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    Chapter 9   
 Cellular Organization of Triacylglycerol 
Biosynthesis in Microalgae                     

       Changcheng     Xu     ,     Carl     Andre    ,     Jilian     Fan    , and     John     Shanklin   

    Abstract     Eukaryotic cells are characterized by compartmentalization and 
 specialization of metabolism within membrane-bound organelles. Nevertheless, 
many fundamental processes extend across multiple subcellular compartments. 
Here, we describe and assess the pathways and cellular organization of triacylglycerol 
biosynthesis in microalgae. In particular, we emphases the dynamic interplay among 
the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling 
and triacylglycerol accumulation under nitrogen starvation in the model alga 
 Chlamydomonas reinhardtii .  

  Keywords     Triacylglycerol   •   Acyl remodeling   •   Oil droplet   •   Chloroplast   • 
  Endoplasmic reticulum  

   One of the defi ning features of photosynthetic eukaryotic organisms is the presence 
of the chloroplast. Beyond their role in photosynthesis, chloroplasts contribute to a 
wide array of fundamental functions that include the de novo synthesis of fatty 
acids, the building blocks of membrane lipids and storage triacylglycerol. Under 
normal growth conditions, the vast majority of de novo-synthesized fatty acids are 
used for membrane lipid assembly to support cell growth, organelle biogenesis and 
membrane proliferation. Under stress conditions such as nutrient deprivation, many 
microalgae can accumulate large amounts of triacylglycerol by diverting fatty acids 
from membrane lipid synthesis to the synthesis of TAG and/or by converting preformed 
membrane lipids to TAG. In most eukaryotic cells, storage lipids are packaged in 
simple structures termed lipid droplets (also referred to as oil bodies), which consist 
of a central core of TAG within a monolayer of membrane lipids with a small 
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amount of embedded specifi c proteins. The current model of lipid body biogenesis 
favors formation of lipid droplets through budding from the ER (Thiele and Spandl 
 2008 ; Walther and Farese  2009 ; Chapman et al.  2012 ; Wilfl ing et al.  2014 ). 
According to this hypothesis, lipid droplets originate from specialized ER subdo-
mains enriched with enzymes involved in TAG biosynthesis. Because the newly 
formed TAGs in these ER domains are unable to integrate into membrane bilayers 
due to lack of polar head groups, they accumulate in the hydrophobic region between 
the two leafl ets of the ER membrane which leads to swelling of the membrane 
bilayer and eventually the budding of growing lipid droplets from ER into the 
 cytosol. Recent years have seen rapid progress in identifying and characterizing 
molecular components of lipid droplets, revealing the genes and enzymes in lipid 
metabolic pathways and deciphering the regulatory networks controlling carbon 
metabolism and storage reserve accumulation in microalgae, particularly in the 
model alga  Chlamydomonas . Here we review data on the pathways and cellular 
compartmentalization of glycerolipid biosynthesis in microalgae, focusing on 
 interconnections among the endoplasmic reticulum, chloroplasts and lipid droplets 
in lipid remodeling and TAG biosynthesis in  Chlamydomonas . Where appropriate, 
knowledge gained from higher plants, yeast and mammals will be discussed to 
highlight similarities and differences between these experimental systems. 

