Determining Field of View in QOutdoors Augmented
Reality Applications

1,2(=0)

Vlasios Kasapakis and Damianos Gavalas'?

! Department of Cultural Technology and Communication,
University of the Aegean, Mytilene, Greece
{v.kasapakis,dgavalas}@aegean.gr
2 Computer Technology Institute and Press ‘Diophantus’ (CTI), Patras, Greece

Abstract. The use of augmented reality (AR) becomes increasingly common in
location based application development. A situation often encountered in AR
applications is the -partial or full- occlusion of virtual objects by physical artifacts;
if not appropriately handled, the visualization of occluded objects often misleads
users’ perception. This paper presents a Geolocative Raycasting technique aiming
at assisting developers of outdoors augmented reality applications into generating
arealistic field of view for the users by integrating real time building recognition,
so0 as to address the occlusion problem.

1 Introduction

Augmented reality (AR) requires only a limited amount of the user’s field of view to be
rendered with computer-generated graphics with the major part of the user’s view
covered by the physical world [2]. The allowance of users to view the physical world
provides them a better sense of where they are and what is around them. Nevertheless,
cases often occur that a physical object occludes a virtual object; like when surrounding
buildings exist and are highly likely to occlude a point of interest. Then, the overlaying
of the augmented image may cause confusion to users’ perception. This incorrect display
contributes to misconceptions and wrong pursuance of tasks amongst users [1, 3]. The
problem of occlusion in AR can be observed in a variety of location-based applications.
TripAdvisor! is a popular mobile travel application which provides reviews of travel-
related content. Recently, TripAdvisor added an AR projection mode for points of
interest (POIs), superimposing AR markers upon the smartphone’s camera views. A
similar technique is followed in mTrip?, another popular, commercial mobile tourism
route planner. The occlusion problem is also common in pervasive games utilizing AR,
affecting the players’ immersion when virtual characters are not hidden when located
behind surrounding buildings [4].

In classic video games, the visibility of virtual objects is estimated utilizing the
raycasting technique. Raycasting is the act of casting imaginary light beams (rays) from
a source location (typically the point of view of the character or object controlled by the

1 . .
www.tripadvisor.com.
www.mtrip.com.

© Springer International Publishing Switzerland 2015
Kameas et al. (Eds.): AmI 2015, LNCS 9425, pp. 344-348, 2015.
DOI: 10.1007/978-3-319-26005-1_23

http://www.tripadvisor.com
http://www.mtrip.com

Determining Field of View in Outdoors Augmented Reality Applications 345

player) and recording the objects hit by the rays. Herein, we extend this idea in outdoors
AR applications wherein, unlike video games, the virtual space is integrated with the
physical one, is not pre-registered and occlusion is typically caused by surrounding
buildings. In particular, we introduce a Geolocative Raycasting technique that allows
augmented reality application developers to detect buildings or custom-generated obsta-
cles in location-based and AR game environments, thereby reliably resolving the object
occlusion issue.

2 Preparing the Building Data and Performing Raycasting

In order to perform geolocative raycasting, the information about the location of build-
ings surrounding the user should be available. In our approach the building data is yield
from the Overpass Turbo API3, where the latitude and longitude points of every building
polygon are utilized to generate a list of polygons* and LatLngBounds? (i.e. rectangular
bounding boxes utilized to approximate the coordinates of the building’s center). The
building polygons are drawn on the OSM map®. Next, the accelerometer and magneto-
meter sensors’ of the user’s Android smartphone are enabled to extract the azimuth from
the rotation matrix of the device®, determining the device’s orientation (taking into
account the device inclination and remapping the axis when needed). The device’s
bearing is calculated utilizing the azimuth measurement. An extract from our raycasting
algorithm implementation is listed in Fig. 1 below.

for(int degree=-5; degree<S; degree-degreeu)(ﬂ Perform raycasting for different angles |
for (int i=1;i<27;i++){

Number of ray steps

double distance = ©. 5 ; '/I Add distance to next ray step
double bearing = Math.toRadians((int) Math.round(Math.toDegrees(azimut)-90)+degree);
double userlat = Math.toRadians(myloc.getLatitude()); Calculate bearing and get I

double userlon = Math.toRadians(myloc.getLongitude()); user |seation vis.GPS

double newlat = Math.asin(Math.sin(userlat)*Math.cos(distance) Calculate ray
+ Math.cos(userlat)*Math.sin(distance)*Math.cos(bearing)); step latitude

double a = Math.atan2(Math.sin(bearing)*Math.sin(distance)*Math.cos(userlat),
Math.cos(distance)-Math.sin(userlat)*Math.sin(newlat));

P ["
double newlon = userlon+ a; < { Calculate ray step longitude |
newlon = (newlon+ 3*Math.PI) ¥ (2*Math.PI) - Math.PI;

}

}

Fig. 1. Extract from the raycasting algorithm implementation.

’ http://overpass-turbo.eu/.

! https://github.com/sromku/.

’ developer.android.com/reference/com/google/android/gms/maps/model/LatL.ngBounds.html.
o https://code.google.com/p/osmdroid/.

