC•H� �1 3.81 4.08 3.84 3.95
�2 5.78 8.97 6.85 9.44
�3 0.93 0.94 0.95 0.94

L•H �1 29 22.86, 21.2 % 33.37 22.94, 20.9 %
�2 4.67 5.74 6.92 6.6
�3 0.97 0.94, 3.0 % 0.97, 0.1 % 0.94, 3.1 %

L�•HC �1 176.92 196.35 160.16, 9.5 % 195.94
�2 2.93 2.81, 4.0 % 2.78, 5.1 % 3.03
�3 0.76 0.77 0.78 0.77

10 LC•H� �1 178.09 74.69, 58.1 % 252.17 76.01, 57.3 %
�2 18.91 29.81 51.57 42.7
�3 1.21 1.23 1.29 1.23

L•H �1 2227.97 1066.2, 52.1 % 2170.97, 2.6 % 1086.73, 51.2 %
�2 29.2 47.37 41.36 36.74
�3 1.6 1.62 1.85 1.62

L�•HC �1 549.05 476.28, 13.3 % 662.12 536.86, 2.2 %
�2 11.21 10.89, 2.9 % 15.28 15.37
�3 1.55 1.51, 2.4 % 1.54, 1.1 % 1.51, 2.6 %

Total
average

127.64 79.88 134.06 83.29

We highlight in bold, in Table 3.3, the CPU times that turn out to be shorter than
that for the default model (A) for a given combination of job-visiting pattern and
routing flexibility. For each such case, the percentage improvement in CPU time
over the default model is also presented along with the CPU time. In view of these
results, we can make the following observations: Simlarly a higher ratio between
the values of the LP solution and the best-found solution obtained for a method over
default is highlighted in Table 3.4
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Table 3.4 Comparing quality of LP relaxation

Model A (default)
B (default
CRF)

C (default
CDP)

D (default
CRFC DP)

Number of
machines

Job-visiting
pattern

Routing
flexibility LP relaxation value/Best solution found

6 LC•H� �1 92.52 % 92.52 % 92.52 % 92.52 %
�2 93.52 % 94.13 % 93.85 % 94.13 %
�3 95.00 % 95.00 % 95.00 % 95.00 %

L•H �1 94.00 % 94.00 % 94.00 % 94.00 %
�2 92.62 % 92.96 % 92.80 % 92.96 %
�3 91.58 % 91.58 % 91.58 % 91.58 %

L�•HC �1 94.45 % 94.45 % 94.45 % 94.45 %
�2 92.59 % 92.78 % 92.75 % 92.78 %
�3 92.46 % 92.46 % 92.46 % 92.46 %

8 LC•H� �1 93.92 % 93.92 % 93.92 % 93.92 %
�2 92.88 % 93.25 % 93.10 % 93.25 %
�3 93.95 % 93.95 % 93.95 % 93.95 %

L•H �1 94.83 % 94.83 % 94.83 % 94.83 %
�2 92.74 % 93.00 % 92.91 % 93.00 %
�3 94.48 % 94.48 % 94.48 % 94.48 %

L�•HC �1 93.24 % 93.24 % 93.24 % 93.24 %
�2 93.70 % 93.80 % 93.78 % 93.80 %
�3 93.99 % 93.99 % 93.99 % 93.99 %

10 LC•H� �1 94.19 % 94.19 % 94.19 % 94.19 %
�2 92.98 % 93.29 % 93.20 % 93.29 %
�3 94.31 % 94.31 % 94.31 % 94.31 %

L•H �1 93.59 % 93.59 % 93.59 % 93.59 %
�2 93.78 % 94.03 % 93.94 % 94.03 %
�3 93.12 % 93.12 % 93.12 % 93.12 %

L�•HC �1 92.38 % 92.38 % 92.38 % 92.38 %
�2 92.69 % 92.87 % 92.82 % 92.87 %
�3 94.47 % 94.47 % 94.47 % 94.47 %

1. On average, the addition of the RF inequalities alone (Model B) and the addition
of both types of inequalities (Model D) help in achieving a shorter CPU time.
This is particularly true when routing flexibility occurs on the HNV machines
(Case �1) because it leads to fewer conflicts for a large number of operations.
This phenomenon appears to become more prominent with an increase in the
number of machines, where savings of up to 58.1 % are achieved by Model B
and up to 57.3 % by Model D for the 10-machine problems.

2. The benefit of adding the RF and DP inequalities is more evident for the harder
problems, i.e., when the default model (Model A) takes a longer time to solve a
problem, the addition of the RF and DP inequalities is more likely to help reduce
the CPU time.
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3.5 Heuristic Methods for the Solution of the NFJS Problem

Several heuristic methods can be used for the solution of the NFJSP that rely on
work presented above. Six such viable procedures are described and investigated
below.

1. Expected Value Problem Heuristic (EVP)

1. Assume processing times to be deterministic and equal to their expected values,
and solve the model to optimality record the solution.

2. Evaluate solution using all scenarios.

2. Mixed Heuristic (Mixed)

Note that, even if all the scenarios are considered in the determination of budget
over-runs, the resulting model is still relatively easy to solve (as the number of
relevant constraints/variables is equal to NS). Hence, we can consider all scenarios
in the determination of budget over-runs, while using expected processing times for
the determination of job completion times. We call the resulting model a mixed-type
model. Since this is a closer approximation of the original problem, we expect it to
yield better solutions than the expected value heuristic.

For large-sized problem instances, even the mixed-type model becomes very
difficult to solve. Therefore, we further relax the sequencing variables to be
continuous and solve the mixed-type model to obtain assignment decisions. Then,
we determine job sequences by considering the outcomes of all scenarios.

1. Solve the mixed-type model with sequencing variables relaxed as continuous;
(assignment step).

2. Determine the processing sequences using the assignment decisions fixed in Step
1; (sequencing step).

3. MixedCShortest Processing Time (SPT)
The second step of the mixed heuristic is still difficult to solve for large-sized
problems, hence we can apply the SPT dispatching rule to determine the job
sequence. That is, whenever a machine is released by a previous operation, we
choose the operation that has the shortest processing time on that machine from
among the waiting operations. Note that, if an operation can be processed on
multiple machines, it is considered to be waiting on all the compatible machines.
Its assignment is determined based on which machine first chooses it as the next
operation to be processed. Note that the SPT rule is based on the expected processing
times.

4. MixedCLeast Work Remaining (LWKR)

This approach is similar to “MixedC SPT,” except that we use the least-work-
remaining-first rule to dispatch operations.
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5 and 6. MixedCShifting Bottleneck Heuristic (SBN)

As a first step, we use Step 1 of the Mixed Heuristic to determine the assignment
of operations to the machines. The remaining sequencing problem is modeled
as a disjunctive graph. In the beginning, all disjunctive arcs are relaxed and job
completion times are recorded and regarded as due dates. The ready time and due
date of each operation are determined by following the forward and backward passes
along the critical paths (for the completion time problem, there are usually multiple
critical paths). Next, each machine is considered individually to fix its operation
sequence using a heuristic rule. The machine that yields the largest change in the
total completion time is chosen, and the corresponding sequence (set of disjunctive
arcs) is fixed. The procedure continues until all the machines are sequenced. Note
that after the sequence of operations on each machine is fixed, a re-sequencing
step is implemented by adjusting the sequences of operations on previously fixed
machines.

We employ the following two heuristic rules to determine the sequence in which
to process the jobs on a machine:

5. SBN_ATC Determine the following Apparent Tardiness Cost (ATC) priority
index (Pinedo and Singer 1999):

Iij D
NX

kD1

1

pij
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�dk
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where t is the scheduling time, KD 2, and p is the average of the processing times of
the jobs assigned to machine i, and ready time rij and local due date dk

ij of operation
j of job k assigned to machine i are determined as explained in Pinedo and Singer
(1999).

6. SBN_PRTT Choose the operation that has the lowest value of Chu and
Portmann (1992):
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This is a single machine sequencing rule, and we use the values of rij and dk
ij

as determined above. Additionally, insert the earliest available operation, if the
operation chosen by the above rule leaves enough idle time before itself.

The relative performances of these heuristic methods are presented in Tables 3.5
and 3.6 for 6 machines (with three jobs) and 10 machines (with 15 jobs), respec-
tively. Optimal gap is determined with respect to the solution of mixed-method,
which serves as a lower bound. Note that, although EVP gives the best results with
the least CPU time for the first set of problems, it becomes impractical for larger-
sized problems (second set) due to its large number of binary sequencing variables.
MixedCLWKR heuristic gives the best results on larger-sized problem instances.
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Table 3.5 Results on
6-machine problems (with 3
jobs)

Approach Optimality gap CPU time (seconds)

EVP 0.49 % 0.33
Mixed – 0.27 (Step 1)
MixedC SPT 1.46 % 1.63
MixedCLWKR 1.42 % 1.64
MixedC SBN_ATC 1.89 % 0.91
MixedC SBN_PRTT 1.27 % 0.90

Table 3.6 Results on 10-machine problems (with 15 jobs)

Approach Objective value CPU time (seconds)

Mixed 2049.72 2.15 (Step 1)
MixedCLWKR 2796.85 (37.16 %) 13.12
MixedC SBN_ATC 2872.97 (40.79 %) 45.35
MixedC SBN_PRTT 2804.47 (37.47 %) 47.32

3.6 Concluding Remarks

In this chapter, we have presented a stochastic programming approach for the NFJS
(Network of Flexible Job Shops) problem. This problem arises in a distributed
fabrication environment that has recently emerged to serve the evolving needs of
the high investment, low volume MEMS industry. The problem is modeled as a
two-stage stochastic program with recourse, where the uncertainty in processing
times is captured using scenarios. The first-stage routing and sequencing variables
are binary whereas the second-stage completion time and budget over-run variables
are continuous. Since the NFJS problem lacks relatively complete recourse, the
first-stage solution can be infeasible to the second-stage problem in that it might
generate subtours, violate the re-entrant flow conditions, or create a deadlock. In
the standard L-shaped method, feasibility cuts are iteratively added to the first-
stage problem upon the discovery of these infeasibilities. As an alternative, we have
provided certain expected-value-scenario-based inequalities to induce feasibility
of the second-stage problem that greatly help reduce the effort required by the
L-shaped method. To further tighten the first-stage problem formulation, we have
also developed three types of valid inequalities: flow-balance constraints, re-entrant
flow-based constraints, and deadlock prevention constraints. Our computational
results reveal that: (a) our decomposition approach is substantially superior to the
direct solution of the NFJSP using CPLEX; (b) the expected-value-scenario-based
inequalities are significantly more effective than the use of standard feasibility
cuts in the master problem; and (c) the judicious additional use of the re-entrant
flow and deadlock prevention inequalities in conjunction with the expected-value-
scenario-based inequalities further improves the overall algorithmic performance,
particularly for more difficult problem instances. Furthermore, we have proposed
heuristic methods for the solution relatively larger instances of NFJS and have
presented results of their implementation.
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Chapter 4
A Free-Slack-Based Genetic Algorithm
for the Robotic Cell Problem with Controllable
Processing Times

Mohammed Al-Salem, Mohamed Haouari, Mohamed Kharbeche,
and Wael Khallouli

Abstract We present a novel genetic algorithm for the Robotic Cell Problem with
controllable processing times. This challenging problem arises in an automated
production cell that consists of m consecutive machines as well as a material
handling robot. The problem requires finding the operations processing times, job
assignment, and robot movements. The objective is to minimize the makespan
subject to a budget constraint. We describe a free-slack-based genetic algorithm
for the linear resource consumption case. We present the results of a computational
study and we provide evidence that the proposed algorithm consistently outperforms
MIP-based heuristics from the literature.

Keywords Flexible manufacturing • Robotic cell scheduling • Controllable
processing • Genetic algorithms • Makespan

M. Al-Salem (�)
Department of Mechanical and Industrial Engineering, College of Engineering,
Qatar University, Doha, Qatar
e-mail: alsalem@qu.edu.qa

M. Haouari
Department of Mechanical and Industrial Engineering, College of Engineering,
Qatar University, Doha, Qatar
e-mail: mohamed.haouari@qu.edu.qa

M. Kharbeche
Qatar Road Safety Studies Center, Qatar University, Doha, Qatar
e-mail: mkharbec@qu.edu.qa

W. Khallouli
Department of Mechanical and Industrial Engineering,
College of Engineering, Qatar University, Doha, Qatar
e-mail: w.khallouli@qu.edu.qa

© Springer International Publishing Switzerland 2016
G. Rabadi (ed.), Heuristics, Metaheuristics and Approximate Methods
in Planning and Scheduling, International Series in Operations Research &
Management Science 236, DOI 10.1007/978-3-319-26024-2_4

77

mailto:alsalem@qu.edu.qa
mailto:mohamed.haouari@qu.edu.qa
mailto:mkharbec@qu.edu.qa
mailto:w.khallouli@qu.edu.qa


78 M. Al-Salem et al.

4.1 Introduction

With the increasing attention to flexible manufacturing systems (FMSs), there is a
growing interest from researchers to develop heuristic and optimization approaches
for scheduling these complex systems. A clear evidence from the FMS literature
is that the processing times are often considered to be constant parameters, and
part of the problem input. However, in many real-life situations, the processing
times may be controllable (that is, increased or decreased) by allocating resources
(energy, workforce, money). In such situations, identifying the operational tradeoffs
between the processing times and the resource allocation is of crucial importance.
Indeed, an increase in the operations processing times will reduce the tools wear
while improving the cost. On the other hand, decreasing the operations processing
times will cause excessive tool wear with additional energy which will translate
into higher costs. Therefore, since the processing times and the resource allocation
constitute important factors in FMS, they should be considered as decision variables
and therefore should be determined as part of the optimization process.

In this chapter, we propose a genetic algorithm for the Robotic Cell Problem
(RCP) with controllable processing times. We provide empirical evidence that the
new proposed genetic algorithm consistently produces better solutions than MIP-
based heuristics from the literature.

The remainder of this chapter is organized as follows. In Sect. 4.2, we provide
a formal description of the problem as well as a valid mathematical formulation.
Also, we briefly overview the literature on both robotic cells and controllable
processing times scheduling problems. In Sect. 4.3, we present a free-slack-based
genetic algorithm for the case of linear resource consumption function. In Sect. 4.4,
we present the results of a computational study that was conducted to assess the
performance of the proposed approach. Finally, Sect. 4.5 provides a summary of the
chapter along with some concluding remarks and directions for future research.

4.2 Problem Description

The RCP with controllable processing times (RCPCPT) can be formally described
as follows. We are given a set J of n jobs where each job has to be processed in
a robotic cell. The robotic cell consists of a set of m machines M1; M2;. . . , Mm,
an input buffer M0, an output buffer MmC1, and a handling robot that is used for
transferring the jobs between machines. At time t D 0; all jobs are available at the
input device M0. Each job j 2 J has to be processed non preemptively on machines
M1; M2;. . . , Mm, in that order, and then transferred to the output device MmC1. The
robot can transfer at most one job at any time and the duration of a robot move
from Mi to Mh (i; h D 0; : : : ;mC 1/ is deterministic and requires �ih units of time.
The machines have neither input nor output buffering facilities. Consequently, after
processing a job j on machine Mi (i D 1; : : : ;m/, the latter remains blocked until the
robot picks up j and transfers it to the subsequent machine MiC1: Such a move could
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only be performed if machine MiC1 is free (that is, no job is being processed by or
waiting at MiC1). It is noteworthy that, because of the blocking constraint, passing is
not possible and therefore only permutation schedules are considered. Furthermore,
at any time each machine can process at most one job and each job can be processed
on at most one machine.

An important feature of the investigated problem is that the processing time pij

of operation Oij of job j 2 J on machine Mi (i D 1; : : : ;m) is not a priori fixed. For
each operation, the processing time pij varies between a non-compressed processing
time pmax

ij and a compressed (minimum) processing time pmin
ij :

pmin
ij � pij � pmax

ij ; 8j 2 J and i D 1; : : : ;m: (4.1)

For the linear resource consumption function case, the processing time pij is
assumed to be a decreasing function of the acceleration cost cij that is allocated to
the processing of Oij. More precisely, the data of each operation Oij includes three
parameters: a non-compressed (maximum) processing time pmax

ij , a compressed
(minimum) processing time pmin

ij , and a compression rate aij. Then, the processing
times of the operations are given by:

pij D pmax
ij � aijcij; 8j 2 J and i D 1; : : : ;m: (4.2)

where the acceleration costs satisfy:

0 � cij � cmax
ij � .pmax

ij � pmin
ij /=aij;

8j 2 J and i D 1; : : : ;m: (4.3)

It is noteworthy this linear resource consumption function is very popular in the
scheduling literature dealing with controllable processing times [see Biskup and
Cheng (1999), Janiak (1991), Wang and Xia (2007) and Zdrzałka (1991), to quote
just a few].

4.2.1 Mathematical Formulation

In this section, we first briefly describe the decision variables, followed by a
nonlinear mixed-integer programming formulation proposed by Al-Salem et al.
(2015).

Prior to describing the decision variables, we introduce an additional notation.
We define the set …, as the set of the robot loaded moves. A robot operation
that corresponds to a transfer of the kth job from Mi to MiC1 is denoted by �ik

(i D 0; : : : ;m; k D 1; : : : ; n). Clearly, robot moves operations are interrelated by
precedence relationships. More precisely, because of the blocking constraints, �ik

should be preceded by operation �iC1;k�1 (i D 0; : : : ;m; k D 2; : : : ; n). Also, as a
consequence of the flow shop constraint, �ik should be preceded by operation �i�1;k
(i D 1; : : : ;m; k D 1; : : : ; n). For each �ik 2 …;we denote by pred.�ik/ and succ.�ik/

the sets of predecessors and successors of �ik, respectively.
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Decision variables:

xkj W binary variable that takes value 1 if job j is assigned to the kth position in the
schedule, and 0 otherwise, 8k D 1; : : : ; n; j 2 J
ylh

ik W binary variable that takes value 1 if the robot loaded move �ik is achieved
before the robot move �lh; and 0 otherwise, 8�ik; �lh 2 …
tik W starting time of operation �ik; 8i D 0; : : : ;m; k D 1; : : : ; n
pij W processing time of job j on machine Mi, 8i D 1; : : : ;m; j 2 J:

Model formulation:
Using these definitions, the RCPCPT is formulated as the following:

MINLP: Minimize tmn C �m;mC1 (4.4)

subject to:

nX

kD1
xkj D 1; 8j 2 J; (4.5)

nX

jD1
xkj D 1; 8j 2 J; (4.6)

tiC1;k � tik C �i;iC1 C
nX

jD1
piC1;jxkj;

8 k D 1; : : : ; n; i D 0; : : : ;m � 1; (4.7)

ti�1;k � ti;k�1 C �i;iC1 C �iC1;i�1;

8 k D 2; : : : ; n; i D 1; : : : ;m; (4.8)
X

�lh2pred.�ik/

yik
lh D 1; 8�ik 2 … n f�01g; (4.9)

X

�lh2succ.�ik/

ylh
ik D 1; 8�ik 2 … n f�mng; (4.10)

ti�1;k � tiC1;k�1 C �iC1;iC2 C �iC2;i�1

CM.yi�1;k
iC1;k�1 � 1/; 8k D 2; : : : ; n; i D 1; : : : ;m � 1; (4.11)

tiC1;k�1 � ti�1;k C �i�1;i C �i;iC1

CM.yiC1;k�1
i�1;k � 1/; 8k D 2; : : : ; n; i D 1; : : : ;m � 1; (4.12)

t0;k � tm;k�p C �m;mC1 C �mC1;0

CM.y0;km;k�p � 1/; 8k D 2; : : : ; n; p D 1; : : : ;m � 1; (4.13)

t0;kCp � tm;k�1 C �m;mC1 C �mC1;0

CM.y0;kCp
m;k�1 � 1/; 8k D 2; : : : ; n; p D 1; : : : ;m � 1; (4.14)
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mX

iD1

nX

jD1

pij

aij
�

mX

iD1

nX

jD1

pmax
ij

aij
� B; (4.15)

pmin
ij � pij � pmax

ij ; 8i D 1; : : : ;m; j 2 J; (4.16)

tik � 0; 8i D 0; : : : ;m; k D 1; : : : ; n; (4.17)

xkj 2 f0; 1g; 8k D 1; : : : ; n; j 2 J; (4.18)

ylh
ik 2 f0; 1g; 8�ik; �lh 2 …: (4.19)

The objective (4.4) is to minimize the makespan. Constraints (4.5) and (4.6)
require that each job is assigned to exactly one position in the schedule, and
each position is assigned to exactly one job, respectively. Constraint (4.7) is the
flow shop constraint: it requires that �iC1;k is scheduled after achieving �ik and
processing operation Oik on Mi. Constraint (4.8) is the blocking constraint: �i�1;k
is scheduled after �i;k�1. Constraint (4.9) enforces that each robot operation (but,
�01) has exactly one successor. Similarly, Constraint (4.10) requires that each
robot operation (but, �mn) has exactly one predecessor. Constraints (4.11)–(4.14)
ensure that the precedence constraints between particular robot operations must
be satisfied. Constraint (4.15) requires that the total acceleration costs should
not exceed the preset budget and (4.16) sets the upper and lower bounds for
the processing times. Finally, (4.17)–(4.19) imposes that the time variables are
continuous and the x- and y-variables are binary, respectively.

For more details about the mixed-integer nonlinear program (MINLP) and its
linearization, we refer the reader to Al-Salem et al. (2015).

4.2.2 Literature Review

The RCPCPT arises in FMSs, which are highly automated production systems
capable of producing a wide variety of job types. In fact, one of the most crucial
operational problems in FMSs is the development of effective schedules considering
jobs, machines, and transportation devices in order to provide a proper coordination
of the production sequencing and time allocation of all required resources. During
the last decades, the rapid development of robotic cells in various manufacturing
industrial setting has prompted the investigation of an ever growing number of new
scheduling problems. We refer to the comprehensive book of Dawande et al. (2007)
for a review of sequencing and scheduling problems arising in robotic cells.

However, at this point it is worth emphasizing that the great majority of
previously investigated robotic cell scheduling problems deal with cyclic scheduling
problems with constant processing times and machines producing a family of similar
parts, in a steady-state. Nevertheless, few recent papers addressed a non-cyclic
multiple-part-type RCP (with constant processing times). Indeed, Carlier et al.
(2010) proposed an approximate decomposition algorithm to the RCP. The proposed
approach decomposes the problem into two scheduling problems: a flow shop
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problem with blocking and transportation times and a single-machine problem (that
corresponds to the robot sequencing) with precedence constraints, time lags, and
setup times. Each of these two problems is solved using an exact branch-and-bound
algorithm. Furthermore, Kharbeche et al. (2011) proposed an exact branch-and-
bound algorithm approach for the same problem and found that instances with up to
16 jobs and 5 machines can be optimally solved.

To the best of our knowledge, and despite its practical relevance to FMSs,
the literature on the RCPCPT is void. However, we observe that during the last
decade the topic of scheduling with controllable processing times has been drawing
the attention of an ever growing number of researchers. In particular, most of
the papers so far published deal with one-machine scheduling problems, and to a
lesser extent with parallel machines, flow-shop, and job-shop problem. We refer
to Shabtay and Steiner (2007) for a comprehensive review of these scheduling
models. In addition to the numerous references quoted in this review paper, some
further contributions in this area have been recently published. We quote Koulamas
et al. (2010) who presented a unified analysis for a very general single-machine
scheduling problem with controllable processing times. Also, Xu et al. (2010) a
single-machine scheduling problem with release dates, due dates are arbitrary, and
where the processing times can be controlled by allocating a common resource to
each job through a nonlinear convex resource consumption function. The objective
is to obtain a schedule and resource allocation, such that no job is tardy and the
total resource consumption is minimized. The authors solved this problem using a
tabu search algorithm. Finally, Akturk and Ilhan (2011) addressed a CNC machine
scheduling with controllable processing times. In this case, processing times of the
jobs on a CNC machine are controlled via machining conditions such that they can
be increased or decreased at the expense of tooling cost. The authors addressed the
problem of scheduling a set of jobs on a single CNC machine to minimize the sum of
total weighted tardiness, tooling, and machining costs. They formulated the problem
as nonlinear mixed-integer program and solved it using a heuristic approach.

In the sequel, a free-slack-based genetic algorithm is proposed for the problem
under consideration. Then, a computational study is carried out to compare the
performance of the new procedure against the MIP-based genetic algorithm by Al-
Salem et al. (2015). This latter encompasses several novel features including, an
original solution encoding as well as a mutation operator that requires iteratively
solving mixed-integer formulations. We refer reader to the recent technical report
by Al-Salem et al. (2015).

4.3 Free-Slack-Based Genetic Algorithm

In this section, we propose a free-slack-based genetic algorithm. The general
framework of the algorithm includes four main steps. First, we start with an initial
generation of processing times then, given the fixed processing times we find
the sequence of jobs for the RCP yielding a near-optimal makespan. Given this
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sequence, we improve its makespan by elongating the processing times of non-
critical operations and accelerating the critical ones. Finally, the optimal robot
moves are determined for the problem with the fixed sequence and the new updated
processing times. An overview of the main steps is as follows:

• Step 1: Generation of initial processing times
• Step 2: Approximate solution of the Robotic Cell Problem RCP (with fixed pro-

cessing times) using a genetic algorithm to compute a near-optimal sequencing
of the machines and the robot.

• Step 3: Update of the processing times based on the free-slack procedure
• Step 4: Find the optimal robot moves

In the sequel, we provide detailed description of each step of this algorithm.

4.3.1 Initial Processing Times Generation

In the first step, we generate an initial m � n matrix of processing times P D .pij/

with three different generation approaches: a deterministic method, a completely
randomized method and a mixed-method (hereafter, referred by one by one method).
All these generation methods are based on the compression rates aij. The aim of
these generations is to diversify the initial solution, and meanwhile, begin with a
good one.

Next, we describe the initial generation algorithms.

4.3.1.1 Deterministic Generation Method

A key element of this first approach is to sort the operations Oij by the non-
decreasing order of aij . We set the maximum (non-compressed) processing times
pij to pmax

ij . Starting from the operation with the highest rate to the operation with
the lowest one, we increase each cost cij by one unit.

As given by Eq. (4.2), the corresponding processing time decreases by aij. The
procedure is iterated until the preset budget B is fully consumed. The procedure is
detailed in Algorithm 1.

4.3.1.2 Random Generation

This approach follows the same logic as the deterministic procedure. First, we start
by sorting the list of operations according to the non-increasing order of aij. Then,
we randomly select q operations from the list and then we choose the operation with
the highest aij among them to update. The procedure is illustrated by Algorithm 2.
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Algorithm 1 Generation of initial processing times: deterministic procedure
S (List of all operations Oij)

Sort the list S according to non-increasing order of aij

Initialization
Set pij  pmax

ij

Set NB B�Pm
iD1

Pn
jD1 cij ( NB: remaining budget)

do
for all elements of the list S do

Select an operation Oij

if pij � pmin
ij C aij then

pij  pij � aijNB NB� 1
end if

end for
while NB ¤ 0

Algorithm 2 Generation of initial processing times: stochastic procedure
S O (List of all operations Oij)

Sort the list S according to non-increasing order of aij

Initialization
Set pij  pmax

ij

Set NB B�Pm
iD1

Pn
jD1 cij ( NB: remaining budget)

do
Randomly select q operations from S (if jSj < q then select all operations in S/
Select (among the q operations) Oij that has the largest aij

if pij � pmin
ij C aij then

pij  pij � aijNB NB� 1
end if
if pij D pmin

ij then
S S n fOijg

end if
while NB ¤ 0 or S ¤ ;

4.3.1.3 One by One Generation Method

This approach combines both the stochastic and the deterministic approaches. First,
we sort the operations according to their compression rates aij. Then, at each time,
we update the processing time of one operation selected from the sorted list and
another one randomly selected until the preset budget is fully used. Algorithm 3
gives more details about this generation method.
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Algorithm 3 Generation of initial processing times: one by one procedure
S O (List of all operations Oij)

Sort the list S according to non-increasing order of aij

Initialization
Setpij  pmax

ij

Set NB B�Pm
iD1

Pn
jD1 cij ( NB: remaining budget)

do
for all elements of the list do

select an operation Oij

if pij � pmin
ij C aij then

pij  pij � aijNB NB� 1
end if
Randomly draw a position i
Select the operation Oij at position i in the list
if pij � pmin

ij C aij then
pij  pij � aijNB NB� 1

end if
end for

while NB ¤ 0

4.3.2 Approximate Solution of the RCP (with Fixed
Processing Times)

Given the initial processing times obtained from the generation methods, we use
a genetic algorithm of Carlier et al. (2010) to approximately find a good sequence
of jobs. Let Cnew

max be the approximate makespan obtained by the genetic algorithm.
If Cnew

max is better than the best makespan Cbest
max, we improve the solution under this

sequence through the free slacks identification process. If not, we go to the next
iteration to generate another chromosome.

4.3.3 Update of the Processing Times

In this step, we identify the set C of critical operations and the set F of non-
critical operations having free slacks strictly larger than 1. Clearly, if the processing
time of a non-critical operation Oij 2 F is elongated by one unit of time then the
makespan remains unchanged while the acceleration cost is reduced by aij. Hence,
if we elongate the processing times of operations belonging to F, we reduce the total
acceleration cost and, therefore, we save the unused budget. Furthermore, since the
critical operations have an impact on the makespan Cmax, then it is possible to reduce
the makespan by accelerating some critical operations using the collected budget.

We define ıij as the free-slack that corresponds to all operation Oij. If ıij D 0, the
operation Oij is a critical operation.
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Algorithm 4 Update of the processing times of critical operations
S C (List of all critical operations)

Sort the list S according to non-increasing order of aij

B QB
do

for all elements of the list S do
if pij � pmin

ij C aij then
pij  pij � aij

QB QB� 1
end if

end for
while QB ¤ 0

To update the processing time, the following steps are used:

4.3.3.1 Elongate the Processing Times

For each operation Oij belonging to F, we elongate the processing time using:

• A deterministic method: set pij  aij=2

• A randomly elongation method: set pij  pij C rand.1; ıij � 1/
Let QB be the collected budget. This budget is equal to the difference between the

preset budget B and the total new costs of Oij after elongation.

4.3.3.2 Update of the Critical Operations

In this step, the collected budget is divided over the critical operations where these
operations are sorted according to the non-increasing order of aij. In fact, the jobs
with highest rates would have the priority to be accelerated. The critical tasks are
updated using the Algorithm 4 described below.

4.3.4 Find the Optimal Robot Moves

Given the fixed sequence of jobs and the new processing times, we solve the robot
moves scheduling problem. First, we approximately compute the robot moves using
a list algorithm that is described in Kharbeche et al. (2011). If the makespan CR

max
is not improved then we invoke the exact optimization model (Kharbeche et al.
2011). In case of makespan improvement, we identify again the new critical and
non-critical operations and we solve the robot moves problem.
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4.3.5 Gant Chart of the Algorithm

The algorithm is illustrated in Fig. 4.1.

Cbest
max = ∞

Generate initial processing times

Solve RCP Cnew
max ≤ Cbest

max

Compute free slacks

Elongate Oi, j ∈ F

Accelerate Oi, j ∈ C

Optimize robot moves

CR
max ≤ Cbest

max

Stop
Yes

No

Yes

No

Fig. 4.1 The free-slack-based genetic algorithm
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4.4 Computational Study

In this section, we evaluate the performance of this new algorithm against the MIP-
based genetic algorithm by Al-Salem et al. (2015). We have coded both genetic
algorithms in Microsoft Visual C++ (2010). Also, we used the commercial solver
CPLEX 12.6 to solve the proposed MIP formulation and its LP relaxation. All our
experiments were run on a Pentium IV 2.4 GHz PC.

The test-bed we have used consists of a large set of randomly generated RCPCPT
instances. The number of machines m considered are 3, 4, and 5. For each size, the
number of jobs n is taken equal to 10, 12, 14, 16, 18, 20, 30, 40, and 50 jobs. For each
combination .m � n/, ten instances are generated. The transportation time between
a pair of machines Mi and Mk is 2 ji � kj (i; k D 0; : : : ;m C 1/. The compression
rates and the acceleration cost are integers chosen randomly from the interval Œ1; 10�,
Œ1; 5�, respectively. The controllable processing times are generated as follows. For
each operation Oij (i D 1; : : : ;m; j 2 J/, the non-compressed processing time pmax

ij
are drawn from the discrete uniform distributions on Œ60; 100� and the compressed
processing time pmin

ij D pmax
ij � aijcij, respectively . Finally, for each instance, the

budget was set to B D
l
0:5

Pm
iD1

P
j2J cij

m
.

We performed a set of experiments: We solved all small-sized instances (n D
10; : : : ; 20) using the MILP formulation after setting the maximum time limit to
3600 s. Then, for each genetic algorithm approach, we computed the mean gap of the
ten instances and compared it to the optimal solutions (or the best obtained solution)
and with the MIP-based lower bound that is computed after solving a relaxation of
the model developed by Al-Salem et al. (2015).

For the free-slack-based genetic algorithm, we set the number of iterations
to 10. The initial processing times were generated using the deterministic approach
(iteration 1), one by one approach (iterations 2 and 3) and, finally, stochastic
approach in the remaining iterations. We applied the stochastic elongation method
since this method provided better results.

In order to conduct an efficient comparison with the proposed approach, the MIP-
based genetic algorithm was solved under the parameters setting that yields the best
performance:

• Population size: 30
• Number of generations: 30
• Maximum number of consecutive generations without improvement before

stopping: 5
• Crossover rate: 0.7
• Mutation rate: 0.1

For the RCP genetic algorithm of Kharbeche et al. (2011), we used the following
parameter settings:

• Population size: 100
• Number of generations: 100
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Table 4.1 Performance of
MILP model

MILP model

m n Time OPT (%)

3 10 2:92 100

12 17:45 100

14 257:08 100

16 1505:62 80

18 3600 0

20 3600 0

4 10 6:46 100

12 37:14 100

14 428:42 100

16 2391:64 60

18 3600 0

20 3600 0

5 10 14:24 100

12 100:21 100

14 1089:18 80

16 3137:72 30

18 3600 0

20 3600 0

• Maximum number of consecutive generations without improvement before
stopping: 20

• Crossover rate: 0.9
• Mutation rate: 0.1

Table 4.1 illustrates the average CPU times for the small-sized instances as
well as the percentage of optimal solutions obtained by solving the exact MILP
formulation within a CPU time limit of 1 h. Obviously, the exact formulation cannot
solve instances beyond 18 jobs.

Table 4.2 reports the CPU time and the average deviations (in %) of small
instances against the optimal solutions (we consider only the instances that
were optimally solved). We define the deviation from the optimal solution as
GAP:OPT D UB�OPT

OPT as the mean gaps of each combination (m� n) compared with
the optimal solution where UB is the obtained solution value by the algorithm and
OPT is the optimal solution.

By inspecting Table 4.2, we see that the free-slack-based heuristic outperforms
the MIP GA which yields an average deviation of 2.130 % and 1.372 % against
2.195 % and 1.512 % for .3 � 10/ and .5 � 10/, respectively. However, the MIP
GA provides better average deviations for the remaining configurations. The gap
increases as the number of jobs increases: 3.035 % , 3.060 %, and 2.691 % against
1.899 %, 1.678 %, and 2.490 % for .3 � 16/, .4 � 16/, and .5 � 16/, respectively.
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Table 4.2 The average
deviation of the proposed
heuristics against to optimal
solution

m n GAP:OPTMIP GA (%) GAP:OPTFree�slack GA (%)

3 10 2.130 2.195

12 2.083 1.437

14 2.600 1.927

16 3.035 1.899

18 – –

20 – –

4 10 1.984 1.574

12 2.003 2.122

14 3.250 2.126

16 3.060 1.678

18 – –

20 – –

5 10 1.372 1.512

12 2.063 1.936

14 1.985 2.393

16 2.691 2.490

18 – –

20 – –

The computational times of all instances are displayed in Table 4.3. Clearly,
the results show that the free-slack-based algorithm outperforms the MIP-based
genetic algorithm for both small and large size instances in terms of CPU times.
From Table 4.3, we notice that the computational time required by this heuristic is
significantly smaller. In fact, the mean computational times for 3, 4, and 5machines
instances are equal to 12:61, 21:10, and 37:20 s for the MIP-based heuristic against
3:27, 5:39, and 15:82 s for the free-slack-based genetic algorithm.

In Table 4.4, we report the gaps provided by each heuristic compared to the
MIP-based lower bound by Al-Salem et al. (2015) for all sizes. The results show a
strong evidence of the performance of the proposed procedure. For large sizes, the
difference in gaps increases such that for three machines, the average gap is equal
to 7.78 %, 8.53 %, and 8.30 % versus 4.45 %, 5.01 %, and 5.18 % for 30, 40, and
50 jobs, respectively. It is worthwhile to observe that although the free-slack GA
yielded large deviations for five machines of 7.24, 8.32, and 8.38 %, it still gives
better results than the MIP-based GA which resulted a gap of 11.39 %, 11.99 %,
and 11.55 % for 30, 40, and 50 jobs, respectively. All data and solutions for all
instances are available at www.SchedulingResearch.com.

www.SchedulingResearch.com
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Table 4.3 CPU times of the
genetic algorithms

m n MIP GA (s) Free-slack GA (s)

3 10 3.5535 0.9772

12 3.4055 1.3365

14 5.0901 1.4279

16 7.0677 1.9423

18 8.1998 2.2263

20 8.8584 2.4478

30 20.7665 4.0856

40 25.0702 6.3721

50 31.548 8.6826

4 10 5.5975 1.3785

12 8.2375 2.1676

14 9.8908 2.8501

16 15.9007 3.1022

18 20.2697 3.7577

20 22.0834 4.6646

30 28.6515 7.5165

40 39.5463 9.968

50 39.7466 13.1611

5 10 11.244 2.8828

12 18.6268 4.6837

14 19.8786 5.6156

16 25.9176 6.3623

18 21.85 6.9095

20 29.7981 7.196

30 32.0577 12.3572

40 71.4943 29.4042

50 103.9706 66.9796

4.5 Conclusion

In this chapter, we presented a new free-slack-based genetic algorithm for the
RCPCPT. The new approach consists of generating an initial solutions (a set of
fixed processing times) then, improve the solution by finding the best sequence
of jobs (through an RCP genetic algorithm). Under this sequence, we update
the processing times (by elongating the extensible operations and by dividing the
earned budget to accelerate the critical ones). The computational study showed
the good performance of the proposed heuristic compared to the MIP-based genetic
algorithm. The experiments were carried out on randomly generated instances with
small and large sizes. For 180 small size instances, The free-slack-based genetic
algorithm obtained better solutions than the MIP-based one in 65 % of instances
and the latter exhibited better performance in 35 % of the instances. Furthermore,
for large sizes (30, 40, and 50), the free-slack approach became the most practical
for the 100 % of instances.



92 M. Al-Salem et al.

Table 4.4 The mean gaps
compared to the MIP-based
lower bound

m n GAP:LBMIP GA (%) GAP:LBFree�slack GA (%)

3 10 4.35 4.41

12 4.13 3.46

14 4.78 4.09

16 5.00 3.68

18 5.27 4.32

20 5.63 4.14

30 7.78 4.45

40 8.53 5.01

50 8.30 5.18

4 10 4.95 4.53

12 4.77 4.89

14 6.36 5.20

16 5.54 5.21

18 5.99 5.16

20 6.20 5.75

30 9.16 5.81

40 10.45 6.44

50 10.05 6.91

5 10 4.63 4.78

12 5.85 5.73

14 5.68 6.12

16 5.86 5.74

18 7.93 6.58

20 7.50 6.18

30 11.39 7.24

40 11.99 8.32

50 11.55 8.38
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Chapter 5
Metaheuristic for Randomized Priority Search
(Meta-RaPS): A Tutorial

Reinaldo J. Moraga

Abstract This chapter presents a metaheuristic named Meta-Heuristic for
Randomized Priority Search (Meta-RaPS), which has been applied to different
problems in literature. It mainly explains the overall framework by using an example
so the reader can understand how the meta-heuristic works. We at the end identify
some future opportunities for research.