      Diacylglycerol and  Glycerolipid Synthesis   

  Biosynthesis   of diacylglycerol ( DAG)   and glycerolipids in plants and algae 
encompasses two parallel pathways involving multiple subcellular compartments. 
Fatty acid synthesis occurs almost exclusively in the plastid and is catalyzed by 
two large, evolutionarily conserved enzyme complexes:  acetyl-CoA carboxylase   
(ACCase) and  fatty acid synthase   (Ohlrogge and Jaworski  1997 ). In most 
photosynthetic organisms, the major end products of fatty acid synthesis are 16:0- 
and 18:0 fatty acids esterifi ed to acyl carrier protein (ACP), which are subsequently 
processed by stearoyl-ACP desaturase to generate 18:1-ACP and/or by acyl-ACP 
thioesterases to release fatty acids and ACP. A fraction of newly synthesized  acyl-
ACPs are used in plastids for the sequential acylation of glycerol- 3- phosphate (G-3-
P) catalyzed by plastidic acyltransferases, leading to the generation of  phosphatidic 
acid (PA).   PA is a key intermediate in the formation of the thylakoid membrane 
phospholipid phosphatidylglycerol. In addition, PA can be dephosphorylated by PA 
phosphohydrolases (PAHs) to generate DAG, which is normally used for assembly 
of thylakoid glycolipids including galactolipids, monogalactosyldiacylglycerol 
(MGDG), digalactosyldiacylglycerol (DGDG) and the sulfolipid sulfoquino 
vosyldiacylglycerol (SQDG) in the plastid envelope membranes. This sequence of 
reactions is commonly referred to as the  prokaryotic pathway   (Browse et al.  1986 ; 
Browse and Somerville  1991 ). In photosynthetic cells, two galactolipids MGDG 
and DGDG account for the bulk (i.e., up to 80 %) of thylakoid lipids (Dörmann 
et al.  1999 ). 
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 Alternatively, fatty acids can be exported from the plastid to enter into glycero-
lipid biosynthetic pathways in the endoplasmic reticulum (ER), leading to the 
 formation of DAG by sequential G-3-P acylation and PA dephosphorylation 
 catalyzed by ER-resident acyltransferases and PAHs, respectively (Browse and 
Somerville  1991 ). The resulting DAG can be used to  synthesize extraplastidic 
 membrane lipids   including phosphatidylcholine (PC), phosphatidylethanolamine 
(PE) and a non- phosporus- containing polar lipid diacylglycerol- N,N,N -trimethyl-
homoserine (DGTS) (Thompson  1996 ; Harwood and Guschina  2009 ). Some of the 
phospholipids assembled in the ER return to the plastid, thus providing the DAG 
moieties for the synthesis of thylakoid glycolipids in the plastid (Roughan and Slack 
 1982 ; Browse et al.  1986 ). This sequence of events is referred to as the  eukaryotic 
pathway   of thylakoid lipid synthesis. Because of the different substrate specifi city 
of acyltransferases present in the plastid and endoplasmic reticulum, glycerolipids 
made via the prokaryotic and eukaryotic pathway are characterized by the presence 
of a 16-carbon (C16) or 18-carbon (C18) fatty acid at the sn-2 position of the 
 glycerol backbone, respectively (Frentzen  1998 ). 

   Chlamydomonas  chloroplast lipid biosynthesis   is thought to be almost  completely 
autonomous because it lacks thylakoid lipids derived from the eukaryotic pathway 
characterized by the presence of C18 acyl chains at the sn-2 position (Giroud et al. 
 1988 ; Giroud and Eichenberger  1989 ; Harwood and Guschina  2009 ). On the other 
hand, the galactolipids in the marine brown alga  Dictyopteris membranacea  
(Hofmann and Eichenberger  1997 ) and several other brown algal species (Jones and 
Harwood  1992 ) are almost completely of the eukaryotic type. A few green algae 
such as  Chlorella kessleri  (Sato et al.  2003 ) and  Acetabularia mediterranea  
(Thompson  1996 ) and some red and brown algae (Hofmann and Eichenberger  1997 ; 
Makewicz et al.  1997 ; Sato and Moriyama  2007 ) contain substantial amounts of 
ER-derived eukaryotic lipids in photosynthetic membranes and therefore employ 
two parallel pathways for chloroplast lipid assembly. 

 A characteristic feature of lipid metabolism in  Chlamydomonas  is the absence of 
PC (Sakurai et al.  2014 ). In higher plants, this  phospholipid   is known to play a 
 critical role in supply of DAG moieties for the synthesis of eukaryotic thylakoid 
(Benning  2008 ,  2009 ). Therefore, the absence of the eukaryotic thylakoid lipid 
 synthesis in  Chlamydomonas  has been assumed to be due to the lack of PC 
(Moellering et al.  2009 ; Riekhof and Benning  2009 ). However, radiotracer labeling 
studies in the marine brown alga  Dictyopteris membranacea  have shown that the 
absence of PC does not compromise the eukaryotic pathway of galactolipid biosyn-
thesis (Hofmann and Eichenberger  1997 ). In addition, several brown algae contain 
almost exclusively eukaryotic thylakoid glycolipids despite the lack of PC (Jones 
and Harwood  1992 ). Together, these results suggest that PC is not absolutely 
required for the eukaryotic pathway of chloroplast lipid biosynthesis. 

