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    Chapter 8   
 Triacylglycerol Accumulation 
in Photosynthetic Cells in Plants and Algae                     

       Zhi-Yan     Du     and     Christoph     Benning    

    Abstract     Plant and algal oils are some of the most energy-dense renewable com-
pounds provided by nature. Triacylglycerols (TAGs) are the major constituent of 
plant oils, which can be converted into fatty acid methyl esters commonly known as 
biodiesel. As one of the most effi cient producers of TAGs, photosynthetic microal-
gae have attracted substantial interest for renewable fuel production. Currently, the 
big challenge of microalgae based TAGs for biofuels is their high cost compared to 
fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs 
only during stress conditions such as nutrient deprivation and temperature stress, 
which inevitably will inhibit growth. Thus, a better understanding of why and how 
microalgae induce TAG biosynthesis under stress conditions would allow the devel-
opment of engineered microalgae with increased TAG production during conditions 
optimal for growth. Land plants also synthesize TAGs during stresses and we will 
compare new fi ndings on environmental stress-induced TAG accumulation in plants 
and microalgae especially in the well-characterized model alga  Chlamydomonas 
reinhardtii  and a biotechnologically relevant genus Nannochloropsis.  

  Keywords     Nutrient deprivation   •   Photosynthesis   •   Lipid droplet   •   Lipid remodel-
ing   •   Lipid metabolism  

      Introduction 

 During the past decade, basic research on lipid metabolism in microalgae and plants 
has greatly benefi tted from funding available for the exploration of sustainable, 
domestic production of liquid fuels. As fossil carbon-derived fuels are diminishing 
and will eventually be depleted by the increasing demand of modern societies, the 
search for sustainable sources of energy has become more urgent. As a result of the 
burning of fossil fuels, carbon dioxide (CO 2 ) is released to the atmosphere, which is 
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a greenhouse gas and a likely contributor to global warming as its atmospheric con-
centration has steadily increased since the onset of the industrial revolution (Cheah 
et al.  2014 ; Martinez-Boti et al.  2015 ). Therefore, alternative energy sources should 
not only be reliable and renewable, but also not further contribute to the increase of 
atmospheric CO 2 . Biofuel products from photosynthetic organisms can potentially 
meet this challenge. By converting sunlight into chemical energy, photosynthetic 
organisms such as plants and algae produce biomass and storage compounds, i.e. 
carbohydrates and TAGs, which can be converted to liquid transportation fuels 
equivalent to fossil fuels. A big advantage of biofuel is that photosynthetic organ-
isms consume CO 2  from the atmosphere or directly from anthropogenic sources 
along with the conversion of solar energy, resulting in greenhouse gas reduction as 
they displace fossil fuels (Barber  2009 ; Merchant et al.  2012 ; Ohlrogge and 
Chapman  2011 ). Currently, two major forms of biofuels, ethanol and biodiesel, are 
available in the market and substitute a small portion of global fossil fuels con-
sumed annually (Ohlrogge and Chapman  2011 ). 

 The focus here is on biodiesel, one of the commonly used biofuels which is cur-
rently primarily produced from edible plant vegetable oils obtained from agricul-
tural crops such as soybean and oil palm (Durrett et al.  2008 ). Compared with 
bioethanol, biodiesel has several advantages. First, plant oils as fuel feedstocks 
have a higher energy density than carbohydrates; biodiesel has a 25 % higher energy 
content per volume than ethanol (Durrett et al.  2008 ). Secondly, the net positive 
energy balance for biodiesel production is much higher than that for ethanol. 
Although the exact numbers are still debated, by one estimation, biodiesel from soy 
oil yields 93 % more energy over the total energy input into its production, whereas 
ethanol from corn starch yields only 25 % more, including extra energy credits from 
co-products, e.g. for animal feed (Hill et al.  2006 ). Thirdly, greenhouse gas emis-
sions are reduced 41 % by the production and combustion of biodiesel compared to 
the fossil fuels it replaced, whereas the number for ethanol is only 12 % (Hill et al. 
 2006 ). Biodiesel also generates less air and chemical pollutants derived from pesti-
cides and fertilizers per net energy gain than ethanol (Hill et al.  2006 ). Fourthly, 
with respect to transportation fuel, biodiesel can be used directly for diesel engines 
which are 30 % more effi cient than gasoline engines, whereas ethanol has to be 
blended with conventional petrol/gasoline before it is used. In addition, ethanol 
needs to be stored separately before use because it can lead to corrosion of pipe-
lines, and it is not practical for certain applications, such as jet fuel or heavy vehi-
cles (Dismukes et al.  2008 ; Durrett et al.  2008 ). All these benefi ts have motivated 
research into the biosynthesis of TAGs and its regulation in algae and plants, and 
substantial effort has been spent on the engineering of TAG quality.  
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    Fatty Acid and Triacylglycerol Production in Non-seed 
Tissues of Plants 