Keywords Priority rules • Metaheuristics • Meta-RaPS • Scheduling

5.1 Introduction

Operations research techniques can be utilized to model many practical problems
in different industries. Such problems can be formulated as the optimization of a
particular decision criterion, expressed as an objective function of some decision
variables, restricted by a set of constraints. When the decision variables are discrete,
the problem of finding optimal solutions is known as combinatorial optimization.
Real-world practice is plenty of examples of combinatorial optimization problems,
e.g., the constrained project scheduling problem, the assembly line balancing
problem, the vehicle routing and scheduling problem, the facility location problem,
the facility layout design problem, the job sequencing and machine scheduling
problem, the manpower planning problem, production planning and distribution,
and many others. Most of these combinatorial optimization problems are NP-
complete, which means that it is unlikely for a polynomial time algorithm that solves
such problems optimally to exist.

While the goal of some combinatorial optimization research is to find an
algorithm that guarantees an optimal solution in polynomial time as a function
of problem size, the main interest in practice is to find a near-optimal or good
quality solution in a reasonable amount of time. Numerous approaches to solve
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combinatorial optimization problems have been proposed, varying from brute-
force enumeration through highly esoteric optimization methods. The majority of
these methods can be broadly classified as either “exact” algorithms or “heuristic”
algorithms. Exact algorithms are those that yield an optimal solution such as the
well-known Branch-and-Bound method. The size of practical problems frequently
precludes the application of exact methods and thus heuristic algorithms are often
used for real-time solution of combinatorial optimization problems.

Heuristic algorithms have, in theory, the chance to find an optimal solution. But,
finding the optimal solution can become a remote event because heuristics often get
stuck in a local optimal solution. Metaheuristics or modern heuristics deal with this
problem by introducing systematic rules to move out of or avoid a local minimum.
The common characteristic of these metaheuristics is the use of some mechanisms to
escape local optima. Classical and new metaheuristics such as Genetic Algorithms
(GA), Simulated Annealing (SA), Tabu Search (TS), Artificial Neural Networks
(ANN), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and
Randomized Search heuristics succeed in leaving the local optimum by temporarily
accepting moves which cause a worsening of the objective function value.

Within the randomized search approaches, the Metaheuristic for Randomized
Priority Search (Meta-RaPS) and the Greedy Randomized Adaptive Search Proce-
dure (GRASP, developed by Feo and Resende 1989) are two generic, high-level,
search procedures that introduce randomness to a construction heuristic as a device
to avoid getting trapped at a local optimal solution. Meta-RaPS can be thought as a
more general and flexible form of GRASP. Since the author has contributed to the
development of the former approach, next sections of this book chapter will focus
on Meta-RaPS.

5.2 Meta-RaPS Overview

Meta-RaPS can be described as a generic, high-level strategy used to construct and
improve feasible solutions through the utilization of simple heuristic rules used in
a randomized fashion. Meta-RaPS was formally introduced by Moraga (2002), but
it is based on results of a research conducted by DePuy and Whitehouse (2001)
on the application of a modified version of the Computer Method of Sequencing
Operations for Assembly Lines (COMSOAL) approach that was developed by
Arcus (1966). Meta-RaPS can be thought as a general form of COMSOAL as well as
a general form of GRASP, which constructs solutions by introducing randomness to
a greedy construction heuristic through the use of a restriction percentage parameter,
similar to Meta-RaPS, but it does not give any probabilistic priority to the best
alternative considered by the greedy construction heuristic.

Meta-RaPS offers greater flexibility over COMSOAL and GRASP in that it
allows user-defined settings of three parameters to provide more efficiency. DePuy
et al. (2005) show that the extra flexibility of Meta-RaPS seems beneficial by
demonstrating that the Meta-RaPS’ parameter settings used to find the best solutions
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for the traveling salesman problem (TSP) are different from those settings used to
imitate COMSOAL or GRASP. Additionally, Meta-RaPS is reported to have run
times not significantly affected by the size of the problem, it is easy to understand
and implement, and generate a feasible solution at every iteration.

Meta-RaPS is able to produce high quality solutions for combinatorial optimiza-
tion problems. Many articles in literature successfully report that fact. For example,
the Resource-Constrained Project Scheduling (DePuy and Whitehouse 2001), the
Vehicle Routing Problem (Moraga et al. 2001), the TSP (DePuy et al. 2005), the
0-1 Multidimensional Knapsack Problem (Moraga et al. 2005), the Set-Covering
Problem (Lan et al. 2007), the Unrelated Parallel Machine Scheduling Problem
(Rabadi et al. 2006; Arnaout et al. 2010) the Early/Tardy Single Machine Scheduling
Problem (Hepdogan et al. 2009), Parallel Multiple-Area Spatial Scheduling Problem
with Release Times (Garcia and Rabadi 2011), Aerial Refueling Scheduling
Problem (Kaplan et al. 2011), and Runway combined arrival-departure aircraft
sequencing problem (Hancerliogullari et al. 2013).

Some articles in literature also report the use of several features to improve Meta-
RaPS procedure. Lan and DePuy (2006) discuss the effectiveness of using memory
mechanism, showing promising results. Arin and Rabadi (2012a, b) use path
relinking and Q-learning mechanisms within Meta-RaPS framework for solving
the 0-1 multidimensional knapsack problem, obtaining very good results. Al-Duoli
and Rabadi (2013, 2014) proposed incorporating intelligence into Meta-RaPS via
data mining and machine learning techniques, specifically using Inductive Decision
Trees. With the incorporation of memory and learning features, not only can
Meta-RaPS improvement phase be enhanced, but the construction phase also. In
addition, a study on the incorporation of dynamic parameter setting methods within
Meta-RaPS has also been reported (Hepdogan et al. 2008) in an attempt to make
the approach less dependent on the initial off-line parameter setting efforts. The
methods tested are Reactive Search (RS), Ranking and Selection (R&S) and Non-
parametric based Genetic Algorithms (NPGA). Most of the previous articles report
on Meta-RaPS potential and the need of extending its applications to many other
areas.

In the following section, the Meta-RaPS framework will be demonstrated using
a simple example for a NP-hard problem.

5.3 Meta-RaPS Framework

Meta-RaPS algorithm attempts to balance the usage of both construction and
improvement heuristics to generate feasible solutions (S). It is important to note
that most of the other competing metaheuristics make an unbalanced usage of their
search time by privileging improvement heuristics at the expense of construction
heuristics. For example, standard TS, SA, or GA procedures randomly construct a
first solution, or an initial pool of solutions, and the rest of the search time is spent
using an improvement procedure.
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The execution of Meta-RaPS is controlled by using four parameters: the number
of iterations (I), the priority percentage (p), the restriction percentage (r), and
the improvement percentage (i). The number of constructed feasible solutions is
determined by the number of iterations. In general, a construction heuristic builds a
solution by systematically adding feasible items to the current solution. The item
with the best priority value is added to the current solution. With both p and r
parameters, Meta-RaPS modifies the way a general construction heuristic chooses
the next item to add to the solution by occasionally choosing a job that does not
have the best priority value. In addition, a solution improvement algorithm can
be included in Meta-RaPS by using the i parameter. Once a solution has been
constructed, Meta-RaPS may proceed to improve it further through neighborhood
search algorithms. The improvement heuristic is performed if the construction
phase’s solution value is below certain threshold ı, determined by i and the range
between both best and worst unimproved solution values found so far. Finally, the
best solution from all iterations is reported (S* and f (S*)).

In general, Meta-RaPS can be summarized using the following pseudo-code,
assuming a minimization problem (Fig. 5.1):

In the following sections a short tutorial will be provided on how to apply Meta-
RaPS framework to a particular scheduling problem.

I: number of iterations
p: priority percentage
r: restriction percentage
i: improvement percentage
S: current schedule
f (S): current objective function value
S*: best solution
f (S*): best objective function value
B: best constructed solution so far
W: worst constructed solution so far
δ: threshold on the objective function to accept current solution for improvement

1: Set I, p, r, i, S*=Æ, and f (S*)=INF; B=inf; W=-inf;
2: Repeat I times 
3: S = construction ( p, r);
4: Update (B, W );
5: If f (S) ≤ δ(i, B, W ),
6: S = local_search (S);
7: End
8: Update(S*, f (S*));
9: End

Fig. 5.1 Pseudo code for Meta-RaPS framework
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5.3.1 The Single Machine Total Weighted Tardiness Problem

In order to show how Meta-RaPS works, the scheduling problem of minimizing the
total weighted tardiness on a single machine will be used. The single machine total

weighted tardiness problem, 1 jj
Xn

.jD1/wjTj, may be described as a set of n jobs to

be processed without preemption on a single machine that can process only one job
at a time. To simplify the problem, it is assumed that all jobs are available at time
zero. Job j has a processing time pj, a due date dj and has a positive weight wj. In
addition, a weighted tardiness penalty is incurred for each time unit of tardiness Tj a
job j is completed after its due date dj. Therefore the problem can be formally sated

as: find a schedule S that minimizes the objective function f .S/ D
Xn

jD1wjTj.

Consider the following data instance proposed by Pinedo (2012) in exercise 3.10,
pg. 64, for a single machine and seven jobs. Numerical values for processing times,
weights, and due dates are given in Table 5.1.

Two main steps are necessary to successfully apply Meta-RaPS, and these are to
design effective construction and improvement heuristics. For the single machine
total weighted tardiness problem, a very simple and well-known construction
heuristic will be used in order to demonstrate how a simple heuristic evolves into an
effective one with the collaboration of Meta-RaPS mechanisms.

5.3.2 Heuristics for the 1jj
Xn

jD1
wjTj Problem

The problem used as an example in this book chapter has been extensively

studied. Lawler (1977) shows that the 1jj
Xn

jD1wjTj problem is strongly NP-

hard. Thus, various heuristic methods can be found in literature to obtain good
solutions. In general, all these methods can be broadly classified as construction
and improvement heuristics.

5.3.2.1 Construction Heuristic

There are some classical commonly used heuristic rules for the 1jj
Xn

jD1wjTj

problem. For instance, some of these rules are: Cost Over Time (COVERT), Largest
Penalty per Unit Length (LPUL), Shortest Weighted Processing Time (WSPT),

Table 5.1 Data for
numerical example

j 1 2 3 4 5 6 7

pj 6 18 12 10 10 17 16
wj 1 5 2 4 1 4 2
dj 8 42 44 24 90 85 68
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S: current schedule
f (S ): current objective function value
J a: set of unscheduled jobs
j*: job with minimum due date
dj: due date of job j
k: position in schedule S

1: Set S=Æ, J a={1,..., n} and k =1. 
2: Let j* denote the job that satisfies )(min* j

Jj
j dd

aÎ
= , ties are broken arbitrarily.

3: Assign job j* to S in position k and delete j* from J a.
4: If J a=Æ, then STOP, report S and f (S); otherwise set k=k+1 and go to line 2.

Fig. 5.2 Pseudo code for Earliest Due Date rule

and Critical Ratio (CR)—see Sule (2007) for a detailed explanation of them. The
simplest one for this problem found in literature is the Earliest Due Date (EDD) rule,
which prioritizes jobs according to their due date. Out of the pool of unscheduled
jobs, the one with the earliest due date is scheduled first. The EDD rule is described
in Fig. 5.2.

5.3.2.2 Improvement Heuristic

A well-known local search technique to improve constructed solutions in scheduling
problems is the Adjacent Pairwise Interchange (API). Given the original constructed
schedule S, where job i starts its processing at time t followed by job j, the API
procedure consists of forming a new schedule S00 where job j starts at time t and is
followed by i. All other jobs remind in their original position. The total weighted
tardiness of jobs processed before and after jobs i and j is not affected by the
interchange. The difference in the values of the total weighted tardiness under
schedules S and S00 is only due to jobs i and j. The API procedure is described
in Fig. 5.3.

Meta-RaPS will use both EDD and API at each iteration, attempting to balance
the use of both while searching for a good solution.

5.3.3 Meta-RaPS Application

During the construction phase, Meta-RaPS uses the EDD rule as its basic procedure.
However, while adding jobs to the solution, the p parameter is used to determine the
percentage of time the next job added to the solution has the best priority value
(dj*) as in line 2. The remaining time (1� p/100), the next job added to the solution
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S: current schedule
f (S ): current objective function value
S’: auxiliary schedule
s: position in schedule S and S’
n: number of jobs

5: Set S’=S and s=1. 
6: While s < n, 
7: Get jobs i and j in S from positions s and s+1, respectively.
8:             Place jobs j and i in S’ at positions s and s+1, respectively.

10: s=s+1.
11: End
12: Report S and f(S ).

9:             If f (S’ ) ≤ f (S ); S=S’.

Fig. 5.3 Pseudo code for Adjacent Pairwise Interchange rule

2’: Generate a random number rnd between 0 and 1. 
If  rnd ≤ p,
Then, j*is the job that satisfies )(min* j

Jj
j dd

aÎ
= , ties are broken arbitrarily.

Else, take j* randomly from the set of all jÎJ a that satisfy
dj ≤ α +(b - α)r, where )(max),(min j

Jj
j

Jj
dd

aa ÎÎ
== ba

End

Fig. 5.4 Pseudo code for EDD modified by Meta-RaPS

is randomly chosen from those unscheduled jobs whose dj values are within an r
percentage out of the range of due dates above the dj* value, which further modifies
line 2. All the other lines remain the same. Therefore, line 2 becomes line 20 as
shown in Fig. 5.4:

The rationale in line 20 takes advantage of two experimental findings. First, if
some degree of randomness is introduced into a particular heuristic (or priority rule),
by using r, the corresponding results improve dramatically. Second, if two heuristics
are randomly combined, by using p, the solution obtained usually outperforms the
solution of either heuristic individually (DePuy et al. 2005).

Once a schedule S has been constructed, the i parameter is used to decide whether
S will go through the improvement phase or not. In order to accomplish this, while
Meta-RaPS is being executed, it keeps track of the best (B) and worst (W) total
weighted tardiness values of schedules constructed in order to calculate a threshold,
ı(i)DBC(W�B)i/100. If f (S)� ı(i), then S goes through the improvement stage.
The underlying rationale for this strategy is the expectation that good unimproved
solutions lead to better neighboring solutions. The improvement phase in this case
consists of the API procedure described previously.

The Meta-RaPS algorithm for the single machine total weighted tardiness
problem is the following (Fig. 5.5):
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t: counter of the number of iterations
rnd: random number between 0 and 1
S”: auxiliary schedule
α: minimum due date out of all unscheduled jobs, )(min j

Jj
d

aÎ
=a

β:maximum due date out of all unscheduled jobs, )(max j
Jj

d
aÎ

=b

1: Set parameters I, p, r, and i; S*=Æ, f (S*)=inf; B=inf; W=-inf;
2: For t = 1 to I,
3: Set S=Æ, J a={1,..., n} and k =1;
4: Generate a random number rnd;
5: If  rnd ≤ p/100,
6: Then, j*is the job that satisfies )(min* j

Jj
j dd

aÎ
= ; ties are broken arbitrarily.

7: Else, take j* randomly from the set of all jÎJa that satisfy dj ≤ α +(b - α)r/100;
8: End
9: Assign job j* to S in position k, set k=k+1 and delete j* from J a;
10: If J a=Æ, Then go to line 11, Else go to line 4; End
11: Update (B); Update(W);
12: If f (S) ≤ B+(W-B)i/100,
13: s=1;
14: While s < n, 
15: Set S”=S;
16: Get jobs i and j in S from positions s and s+1, respectively;
17: Place jobs j and i in S’ at positions s and s+1, respectively;
18: If f(S”) ≤ f (S ), S’=S”;
19: s=s+1.
20: End
21: Set S=S’;
22: End
23: Update (S*, f (S*));
24: End
25: Report S* and f (S*);

Fig. 5.5 Pseudo code for solving the single machine total weighted tardiness problem with
Meta-RaPS

5.3.4 Numerical Example

In this section the data from Table 5.1 will be used to show the calculations for the
first iteration only.

In line 1, the values for Meta-RaPS are assumed.

1: ID 5, pD 20, rD 50, iD 90; S*D¿, f (S*)D inf, BD inf, WD -inf
2: For iteration, ID 1:
3: Set SD¿, JaDf1, 2, 3, 4, 5, 6, 7g and kD 1;
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From lines 4 to 10, the first job to be schedule is selected. These lines are repeated
for n times until all jobs are assigned to the schedule.

4: Generate a random number, rndD 0.56;
5: Since rnd is greater than 20/100, go to line 7.
7: Therefore, out of all jobs that belong to Ja and whose due dates satisfy

the condition dj� 8C (90� 8)50/100D 49, job 2 is randomly selected. Go to
line 9.

9: Assign job 2 to S in position 1, set kD 2 and delete job 2 from Ja; so, SDf1g,
JaDf1,3,4,5,6,7g.

10: Since Ja¤¿, go to line 4.
4: Generate a random number, rndD 0.17;
5: Since rnd < 20/100, go to line 6.
6: Select Job 1 since it has the minimum due date value out of all jobs in Ja. Go to

line 9.
9: Assign job 1 to S in position 2, set kD 3 and delete job 1 from Ja; so, SDf2,1g,

JaDf3,4,5,6,7g.
10: Since Ja¤¿, go to line 4.

4: Generate a random number, rndD 0.79;
5: Since rnd� 20/100, go to line 7.
7: Job 3 is randomly picked out of all j2Ja whose due dates satisfy

dj� 24C (90� 24)50/100D 57. Go to line 9.
9: Assign job 3 to S in position 3, set kD 4 and delete job 3 from Ja; so, SDf2,1,3g,

JaDf4,5,6,7g.
10: Since Ja¤¿, go to line 4.

4: Generate a random number, rndD 0.48;
5: Since rnd� 20/100, go to line 7.
7: Job 4 is the only j2Ja whose due date satisfy dj� 24C (90� 24)50/100D 57.

Go to line 9.
9: Assign job 4 to S in position 4, set kD 5 and delete job 4 from Ja; so,

SDf2,1,3,4g, JaDf5,6,7g.
10: Since Ja¤¿, go to line 4.

4: Generate a random number, rndD 0.16;
5: Since rnd < 20/100, go to line 6.
6: Select Job 7 since it has the minimum due date value out of all jobs in Ja. Go to

line 9.
9: Assign job 7 to S in position 5, set kD 6 and delete job 7 from Ja; so,

SDf2,1,3,4,7g, JaDf5,6g.
10: Since Ja¤¿, go to line 4.

4: Generate a random number, rndD 0.40;
5: Since rnd� 20/100, go to line 7.
7: Job 6 is randomly picked out of all j2Ja whose due dates satisfy

dj� 85C (90� 85)50/100D 87.5. Go to line 9.
9: Assign job 6 to S in position 6, set kD 7 and delete job 6 from Ja; so,

SDf2,1,3,4,7,6g, JaDf5g.
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10: Since Ja¤¿, go to line 4.
4: Generate a random number, rndD 0.42;
5: Since rnd� 20/100, go to line 7.
7: Job 5 is the only remaining job j2Ja. Go to line 9.
9: Assign job 5 to S in position 7, set kD 8 and delete job 5 from Ja; so,

SDf2,1,3,4,7,6,5g, JaD¿.
10: Since JaD¿, go to line 11.

Meta-RaPS constructed the first schedule S by assigning all jobs. In line 11, Best
and Worst unimproved solutions are updated.

11: Since f (S)D 104 < B, BD 104; Since f (S)D 104 > W, WD 104.

Using the values of B and W, Meta-RaPS evaluates in line 12 whether the current
constructed solution will go through the improvement phase.

12: If f (S)� 104C (104-104)90/100D 104, the solution goes through improvement.
13: sD 1.

Lines 14–19 are repeated six times (n� 1) until all the API moves are performed.
At each move, the original constructed schedule is used and the best solution
reported at the end.

14: While sD 1 < 7,
15: Set S

0 D S;
16: Get jobs 2 and 1 in S from positions 1 and 2, respectively;
17: Put jobs 1 and 2 in S00 at positions 1 and 2, respectively; S00Df1,2,3,4,7,6,5g.
18: Since f (S00)D 88 < f (S)D 104, S0D S00Df1,2,3,4,7,6,5g;
19: sD 2; go to line 14.
14: While sD 2 < 7,
15: Set S00D S;
16: Get jobs 1 and 3 in S from positions 2 and 3, respectively;
17: Put jobs 3 and 1 in S00 at positions 2 and 3, respectively; S00Df2,3,1,4,7,6,5g.
18: Since f (S00)D 116 > f (S)D 104;
19: sD 3; go to line 14.
14: While sD 3 < 7,
15: Set S00D S;
16: Get jobs 3 and 4 in S from positions 3 and 4, respectively;
17: Put jobs 4 and 3 in S00 at positions 3 and 4, respectively; S00Df2,1,4,3,7,6,5g.
18: Since f (S00)D 60 < f (S)D 104; S0D S00Df 2,1,4,3,7,6,5g;
19: sD 4; go to line 14.
14: While sD 4 < 7,
15: Set S00D S;
16: Get jobs 4 and 7 in S from positions 4 and 5, respectively;
17: Put jobs 7 and 4 in S00 at positions 4 and 5, respectively; S00Df2,1,3,7,4,6,5g.
18: Since f (S00)D 168 > f (S)D 104;
19: sD 5; go to line 14.
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14: While sD 5 < 7,
15: Set S00D S;
16: Get jobs 7 and 6 in S from positions 5 and 6, respectively;
17: Put jobs 6 and 7 in S00 at positions 5 and 6, respectively; S00Df2,1,3,4,6,7,5g.
18: Since f (S00)D 126 > f (S)D 104;
19: sD 6; go to line 14.
14: While sD 6 < 7,
15: Set S00D S;
16: Get jobs 6 and 5 in S from positions 6 and 7, respectively;
17: Put jobs 5 and 6 in S00 at positions 6 and 7, respectively; S00Df2,1,3,4,7,5,6g.
18: Since f (S00)D 120 > f (S)D 104;
19: sD 7; go to line 21.

Line 21 updates the schedule S with that obtained from the API procedure. Line
23 updates the best solution obtained so far.

21: Set SD S0Df 2,1,4,3,7,6,5g; go to line 23.
23: If f (S) < f (S*), f (S*)D f (S), S*D S; go to line 2 to continue with next iteration.

Therefore, after the first iteration, the constructed solution is f2,1,3,4,7,6,5gwith
a total weighted tardiness of 104. Due to the fact that this solution goes through the
improvement phase, the improved schedule is f2,1,4,3,7,6,5g with a total weighted
tardiness of 60, which is also a solution obtained after the improvement updates the
best objective value and schedule. Table 5.2 shows the summary of the rest of the
iterations and the evolution of total weighted tardiness value is shown in Fig. 5.6.
The best solution found (S*) out of five iterations is f1,4,2,3,7,6,5g and the total
weighted tardiness value is 4.

In this example, values for p, r, and i were assumed, but do not necessarily
represent the best parameter setting. Therefore, additional steps should be made
in order to find the best parameter setting to run Meta-RaPS. For a good discussion
on different techniques, the reader is referred to Hepdogan et al. (2008).

Table 5.2 Summary of the iterations, I, using Meta-RaPS

Construction Improvement
I S f (S) B W ı(i) f (S)� ı(i)? S f (S) S* f (S*)
– – – inf -inf – – – – ¿ inf

1 f2,1,3,4,7,6,5g 104 104 104 104 Yes f2,1,4,3,7,6,5g 60 f2,1,4,3,7,6,5g 60
2 f1,3,4,2,7,6,5g 36 36 104 97.2 Yes f1,4,3,2,7,6,5g 20 f1,4,3,2,7,6,5g 20
3 f3,1,4,2,7,6,5g 46 36 104 97.2 Yes f1,3,4,2,7,6,5g 36 f1,4,3,2,7,6,5g 20
4 f4,1,2,3,7,6,5g 12 12 104 94.8 Yes f1,4,2,3,7,6,5g 4 f1,4,2,3,7,6,5g 4

5 f2,3,4,1,7,6,5g 102 12 104 94.8 No – – f1,4,2,3,7,6,5g 4
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Fig. 5.6 Evolution of the objective function value for ID 5

5.4 Conclusions and/or Remarks

As shown in the example of this book chapter, Meta-RaPS framework is very easy to
understand and to implement. Its procedure has already been successfully applied to
different NP-hard problems. This demonstrates that the inclusion of randomness in a
priority scheme performs significantly better than the priority rule itself. Meta-RaPS
produces near-optimal solutions. This is important because the ultimate goal of
practitioners is to have methods that produce near-optimal solutions in a reasonable
amount of time rather than guaranteeing optimal ones after a long computational
time.

However, it would be desirable to extend Meta-RaPS framework to another class
of problems, such as: multi-objective combinatorial optimization and large-scale
optimization problems. This would be important because most of the problems
found in real life belong to the category of large-scale optimization problems.
These problems normally involve a large number of continuous and/or discrete
variables. As a consequence of new algorithmic developments and of the increased
power of computers, a growing research community is being attracted by large-scale
optimization problems. Meta-RaPS application to this type of problems may shed
some light on its real advantages as well as on more precise generalization of the
approach as an all-purpose strategy.

The incorporation of memory and learning mechanisms would constitute a
vital enhancement for Meta-RaPS framework. It is important to remark that most
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of the modern metaheuristics use memory and learning mechanism during the
improvement phase. It would, however, be desirable to advance Meta-RaPS by
incorporating such mechanisms during the construction phase.
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Chapter 6
Performance of an Intensification Strategy
Based on Learning in a Metaheuristic:
Meta-RaPS with Path Relinking

Arif Arin and Ghaith Rabadi

Abstract Intensification and diversification in metaheuristics are two main strate-
gies to enhance the search process and solution quality. In Meta-RaPS (Meta-
heuristic for Randomized Priority Search), a recent memoryless metaheuristic,
intensification and diversification strategies are controlled only by the level of
randomness specified by its parameters. We introduce in this paper a Path Relinking
(PR) learning algorithm and integrate it into Meta-RaPS to intelligently enhance
its intensification capability by learning “good” attributes of the best solutions.
To evaluate its performance, the proposed Meta-RaPS PR is tested on the 0-1
Multidimensional Knapsack Problem (MKP). The results show that applying PR
as an intensification strategy in Meta-RaPS is very effective as it outperformed
other approaches used in the literature with this problem. The PR approach also
transformed the memoryless nature of Meta-RaPS into an “intelligent” algorithm.

Keywords Intensification • Path relinking • Meta-RaPS • Metaheuristics •
Knapsack problem

6.1 Introduction

Metaheuristics such as Genetic Algorithms (GA), Simulated Annealing (SA), Tabu
Search (TS), and Ant Colony Optimization (ACO) have generally shown to be
effective at solving difficult optimization problems due to their ability to guide
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the search out of local optima. Such algorithms are intelligent in the sense that
they store and learn from information related to the search history to reach high
quality solutions. Learning in metaheuristics is achieved mainly through storing
information in memory during the search and extracting it later to better guide
the search. Memory and learning in metaheuristics vary from one metaheuristic
to another (Arin and Rabadi 2012). While the tabu list represents memory in TS,
in most metaheuristics such as Evolutionary Algorithms (EA) and GA, the search
memory is limited to a population of solutions. In ACO, the pheromone matrix is
the main memory component to aid the search, whereas in Estimation Distribution
Algorithms (EDA), it is a probabilistic learning model that composes the search
memory.

Memorized data are not only raw input; they could be distribution information
that pertains to the solutions. This is emphasized by Dréo et al. (2007) who presented
the following Adaptive Learning Search (ALS) algorithm:

1. Initialize a sample.
2. Until stopping criteria are met, do:

(a) Sampling: either explicit, implicit, or direct;
(b) Learning: the algorithm extracts information from the sample;
(c) Diversification: the algorithm searches for new solutions;
(d) Intensification: the algorithm searches to improve the existing sample;
(e) Replacement: the algorithm replaces the previous sample with the new one.

As can be seen in ALS, intensification and diversification are two impor-
tant strategies for the memory and learning structure. According to Rochat and
Taillard (1995), “diversification drives the search to examine new regions, and
intensification focuses more intently on regions previously found to be good.”
Intensification strategies modify the algorithm to search promising regions more
thoroughly based on high quality solution features found during the search process
of the neighborhood of elite solutions, or by modifying choice rules to favor the
inclusion of attributes of these solutions. On the other hand, diversification strategies
encourage the algorithm to explore new regions and update its long-term memory
via specialized mechanisms. Local search often relies on diversification strategies to
reach better solutions and help prevent cycling of the search process, which makes
the algorithm more robust.

The main difficulty for the search in metaheuristics is balancing the intensifi-
cation and diversification strategies. The search process can prematurely converge
towards a local optimum unless the search process can be diversified by increasing
the number of moves or components that are labeled as undesirable. In Meta-
RaPS (Meta-heuristic for Randomized Priority Search), which has shown very
promising performance despite being classified as a memoryless metaheuristic,
intensification and diversification strategies are controlled by controlling the level
of randomness as there is no mechanism to memorize the information created
in the solution process, nor is there a mechanism to learn the structure of this
process in making future decisions. It, however, has an improvement phase in
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which local search techniques are used to improve promising solutions. Therefore,
we propose incorporating a learning mechanism into Meat-RaPS to improve its
efficiency in obtaining high quality solutions based on Path Relinking (PR) approach
in which “good” attributes of the best solutions are memorized while the algorithm
is progressing. The approach is named Path Relinking because it generates a path
between two solutions called initial and guiding solutions, to create new solutions.
While progressing, the initial solution gradually transforms to the guiding solution
by incorporating the attributes of the guiding solution.

To evaluate the performance of the proposed approach, the 0-1 Multidimensional
Knapsack Problem (MKP), will be used as a test bed. The 0-1 MKP is the
generalized form of the classical knapsack problem (KP). In KP there is a knapsack
with an upper weight limit b, and a set of n items with different profits cj and weights
aj per item j. The problem is to select the items from the set of items such that the
total profit of the selected items is maximized without violating the upper weight
limit constraint of the knapsack b. If m knapsacks exist, the problem becomes the
MKP in which each knapsack has a different upper weight limit bi, and an item j
has a different weight aij for each knapsack i. The problem can be formulated as
follows:

Maximize
nX

jD1
cjxj (6.1)

Subject to
nX

jD1
aijxj � bi; i D 1; : : : ;mI j D 1; : : : ; n (6.2)

xj 2 f0; 1g ; j D 1; : : : ; n (6.3)

where x is a vector of binary variables such that xjD 1 if item j is selected, and
xjD 0 otherwise. The MKP can be accepted as a special case of the general linear
0-1 integer programming problem with nonnegative coefficients (Martello and Toth,
1990). In the literature it is assumed that profits, weights, and capacities are positive
integers. However they can be easily extended to the case of real values (Martello
and Toth 1990). This is a resource allocation problem, which can be used to model
many problems in the literature such as the capital budgeting, project selection,
cutting stock, and many loading problems. Although the classical KP is weakly NP-
hard, the MKP is much more difficult (NP-hard) even for mD 2 (Garey and Johnson
1979).

6.2 Meta-RaPS

Meta-RaPS was initially based on the work by DePuy and Whitehouse (2001)
as a result of the research conducted on the application of a modified version of



112 A. Arin and G. Rabadi

COMSOAL (Computer Method of Sequencing Operations for Assembly Lines)
approach that was developed by Arcus (1966). Meta-RaPS was then formally
introduced by Moraga (2002) who defines it as a generic, high-level strategy used
to modify greedy algorithms based on the insertion of a random element, which
integrates priority rules, randomness, and sampling. Indeed, Meta-RaPS is a general
form of GRASP (greedy randomized adaptive search procedure), and although
GRASP generates solutions by introducing randomness, it does not implement any
probabilistic priority to the best solutions.

Meta-RaPS is a two-phase metaheuristic: a constructive phase to create feasible
solutions and an improvement phase to improve them. The algorithm can be
controlled by four parameters: number of iterations (I), the priority percentage
(p%), the restriction percentage (r%), and the improvement percentage (i%). In
constructing a solution, Meta-RaPS does not select the component or activity with
the best priority value in every iteration, nor does it select the one with the lowest
incremental cost. Instead, it may randomly accept an activity or component with
a good priority value, but not necessarily the best one to avoid falling in local
optima. The parameter p% is used to decide the percentage of time a component
or activity with the best priority value will be added to the current partial solution,
and 100 %� p% of the time it will be randomly selected from a candidate list (CL)
that contains “good” components or activities. This decision is made by taking a
random number (rand) between 0 and 1, then comparing it with the parameter p%.
If the random number is smaller than or equal to p% then the algorithm selects
the component or activity with the best priority value, else it selects from the CL,
which is created by including items whose priority values are within r% of the best
priority value. In the construction phase, the level of the randomness is adjusted by
controlling the values of the parameters p% and r% where smaller values of p% and
larger values of r% will randomize (diversify) the search more. The construction
phase is completed when a feasible solution is produced. The improvement phase
is performed only if the feasible solutions generated in the construction phase are
within i% of the best unimproved solution value from the preceding iterations. The
rationale here is to improve only promising solutions and not to waste time on
inferior solutions. Pseudo code for Meta-RaPS is shown in Fig. 6.1.

DePuy et al. (2001) emphasized that the advantages of the Meta-RaPS over
other metaheuristics are that its run times are not significantly affected by the
size of the problem, it is easy to understand and implement, and can generate a
feasible solution at every iteration. The simple nature of Meta-RaPS coupled with
its ability to generate high quality solutions, makes it a good metaheuristic method
for combinatorial optimization problems.

Meta-RaPS produces high quality solutions when applied to discrete optimiza-
tion problems, such as the Resource Constrained Project Scheduling Problem
(DePuy et al. 2001), the Vehicle Routing Problem (Moraga 2002), and the 0-
1 MKP (Moraga et al. 2005). DePuy et al. (2005) aimed to develop a simple
method to find good solutions to Traveling Salesman Problem (TSP). The Set
Covering Problem (SCP) was another optimization problem for which Meta-RaPS
performed well (Lan et al. 2007). Rabadi et al. (2006) developed Meta-RaPS for



6 Performance of an Intensification Strategy Based on Learning. . . 113

Fig. 6.1 Meta-RaPS pseudo code

the unrelated parallel machine scheduling problem with machine-dependent and
sequence-dependent setup times to minimize the makespan. Hepdogan et al. (2009)
applied Meta-RaPS algorithm to the early/tardy single machine scheduling problem
with common due date and sequence-dependent setup times. Garcia and Rabadi
(2011) developed a new algorithm based on Meta-RaPS for solving the parallel
multiple-area spatial scheduling problem with release times. Kaplan and Rabadi
used Meta-RaPS to solve the Aerial Refueling Scheduling Problem (2012), a real-
world problem that requires high quality solutions in an acceptable time frame.

6.3 Path Relinking (PR)

The PR approach originally stems from strategies of combining decision rules and
constraints in the context of integer programming. The basic idea behind PR is
to reinterpret the linear combinations of points in the Euclidean space as paths
between and beyond solutions in the neighborhood (Talbi 2009). The PR approach
generates new solutions by exploring trajectories connecting the initiating solution
and the guiding solution. While following the path from the initiating towards the
guiding solution, high-quality solutions are created by selecting moves with “good”
attributes contained in the guiding solution. At each iteration, the move with the best
objective function value, which also reduces the distance between the two solutions
is selected. This is repeated until the distance is equal to 0 at which point the best
solution found in the trajectory is returned by the algorithm.
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Initial Guiding Neighbors

0 0 1 1 1 1 0 1 1 0 1 1* 0 1 1 1 0 0 0 1

1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1*

1 0 0 1 1 1 0 1 1 1 0 1*

1 1 0 1 1 1 0 1

Fig. 6.2 Example of the PR process

To follow the PR process, the initial and guiding solutions obtained in the
solution process are coded into a binary string. The positions containing the same
numbers in the initial and guiding solutions are identified to keep their states and
the numbers in the remaining positions are changed in a systematic way to create
a neighborhood. The neighbor with the maximum profit is selected to build the
path. At each step, the solutions become more similar to the guiding solution and
more different from the initial solution. While progressing, the solution found is
replaced with the best improved solution only if it is better than the best improved
solution found so far. Figure 6.2 summarizes the PR transformation process from
the initial to guide solutions for a 4-item 0-1 MKP problem instance. If items 3 and
4 are selected for the initial solution, and items 1, 2, and 4 for the guiding solution,
they will then be coded as (0 0 1 1) and (1 1 0 1), respectively. Note that initial
and guiding solutions share only one item (item 4) with the same state at the same
position. The states of items in the other positions of the initial solution are switched
from selected (1) to not selected (0), or vice versa to obtain the following neighbors:
(1 0 1 1), (0 1 1 1), and (0 0 0 1). The best neighbor, i.e., the one with the maximum
profit shown with * in Fig. 6.2, is selected as the new initial solution, which is now
closer to the guiding solution, having two items at the same position. This process
is repeated until the initial and guiding solutions become identical.

PR is different from local search approaches in several ways: the path between
initial and guiding solutions is directed by the criterion of incorporating attributes
of the guiding solution, not by local attraction. This feature helps PR reach some
solutions that would not be found by a “locally myopic” search (Glover et al. 2003).
The relinked path may also provide fertile starting points for creating neighborhoods
that may include high quality solutions. Glover and Laguna (1997) suggested PR as
an approach to integrate intensification and diversification strategies in the context
of TS. PR can be used to diversify or intensify the search, depending on the path
generation and the choice of the initial and guiding solutions. For each pair of initial
and guiding solutions, there exist different alternatives in selecting the starting and
the guiding solutions:

• Forward: The worst of both solutions is used as the starting solution.
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• Backward: The better of both solutions is used as the starting solution. Since the
starting solution’s neighborhood is more explored than that of the target solution,
the backward strategy is, in general, better than the forward one.

• Backward and forward relinking: Two paths are constructed in parallel, using
alternatively both solutions as the starting and the target solutions.

• Mixed relinking: Two paths are constructed in parallel from both solutions but
the guiding solution is an intermediate solution at the same distance from both
solutions.

PR was originally proposed by Glover (1996) as a way to explore trajectories
between elite solutions obtained by TS or Scatter Search (SS), and later Martí et al.
(2005) applied PR within GRASP. PR became an attractive approach applied as an
intensification strategy to each local optimum obtained after the local search phase
(Resende and Ribeiro 2003), as a post-optimization step to all pairs of elite solutions
(Deng and Bard 2011; Villegas et al. 2011), or as both intensification and post-
optimization strategies (Resende and Werneck 2002) in GRASP. In the literature,
GRASP and PR applications are produced by researchers for many optimization
problems, such as scheduling (Alvarez-Valdes et al. 2008; Bozejko 2010), max-min
diversity problem (Resende et al. 2010), generalized quadratic assignment problem
(Mateus et al. 2011), lot sizing problem (Nascimento et al. 2010), and set k-covering
problem (Pessoa et al. 2012).

In addition to GRASP, Andrade and Resende (2007) showed that a GRASP
with evolutionary PR finds solutions faster than a heuristic based GRASP with
PR or a pure GRASP. Based on the adaptive memory and responsive strategy
elements of SS and PR, Yin et al. (2010) created a combination of Particle
Swarm Optimization (PSO) and SS/PR to produce a Cyber Swarm Algorithm that
proves more effective than standard PSO. There are many other successful hybrid
applications in which PR is used to add a memory mechanism by integrating it into
other algorithms, including TS (Armentano et al. 2011; Nasiri and Kianfar 2012),
Variable Neighborhood Search (Wang and Tang 2009), SS (Nasiri and Kianfar
2011; Ranjbar et al., 2009), ACO (Liu and Liu 2011), and memetic algorithms
(Jaszkiewicz and Zielniewicz 2009).