 TAG synthesis shares the common precursor DAG produced by  sequential G-3-P 
acylation   and  PA dephosphorylation reactions   as described above with the synthesis 
of membrane lipids. Results from yeast, plant and mammals indicate that DAG 
partitioning between membrane lipids and TAG is, to a major extent, modulated by 

9 Cellular Organization of Triacylglycerol Biosynthesis in Microalgae



210

lipin family of PAHs (Harris and Finck  2011 ; Pascual and Carman  2013 ; Siniossoglou 
 2013 ; Fan et al.  2014 ). Disruption of the yeast lipin homolog impairs TAG synthesis 
(Han et al.  2006 ) and lipid droplet formation (Adeyo et al.  2011 ), causing an increase 
in phospholipid synthesis and a massive proliferation of ER and nuclear membranes 
(Santos-Rosa et al.  2005 ). Similarly, Arabidopsis lipins have been implicated in the 
regulation of TAG accumulation (Fan et al.  2014 ), phospholipid synthesis and ER 
membrane expansion (Eastmond et al.  2010 ). Mammalian lipins are bifunctional 
intracellular proteins, acting as regulators of DNA-bound transcription factors, in 
addition to catalyzing the dephosphorylation of PA (Harris and Finck  2011 ). A 
recent study showed that genetic modifi cations of PAHs result in altered TAG 
 content in  Chlamydomonas  (Deng et al.  2013 ), suggesting that the role of lipin family 
of PAHs in TAG synthesis and regulation may be evolutionally conserved in eukaryotes 
ranging from yeast, algae to humans.    

    Acyl-CoA-Dependent and -Independent  Pathways   
of TAG Synthesis 

 Microsomal membranes have long been recognized as the primary site of TAG 
assembly in yeast, plants and mammals. In support of the ER-localization of TAG 
biosynthesis, key enzymes involved in the fi nal step of TAG synthesis are also 
 associated with the ER network (Wakimoto et al.  2003 ; Shockey et al.  2006 ; 
Cao et al.  2007 ) and TAGs are packaged in oil droplets in the cytosol. Both acyl-
CoA- dependent and –independent pathways contribute to the last step of TAG 
 synthesis in yeast and higher plants and a similar situation may also apply to algae. 
The acyl- CoA- dependent TAG synthesis is catalyzed by diacylglycerol:acyl-CoA 
acyltransferases (DGATs) using acyl-CoA and DAG as substrates to form TAG. Two 
types of membrane-bound DGATs with distinct protein sequences, functionality, 
expression patterns and subcellular localization are known. The acyl-CoA-indepen-
dent reaction is catalyzed by phospholipid:diacylglycerol acyltransferase (PDAT), 
which use phospholipids as acyl donor and DAG as acyl acceptor to produce TAG 
and lysophospholipids. The  Chlamydomonas  genome codes for fi ve type 2 DGATs 
(DGTT1–DGTT5), one type 1 DGAT (DGAT1) and one PDAT (PDAT1). Among 
them, the functionality of DGTT1-DGTT3 and PDAT1 has been validated by heter-
ologous complementation of a yeast  ∆dga1∆lro1  mutant lacking both DGAT and 
PDAT activity (Sanjaya et al.  2013 ; Boyle et al.  2012 ; Yoon et al.  2012 ). In addition, 
DGTT4 has also been demonstrated to possess DGAT activity in vitro assays using 
recombinant proteins, while  DGTT5  is likely to be an inactive pseudogene (Sanjaya 
et al.  2013 ). 