  Plant oils  , primarily TAGs, are abundantly stored in cytosolic lipid droplets of oil 
seeds, and have been traditionally a common source for edible vegetable oil and 
biodiesel feedstocks. For example, in 2005, 1.5 % of the soybean harvest in the 
USA produced 256 million liters of biodiesel, providing 0.09 % of the total USA 
diesel consumption (US Department of Energy  2007 ). During the same year, bio-
diesel contributed ~1.6 % of the EU diesel usage (Commission of the European 
Communities  2007 ) and ~0.21 % of that in the USA (US Department of Energy 
 2007 ). By 2030, worldwide demand for edible vegetable oils is expected to double 
due to an increasing population (Bruinsma  2003 ; Chapman and Ohlrogge  2012 ). 
One approach to avoid a direct competition with food supplies has been the intro-
duction of dedicated oleaginous biofuel crops producing non-edible oils such as 
 Sapindus mukorossi  (soap-nut tree) and  Jatropha curcas  (physic-nut tree) which 
also can tolerate marginal agricultural land less suitable for the common agricul-
tural crops (Abdulla et al.  2011 ; Chhetri et al.  2008 ). 

      Genetic Engineering   of Oil Accumulation 
in Non-seed Plant Tissues 

 Another new strategy for non-food oil feedstocks is to produce oil in non-seed plant 
tissues such as leaves and stems in high biomass crops (Chapman et al.  2013 ; 
Durrett et al.  2008 ). Plant oils can be easily extracted from vegetative tissues, and 
the residual lignocellulosic biomass can be converted to biofuel feedstocks by 
deconstruction followed by fermentation or can be burned directly to produce bio-
electricity for electric vehicles (Ohlrogge et al.  2009 ; Vanhercke et al.  2014 ). If 
harvestable vegetative tissues accumulate 10 % TAGs on a dry weight basis, the 
energy yield from the crop would be increased by at least 30 % (Ohlrogge and 
Chapman  2011 ). 

 Most plant leaves already contain ~5 % fatty acids by dry weight in the form of 
polar membrane lipids that are not easy to use (Yang and Ohlrogge  2009 ). Neutral 
lipids such as TAGs can in principle be synthesized in most plant cells, although 
they primarily accumulate in plant seeds, and only minor amounts are found in 
leaves, stems, and roots (Yang and Ohlrogge  2009 ). However, there are intriguing 
exceptions. Examples include copious amounts of oil in the fruit mesocarp of olive 
( Olea europaea ), avocado ( Persea americana ), and oil palm ( Elaeis guineensis ) 
(Ross et al.  1993 ; Tranbarger et al.  2011 ), in tubers of nutsedge ( Cyperus esculen-
tus ) (Stoller and Weber  1975 ; Zhang et al.  1996 ), and in stem tissues of Mongolian 
oilwood ( Tetraena mongolica ) (Wang et al.  2007 ), suggesting that vegetative-tissue 
based oil could be a realistic approach for oil production. 
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 In fact, numerous attempts towards the engineering TAG accumulation in veg-
etative tissues have been carried out over the past decade with various strategies that 
are generally trying to optimize the fl ux of carbon into TAG by overexpressing seed 
transcription factors, increasing TAG/fatty acid synthesis or blocking TAG turn-
over. For example, transcription factors that normally control plant oil biosynthesis 
in developing embryos as summarized in recent reviews (Bates et al.  2013 ; Baud 
and Lepiniec  2010 ; Santos-Mendoza et al.  2008 ) have been explored to produce oil 
in non-seed tissues by their ectopic production, including   WRINKLED1  ( WRI1 )   
(Cernac and Benning  2004 ; Sanjaya et al.  2011 ),   ABSCISIC ACID INSENSITIVE4  
( ABI4 )   (Yang et al.  2011 ),   LEAFY COTYLEDON1  ( LEC1 )   or  LEC2  (Mu et al.  2008 ; 
Santos-Mendoza et al.  2005 ; Stone et al.  2008 ). In developing embryos of plants, a 
fraction of TAG is synthesized through acylation of diacylglycerol (DAG) by diac-
ylglycerol acyltransferase (DGAT) (Cases et al.  1998 ; Lardizabal et al.  2001 ), and 
ectopic expression of DGAT or monoacylglycerol acyltransferase (MGAT) 
increases TAG content in leaves (Andrianov et al.  2010 ; Bouvier-Nave et al.  2000 ; 
Petrie et al.  2012 ; Sanjaya et al.  2013 ). In potato tubers, overexpression of the 
Arabidopsis acetyl-CoA carboxylase leads to increases in TAG and fatty acid syn-
thesis (Klaus et al.  2004 ). By reducing TAG turnover in a  cgi - 58  knockout mutant, 
mature Arabidopsis leaves show increases in TAG accumulation, while seed stor-
age, germination and plant growth are not affected (James et al.  2010 ). TAG accu-
mulation has also been observed in leaves and roots in an Arabidopsis 
 trigalactosyldiacylglycerol1  ( tgd1 ) mutant which is disrupted in lipid transfer 
between the endoplasmic reticulum (ER) and the chloroplast (Xu et al.  2005 ). 
Another intriguing Arabidopsis mutant designated  pickle  has embryo-like roots that 
produce seed storage compounds including oil (Ogas et al.  1997 ,  1999 ). 