PR has also been applied in continuous optimization (Jaeggi et al. 2008),
multiobjective combinatorial optimization (Beausoleil et al. 2008), interior point
methods (Plateau et al. 2002), and large-scale global optimization (Duarte et al.
2011). Festa and Resende (2011) gave an overview of GRASP and its enhancements
including the PR strategy. Ribeiro and Resende (2012) reviewed PR intensification
methods for stochastic local search algorithms. Detailed explanation of PR is
presented by Glover et al. (2000), and a survey reporting on advanced PR strategies
can be found in (Resende and Ribeiro 2005).
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Fig. 6.3 Meta-RaPS PR pseudo code

6.4 Designing Meta-RaPS PR Algorithm

The PR in the proposed algorithm will be applied to the pairs of initial and guiding
solutions, where the initial solution is the locally optimal solution obtained after
the local search in the improvement phase of Meta-RaPS, and the guiding solution
is the best solution found so far over all iterations by the proposed algorithm. The
Meta-RaPS PR will learn the attributes of the best solution by memorizing it in
the solution history, and applying this information to generate other high quality
solutions by creating a path between the new initial solution and the best solution.
This changes the memoryless Meta-RaPS into a more “intelligent” algorithm, we
call Meta-RaPS PR, that can memorize the solution history and learn the “good”
attributes to make smart decisions, without affecting any of its main principles.

The PR phase of Meta-RaPS PR is not executed at the first iteration because the
best improved solution to serve as a guiding solution is not constituted yet. The
modified Meta-RaPS PR pseudo code is shown in Fig. 6.3.

6.5 Performance Evaluation

The proposed Meta-RaPS PR algorithm was implemented in CCC. Due to the
use of randomness in Meta-RaPS, the proposed algorithm was run 10 times for
each instance and the average was taken for all runs. After completing the solution
process, the performance of the algorithm was reported in terms of solution quality,
or deviation percentage, number of iterations, CPU time, and frequency of reaching
optimum or best solutions. The deviation percentages were calculated using Eq.
(6.4):
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Table 6.1 Parameters of Meta-RaPS PR for 0-1 MKP instances

Values
Parameter Small/medium 0-1 MKP Large 0-1 MKP

Priority (p) 0.4 0.60
Restriction (r) 0.2 0.65
Improvement (i) 0.1 0.10
Number of iterations (I) 10,000 10,000/5000/1000

Deviation % D f .s�/ � f .s/

f .s�/
� 100 (6.4)

where s is the solution found in the current method and s* is the optimum or best
solution found.

To tune the parameters of Meta-RaPS, D-optimal Design of Experiments (DOE)
was applied to tune the parameter settings for small/medium 0-1 MKP instances.
In tuning its parameters for large 0-1 MKP instances, an adaptive tuning method,
which utilizes feedback information obtained during the search to perform a
learning process of the parameter combination, was used offline, i.e., before the
proposed algorithm actually started (Alabas-Uslub and Dengiz 2011). To begin
with, a parameter memory matrix was created for the parameters priority (p%) and
restriction (r%) parameters, containing 9 levels between 0.1 and 0.9 with increments
of 0.1 for each parameter, to memorize and learn the effects of different parameter
settings during the solution process. The improvement parameter (i%) was accepted
as 0.1 according to an initial analysis; thus, 81 (D9� 9) different parameter settings
could be attempted in solving the 0-1 MKP instances. These parameter settings were
then applied in solving the instances and the best solution values were recorded
in the cells representing the parameter settings of p% and r% until the parameter
memory matrix converged. Finally, the overall average values of p% and r% that
created the best solutions for each instance were accepted as the best parameter
setting as presented in Table 6.1. For the large size 0-1 MKP instances, the parameter
number of iteration (I) was accepted as 10,000 for instances with 100 items, 5000
for instances with 250 items, and 1000 for instances with 100 items.

To evaluate the performance of the proposed algorithm, it was applied to 55
small/medium size (Petersen 1967; Weingartner and Ness 1967; Shih 1979; Fréville
and Plateau 1990), and 270 large size (Chu and Beasley 1998) 0-1 MKP test
instances available in the OR-Library (Beasley 1990). For the large instances, the
30 instances in each set were created with tightness ratios (T/R) of 0.25, 0.50, and
0.75 for each group of 10 instances in the set. T/R is defined as the ratio between
the constraint’s right-hand side value and the sum of the corresponding weights as
given in Eq. (6.5).

T=R D biXn

jD1aij

2 f0:25; 0:5; 0:75g (6.5)
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Resource consumptions aij are random numbers generated between (0, 1000),
and profit values cj are generated via Eq. (6.6).

cj D
mX

iD1

aij

m
C .500ri/ 2 f0:25; 0:5; 0:75g (6.6)

where m is the number of knapsacks, ri is a random number generated from (0, 1).

6.6 Computational Results

In the original Meta-RaPS, the solutions were constructed by employing a greedy
rule called Dynamic Greedy Rule (DGR) as a priority rule in determining the
priorities or order of the items to be selected (Moraga et al. 2005). In the proposed
Meta-RaPS PR algorithm, the same greedy approach will be followed to generate
solutions in the construction phase by repeatedly adding feasible items to the current
(partial) solution based on their DGR values until a solution is generated, i.e., until
there is no more feasible items to add to a partial solution. In this rule, a penalty
factor for each item is calculated according to Eq. (6.7).

wi D
mX

jD1

aij

bj � CWj
; for i D 1; : : : ; n (6.7)

where aij is the coefficients of item i in constraint j, bj is the amount of resource for
each constraint j, and CWj is the amount of resource j consumed by the items (or
partial solution) so far. To determine the priority of an item i, its profit ci is divided
by its penalty factor, i.e., ci/wi. The item with maximum ci/wi has the highest priority
in the solution process. Because the penalty factor changes after each iteration in the
construction process, the priorities of the items are updated after each item is added
to the partial solution.

In the improvement phase of Meta-RaPS PR, two different algorithms are
employed: 2-opt and insertion algorithms. In 2-opt algorithm, a randomly selected
item in the solution is replaced with another randomly selected item that is not in the
solution in a systematic way. In the insertion algorithm, a randomly selected item is
inserted before or after another item in the solution and items between the old and
new places of inserted item are shifted towards the old place of the inserted item in
the same order. Other items remain in their positions.

The deviation percentages for the solutions were calculated not only for the
average of best improved solutions (IMean), but also for the best of the best
improved solutions found in 10 runs of Meta-RaPS PR (IBest). While IMean shows
the mean performance of the algorithm, IBest gives an idea about the limits of
the algorithm (see Table 6.2). In terms of the frequency of reaching optimum
or best solutions, the number of times the algorithm found the optimum or best
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Table 6.2 Meta-RaPS PR results for small/medium 0-1 MKP instances

Deviation% Number of iteration Time (s) Optimum
IMean IBest Frequency Instances

0.001 0.000 480 47.93 9.76 55/55

solutions in 10 runs is given under the heading of Optimum Frequency. The heading
“Optimum Instances” shows the number of instances solved optimally or for which
best solutions were found by the algorithm. Finally, the averages and standard
deviations for these metrics are calculated. The stopping criteria for the proposed
algorithms are to run the algorithms until the number of iteration is met or, to stop
whenever the deviation percentage from the optimal or best found solution becomes
0, whichever comes first.

6.6.1 Meta-RaPS PR for Small and Medium 0-1 MKP
Instances

Meta-RaPS PR was first applied to small and medium 0-1 MKP instances. As
summarized in Table 6.2, Meta-RaPS PR could solve all small and medium
instances in the OR-Library, and was able to find optimum or best solutions 9.8 out
of 10 runs on average for all instances. The average deviation percentage reached
by the proposed algorithm was 0.001 %. Meta-RaPS PR obtained these results in an
average of 48 s and 480 iterations, respectively, on an Intel i5 CPU 2.27 GHz PC.

Table 6.3 presents a comparison of Meta-RaPS PR to other approaches in
the literature including the original Meta-RaPS DGR for the small/medium 0-1
MKP instances. The ratios in the table indicate the number of instances solved
optimally out of the total number of instances attempted. TS methods (Glover and
Kochenberger 1996; Hanafi et al. 1996), GA (Chu and Beasley 1998), and FixC cut-
based method (Osorio et al. 2003) generated the best results in the literature.
Meta-RaPS PR could create considerably good results in terms of the number of
optimal solutions and deviation percentages. Meta-RaPS DGR attempted to solve
the same 55 instances in their 56 instance-set, and PETERSEN7 was the only
instance for which Meta-RaPS DGR did not find the optimal solution; however,
Meta-RaPS PR could solve this instance optimally. Data and solutions for these
instances are available at www.SchedulingResearch.com

To reveal the contribution of the PR to Meta-RaPS, the number of optimum or
best solutions found in the improvement phase and PR phase are tracked for each
instance. To better see the impact of each phase, the instances are put in the order of
their size, which is defined here as the product of the number of items by the number
of knapsacks. The contribution of both phases in reaching optimal or best solutions
in the new Meta-RaPS design is reported. Figures 6.4 and 6.5 show the frequency

www.SchedulingResearch.com
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Table 6.3 Comparison of Meta-RaPS PR to other algorithms in the literature for small/medium
0-1 MKP instances (adapted from Moraga et al. 2005)

Algorithm #Optimal solutions Deviation%

Meta-RaPS PR 55/55 0.001
Meta-RaPS DGR (Moraga et al. 2005) 55/56 0.003
GRASP (Moraga et al. 2005) 52/56 0.023
SMA/TA (Hanafi et al. 1996) 39/54 0.080
AGNES (Fréville and Plateau 1994) 52/54 0.020
Tabu search LC STM (Dammeyer and Voss 1993) 44/57 0.101
Tabu search (Glover and Kochenberger 1996) 57/57 0.000
Tabu search (Løkketangen and Glover 1998) 37/54 0.003
Tabu search IFTS/HFE (Hanafi et al. 1996) 54/54 0.000
Genetic algorithm (Chu and Beasley 1998) 55/55 0.000
FixC cut based method (Osorio et al. 2003) 55/55 0.000
Simulated annealing PROEXC (Drexl 1988) 23/57 0.239
Simulated annealing (Drexl 1988; Dammeyer and Voss 1993) 31/57 0.328
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Fig. 6.4 Trend line of best solutions found in 10 runs by improvement phase of Meta-RaPS PR
for small/medium instances

of best and optimal solutions reached during the improvement phase in 10 runs per
instance.

As can be seen from the trendline, the effectiveness of reaching such solutions
declines as the size of the instances increases. In Fig. 6.4, the contribution of the
PR phase is measured in the same way and the trendline indicates that the finding
optimal and best solutions during the PR phase increases with the increase in the
instance size. Especially for the larger instances, the role of PR in the proposed
algorithm is clear; its share of number of optimum or best solutions found in 10
runs for each instance increased with the increase in instance size.
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Fig. 6.5 Trend line of best solutions found in 10 runs by improvement phase of Meta-RaPS PR
for small/medium instances

Recall that besides the number of iterations parameter (I), there is another
stopping criterion, which is when the deviation percentage is equal to 0. For the
instances with smaller size, Meta-RaPS could find optimum solutions, and stops the
solution process before reaching the PR phase. This was the reason why the PR
phase seems to not produce optimal or best solutions for these instances. However,
in solving large instances, Meta-RaPS had to reach to the PR phase to obtain better
results.

6.6.2 Meta-RaPS PR for Large 0-1 MKP Instances

With the parameters set to the values in Table 6.1, Meta-RaPS PR was run to
solve the large size 0-1 MKP instances of 100, 250, and 500 items by 5, 10,
and 30 knapsacks, respectively. Table 6.4 shows that the overall average deviation
percentage from the optimum or best solution reached by Meta-RaPS PR is 0.276 %
in an average of 1674 iterations (Meta-RaPS PR was run 10 times per instance). Its
average optimum or best solution was 2.1 in the 30 instance set, and the average
optimum or best solution was found 1.5 in 10 runs per instance.

A comparison of the proposed Meta-RaPS PR algorithm to other algorithms in
the literature for large 0-1 MKP instances only in terms of deviation percentage is
presented in Table 6.5 due to absence of the information about standard deviations
for these approaches. Data and solutions for these instances are available at www.
SchedulingResearch.com

In addition to comparing the newly introduced Meta-RaPS PR algorithm with the
memoryless Meta-RaPS (DGR) of Moraga et al. (2005), it was also compared to the
following existing algorithms: a new problem reduction heuristic NR(P) (Hill et al.

www.SchedulingResearch.com
www.SchedulingResearch.com
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Table 6.4 Meta-RaPS PR solutions for large 0-1 MKP instances

Instance set
Deviation%
IMean

Number
of IBest

Time
iterations

Optimum
(min) Frequency Instances

100� 5 0.017 0.000 1612 1:39 7.90 9.67
100� 10 0.182 0.109 2552 4:06 3.83 4.67
100� 30 0.413 0.252 3193 12:60 0.43 1.00
250� 5 0.095 0.040 2037 29:38 1.27 2.67
250� 10 0.224 0.136 2111 47:03 0.17 0.67
250� 30 0.543 0.007 2061 108:77 0.00 0.00
500� 5 0.162 0.117 521 45:13 0.00 0.00
500� 10 0.269 0.192 498 65:23 0.00 0.00
500� 30 0.576 0.430 478 142:13 0.00 0.00
Average 0.276 0.142 1674 50:64 1.51 2.07

Table 6.5 Comparison of Meta-RaPS PR to other algorithms for large 0-1 MKP instances
(adapted from Moraga et al. 2005)

Meta-RaPS
Instance set PR DGR NR(P) HDP-LBC MMA-8 PECH GA-CB GA-HV

100� 5 0.01 0.60 0.53 0.57 0.80 4.28 0.59 0.72
100� 10 0.18 1.17 1.10 0.32 1.32 4.58 0.94 1.26
100� 30 0.41 2.23 1.45 1.81 2.07 1.69 1.69 2.14
250� 5 0.09 0.17 0.24 0.16 0.43 4.03 0.14 0.36
250� 10 0.22 0.45 0.48 0.32 0.70 3.31 0.30 0.74
250� 30 0.54 1.38 0.80 0.77 1.14 2.69 0.68 1.36
500� 5 0.16 0.09 0.08 0.07 0.34 3.85 0.05 0.34
500� 10 0.27 0.20 0.19 0.16 0.57 2.92 0.14 0.64
500� 30 0.57 0.82 0.49 0.42 0.89 2.09 0.35 1.20
Average 0.28 0.79 0.60 0.51 0.92 3.27 0.54 0.97

2012), a surrogate and a dynamic programming method with a limited branch and
cut (LBC) improvement phase, HDP-LBC (Boyer et al. 2009), Memetic Algorithm
approach, MMA-8 (Özcan and Başaran 2009), a greedy-like heuristic method,
Primal Effective Capacity Heuristic (PECH) (Akcay et al. 2007), Genetic Algorithm
GA-CB (Chu and Beasley 1998), and Genetic Algorithm GA-HV (Haul and Voss
1997). As can be seen from the table, the proposed Meta-RaPS PR produced better
results than all of the other algorithms in the literature. Specifically, redesigning
Meta-RaPS from a memoryless algorithm to a more intelligent algorithm clearly
demonstrates its enhanced ability to find better solutions across all instances of large
MKP problems. It is difficult and not meaningful to make similar comparisons with
older studies in terms of CPU due to evolving computer technology.
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6.7 Conclusions

Intensification and diversification in metaheuristics are two main strategies to
improve the quality of solutions in the search process. In Meta-RaPS, which
is a memoryless metaheuristic, intensification and diversification strategies are
controlled only by randomness as specified by its parameters. In addition to random-
ness, Path Relinking (PR) was integrated into Meta-RaPS as a learning algorithm
for intensification purposes by learning “good” attributes of the best solutions.
Applying PR as an intensification strategy to Meta-RaPS was very effective in
creating a better performance. The PR approach also changed the memoryless nature
of Meta-RaPS to a more “intelligent” algorithm. The new algorithm presented very
good results for a test problem of the Multidimensional Knapsack Problem (MKP)
compared to other approaches in the literature.

The PR method used as both an intensification strategy and a learning mechanism
in Meta-RaPS was very successful at obtaining high quality solutions without
affecting the main principles of Meta-RaPS, and therefore, this approach can be
conveniently applied in other metaheuristics algorithms in the future.
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Chapter 7
Meta-RaPS for a Bi-objective Unrelated Parallel
Machine Scheduling Problem

Nixon Dcoutho and Reinaldo Moraga

Abstract This chapter discusses the capability and effectiveness of a Meta-
heuristic for Randomized Priority Search to solve multi-objective problems. The
multi-objective problem of unrelated parallel machine scheduling is considered in
the chapter. The two objectives to minimize are total weighted tardiness and total
weighted completion time. An existing construction rule in the literature named
Apparent Tardiness Cost-bi heuristic is used as the basis for the meta-heuristic
construction phase to generate non-dominated solutions. The computational results
obtained are promising when results of the meta-heuristic approach proposed are
compared with those of the original construction rule. This chapter illustrates that
the meta-heuristic approach proposed is effective and flexible enough to generate
Pareto-frontiers in order to solve multi-objective scheduling problems by modifying
a simple existing heuristic found in the literature.

Keywords Unrelated parallel machine • Bi-objective • Meta-heuristics •
Meta-RaPS • Pareto-frontiers

7.1 Introduction

Scheduling refers to a decision-making process of allocating resources to a set
of jobs in order to achieve a particular objective. Scheduling can be applied in
many industries such as manufacturing, transportation, services, and healthcare.
In general, manufacturing scheduling environments occur in a single stage (single
or parallel machines) or multiple stage systems (flow shops, job shops, and open
shops). In the former systems, only one unique operation is performed on the job
before it departs from the system. In the latter systems, jobs visit a number of m
machines where operations are performed.
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In the case of parallel machines, they can be classified into three types: identical,
uniform, or unrelated machines. The scheduling problem of unrelated parallel
machine with one single objective is a challenging case (Karp 1972). Nowadays,
manufacture scheduling needs to address more than one objective simultaneously
due to global competition and other factors. Examples of such objectives include
tardiness, earliness, makespan, and the number of tardy jobs among others. Schedul-
ing problems with more than one objective function are referred to in literature as
multi-objective scheduling problems, which is the process of finding a schedule that
systematically and simultaneously improves all the addressed objective functions.

This book chapter deals with the unrelated parallel machine scheduling problem
with minimization of total weighted tardiness (†wjTj) and total weighted comple-
tion time (†wjCj). The same problem with minimization of makespan (Cmax) is
considered NP-hard by Karp (1972), so its multi-objective version is assumed to be
NP-hard.

In order to solve the problem of unrelated parallel machine, Meta-heuristic
for Randomized Priority Search (Meta-RaPS) will be used. This chapter shows
the effectiveness and feasibility of using Meta-RaPS to solve the multi-objective
scheduling problem by modifying an existing heuristic found in the literature. The
attempt is to show that by using only its construction phase, Meta-RaPS outperforms
the existing heuristic.

The rest of this chapter is organized as follows: Sect. 7.2 discusses the exist-
ing researches on unrelated parallel machines with multi-objectives. Section 7.3
presents a detailed description and a mathematical model of the proposed problem.
This section also contains the explanation for the construction mechanism that
will be used. Section 7.4 provides an overview of Meta-RaPS and describes its
application. Results and Pareto-frontiers are shown in Sect. 7.5. Finally, Sect. 7.6
summarizes the book chapter and discusses future research opportunities.

7.2 Literature Review

Based on a survey conducted by Lei (2009) multi-objective scheduling problems
on unrelated parallel machines is not a well-explored area. The same remark is
obtained by a literature review conducted by Kayvanfar et al. (2014a). In general,
methods for solving multi-objective unrelated parallel machine scheduling problems
can be broadly classified into three groups: priori methods, posteriori methods, and
interactive methods. Interactive methods search for feasible solutions by interacting
with the decision maker preferences; however, such methods become complex for
large problems as more interaction time with the decision maker is required, leading
to higher computational efforts. A priori method enables decision maker to set
objectives priorities before the search process starts. Posteriori methods generate
all non-dominated solutions and then the decision makers select one from the pool
according to their preferences. This approach seems to have more practical benefits
in real-world applications as it provides more flexibility to the decision-making
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process. To the best of our knowledge there are no approaches in the literature that
uses a priori method to solve the proposed problem in this book chapter; but Eren
(2009) proposes a priori method to minimize a single scalar objective function of
total tardiness and total earliness.

Researchers used heuristic methods to solve multi-objective scheduling problems
on unrelated parallel machines. For example, Kayvanfar et al. (2014b) address
the problem of minimizing total tardiness and total earliness with a restriction on
processing times. The authors propose a heuristic known as a Parallel Net Benefit
Compression-Net Benefit Expansion (PNBC–NBE) as well as a genetic algorithm
(GA) based meta-heuristics. The results of GA based meta-heuristic show promising
results when compared to PNBC–NBE heuristics. Lin et al. (2013) use a heuristic
known as Apparent Tardiness Cost-bi (ATC-bi) to solve multi-objective unrelated
parallel machine scheduling with the goal of minimizing total weighted tardiness
and total weighted completion time and the results outperform a GA.

Literature is relatively more abundant with articles reporting the use of meta-
heuristics to solve multi-objective unrelated parallel machine scheduling problems
due to their easy application and ability to generate solutions under polynomial time
(Lei 2009). Moghaddam et al. (2009) use GA to minimize the total completion
time and the number of tardy jobs on unrelated parallel machines. Chyu and Chang
(2010) address the multi-objective unrelated parallel machine scheduling problem
using simulated annealing (SA) to minimize total tardiness and total flowtime.
Torabi et al. (2013) develop a Multi-Objective Particle Swamp Optimization
algorithm in order to minimize the makespan and the total tardiness with restriction
on processing time and sequence dependent setup times. Nogueira et al. (2014)
use a Greedy Randomized Adaptive Search Procedure (GRASP) to solve multi-
objective unrelated parallel machine scheduling with the objectives of minimizing
total tardiness and total earliness.

Except for GRASP, most meta-heuristics reported in the literature use local
search mechanisms to solve problems including the multi-objective unrelated
parallel machine scheduling problems. In such meta-heuristics there is no balance
between the computation spent searching for improved solutions (i.e., local search)
versus the time spent constructing solutions. Most meta-heuristics spend most of
their time on local search at the expense of the use of construction techniques.

This book chapter presents a Meta-heuristic for Randomized Priority Search
(Meta-RaPS) to solve the unrelated parallel machine problem with minimization
of total weighted tardiness and total weighted completion time. Meta-RaPS can be
defined as a generic, high level strategy used to modify construction heuristics based
on the insertion of randomness (DePuy et al. 2005). Meta-RaPS seeks to strike a
balance between the usage of the construction phase and the improvement phase. It
is a modified version of COMSOAL (Computer Method of Sequencing Operations
for Assembly Lines) which is a computer heuristic approach to solve assembly
line balancing problems proposed by Arcus (1966). Meta-RaPS can be seen as a
more general case than GRASP (DePuy et al. 2005) and has been successfully
used to solve a traveling salesman problem by DePuy et al. (2005), the unrelated
parallel machines with makespan with sequence dependent setup times by Rabadi
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et al. (2006), the early/tardy single machine scheduling problem by Hepdogan et al.
(2009), and the spatial scheduling problem with release times by Garcia and Rabadi
(2011).

Some attempts are reported in the literature to solve multi-objective problems
using Meta-RaPS. For example, Guo (2013) uses Meta-RaPS to solve multi-
objective flexible flow shop scheduling problem with the goal of minimizing total
tardiness and makespan. Wang (2007) addresses the problem of single machine
scheduling with multi-objectives. However, as of now there is no reported work
which uses Meta-RaPS to solve the problem proposed in this chapter.

Therefore, the idea of this current application is to embed the ATC-bi construc-
tion rule into Meta-RaPS framework in order to generate good quality solutions for
the problem proposed. Pareto-frontier solutions are generated with Meta-RaPS and
the results are compared with ATC-bi heuristic. It is important to note that to make
a fair comparison, only the construction phase of Meta-RaPS will be compared to
ATC-bi without the improvement phase.

7.3 Unrelated Parallel Machine Scheduling Problem
with Multi-Objectives

The unrelated parallel machine scheduling problem with minimization of total

weighted tardiness and total weighted completion time, RMjj
XN

jD1wjTj;
XN

jD1wjCj,

may be described as a set of N independent jobs to be processed without preemption
on any of the M unrelated parallel machines. Each machine m is capable of
processing only one job at a time. It is assumed that all jobs are available at time
zero. Job j has a processing time on machine m represented as pjk, a due date dj,
a completion time Cj, and a weight wj. In addition, a weighted tardiness penalty is

incurred for each time unit of tardiness Tj, given by TjDmax (0, Cj� dj).
XN

jD1wjTj

is the total weighted tardiness and
XN

jD1wjCj is the total weighted completion time

of all the n independent jobs. Hence the problem can be formally stated as: find a

schedule S that minimizes the objective functions f1(S) D
XN

jD1wjTj and f2(S) D
XN

jD1wjCj.

7.3.1 Linear Integer Programming Model

A mathematical model for the proposed problem in this chapter is given below
which is similar to the model shown in Kayvanfar et al. (2014a).



7 Meta-RaPS for a Bi-objective Unrelated Parallel Machine Scheduling Problem 131

Input Parameters

K Machine Index, mD 1, : : : ,M
j Job Index, jD 1, : : : ,N
M Total number of machines used
N Total number of jobs to be processed
pjk Processing time of job j on machine k
dj Due date of job j
wj Weight assigned to job j

Decision Variables

Cj,k Completion time of job j on machine k
Tj Tardiness of job j
xi,j,k 1, if job i precedes job j on machine k; 0, otherwise

Mathematical Formulation

Minimize

0

@
MX

mD1

NX

jD1
wjCj;

MX

mD1

NX

jD1
wjTj

1

A

Subject to

MX

kD1

NX

i D 0
i ¤ j

xi;j;k D 1 8 j D 1; : : : ;N (7.1)

NX

jD1
x0;j;k � 1 8 k D 1; : : : ;M (7.2)

NX

i D 0
i ¤ h

xi;h;k �
NX

j D 0
h ¤ j

xh;j;k D 0 8 h D 1; : : : ;NI k D 1; : : : ;M (7.3)

C0;k D 0 8 k D 1; : : : ; M (7.4)

Cj;k � Pj;k C U
�
1 � xi;j;k

� � Ci;k 8 i D 1; : : : ;NI j D 1; : : : ;NI k D 1; : : : ;M
(7.5)
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Tj � Cj;k � dj 8 j D 1; : : : ;NI k D 1; : : : ;M (7.6)

Tj;Cj;k � 0 8 j D 1; : : : ;NI k D 1; : : : ;M (7.7)

xi;j;k 2 f0; 1g 8 i D 1; : : : ;NI j D 1; : : : ;NI k D 1; : : : ;M (7.8)

where U is a large positive number.
The objective functions to minimize are total weighted completion and total

weighted tardiness. Constraint (7.1) ensures that every job j is assigned to only
one machine. Constraint (7.2) limits the dummy job 0 to have a maximum of one
successor on each machine. Constraint (7.3) ensures that every job h has exactly one
successor. Constraint (7.4) sets the value zero for the completion time of dummy
job 0. Constraint (7.5) ensures that the completion time for a job j is greater than
its preceding job completion time. Constraint (7.6) restricts the minimum possible
value of tardiness for each job j. Constraint (7.7) is the non-negativity constraint.
Constraint (7.8) restricts the possible value for xi,j,k to binary variables.

7.3.2 Construction Heuristic

As stated earlier, Lin et al. (2013) developed ATC-bi heuristic to solve the problem
with the objective of minimizing the total weighted tardiness and total weighted
completion time. ATC-bi heuristics uses Apparent Tardiness Cost (ATC), which is
a composite dispatching rule that solves the problem of single machine scheduling
with total weighted tardiness. ATC is a combination of weighted shortest processing
time first, earliest due date first and minimum slack first. ATC-bi heuristic modifies
ATC by adding a machine selection criterion. The ATC-bi heuristic is explained as
follows.

S: current schedule
f (S): current objective function value
Ja: set of unscheduled jobs
j*: job with maximum Ii * j index value
dj: due date of job j
pij: processing time of job j on machine i
ti: load on machine i
wj: weight of job j
M: Number of machines

1: Set SDØ, JaDf1, : : : ,ng and MDf1, : : : ,mg
2: Determine the first available machine i*, such that ti� D min

1�i�m
ti

3: Calculate Ii * j for each job j, where
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Ii�j D wj

pi�j
e

 
max.dj�pi� j�ti� ;0/

k pi�

!

4: Select the job j* such that Ii * j * D maxj�2Ii�j Ii�j.

5: For job j*, find machine i** such that pi��jDmin
n
pij�

ˇ̌
ˇtiCpij��dj��0; 1�i�m

o
.

If i** does not exist, then calculate i** as i**D argmin1� i�m (ti C pij� �dj� )
6: Assign j* to machine i**. Update S and delete j* from Ja

7: If JaDØ, then STOP, else report S and f (S); and go to step 2

Step 2 selects the machine with minimum work load. In step 3 machine i* with
minimum load is selected and index value Ii * j for each job j is calculated based on
the processing time of job j on machine i*, where pi� is the average of the processing
times of the remaining jobs of machine i*. In step 4 the job j* with maximum index
value Ii * j is selected. In step 5, the job j* is scheduled on to machine i** which is
the fastest machine capable of completing the job j* thereby making it less tardy.
The heuristic stops if all the jobs are assigned, else it goes back to step 2. Further
discussion and detailed steps of ATC-bi could be found in Lin et al. (2013).

7.4 Meta-RaPS Framework

The execution of Meta-RaPS is controlled by using four parameters: the number
of iterations (I), the priority percentage (p), the restriction percentage (r), and
the improvement percentage (i). The number of constructed feasible solutions is
determined by the number of iterations. In general, a construction heuristic builds
a solution by systematically adding feasible items to the current solution. The item
with the best priority value is added to the current solution p% of the time. With both
p and r parameters, Meta-RaPS modifies the way a general construction heuristic
chooses the next item to add to the solution by occasionally choosing a job that
does not have the best priority value; instead, it chooses a job from a candidate list
controlled by r. In addition, a solution improvement algorithm can be included in
Meta-RaPS by using the i parameter. Once a solution has been constructed, Meta-
RaPS may proceed to improve it further through neighborhood search algorithms.
The improvement heuristic is performed if the construction phase’s solution value
is below certain threshold ı, determined by I and the range between both best and
worst unimproved solution values found so far. Finally, the best solution from all
iterations is reported (S*and f (S*)).

In general, Meta-RaPS can be summarized using the following pseudo-code,
assuming a minimization problem:

I: number of iterations
p: priority percentage
r: restriction percentage
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i: improvement percentage
S: current schedule
f (S): current objective function
S*: best schedule
f (S*): best objective function value
B: best constructed solution so far
W: worst constructed solution so far
ı:threshold on the objective function to accept current solution for improvement

1: Set I, p, r, i, S*DØ, and f (S*)D INF; BD inf; WD -inf;
2: Repeat I times
3: SD construction (p, r);
4: Update (B, W);
5: If f (S) � ı (i, B, W)
6: SD local_search (S);
7: End
8: Update (S*, f (S*));
9: End

7.4.1 Meta-RaPS Construction Phase

In this application, only the construction phase of Meta-RaPS is used to solve
the proposed problem. Since good constructed solutions lead to good improved
solutions, it makes sense to design a good Meta-RaPS construction phase that could
eventually eliminate the improvement phase.

Meta-RaPS increases the probability of generating better results by incorporating
randomness into a dispatching rule appropriate for the problem at hand. ATC-bi
heuristic is fitted into Meta-RaPS framework as shown below.

1: Set SDØ, JaDf1, : : : ,ng and MDf1, : : : ,mg
2: Generate a random number RN ˜ u [0, 1]
3: Determine the first available machine i*, such that ti� D min1� i � m ti
4: Calculate Ii * j for each job j � Ja, where

Ii�j D wj

pi�j
e

 
max.dj�pi� j�ti� ;0/

k pi�

!

5: If RN� p/100, then go to step 6 else go to step 8
6: Select the job j* such that Ii * j * D maxj�2Ii�j Ii�j.

7: For job j*, find machine i** such that pi��jDmin
n
pij�

ˇ̌
ˇtiCpij��dj��0; 1�i�m

o
.

If i**, does not exist, then calculate i** as i**D argmin1� i � m (tiC pij� �dj� ),
go to step 14
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8: Calculate a threshold L D h � �.h � l/ � r
100

�
, here h D maxj2Ii�j Ii�j and

l D minj2Ii�j Ii�j

9: Form a candidate list CL such that CL D
n
8 j 2 Ja

ˇ
ˇ
ˇIi�j � L

o

10: Select j* randomly from CL
11: Calculate a threshold WL D v C �

.u � v/ � r
100

�
, where vD argmin1� i � m

(tiC pij� �dj�) and uD argmax1� i � m (tiC pij� �dj� )

12: Form a candidate list WCL such that WCLD
n
8 m2M

ˇ
ˇ
ˇ
�
tiCpij��dj�

� �K
o

13: Select i** randomly from WCL
14: Assign j* to machine i**. Update S and delete j* from Ja

15: If JaDØ, then STOP, else report S and f (S); and go to step 2

Meta-RaPS modifies ATC-bi heuristic at step 5 by using parameter p. In step 5 if
the random number is less than p then Meta-RaPS performs ATC-bi heuristic as it
is, which is steps 6 and 7. Otherwise, Meta-RaPS uses a modified ATC-bi heuristic
in steps 8–13. In step 8 a limit L is calculated based on the Ii * j index. In step 9 a
candidate list CL is formed with jobs whose index Ii * j is less than the limit L. In step
10 job j* is selected randomly from the CL. Similarly, in steps 11 and 12 limit WL
is calculated based on machine load and randomly a machine m is selected. If the
tardiness of job j* on machine m is less than WL, then the job j* is assigned to the
machine i**. Meta-RaPS modifies ATC-bi by randomizing it to aid the algorithm
escape local minima. The results and comparison between ATC-bi heuristic and
ATC-bi Meta-RaPS are discussed in the next section.

7.5 Results

ATC-bi Meta-RaPS was used to solve both small and large problem sets. The set
of small problems consists of ten instances of four machines and 20 jobs, whereas
large problem set consists of ten instances of 10 machines and 100 jobs1. Processing
time pij was generated using uniform distribution [1,100], Weight wj using uniform
distribution [1, 10] and Due Date dj using Uniform distribution [P(1� T �R/2),

P(1�T CR/2)], where P D
Xm

iD1
Xn

jD1
�
pij=m

�
; Relative Range of Due date,

RD 0.4; Tardiness Factor, T D 0.8. More details for data generation could be found
in Lin et al. (2013).

The algorithm was coded in MATLAB, and experiments were run on an Intel i7
personal computer. Results from ATC-bi Meta-RaPS were compared with those of
ATC-bi heuristic, as the samples shown in Figs. 7.1 and 7.2. The scaling parameter
K (intrinsic to ATC-bi) was set to values (0.1, 0.5, 1, 2). All the Meta-RaPS
experiments were executed at parameter values pD 0.5, rD 0.5, ID 1000 and iD 0

1Data sets and its solutions are available at www.SchedulingResearch.com.

www.SchedulingResearch.com
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for each K value. ATC-bi heuristics generates only one solution corresponding to
each K value as it is a greedy heuristic whereas ATC-bi Meta-RaPS is capable of
generating one or more non-dominated solutions as it incorporates randomness into
the greedy heuristic.

ATC-bi heuristic was run for each of the four K values thereby generated four
solutions and only the non-dominated solutions from this set are shown in results
(Tables 7.1 and 7.2). But for a K value, ATC-bi Meta-RaPS was run for 250
iterations and all the 250 solutions are stored in a global variable. Since four K
values (0.1, 0.5, 1, 2) are used for this experiment there will be a total of 1000
iterations of ATC-bi Meta-RaPS and all the results are stored in the global variable.

Table 7.1 Non-dominated solutions for 4m20n set (Total Weighted Tardiness, Total
Weighted Completion Time)

Instance ATC-bi ATC-bi Meta-RaPS

1 [108, 6107] [108, 5872] [111, 5867] [117, 5775]
[137, 5669]

2 [0, 5133] [0, 5028] [60, 5024] [75, 4658]
3 [200, 4955] [147, 6908] [173, 6199] [147, 6750] [153, 6207] [173, 6130]

[180, 4931] [200, 4414]
4 [24, 5377] [24, 5161]
5 [267, 5903] [243, 6370] [213, 5762] [222, 5741] [243, 5347]

[267, 5160] [330, 4919] [344, 4897]
6 [109, 4730] [109, 4638]
7 [0, 7320] [0, 6817]
8 [387, 6872] [300, 6533] [308, 6152] [317, 5646]

[323, 5627] [434, 5542] [612, 5438]
9 [0, 3356] [0, 3153]
10 [28, 4730] [28, 4289] [52, 4274]

Table 7.2 Ten non-dominated solutions for 10m100n set (Total Weighted Tardiness, Total
Weighted Completion Time)

Instance ATC-bi ATC-bi Meta-RaPS

1 [8, 32123] [0, 29772]
2 [240, 35193] [240, 34368] [264, 34179] [276, 33377] [288, 33286] [300, 33231]

[312, 33200] [324, 32476] [330, 32415] [342, 32077] [354, 32051]
3 [24, 25578] [24, 24816]
4 [0, 29062] [0, 27832]
5 [0, 38121] [0,36162]
6 [0, 29883] [0,28683]
7 [84, 27105] [84, 26247] [90, 25966]
8 [161, 31408] [77,30506] [161, 30428]
9 [0, 33076] [0, 32172]
10 [32, 27349] [32, 26191]
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Finally, only the non-dominated solutions are selected from the global variable.
Results for small problem instances are shown in Table 7.1 and for large problem
instances are shown in Table 7.2.

7.6 Conclusion and Future Research

In this chapter Meta-RaPS construction phase was implemented to solve the
unrelated parallel machine scheduling problem with minimization of both total
weighted tardiness and total weighted completion time. Meta-RaPS algorithm uses
ATC-bi heuristic as its underlying mechanism to construct solutions. Meta-RaPS
displays high flexibility by using only a construction phase to generate very good
non-dominated solutions. Meta-RaPS is easy to implement as it modifies another
heuristic in a simple way to generate better results. Based on our experiments,
a good dispatching or composite dispatching rule with Meta-RaPS algorithm can
provide high quality solutions for the multi-objective unrelated parallel machine
scheduling problem.

In future research, Meta-RaPS can be enhanced by incorporating memory and
learning mechanisms in the construction phase, which may greatly enhance its
performance by diversifying the region of good feasible solutions. Additionally, the
improvement phase (local search) can easily be implemented in Meta-RaPS for this
problem and may be compared with other heuristics and meta-heuristics in future
studies.
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Chapter 8
Heuristics and Meta-heuristics for Runway
Scheduling Problems

Farbod Farhadi

Abstract This chapter addresses the state-of-the-art heuristic and meta-heuristic
approaches for solving aircraft runway scheduling problem under variety of set-
tings. Runway scheduling has been one of the emerging challenges in air traffic
control as the congestion figures continue to rise. From a modeling point of view,
mixed-integer programming formulations for single and multiple dependent and
independent runways are presented. A set partitioning reformulation of the problem
is demonstrated which suggests development of a column generation scheme. From
a solution methodology viewpoint, generic heuristic algorithms, optimization-based
approaches, and a dynamic programming scheme within the column generation
algorithm are presented. Common meta-heuristic approaches that model variant
problem settings under static and dynamic environments are discussed.

Keywords Runway scheduling • Mixed-integer programming • Dynamic
programming • Optimization-based heuristics • Meta-heuristics

8.1 Introduction and Motivation

Managing challenges of aircraft operations at airports continue to escalate as the air
traffic continues to grow at a rapid pace. It has been anticipated that the number of
passengers traveling on domestic and international flights will double by year 2025
(Airport Council International). Despite the growing air traffic demands for capacity
expansions and infrastructure investments, new strategies and managerial initiatives
that best avail of existing infrastructure will continue to be part of the current and
future challenges.