 Studies in both yeast (Oelkers et al.  2000 ,  2002 ) and plants (Fan et al.  2013a ,  b ) 
have indicated that PDAT plays a major role in TAG synthesis during stages of 
active cell growth and division, while DGATs appear to be more important in non- 
growing cells (Oelkers et al.  2002 ; Fan et al.  2013a ,  b ). Similarly, A recent study has 
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shown that artifi cial microRNA-mediated silencing of PDAT1 specifi cally compromises 
cell growth and TAG synthesis under favorable growth conditions in  Chlamydomonas  
(Yoon et al.  2012 ). Taken together, these results point to  evolutionarily conserved 
PDAT functions associated with rapid cell growth and membrane proliferation in 
yeast, microalgae and plants, and may suggest a role for TAG metabolism in 
 membrane lipid homeostasis during cell growth.  

      The  Origin of    DAG   for TAG Assembly 

 In plants, DAG used for TAG synthesis is mostly derived from PC (Bates et al. 
 2009 ) and TAG assembled in the ER is characterized by the exclusive presence of 
C18 fatty acids at the sn-2 position of the glycerol backbone in many plants (Mattson 
and Volpenhein  1963 ). In nitrogen-starved  Chlamydomonas  cells, however, as much 
as 90 % DAG used for TAG synthesis is of the prokaryotic type characterized by the 
presence of C16 fatty acids at the sn-2 position (Fan et al.  2011 ; Li et al.  2012 ; 
Urzica et al.  2013 ). In addition, while TAG is stored in cytosolic oil droplets in wild- 
type strains (Goodson et al.  2011 ), it is deposited in both the cytosol and the chloro-
plast in TAG hyperaccumulating  Chlamydomonas  starchless mutants (Fan et al. 
 2011 ; Goodson  2011 ). The use of the prokaryotic type of DAG for TAG assembly 
appears not to be restricted to  Chlamydomonas  cells, as TAGs from a wide variety 
of other algae were reported to be also highly enriched in C16 fatty acids (Suen 
et al.  1987 ; Yongmanitchai and Ward  1993 ; Davidi et al.  2014b ). Our analysis of the 
fatty acid distribution of TAG isolated from N-starved  Nannochloropsis  sp. revealed 
that the sn-2 position of TAG is mostly occupied by 16:0 with less than 10 % of 14:0 
and 18:0 (Fig.  9.1 ), whereas more than 20 % of acyl chains at the sn-1+3 positions 
are C18 fatty acids. Very similar results were obtained in the diatom  Phaeodactylum 
tricornutum . TAG isolated from the N-starved, fresh water alga  Chlorella vulgaris  
contains more than 70 % of C16 fatty acids at the sn-2 position, whereas the C16 
and C18 fatty acids are equally present at the sn-1+3 positions, suggesting that the 
prokaryotic type of DAG may be the major precursor used for TAG assembly in 
many algal species.

   We envision three pathways for accumulating the prokaryotic type of TAG in the 
cytosol in algae. In the fi rst pathway, this prokaryotic type of TAG is assembled at 
the chloroplast envelope using DAG derived from the prokaryotic pathway and TAG 
is deposited in lipid droplets originating from the chloroplast envelope membranes. 
This hypothesis is supported by the presence of chloroplast envelope proteins such 
as TGD1, TGD2 and TGD3 in lipid droplets isolated from nitrogen-starved 
 Chlamydomonas  cells (Nguyen et al.  2011 ) and the association of TAG synthetic 
activities with chloroplast envelope membranes in plants (Martin and Wilson  1984 ; 
Kaup et al.  2002 ). A recent study has showed that phytyl ester synthases (PESs) 
from chloroplasts of Arabidopsis process diacylglycerol acyltransferase activities in 
addition to catalyzing the synthesis of fatty acid phytyl esters (Lippold et al.  2012 ). 
Homologs of Arabidopsis PESs were identifi ed in  Chlamydomonas  (Moellering 
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and Benning  2010 ; Nguyen et al.  2011 ) and D unaliella bardawil  (Davidi et al. 
 2014a ) and these putative PES enzymes may be involved in TAG assembly in algal 
chloroplasts (Davidi et al.  2014a ). Interestingly, a recent study has shown that 
PDAT1 from  Chlamydomonas  can catalyze transacylation reactions between 
 galactolipids and the prokaryotic type of DAG, leading to generation of TAG and 
lysogalactolipids (Yoon et al.  2012 ), suggesting that PDAT1 may be important in 
generating the prokaryotic type of TAG in  Chlamydomonas . 