 These studies have achieved the goal of engineering oil in non-seed tissues. 
However, the levels of oil production were initially still far below the 10 % dry 
weight benchmark most likely because of their single-gene strategies. More recent 
studies have attempted to further increase TAG content in non-seed tissues by 
manipulating the expression of multiple genes from different pathways. Various 
gene combinations have been tried and examined in transgenic plants such as 
Arabidopsis and tobacco ( Nicotiana tabacum ). Examples include the overexpres-
sion of  LEC2  in the fatty acid breakdown mutant  COMATOSE  ( cts2 ) (Slocombe 
et al.  2009 ), the overexpression of  WRI1  in an Arabidopsis RNAi line designated 
 AGP RNAi that reduces the expression of  APS1 , a gene encoding the ADP-glucose 
pyrophosphorylase (Sanjaya et al.  2011 ), the coexpression of DGAT1 and oil-body 
protein oleosin that increases both TAG and leaf biomass (Winichayakul et al. 
 2013 ), the disruption of a TAG lipase gene  SUGAR - DEPENDENT1  ( SDP1 ) or 
 PEROXISOMAL TRANSPORTER1  ( PXA1 ) in the  tgd1  mutant (Fan et al.  2014 ), and 
the coexpression of  WRI1  and  DGAT1  in tobacco (Vanhercke et al.  2013 ). Compared 
to these two-gene attempts, three-gene combinations were even more successful in 
enhancing TAG accumulation. In Arabidopsis, the coexpression of  OLEOSIN1  and 
the gene encoding phospholipid:diacylglycerol acyltransferase 1 ( PDAT1 ) in the 
 tgd1  mutant boosted leaf TAG content to ~9 % of the dry weight (Fan et al.  2013 ). 
In contrast, the coexpression of  WRI1  and  DGAT1  in the lipase mutant 
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 sugar- dependent1 ( sdp1 ) resulted in TAG accumulation in leaves, stems and roots 
ranging from 5 to 8 % of dry weight but along with a ~20 % reduction in leaf bio-
mass (Kelly et al.  2013 ). By the provision of 3 % (w/v) sucrose, TAG content in the 
roots of these transgenic plants could be further increased up to 17 % of dry weight 
(Kelly et al.  2013 ). Another report showed over 10 % TAG by dry weight in mature 
tobacco leaves and ~15 % TAG in stems and roots by the coexpression of  WRI1 , 
 DGAT1  and  OLEOSIN , three genes involved in different aspects of TAG synthesis 
(Vanhercke et al.  2014 ).   