In air transport system all airborne and ground-based operations converge at
runways, and therefore constitute a key bottleneck for traffic control. Extensive
study has been contributed to aircraft runway scheduling problem (ASP). The
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main parameter in scheduling aircraft on the runways is the sequence dependent
minimum separation times, given the operation type (arrival/departure) and the
aircraft size. ASP is classified as NP-hard and the computational effort is likely
to grow exponentially by the size of the problem.

Various cases of ASP are explored and substantial number of solution methods
are examined in the literature. Different settings are considered including scheduling
of landings, take offs, or mixed operations; on a single, or multiple dependent,
or independent runways; in a static, or a dynamic environment. In this chapter
we introduce the state-of-the-art methodologies in the literature for formulating
ASP, and the heuristic and meta-heuristic techniques designed to solve ASP.
Pure optimization and variations of branching algorithms, as well as dynamic
programming approaches are not within the confines of this paper and are subject to
another study.

The remainder of this chapter is organized as follows. In Sect. 8.2 we formally
introduce the ASP. Section 8.3 summarizes the existing mixed-integer programming
(MIP) mathematical formulations for different settings of ASP. Heuristic approaches
including generic heuristic, optimization-based heuristics, and a column generation
scheme are presented in Sect. 8.4. Meta-heuristic algorithms designed to solve static
and dynamic cases of ASP are introduced and briefly described in Sect. 8.5. In
conclusion, Sect. 8.6 summarizes the final remarks and possible future directions
for research.

8.2 Problem Description

Consider the set J consisting of n aircraft that are ready to be scheduled for landing
or take off on an available runway. We define set R as the set of m runways. Each
aircraft has an earliest start time feiji 2 Jg and a latest start time fliji 2 Jg which
determines the earliest and latest allowable time to schedule the operating time of
the aircraft on the runway. The variable ti is to determine the operation time of
aircraft i on the designated runway.

ASP aims to simultaneously assign aircraft from set J to m runways and sequence
the order of the operations on each designated runway. We define a binary variable
fzirji 2 J; r 2 Rg for assignment of aircraft i to runway r such that zir D 1 if aircraft
i is assigned to runway r, and zir D 0, otherwise. If a single runway case of ASP is
under investigation (i.e., m D 1), then we have fzi1 D 1;8i 2 Jg.

8.2.1 Minimum Separation Times

Aircraft operations on the runways are required to be sufficiently separated in order
to avoid the wake vortex turbulence effect. This separation is dependent on the
aircraft weight class and the aircraft operation type (arrival, departure). Aircraft are
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Table 8.1 Aircraft separation times (in seconds) following the FAA standard

Departure! Departure case Departure! Arrival case

Leading n Following Heavy Large Small Leading n Following Heavy Large Small

Heavy 90 120 120 Heavy 60 60 60

Large 60 60 60 Large 60 60 60

Small 60 60 60 Small 60 60 60

Arrival! Departure case Arrival! Arrival case

Leading n Following Heavy Large Small Leading n Following Heavy Large Small

Heavy 75 75 75 Heavy 96 157 196

Large 75 75 75 Large 60 69 131

Small 75 75 75 Small 60 69 82

categorized in different weight classes according to their maximum take off weight
(MTOW). This is the maximum weight at which an aircraft type is allowed to take
off. Different minimum separation standards are enforced in different regions of the
world. Most commonly referenced separation times are regulated by the US Federal
Aviation Administration (FAA). According to the FAA aircraft are categorized to
three weight classes: Heavy, Large, and Small. Table 8.1 summarizes the minimum
separation times based on the FAA regulations.

The separation times presented in Table 8.1 carry two important attributes.
Firstly, these separations are asymmetric. Secondly, they do not follow the triangular
inequality in certain cases, and as a result, consecutive separation times will not
guarantee the proper separation of non-consecutive aircraft in the sequence. We
define pij as the minimum separation time between a leading aircraft i and a
following aircraft j, which depends on their operation types and weight classes and
is numerically specified by a user specific standard.

8.2.2 Objective Function

In the context of scheduling problems a variety of objectives such as minimizing the
makespan, maximizing throughput, minimizing total operating time, and minimiza-
tion of total tardiness are commonly used. In solving ASP, other problem specific
objectives are proposed and examined. Sölveling et al. (2011) studied the reduction
of environmental impact. Soomer and Franx (2008) employed an equity function
using airlines’ preferences, and Boysen and Fliedner (2011) studied scheduling
aircraft landings to balance the workload of ground staff at airports. Total cost of
excess fuel burn resulted from delays was investigated in Farhadi et al. (2014).

The type of the objective function in ASP can be attractive to different parties
that are involved in the process. These parties are mainly airports, airlines, and
governments (Bennell et al. 2011). Therefore, the problem of managing runway
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operations may require the consideration of multiple, possibly conflicting, objec-
tives which can help reveal attractive trade-offs for the decision-maker. One of the
most commonly discussed objectives in the literature is the minimization of total
delays. This objective inherently has a cost reduction attribute, as minimizing the
total delays will impact the direct and indirect costs of the operations for airlines and
airports. It will also impact the total excess fuel burn that resulted from the delays
which affects the total environmental emissions, a subject that is as of importance
to the governments.

8.3 Mixed-Integer Formulations

Many studies in the literature focused on the case of scheduling landing aircraft,
such as Beasley et al. (2000), Bencheikh et al. (2009), Ciesielski and Scerri (1998),
and Liu (2011). On the other hand, Atkin et al. (2007) investigated sequencing
departures on the runways. The mixed operation (arrival/departure) case has been
explored in a number of studies such as Caprí and Ignaccolo (2004), Farhadi et al.
(2014), Ghoniem et al. (2015), and Hancerliogullari et al. (2013). A case of a single
runway is considered as in Atkin et al. (2007), Beasley et al. (2001), Caprí and
Ignaccolo (2004), and Hu and Chen (2005). Multiple runway cases are examined in
other studies, namely Hu and Di Paolo (2009), Liu (2011), and Pinol and Beasley
(2006). As far as the time horizon, many focused on static set of operations, and
Caprí and Ignaccolo (2004), Ciesielski and Scerri (1998), Hu and Chen (2005), and
Zhan et al. (2010) demonstrated dynamic cases. To introduce the MIP formulations
in this study we assume the static, multiple independent runways, mixed operation
case of ASP. The variation of runway dependency is also discussed later in this
section.

To formally introduce ASP as a MIP model, we consider a total weighted delay
to state the objective function. The weight wi is a user-defined parameter that can
control the priority of the operations. Delays are driven by the term ti � ri. Without
loss of generality, the term ri can be eliminated and the objective function will be
simplified to an equivalent objective function that minimizes the total weighted start
times as depicted in Constraint (8.1a).

Minimize
X

i2J

witi (8.1a)

We now need to assign aircraft to the runways in the set R if (m > 1).
Constraint (8.2a) ensures that each aircraft i from the arrival/departure set J is
assigned to a runway.

X

r2R

zir D 1; 8i 2 J (8.2a)



8 Heuristics and Meta-heuristics for Runway Scheduling Problems 145

Aircraft i is to be scheduled such that the time window limits are respected. Time
window is formed by the earliest start time ei, and latest start time li of each aircraft
i. Constraint (8.3a) ensures that the time window restriction is not violated.

ei � ti � li; 8i 2 J (8.3a)

The constraints that are established so far are used globally in all cases of ASP.
The scheduling constraints that sequence the aircraft that are assigned to the same
runway will alter among different formulations of ASP. In Sects. 8.3.1 and 8.3.2 we
complete modeling of ASP in three variations.

8.3.1 TSP-Based Model

Runway scheduling problem has inherent similarities to the asymmetric Traveling
Salesman Problem with Time Windows (TSP-TW). In formulating the Traveling
Salesman Problem (TSP) we avail of a binary variable x to construct the tours. In
TSP-based model of ASP, x can be adopted to determine the consecutive precedence
order of the aircraft in the sequence on each runway. Constraints (8.4a)–(8.4d)
will establish this order in the problem .J0  J [ f0g W 0is a dummy node/.
Constraints (8.4a) and (8.4b) ensure that each aircraft has only one predecessor and
one successor. Constraints (8.4c) and (8.4d) enforce assignment of only one aircraft
to the beginning of the sequence, and one aircraft to the end of the sequence at all
runways, respectively.

X

j22J0�fj1g
xj1j2 D 1; 8j1 2 J (8.4a)

X

j12J0�fj2g
xj1j2 D 1; 8j2 2 J (8.4b)

X

j2J

x0j D m (8.4c)

X

j2J

xj0 D m (8.4d)

Due to the non-triangular separation times in a general case, we need an
introduction of a binary variable y that specifies the overall precedence order of the
sequence, holding into account the non-consecutive precedence order of the aircraft.
Constraint (8.5a) identifies the aircraft that are assigned to the same runway and
determines the global position of the aircraft relative to other aircraft on the same
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runway. This binary variable is necessary to ensure sufficient minimum separation
time between the aircraft that are not consecutively positioned in the sequence order.

yij C yji � zri C zrj � 1; 8r 2 R; .i; j/ 2 J; i < j (8.5a)

Finally, we need to enforce the consecutive and non-consecutive separation times
between the aircraft pairs on the same runway. When the order of the aircraft is
identified, by enforcing the minimum separation times pij we can also compute the
start time of the operations. Constraints (8.6a) and (8.6b) together apply the proper
separations between every pair of aircraft and extract the corresponding start times.

tj � ti C pij � .1 � xij/.di � rj C pij/; 8.i; j/ 2 J; i ¤ j (8.6a)

tj � ti C pij � .1 � yij/.di � rj C pij/; 8.i; j/ 2 J; i ¤ j (8.6b)

Equations (8.1a)–(8.6b) together represent the TSP-based model of ASP. A
single runway case of TSP-based ASP model is presented in Ghoniem et al. (2014).
The proposed model is enhanced via efficient pre-processing, probing procedures,
and valid inequalities along with development of partial convex hull representation
to achieve tighter reformulations.

8.3.2 Disjunctive Models

In a disjunctive model we take advantage of the structure of the binary variable
y. In the TSP formulation, the binary variable y is introduced to determine the
overall position of the aircraft on the runway and enforce the non-consecutive
separation times. In the disjunctive formulation of ASP, we avail of the knowledge
on the aircraft position to simultaneously ensure the consecutive as well as the non-
consecutive separation times.

8.3.2.1 The Case of Independent Runways

When runways are located parallel to one another and their centerlines are separated
by a minimum distance of 4300 ft, they are considered independent. In this case
runways can operate independently. By eliminating the TSP tour construction
constraints (8.4a)–(8.4d) along with Constraint (8.6a) the TSP-based model can be
transformed to a disjunctive MIP formulation. This results in a compact formulation
of ASP by putting together Eqs. (8.1a)–(8.3a), (8.5a), and (8.6b). The static case
of mixed operation, multiple independent runway ASP is examined in Ghoniem
and Farhadi (2015) and the effects of adding valid inequalities, symmetry defeating
functions, and pre-processing routines are explored.



8 Heuristics and Meta-heuristics for Runway Scheduling Problems 147

8.3.2.2 The Case of Parallel Dependent Runways

The case of dependent runways is introduced in Beasley et al. (2000). Runways are
dependent when the centerlines are moderately distanced, between 2500 and 4300 ft
(runways located closer than 2500 ft operate as a single runway). In the case of
dependent runways, landings and take offs on different runways need to be properly
separated. We denote the separation times of aircraft on different runways by p0ij.

An auxiliary binary variable �ij is introduced to ASP where �ij D 1 if aircraft i
and j are assigned to the same runway and �ij D 0, otherwise. In order to adjust
ASP to the dependent runway case the following modifications are considered.
Constraint (8.5a) is adjusted to Constraint (8.7a). Constraint (8.6b) is adjusted to
Constraint (8.7b). Constraints (8.7c) and (8.7d) are added to ASP.

yij C yji � 1; 8.i; j/ 2 J; i < j (8.7a)

tj � ti C pij�ij C p0ij.1 � �ij/ � .1 � yij/.di � rj Cmax.pij; p
0
ij//;

8.i; j/ 2 J; i ¤ j (8.7b)

�ij � zri C zrj � 1; 8r 2 R; .i; j/ 2 J; i < j (8.7c)

�ij D �ji; 8.i; j/ 2 J; i < j (8.7d)

Multiple dependent runway case of ASP is presented by Eqs. (8.1a)–(8.3a)
and (8.7a)–(8.7d). The binary variable y now plays the role of identifying the
order of aircraft whether or not assigned to the same runway. If aircraft are on the
same runway separation p will be activated, and separation p0 will become active,
otherwise.

8.4 Heuristic Methods

Among solution techniques advised for solving ASP, heuristic algorithms are
broadly utilized either as the main approach to derive fast solutions or as an ad-
hoc feature to append to an algorithm for the purpose of extracting solutions,
initialization, or solution improvement. In this section we first review the heuristic
approaches that utilize the relaxation of MIP models to determine the solution
of ASP (Sect. 8.4.1). Other studies that propose heuristic approaches to find sub-
optimal solutions based on optimization techniques are introduced in Sect. 8.4.2.
Finally, in Sect. 8.4.3, a column generation heuristic is presented.
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8.4.1 Generic MIP Heuristics

Multiple studies avail of the relaxation of an MIP model to explore low-cost feasible
solutions to NP-hard problems which are highly costly to determine their global
optimal solution. A common strategy is finding feasible upper-bounds of the MIP
by problem specific heuristic techniques. A number of these strategies such as
relax-and-fix or dive-and-fix techniques are based on relaxation of binary or integer
variables and fixing some of the solutions to derive an upper-bound for the MIP.
Further local search or exploration strategies are applied for possible improvements.

A heuristic approach to derive an upper-bound to the MIP formulation for the
multiple dependent runway arrival ASP case is introduced by Beasley et al. (2000).
After fixing the sequencing binary variables driven by a sorting technique, this
upper-bound is used in the LP model to derive the optimal set of landing times
and the total resulting cost. In this heuristic approach aircraft are sorted in the
non-descending order of target times and are added sequentially to the runway that
provides the best possible landing time given the preceding aircraft on the runways.
Target times are a user-defined parameter that is within the time window of the
aircraft and is defined as the favored time to schedule the start time of the aircraft.
Any deviation from target is considered to be an earliness or tardiness.

Similarly, Soomer and Franx (2008) adopted the disjunctive MIP model for the
single runway arrival ASP case. Their solution approach is grounded in the fact that
if the landing sequence of the flights is given, the MIP becomes an LP formulation.
A First Come First Serve (FCFS) sequence is used to initiate multiple problem
specific local search heuristics. Two common local search methods, random swap
and random insert, are employed to modify the initial solution in case the FCFS
solution encounters infeasibility. In brief, a random swap technique is to randomly
choose two members of a sequence and swap their position. A random insert
technique is to remove a member within a sequence from its original position and
insert it to a randomly selected position.

When the FCFS sequence is generated, an initial local search is performed to
ensure feasibility of the solution. At first, new sequences are repeatedly generated,
by swapping two adjacent flights for which the earlier aircraft has a larger latest
landing time. Then new sequences are generated by swapping two adjacent flights
that their total sequence requires less separation. Further to the initialization step,
two local search schemes are introduced to improve the quality of the solution as
the following.

1. Swap neighborhood: Two aircraft .i; j/ W i < j in the sequence are selected to
swap positions if li > ej. If there is an aircraft k W i < k < j where ek < li but
ek � lj, swapping i and j will cause infeasibility. Therefore, swap .i; j � 1/ and
.k; j/.

2. Shift neighborhood: Remove aircraft i from it’s position and insert in aircraft j’s
position, where i < j and li > ej. If there is an aircraft k W i < k < j where ek < li
but ek � lj, insert i into position of aircraft j� 1 and insert k into position of j.
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After each iteration of local search, binary sequence variables yij are fixed,
therefore ASP becomes an LP. It has been shown that the schedules obtained by
the proposed methodology, yield tremendous savings compared to the FCFS with
an average of 33 % reduction in costs (Soomer and Franx 2008).

8.4.2 Optimization-Based Heuristics

Optimization-based heuristic methods are based on an optimization technique of
MIP with the addition of a single or multiple restrictions to limit the solution space.
These restrictions are introduced to the MIP as additional constraints which prune
the feasible space and restricts the solution space to a set of sub-optimal solutions to
the original MIP. In the literature it has been shown that although this technique does
not guarantee the optimal solutions, it enables the delivery of near-optimal solutions
with minimal computational effort.

For the case of single runway mixed operations, Ghoniem and Farhadi (2015)
proposed two heuristics that rely on the optimization MIP models of ASP and
compared the solutions with the traditional FCFS policy. The proposed heuristics
are as follows.

8.4.2.1 Optimized FCFS

This heuristic produces two FCFS sequences of arrivals and departures so that no
aircraft in the same queue (arrival or departure) is overtaking another. However,
the interweaving of the queues are sequenced optimally, given the time windows
and minimum separation times. The heuristic can be applied by appending Con-
straint (8.8) to the model ASP.

ti C pij � tj; 8.i; j/ 2 J; i ¤ jjei < ej; and .i; j/ 2 same queue (8.8)

8.4.2.2 Threshold-Based Sub-optimized Heuristic

The Threshold-based heuristic is a relaxed version of optimized FCFS that aims
to limit the solution space by forcing a FCFS sequence to the aircraft on the same
queue if their earliest start time are separated by more than a user-defined parameter
ı. This heuristic is applicable by appending Constraint (8.9) to the single runway
case of ASP model.

ti C pij � tj; 8i; j 2 J; i ¤ jjei C ı < ej; and .i; j/ 2 same queue (8.9)
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Optimized FCFS and the Threshold-based heuristic algorithms showed 4.3 %
and 5 % improvement in the makespan relative to the FCFS order with landing
priority when tested over simulated instances (Ghoniem et al. 2014). Along the
same line, Farhadi et al. (2014) designed two optimization-based heuristics for the
mixed operation, multiple independent runway ASP. The heuristics are described as
follows.

8.4.2.3 Optimal Runway Assignment with Joint-FCFS Sequence

This heuristic ranks aircraft based on their earliest start times ei, and assigns them
to the first available runway. Under this strategy, no aircraft is allowed to overtake
an earlier aircraft in the sequence. This heuristic can be implemented by appending
Constraint (8.10) to the multiple runway case of ASP.

ti � tj; 8.i; j/ 2 J; i ¤ jjei < ej (8.10)

8.4.2.4 Optimal Runway Assignment with Disjoint-FCFS Sequence

Under this heuristic, the assignment of aircraft to runways is optimized with the
restriction that no aircraft can overtake aircraft with the same operation type.
However, position shifts are allowed among aircraft from opposite operation type
under their time window limits. As a result, it generates a FCFS sequence within
each operation type queue but not across the queues. The proposed heuristic can be
implemented using the multiple runway ASP and by enforcing Constraint (8.11).

yji D 0; 8.i; j/ 2 J; i ¤ jjei < ej and .i; j/ 2 same queue (8.11)

The optimization-based heuristics proposed by Farhadi et al. (2014) showed very
near-optimal and optimal solutions when minimizing total fuel cost with an average
position shift of 2 per shifted aircraft in the original sequence.

8.4.3 Column Generation

ASP can be reformulated as a set partitioning model where each column represents
the set of aircraft that are assigned to the same runway. The following restricted
master problem, denoted by RMP, provides an alternative formulation for the ASP
where Qh is the column representing the subset of aircraft sequenced on the same
runway at a cost ch. Binary variable uh is the decision variable associated with each
column Qh. H denotes the total number of columns in hand.
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RMP: Minimize
HX

hD1
chuh (8.12a)

subject to
HX

hD1
Qh

i uh D 1; 8i 2 J (8.12b)

HX

hD1
uh D m (8.12c)

u binary: (8.12d)

Solving the relaxation of RMP returns the shadow prices of the current restricted
master problem with the limited on hand columns. We need a procedure to construct
new columns given the updated dual values at each iteration. To this end, we need to
formulate a subproblem that finds optimal or near-optimal columns with minimum
reduced costs. Two approaches are advised: (a) Construction of a MIP formulation
for solving the subproblem via optimization techniques and (b) utilizing dynamic
programming to find the best minimum reduced cost column.

8.4.3.1 Optimization-Based Subproblem

We can formulate the subproblem as an MIP problem. Consider the following
notation:

• �i 2 f0; 1g: �i D 1 if and only if aircraft i is selected in the column constructed
by the subproblem, 8i 2 J.

• �: vector of dual variables of the Constraint (8.12b), where � D N� represents
specific dual values obtained at a given iteration of column generation.

• �0: dual variable of the Constraint (8.12c), where �0 D N�0 represents a specific
dual value obtained at a given iteration of column generation.

The subproblem, denoted by SP. N�; N�0/, is defined as follows:

SP. N�; N�0/: Minimize
X

i2J

.witi � N�i�i/� N�0 (8.13a)

ei�i � ti � li�i; 8i 2 J (8.13b)

tj � ti C pijyij � .1 � yij/max
i2J
flig;

8.i; j/ 2 J; i ¤ j (8.13c)

yij C yji � �i C �j � 1; 8.i; j/ 2 J; i < j (8.13d)

yij C yji � �i; 8.i; j/ 2 J; i ¤ j (8.13e)

y; � binary: (8.13f)
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The objective function (8.13a) minimizes the reduced cost of the column that
is being constructed by the pricing subproblem. Constraint (8.13b) enforces a time
window on aircraft that are included in the column. Constraint (8.13c) enforces
the separation time between aircraft. Constraints (8.13d)–(8.13e) ensure that only
aircraft that belong to the column are sequenced. In this context, Ghoniem et al.
(2015) introduce accelerating schemes to the column generation iterative process;
namely, complementary column generation, and interior point stabilization. They
show that under manageable instance sizes the optimization-based subproblem can
produce very near-optimal solutions with improvement in the computation time
compared to the MIP formulation.

8.4.3.2 Dynamic Programming

Ghoniem et al. (2015) demonstrated a dynamic programming scheme to solve
the pricing subproblem of the column generation approach for ASP. Noting the
similarity between the subproblem of ASP and the Vehicle Routing Problem
with time-windows (VRPTW), problem SP is equivalent to solving an elementary
shortest path problem. Each aircraft is referred to as a node. Every pair of nodes
is connected via a directed arc whose cost equals to the minimum separation time
between the corresponding pair of aircraft.

The elementary shortest path problem seeks to find a shortest path to visit a
number of nodes by extending paths from one node to the other reachable nodes.
These paths are referred to as labels as they carry information about the cost of
the path, nodes visited, and resources consumed. Dominance rules are employed to
eliminate the inferior labels at each iteration. Each node appears on a path at most
once. The algorithm terminates when no new label is available.

Path Extension and Dominance Rules

In the algorithm a dummy origin o is considered where co D � N�0 and to D 0. A
path is extended from the origin to all other reachable aircraft. If we extend a path �
from origin to aircraft i then we have ci.�/ D � N�0C .witi� N�i/. The operation time
ti will be computed according to the ei and the minimum separation time with the
preceding nodes. Reachable aircraft from i are updated so that in case of extension
of the path to the available aircraft the time window restrictions are not violated.

When two distinct paths are extended to a particular aircraft, the dominance rule
will be applied to eliminate the inferior path. If no path is proven to be inferior,
all paths will be kept at each iteration. This step is necessary to reduce the size
of the problem and increase the tractability of the paths. At node i a path �1 is
inferior to �2 if and only if all of the following criteria apply: (a) ci.�1/ � ci.�2/, (b)
ti.�1/ � ti.�2/, and (c) Ei.�1/ 	 Ei.�2/, where Ei.�1/ is the set of reachable aircraft
of path �1 from aircraft i.
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It is worth noting that generic dynamic programming schemes for shortest path
problems base the procedure on the assumption that triangular inequality holds for
arc costs. However, in ASP if FAA separation times are utilized the dominance
rules will no longer apply. To this end, Ghoniem et al. (2015) form a modification
to the dominance rules by identifying exceptions in the calculation of the path costs
to cope with the non-triangular values in separation times. In the study it is shown
that dynamic programming scheme has great computational advantage over the MIP
model.

8.5 Meta-heuristics

In this section we present the meta-heuristic algorithms studied in the literature to
solve various cases of ASP. Section 8.5.1 describes a generic scheme of genetic
algorithms and discusses a number of studies that utilize this approach.

8.5.1 Genetic Algorithms

One common approach in the literature to solve ASP is genetic algorithms (GA).
Many variations of GA have been designed and studied with different approaches
towards modeling the problem under the GA setting, with variety of GA operators
which are used to update the solution space. In GA a pool of solutions are produced.
Each solution is referred to as a chromosome. The chromosome consists of a series
of genes that hold information about the solution. An objective function of choice
is designed to evaluate the fitness of each chromosome. Probability functions are
used to randomly select fitter chromosomes. The selected chromosomes (parents)
are combined by a rule defined by a crossover operator. Parents mate based on the
random functions in the crossover operator to give birth to a single or multiple
offspring (children). Offspring will have a fitness value of their own. The quality
of the offspring are improved by a mutation operator. Offspring are compared to
the current generation and the inferior chromosomes are eliminated. This procedure
is continued until no improvement can be achieved in the fitness or a termination
criterion is met. A general scheme of a GA operation is depicted in Algorithm 1 as
follows.

The quality and the convergence of the GA depends highly on the design of the
chromosome (encoding phase) and the design of the random operators. A variety of
approaches are used to encode ASP for GA. The approaches vary for single runway
case and multiple runway case. In this section we review multiple studies that take
different approaches towards the GA implementation of ASP.

Beasley et al. (2001) take a different approach towards ASP. Encoding is based
on a proportion value �j for aircraft j which defines the start time of the aircraft
based on the percentage distance from the ready time [Eq. (8.14a)]. The fitness
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Algorithm 1 Genetic algorithm scheme
1: Generate the initial population
2: Compute the fitness
3: while Termination criterion is not met do
4: Parent selection operator: Randomly select parents based on relative fitness
5: Crossover operator: Mate the parents and create offspring
6: Mutation operator: Improve the quality of the offspring
7: Population replacement
8: end while

function is a nonlinear squared earliness or tardiness. A measure of unfitness is also
presented relative to the violation from the separation times and infeasibility. Parent
selection is a binary tournament selection. Crossover operator is a uniform crossover
function where the genes in the child are taken from one or other parent chosen at
random. Population replacement makes use of the unfitness and fitness values where
it eliminates the inferior member based on fitness and unfitness. The GA was tested
on an instance size of 20 aircraft driven from real life airport observation. Average
delays were decreased by 2.16 % relative to the actual operating times.

tj D rj C �j.dj � rj/ (8.14a)

A different strategy has been devised by Liu (2011) to encode the chromosomes
on the multiple runway case. In this study, a chromosome is a string with the length
of arrival queue. The genes imply the runway index that is assigned to the
corresponding aircraft. Runway assignment is random. The fitness function is the
squared deviation of landing time from the earliest possible landing time. Mutation
is a random swap of the genes, which are the designated runways.

8.5.1.1 GA for the Dynamic Case

It is worth adding that GA also has been employed to solve the ASP under dynamic
environment where the problem set changes dynamically over time as the new
aircraft enters the queue of arrivals or departures and the aircraft that already
operated are removed from the queue. Hu and Chen (2005) introduced the Receding
Horizon Control (RHC) to the single runway arrival ASP. Receding horizon consists
of a number of time intervals. A time interval is a randomly selected constant value
that divides the time space into uniformly distant spaces. The algorithm performs
on a receding horizon. The decisions are fixed in the first time horizon as it exits the
receding horizon and the new time interval enters, sequentially.

In this study, they encoded each chromosome by defining a possible landing
sequence. The fitness function is the airborne delay of the possible landing sequence
and a terminal penalty, which assesses the influence of the current landing sequence
on those aircraft outside the receding horizon. The mutation operator is a random
swap of genes adjusted in a way that the closer pairs of aircraft are more likely
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to swap positions. Hu and Di Paolo (2009) extended the GA with RHC to the
multiple runway case. The encoding system is based on a n2 matrix system where
the diagonal values represent the runway assignment and other entries define the
aircraft sequence.

In contrast, Ciesielski and Scerri (1998) used an 8 bits chromosome that
represents a landing time (7 bits) and a runway. The study defined time intervals
and in the encoding procedure deletes planes that have landed and adds planes
that have recently arrived. In another study by Caprí and Ignaccolo (2004), a
dynamic environment for the single runway arrival case is investigated. In this
paper, each chromosome encodes the aircraft index in the order of the arrival queue.
Crossover operates on genes that are identified by a randomly generated binary
string consisting of 0,1 values. They utilized that in two ways: either move the genes
of a parent matching the position of 1 values on the string, or fix the parent genes
matching the 1 values and move the rest.

8.5.2 Ant Colony Optimization

ASP can be formulated as an ant colony optimization problem (AC). AC is a
probabilistic meta-heuristic approach which was originally introduced to solve
shortest path problem in a graph. In AC a solution is constructed based on the
random moves of an ant that leaves the origin and selects to traverse an edge to
get to the next node based on a random state transition rule. The state transition
rule is composed of two values, the attractiveness and the pheromone level. State
transition rule is defined as Eq. (8.15a). Under this rule if a random value q is less
than a predefined random value q0 then the edge with the highest combination of
priority and pheromone level will be chosen. An edge will be randomly selected
based on the probability values Pij otherwise. The probability rule to choose the
edges is calculated by Eq. (8.15b). ˛ and ˇ are control parameters.

.i; j/ D
(

arg maxk2allowedj

n
�˛ij 


ˇ
ij

o
q � q0(exploitation)

Select randomly by Prij otherwise (exploration):
(8.15a)
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�˛ij 


ˇ
ij

P
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�˛ik

ˇ
ik

(8.15b)

The attractiveness (priority) of the edge 
ij is calculated by a problem specific
heuristic. The trail pheromone level �ij starts at an initial value and is updated at each
iteration by a pheromone evaporation coefficient and the quantity of pheromone left
on the trail by the colony. The pheromone updating rule is defined as Eq. (8.16a).
' is the pheromone evaporation coefficient. Equation (8.16b) calculates the amount
of pheromone deposited on an edge after all ants completed the solution. � is a
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Algorithm 2 Ant colony optimization scheme
1: Initialize the matrix of �ij and 
ij

2: Initialize state transition probabilities Pij

3: for Each ant in the colony do
4: Select starting point
5: while List of candidate edges is not empty do
6: Select edges according to state transition rule
7: end while
8: Break if the termination criterion is met
9: Update the pheromone trail

10: Update the state transition rule
11: end for

constant and C can be selected heuristically which is mostly the cost of the solution
in the given iteration. The cost of the generated solutions can be evaluated with an
objective function of choice.

�ij  .1 � '/�ij C��ij (8.16a)

��ij D
�
�=C if edge .i; j/ is visited
0 otherwise:

(8.16b)

The general scheme of AC algorithm is depicted in Algorithm 2.
Bencheikh et al. (2011) adapted AC for the multiple runway landing ASP case.

They present a bi-level graph. In the first level, the available runways are selected
and in the second level the aircraft are determined. The probability rule for runway
selection mechanism is according to the availability time to receive new aircraft.
Aircraft selection follows the state transition rule where the priority information
is driven from the earliest landing time, target time, and the corresponding cost
penalty.

Zhan et al. (2010) extended the static single runway arrival ASP to a dynamic
case using RHC. Algorithm is performed on the entire horizon, but only decisions
made for the first time interval are fixed. In another study, Bencheikh et al. (2009)
used AC in a hybrid algorithm. AC is utilized to produce the initial population, and
feed a GA that updates the solution pool derived by the AC algorithm. In this study,
priority rules depend on two parameters: separation times and the difference of the
aircraft target times. The improved AC algorithm is tested on the small benchmark
instances of OR-Library and produces optimal and near-optimal solutions.

8.5.3 Simulated Annealing

Simulated annealing (SA) is a direct probabilistic meta-heuristic with no memory.
At each iteration, SA considers some neighbors of a current state, and decides
between moving the system to the new state or staying in the same state. Since
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Algorithm 3 Simulated annealing scheme
1: Generate a random solution s
2: Calculate the current state cost f
3: while Termination criterion is not met do
4: Generate a random neighborhood s0

5: Calculate the new state cost f 0

6: if f 0 better than f then
7: Accept f 0

8: else
9: Let �f D f 0 � f

10: if e��f=T > Random.0; 1/ then
11: s s0

12: end if
13: end if
14: end while

SA directly evolves from an initial solution, the quality of the final solution highly
depends on the initial solution construction scheme and the design of the local
search schemes. When better solutions are generated, SA accepts the new state
directly. However, SA also allows inferior solutions to replace the current state with
a probability rule. This feature enables SA to escape local optimal solutions. The
probability of accepting a move, which causes a change�f in the objective function,
is called the acceptance function and is depicted in Eq. (8.17a).

e��f=T > Random.0; 1/ (8.17a)

T is a control parameter corresponding to the temperature in the analogy with
physical annealing. When T is high, most moves will be accepted, but as T
approaches zero most moves will be rejected unless they produce better objective
function values. Usually, the SA begins with high values of T in order to avoid local
optimum solutions. The temperature gradually drops while the algorithm reaches
the final iterations (cooling process). The SA scheme can be summarized as in
Algorithm 3.

Salehipour et al. (2013) introduced a SA algorithm to solve the multiple runway
arrival ASP. The initial solution is constructed by sorting aircraft by ready times and
assigning consecutive aircraft to different runways if their distance is less than their
separation time. Aircraft are assigned to the same runway of otherwise. They used a
variable neighborhood descent and a variable neighborhood search for intensifying
and diversifying the solution. Three improvement rules are implied. A random swap
within a runway, random swap among runways, and a random insert which removes
aircraft from one runway and inserts to another. SA algorithm offered in this study
is tested on the OR-Library instances and demonstrates fast convergence to optimal
solutions with short computation time on the instances with 50 aircraft and less. For
most of the larger instance sizes the SA converges within a manageable time and the
quality of the solutions are comparable to that of a Cplex commercial solver with
1000 s of CPU time.
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Algorithm 4 Meta-RaPS scheme
1: Calculate the priority value for all elements i in the set
2: for I iterations do
3: while Set of candidates is not empty do
4: Select a candidate i to add to the solution
5: if Random.0; 1/ < pp% then
6: Add i to the solution using a greedy heuristic
7: else
8: Randomly select j from the candidate list where priorityi � .prioritybest/rp%
9: Add j to the solution using a greedy heuristic

10: end if
11: end while
12: Calculate the fitness of the solution f
13: if f < fbest C .fworst � fbest/ip% then
14: Implement a local search heuristic to improve f
15: end if
16: Record the solution
17: end for
18: Report the best solution

In a similar work, Fahle et al. (2003) presented an SA algorithm for single runway
arrival ASP where a solution is represented only by the order in which the planes
should land. All possible permutations are allowed. A penalty function for infeasible
(illegal) solutions is added to the algorithm to avoid infeasible states.

8.5.4 Meta-RaPS

Meta-heuristic for Randomized Priority Search (Meta-RaPS) has two main stages:
a solution constructor, that generates solutions using a greedy heuristic, and a local
search heuristic, that improves the solutions. The Meta-RaPS algorithm consists of
four parameters: number of iterations I, the priority percentage pp%, the restriction
percentage rp%, and the improvement percentage ip%. For I iterations, Meta-RaPS
constructs feasible solutions, improves them through a local search heuristic, and
selects the best solution upon termination. During each greedy solution construction
phase, the parameter pp% is used to determine whether to add the next best element
according to its priority value to the solution. The priority value is calculated by a
user-defined method for all elements of the set. If the priority rule fails, the next
element is randomly chosen from the feasible elements whose priority values are
within rp% of the best priority value. After completing the solution construction,
local search heuristic is applied for improvement if the fitness of the solution is
within the ip% of the best fitness value found so far. A summarized scheme of
Meta-RaPS is shown in Algorithm 4.

Meta-RaPS is applied to the case of multiple runway mixed operations ASP in a
study by Hancerliogullari et al. (2013). In this paper three heuristics are proposed
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to calculate the priority values when selecting candidate elements of the set. The
first heuristic resembles the FCFS rule. In the second heuristic a priority value is
measured by a weighted factor of earliest time, target time, latest time, and the
separation time. The third heuristic combines these parameters in an exponential
manner. A simulated annealing algorithm is also designed to be examined along
with the Meta-RaPS. It is observed that over randomly generated instances of up
to 25 aircraft and 5 runways optimal and near-optimal solutions are achieved with
minimal computational effort. The quality of the proposed SA is relatively better
than the Meta-RaPS when the same greedy algorithms are considered for initial
solutions.

8.5.5 Tabu Search

Tabu search (TS) is an extension of the local search methods that keeps short
memory. It has been developed to hedge against one of the short comings of local
search algorithms, getting stuck in a local optimal solution. Similar to SA, TS has
a feature to avoid similar circumstances. In a TS algorithm, an initial solution is
generated and a number of the neighbors of the solution are explored by random
local search heuristics such as swap, or insert. The neighbors are examined for
their quality and feasibility. The best solution is selected to become the next initial
solution. Moreover, a list of the movements are recorded, including the movements
that resulted infeasibility. This list is defined as the Tabu list and will prohibit the
local search from making the exact moves again. Older memories will be discarded
after an appointed time. This feature enables TS from avoiding cycles and local
optima. The TS scheme is depicted in Algorithm 5.

Atkin et al. (2007) designed and implemented a TS algorithm for a single runway
departure ASP. In this study, they introduced the concept of holding patterns to the
departure scheduling. Holding points are entrance queues to the departure stream.
Aircraft go through holding points to get to the runways. An allocation heuristic is

Algorithm 5 Tabu search scheme
1: Initiate the Tabu list
2: Generate a random solution s
3: Calculate the current state cost f
4: while Termination criterion is not met do
5: Generate a set of random neighborhoods of s
6: Update the Tabu list
7: Eliminate the neighbors that include Tabu movements
8: Find the best neighbor s0 with minimum cost f 0

9: if f 0 < f then
10: s s0 and f  f 0

11: end if
12: end while
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Algorithm 6 Scatter Search and Bionomic Algorithm scheme
1: Generate the initial population (Reference set)
2: Improve all members through local search
3: while Termination criterion is not met do
4: Elite set selection: Select a subset of the best members from the Reference set
5: Solution combination: Generate new solutions from the members of the Elite set
6: Improve all new members through local search
7: Update the Reference set
8: end while

designed so that it allocates slower paths to aircraft that are overtaken and faster
paths to aircraft that overtake. By this heuristic aircraft in the departure stream can
change positions. For initialization, aircraft are in the order at which they arrived at
the holding points. Several random swapping strategies are developed to explore
the solution space. In this study the best feasible candidate neighbor that does
not involve a tabu move is set as the new initial solution even if it is inferior to
the last initial solution. The algorithm is tested on real time data sets consisting
approximately 300 aircraft. Significant improvements are achieved in the total cost
and total delay compared to the actual order and actual times.

8.5.6 Scatter Search and Bionomic Algorithm

Most of the population heuristic algorithms such as GA utilize random operating
procedures to execute different phases of their iterative search, namely the initial-
ization, exploration and exploitation, parent selection, and generating new solutions.
Scatter Search (SS) and Bionomic Algorithm (BA) use discrete operators for
selecting good candidates and generating new solutions based on the current state
of the population. A general description of SS and BA is depicted in Algorithm 6.

In the SS and the BA initialization phase generation of the first population is
random with the inclusion of seed solutions. In the subset selection phase (parent
selection) two or more candidates are selected among the best members of the
reference set. These best candidates are not necessarily the fittest in terms of their
objective value. If a member improves the diversity of the reference set it may
be considered a best candidate. Solution combination (parent mating) phase is
structured as a convex or non-convex combination of solutions in the selected subset.
The local improvement procedure is applied to all individuals. SS and BA attempt
to maintain a diverse set of high quality solutions (the elite set) at all iterations and
generate weighted centers of selected sub-regions.