 In the second pathway, TAG is assembled in the ER using DAG pools exported 
from the chloroplast and lipid droplets originate from the ER. In the third pathway, 
both DAG and TAG are assembled in the ER. This hypothesis requires the existence 
of acyltransferases in the ER that specifi cally incorporate C16 acyl chains into the 
sn-2 position of DAG used for TAG synthesis or selective channeling of C16 fatty 
acids toward the sn-2 position esterifi cation catalyzed by ER-resident acyltransfer-
ases to generate “the prokaryotic form” of DAG in the ER. All three pathways are 
distinct from the relatively well known pathways present in higher plants and yeast. 
Testing these hypotheses awaits the identifi cation and detailed characterization of 
acyltransferases from algae.    
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  Fig. 9.1    Enrichment of 
16-carbon fatty acids at the 
sn-2 position of TAG in 
algae. Fatty acid 
composition exclusively at 
the sn-2 ( a ) or sn-1+3 ( b ) 
positions of TAGs isolated 
from  C. vulgaris  (UTEX 
259)  P. tricornutm  (UTEX 
640)  or Nannochloropsis 
sp.  (CCMP 1779) grown in 
media lacking N for 1 day 
is shown. TAG positional 
analysis was done as 
described by Fan et al. 
( 2011 ). Data are presented 
as the means and standard 
deviation of three or four 
replicates       
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     TAG Synthesis and  Acyl Remodeling   

 In plants, fatty acids exported from the plastid are fi rst incorporated into PC through 
acyl editing (remodeling) involving PC deacylation and reacylation reactions and 
acyl groups released from PC remodeling, rather than nascent fatty acids exported 
from the plastid, are used for the de novo-synthesis of membrane lipids and storage 
TAG in the ER (Bates and Browse  2011 ). In nitrogen-starved  Chlamydomonas  
cells, a major fraction of fatty acids stored in TAG are derived from MGDG (Li 
et al.  2012 ). Both PDAT1 (Yoon et al.  2012 ) and a galactoglycerolipid lipase named 
PGD1 (Li et al.  2012 ) are implicated in the deacylation of MGDG, generating free 
fatty acids and lysoMGDG. Disruption of PDAT1 or PGD1 leads to a 20 or 50 % 
reduction in TAG content, respectively, but the exact subcellular localization of 
PDAT1- and PGD1-mediated deacylation reactions and the fate of resulting lyso 
MGDG remain uncertain. 

 Because the similarities in structure and biophysical properties between PC and 
DGTS (Sato and Murata  1991 ), it has been widely assumed that the betaine lipid 
DGTS may play some of the metabolic roles of PC in algae. Indeed, the presence of 
DGTS is often correlated with a decrease in the level of PC (Thompson  1996 ). Like 
PC, the betaine lipid DGTS was also found to be involved in lipid-linked fatty acid 
desaturation (Giroud and Eichenberger  1989 ), acyl remodeling and distribution in 
algal species  Dictyopteris membranacea  (Hofmann and Eichenberger  1997 ),  Fucus 
serratus  (Smith and Harwood  1984 ) and  Ascophyllum nodosum  and  Fucus 
 vesiculosus  (Jones and Harwood  1993 ). 