! developer.android.com/guide/topics/sensors/sensors_overview.html.

s http://developer.android.com/reference/android/hardware/SensorManager.html.

http://overpass-turbo.eu/
https://github.com/sromku/
http://developer.android.com/reference/com/google/android/gms/maps/model/LatLngBounds.html
https://code.google.com/p/osmdroid/
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/reference/android/hardware/SensorManager.html

346 V. Kasapakis and D. Gavalas

The raycasting algorithm utilized in our work® generates virtual locations along a
straight line (26 points, each positioned ~3.8 m further from the previous one, resulting
in a 100 m ray) towards the user’s facing direction, until one of the ray steps (i.e. virtual
location) is found to lie inside a polygon (building) of the above mentioned polygon list.
Upon detecting such event, it is realized that the ray has been blocked by a building;
hence generating further ray steps along that line is unnecessary. Since a single ray is
insufficient to accurately estimate the user’s field of view, the above detailed process is
executed every second degree (note that in the implementation of the raycasting is
performed for every one degree of the field of view), in a range of —5 to +5°, considering
the current bearing of the device as central direction (10 raycasts in total, resulting into
a 10° degrees angle field of view). The above described method is illustrated in Fig. 2a,
where 10 raycasts determine the 10° users’ field of view in an area featuring buildings
stored in the OSM database (red-colored dots denote points invisible from the device’s
current location).

public garc

et

Fig. 2. (a) multi-angle raycasting generating users’ field of view; (b) POI outside the users’ field
of view; (c) field of view representation; (d) POI partially inside the users’ field of view.

In order to validate the raycasting approach presented in this work, a simple mobile
tourist AR application has been developed as a case-study utilizing OSM and
BeyondAR'!? framework. The application included a POI church building which was
represented by a marker on OSM maps and an augmented reality marker in BeyondAR
framework. When the building polygon of the POI is out of the user’s field of view, a
grey-colored AR marker is used to denote the location of the church. (Figure 2b) When
the ray steps hit the POI building, the point of impact of the blocked ray is saved in an
array; upon the completion of the raycasting process, those impingement points are
utilized to draw a polygon on the OSM map, providing a visual representation of the
users’ field of view (Fig. 2c). Finally when the POl is inside the users’ field of view the
church icon turns from grey to red, informing the user that she has eye constant with it
(Fig. 2d). Also the total number of the rays which hit the building were utilized to adjust

® The formula for calculating a virtual point in front of the user utilizing her current locations’
latitude and longitude, along with her device direction may be found at http://www.movable-
type.co.uk/scripts/latlong.html.

10http://beyondar.com/.

http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html
http://beyondar.com/

Determining Field of View in Outdoors Augmented Reality Applications 347

the augmented reality marker transparency, visualizing this way the percentage of the
field of view of the user where the POI was included'!.

A factor largely affecting the performance of raycasting is the number of buildings
examined (among those returned from the Overpass Turbo API). To limit that number
we have applied a distance threshold (representing the ray’s reach) around the user’s
location. The distance is calculated from the user’s current location to the center of every
building (i.e. the center of the LatL.ngBounds bounding box). Nearby buildings are re-
calculated upon every change on the user’s position. The application of a distance
threshold slightly longer than the length of the ray ensured that the corners of buildings
whose centers are slightly further from the ray’s reach are also detected. In order to
evaluate the sufficient preface of the raycasting method presented in this work for real
time building recognition a full performance test has been conducted.

The test space (see Fig. 3 below) has been set in the center of Athens (Greece), as
the OSM database contains a large number of registered buildings in that area. The size

of the test area has been set to 707 m, adjusting the ray to the same settings as presented
above. Updates of the nearby buildings list have been triggered every 2 s by applying a
distance threshold of 120 meters. The device was constantly rotated throughout the test
(approximately 25 rotations in a 60 s testing session). The total number of buildings
within the 120 m radius was 266 with a mean of 43 buildings taken into account by every
ray cast. A total number of 457 raycastings were executed, with a mean of 7.6 raycastings
per second and an execution mean of 131.2 ms per raycast, providing sufficient evidence
that the presented technique would be sufficient for location-based AR applications with
real time performance requirements.

e 9%

Fig. 3. Athens test area.

3 Conclusion

In this article a geolocative raycasting technique has been proposed to detect buildings
in real-time, aiming to help future developers into addressing the occlusion problem
which is common in location-based AR applications.

A video presenting the performance of the test application can be found at https://youtu.be/
zColORW1Ccl.

https://youtu.be/zCoI0RW1CcI
https://youtu.be/zCoI0RW1CcI

348 V. Kasapakis and D. Gavalas

A prototype location-based AR tourist guide application has been used as a case
study to showcase the validity of our approach. The performance evaluation of the above
application revealed its efficiency which makes it appropriate for relevant location-based
outdoors AR applications, wherein marked POIs are commonly occluded by
surrounding buildings.

References

1. Shah, M.M., Arshad, H., Sulaiman, R.: Occlusion in augmented reality. In: 2012 8th
International Conference on Information Science and Digital Content Technology (ICIDT),
pp. 372-378. IEEE (2012)

2. Thomas, B.H.: A survey of visual, mixed, and augmented reality gaming. ACM Comput.
Entertainment 10, 1-33 (2012)

3. Tian, Y., Long, Y., Xia, D., Yao, H., Zhang, J.: Handling occlusions in augmented reality based
on 3D reconstruction method. Neurocomputing 156, 96-104 (2015)

4. Wetzel, W., Blum, L., McCall, R., Oppermann, L., Broeke, T.S., Szalavari, Z.: Final Prototype
of TimeWarp application, IPCity (2009)

	Determining Field of View in Outdoors Augmented Reality Applications
	Abstract
	1 Introduction
	2 Preparing the Building Data and Performing Raycasting
	3 Conclusion
	References