       Environmental Stresses   Induce Oil Accumulation in Plant 
Vegetative Tissues 

 Besides manipulation of gene expression, various environmental stresses, such as 
ozone fumigation, freezing and desiccation, appear to stimulate plant oil accumula-
tion in vegetative tissues (Fig.  8.1 ) (El-Hafi d et al.  1989 ; Moellering et al.  2010 ; 
Navari-Izzo and Rascio  1999 ; Sakaki et al.  1985 ). For example, after approximately 
6 h fumigation with ozone (0.5 μL/L), TAG accumulation in spinach leaves reached 
a maximum, whereas three polar lipids, phosphatidylcholine (PtdCho), mono- and 
digalactosyldiacylglycerol (MGDG and DGDG) decreased strongly during the 
same period (Sakaki et al.  1985 ,  1990c ). Further analysis such as fatty acid profi ling 
and pulse-chase acetate labeling has revealed that these TAGs are derived from 
diacylglycerol (DAG) and free fatty acids (FFA) from MGDG due to the activity of 
a galactolipid:galactolipid galactosyltransferase (GGGT) (Sakaki et al.  1990b ,  c ). 
Subsequent  in vitro  enzyme activity assays of spinach GGGT suggested its activa-
tion by FFA and divalent cations such as Mg 2+ , Mn 2+  and Ca 2+  (Sakaki et al.  1990a ). 
However, the signifi cance of the TAG accumulation in relation to GGGT activation 
in spinach leaves upon ozone treatment is still not clear.

   Stress-induced TAG accumulation has also been observed in Arabidopsis during 
freezing (Moellering and Benning  2011 ; Moellering et al.  2010 ). Studies on 
Arabidopsis  SENSITIVE TO FREEZING 2  ( SFR2 ) (Moellering et al.  2010 ), a gene 
encoding a protein annotated as a glycosyl hydrolase family 1 protein at the outer 
chloroplast envelope membrane (Fourrier et al.  2008 ; Thorlby et al.  2004 ), sug-
gested that SFR2 likely is the GGGT in plants and participates in the protection of 
chloroplast under freezing stress due to its activity causing the formation of oligo-
galactolipids and DAG by processive transfer of galactosyl moieties from MGDG 
onto an galactolipid acceptor (Moellering et al.  2010 ). A more recent study con-
fi rmed that SFR2 acts solely as a glycosyltransferase rather than a glycosyl hydro-
lase and provided insights into its reaction mechanism through structure function 
studies assisted by a structural homology model (Roston et al.  2014 ). Under freez-
ing stress, Arabidopsis SFR2 converts nonbilayer-MGDG to bilayer-forming mem-
brane lipids such as tri- and tetra-galactosyldiacylglycerol (TGDG and TeGDG, 
respectively), as well as DAG that is further acylated to TAG (Moellering et al. 
 2010 ). In case of ozone fumigation of spinach leaves, the acyl groups are most 
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likely derived from MGDG hydrolysis (Moellering et al.  2010 ; Sakaki et al.  1990b , 
 c ). The remodeling of membrane lipids by SFR2 upon freezing stress, which leads 
to severe dehydration of the cell as ice forms fi rst in the apoplast, reduces the ten-
dency of the formation of inter-bilayer hexagonal II phase, increases stabilization of 
the envelope membranes and, therefore, enhances freezing tolerance (Moellering 
and Benning  2011 ; Moellering et al.  2010 ; Roston et al.  2014 ). Furthermore, TAG 
accumulation in Arabidopsis leaves can contribute to the removal of excess mem-
brane lipids like MGDG from the envelope membranes as the organelle shrinks in 
response to dehydration by the combined activity of TAG-biosynthetic enzymes 
and SFR2 during freezing treatment or general osmotic stress (Moellering and 
Benning  2011 ; Moellering et al.  2010 ). 