 Consistent with a role of DGTS and other extraplastidic membrane lipids in 
 supplying fatty acids for TAG synthesis, TAG isolated from nitrogen-starved cells 
also contains signifi cant amounts of C18 polyunsaturated fatty acids specifi c to 
extraplastidic membrane lipids such as DGTS and PE at the sn-1 and sn-3 positions 
(Fan et al.  2011 ; Li et al.  2012 ; Sakurai et al.  2014 ). Additional evidence supporting 
the role of extraplasitidic membrane lipid turnover in TAG accumulation comes 
from pulse-chase labeling studies using radiolabeled free fatty acids. In these exper-
iments,  Chlamydomonas  cells in the logarithmic growth phase were pulse-labeled 
with [1- 14 C] labeled 16:0 or 18:1 for 16 h in complete growth medium and the 
movement of label was subsequently chased for 3 days. Because of the acyl asym-
metrical distribution of fatty acids in glycerolipids, [1- 14 C] 16:0 was reported to 
label mainly the  sn-2  position of chloroplast lipids such as MGDG and DGDG, but 
the  sn-1  position of extraplastidic lipids such as DGTS in  Chlamydomonas  (Giroud 
and Eichenberger  1989 ). As shown in Fig.  9.2a , immediately after the pulse, DGTS 
and SQDG/PI were the most strongly labeled lipids. During the chase in complete 
growth medium, DGTS, SQDG/PI and PG lost label over time. TAG contained 
minor amounts of label and stayed largely unchanged during the chase (Fig.  9.2c ), 
whereas label in MGDG and DGDG increased signifi cantly, suggesting that chloro-
plast membrane proliferation is the major sink for lipid intermediates derived from 
membrane lipid turnover in cells grown in nitrogen-replete medium. Under nitrogen 
starvation conditions, the labeled 16:0 fatty acid was rapidly decreased in DGTS, 
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  Fig. 9.2    Membrane lipid turnover contributes to TAG accumulation in response to N starvation. 
Cells were labeled for 16 h with [1- 14 C] 16:0 in complete medium, thereafter shifted to unlabeled 
medium with (+N) or without (−N) N. Lipids were then extracted and separated by TLC at the 
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mined by phosphor imaging. The experiment was repeated twice with similar results and a repre-
sentative experiment is shown       
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SL/PI, PE and PG, but slowly in MGDG and DGDG (Fig.  9.2b ), while the labeled 
TAG increased. At 2 days of chase, more than 60 % of total label was accumulated 
in TAG (Fig.  9.2c ). Very similar results were obtained in pulse-chase experiments 
with [1- 14 C] 18:1 (Fig.  9.3 ), which was previously shown to label mainly the  sn-1  
position of MGDG and DGDG, but the  sn-2  position of DGTS (Giroud and 
Eichenberger  1989 ). Together, these results suggest an enhanced turnover of acyl 
groups at both the  sn-1  and  sn-2  positions of membrane lipids and the released fatty 
acids and/or other lipid intermediates are recycled into the TAG biosynthetic 
 pathway under nitrogen starvation conditions. Because the losses in radioactivity in 
DGTS and PE (Figs.  9.2  and  9.3 ) are not accompanied by decreases in their mass 
under our growth conditions (Fan et al.  2011 ), the turnover of these membrane 
 lipids is unlikely to be merely a consequence of net catabolism of membrane lipids 
but rather it may refl ect the process of lipid remodeling involving deacylation and 
reacylation, a common mechanism widely conserved in yeasts (de Kroon  2007 ), 
plants (Bates et al.  2007 ,  2009 ) and mammals (Schmid et al.  1991 ). Thus, like PC 
in plants (Bates et al.  2007 ,  2009 ), the acyl remodeling of DGTS represents an 
important mechanism mediating the fl ux of fatty acids to TAG in  Chlamydomonas  
under nitrogen starvation conditions. 

         The Role of  Lipid Droplets   in TAG Synthesis 

 Research in the past couple of decades has completely changed our perception of 
lipid droplets. It is now well recognized that rather than serving as inert globules of 
fats, lipid droplets are dynamic subcellular organelles that play vital roles in lipid 
metabolism, homeostasis and traffi cking (Martin and Parton  2006 ; Beller et al. 
 2008 ; Guo et al.  2008 ; Olofsson et al.  2009 ; Chapman et al.  2012 ; Kohlwein et al. 
 2013 ; Wilfl ing et al.  2014 ). Thus, it is not surprising that many enzymes in lipid 
metabolic pathways are often found to be associated with lipid droplets (Sorger and 
Daum  2002 ; Rajakumari et al.  2008 ; Kohlwein  2010 ; Moessinger et al.  2011 ). 
Intriguingly, recent studies in mammalian cells have showed that the core machin-
ery for TAG synthesis re-localizes from the ER to lipid droplets via membrane 
bridges between the organelles under conditions of fatty acid overload (Xu et al. 
 2012 ; Wilfl ing et al.  2013 ) and that such relocalization of TAG synthesis enzymes 
is essential for lipid droplet expansion (Wilfl ing et al.  2013 ). Similarly, although 
yeast DGAT2 is an integral ER membrane protein, it relocates to lipid droplets dur-
ing stationary phase of growth, when rapid neutral lipid accumulation is occurring 
(Jacquier et al.  2011 ; Markgraf et al.  2014 ). These results suggest a coupling of 
TAG synthesis with lipid droplet expansion under conditions of lipid excess. 