Pinol and Beasley (2006) examined SS and BA on the multiple runway arrival
ASP. In the SS algorithm, parent selection procedure is a binary tournament
scheme based on individual fitness. The number of the parents is set to be three.
The presented BA utilizes a distance measure in addition to the fitness value for
construction of the elite set. This distance measure for every pair of aircraft is set
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to 1 if aircraft are on different runways and is computed as the absolute difference
of the proportion values (see Sect. 8.5.1) of the pair otherwise. Solutions from the
reference set which have greater distance are considered for the elite set. This
strategy ensures the diversification of the BA algorithm. A convex combination
of members of elite set is used to generate new members. The weights are fixed
randomly. The SS and the BA achieved 3.4 % and 2.9 % gap, respectively, to the
best known solution for the large instances of OR-Library with a nonlinear objective
function.

8.6 Conclusion and Further Remarks

This paper addressed heuristic and meta-heuristic algorithms for solving ASP
under variety of settings. ASP can be classified under several distinguishing
parameters of the problem such as number of the runways (single/multiple),
type of the runway setting (dependent/independent), type of the operations on
the runway (arrival/departure/mixed-operation), and type of the decision horizon
(static/dynamic). A general MIP structure for ASP can be modeled based on
a TSP, or by presenting a disjunctive variable to determine the order of the
aircraft on the designated runways in a general mixed-operation multiple runway
setting. This problem also can be reformulated as a set partitioning problem that
requires a column generation scheme to explore the solution space. ASP aims to
simultaneously assign aircraft to an available runway and sequence the operations
so that the time window restrictions are not violated and minimum separation times
are respected.

ASP is in the class of NP-hard problems and therefore an optimization procedure
to find the global optima can be computationally burdensome. Several heuristic
and meta-heuristic schemes, with greater attention to arrival scheduling under static
decision space, has been proposed in the literature. A number of studies proposed
random local search heuristics that are initiated from heuristic or greedy sorting
algorithms such as FCFS. Utilization of MIP model and generation of sub-optimal
solutions by appending constraints to prioritize the operations was found to be an
efficient approach to find very near-optimal solutions with minor position shifts
from the original order.

As far as the meta-heuristic schemes, genetic algorithms have been widely
used for both cases of static and dynamic ASP. Different approaches towards
encoding the problem have been advised. However, the random operators are
commonly shared, with minor adjustments. Generally, the genetic algorithms are
observed to be efficient in finding good quality solutions within a manageable
time. Simulated annealing, Meta-RaPS, and Tabu search meta-heuristics are the
next common approaches for solving ASP. The computational time and solution
quality driven from these algorithms are competitive. As it has been examined,
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substantial improvements are achievable in delay and cost reduction compared to
the commonly applied FCFS order. The quality of the solution in these algorithms
is highly impacted by the parameter calibration.

Further investigation of branching schemes and utilization of hybrid meta-
heuristic algorithms with more emphasis on departure scheduling and dynamic
decision space is suggested.
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Chapter 9
A Tabu Search Algorithm for the Multiple
Runway Aircraft Scheduling Problem

Bulent Soykan and Ghaith Rabadi

Abstract Runways are typically identified as the primary bottleneck of the airport
operations system that causes delays. Hence, operational efficiency of runways
constitutes a critical factor for the overall air transportation system. Multiple
Runway Aircraft Scheduling Problem involves assigning both landing and taking-
off aircraft to runways, sequencing them on each runway and assigning each
aircraft a landing or take-off time while considering predetermined time windows
for each aircraft to land or take-off. Also, sequence-dependent separation times
between each aircraft pair in the sequence need to be taken into account in order
to avoid wake vortex (turbulence) effects which can pose a hazard caused by
preceding aircraft. Several variations of this combinatorial optimization problem
are researched extensively in the past decades and a wide variety of algorithms have
been proposed for small-scale problems. However, from a practical point of view
large-scale real-life problems require fast response times and remain challenging
computationally. This chapter aims to present a Tabu Search (TS) algorithm for the
static (offline) case of the problem, where all information of aircraft is known in
advance. Also, computational results for the proposed algorithm are presented for a
number of benchmark instances obtained from literature.

Keywords Aircraft scheduling • Runway scheduling • Tabu search • Meta-
heuristics

9.1 Introduction

As the demand for air transportation continues to increase throughout the world,
the air traffic volume in major airports approaches to the capacity of the airport
infrastructure. Runways are typically identified as the primary bottleneck in the
airport infrastructure that causes delays and the capacity of an airport heavily
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depends on the runways in use. Therefore, high volume air traffic results in
runway congestion, and consequently long queues for land and take-offs, fuel
costs, and environmental impacts. Although one may think that investing in airport
infrastructure can solve the problem, most of the time it is neither practical nor
feasible. The lack of physical space for new runways at most major airports coupled
with newly promulgated environmental restrictions prevent adding more runways
to increase the capacity. As a result, it is significantly important to effectively and
efficiently utilize runways to increase the overall capacity of the airports and to
smooth the flow of air traffic. To accomplish this, fast and efficient algorithms are
required for scheduling aircraft over runways as part of decision support systems
used by air traffic controllers.

The Multiple Runway Aircraft Scheduling Problem (MRASP) is a decision-
making problem in which aircraft must be assigned to runways, sequence the
assigned aircraft on each runway and then determine each aircraft’s start time
(landing or take-off). The objective of the problem in this study is to minimize
the total tardiness while considering certain operational restrictions, such as time
windows and separation requirements. Once each aircraft enters the radar range
for landing or pushbacks from the gate for take-off, air traffic controllers assign
a runway and a start time to land/take-off. The start time has to be between
predetermined earliest and latest land/take-off time. Also there is a target time
to land/take-off within this time window, which is the time that aircraft can land
if it flies at its cruise speed for landing and the most probable time for take-
off considering the taxi and holding times for take-off. Separation requirements
between both landing and taking-off aircraft, which make the problem a non-trivial
one, need to be taken into account due to the safety reasons associated with wake
turbulence. Rigorously scheduling the aircraft over runways have potential to reduce
the sum of all separation times between aircraft.

Considering its similarities to production scheduling problems, the MRASP is
usually mapped to identical parallel machine scheduling problem with sequence-
dependent setup times problem, which is NP-Hard for most objective functions
(Garey and Johnson 1979). The problem can be formulated as a mixed integer
programming (MIP) model, a set partitioning model or as asymmetric traveling
salesman problem with time windows. Due to problem complexity, exact solution
methods are in general not capable of solving practical problem sizes. One of the
main alternative solution methods for solving NP-Hard problems is metaheuristics.
Given computational complexity of the MRASP, a Tabu Search (TS) metaheuristic
algorithm, is proposed to find solutions of the problem.

The overall aim of this chapter is to solve the problem of combined aircraft
arrival/departure aircraft scheduling problem over multiple independent runways
using a TS algorithm. The effectiveness of the proposed approach is tested on
a number of benchmark instances obtained from literature. To the best of our
knowledge, this is the first attempt in the literature to apply TS method to MRASP.

The remainder of the chapter is organized as follows. Next section provides
a formal description of the MRASP, including the mathematical formulations.
Section 9.3 describes an overview of what was gleaned from the literature review.
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Section 9.4 explains the underlying principles of the TS algorithm developed for
the MRASP. Section 9.5 summarizes the experimental design and the results of
the numerical experiments. Section 9.6 contains the summary and conclusions
including plans for future work.

9.2 Description and Formulation of the Problem

MRASP is a large-scale scheduling problem that consists of a three-step process.
The first step involves allocating aircraft to different runways, the second includes
sequencing the aircraft allocated to each runway, and the third step is to determine
the start time for each aircraft. This problem arises usually at busy airports where
runway utilization needs to be optimized to prevent delay related costs. Given a
number of aircraft with their time windows for land or take-off and separation times
required for each pair of aircraft and a set of runways, the objective of MRASP is
to minimize the total weighted delay (or tardiness), which is calculated as the non-
negative difference between the start time and the target land/take-off time for each
aircraft.

The start time of each aircraft depends on a predetermined interval called time
window, constrained by an earliest and latest land/take-off time. The earliest land
time corresponds to the time at which the aircraft could land if it uses its fastest
speed. Within the time window, there is a target time which relates to the time that
aircraft could land if it flies at the most economical speed.

The other major operational constraint that needs to be taken into account is the
problem of wake vortex (turbulence), which is associated with aircraft performance
characteristics. Aircraft passing through the air generate turbulence in their wakes,
and this turbulence can persist for nearly 1–2 min or even longer after the aircraft
has passed. Previous experiences have shown that this turbulence from an aircraft
can pose a hazard to encountering aircraft. The magnitude of the wake vortex
depends on the weight of the aircraft generating it and operation type of the leading
and trailing aircraft. The Federal Aviation Administration (FAA) safety regulations
enforce minimum separation times between aircraft to prevent collision and ensure
air traffic flows safely. The minimum separation times enforced by FAA depend
upon the operation type (land/take-off) and the size of the leading and the trailing
aircraft. These minimum separation times are presented in the Table 9.1.

As Table 9.1 shows, minimum separation times are asymmetric, where the
sequence of operations determines the actual separation times. Therefore, generat-
ing efficient aircraft schedules by exploiting the asymmetric separation times have a
potential to increase runway utilization and delay reduction. However, the existence
of asymmetric separation times between aircraft makes this scheduling problem
much more difficult.

From an air controller’s view the easiest and useable scheme for scheduling
aircraft over runways is through the first-come-first-served (FCFS) order. For the
landing aircraft this order will be based on the order they enter the radar range and



168 B. Soykan and G. Rabadi

Table 9.1 Minimum separation times in seconds (FAA standard)

Departure!Departure Departure!Arrival
Lead/Trail Heavy Large Small Lead/Trail Heavy Large Small

Heavy 90 120 120 Heavy 60 60 60
Large 60 60 60 Large 60 60 60
Small 60 60 60 Small 60 60 60
Arrival!Departure Arrival!Arrival
Heavy 75 75 75 Heavy 96 157 196
Large 75 75 75 Large 60 69 131
Small 75 75 75 Small 60 69 82

on the order of the aircraft queueing at the holding area for the taking-off aircraft.
However, most of the time FCFS is not capable of providing the best schedule for
runway utilization (Capr and Ignaccolo 2004).

The MRASP has been typically classified into two different categories: static
(offline) and dynamic (online) case. The static case is solved before actual oper-
ations with known or predicted information, while the dynamic case is solved to
generate schedules in real time. The most common researched model in the literature
is the static (offline) case where all data including ready times, target times, and
due times are assumed to be known beforehand and can be taken into account in
the process. On the other hand, in the dynamic (online) case all these data become
known only when an aircraft is ready to land or take-off. Unlike the static case,
modeling approaches for dynamic case requires some additional considerations
about which aircraft to reschedule and when to reschedule the sequence of the
aircraft.

The MRASP can be viewed as an identical parallel machine scheduling problem
in which “aircraft” and “runways” represent “jobs” and “machines,” respectively.
Classical parallel machine scheduling problem consists of assigning a number of
jobs on a set of parallel machines with given release time, start time, and latest
finish time for each job and sequence-dependent setup times that are based on the
completed job and its succeeding job. The mapping of the identical parallel machine
scheduling to MRASP relies on the following assumptions:

• If an aircraft begins to land or take-off, it cannot be interrupted by another
aircraft.

• One aircraft is at most allowed to land on or take-off from each runway at any
time.

• Runways are available and reliable at all times.
• Any aircraft can land on or take-off from at most one runway at any time.

In the literature the three term notation, ˛ j ˇ j � , is adopted, which is proposed
by Graham et al. (1979) as the classification scheme for scheduling problems. In
three term notation ˛ indicates the machine environment, ˇ describes the job and
the resources characteristics, and � defines the objective function to be minimized.
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As a result, the MRASP is denoted by Pmjsij,twj˙wjTj where Pm denotes parallel
machine scenario; sij, denotes sequence-dependent times between aircraft i and
j, respectively, tw denotes time windows, and the objective is to minimize total
weighted tardiness cost.

Different objectives are utilized in the literature considering different stakehold-
ers’ point of view, such as air traffic control system, airline companies, and airport
management. Among these objectives the most commonly used ones are minimizing
total tardiness (total delay), total earliness and tardiness (total deviation from the
target time), and makespan (start time of the last aircraft). The total weighted tar-
diness is capable of addressing different stakeholders’ needs by measuring the cost
of delay that is a function of the length of delay multiplied by the weight (penalty)
value related to each aircraft. Even the problem of single machine scheduling with
total tardiness objective function is Non-deterministic Polynomial-time Hard (NP-
Hard), i.e., it is unlikely that there can be developed a polynomial-time algorithm for
finding an optimal schedule. The computational complexity of the identical parallel
machine scheduling problem with total weighted tardiness objective function is
therefore NP-Hard. Since exact algorithms require long computation times, different
heuristics and metaheuristics are commonly employed to find near optimal values
in shorter amounts of time. Therefore, this justifies the use of metaheuristics over
exact methods for solving the MRASP.

9.2.1 Mathematical Programming Formulations

The literature presents two mathematical programming formulations for the prob-
lem. The first is a 0-1 MIP formulation and the second is a set partitioning
formulation. Before presenting these formulations, the notation used throughout the
chapter is shown below.

M: set of m independent runways, MDf1,2, : : : , mg
N: set of n aircraft, NDf1,2, : : : , ng
P: set of all feasible columns
i,j: aircraft indices
r: runway index
p: column (sequence of aircraft) index
rj: ready time for aircraft j
ıj: target time for aircraft j
dj: due time for aircraft j
Oj: operation type of aircraft j
Cj: class of aircraft j
wj: weight (penalty) value assigned to aircraft j based on its operation type and

class
sij: Sequence-dependent separation time between aircraft i and j
ap

j : 1 if aircraft j is covered by column p, 0 otherwise
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Decision Variables:

tj: start time of aircraft j
Tj: piecewise tardiness of aircraft j with respect to ıj

zjr: 1 if aircraft j is assigned to runway r, 0 otherwise
yij: 1 if aircraft i and j are assigned to the same runway and tj > ti (8i; j 2 N; i¤ j),

0 otherwise
xp: 1 if column p is involved in the solution, 0 otherwise

The MIP formulation that is given below for the MRASP is based on the
formulation presented in Al-Salem et al. (2012) (the main difference from the MIP
formulation presented by Beasley et al. (2000) is that two auxiliary binary variables
are merged into one; one related to precedence on the same runway and the other
related to whether aircraft pair are assigned to same runway.

min:
X

j2N

wjTj (9.1a)

s: t:
X

r2M

zjr D 1 8j 2 N (9.1b)

1 �
X

j2N

zjr �
l n

m

m
8r 2 M (9.1c)

rj � tj � dj 8j 2 N (9.1d)

tj � ti C sij �
�
1 � yij

� �
di � rj C sij

� 8i; j 2 N; i ¤ j (9.1e)

yij C yji � zir C zjr � 1 8r 2 M; 8i; j 2 N; i ¤ j (9.1f)

Tj � tj � ıj 8j 2 N (9.1g)

0 � Tj � dj � ıj 8j 2 N (9.1h)

zjr; yij 2 f0; 1g 8r 2 M;8i; j 2 N (9.1i)

The objective function (Eq. 9.1a) is to minimize the total weighted tardiness.
The constraints in Eq. (9.1b) ensure that each aircraft land on or take-off from
exactly one runway. The constraints in Eq. (9.1c) are load-balancing constraints to
enforce lower and upper bounds on the number of aircraft. The constraints (Eq. 9.1d)
guarantee that each aircraft land or take-off within its time windows. The constraints
(Eq. 9.1e) ensure the required separation times between any pair of aircraft. The
constraints in Eq. (9.1f) actuate the sequencing variables between any pair of aircraft
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that are assigned to the same runway. With the help of the constraints in Eq.
(9.1f), the constraints in Eq. (9.1e) enforce separation only between aircraft that are
assigned to the same runway. The constraints (Eq. 9.1g) specify aircraft tardiness,
with respect to target times. The constraints in Eq. (9.1h) enforce non-negativity
restrictions and upper bounds on aircraft tardiness. The constraints (Eq. 9.1i) define
the binary decision variables.

The alternative mathematical programming formulation for MRASP is a set
partitioning model. A set partitioning model aims to partition all elements into a
number of subsets and each binary variable (column) represents a subset of elements
defined by the coefficients. In MRASP, each column p represents a feasible sequence
of aircraft with an aggregated cost. The set partitioning formulation, which is based
on Ghoniem et al. (2015), is given below:

min:
X

p2P

0

@
X

j2N

wjtja
p
j

1

A xp (9.2a)

s: t:
X

p2P

ap
j xp D 1 8j 2 N (9.2b)

X

p2P

xp D m (9.2c)

xp 2 f0; 1g (9.2d)

The objective function (Eq. 9.2a) minimizes the total weighted tardiness. The
constraints in Eq. (9.2b), which are the set partitioning constraints, ensure that each
aircraft is assigned to exactly one runway. The constraints in Eq. (9.2c) guarantee the
limit on the number of the runways and constraints in Eq. (9.2d) are the integrality
constraints on the decision variable xp. The set partitioning problem is one of the
first problems shown to be NP-Hard, therefore, no polynomial-time algorithm is
likely to exist for this formulation either.

It is noteworthy to mention that each column p does not give the information
related to the order of aircraft in that sequence. For large-scale problems it is
computationally impractical to enumerate all columns.

9.3 Literature Review

Since 1960s, and especially in the past two decades, a considerable number and
variety of research have dealt with aircraft scheduling on runways and a great deal
of effort has been directed towards the development of solution algorithms for the
problem.
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Bennell et al. (2011, 2013) have provided a comprehensive review for airport
runway scheduling. They indicated that several techniques have been formulated
to solve runway scheduling problems and the main solution techniques include
dynamic programming, branch-and-bound, heuristics, and metaheuristics. The solu-
tion methods for runway aircraft scheduling problems can be classified as: exact and
heuristic algorithms. Exact algorithms, such as Branch-and-Bound, and dynamic
programming guarantee optimal solutions, but they are extremely computationally
intensive for large problem instances. On the other hand, heuristic algorithms
generate solutions quickly but are not guaranteed to be close to the optimum and
their performance is often evaluated empirically. Heuristic algorithms are usually
classified as construction heuristics and improvement heuristics. Heuristic search
methods, such as TS, Simulated Annealing (SA) are examples of the improvement
heuristics.

Abela et al. (1993) studied the aircraft landing problem with a single runway and
proposed a Branch-and-Bound algorithm based on a 0-1 MIP formulation. Ernst
et al. (1999) also considered the single runway aircraft landing problem and pointed
out that the single runway problem could be extended to multiple runways. They
suggested a Branch-and-Bound algorithm and a genetic algorithm (GA). Beasley
et al. (2000) addressed the landing problem, and proposed a MIP formulation and
solved it by a technique based on the relaxation of binary variables by adding
additional constraints. They also presented an effective heuristic algorithm.

Bianco et al. (2006) carried out a study examining the incorporation of a practical
consideration which consists of constraining the set of feasible positions in the
sequence for the new aircraft to prevent too much perturbation to the schedule.
Artiouchine et al. (2008) proposed an approach based on a general hybrid Branch-
and-Cut framework and used Constraint Programming and MIP, to solve the single
runway problem with arbitrary time windows. Soomer and Franx (2008) studied a
collaborative strategy where airlines assign a cost function for each of their flights
and these cost functions are scaled per airline to achieve fairness among airlines.
They also developed a local search heuristic to incorporate the fairness into the
schedule.

Although the majority of the literature has focused on single runway scheduling
problems, there are several published studies for MRASP. Ciesielski and Scerri
(1998) suggested a GA for scheduling aircraft on two runways. Cheng et al.
(1999) developed a GA for multiple runways. Wen et al. (2005) addressed the
aircraft landing problem and formulated it as a set partitioning problem with side
constraints. They suggested a Branch-and-Price algorithm, which is similar to the
Branch-and-Bound, but column generation is applied at each node of the Branch-
and-Bound tree. A combination of GA and an ant colony algorithm (ACO) for
multiple runways has been proposed by Bencheikh et al. (2009). Pinol and Beasley
(2006) suggested two population-based metaheuristics for multiple runways: scatter
search and bionomic algorithm. Their objective was to achieve effective runway
utilization, where two different objective functions (a non-linear and a linear)
were used in the experiments. Hancerliogullari et al. (2013) proposed three greedy
algorithms and two metaheuristics including SA and Meta-RaPS (Metaheuristic
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for Randomized Priority Search). Liu (2011) presented a GA with a local search
procedure incorporated into the GA framework, for solving the aircraft landing
problem with runway dependent attributes. Xiao-rong et al. (2014) considered the
multiple runways aircraft landing problem with the objective of minimizing the total
deviation from the target time and suggested a hybrid bat algorithm, where several
local search procedures are integrated into the framework.

A novel Branch-and-Price algorithm has been recently proposed by Ghoniem
et al. (2015), who used the set partitioning formulation. The model decamped
into master problem and pricing sub-problem and the pricing sub-problem was
formulated as an elementary shortest path problem and solved with a specialized
dynamic programming approach, which was identified as the main factor for
accelerating the solution process substantially. Faye (2015) proposed a method
based on an approximation of the separation time matrix by a rank 2 matrix and
on discretization of the planning horizon. They suggested an exact method based on
a dynamic constraint generation algorithm and also a heuristic method used to solve
the model.

To the best of our knowledge, there is only one TS application for the aircraft
scheduling problem. Atkin et al. (2007, 2008) dealt with the take-off scheduling
with the objective to maximize the runway throughput. They proposed different
metaheuristics (steeper descent, TS and SA) and analyzed their performance. TS
outperformed the others but with a small margin.

Recently scheduling researchers and practitioners have been devoting more
attention to the MRASP as can be noted from numerous recent publications
However, little research has been undertaken to solve the problem in practical sizes
in a timely manner. To the best of our knowledge, there is no work reported that
deals with the problem of combined aircraft arrival-departure aircraft scheduling
problem over multiple independent runways using a TS-based algorithm.

9.4 A Tabu Search Algorithm for the MRASP

TS is a single solution based search scheme proposed by Glover (1989, 1990) and
has been applied successfully to solve many combinatorial optimization problems.
TS is an iterative improvement algorithm based both on neighborhood search
methods and the use of diverse types of memories and strategies to guide the search.
The idiosyncratic characteristic of TS is its utilization of memory to guide the local
search in order to escape from the local optimality. When a local optimum is faced,
a move to the best neighbor is done even if this move may cause to worsen the
objective function value. In order to avoid cycling a tabu list is utilized, which tracks
attributes of recent moves and forbids any recurrence of such moves. Fundamental
components of any basic TS algorithm are described below:

Search Space: Determining a search space along with a neighborhood structure
is the most significant step of any TS implementation. The search space of TS is the
space of all solutions that can be visited during the search. It is allowed to let the
search move to infeasible solutions to escape local optimum.
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Neighborhood Structures: Considering that the quality of the final solution
relative to global optimum heavily depends on the structure of the neighborhood,
a problem-specific neighborhood structure needs to be defined to cover all search
space. There are several options for the neighborhood structures of the solution
such as adjacent pairwise interchange, swapping, insertion, etc. Adjacent pairwise
interchange requires exchanging positions of two elements directly next to each
other. Swapping, or all pairwise interchange, entails exchanging positions of two
different elements. Insertion is related to removing an element from its original
position and placing it immediately after another one. Previously done computa-
tional experiments indicate that the insertion neighborhood structure produces better
quality solutions than the swapping neighborhood structure (Laguna and Glover
1993). However, a hybrid neighborhood structure including both swapping and
insertion has the potential to yield better solutions (Barnes and Laguna 1991).

Memory Structures: There are two types of memory, namely, explicit and
attributive. Explicit memory is typically utilized for memorizing very good (elite)
solutions encountered during the search. In contrast, attribute memory keeps the
modifications that where done while proceeding from one solution to the next
solution. Both explicit and attribute memories are used to build the short-term and
the long-term memory of TS. For the short-term memory, a tabu list is retained
in order to avoid cycling back to previously visited solutions. For the long-term
memory, typically a frequency matrix is employed to detect more promising areas
in the search space. It is important to note that short-term memory is used to
store recency information, while long-term memory is used to store frequency
information. The number of iteration that an attribute remains in the tabu list, which
is referred to as tabu tenure, is also an important search parameter for TS. If the tabu
tenure is too small, preventing the cycling might not be achieved; on the other hand,
too long tabu tenure might create so many restrictions.

Aspiration Criteria: Due to the fact that a move or an attribute that is in the tabu
list may forbid moving to attractive unvisited solutions, it is necessary to overrule
the tabu status of this move or attribute in certain situations. This is achieved
via the aspiration criteria. The most commonly used aspiration criterion is when
the objective function value of the move under evaluation is better than the best
objective function value found so far. In such case, the move will be taken even if it
is on the tabu list.

Termination Criteria: The most commonly used termination criteria in TS are as
follows:

• If the current iteration is equal to the maximum allowable iterations or the
maximum allowable CPU time.

• If the current iteration is equal to the maximum allowable iterations without an
improvement in the objective function value.

• If the objectives function value is equal to a pre-determined threshold value.

Main steps of a generic TS algorithm are given below. It is important to note
that the term “solution” does not necessarily correspond to a final solution of the
problem; it is just a solution in the search space.
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Step 1: Generate all candidate solutions which are reachable by applying one move.
Step 2: Choose the best candidate solution that is not on the tabu list and the

aspiration criteria if it is on the tabu list.
Step 3: Update the current solution and the best solution found so far.
Step 4: Determine if any termination criterion is satisfied. If yes, stop the algorithm;

otherwise, go to step 2.

The performance of the basic version of TS explained above often needs to
be improved to tackle difficult problems, because it tends to get stuck in a local
optimum. In order to escape local optima, additional components for intensification
and diversification need to be included in the search. Intensification is a myopic
approach that is done by implementing some strategies to explore more thoroughly
the promising areas of the search space. Diversification, on the other hand, is
done by either performing several random restarts or implementing some strategies
to penalize frequently performed move attributes. A rule of thumb approach for
determining an intensification or diversification value is to analyze the moves that
lead to elite solutions. This analysis can be done by decomposing these moves into
moves attributes and deducing some special patterns. In general, move attributes
that lead to good solutions contribute to higher intensification values and those that
lead to worse solutions contribute to higher diversification values.

It is crucial to find a balance between the diversification ability to move towards
new areas of the solution space and the intensification ability to explore intensely
the most promising areas. Different metaheuristics utilize different strategies for
controlling intensification and diversification. In TS it is usually done by controlling
the length of the tabu list when fixed length tabu lists are used or by controlling the
tabu tenure. The diversification effect will be stronger if the tabu list or the tabu
tenure is longer, and the intensification effect will be stronger if the tabu list or tabu
tenure is shorter.

We have designed a three-step algorithmic approach for the proposed TS
algorithm to tackle the MRASP:

Step 1: Implement a Target Time First greedy algorithm (dispatching rule) to
construct a feasible schedule.

Step 2: Apply the dispatching rule obtained in step 1 to an instance of the problem
to generate an initial schedule.

Step 3: Input the initial solution and its objective function value to a TS algorithm to
conduct an improving search until the termination conditions are satisfied. Lastly,
return the best solution found during the search as the solution.

The basic structure of the proposed TS algorithm is, therefore, a variant of the
tabu search. The overall TS algorithm is summarized in Algorithm 1, while the
different components of the algorithm are explained in the remainder of the section.
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Algorithm 1 Tabu Search Algorithm for the MRASP

Input: List of aircraft with time windows and separation times, and number of runways

available for landing or take-off

1: begin
2: Initialization
3: find the initial solution s0

4: solution sD s0 , s*D s, tabuListD empty

5: while the termination criterion is not met

6: update the iteration counter, iterD iterC 1;

7: candidateListD empty, bestCandidateD null

8: generate the set of candidate solutions (candidateList)

9: for each candidate sCandidate in the candidateList

10: if (tabuList does not contain sandfsCandidate > fbestCandidate)

11: thanbestCandidateD sCandidate

12: end for
13: sD bestCandidate

14: if (fbestCandidate > f*) thans*D bestCandidate

15: put bestCandidate in tabuList

16: end while
17: end
Output: Best solution found so far, s*, with an objective function value of f*

9.4.1 Components of the Proposed TS Algorithm

Representation of a solution is encoded by m strings, where m is the number
of runway. Each string contains aircraft land on or take-off from a runway
and their sequences. The solution representation is complete because the set of
aircraft sequences can represent all possible combinations. The objective function
accumulates the penalty costs for all aircraft, which is in this case the weighted
tardiness. The search space has to be carefully explored because there are two
decision levels to consider: the assignment of aircraft to runways and sequencing
aircraft in each runway.

A hybrid neighborhood generation scheme that consists of three types of moves
is utilized: inter-runway swapping, intra-runway swapping, and insertion. Inter-
runway swapping entails exchanging positions of two different aircraft on different
runways and conversely intra-runway swapping on the same runway. Insertion is
concerned with identifying two particular aircraft placed on different runways,
placing one of them immediately after the other.

An attribute-based tabu list is employed and move attributes are recorded on the
tabu list. Hence, tabu list prevents cycling and guides the search towards unexplored
regions of the solution space. The aspiration criteria employed is to override the tabu
restriction when the objective function value of the solution is better than any of
the solutions found so far. Also, intermediate and long-term memory structures are
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utilized to attain local intensification and global diversification. Intermediate term
memory is activated by selecting the common attributes of some best candidate
solutions during a specific period. The search procedure then tries to find new
solutions that have these attributes. On the contrary, the long-term memory structure
tries to force the search procedure to examine regions that are different from areas
examined so far. To create diversification effect, it provides an evaluation criterion
to generate new starting points. The termination criterion is met in our case if the
best objective function value does not improve for a given number of iterations.

9.4.2 Initial Solution

Owing to the fact that beginning with a sufficiently good solution may improve the
quality of the final result and amount of computational time needed, a dispatching
(priority) rule is utilized as a greedy algorithm to find an initial solution for the
problem. Dispatching rules are the most common form of constructive heuristics
for machine scheduling problems based on which jobs awaiting processing on a
machine are prioritizes. Whenever a machine is freed, a dispatching rule inspects
the waiting jobs and selects the job with the highest priority. These rules have the
potential to construct a reasonably good solution in a relatively short time and they
are usually very easy to implement. Often a combination of basic dispatching rules
can perform significantly better; however, there is large number of rules to choose
from.

The solution obtained by Target Time First greedy algorithm is chosen as an
initial solution. In this greedy algorithm, firstly, aircraft are ordered in ascending
target time, and then assigned one by one to the runway with the least cost
possible. The cost on a runway is calculated considering the previous aircraft and
the corresponding separation time. Then an initial total cost is calculated according
to the start time of each aircraft. Algorithm 2 below presents the pseudo code for
this greedy rule.

9.5 Numerical Experiments and Results

Numerical experiments are carried out to evaluate the effectiveness of the proposed
TS algorithm in terms of solution quality. Tests are conducted on a number of
benchmark instances obtained from literature. The set of instances most often used
for aircraft landing problems (Airland 1–13) are those in the Beasley’s OR Library
(Beasley 1990). However, these instances are considered easy for high performance
computers and can be easily handled in reasonable time with state-of-the-art solvers.
Therefore, the TS algorithm is tested against benchmark instances proposed in the
literature by Ghoniem et al. (2015).



178 B. Soykan and G. Rabadi

Algorithm 2 Target Time First Greedy Algorithm

Input: List of aircraft and number of runways, M

1: begin
2: Initialization
3: sort aircraft ordered in ascending target time (1 to N)

4: foriD 1 to N

5: forrD 1 to M

6: calculate Eir (Earliest feasible time that aircraft i can land on or take-off from

runway r) from runway r)

7: end for
8: calculate start time siDmin fEir j r in Mg
9: assign aircraft i to the runway related to calculated si

10: end for

11: calculate the objective function
�X

j2N
wjTj

�

12: end
Output: A feasible solution consists of sequence of aircraft over runways with a fitness value

and start time for each aircraft

In these benchmark instances, each aircraft is characterized by its ready time,
target time, due time, operation type (arrival or departure), weight class (heavy,
large, or small), priority (tardiness weight), and separation times with other aircraft.
Every aircraft was set to a time window of 600 s. Ghoniem et al. (2015) provide
a more detailed overview of these instances. These instances are composed of
NDf15, 20, 25g aircraft and MDf2, 3, 4, 5g runways. A set of 55 different
instances is proposed, at size (N �M) and they are denoted using the pair (n, m)
where n is the number of aircraft and m is the number of runways.

The proposed algorithm is implemented in a CCC environment on Microsoft
Visual Studio 2013. All the experiments are performed on a standard PC machine
with a 64 bit Intel(R) Core(TM) i5-3210M CPU 2.50 GHz processor and 8 GB of
RAM running Microsoft Windows 8.1 operating system. A two-stage approach is
utilized for the implementation. First the core data structures of the algorithm are
created and then the algorithmic structure is built on them. Since TS heavily depends
on memory structures, object-oriented techniques are employed sensible.

9.5.1 Parameters Setting

Although metaheuristics methods, including TS algorithm, are problem independent
to a great extent, they still need some necessary parameter setting to adapt the
method to the problem at hand and the choice of parameter values has a significant
effect on the quality of the solution. Unfortunately there is no one-size-fits-all
parameter setting for any given metaheuristic. For this reason, optimized values for
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Table 9.2 Factors and their levels for TS algorithm

Factors Low level (�1) High level (C1)

A—Number of iterations after diversification is performed 15 25
B—Number of iterations after intensification is performed 10 15
C—Tabu tenure 7 12
D—Max number of successive iterations without
improvement

50 100

Table 9.3 Regression
statistics

Regression statistics

Multiple R 0.9928
R2 0.9875
Adjusted R2 0.9367
Standard error 0.599
Observations 16

the parameters need to be determined carefully in a timely manner. Due to the fact
that one-factor-at-a-time (OFAT) method does not consider the interactions between
the parameters, which may significantly affect solution quality and time, a Design
of Experiments (DoE) method, Taguchi design, is utilized to tune the parameters of
the TS algorithm.

Due to the fact that determination of the factors and their initial levels require
a priori knowledge of the behavior of the proposed algorithm on the problem
instances, a pilot study is conducted. This study consists of several trials on a small
subset of instances for preliminary analysis of the potential factors and their initial
levels. From each aircraft-runway (n, m) configuration, one instance is selected
randomly for these experiments. As a result of this pilot study, the TS factors that
can influence the quality and computation time of the solutions with a low and high
level for each factor is determined as a starting point. Therefore, the experimental
ranges for each parameter are identified. The low and high levels are also denoted
as �1 andC1, respectively, and are listed in Table 9.2.

After all the experiments are completed and the responses are calculated for each
experiment, linear regression analysis is conducted to determine the significance
of the parameters and their interactions. Linear regression analysis of the average
relative error values produced a fit with R2 value of 0.9875 (Table 9.3). The
most significant factor is C, and the most significant interactions are BC and
AC, respectively. This shows that the tabu tenure plays a significant role in the
performance of the algorithm.

In order to verify the statistical validity of the results and to ensure that the effects
of the different factor levels are statistically significant, the Main Effects Plot is used,
where the mean values of each factor level are shown graphically in Fig. 9.1 in which
we can see that C (tabu tenure) is the most significant factor. Also the Interaction
Plots are used to determine the mean values for each factor level with the level of a
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Fig. 9.1 Main effects plots

Fig. 9.2 Interaction plots

second factor held constant, which specifies that the effect of one factor is dependent
on a second factor. Only the most significant second-order interactions (BC and AC)
are presented in Fig. 9.2.

After finding a linear approximation of the response surface, the path of steepest
descent on the response surface is calculated and small steps are made along this
path by changing the parameter values. At each step, one trial is conducted and
the process is continued until the limit of the experimental region is reached.
The parameter vector associated with the best result found during this process is
determined as the final parameter setting, where the most significant results are
obtained with a medium levels for A and B, and high level for C. This implies that
parameter values for the number of iterations after diversification and intensification
is performed, and tabu tenure should be 22, 13, and 12, respectively.
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9.5.2 Computational Results

The computational results for the benchmark instances are listed in Table 9.4. The
objective function values of TS are reported in the columns represented by “Obj. Fn.
Value.” The percent deviation of TS values from the optimal solution (“Gap %”) is
calculated as:

Gap % D .TS Obj:Fn:Value�Optimal Value/

Optimal Value
� 100 (9.3)

The performance of the proposed TS metaheuristic algorithm is assessed based
on the quality of the solution found via the gap between the optimal values and
the objective function values. The results show that the solution found by the
proposed Tabu Search algorithm has an average gap of approximately 10.15 %.
Out of 55 instances, the algorithm found 9 optimal solutions. Also, the CPU
times for the TS algorithm are listed showing that it is computationally efficient
with computational time of less than half a second for any of the instances.
The instances used in this experiment along with their solutions are available at
www.SchedulingResearch.com.

In order to verify the statistical validity that hybrid neighborhood structure
produce better results from the inter-runway swapping, intra-runway swapping,
and insertion neighborhood structures applied alone, a small-scale experiment and
an analysis of variance (ANOVA) is performed where the different neighborhood
structures are considered as factors and the response variable being the average
gap%. In this experiment one instance is selected for each (n, m) configuration
and in total 11 instances are utilized. The results demonstrate that there is a
clear statistically significant difference between performances of the neighborhood
structures. The means plot and least significant difference (LSD) intervals (at the
95 % confidence level) for the neighborhood structures are presented in Fig. 9.3,
which shows that the hybrid neighborhood structure works better than other
neighborhood structures.

An experimental work is also carried out to determine the level of contribution
of the intensification/diversification scheme to the overall algorithm. To be more
precise, the purpose of the experiment is to find out whether the scheme used
to determine the appropriate balance of diversification and intensification, does
indeed provide the algorithm with the flexibility to deal with instances with different
characteristics in an effective way. The 25 aircraft instances are utilized for this
experiment due to the fact that these instances are more difficult and require a
special intensification/diversification treatment. These instances are solved with
and without intensification/diversification scheme. The algorithm is run for 1000
iterations for each instance and average gap% is collected for the algorithm with
and without this scheme. Experimental results, as presented in Fig. 9.4, show that
the proposed algorithm with intensification/diversification (I/D) scheme achieves
better performance (faster convergence) over the one without this scheme as a
consequence of its better exploration–exploitation capability.
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Fig. 9.3 Means plot and LSD intervals
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Fig. 9.4 Experimental results for I/D scheme

In order to test whether the greedy constructive heuristic algorithm improves the
quality of the final result or not, we conducted an experiment in which we compared
the algorithms with greedy initial solution against the one with a random initial
solution. An instance for each (n, m) configuration is selected for the experiment
and the average relative gap% is calculated for the comparison. As expected,
the algorithm with greedy heuristic always produced a superior initial solution
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Fig. 9.5 Boxplot for comparison of initial solutions

compared to one with random initial solution, and as shown in Fig. 9.5, the final
solutions obtained by the algorithm when the initial solution was produced by the
greedy heuristic were better than its solution when the initial solution was random.

Based on the experimental results of the TS compared to the benchmark
instances, it is effective and efficient. The success of the proposed TS algorithm
may be credited to the following factors. First of all, the hybrid neighborhood
structure made the search process very flexible. Second, the balanced intensifica-
tion/diversification scheme improved the richness of the solution space. Finally, the
greedy constructive heuristic algorithm for generating initial solutions was able to
produce high quality solutions at the beginning of the process.