 Recent functional genomic screens have identifi ed as much as 1.5 % of all known 
genes functioning in oil-droplet formation and regulation in  Drosophila  (Guo et al. 
 2008 ) and 1.2 % in yeast (Szymanski et al.  2007 ). In plants, 25 oil droplet- associated 
proteins from mature  Brassica napus  seeds were identifi ed in recent proteomic 
analysis (Jolivet et al.  2009 ), with oleosins being the most abundant proteins of seed 
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  Fig. 9.3    Membrane lipid turnover contributes to TAG accumulation in response to N starvation. 
Cells were labeled for 16 h with [1- 14 C] 18:1 in complete medium, thereafter shifted to unlabeled 
medium with (+N) or without (−N) N. Lipids were then extracted and separated by TLC at the 
indicated time points and radioactivity in individual polar lipids ( a  and  b ) and TAG ( c ) were 
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oil droplets. Genetic studies showed that oleosins play an important role in  regulating 
the size of lipid droplets in Arabidopsis seeds (Siloto et al.  2006 ). In addition, an 
OLEOSIN3 isoform from peanut cotyledons has been demonstrated to exhibit both 
a monoacylglycerol acyltransferase and a phospholipase activity, and overexpres-
sion of peanut OLEOSIN3 results in increased accumulation of DAG and TAG in 
yeast (Parthibane et al.  2012 ). Interestingly, a  Nannochloropsis  lipid droplet protein 
was recently shown to partially complement the OLEOSIN-defi ciency with respect 
to lipid droplet size in Arabidopsis seeds (Vieler et al.  2012 ). Proteomic analysis 
yielded over 600 lipid droplet-associated proteins in  Chlamydomonas , and many of 
them are likely involved in lipid metabolism (Moellering and Benning  2010 ; 
Nguyen et al.  2011 ). Notably, key enzymes in the TAG synthesis pathway including 
a glycerol-3-phosphate acyltransferase, a lysophosphatidic acid acyltransferase and 
a PDAT, along with proteins putatively involved in acyl remodeling, sterol synthesis 
and lipid traffi cking were found in the recently reported  Chlamydomonas  oil 
 droplets (Nguyen et al.  2011 ). Taken together, these results suggest that lipid drop-
lets may play an evolutionary conserved role in many aspects of lipid metabolism 
including TAG synthesis in wide variety of organisms, ranging from microalgae to 
mammals and higher plants.   

    Conclusion 

 The study of biochemistry and cell biology of TAG metabolism in algae is still in its 
infancy but recent advances have been rapid, due primarily to a recent surge of inter-
est in developing renewable fuels from microalgae. In particular, the discovery that 
TAG derived from the prokaryotic pathway accumulates in cytosolic lipid droplets 
in  Chlamydomonas  offers a new paradigm for interpreting TAG synthesis pathways 
and their organization in microalgae. In addition, the number of proteins involved in 
TAG synthesis, remodeling and regulation that are associated with lipid droplets has 
increased substantially and offers insights into the cellular compartmentalization of 
TAG metabolism. Future studies to exploit the molecular identity, biochemical 
properties, subcellular localization and dynamics of acyltransferases involved in 
DAG synthesis and the mechanisms underlying lipid droplet biogenesis and growth 
will be fundamental to our understanding of TAG metabolism and storage in micro-
algae and other organisms.     
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