9.6 Conclusions

Considering that runway availability is the major limitation to airport capacity
and adding more runways to increase the capacity is often not feasible due to a
number of reasons including physical limitations and environmental restrictions, it
is very important to utilize runways more efficiently. Therefore, developing methods
applicable to MRASP is vital in terms of runway utilization and safety. Main
challenges in solving MRASP include the pre-specified time windows and the
asymmetrical sequence-dependent separation time requirements, which make the
problem very challenging.
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Some research exists for the MRASP especially for small-scale problems.
However, real-life large-scale problems remain challenging from a computational
standpoint. Heuristic or metaheuristic methods are often used to solve such
problems, compromising optimality for computational time. In this chapter a Tabu
Search (TS) based algorithm is introduced, where the memory forces the search
process away from the local optimum. The proposed TS algorithm utilizes a hybrid
neighborhood structure together with a balanced intensification/diversification
scheme, which improved the richness of the solution space. Another strength of this
TS is the greedy constructive heuristic to generate initial solutions. The proposed
algorithm is tested on 55 benchmark instances from the literature. The experimental
results, based on an experimental design, show that the proposed algorithm is able to
solve problem instances in reasonable computing times with good solution quality.

Future research can explore different hybridization mechanisms such as path
relinking and hybrid adaptive TS/set partitioning “matheuristic” which combines
TS with classical mathematical programming approaches.
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Chapter 10
Metaheuristic Approaches for Scheduling Jobs
on Parallel Batch Processing Machines

Stefan Lausch and Lars Mönch

Abstract We consider a scheduling problem for parallel identical batch processing
machines. A batch is a set of jobs that can be processed at the same time on a single
machine. The jobs belong to incompatible job families. Only jobs of the same family
can be batched together. We are interested in minimizing the total weighted tardiness
(TWT) of the jobs. Problems of this type arise, for instance, in semiconductor
manufacturing. Other known occurrence of batch processing machines can be
found in gear manufacturing. We describe a genetic algorithm (GA), an ant
colony optimization (ACO) approach, and a large neighborhood search (LNS)
approach for this scheduling problem. The performance of the three metaheuristic
approaches is compared based on randomly generated problem instances. The
LNS scheme outperforms the two other metaheuristics and is comparable with a
variable neighborhood search (VNS) approach, the best performing heuristic for
this scheduling problem from the literature.

Keywords Parallel machines scheduling • Batch processing • Tardiness
• Genetic algorithms • Ant colony optimization • Large neighborhood search

10.1 Introduction

Semiconductor manufacturing belongs to the most complex existing manufacturing
processes. Several hundreds of jobs are processed on up to 100 different types of
machines (cf. Mönch et al. 2011a) in semiconductor wafer fabrication facilities
(wafer fabs). Up to one third of all operations in a wafer fab are performed on
batch processing machines. A batch is a group of jobs that are processed at the
same time on a single machine (cf. Mönch et al. 2013). Diffusion and oxidation
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operations in wafer fabs are typical examples for operations that are performed on
batch processing machines, i.e., on furnaces. Because the processing times of jobs
on batch processing machines are rather long compared to the processing times of
non-batching machines, scheduling jobs on these machines has a large impact on
the performance of the entire manufacturing system (cf. Mehta and Uzsoy 1998;
Mathirajan and Sivakumar 2006; Mönch et al. 2013).

We consider a situation where we are interested in minimizing the TWT value
of all jobs. It is assumed that all jobs are available for processing at time t D 0.
Several metaheuristics are proposed for this problem (cf. Balasubramanian et al.
2004; Almeder and Mönch 2011). In the present chapter, we unify the corresponding
algorithms by identifying major building blocks. In addition, we describe a new
heuristic based on the principles of large neighborhood search (LNS). To the best of
our knowledge, LNS-type approaches have not been used to solve batch scheduling
problems.

This chapter is organized as follows. In the next section, we describe the
scheduling problem. A corresponding mixed integer programming (MIP) formu-
lation is provided. We then present several building blocks for metaheuristic-
based approaches in Sect. 10.3. Three metaheuristics are described in Sect. 10.4.
The results of computational experiments based on randomly generated problem
instances are shown and analyzed in Sect. 10.5. Conclusions and some future
research directions are presented in Sect. 10.6.

10.2 Problem Description

In this section, we start by describing the batch scheduling problem. We then present
a MIP formulation for this problem.

10.2.1 Problem Formulation

We consider n jobs that have to be processed on m identical parallel machines.
The jobs belong to F incompatible families. Only jobs of the same family can
be processed together in a batch due to the chemical nature of the process. The
maximum batch size on any of the machines is B. It is given in number of jobs. Job
j has a weight wj and a due date dj. The family of job j is denoted by f .j/. All jobs
of family f have the same processing time of pf . We assume batch availability. The
tardiness of job j is given by

Tj WD .Cj � dj/
C; (10.1)
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where Cj is the completion time of job j. In addition, we use the abbreviation xC WD
max.x; 0/ in the rest of the chapter. The TWT value of the schedule is given by

TWT D
nX

jD1
wjTj: (10.2)

Using the .˛jˇj�/ notation from scheduling theory, the scheduling problem can be
represented in the form:

Pmjp-batch,incompatiblejTWT; (10.3)

where Pm refers to m identical parallel machines and p-batch, incompatible to
batching with incompatible job families. It is already shown by Mehta and Uzsoy
(1998) that the single machine scheduling problem 1jp-batch,incompatiblejPTj is
NP-hard. Hence, since this scheduling problem is a special case of Problem (10.3)
listed above, the problem considered in this chapter, is also NP-hard. Therefore,
we have to look for efficient heuristics to tackle large-scale problem instances in a
reasonable amount of time.

A fairly simple example is depicted in Fig. 10.1. There are three furnaces and
jobs that belong to the incompatible job families A, B, and C. The maximum batch
size is B D 4 jobs. On Furnace 1, we have a full batch of family A, while full batches
of family B are processed on Furnace 2 and 3, respectively. Several jobs of the three
incompatible families are in the waiting room to be processed on one of the three
furnaces.

There is one important property of a certain class of optimal schedules. It can
be easily shown that there is at least one optimal schedule where batches are fully
loaded, i.e., each batch contains B jobs, except maybe the last scheduled batch of
each family that might contain less than B jobs. This result can be easily generalized
to any regular criterion as shown by Mehta and Uzsoy (1998). Therefore, we can
assume in the rest of the chapter that we know the number of batches to be formed.
This number is denoted by nb.

Three decisions have to be made to solve instances of Problem (10.3):

1. Form batches taking the maximum batch size and the incompatible families into
account.

2. Assign the already formed batches to machines.
3. Sequence the set of batches for each single machine.

We will see in the remainder of this chapter that it is beneficial to make these
decisions simultaneously.
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Fig. 10.1 Small-size example including three furnaces and three incompatible job families

10.2.2 MIP Formulation

Next, we present a MIP formulation for Problem (10.3) due to Almeder and Mönch
(2011). We start by defining indices:

b D 1; : : : ; nb : batch index
f D 1; : : : ;F : family index
j D 1; : : : ; n : job index
k D 1; : : : ;m : machine index.

The following parameters will be used within the model:

B : maximum batch size
dj : due date of job j

ejf :

�
1; if job j belongs to family f
0; otherwise

M : large number
pf : processing time of jobs that belong to family f
wj : weight of job j.
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The following decision variables are introduced:

Cbk : completion time of the bth batch on machine k

Xjbk :

�
1; if job j is assigned to the bth batch on machine k
0; otherwise

Ybkf :

�
1; if the bth of machine k belongs to family f
0; otherwise

Tj : tardiness of job j.
Problem (10.3) may be formulated as follows:

min
nX

jD1
wjTj (10.4)

subject to

nbX

bD1

mX

kD1
Xjbk D 1; j D 1; : : : ; n; (10.5)

nX

jD1
Xjbk � B; b D 1; : : : ; nb; k D 1; : : : ;m; (10.6)

FX

fD1
Ybkf D 1; b D 1; : : : ; nb; k D 1; : : : ;m; (10.7)

ejf Xjbk � Ybkf ; j D 1; : : : ; n; b D 1; : : : ; nb; k D 1; : : : ;m; (10.8)

pf Y1kf � C1k; f D 1; : : : ;F; k D 1; : : : ;m; (10.9)

Cb�1;k C
FX

fD1
pf Ybkf � Cbk; b D 2; : : : ; nb; k D 1; : : : ;m; (10.10)

.Cbk � dj/ �M.1 � Xjbk/ � Tj; j D 1; : : : ; n; b D 1; : : : ; nb; (10.11)

Cbk;Tj � 0; j D 1; : : : ; n; b D 1; : : : ; nb; k D 1; : : : ;m; (10.12)

Xjbk;Ybf2f0; 1g; jD1; : : :; n; bD1; : : :; nb; fD1; : : : ;F; kD1; : : :;m: (10.13)

The objective (10.4) intends to minimize the TWT value. Constraints (10.5) ensure
that each job is assigned to a batch. Constraints (10.6) do not allow more than
B jobs to be assigned to the same batch. With constraints (10.7), we make sure
that each batch belongs to a single job family, while constraints (10.8) ensure that
the families of the jobs assigned to a batch match the family of the batch. Using
constraints (10.9), the completion time of the first batch on a machine is computed,
whereas constraints (10.10) ensure the correct completion times for all subsequent
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batches. Finally, constraints (10.11) express the tardiness for each job. The non-
negativity and binary constraints are modeled by expressions (10.12) and (10.13).

Note that the MIP formulation (10.4)–(10.13) is able to optimally solve problem
instances up to 24 jobs, two families, and two machines within a reasonable amount
of computing time using commercial solvers. Therefore, we can use the MIP to
assess the solution quality of heuristics for small-size problem instances and to test
whether the implementation of the heuristics is correct or not.

10.3 Building Blocks of Heuristic Approaches

We start by presenting a list scheduling approach to compute an initial solution in
Sect. 10.3.1. We then present a decomposition heuristic to sequence already formed
batches on a single machine in Sect. 10.3.2. In Sect. 10.3.3, a procedure that changes
the content of already formed batches is discussed.

10.3.1 Determining an Initial Solution

We take a two-phase approach. Batches are formed in the first phase. These batches
are sequenced in the second phase. We use the ATC index

Ij.t/ WD wj

pf .j/
exp

�
� .dj � pf .j/ � t/C

� Np



(10.14)

to sequence the jobs. Here, t is the time at which the machine becomes available, Np
is the average processing time of the remaining jobs, and � is a scaling parameter.
The jobs in each family are ordered in non-increasing order of their ATC indices.
Then a batch of the first B jobs is formed for each family that contains unscheduled
jobs. A batch is formed each time a machine becomes available.

When a batch Bk of family f is formed, it can be assessed using the BATC index.
Therefore, we have

IBATC.k; t/ WD
X

j2Bk

Ij.t/; (10.15)

i.e., we sum up the ATC indices of the jobs that form the batch. The batch with
the largest BATC index is scheduled. Therefore, BATC is a sequencing rule for
already formed batches. It is well known that appropriate values for the look-ahead
parameter � lead to small TWT values (cf. Balasubramanian et al. 2004). Therefore,
we use a grid search approach, i.e., we consider all values � 2 f0:5; 1:0; : : : ; 5:0g,
fix one value from this set, solve Problem (10.3), and use finally the � value that
leads to the smallest TWT value for the given instance. The heuristic that forms
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batches based on ATC and sequence the batches by BATC is called ATC-BATC-H
in the remainder of this chapter.

10.3.2 Sequencing Batches on a Single Machine

Already existing sequences of batches can be improved by decomposition.
This approach is used for single machine batch sequencing only and is similar
to the one described by Mehta and Uzsoy (1998). A subsequence of batches of
size � is solved to an optimal sequence using complete enumeration. We have to
consider �Š different subsequences. The first ˛ batches of this optimal subsequence
are fixed into the final sequence, and the next � unscheduled batches are considered.
This process is repeated until all jobs are scheduled and no improvement is made in
the TWT value of the final sequence. A maximum of iter iterations is allowed. The
larger the value of �, the higher the computation time and the better the solution
quality. We call the heuristic based on the decomposition heuristic DH.�; ˛; iter/ in
the remainder of this chapter.

10.3.3 Changing the Content of Already Formed Batches

Changing the content of batches is important to reduce the TWT value of schedules.
To improve upon the solution obtained by ATC-BATC-H and DH, a corrective stage
where the composition of batches is changed is included. After we get a complete
solution of batches sequenced on all the machines, we attempt to improve the
solution through the swapping techniques suggested by Devpura et al. (2000) for
a single machine and extended by Balasubramanian et al. (2004) to the case of
parallel machines.

The swapping algorithm is implemented as follows. We keep the position
of the batches fixed and try to interchange jobs between batches of the same
family. Initially for each family we consider the batch with the earliest start time.
Considering all jobs in the batch starting from the first to the last, we look for the
possibility of a swap with jobs in other compatible batches with start times later
in the order of non-decreasing start times by calculating the TWT value of the old
and the new schedule. Whenever a swap occurs we go back to the first job of the
batch and start over. When there are no more improvements in this batch we move
on to the next batch and check if we can swap the jobs in it with jobs in batches
scheduled after it. The procedure is continued until all the batches of all the families
are covered. We denote the swap procedure in the remainder of this chapter by Swap.

We will show in the next section how ATC-BATC-H, DH, and Swap will be
incorporated in different metaheuristics.
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10.4 Metaheuristic Approaches

We start by briefly recalling a genetic algorithm (GA) in Sect. 10.4.1. An ant colony
optimization (ACO) scheme is presented in Sect. 10.4.2 following Almeder and
Mönch (2011). A LNS scheme is described in Sect. 10.4.3.

10.4.1 Genetic Algorithm

A GA is a population-based metaheuristic that is used to solve hard combinatorial
optimization problems. Various applications in operations management are known
(cf. Aytuk et al. 2003). In this subsection, for the sake of completeness, we briefly
recall the main features of the GA that is proposed by Balasubramanian et al.
(2004). The GA is based on the idea that ATC-BATC-H is used to form batches.
These batches are then assigned by the GA to the different machines. A batch-based
representation is applied in the GA, i.e., we use chromosomes of the form:

c WD .k1; : : : ; knb/; (10.16)

where ki 2 f1; : : : ;mg. Conventional one-point crossover and flip mutation are used
as genetic operators. Finally, DH and Swap are applied to the best solution, i.e., the
solution with the smallest TWT value computed by the GA. The algorithm can be
summarized as follows:

Initialize: (1) Use the ATC-BATC-H procedure to form batches.
Algorithm: (2) Run the GA to assign the batches formed in Step (1) to the

machines.
(3) Apply DH.5; 2; 15/ and Swap to improve the solution found in

Step (2).

We see that all the three building blocks from Sect. 10.3 are required when the
GA is used. Note that the GA can be easily changed into a memetic algorithm by
applying DH and Swap to each chromosome. However, this approach will increase
the computing time requirements of the algorithm.

10.4.2 Ant Colony Optimization

ACO is a population-based metaheuristic designed to solve hard combinatorial
optimization problems. In a certain sense, it can be considered as a randomized
list scheduling technique where learning takes place. For more details on ACO and
its variants the reader is referred to Dorigo and Stützle (2004).
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We start by describing the underlying principles of batch formation and assign-
ment used within the ACO algorithm. We represent the scheduling problem (10.3)
as a pure sequencing problem. Problem (10.3) is represented by a permutation

� WD .�Œ1�; : : : ; �Œn�/ (10.17)

of the n jobs. At maximum B subsequent jobs of the same family form a batch.
A final schedule for the batches can be obtained by assigning one batch after another
to the next available machine starting with the first batch in (10.17). A permutation
is constructed by adding the jobs of a newly formed and chosen batch to the end of
the partial sequence starting from an empty sequence.

We consider an ordering of the jobs for each family f that are not included in the
partial sequence of representation (10.17) to form batches:

� t
f WD .�f Œ1�; : : : ; �f Œnf ;curr�/; (10.18)

where �f Œi� denotes the job of family f that is sequenced on position i in � t
f and

the number of jobs of family f that are not already part of the partial schedule
that corresponds to (10.17) is nf ;curr. We determine � t

f by sorting the jobs in non-
increasing order with respect to a specific index. When we describe later a single
iteration of the proposed ACO scheme, we will provide an ACO-specific index. The
quantity t denotes the time when the newly formed batch can start with processing.
This quantity is obtained by translating the partial sequence (10.17) into a partial
solution of Problem (10.3) and by determining the time when the next machine
is available. Starting from � t

f , a sequence of batches is obtained by considering
subsequences of the form:

Bwf WD .�f ŒwBC 1�; : : : ; �f Œ.wC 1/B�/; (10.19)

where w 2 f0; : : : ; ˙nf ;curr=B
�g. The batches of a family are sequenced in non-

increasing order of importance, where each batch is evaluated by taking the sum of
the indices that lead to � t

f for all jobs of the batch. The used measure is described
later, but for now its concrete form is not important. We select the most important
batch among the batches B0f ; f D 1; : : : ;F and add it to the partial sequence to
construct the job permutation (10.17).

The necessary steps to obtain a solution for Problem (10.3) are:

1. Start with current time t D 0.
2. Form and order batches of the same family for all unscheduled jobs for starting

time t.
3. Select a batch and add it to the end of the partial sequence (10.17).
4. Obtain the new starting time t of the next batch by interpreting the partial

sequence (10.17) as a solution of Problem (10.3).
5. If there are still unscheduled jobs, continue with Step 2, otherwise stop.
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Based on this procedure, it is enough to describe a heuristic to find job permutations
that lead to small TWT values. An ACO-type approach is proposed to tackle
this problem. The main idea of ACO is to let ants construct solutions of a given
problem. This solution construction is guided by some memory, called pheromone,
reflecting the solutions of previous iterations and using also heuristic information
about the problem. While constructing the solution, ants provide information in
those pheromone values to guide the search of the other ants, i.e., by performing a
local pheromone update. The best ant updates the pheromone information to guide
other ants of the next iteration, i.e., by carrying out a global pheromone update,
after each iteration. In most applications of the ACO approach, solutions computed
by ants are improved by applying a local search procedure. The overall scheme of
an ACO algorithm (cf. den Besten et al. 2000) is as follows:

Initialize: (1) Set parameters.
(2) Initialize the pheromone trails.

Algorithm: (3) Repeat until termination condition is met

(a) Construct solution, perform step-by-step pheromone update.
(b) (Optional) Apply local search.
(c) Update pheromone trails globally.

In the remainder of this subsection, we describe the tailoring of the steps of the
general ACO scheme to Problem (10.3). The heuristic information of the desirability
for setting �Œi� WD j is denoted by 
ij. The 
ij values are derived using the
ATC dispatching rule with priority index (10.14) where t is the time when the
next machine is available. We denote by �ij.liter/ the pheromone intensity that is
associated with the setting �Œi� WD j, i.e., job j is placed on position i in � . The
parameter liter is used for the current iteration of the ACO scheme. The maximum
number of ants used within one iteration is denoted by namax.

The construction of a solution of an ant within one iteration of the ACO scheme
works as follows:

1. Denote the set of jobs that are not already used to construct � by JU. Initialize
JU WD f1; : : : ; ng. We denote by Jf

U the following family-specific set:

Jf
U WD fj 2 JUjf .j/ D f g: (10.20)

Sequence the jobs j 2 Jf
U in non-increasing order with respect to the index

Iij.liter/ WD
 

iX

lD1
�lj.liter/

!



ˇ
ij (10.21)

to obtain � t
f . Here, ˇ is a parameter of the ACO approach.

2. Create a realization q0 of an UŒ0; 1�-distributed random variable. We set Bf ;curr WD
min.B; nf ;curr/ for nf ;curr > 0 in Jf

U. When q0 � q for a given q then the
�f Œ1�; : : : ; �f ŒB� jobs that maximize the value of
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˚
f
i WD

1

Bf ;curr

Bf ;currX

gD1
IiCg�1;�f Œg�.liter/ (10.22)

over all families f are set into the current partial sequence on position i; : : : ; iC
Bf ;curr � 1. Using the sum of pheromone values of job j up to position i offers the
advantage that the selection of jobs j that are chosen by previous ants for positions
smaller than i will be enforced. The importance of the desirability is expressed by
the parameter ˇ. The parameter q is selected close to 1, i.e., a large portion of the
new ants will find the next jobs to be scheduled with respect to the pheromone
trail information and the heuristic information. Therefore, an ant makes the best
decision with a probability of q as indicated by the heuristic information and the
pheromone trails.

If q0 > q then job j 2 Jf
U is selected for position i according to the following

discrete distribution with probabilities pij given by

pij WD

8
<̂

:̂

.
Pi

lD1 �lj.liter/

ˇ
ij

P
r2J

f
U
.
Pi

lD1 �lr.liter//

ˇ
ir

; if j 2 Jf
U

0; otherwise

: (10.23)

A job j is selected for each family according to the discrete probability distribu-
tion (10.23). We form the batch that includes this job and the next Bf ;curr � 1 jobs
from � t

f .
Only the first job of the batch is selected according to the probability

distribution (10.23) because we want to avoid completely destroying the structure
of batches formed by ATC-type rules. The batches of all families are evaluated
according to

˚
f
ij WD

1

Bf ;curr

Bf ;currX

gD1
IiCg�1;�f Œ�

�1
f Œj�Cg�1�.liter/: (10.24)

The batch with the largest ˚ f
ij value is considered. Therefore, the ants perform a

biased exploration with a probability of 1 � q. Notice that ��1f Œj� is the position
of job j in the family-based ordering (10.18).

3. A local step-by-step update of the pheromone trail is performed immediately
after an ant has added all jobs of a batch to the partial sequence by

�ij.liter/ WD .1 � �/�ij.liter/C ��0; (10.25)

where � 2 .0; 1� and �0 > 0 are parameters of the ACO scheme. This pheromone
update ensures that the decision to put job j on position i is less likely for
consecutive ants. Therefore, exploring different sequences is ensured.
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4. Remove all jobs added to the partial solution in the previous step from the set JU .
Repeat Step 2 if JU ¤ ;. Improve the schedule by DH.5; 2; 15/ and Swap if
JU D ;. DH and Swap work on the final schedule. Therefore, changes obtained
by these procedures have to be incorporated in the representation (10.17).

The pheromone values are updated after all ants of an iteration have con-
structed a solution. The global pheromone trail is updated by

�ij.liter C 1/ WD .1 � �/�ij.liter/C �

TWT�
(10.26)

if job j is scheduled on position i in the global best solution at iteration liter. Here,
� 2 .0; 1� is a parameter that is used to model the pheromone evaporation. In
addition, TWT� is the smallest TWT value obtained so far by an ant.

The tailored ACO approach can be summarized as follows:

Initialize: (1) Choose q; �; �; ˇ; namax.
(2) Use ATC-BATC-H to compute TWTbest. Set �0 WD 1=TWTbest:

Algorithm: (3) Repeat until termination condition is met

(a) Construct a solution based on ATC-BATC-H. Perform a step-by-
step pheromone update according to expression (10.25).

(b) Apply DH.5; 2; 15/ and Swap.
(c) Update the pheromone trails based on expression (10.26) when

the maximum number of ants is reached.

We see again that the three building blocks from Sect. 10.3 are used within the
ACO scheme.

The proposed ACO scheme is again a population-based approach. However,
we know from Almeder and Mönch (2011) that population-based approaches are
outperformed by neighborhood search-based approaches when a fixed amount of
computing time is given. This is our motivation to design a LNS approach for the
problem at hand.

10.4.3 Large Neighborhood Search

LNS approaches are among the best performing heuristics for vehicle routing prob-
lems (VRPs) (cf., for instance, Ropke and Pisinger 2007 and Kovacs et al. 2012).
Similar to VRPs, parallel machine scheduling problems are partition problems.
Therefore, we expect an excellent performance of LNS-type algorithms for parallel
machine scheduling problems.

There are only a few papers that deal with LNS approaches in machine
scheduling. Flexible job shop problems are studied by Pacino and Van Hentenryck
(2011) and Yuan and Xu (2013), while parallel machine scheduling problems are
considered by Wang et al. (2012). However, the objectives and constraints in these
papers are different from the ones used in Problem (10.3).
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A set of destroy and repair methods compete in each iteration of a LNS scheme to
improve the current solution. In this chapter, we use Adaptive LNS (ALNS) where
multiple destroy and repair methods are used within the same search. Let xb the
best solution found during the search, while x is the current solution. We denote
the corresponding TWT value by TWT.x/. The set of destroy and repair methods
is denoted by ˝� and ˝C, respectively. Similar to Pisinger and Ropke (2010),
a weight is assigned to each destroy and repair method that controls how often a
specific method is applied during the search. This leads to vectors �� 2 R

j˝�j and
�C 2 R

j˝Cj that are used to store the weights of the corresponding method. In the
beginning, all methods have the same weight. The roulette wheel principle is used
to choose a destroy and repair method in each iteration of ALNS. The probability to
choose the destroy method k 2 ˝� is given by

��k WD
��k

Pj˝�j
iD1 ��i

: (10.27)

A similar expression is used for choosing the repair method l from˝C, namely

�Cl WD
�Cl

Pj˝Cj
iD1 �Ci

: (10.28)

The components of the weight vector � are updated using score vectors � 2 R
j˝�j

and C 2 R
j˝Cj for solutions. The overall scheme of an ALNS scheme is according

to Pisinger and Ropke (2010) as follows:

Initialize: (1) Determine a feasible solution x of Problem (10.3).
(2) Set xb WD x; �� WD .1; : : : ; 1/; �C WD .1; : : : ; 1/;  � WD

.0; : : : ; 0/,  C WD .0; : : : ; 0/.
Algorithm: (3) Repeat until the termination condition is met

(a) Choose a pair .d; r/ of destroy and repair methods d 2 ˝�
and r 2 ˝C using the discrete probability distributions (10.27)
and (10.28), respectively.

(b) Compute x WD r.d.xb//.
(c) Accept: If TWT.x/ < TWT.xb/ then xb WD x.
(c) Update the score vector and the vectors �� and �C.

Note that there are variants of ALNS where deteriorations of the current solution
are accepted (cf. Pisinger and Ropke 2010). However, because these variants did not
show superior performance in our computational experiments we do not present the
corresponding algorithmic details due to space limitations. The update of the weight
vectors �� and �C is performed using the following updates of the components of
the score vectors:
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 �k WD

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

 �k C	1; if the solution obtained in the current iteration is the
global best one

 �k C	2; if the solution obtained in the current iteration was not,
visited before and improves the global best solution

 �k ; otherwise

(10.29)

where 	1 and 	2 are parameters of the ALNS scheme. A similar update scheme
is used for the components of  C. The weights ��k are updated after every imax

iterations by the expression

��k WD ���k C .1 � �/ �k =max.1; ��k /; (10.30)

where � 2 Œ0; 1� is a decay parameter controlling the impact of the weights and ��k
is the number of times the method k was used during the last segment of imax ALNS
iterations. The corresponding expression for the weights of the repair methods is
given by:

�Cl WD ��Cl C .1 � �/ Cl =max.1; �Cl /; (10.31)

where �Cl is the number of times the method l was used during the last segment
of imax ALNS iterations. Weights that are unused in the current iteration do not
change their value. On the one hand, large values for 	1; 	2 lead to a situation where
a selection of the corresponding destroy and repair methods is more likely. The
components of the score vectors  ˙ are reset to 0 after the weights are updated.

We use the following destroy methods to tailor the ALNS scheme to Prob-
lem (10.3). Here, x denotes a feasible solution of Problem (10.3), whereas R is a
number of batches to be removed from x.

1. randBatchRem.x;R/: Randomly choose a machine. Randomly select a batch
from this machine and remove it. This procedure is repeated until R batches are
removed.

2. randBatchPairRem.x;R/: This procedure is similar to randBatchRem.x;R/.
However, in contrast to randBatchRem.x;R/ we remove batches from pairwise
different machines, i.e., the machines considered in consecutive steps of the
procedure are different.

3. worstBatchRem.x;R/: Compute a list L where all batches from x in non-
increasing order of their weighted tardiness values are included. Choose a
random number z 2 Œ0; 1� and remove the batch Qb WD LŒdzpworst jLje� from the list
and from x. Here, pworst is a parameter of the ALNS scheme. The entire procedure
is repeated until R batches are removed from x.

4. relBatchRem.x;R; ı; �; �/: Let SB the set of all batches from x. Randomly select
a seed batch b from x. Insert it into the list of removed batches RB. Sort all batches
from SBnRB in non-decreasing order with respect to their relatedness to b where
the relatedness of two batches bi and bj is defined by

R.bi; bj/ WD ıjsbi � sbj j C �jPbi � Pbj j C �jwT.bi/� wT.bj/j: (10.32)
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Here, sb is the start time of batch b in x, Pb the position of batch b on one of
the machines, and finally wT.b/ WDPj2b wjTj the weighted tardiness of batch b.
Let denote the resulting sorted list by L. The random number z is chosen from
[0,1] and the batch Qb WD LŒdzprel jLje� is removed from L and x and inserted in RB.
Here, prel is a parameter of ALNS. Randomly select a new batch b� from RB
and repeat the entire procedure where b is replaced by b� until jRBj D R. The
related removal mechanism is proposed by Shaw (1998). The basic idea is that it
is easier to interchange related batches.

5. randAllMachRem.x;R/: The goal of this method consists in randomly removing
batches from all machines. Therefore, we start by randomly selecting a machine
from which no batch is removed so far. Randomly select a batch from this
machine and remove it. This procedure is repeated until R batches are removed
or one batch is removed from each machine.

6. randBatchPosRem.x;R/: This method aims to remove batches that are on the
same position on different machines. Therefore, we randomly choose a first
machine. A batch is randomly selected from this machine and then removed.
If there are batches on the same position on the remaining machines then remove
these batches too until R is not reached. Repeat this procedure until R batches are
removed from x.

The following repair methods are applied where x is a partial solution of Prob-
lem (10.3), and I is the set of batches to be inserted:

1. randBatchIns.x; I/: Randomly select a batch from I. This batch is scheduled on
a randomly selected position on a randomly selected machine. This procedure
is repeated until all batches from I are scheduled. Apply DH and Swap to the
resulting schedule.

2. greedyBatchInsTWT.x; I/: We assume that the batches in I are sorted with respect
to the sequence in which they are removed from the schedule. Select the first
batch b from I and try to insert it on each possible position within x. Insert b
on the position that leads to the smallest TWT increase. Set I WD I n fbg and
x WD x [ fbg. Repeat this procedure until I D ;. Perform Swap on the resulting
schedule.

3. greedyBatchInsDiffMachines.x; I/: This repair method is similar to the repair
method greedyBatchInsTWT.x; I/. However, only positions on machines are
tested that are different from the machine where the batch was scheduled before
the destroy.

4. greedyBatchParInsTWT.x; I/: Try to insert all batches from I on each possible
position in x. Insert batch b 2 I into x that leads to the smallest possible TWT
increase. Set I WD I n fbg and x WD x [ fbg. Repeat this procedure until I D ;.
Perform the Swap procedure on the resulting schedule.

Note that we also test pure LNS schemes. However, ALNS typically outperforms
LNS-type schemes. We see again that all the ingredients from Sect. 10.3 are used to
design the ALNS scheme.
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10.5 Computational Results

The design of experiments used in the computational experiments is presented
first in Sect. 10.5.1. Implementation aspects and the parameter setting for the
metaheuristics are described in Sect. 10.5.2. We then present and discuss the results
of the computational experiments in Sect. 10.5.3.

10.5.1 Design of Experiments

We expect that the quality of the proposed metaheuristics depends on the number of
jobs in the incompatible families, the number of families, the number of machines,
and the due date setting scheme. Due dates are chosen as follows:

dj 
 U Œ.1 � R=2/�; .1C R=2/�� ; (10.33)

where T is the percentage of tardy jobs and R the due date range. The quantity � is
calculated as follows:

� D OCmax.1 � T/: (10.34)

Here, OCmax is an estimator for the makespan of a schedule that is given by
OCmax D nE.pf /

mB .
The design of experiments is summarized in Table 10.1. In total, 1440 problem

instances are considered. Note that these instances are already used in Almeder and
Mönch (2011).

We are interested in comparing the TWT values of the three metaheuristics
relative to the TWT values obtained by ATC-BATC-H. Therefore, we determine
for the heuristic H the ratio

TWT.ATC-BATC-H/-TWT.H/

TWT.ATC-BATC-H/
: (10.35)

In addition, different amounts of computing time are used as in Almeder and
Mönch (2011) to allow for a fair comparison of the metaheuristics. The maximum
computing time per problem instance is 1 min. Such an amount of computing time
is small enough to fulfill the requirements of real-world decision making in a
wafer fab.
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Table 10.1 Design of experiments

Factor Level Count

Number of families F 3,6,12 3

Number of jobs per family nf =F 180/F, 240/F, 300/F 3

Maximum batch size B 4,8 2

Processing time pf 2 with probability 0.2 1

4 with probability 0.2

10 with probability 0.3

16 with probability 0.2

20 with probability 0.1

Weight wj � UŒ0; 1� 1

Percentage of tardy jobs T 0.3, 0.6 2

Due data range R 0.5, 2.5 2

Number of machines m 3,4,5,6 4

Total factor combinations 288

Number of independent problem instances 5

Total number of problem instances 1440

10.5.2 Implementation Aspects and Parameter Setting

All the different heuristics are coded in the CCC programming language. The
experiments for the GA and for the ACO scheme are carried out on a PC with
Intel Pentium D processor with 3.2 GHz CPU and 4 GB of RAM. SUSE Linux 10 is
used as operating system. The computational experiments for the ALNS scheme are
conducted on a PC with Intel Core i5-4570 with 3.20 GHz CPU and 8 GB of RAM
using 64 Bit Windows 7 as operating system.

The parameter settings for the GA and the ACO are the same as in Almeder and
Mönch (2011). The same setting for ATC-BATC-H is taken within all experiments,
i.e., we use � D 5; ˛ D 2 and iter D 15. The parameter setting for ALNS is
determined based on some preliminary computational experiments in connection
with a trial and error strategy. We use � D 0:1 as proposed in Kovacs et al. (2012),
imax D 100, prel D 2, and pworst D 3. In addition, the settings 	1 D 33 and 	2 D 9

are applied. For the related removal method, we use ı D 9, � D 3, and � D 4.
In each iteration of the ALNS approach, each destroy method removes between 5
and 12 % of the jobs. The concrete amount is randomly selected in each iteration.
The corresponding number of batches to be removed is determined based on the
number of jobs.
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10.5.3 Results of the Computational Experiments

We compare the performance of the three different metaheuristics. In a first
experiment, ALNS is applied to ten very small-size problem instances with up to
24 jobs that are solved to optimality using the commercial solver CPLEX. Similar
to ACO, ALNS is able to determine an optimal solution within 5 s of computing
time. This result indicates that ALNS is correctly implemented.

In a second experiment, we solve the 1440 problem instances that are described
in Sect. 10.5.1. The corresponding results are shown in Table 10.2 where we present
the values of the ratio (10.35) for the different metaheuristics. Three independent
runs are performed for each problem instance and each amount of computing time.
Instead of comparing all problem instances individually, the instances are grouped
according to factor levels such as number of machines, maximum batch size, etc.
For example, results for m D 3 imply that all the other factors have been varied,
but the number of machines has been kept constant at 3. The results of the best
performing algorithm within a specific row are marked in bold.

We see from Table 10.2 that ALNS clearly outperforms the GA and the ACO
scheme. Even after a computing time of 5 s, ALNS is able to obtain better results
than the GA and the ACO scheme after 1 min of computing time. The GA and the
ACO scheme are population-based approaches. Because they have to deal with an
entire population of solutions they show a more time-consuming behavior compared
to ALNS and variable neighborhood search (VNS). The largest improvements can
be observed for small values of T and R. In this situation, the due dates of the jobs are
wide. As a result, ATC-BATC-H performs poorly. Hence, metaheuristics have much
room for improvement since the sequencing decisions are reversible in contrast to
list scheduling approaches.

The results obtained by ALNS are slightly better than those obtained by the VNS
approach proposed by Almeder and Mönch (2011). This might be a result of the
more powerful hardware used in the present experiments for ALNS. Therefore, we
state that ALNS and VNS provide a comparable solution quality.

10.6 Conclusions and Future Research Directions

In this chapter, we discussed several metaheuristics for a batch scheduling problem
with parallel identical machines. First, building blocks of metaheuristic approaches
for the present scheduling problem were developed. The application of the dif-
ferent building blocks to construct heuristics was explained. A GA, ACO, and
ALNS-based metaheuristic were described. We demonstrated by computational
experiments that our ALNS scheme outperforms the GA and the ACO scheme and
is comparable to the VNS scheme from Almeder and Mönch (2011) with respect to
solution quality and computing time.
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There are several directions for future research. First of all it seems to be
interesting to provide non-trivial lower bounds by designing column generation
(CG) approaches for Problem (10.3). A corresponding CG scheme for a single
machine batching problem without incompatible families and makespan criterion is
already described by Parsa et al. (2010). However, to the best of our knowledge,
the parallel batch processing machine case is not tackled so far by CG. We
expect that the CG approach presented in Mönch et al. (2011b) can be extended
to Problem (10.3). A second direction is given by designing problem-specific
filtered beam-search heuristics. Some initial experiments for the scheduling problem
1jp-batch,incompatible,non-identicaljPTj (cf. Bücher 2014) indicate that beam-
search algorithms can be used to compute high-quality solutions in a short amount
of time. Here, we refer to non-identical job sizes by the notation non-identical.
Hence, such techniques can be used to speed up the corresponding branch and
bound approaches. Finally, it seems interesting to extend the ALNS scheme to the
scheduling problem Pmjrj; p-batch,incompatiblejTWT, where we denote by rj the
release date of job j. Based on the results in Bilyk et al. (2014) we know that
VNS performs well in this situation. Therefore, we expect a similar behavior for
our ALNS scheme.
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Chapter 11
Worm Optimization for the Traveling
Salesman Problem

Jean-Paul Arnaout

Abstract In this research, a new metaheuristic called Worm Optimization (WO)
is proposed, based on the foraging behaviors of Caenorhabditis elegans (Worms).
In particular, the algorithm will mimic the behaviors of worms including finding
food, avoiding toxins, interchanging between solitary and social foraging styles,
alternating between food exploiting and seeking, and entering a stasis stage. WO
effectiveness is illustrated on the traveling salesman problem (TSP), a known NP-
hard problem, and compared to well-known naturally inspired algorithms using
existing TSP data. The computational results reflected the superiority of WO
in all tested problems. Furthermore, this superiority improved as problem sizes
increased, and WO attained the global optimal solution in all tested problems within
a reasonable computational time.

Keywords Traveling salesman problem • Worm optimization • Metaheuristic

11.1 Introduction

In recent years, and as optimization problems are becoming more complex and
exact solution approaches computationally infeasible, the arena of biologically
inspired computing is becoming quite popular. The latter links several subfields
together such as social behavior and emergence, relying heavily on the fields of
biology, computer science, and mathematics with an objective of using computers
to model living phenomena and concurrently analyzing life to improve the usage
of computers (Bongard 2009). In particular, the discipline of swarm intelligence is
receiving a great deal of attention from the operations research community as it
has delivered good and efficient solutions to NP-hard problems that would not be
possible using traditional optimization approaches. Swarm intelligence concentrates
on the cooperative and collective behaviors resulting from the interactions of
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individuals among themselves and with the environment, including examples such
as colonies of ants, bees, and termites, flocks of birds, and schools of fish (Dorigo
2007). Following the same body of knowledge, we propose in this research a
novel optimization algorithm called Worms Optimization (WO) that is based on the
behaviors of Caenorhabditis elegans (informally known as “the worm”).

C. elegans is a non-parasitic transparent roundworm that lives in moderate
to pleasant soil environments (Wood 1988). According to Ferris (2013), it was
initially named Rhabditides elegans by Maupas (1900), then placed in the subgenus
Caenorhabditis by Osche in 1952, and finally raised to the genus status by
Dougherty in 1955. Early research about C. elegans started by Brenner (1974)
who investigated their genetics, and since then the worm has been extensively
researched. In particular, this worm is the only organism to have its neuronal
wiring diagram completed (Jabr 2012). It is important to note that C. elegans is
a small, soil-dwelling nematode with only 302 neurons (Macosko et al. 2009).
Nevertheless, these neurons allow C. elegans to achieve several intricate behaviors
including finding food (Avery and You 2012), avoiding toxins (Xu and Deng
2012), interchanging between solitary and social foraging styles (Lockery 2009),
alternating between “dwelling—food exploiting” and “roaming—food seeking”
(Shtonda and Avery 2006), and entering a type of stasis stage (Hu 2007). Despite
this, none of the findings from the C. elegans’ research was used to develop a
metaheuristic that is based on this worm’s behaviors.

Worm Optimization algorithm (WO) effectiveness is illustrated by solving the
traveling salesman problem (TSP) that deals with finding the shortest closed tour
after visiting all the cities once and only once in a given set. The main difficulty
in solving TSP lies in the great number of possible tours .n � 1/Š=2 for n cities
(Larranaga et al. 1999). Consequently, the TSP is known to be NP-hard; i.e., no
algorithm can solve all instances, especially large ones, in a practical computational
time. As a result, the literature presents lots of heuristics and metaheuristics that
were developed to solve TSPs approximately. As the TSP is one of the well-known
and popular problems in optimization, we will not present a detailed review of the
problem. In particular, this study’s aim is not about solving TSP; instead, it is about
introducing WO and highlighting its potential by testing it on a popular optimization
problem, the TSP. For further understanding on TSP, the reader can refer to Whitley
et al. (1989), Lin et al. (1993), and Basu (2012).

Some preliminary promising results for this problem have been reported by
Arnaout (2014). All instances and solutions for the problem addressed in this
chapter are available at SchedulingResearch (2015). The rest of this chapter is
organized as follows. In Sect. 11.2, we explain the key behaviors of worms. In
Sect. 11.3, the Worms Optimization algorithm is introduced. The computational
tests are presented in Sect. 11.4 and finally we conclude this research in Sect. 11.5.
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11.2 C. elegans: Behaviors and Characteristics

In this section, we describe the key behaviors of C. elegans along with the associated
neurons. In particular, we will discuss feeding, toxins avoidance, foraging styles,
dwelling and roaming, and dauer arrest.

11.2.1 Feeding

Shtonda and Avery (2006) showed that worms are able to distinguish food based on
its quality and will constantly seek out higher quality food. In particular, the authors
did the following test as described by Avery and You (2012): Hundreds of worms
were placed on plates that contained two different types of bacteria (food), and at
later times, the distribution of worms indicated that more worms are found in the
better food. In other words, when a worm is exposed to different types of bacteria,
it will select always the better source.

Hence, the worm when modeled will follow a greedy rule in selecting solutions,
as it always moves to the better solution without considering the global bests.

11.2.2 Foraging Styles

The key foraging styles of C. elegans can be summarized by either solitary or social
(Lockery 2009). Furthermore, one of the worm’s neurons is the RMG inter/motor
neuron, which controls aggregation and related behaviors (Macosko et al. 2009).
In particular, in their experiments, Macosko et al. (2009) manipulated the RMG
activities, and clearly showed that high RMG activity indicates a social behavior,
while a solitary behavior is observed with low RMG activity. Additionally, social
strains are attracted by pheromone secreted by other worms as well as good quality
food, while solitary strains are repulsed by this pheromone and dispersed evenly
across all types of food. These two foraging styles are depicted in Fig. 11.1.

Depending on the RMG level, a worm could be either “social, attracted to
pheromone, aggregated, and drawn to good solutions (greedy rule)” or “solitary,
repulsed by pheromone, and evenly dispersed across all solutions.”

11.2.3 Toxins Avoidance

Zhang et al. (2005) showed that worms can learn to avoid odors associated with
infection (bad food) through sensory neurons referred to as ADF. Once a worm
gets infected, it will learn from this infection in the sense to avoid eating the same
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Fig. 11.1 This picture is taken from Macosko et al. (2009). The solitary strains are depicted in the
left figure, which shows how they are evenly dispersed. The right figure highlights the aggregation
of social strains towards good solutions

bad food again. The authors noted in their study that the avoidance of bad bacteria
is similar to conditioned taste aversion, which is a known learning behavior in
mammals, snails, and fish where the animals avoid food flavors that were related
to intestinal distress.

The artificial worm will be equipped with a tabu-like list that stores a certain
number of bad solutions, as not to visit them again for a certain number of iterations.

11.2.4 Dwelling and Roaming

Shtonda and Avery (2006) reported that an extrapharyngeal interneuron called AIY
is critical for a worm to alternate between dwelling (local search) and roaming
(global search). In particular, at lower AIY activity levels, the worm switched from
“roaming—food seeking” to local search; the authors stated that this could be due
to the worms perceiving the food to be of higher quality than it was.

Depending on the AIY level, a worm could switch to local search. Furthermore,
if the food is of low quality, the worm will leave; i.e., will stop the local search.

11.2.5 Dauer Arrest

In harsh conditions, a worm enters a Dauer stage, where the latter describes an
alternative developmental stage by going from a reproductive stage into a type
of stasis and eventually dying if the environment conditions remain unfavorable.
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The impacting conditions are many, but the prevalent ones are quality of food and
increase in number/concentration of worms. In particular, if the present food quality
is low and the concentration level is high; i.e., too many worms for low levels of
food, then the worm enters dauer arrest. On the other hand, if the concentration
level is low and the food supply is high, then the worms will reproduce.

Depending on the dauer status, the worm will move from a reproductive stage to
a declining one, which would end once no more worms exist.

11.3 Worm Optimization

In this section, we translate the worm’s behaviors discussed in Sect. 11.2 to the
Worm Optimization algorithm and illustrate it using the TSP. First, it is worth
indicating here that similarly to other swarm intelligence algorithms, and in order
to solve an optimization problem using WO, the previous must be represented as a
connected graph (nodes and arcs). The worm will move from one node to another in
order to create a solution. The parameters needed in WO are as shown in Table 11.1.
The actual values of the parameters (if not constant) are determined using Design
of Experiments as shown later in Sect. 11.4.

11.3.1 Feeding Modeling

Initially, a certain amount of pheromone (�ij) is deposited in each arc in the
network. The worms move from a node to another according to a probability,
which is partially analogous to the one found in ant colony optimization (Dorigo
and Gambardella 1997), with the addition of worms specialized attributes. The
probability is determined by three factors: pheromone amount (�), visibility (
),
and bad solution factor (ADF). The probability of moving from node i to j for worm
k can be calculated as shown in (11.1):

Pk
ij D

�˛ij 

ˇ
ij ADFij

P
l2‰ �˛il 


ˇ
il ADFij

; (11.1)

where ‰ represents the set of unvisited nodes and the visibility (
) is determined
depending if it is a social or solitary worm (explained in detail in Sect. 11.3.3). Two
important parameters to direct the search are ˛ and ˇ, which are the exponents in
the probability function that determine the importance of the pheromone amount
over the visibility amount. Subsequently, when a worm finishes its tour; i.e., already
visited all cities (nodes) and reported a solution, if this solution is better than the best
solution found so far (BestCost), then the worm’s tour (associated arcs) pheromone
is updated according to Eq. (11.2).

�ij  �ij � .1C �/ if arc .i; j/ is used by worm k (11.2)
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Table 11.1 Parameters of WO

Parameter Range/Value Description

Worm (3, 60) Worm number: number of worms in the algorithm (at the
initialization stage)

MaxWorm (5000,
15,000)

During the reproductive stage, the number of worms cannot
exceed MaxWorm

RMG (0.4, 0.7) Lever between social and solitary strains: RMG D 1 indicates
only social behavior and RMG D 0 only solitary. The range is
not below 0.4 or higher than 0.7 as to not exclude a particular
behavior

AIY (0.1, 0.5) Percentage of local search: the higher AIY, the higher the chance
of dwelling (local search)

AIYIter (5, 60) Local search iterations: indicating the max number of local
search iterations

BestIter (100, 1000) Number of solutions without improvement before concluding
that food quality is bad

�ij 0.01 Pheromone: initial amount of pheromone deposited on arc .i; j/

� (0.1, 0.4) Production rate: rate of reproduction of worms when they are
not in Dauer stage

� (0.01, 0.5) Bad solution factor: initially, the arc attractiveness (ADF) for all
arcs equals 1I i.e., each arc has an equal probability of being
selected. In the case of a bad solution, its associated arcs will
be assigned an ADF D � within the shown range in order to
decrease its selection probability

� 0.01 Pheromone update: amount by which the pheromone is
increased when a good solution is encountered

˛ 1.5 Exponent to determine the importance of the pheromone over
the greedy rule

ˇ (0.5, 4.5) Exponent to determine the importance of the greedy rule over
the pheromone: if ˇ D 0.5, pheromone is three times more
important; if ˇ D 4.5, greedy rule is three times more important

MaxIteration (5000,
15,000)

Number of tours: referring to the total number of worms (tours)
generated in WO

11.3.2 Foraging Styles Modeling

After WO initialization, and according to RMG, each worm is labeled as social or
solitary. If the worm is social, it will be attracted to pheromone and will move
according to the greedy rule; if the worm is solitary, it is repelled by the pheromone
and will move with equal probabilities to possible cities. The pseudo code is
summarized below:

Step 1: Generate random variable (rv) from U(0,1)
Step 2: If .rv � RMG/, then worm is social:

Step 2.1: for (iD 1, . . . , N; j D 1, . . . , N), 
ij D 1=d.i; j/;
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Step 2.2: Equation (11.1) becomes: Pk
ij D

�˛ij 

ˇ
ij ADFij

P
l2‰ �

˛
il 


ˇ
il ADFij

.

Step 3: ElseIf(rv > RMG), then worm is solitary:

Step 3.1: for (iD 1, . . . , N; j D 1, . . . , N), 
ij D 1=N;

Step 3.2: Equation (11.1) becomes: Pk
ij D

1=�ij

˛



ˇ
ij ADFij

P
l2‰
1=�il

˛



ˇ
il ADFij

.

where d.i; j/ refers to the Euclidean distance between cities i and j.
In step 1, a random variable is generated to decide if the worm is solitary or

social. If social, then in Step 2.1 the greedy algorithm assigns the closest city j to
city i with a probability, and the higher the pheromone the more is the probability
of this assignment. If solitary, then Step 3.1 suggests an equal probability (1=N) of
assignment for arc .i; j/ and the higher the pheromone the less likely the assignment.

11.3.3 Toxins Avoidance: ADF Modeling

After a worm finishes its tour, its solution is assessed to determine if it should
be added to the list of bad solutions or not. In this stage, we need to define an
ADF list (ADFListh;NC1) to store the inferior solutions. This list can store up to

h solutions, where h D
lp

Worm
m

; i.e., h is always changing depending on the

dauer status (reproductive versus declining population). N is needed for every row
to store the ordering of the N cities (nodes) in the solution and an additional cell
to store the solution cost (WormCost). Furthermore, we define the array ADFN;N to
be linked with ADFList in the sense that for every solution stored in the list, its
associated arcs are updated following ADFi;j= �, where � is the bad solution factor.
The pseudo code for the ADF modeling, which is applied for every worm, is shown
below:

Step 1: Sort ADFList in the ascending order according to WormCost
Step 2: Assess current worm’s solution (WormCost)

Step 2.1: If (WormCost > ADFList1;NC1):
– add worm’s tour to ADFList,
– update the worm’s associated arcs pheromone: �ij  �ij�.1 � �/ ; if arc .i; j/
is used by worm k

Step 2.2: ElseIf (WormCost > ADFListh ;NC1), replace row h in the list with
the current worm’s tour,
Step 2.3: Else, ADFListh ;i = 0, for i = 1, . . . , N+1.

Step 3: for (lD 1, . . . , h; i D 1, . . . N),

Step 3.1: If (ADFListl;i < > 0), then ADFl;i = �.
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Step 4: for (iD 1, . . . , N; j D 1, . . . N), Do:
P

ADF D P
ADFC ADFij;

Step 4.1: If .
P

ADF DD N � �/, then:
Step 4.1.1: choose a random city c,
Step 4.1.2:ADFi;c D 1:

In Step 1, ADFList1;NC1 stores the worst solution and correspondingly ADFListh
;NC1 stores the least bad solution. In Step 2, ADFList is updated according to
WormCost quality. Note that in Step 2.1, if the solution generated was worse than
the worst solution, the pheromone of the worm’s tour is reduced. In Step 2.3, and in
case the solution generated was not worse than the last tour stored in ADFList (which
represents the least bad solution), then the latter is released from ADFList back into
the search space. In Step 3, ADF values are updated based on the solutions that are
present in ADFList. In Step 4, if

P
ADF DD N � �, this means that all candidate

starting arcs in a tour have been added to the ADFList; we release a random arc in
order to continue the search.

11.3.4 Dwelling and Roaming: AIY Modeling

When a worm generates a tour and its cost (WormCost), it has a probability of
conducting local search. In this case, two cities from the worm solution are chosen
at random and swapped. If this leads to a better solution, then the latter is retained;
otherwise, the local search continues until either a better solution is found or the
maximum iterations (AIYIter) is reached. In summary, after each worm completes
its tour, the following is executed:

Step 1: Generate random variable (rv) from U(0,1).
Step 2: If .rv � AIY/, Do Local Search:

Step 2.1: for (iD 1, . . . , AIYIter), Do:
Step 2.1.1: choose 2 different cities (randomly) from the worm solution (city1,
city2),
Step 2.1.2: swap city1 and city2 in the worm solution,
Step 2.1.3: if WormCost improved, then update solution; else, go to Step 2.1.

11.3.5 Dauer Arrest Modeling

Depending on the quality of the solutions obtained and worm concentration levels, a
worm may enter Dauer. The food quality (FQ) is assessed after each worm finishes
its tour. In particular, initially FQ D 0 indicating good food quality. In case the
number of successive iterations without improvement exceeds BestIter, then FQ D
1; i.e., conclude that food quality is bad.
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As for the concentration of worms in the search space, it is better assessed
by the number of tours generated (i.e., worms); for each worm, the number of
iterations is updated until it reaches its maximum (MaxIteration), which indicates
high concentration of worms. Equation (11.3) is used to normalize the concentration
to a (0,1) scale, where WCt D 1 indicates that WO reached the maximum number of
iterations.

Worms Concentration .WCt/ D Iteration

MaxIteration
(11.3)

Following each worm’s tour, the Dauer status (DauerStatus) is assessed as follows:

Step 1: Compute FQ and WCt.
Step 2: Compute Dauer level: DauerStatusD FQCWCt

2
:

Step 3: Assess if worms are in reproductive or declining stage:

Step 3.1: If (DauerStatus < 1/, then Worm D min fMaxWorm;
dWorm � .1C �/eg ;
Step 3.2: If (DauerStatusDD 1/, then Worm D bWorm � .1 � �/c :

Step 4: If .Worm DD 0/, Stop WO and report BestCost.

11.3.6 Worm Optimization Modeling Summary

According to the above, Fig. 11.2 summarizes the steps of WO to solve the TSP. The
pseudo code can be summarized as follows:

Step 1: Initialize WO Parameters and populate �ij and ADFij with the specified
amounts.
Step 2: While .Worm ¤ 0/, Do:

Step 2.1: IterationD Iteration + 1;
Step 2.2: Solve for a tour according to Sect. 11.3.2 (Social versus Solitary)
Step 2.3: Find WormCost associated with Step 2.2
Step 2.4: Execute the local search approach (according to AIY) described in
Sect. 11.3.4
Step 2.5: Update the pheromone according to Eq. (11.2)
Step 2.6: Execute the bad solutions approach described in Sect. 11.3.3
(ADFList and ADF)
Step 2.7: Update Worm number according to the Dauer approach in
Sect. 11.3.5

Step 3: Output the best tour and its cost, Stop WO.
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Fig. 11.2 Flowchart of the WO algorithm for TSP
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11.4 Computational Tests

The proposed WO was coded in the CCC programming language running on
Windows XP with a Pentium 4 processor. Design of Experiments (DoE) was utilized
to determine the appropriate values for the WO parameters that will minimize the
tour cost. Numerous publications provide a good review of DoE (e.g., Fisher 1960;
Taguchi 1993; NIST/SEMATECH 2008).

The factors considered in this experiment with their levels of low and high are
presented in Table 11.1. The values of the parameter levels were selected based
on many runs under different settings. To reduce the number of runs but reach
sound conclusions, D-Optimal design was utilized, which has been shown to be
an effective design (NIST/SEMATECH 2008). JMP 10.0 from SAS was used to
generate a D-Optimal design, with 112 experiments. The factors along with their
interactions were analyzed using regression, ANOVA, and factors’ effect tests.
Three-factor interactions and higher were not considered as they typically have
weak effect (Ross 1996). Based on a 95 % Confidence Interval, a relatively large
t-Stat, and a small p-value (less than 0.05), the following parameter values were
determined to provide the best performance for WO: WormD 10, MaxWorm = 6612,
RMG = 0.57, AIY = 0.36, AIYIter D 44, ˇ D 4.09, � D 0.3, � D 0.01, BestIter D
125, and MaxIterationD 8665, along with the predetermined parameters � D 0.01,
˛ D 1:5, �ij D 0.01.

Figure 11.3 shows solution progress in terms of the WormCost in each iteration
for a sample TSP to demonstrate the effectiveness of WO at each iteration in order
to develop better solutions. This is manifested through the convergence of the
WormCost after some running time, indicating that the search is not random.

In the preliminary tests that were conducted in Arnaout (2014), WO was
compared to genetic algorithm (GA) and simulated annealing (SA) on few problem
instances, and the results clearly indicated that SA performed the worst. To better
test the performance of WO, it was compared to other naturally inspired optimization
methods: ant colony system (ACS), particle swarm optimization (PSO), ant colony
optimization with multiple ant clans (ACOMAC), as well as GA. All algorithms
were tested on well-known TSPs that are included in TSLIB. In particular, the TSPs
are Oli30 from Oliver et al. (1987), Eil51and Eil76 from Eilon (1969), KroA100
from Krolak et al. (1972), and d198 from Reinelt (1994). Results using ACS and
ACOMAC are from Tsai et al. (2004), GA results are from Bersini et al. (1995)
and Yang et al. (2008), and PSO are from Shi et al. (2007). The results are shown
in Table 11.2, where the rows report the solutions obtained by the algorithms for
the problem instances starting with the best known solution in the first row, and
the “Type” column refers to the reported solution type depending if it is integer or
real. Furthermore, as we compared against several algorithms and studies, we report
“N/A” if the study did not test the related problem. Finally, we used two studies for
the GA results and reported the best solution for each individual problem.
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Fig. 11.3 WormCost vs WO iterations

It is clear from Table 11.2 that WO outperformed the other algorithms in all
problem sizes and attained the optimal solution in all test problems. Nonetheless,
and as in some problems PSO and ACOMAC’s solutions were close to WO, the
percentage deviation (ı) of the algorithms from WO was used as a measure of
performance for each problem. That is:

ı D TourCostAlgorithm � TourCostWO

TourCostWO
� 100% (11.4)

Figure 11.4 shows the values of ı for the real solutions which were reported only
for ACS and ACOMAC. It can be seen that ACS performed the worst, followed
by ACOMAC. Furthermore, both algorithms’ deviation from WO increased with
problem sizes (except in KroA100). Figure 11.5 shows the values of ı for the integer
solutions using PSO and GA, where PSO performed better than the latter except for
d198. Furthermore, it can be seen that PSO solution deteriorated with the problem
size. Finally, in order to compare the performance of all algorithms, the average
of ı was computed for every algorithm over its tested problems and depicted in
Fig. 11.6. The latter shows that the four algorithms clearly deviated from WO, with
ACOMAC performing the closest, followed by GA and PSO (with GA performing
slightly better), and ACS performing the worst.

An important attribute of any metaheuristic is its computational time; unfortu-
nately, the computational time of WO cannot be compared to the algorithms in this
study as these came from different works and were run on different processors;
i.e., such comparison would not be consistent across the algorithms. Instead, in this
chapter, we will use the approach that was adopted by Dorigo and Gambardella
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Table 11.2 Comparison of WO with ACS, ACOMAC, PSO, and GA with respect to total
distances

Study Method Type 01i30 EiI51 Ei176 KroA100 d198

Study Method Type 30 cities 51 cities 76 cities 100 cities 198 cities

Best known solution R 423.74 429.9833 545.3876 21,285.44 15,809.66

l 420 426 538 21,282 15,780

Proposed method WO R 423.74 429.1179 545.3876 21,285.44 15,809.66
l 420 426 538 21,282 15,780

Tsai et al. (2004) ACOMAC R N/A 430.684 555.23 21,457.93 16,041

l N/A N/A N/A N/A

Shi et al. (2007) PSO R N/A N/A N/A N/A N/A

l 427 546 21,761 16,186

Bersini et al. (1995)1 GA R N/A N/A N/A N/A N/A

Yang et al. (2008)2 l 4211 4302 5522 21,7611 16,1082

Tsai et al. (2004) ACS R N/A 434.178 559.7041 21,684.64 16,826.6

l N/A N/A N/A N/A

Fig. 11.4 Deviation of algorithms from WO (ı) —Applicable to ACOMAC and ACS only
(Table 11.2)

(1997), where WO will be compared to the algorithms with respect to the number of
tours required to find the best integer tour length. Since Dorigo and Gambardella’s
study did not cover PSO and ACOMAC, and given that our objective is to highlight
WO computational performance, this part will compare between WO, ACS, and GA
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Fig. 11.5 Deviation of algorithms from WO (ı) —Applicable to PSO and GA only (Table 11.2)

Fig. 11.6 Average of deviation (ı) for all problems (real and integer)

only. These computational results are shown in Table 11.3, where the performance
of ACS and GA was obtained from Dorigo and Gambardella (1997).

It is clear from Table 11.3 that WO significantly outperformed GA in the number
of tours required, especially as the problem size increased. This constitutes an
affirmation of WO’s performance where the latter reached better solutions than GA
in all problems while generating a significantly lower number of tours. On the other
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Table 11.3 Computational
comparison with respect to
number of tours

# of tours required for best integer tour
Algorithm Oli30 Eil50 Eil75 KroA100 d198

WO 842 1863 3567 4960 596,019

ACS 830 1830 3480 4820 585,000

GA 3200 25,000 80,000 103,000 N/A

hand, WO required a little more tours than ACS; this was expected and is contributed
to the solitary aspect of the worm. In contrast, as the ants are only social, they
converge faster to a solution. However, converging faster to a solution does not
necessarily mean that this solution is the best. From Table 11.2 we observe that WO
reached better solutions than ACS in all problems, while requiring a small number
of extra tours, expressly a max deviation in tours of 
3 % (from Table 11.3).

11.5 Conclusions and Future Research

In this chapter, we have introduced a novel optimization algorithm, WO, which
is inspired by the foraging behaviors of C. elegans (worms). The WO approach
and performance were illustrated using the Traveling Salesmen Problem, a known
NP-hard problem. The algorithm was compared to ACS, PSO, ACOMAC, and
genetic algorithm (GA). The computational tests indicated that WO outperformed
the algorithms in all problems, as well as attained the optimal solution in all cases.
Furthermore, WO’s computational effort was better than the GA’s and similar to
ACS’s in terms of number of evaluated tours.

The purpose of this chapter was to introduce this novel naturally inspired
algorithm and to highlight its value on a well-known problem. In future studies,
WO will be applied to more complex and contemporary problems.
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Chapter 12
Heuristics and Simulated Annealing Algorithm
for the Surgical Scheduling Problem

Gulsah Hancerliogullari, Emrah Koksalmis, and Kadir
Oymen Hancerliogullari

Abstract Planning and scheduling play a very important role in health care.
Effective scheduling optimizes the utilization of scarce resources such as oper-
ating rooms (ORs), devices in hospitals, and surgeons. Therefore, operations
research/operations management techniques have been frequently used in health
care systems management. In this chapter, we examine the surgical scheduling
problem over multiple operating rooms. In order to find an optimal solution to
surgical scheduling problem, mixed-integer programming (MIP) formulation of
the surgical scheduling problem is presented. The model includes constraints for
several operational rules and requirements found in most hospitals, and specifically
minimizes the total weighted start time as a performance measure (or objective
function). Since the problem is known to be an NP-hard in most of its forms,
heuristic algorithms (i.e., greedy heuristics and a metaheuristic) are also introduced
to find near-optimal solutions efficiently.
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12.1 Introduction

Health care systems are expected to provide high quality services with limited
resources. Significant percentage of the gross domestic product (GDP) in both
developed and developing countries belongs to health care expenses. The World
Health Organization (WHO) stated that total health care spending in the USA
was about 17 % of its GDP in 2011. Moreover, the Health and Human Services
Department anticipates that the health share will continue its increasing trend,
reaching almost 20 % of GDP by 2017 (Keehan et al. 2008). Similarly, it was
stated that over 8 % of the GDP is due to the health care expenses in the
United Kingdom in 2007 (Haynes 2010). According to the Health Care Financial
Management Association, operating rooms comprise over 40 % of the hospital’s
revenue and a similar portion of its cost (HFMA 2005). In order to satisfy the
growing demand for health care services, efficient use of operating rooms is crucial.
Therefore, the efficiency of health care delivery system is highly dependent on
efficient management of operating room. On the other hand, ineffective scheduling
of operating room time usually leads to costs to hospitals and patients mainly due
to delays or cancellations of surgery. Aiming to increase patient satisfaction, health
care centers also try to reduce their expenditures and improve their financial assets.
The key objectives of the hospital authorities are to utilize resources optimally and
to plan the surgery at the right time, at the right operating room.

The construction of a schedule that satisfies all operational rules and needs in
hospitals, while simultaneously fulfilling as many of the wishes and requirements
of the staff and patients is an important but extremely difficult task. In most hospitals
this duty is left to each surgical department and the current practice is to replicate the
schedules of previous weeks with minor changes to accommodate newly developed
conditions. In recent years, changes occur more frequently and patching of what had
been developed previously is not always the best strategy. Under these conditions,
and in the light of development done both in hardware and software technologies,
the scientific community continues to work on the problem so as to develop formal
and automated procedures for constructing efficient and desirable schedules.

The surgical scheduling problem is defined as the process of assigning surgical
operations to specific time periods (mostly throughout the 5 working days of the
week) and specific ORs suitable for the patients with respect to the needs of each
surgery. For every health care center, the objective is always the construction of
effective and satisfactory weekly schedules. A schedule is considered to be effective
when it is feasible and realized by the center, while it is considered to be satisfactory
when it carries certain quality characteristics that keep its users satisfied at least to
a certain degree.
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12.2 Approaches in Literature

Operations Research/Operations Management techniques have been commonly
used in health care systems management, and a large body of literature has reported
on the operating theater (OT) planning and scheduling. The surgical scheduling
problem is known to be an NP-hard problem in most of its forms, meaning that if all
combinations were to be examined, the solution time would increase considerably
with slight increase in problem size. Similar to many other problems in the area of
combinatorial optimization, the surgical scheduling problem has been approached
by numerous well-known methods of operational research and computer science.

In the literature, deterministic and stochastic mathematical programming models,
queuing models, simulation models, and heuristic approaches have all been widely
addressed in order to investigate operating room scheduling. In this chapter, we
review studies that pertain to deterministic programming approach for surgical
operation scheduling problem. However, a more comprehensive review can be
found in Cardoen et al. (2010) and Guerriero and Guido (2011), in which they
provide broad overview and classification of the OT planning and scheduling. A
detailed taxonomy has been proposed based on several areas related to the problem
setting (e.g., performance measures or patient classes) and the technical features
(e.g., solution technique and uncertainty incorporation). They stated that most of
the research that considers deterministic methodologies focus on planning and
scheduling of elective cases at an operational level of control. Moreover, they
observed that only few researches address the implementation in practice.

Mathematical programming models (Ogulata and Erol 2003; Blake et al. 2002;
Blake and Carter 2002; Ozkarahan 2000) and simulation (Dexter 2000; Schmitz
and Kwak 1972; Kuzdrall et al. 1974; Vasilakis et al. 2007) are the most common
approaches applied to the surgical operation planning problems. Mathematical
programming (especially, integer and mixed-integer programming) models have
shown to be useful in capacity planning or resource allocation in complex health
care systems. Cardoen et al. (2009) stated a multi-objective surgical case sequencing
problem in which the order of patients in the operating rooms of a freestanding
ambulatory unit had to be determined. Roland et al. (2006) proposed a genetic
algorithm (GA) so as to minimize the costs related to operating room openings
and overtime. Specifically, the stated problem, which is similar to the well-known
resource-constrained project scheduling problem, determines the date and starting
time of a set of surgeries in the OR. The performance of the proposed GA is
validated through a comparison with a mixed-integer programming (MIP) approach.

Although satisfying the growing demand for health care services and efficient
use of ORs is highly crucial, research on optimum scheduling of hospital operations
is limited. For example, a goal programming model has been proposed for the
assignment of surgical operations among multiple operating rooms (Ozkarahan
2000). The hierarchical multiple criteria mathematical programming is proposed in
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order to assign surgeon groups and dates to surgical operations optimally (Ogulata
and Erol 2003). An MIP model is introduced in Vissers et al. (2005) to generate a
master operating theater schedule for thoracic surgery. Fei et al. (2010a) proposed
a branch-and-price algorithm in order to assign a set of surgeries to operating
rooms. Their objective was to minimize the total operating cost. Fei et al. (2010b)
used the open scheduling strategy to construct a weekly surgery schedule. The
problem was solved in two steps, firstly surgery date for each patient, then the
sequence of surgeries in each OR is determined. Roland et al. (2010) proposed
an approximate algorithm, which is based on GA in order to solve the resource
constraint project scheduling problem (RCPSP). Hanset et al. (2010) developed a
constraint programming approach to solve a daily scheduling problem in which they
consider human and material aspects, and they compared the results with the MIP
model developed for the same problem (Dexter et al. 1999).

Regarding the objective function, most of the studies focus on maximizing OR
utilization (Ozkarahan 2000; Dexter et al. 1999; Dexter and Traub 2002). On the
other hand, Dexter et al. (2002) considered not only OR but also the hospital beds
in the objective function. Following this idea, Beliën and Demeulemeester (2007)
developed heuristics to construct master surgical scheduling (MSS) in which the
objective is minimizing the expected total bed shortage.

Continuous growth in health care operation volumes worldwide and increasing
delay costs continue to motivate research related to health care operations manage-
ment. Surgical scheduling problems, in particular, have motivated a numerous deal
of academic research since ORs constitute a major bottleneck at hospitals.

In this study, we provide an illustrative example in order to demonstrate how
the operations research techniques can be used in the surgical scheduling problem.
We provide an MIP formulation and approximate algorithms to solve the surgical
scheduling problem in case of multiple ORs and multiple surgical operations while
taking into account real-world constraints. Specifically, we make the following
contributions: First, contrary to most existing studies that ignore the priorities of the
surgical operations, we model the surgical scheduling problem while considering
different cases and categories of patients based on their surgical cases (i.e., elective,
urgent) and ages (i.e., baby, child, adult). In general, an urgent case has more risk
than an elective case; therefore, for instance, we assign higher priority to the urgent
surgical operations. Second, even though the ORs are assumed to be identical, we
consider that each surgical operation may require specific equipment. Whenever an
operation is completed, some setup work has to be done before the next surgical
operation starts, such as changing equipment. Therefore, we consider the sequence-
dependent setup times between surgical operations which increases the complexity
of the problem. Third, we provide problem specific greedy heuristics (i.e., shortest
processing time, weighted shortest processing time, etc.), and integrated them into
Simulated Annealing (SA) algorithm to improve initially constructed solutions.
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12.3 Problem Statement

ORs are considered a scarce resource in the surgical scheduling problem, and their
availability is defined by the hospital. Some ORs may be considered available during
all periods, while some others have limited availability. In some hospitals, one
department may operate in an OR some days of the week and other departments
the rest of the periods. Therefore, it is common for several departments to share the
same OR.

Construction of a daily/weekly schedule for a health care center is a monotonous
activity on which administrators typically spend several man-hours. In this effort,
schedulers follow several rules, some of which are so important that they may never
be violated. For instance, in a timetable, collisions are not acceptable. A collision
occurs when at least two surgical operations are scheduled at the same period in
the same OR, or when at least two ORs are allocated to the same surgical operation
and to the same patient. A schedule has to be complete, which happens when all
surgeries planned for every patient appear in the timetable, with the right amount of
time periods for every surgery and every portion of each surgery.

In this chapter, we study the problem of scheduling a set of surgical operations
(i.e., elective and urgent surgeries) to multiple ORs in a health care center. The
scheduling decision includes the assignment of surgical operations to ORs, and
the operation sequence in each OR. Various types of surgical operations may
necessitate various resources and equipment. In general, most facility resources such
as ORs, specified equipments are multi-functional and can accommodate different
types of surgical cases. While some resources and equipment can be shared among
several ORs, some of them are dedicated to particular ORs. Moreover, each surgical
operation is constrained by the resources and equipment associated with the OR.

In the surgical scheduling problem, we consider a set J of surgical operations (j D
1; : : : ; n) to be performed in an OR. Each surgical operation j should be performed
after a given earliest start time, rj and before a given latest start time, dj, in which
their values vary by several factors such as the availability and the condition of the
patient, the availability of the resource that is going to be used (e.g., the schedule of
the surgeon who is going to operate the surgical operation), the time-window set by
the health care center authorities. A priority weight, wj, is assigned to each surgical
operation and its value depends on the case of surgical operation (elective, urgent)
and the category of age of patients (baby, child, adult). For instance, urgent cases
always have higher priority over elective cases regardless of the age of patients;
or babies have higher priority weight over adults when they belong to same case
(elective, urgent) since the hunger tolerance of the babies is lower. Different types
of surgical operations contribute to different surgery times. The duration of each
surgical operation, pj, is dependent on the type of the procedure, and can last from
minutes to hours. Whenever an operation is completed, some setup work has to be
done before the next surgical operation starts; for instance, cleaning up the OR,
changing equipment, refilling sterilization resources, and getting proper surgeons,
nurses, and anesthesiologists. A sequence-dependent setup time, sj1 j2 , is enforced
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j1 j2 j3 … jn

Sequence-dependent setup times

Fig. 12.1 The schedule of a set of surgical operations with sequence-dependent setup time

if two successive surgical operations j1 and j2 are assigned to the same OR, as
shown in Fig. 12.1. That is, the setup time required after j1 is dependent on the
next surgical operation. For instance, in Fig. 12.1, the setup time between surgical
operation j1 and j2 is 5 units; however, if another surgical operation was scheduled
right after j1, the setup time would differ. Moreover, scheduling procedure j2 after
j1 may require a different setup time if j1 was scheduled after j2. There is a set M of
ORs (iD 1, : : : , m) available each day. Each OR i has a maximum available time to
be used, ai. The start time of the surgical operation j is tj, and the scheduling goal
is to minimize the total weighted start times, which in practice tends to start the
procedures on time.

Finally, the following realistic assumptions are made as follows:

1. Only one OR can be allocated to a surgical operation at a time.
2. A surgical operation cannot be interrupted or stopped.
3. The duration of a surgical operation has been predetermined prior to the

scheduling.
4. The priorities of surgical operations are not the same.
5. Before a surgical operation starts, some setup work needs to be done, such as

transfer of resources, preparing required equipment, sterilization, etc.
6. The setup times are sequence-dependent, and deterministic.

12.4 Mathematical Programming Formulation

We present an MIP formulation to construct surgeries schedule. This MIP has been
adapted from the literature for a different application (see, for example, Al-Salem
et al. 2012; Hancerliogullari et al. (2013)). The equations and inequalities of the
MIP model presented here may differ from a hospital to another to reflect the special
requirements imposed by each one of them. Given a set of n surgical operations and
m ORs, it is required to simultaneously assign the surgical operations to ORs and
generate the optimum schedule for each OR with respect to an objective function as
determined by the health care authority (minimizing the total weighted start times
in this case).
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12.4.1 Notation

Sets

J: Set of surgical operations
M: Set of ORs

Parameters

pj: the duration of surgical operation j; 8j 2 J
rj: the earliest start time of surgical operation j; 8j 2 J
dj: the latest start time of surgical operation j; 8j 2 J
ai: the length of time that OR i is planned to be available, 8i 2 M
ej: the case of surgical operation j, being an elective surgical case or an urgent

case, 8j 2 J
cj: category of surgical operation j, based on patient’s age, e.g. baby, child, or

adult, 8j 2 J
wj: the priority weight assigned to surgical operation j based on its case and its

category,8 2 J. In particular higher priority is assigned to urgent cases over
elective cases and to babies over child and adults due to hunger tolerance.

sj1 j2 : the setup time required between surgical operation j1 and j2 if they are
assigned to same OR and are, respectively, the leading and the following
surgical operation, 8j1; j2 2 J; j1 ¤ j2

Decision Variables

xij D 1 if surgical operation j is assigned to OR i; 8i 2 M; 8j 2 J andD 0
otherwise

zj1 j2 D 1 if surgical operation j1 and j2 are assigned to the same operating room,
8j1; j2 2 J; j1 ¤ j2, andD 0 otherwise

tj: the start time of surgical operation j; 8j 2 J

12.4.2 Model Formulation

Minimize
X

j2J
wjtj (12.1)

X

i2M
xij D 1; 8j 2 J (12.2)

X

j2J
pj � xij � ai; 8i 2 M (12.3)

tj2 � tj1 C pj1 C sj1 j2 �
�
1 � zj1 j2

� �
dj1 C pj1 C sj1j2

�
; 8j1; j2 2 J; j1 ¤ j2 (12.4)
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zj1 j2 C zj2 j1 � xij1 C xij2 � 1; 8i 2 M; 8j1; j2 2 J; j1 < j2 (12.5)

rj � tj � dj; 8j 2 J (12.6)

xij 2 f0; 1g (12.7)

zj1 j2 2 f0; 1g (12.8)

tj � 0; 8j 2 J (12.9)

The objective function (12.1) is to minimize the total weighted start times.
Constraint (12.2) indicates that every surgical operation is assigned to an OR.
Constraint (12.3) guarantees that total duration of surgical operations in an OR
cannot exceed the available operating time of the room. Constraint (12.4) calculates
the value of the start time decision variable while ensuring a procedure’s duration
and proper sequence-dependent setup time between any pair of surgical operations
if they are assigned to the same operating room. For instance, when two surgical
operations are assigned to the same operating room (zj1 j2 is 1), the start time of the
following surgical operation must consider not only the start time and the duration
of the leading surgical operation but also the sequence-dependent setup time. On
the other hand, when zj1 j2 is 0, which means that surgical operation j1 and j2 are
not assigned to the same operating room, tj2 of the constraint is enforced to be
greater than zero or a negative value since tj1 � dj1 . Constraint (12.5) initiates
the sequencing variables between any pair of surgical operation that are assigned
to the same OR. For example, if surgical operation j1 and j2 are assigned to the
same operating room, i.e., xij1 and xij2 are equal to 1, either zj1 j2 or zj2 j1 must be 1.
Constraint (12.6) determines the time-window limitations. Constraints (12.7)–(12.8)
define xij and zj1j2 to be binary decision variables. Constraint (12.9) states that the
start time of all surgical operations should be nonnegative.

12.5 Approximate Algorithms

Minimizing the total weighted start time with multiple ORs is NP-hard, which
leads us to provide appropriate solution methods, such as greedy heuristics and
metaheuristics to obtain good quality solutions in reasonable computational times.
We study the performance of several greedy heuristics listed below:
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Table 12.1 Sample priority weights, durations, earliest start time, latest
start time, and the sequence-dependent setup times

SDST (min)
SO wj pj (min) rj (min) dj (min) 1 2 3 4 5

1 3 40 10 300 1 – 40 50 60 50
2 2 60 10 300 2 45 – 60 70 60
3 3 100 10 300 3 55 60 – 50 60
4 1 40 10 300 4 55 70 50 – 60
5 4 80 10 300 5 65 55 45 55 –

SO surgical operation, pj duration, wj priority weight, rj earliest start time,
dj latest start time, SDST sequence-dependent setup time

Operating Room I SDST1,2 SDST2,3

Operating Room II SDST4,5 SO5SO4

SO1 SO2 SO3

Fig. 12.2 Sample surgery schedule using SPT rule

12.5.1 Smallest Processing Time

Whenever an OR is free and the surgical operation is ready to be scheduled, the
smallest processing time (SPT) rule assigns first the surgical operation with the
SPT among all unassigned surgical operations. Ties can be broken arbitrarily. The
computation time needed to order the surgical operations according to SPT rule is
O.n.log.n// time. The rule is explained through the example stated below:

A sample priority weights, surgical operation durations, earliest start time, latest
start time, and the sequence-dependent setup times of five surgical operations are
provided in Table 12.1. According to the SPT rule, a surgical operation to be
assigned first is the one that has the shortest duration. The remaining surgical
operations are scheduled according to the ascending surgical durations to the ORs on
which their operation can start earlier. The constructed schedule for a given example
is provided in Fig. 12.2.

12.5.2 Higher Priority Earlier

By sequencing surgical operations in decreasing order of the priority weights, wj,
this greedy heuristic allows us to schedule first the surgical operation that has
urgency to the first available OR if available and the hard constraints are satisfied
(e.g., a surgical operation should start within the earliest start time–latest start time
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Operating Room I SDST5,2

Operating Room II SDST1,3 SDST3,4

SO5

SO1 SO3

SO2

SO4

Fig. 12.3 Sample surgery schedule using HPE rule

Operating Room I SDST1,3 SDST3,4

Operating Room II

SDST5,2 SO2

SO1 SO3 SO4

SO5

Fig. 12.4 Sample surgery schedule using WSPT rule

window). The computational complexity of the higher priority earlier (HPE) rule is
O.n.log.n//.

According to HPE rule, the surgical operation to be assigned first is the one that
has the highest priority weight. The remaining surgical operations are scheduled
according to the descending surgical priority weights to the ORs on which their
operation can start earlier. The constructed schedule for the example presented
earlier is provided in Fig. 12.3.

12.5.3 Weighted Shortest Processing Time First (Ratio Rule)

The priority weight wj of surgical operation j may be regarded as an importance
factor; it may represent the value already added to surgical operation j (higher value
of wj is higher priority). The surgical scheduling problem gives rise to one of the
better known greedy rules in scheduling theory, the so-called weighted shortest
processing time (duration) first (WSPT) rule. According to this greedy rule, the
surgical operations are ordered in decreasing order of wj/pj, the surgical operation
to be assigned first is the one that has the highest ratio (wj/pj) value. The remaining
surgical operations are scheduled according to the descending values to the ORs on
which their operation can start earlier. In the example above, the order of surgical
operations will be 1, 5, 3, 2, 4, and the constructed schedule will be as shown in
Fig. 12.4. The computational complexity of the WSPT rule, which is dependent on
the sorting procedure, is O.n.log.n//.



12 Heuristics and Simulated Annealing Algorithm for the Surgical. . . 235

12.5.4 Simulated Annealing (SA)

SA algorithm is one of the robust metaheuristics designed to solve combinatorial
optimization problems such as the surgical scheduling problem. The algorithm
mimics the annealing process used in metallurgy which is based on the work
of Metropolis et al. (1956). Starting with an initial solution, one replaces the
current solution (�) by a neighbor solution (�’) with a probability at each iteration.
Providing a means of escaping from local optimum, the metaheuristic sometimes
accepts a worse neighborhood move with an acceptance probability Pa that is
defined as e�
=T , where 
 is the difference in the objective function values of the
current solution and candidate solution, and T is a temperature control parameter.
As is the case in the annealing process, the temperature (T) is decreased gradually
throughout the process. The performance of the algorithm depends on neighborhood
search and several parameters, namely the maximum number of iterations (tmax),
maximum number of inner loop iterations (imax), temperature cooling coefficient
(˛), and initial temperature coefficient (k). In order to have more flexible initial
temperature values, as in Hancerliogullari et al. (2013), the initial temperature
is defined as a function of the objective function value of the current solution,
which can be the initial solution obtained by the greedy heuristics. The values of
the parameters can be fine-tuned using experimental design methodology. While
the SA goes through k drops in temperature, at each temperature, it explores the
neighborhood of the current solution. Swap 1, Swap 2, and Swap 3 functions are
used to perturb the current solution locally and are selected randomly with equal
probability. Swap 1 randomly selects two surgical operations j1 and j2 from the set
of operations that are assigned to the same OR and have the same priority weight
(i.e., zj1j2 D 1 or zj2 j1 D 1; and wj1 D wj2). Swap 2 swaps two surgical operations
j1 and j2 that are randomly from the set of operations that are assigned to the same
OR regardless of priority (i.e., zj1 j2 D 1 or zj2j1 D 1). Finally, Swap 3 exchanges
a randomly selected surgical operation j1 with another randomly selected surgical
operation j2, and it is applied to all surgical operations across the ORs. The pseudo
code describing the metaheuristic is presented below.

S: search area
�*: best solution
f(�): objective function value of the current solution
N(�): neighborhood of �
M: memory set of current best solution and objective function value
i: inner loop iteration counter
c: iteration counter

begin Greedy initialization (generate an initial solution � from S)
Calculate f(�), initialize Memory MDf(� , f(�))g
Set iteration counters i D 0, cD 0
Set initial temperature T D k. f(�)
while c < tmax
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while i < imax

Choose � 0�N .�/ 	 S where M D f.�; f .� 0//g, do neighborhood search
if zj1j2 D 1 or zj2j1 D 1; and wj1 D wj2 , use Swap 1
else if zj1j2 D 1 or zj2j1 D 1, use Swap 2
else use Swap 3
Calculate f (� ’)

if f .� 0/ � f .�/ � 0 or rand Œ0; 1� � e�
�T ; where 
� D f .� 0/ �
f .�/ then

accept the new neighbor � 0 and set M D f.�; f .� 0//g
end if
iD iC1
cDcC1

end while
Update temperature T D ˛.T

end while
Calculate f (�*)
end

12.6 Computational Experiments

In this section, we evaluate the computational performance of the MIP model,
the greedy heuristics and the metaheuristic on randomly generated instances. We
generate 90 instances with different sizes as follows: the number of surgical
operations J D 15; 30; 50 and the number of ORs M D 4; 5; 6. In order to
test the performances of the solution methodologies, the data are generated as
follows: The surgical operation cases are randomly generated with equal probability
of 1/2 to represent urgent and elective surgeries. The (age) categories of surgical
operations/patients are randomly generated with equal probability of 1/3 to represent
adults, children, or babies. The priority weights for surgical operations are depen-
dent on the case of surgical operation (i.e., elective or urgent) and the categories
of surgical operation/patient (i.e., baby, child, or adult). Furthermore, urgent cases
always have higher priority weights over elective cases. The priority weight for an
elective surgical operation is 1, 2, and 3 for an adult, a child, and a baby, respectively;
and it is 4, 5, and 6 for an urgent surgical operation for an adult, a child, and a
baby, respectively. According to Jebali et al. (2006), lognormal distributions are
suitable to generate the operating times (i.e., duration). Therefore, we generate the
surgery durations by following lognormal distributions with a mean of 120 min and
a standard deviation of 60 min. The earliest and latest start times of the surgical
operations and the length of the time that OR i is planned to be available are
randomly generated using a discrete uniform distribution. The sequence-dependent
setup times for surgical operations range between 15 and 35 min depending on the
type of surgical operation.
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Table 12.2 The results for MIP model

MIP
Instance
set

# of surgical
operations

# of operating
rooms

CPU
(min)

Best solution
so far

# of
constraints

# of
variables

# of
iterations

1 15 4 >30 1844 675 286 129,367,260
2 15 5 >30 1279 780 301 72,922,793
3 15 6 >30 898 885 316 66,769,882
4 30 4 >30 12,090 2700 1021 45,407,445
5 30 5 >30 8678 3135 2051 44,223,441
6 30 6 >30 7463 3570 1081 44,051,307
7 50 4 >30 33,260 7500 2701 28,489,668
8 50 5 >30 25,550 8725 2751 26,692,546
9 50 6 >30 21,355 9950 2801 24,079,034

The MIP model is implemented and solved using IBM ILOG CPLEX CP
Optimizer 12.5, and the approximate algorithms are coded in C using Visual Studio
and run on Windows 7 with Intel Core i5-3330S processor, with 2.70 GHz CPU and
8 GB of memory.

Table 12.2 shows the performance of the MIP model and it lists the number of
surgical operations, number of ORs, CPU time, average of best solution (objective
function value) found so far, number of constraints and the number of variables.
As the number of surgical operations increases with the same number of ORs, the
objective function value, the number of constraints, the number of variables, and the
number of iterations, which is the number of times executed so far during the current
optimization to solve the node relaxations, increase. In contrast, as the number of
ORs increases for the same number of surgical operations, the number of constraints
and the number of variables increase, while the objective function value and the
number of iterations decrease. The MIP model failed to solve our instances using
CPLEX within a time limit of 30 CPU minutes. Therefore, approximate algorithms
are needed to solve the various problem instances in acceptable amount of time.

The performance of the greedy heuristics, SPT, HPE, WSPT, and the metaheuris-
tic SA provided in Tables 12.3 and 12.4, is measured in terms of average percentage
optimality gap and average CPU time by averaging the values for 10 instances
for each instance set (surgical operations-OR combination). The optimality gap is
calculated via Eq. (12.10) for each test problem.

Optimality Gap D Objective function valueAlg � Objective function valueOptimal

Objective function valueOptimal

(12.10)

where Objective function valueAlg is the total weighted start time of the pro-
vided algorithms and Objective function valueOptimal is the optimal solution’s total
weighted start time for each test problem. For the cases, where optimal solutions
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Table 12.3 The results for the greedy algorithms

SPT HPE WSPT

Instance
# of surgical
operations

# of operating
rooms Gap

CPU
(second) Gap

CPU
(second) Gap

CPU
(second)

1 15 4 0.52 0.00 0.49 0.00 0.23 0.00
2 15 5 2.03 0.00 0.71 0.00 1.73 0.00
3 15 6 1.46 0.00 1.50 0.00 1.46 0.00
4 30 4 0.59 0.00 0.84 0.00 0.19 0.00
5 30 5 1.07 0.00 1.23 0.00 0.86 0.00
6 30 6 1.43 0.00 1.49 0.00 0.87 0.00
7 50 4 0.68 0.00 0.55 0.00 0.31 0.00
8 50 5 0.92 0.00 0.79 0.00 0.39 0.00
9 50 6 0.89 0.00 0.82 0.00 0.49 0.00

Table 12.4 The results for the simulated annealing algorithm

SASPT SAHPE SAWSPT

Instance
# of surgical
operations

# of operating
rooms Gap

CPU
(second) Gap

CPU
(second) Gap

CPU
(second)

1 15 4 0.06 0.64 0.06 0.67 0.06 0.64
2 15 5 0.24 0.77 0.24 0.75 0.24 0.74
3 15 6 0.81 0.86 0.81 0.88 0.81 0.85
4 30 4 0.05 0.73 0.05 0.75 0.05 0.72
5 30 5 0.23 0.82 0.22 0.82 0.23 0.82
6 30 6 0.50 0.93 0.51 0.94 0.50 0.91
7 50 4 0.06 0.95 0.06 0.95 0.06 0.95
8 50 5 0.21 0.96 0.21 0.98 0.23 0.96
9 50 6 0.06 1.94 0.05 1.96 0.06 1.96

could not be found in predefined time limit, we keep the record of “best solution
found so far,” and use this value instead of the optimal solution.

The greedy algorithms yield feasible solutions to all instances in our testbed
along with substantial computational savings over solving the MIP model
using CPLEX. For example, these three greedy heuristics solved instances with
(n, m)D (15, 4) in very short time (0.00 s), and exhibited an optimality gap that
ranged from 0.23 to 0.52. It is notable that whereas the solution of the MIP model
with CPLEX reached the computational time limit of 30 CPU minutes for most of
these instances, the greedy heuristics solved the instances in very short time (0.00 s)
on average. This demonstrates the usefulness of using the greedy algorithms in
surgical scheduling problem. The WSPT rule, which takes into account both the
priority weight and the duration of the surgical operation in assigning operations to
ORs, performs better than SPT and HPE rules in terms of average optimality gap
and takes similar CPU.



12 Heuristics and Simulated Annealing Algorithm for the Surgical. . . 239

The results of SA with the greedy heuristics used in the initialization phase are
provided in Table 12.4. When the SA algorithm uses the solution obtained from
the SPT greedy rule as an initial solution, the integrated algorithm is called SASPT.
Similar convention is used when the other two greedy heuristics provide the initial
solutions for the SA algorithms. The performance of the SA with different initial
solutions is evaluated in terms of average optimality gap and average CPU for all
problem instances. The results show that the SA provides significant computational
savings compared to the MIP model, and it generates feasible solution to all
instances. The average optimality gap and average CPU of the SASPT, SAHPE, and
SAWSPT are quite similar which indicates that for the given problem instances, the
SA performance is not affected by the initial solutions generated by greedy rules.

The general trend of the results indicates that the SA algorithm which uses
greedy heuristics as initial solutions performs better than the greedy algorithms
by themselves (e.g., SASPT is superior to SPT), in terms of average optimality
gap which is expected without increasing the CPU significantly. For example,
SASPT solves the instances with (n, m)D(15, 4) in less than a second, and the
optimality gap is reduced to 0.06 %. All instances and solutions are available at
www.SchedulingResearch.com.

12.7 Conclusion

ORs are regarded as the hospital’s engine because they are considered among the
most costly hospital facilities. They comprise almost half of the hospital’s revenue
and a similar portion of its cost (HFMA 2005). Therefore, efficient use of OR is very
important in order to satisfy the growing demand for health care services. Ineffective
and incorrect scheduling of surgical operations usually results in costs to hospitals
and patients mainly because of delays or cancellations of surgery. The objective
of health care centers is both increasing the patient satisfaction and improving their
financial assets by decreasing their expenditures due to inefficiencies. Consequently,
efficiency of health care delivery system is highly dependent on efficient planning
and scheduling of surgical operations.

In this chapter, we demonstrated how operations research techniques can be used
in health care systems management by specifically studying the surgical scheduling
problem. We have examined the real-world application of the surgical scheduling
problem in case of multiple operating rooms and multiple surgical operations, where
the priorities of the surgical operations are taken into consideration. In this study, the
priorities are dependent on the type of surgical cases (i.e., elective, urgent) and ages
(i.e., baby, child, adult). Moreover, contrary to most existing studies, we consider
that each surgical operation may require specific resource such as equipment;
therefore, whenever an operation is completed, sequence-dependent setup time is
enforced before the next surgical operation starts.

We started with providing an MIP formulation to model the problem and
obtain optimal schedules. According to the computational study, even within a
time limit of 1800 CPU seconds, it was not possible to solve the MIP and find

www.SchedulingResearch.com
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exact (optimal) solutions to this challenging problem. In literature, the problem is
known to be an NP-hard; hence, greedy heuristics (SPT, HPE, and WSPT) and
a metaheuristic (simulated annealing algorithm) are provided to find near-optimal
solutions efficiently. The results indicate that even though the performance of the
greedy algorithms is similar in terms of average CPU times, which are very close to
zero, WSPT outperforms both SPT and HPE with low average optimality gap. The
performance analysis of the simulated annealing metaheuristic indicates that it is
an effective algorithm where its solution quality is better than the greedy algorithm
by itself without increasing the computational time significantly. The overall results
show that the value of the proposed greedy heuristics and the simulated annealing
algorithm becomes more evident as the problem size increases.
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Chapter 13
Product Wheels in Manufacturing Operations
Planning

J. Bennett Foster and Peter L. King

Abstract This chapter discusses a production planning method known as “product
wheels.” We define “product wheels,” discuss how they are used, and show the
value the technique provides to production operations. We look at the importance
of product families in planning production, particularly where set-up costs and time
are critical. We examine the question of product sequencing—and why that aspect of
manufacturing planning is seldom as difficult and data intensive as the mathematics
(e.g., traveling salesman problem) might imply. The chapter analyzes how variants
of Economic Order Quantity (“EOQ”) and “EOQ with Joint Replenishment” [E.A.
Silver heuristic (1976)] can be used (balancing costs of cycle stock inventory versus
transitions) to get early results that lead us towards the formulation of a cost-
effective wheel. We also look at the problem of balancing wheels for capacity
feasibility when product campaigns cycle at different frequencies.

Keywords Product wheels • Production planning • Setup cost

13.1 Introduction

Many manufacturing operations must produce a wide variety of products or
materials, which poses a number of challenging questions:

1. What should I make next, after I’m finished making the current product?
2. Is there an optimum product sequence to follow which will reduce transition cost

and time?
3. If I decide to follow a fixed sequence, is there an optimum cycle over which I

should produce all my “runners” (high volume products)?
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4. How frequently should I produce my “repeaters” and “strangers” (medium and
low volume products)?

5. How do I best integrate the scheduling of make-to-order (MTO) products into
my largely make-to-stock (MTS) schedule?

PRODUCT WHEEL  ATTRIBUTES
� The overall cycle time is fixed

� The cycle time is optimized based on business 
priorities

� The sequence is fixed – products are always made 
in the same order

� The sequence is optimized for minimum 
changeover loss

� Spokes will have different lengths, based on the 
Takt for each product

� The amount actually produced can vary from cycle 
to cycle, based on actual consumption

� Some low-volume products may not be made every 
cycle

� When they are made, it’s always at the same point 
in the sequence

� Make-to-order and Make-to-stock products can be 
intermixed on a wheel 

Many large companies have found that the best way to deal with all of these
concerns in an integrated way is through the use of product wheel scheduling (King
and King 2013).

There is also the challenge to level production. It is a very well-understood
principle within the lean manufacturing community that production should be
levelled, i.e., that peaks and valleys should be minimized, to minimize the waste
of resources needed during production peaks during the valleys, a concept called
“Heijunka” (Womack and Jones 1996). It is also a core principle that production
be synchronized with customer demand, known as “Takt.” This presents operations
with an apparent paradox. They need to produce to customer demand, which has
variation, while at the same time removing variation from the rate of production.
These conflicting forces can be reconciled by integrating customer demand over
some reasonably short time and levelling production to that demand. But what is a
reasonable time period? Product wheels provide a very effective way to determine
the optimum period.

Another reason product wheels are used in many operations is that wheels make it
easy to order raw materials and plan for meeting demand. Modern ERP systems can
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certainly handle material orders and sales planning without depending on regular
production cycles. However both vendors and customers often become accustomed
to a certain rhythm of production and the likelihood of error is reduced when
that rhythm continues. “Economy of repetition” is part of the rationale for product
wheels. Technically, repetition may not be necessary—but because of human nature
it’s often a good idea.

13.2 Product Wheels Defined

A product wheel is a visual metaphor for a structured, regularly repeating sequence
of the production of all of the materials to be made on a specific piece of equipment,
within a reaction vessel, within a process system, or on an entire production line.
The overall cycle time for the wheel is fixed. The time allocated to each product
campaign (a “spoke” on the wheel—continuous operation on a single product) is
relatively fixed, based on that product’s average demand over the wheel cycle. The
sequence of products is fixed, having been determined from an analysis of the path
through all products which will result in the lowest total transition time or the lowest
overall transition cost. Figure 13.1 depicts product wheel components.

The spokes can have different lengths, reflecting the different average demands
of the various products: high demand products will have longer spokes (campaigns)
than lower demand products.

Product wheels support a pull replenishment model. That is, the wheel will
be designed based on average historical demand or on forecast demand for each

TIME WHEN CYCLE 
STOCK AND 

SAFETY STOCK 
INVENTORY FOR B 

IS NEEDED

BATCHES

A

D

C

B

IDLE

TRANSITIONS

CAMPAIGN

TRANSITIONS

Fig. 13.1 Product wheel components
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product, but what is actually produced on any spoke is just enough to replenish
what has been consumed from the downstream inventory, in accordance with lean
pull principles. Thus the size of each spoke can vary from cycle to cycle based on
actual demand, but the total wheel cycle time will remain fixed.

13.2.1 Make to Stock, Safety Stock, and Make to Order

Product wheels are almost always used in “make to stock” operations. Only the
cycle stock portion of the inventory is considered for the product wheel analysis.
Yet we know that longer product wheels mean a longer “period of risk” and hence
larger safety stocks (to maintain a given customer service level). However, safety
stock is not included in the product wheel calculations discussed here because it
grows relatively slowly with increases in product wheel length. (Safety stock usually
increases only by the square root of the product wheel length—unlike cycle stock
which is directly proportional to product wheel length.)

When only a small fraction of total demand is “make to order,” this demand is
sometimes assigned to a production unit along with the “make to stock” products.
“Make to order” can be handled by putting “discretionary time” periods into the
wheel design. The exact “make to order” products and amounts are not specified
until near time for the period to begin. Planning for pre-set “make to order”
production periods helps to define customer order lead time for those products, but
total “make to order” time on the unit does need to be stable.

13.3 Product Wheels and the Economic Lot Scheduling
Problem

The product wheel problem is an expression of the widely studied economic lot
scheduling problem. Elmaghraby (1978) wrote a frequently cited review of the
problem. Narro Lopez and Kingsman (1991) did another review, and variants of
the problem continue to be studied (Teunter et al. 2008). Hsu (1983) showed that
the problem is NP-hard.

The heuristic discussed here, simplifies the problem by assuming the user already
has a good product sequence—and wants to keep it (or something close to it).
Management wants to find the “sweet spot” balancing transition cost and inventory
carrying costs, while maintaining capacity feasibility. The economic lot scheduling
problem looks for that sweet spot. The heuristic discussed here provides a relatively
simple approach—that has been implemented in many production areas.
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1. Products 
Grouped into 

Families

2. Sequencing -
Families and 

Products within 
Families

3. Estimate 
Campaign sizes

4. Family Joint 
Replenishment 

Calculations and 
Campaign Sizing

5. Wheel 
Composition

Fig. 13.2 Product wheel 5-STEP methodology

13.4 Product Wheel Methodology

The overall approach discussed, is summarized in the steps shown in Fig. 13.2. The
rest of chapter will describe those steps in greater detail. This method for calculating
product wheels has proven to be of significant value, having been implemented in
manufacturing areas across a number of businesses.

13.4.1 Step 1: Product Families

When there are multiple products assigned to a production unit, they are fre-
quently divided into groups—“families”—according to physical characteristics—
size, chemical composition, etc. In a production context the goal is to subdivide the
products assigned to a processing unit into families, based on common processing
characteristics. All of the products in a family should be able to run sequentially,
without requiring major transition time or cost (and the two frequently go together).
Within a family product transitions are typically cheap and fast. Between families,
however, product transitions are slower and/or more costly.

An example of a product family is products (e.g., polymers) using the same basic
chemistry. When changing between products within the family, it may be possible
to merely “plug flow” the next product and discard the mixed polymer coming
through the line. However between families, it will be necessary to disassemble
the production apparatus for a thorough cleanout.

Another example can be found with roll goods. Here a width change for the
“mother roll” represents a significant effort, while changes in position of slitting
knives, roll tension, packaging, etc., will be less difficult (faster and less costly).
Products made from the same width mother roll would be in the same family.

When running product wheels correctly it will be a firm rule that families run
in the product wheel sequence—and once a family is started, all of the products
within the family that require product will be run. To run a different family’s product
out of order—within a different family (usually because it’s expedited) is referred
to as “breaking into the wheel.” When intra-family transitions are expensive (time
and/or cost) the decision to “break into a wheel” cannot be taken lightly. When
a manufacturing line is running at close to capacity, breaking into the wheel may
result in a downward spiral when one wheel break for expediting a product, leads
to another wheel break, and so forth. Multiple wheel breaks use up line capacity
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and customer delivery grows worse and worse because there’s no longer sufficient
capacity to service promised sales. (In a production area already running close to
capacity, breaking into a wheel is sometimes compared to “breaking into jail”!)

13.4.2 Step 2: Sequence within the Wheel

The classic analysis of production sequencing might seem to start with looking at all
of the products to be produced, developing a matrix of transition costs (or times—
or both) and running a traveling salesman algorithm to develop the lowest cost (or
minimum transition time) sequence. There are a number of reasons that optimized
traveling salesman algorithms are not a priority with production planners—and are
actually not done very often in manufacturing operations.

First of all, there may be hundreds of different products that could either be on
order, or need replenishment for a make-to-stock system. Generation of a 100� 100
matrix (even if just assigning arbitrarily large values to infeasible transitions) is not
practical.

Fortunately, product families tend to reduce the problem to manageable (and
often trivial) size. Since the bulk of transition expense and time is between families,
the problem is often reduced to an “N�N” transition matrix where “N” is frequently
in the range of just 3–5. It is also typical that some intra-family transitions are so
expensive (or even physically impossible) that they can be immediately ruled out.
Thus family sequence for product wheels is often followed for long periods of time
(months or even a year or more), even though the product mix may vary over time
and new products are introduced within existing families.

A second reason that a traveling salesman algorithm is not frequently used, is the
quality of transition cost/time data itself. The precision of the transition data may not
justify the rigor of optimization analysis! Even when the manufacturing operation
collects transition data, it is likely to be filled with “special cause” and “one-off”
situations where lessons are learned and problems overcome. Often “eyeballing the
family transition data”—provides “good enough” sequences.

Within a family, transitions are usually much less expensive and time
consuming—and the order is less important. Product wheels usually have a
sequence within each family as well as a sequence of families. In any given wheel
cycle, certain products are likely to be left out due to sales variation, but typically
transition cost and time don’t vary much within the family.

Besides the planner/scheduler, one of the best sources for determining a mini-
mum cost and time sequence of product families is to ask experienced operators.
They are usually the first to question poor sequencing decisions—because they are
doing the work required to make “non-optimal” transitions!
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Fig. 13.3 Product wheel inventory plot

13.4.3 Step 3: Estimate Campaign Sizes

Campaign size (sometimes referred to as “Lot Size”) is the quantity of a given
product to be run during each spoke of the wheel. See Fig. 13.3. One of the goals
of running product wheels is to run approximately the same campaign size on
approximately the same time cycle. For instance if the wheel “turns” every 30 days,
then enough will be produced to bring the cycle stock up to 30 days of sales (plus
enough to replace any safety stock used during the cycle) approximately every 30
days.

The primary tradeoff in running product wheels is the balance between costs
of carrying cycle stock versus transition costs. (Safety stock also increases with
increasing wheel length—but much less than linearly—and is usually ignored in the
calculations.) This inventory-transition tradeoff is the same tradeoff made with the
well-known “Economic Order Quantity” (“EOQ”) (Harris 1913). More applicable
is an EOQ variant—the Economic Production Quantity (or Economic Production
Lot) equation (Taft 1918) shown below:

Economic Production Quantity D
s

2AD

vr .1 � D=m/

where A, transition cost; D, demand rate in units/time period; v, unit cost of item
($/unit); r, fractional carrying cost of inventory per time period; m, production rate
in units/time period.

Note that the D/m term goes to zero for purchased items, to give the form of the
more familiar EOQ.
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Fig. 13.4 Economic Order Quantity (EOQ) costs

The function is typically graphed as shown in Fig. 13.4.
The problem with using the “Economic Production Quantity” calculation above

for product wheels is that each product is analyzed individually, whereas in a
“wheel” the products run cyclically—on the same basic cycle. Nevertheless, the
“Economic Production Quantity” gives at least a starting point for estimating
favorable product campaign sizes (and hence campaign frequencies). (In the rare
case that all products have the same production frequency—that frequency would
be the answer on how often to “turn the wheel.”)

13.4.4 Step 4: Product Families—“Joint Replenishment”

Edward Silver has written a number of very practical articles on coordinating “joint
replenishment“ in the context of economic production quantity. Specifically, he has
published a “simple method” (Silver 1976) for calculating how often to produce
a family of products (product family cycle length) and which products to produce
every time the family is produced, every second time, every third time, . . . (product
frequency in family). This method (sometimes referred to as “EOQ Family”) is
getting closer to solving the product wheel problem, but still does not directly solve
the problem. The product family cycle length is very likely to be different between
families. If the product family cycle lengths happen to be integer multiples of one
another, then the families might possibly be arranged in “product wheel cycles.”
However even this solution still may not be feasible. If some product families don’t
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run every base cycle, or the product frequency in family is not “1” for every product,
the cycles are likely to require different processing times and some cycles could
exceed the base cycle length.

13.4.5 Using Silver’s Joint Replenishment Heuristic
to Determine “Product Wheel Length”

13.4.5.1 Example Joint Replenishment Solution

The following example shows an implementation of Silver’s Joint Replenishment
heuristic (sometimes referred to as “EOQ Family”) implemented in a spreadsheet
(Tables 13.1 and 13.2). (This implementation uses visual basic calculations as part
of the spreadsheet analysis.)

We define Product Wheel Length as the target time for cycling through the wheel.
We define Campaign Cycle as the time between starting cycles (campaigns) of an
individual product. Thus the Campaign Cycle for every product will be equal to
an integer multiple (usually 1) of Product Wheel Length. The Joint Replenishment
solution suggests limits for an estimate of optimal Product Wheel Length in the
“EOQ Family: Product Family Cycle Days” column—looking (only) at those
products that are produced every turn of the wheel (D1 in the “EOQ Family:
Frequency . . . “ column). (Commercial factors such as shelf life and storage capacity
also limit Product Wheel Length.) For the example in Tables 13.2 and 13.3, we
would look at using Product Wheel Lengths in the range of 19–42 days.

It is straightforward to extend the Joint Replenishment Spreadsheet to perform
product wheel cost analysis (looking at cost of transitions plus cost of carrying cycle
stock). With that cost model we can plug in different values of Product Wheel Length
and quickly evaluate a number of alternatives in the range.

We use the following rules for selecting Campaign Cycles for each product.
Define (based on Joint Replenishment results):

– Product FrequencyDValue in column “EOQ Family: Product Frequency . . .”
– Product CycleDValue in “EOQ Family: Total Days . . .” for that product
– Family CycleDValue of Campaign Cycle for those product s in the family with

a Product FrequencyD 1

Calculate the Campaign Cycle (days between campaigns) for each product, as
shown in the three steps below. Note that Campaign Cycle will be an integer
multiple of Product Wheel Length. Also every product in a family will be an integer
multiple of one another. Calculate Campaign Cycle first for products having Product
FrequencyD1, so that a Family Cycle value can be determined for each family.

1. If Product Cycle <D Product Wheel Length, set Campaign CycleDProduct
Wheel Length
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Table 13.2 Joint Replenishment results from Table 13.1 input

Product
name

Family
number

EOQ family:
Campaign size

EOQ family: Product
frequency in family
(1D every cycle, 2D every
other cycle, : : : )

EOQ family: Total
days between
product campaigns

Prod1 1 24,316 1 17.7
Prod2 2 17,290 1 18.7
Prod3 2 27,591 2 37.3
Prod4 2 22,486 1 18.7
Prod5 2 6815 1 18.7
Prod6 2 6815 1 18.7
Prod7 2 8972 1 18.7
Prod8 2 16,435 1 18.7
Prod9 2 20,165 1 18.7
Prod10 3 8494 1 42.3
Prod11 3 63,452 1 42.3
Prod12 3 12,247 3 127.0

2. If Product FrequencyD 1 and Product Cycle > Product Wheel Length, then set
the Campaign Cycle to the nearest integer multiple of the Product Wheel Length

3. If Product Frequency > 1, then set the Campaign CycleDFamily Cycle x Product
Frequency

Table 13.3 shows annual cost calculations for three candidate values of Product
Wheel Length: 21, 28, and 35. The column “Wheel to use for annual cost evaluation:
Days between product production” is the Campaign Cycle for each product,
calculated using the steps above. The user would in like manner try a variety of
Product Wheel Lengths to find one that produces a low total annual cost and works
within the limitations of the production process (for instance minimum campaign
size).

13.4.5.2 Capacity Versus Product Wheel Length

One of the first results to check with this method is to ask if there’s sufficient
capacity. Very low transition costs will drive the heuristic to produce very short
campaigns—potentially taking up significant production unit time in transition.
Increasing the Product Wheel Length reduces utilization—but at the cost of greater
inventory carrying cost. Typically when using the heuristic described, one calculates
capacity as part of the spreadsheet calculation. If there’s not sufficient capacity, then
increase the input Product Wheel Length and recalculate the Campaign Cycles for
the wheel.
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Fig. 13.5 Showing the days required to run each cycle of the wheel described in Table 13.4.
Product wheel cycles are on the X-axis

13.4.6 Step 5: Wheel Composition

The principle that Silver’s algorithm uses—production of a product family will cost
less when we run low demand products less frequently than high demand products—
makes common sense. However we see from the results in Table 13.2, that “Prod3”
should run about every second product wheel cycle and Prod12 every third wheel
cycle to achieve minimum total cost (transition cost plus inventory carrying cost).
When there are multiple products that do not run every wheel cycle, it raises the
problem of how to “balance” successive wheel cycles.

As we’ve seen, a production unit may be assigned some products that “optimally”
run every “turn of the wheel” (Campaign CycleDProduct Wheel Cycle), others
that should run only half as frequently as the “big sellers,” and still other very low
volume products and product families that should run only every third or fourth
cycle. The issue now is which product families should run together in what cycles.
Should the “every second cycle” products run on the first and third wheel cycles—
or second and fourth? This is the same as asking—“which of those families should
start on the first cycle and which on the second?” Note that all products in a family
need to be coordinated to run on either the same cycles, or for low volume products,
on a subset of those cycles—in order to minimize family transition costs.

The potential problem (that is certainly seen in real life) is that the wheels
can end up very “unbalanced”—with some product wheel cycles (“turns of the
wheel”) requiring much more time than other cycles. For instance a nominal 25-day
product wheel could have wide swings in duration from cycle to cycle—requiring
the wheel’s nominal 25 days of cycle stock to last for 50 days or more on some
cycles.

The following is an example of a product wheel design made with all families
starting in cycle 1 (default solution). (A larger example problem is used here,
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Fig. 13.6 Showing the inventory swings produced by the product wheel plan in Table 13.4.
Product wheel cycles are on the X-axis

Fig. 13.7 Showing the days required to run each cycle of the wheel described in Table 13.5.
Product wheel cycles are on the X-axis

to illustrate the problem more clearly.) Cycle durations range from 8–50 days.
Obviously total inventory makes similar swings (with some products likely to run
out) (Figs. 13.5, 13.6, and Table 13.4).

With judicious selection of starting cycles (by observing what frequencies that
families run, and putting families into different starting cycles), the extremes of
cycle durations can be avoided (Figs. 13.7, 13.8, and Table 13.5).

The improvement in wheel composition came from balancing the family days of
production among the starting cycles. (When there are more products, it’s usually
easier to get better balance.) The rules for assigning products to starting cycles are:
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Fig. 13.8 Showing the inventory swings produced by the product wheel plan in Table 13.5.
Product wheel cycles are on the X-axis

1. To minimize family transition costs, higher volume products in a family (run
every time the family runs) should begin in the same cycle. Low volume family
products (that run less frequently) should run on a subset of the cycles where the
high volume products of the same family run.

2. Products cannot begin in a cycle that exceeds their frequency. (For instance
products made every other wheel can only start in cycles 1 or 2—not 3. Products
made every third wheel can only start in cycles 1, 2, or 3. . .)

Excel graphical analysis like that above shows where the problem is—and allows
testing different solutions. However, even a small problem like the one above can be
difficult to minimize by trial and error.

13.5 Data Considerations

13.5.1 Transition Time and Cost

Correct transition cost data is critical to any EOQ related method. Costs for yield
loss (extra raw materials, energy, and waste disposal) and maintenance materials, are
usually readily available. Manufacturing labor is usually not charged to transitions
(unless overtime is required or labor is truly a “variable cost” in the short term). The
most frequent (and largest) error in transition cost calculation is when the analyst
charges the opportunity cost of time on the production line—when the business is
not “oversold.” (If there’s not a buyer for the extra product that would have been
made in place of stopping for the transition, then it’s obviously not allowable to
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charge for the time as a cost of the transition.) If the market for products made on the
line does become oversold, then the transition cost should include the opportunity
cost of the transition time (margin on the product that could have been produced in
place of the transition)—which usually drives the transition cost much higher than
before.

Transition time and cost obviously relate to both the product being transitioned
“from,” and the product being transitioned “to.” Product wheel methodology is to
run the same sequence repetitively. However, it is possible that some products may
only run in every second or third “turn” of a wheel—and thus a given product may
not always be preceded by the same product. This product wheel heuristic depends
on the user to determine when the transition cost and time used for calculation is not
appropriate for the actual order in the wheel. In these cases the user should adjust
the transition cost and time and repeat the analysis. (Changes in transition cost could
impact the prescribed wheel length. Changes in transition time only impact capacity
feasibility.)

13.5.2 Demand and Uptime Variability

Product wheel planning can be maintained in the face of demand surges by: (1)
planning for “slack time” in the wheel and (2) allowing the wheel to run a little
longer than planned (using safety stock to cover sales and shortening subsequent
wheel “turns” when possible). Production planners are warned to be aware of
substantial shifts upward in average demand—and to recalculate wheel lengths (and
offload production to other facilities) when such a shift occurs.

Uptime losses are typically separated into two classes: “short” routine outages,
and much longer (sometimes catastrophic) outages that occur with much lower
frequency. Short, routine outages are counted as “normal” downtime and production
rates are factored down to account for these. Some lower frequency outages may be
covered by safety stock when they are not routine. However very low frequency,
long duration “catastrophic” outages are more often responded to ad hoc (and may
be grounds for declaring a Force Majeure and serving customers accordingly).

13.6 Revising Product Wheels

Industrial data, particularly demand data, is never static. Developing and revising
product wheels is an ongoing effort. Spreadsheet calculations and particularly
Silver’s Joint Replenishment heuristic can be built into spreadsheet tools and offer a
rapid means for approximate solutions that are usually as “good as the data.” Product
wheels should be recalculated whenever:
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1. Total demand changes by 10–20 %—or changes enough that the current wheels
need to be lengthened to keep from running short of capacity. Note that during
a given planning period, increased demand for individual products will often
be balanced by decreased demand for others—leaving the product wheel cost
effective and feasible.

2. Products are shifted between production units (usually in response to demand
changes).

3. Transition times and/or costs change significantly.
4. Process efficiencies significantly reduce processing times.

Product wheel composition remains a challenge, and offers opportunity for
improvement over current manual analysis.

13.7 Summary

Prior to introducing product wheels into their scheduling logic, many operations
tended to treat each day’s or each week’s production plan as a totally new thing, to
be scheduled from scratch. They would try and follow the ideal transition sequence,
but often found themselves forced to “break in” to the sequence when a particular
product ran out. With wheels, they quickly learn that all of the routine products are
pre-planned to cover expected demand, so they can focus their attention on the few
unique situations that require special attention. And they now have enough mental
bandwidth to deal with these abnormal situations and crises appropriately.

PRODUCT WHEEL BENEFITS
1. Leveled production

2. Improved changeovers via 
optimized sequences

3. Increased usable capacity

4. Optimized campaign lengths

5. More realistic inventory target 
setting

6. Reduced inventory

7. Improved delivery performance

8. A higher degree of  regularity and 
predictability in operations

9. A credible mathematical basis to 
support decision making
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A number of innovative companies have employed product wheels to great
advantage: DuPont (chemicals, paints, sheet goods, extruded polymers), Dow
(chemicals), AstraZeneca (pharmaceuticals), ExxonMobil (oil and gas), and
APPVION (paper products). The sidebar shows the benefits they have found from
wheel scheduling. As a specific example Dow Chemical typically sees inventory
reductions of 10–20 %, 10–25 % higher customer fill rates, 30–40 % shorter lead
times, and greater predictability and stability. The latter benefits are what some
users appreciate the most, the dramatic reduction in the “noise level” in the system,
the fact that scheduling chaos has been replaced by stability, predictability, and
fixed patterns which allow everyone to get into a production rhythm.
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