  Fig. 8.1    Triacylglycerol 
accumulation occurs in 
plant vegetative tissues 
under environmental 
stresses. The plant model 
shown in the fi gure 
represents plants described 
in section “ Environmental 
stresses induce oil 
accumulation in plant 
vegetative tissues ”, e.g. 
 Arabidopsis thaliana , 
 Spinacia oleracea  L. 
(spinach) and  Gossypium 
hirsutum  (cotton) plants. 
The  white  snow fl ake and 
the  yellow  leaf indicate 
freezing condition and leaf 
senescence, respectively. 
 TAG  triacylglycerol,  -N  
nitrogen deprived,  salt  high 
salt       
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 Under water-defi cit stress conditions, a decrease in MGDG and increase in TAG 
levels has been observed in a variety of plants such as desiccation-tolerant plants 
 Craterostigma plantagineum  (blue carpet),  Lindernia brevidens  and  Ramonda ser-
bica  (Serbian-phoenix fl ower), desiccation-sensitive plants Arabidopsis and 
 Lindernia subracemosa , as well as the crops  Gossypium hirsutum  (cotton),  Triticum 
aestivum  (wheat) and  Zea mays  (maize), indicating an important role of lipid remod-
eling in plant adaptation to desiccation stress (El-Hafi d et al.  1989 ; Gasulla et al. 
 2013 ; Navari-Izzo and Rascio  1999 ). For instance, a recent study has shown that 
TAGs in  C. plantagineum  increase from 0.146 to 3.11 nmol mg −1  of dry cell weight 
in desiccated leaves and decrease again following rehydration (Gasulla et al.  2013 ). 
Analysis of molecular species has revealed that these TAGs are synthesized from 
DAG derived either directly from MGDG hydrolysis or due to the activity of SFR2 
that converts multiple MGDGs into TGDG/TeGDG and DAG. Simultaneously, a 
fraction of MGDG is converted into DGDG by UDP-Gal-dependent DGDG syn-
thases DGD1/DGD2 (Gasulla et al.  2013 ). This conversion of MGDG to DGDG/
TGDG/TeGDG and TAG is believed to contribute to the stabilization of membranes 
during desiccation stress. In addition, TAG accumulation can be induced (or TAG 
degradation delayed) in Arabidopsis seedlings by the treatment with abscisic acid 
(Yang et al.  2011 ), an important plant stress hormone also involved in responses to 
freezing and desiccation. 

 TAG accumulation is also observed following senescence/dark treatment in 
Arabidopsis leaves (Slocombe et al.  2009 ), which is interpreted as the sequestration 
of FFA derived from galactolipids (Kaup et al.  2002 ). During leaf senescence or 
environmental stresses, disintegration of thylakoid membranes, as well as degrada-
tion of chlorophyll and galactolipids, results in the accumulation of toxic intermedi-
ates such as free phytol and FFA. In Arabidopsis,  PHYTYL ESTER SYNTHASE1  
( PES1 ) and  PES2  encode two acyltransferases (of the esterase/lipase/thioesterase 
family) performing both phytyl ester synthesis and diacylglycerol acyltransferase 
activities with broad substrate specifi cities (Lippold et al.  2012 ). During develop-
mental senescence or nitrogen deprivation induced senescence, TAG and phytyl 
esters accumulate in the wild type, whereas the  pes1 pes2  double mutant contains 
~30 % less TAG than the wild type but much higher free phytol. This observation 
indicates that PES1 and PES2 help avoid the accumulation of toxic products of 
thylakoid membrane degradation during leaf senescence and nitrogen deprivation, 
by the removal of free phytol and FFA in the form of phytyl esters and eventually 
sequestration of FFA into TAG (Lippold et al.  2012 ). TAG accumulation has also 
been reported by another group using nitrogen-deprived Arabidopsis seedlings 
(Yang et al.  2011 ). These fi ndings are particularly intriguing because nitrogen defi -
ciency is currently widely used in laboratory and aquaculture settings to induce 
TAG accumulation in microalgae, another attractive source of sustainable feed-
stocks for bioenergy.    

8 Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae



186

    Microalgae Accumulate Triacylglycerol upon 
Different Stresses 

 Microalgae are eukaryotic photosynthetic microorganisms that are masters at using 
sunlight, CO 2  and water to produce biomass (Georgianna and Mayfi eld  2012 ; Hu 
et al.  2008 ). Under optimal growth conditions, microalgae are very effi cient in the 
utilization of solar energy for the production biochemical compounds such as starch, 
cellulose and other carbohydrates which can readily be used as feedstocks for  bio-
ethanol production   due to the absence, or low content of lignin from algal biomass 
compared to biomass derived from land plants (John et al.  2011 ; Jones and Mayfi eld 
 2012 ). When placed under stress conditions, many species of microalgae produce 
large amounts of neutral lipids typically in the form of TAGs as storage products for 
carbon and energy, and they are therefore referred to as oleaginous microalgae 
(Chisti  2007 ; Hu et al.  2008 ). As this typically happens in photosynthetically active 
cells, TAG accumulation in microalgae is conceptually more similar to stress- 
induced TAG accumulation in vegetative tissues of plants than the related process 
in developing plant seeds. Therefore, gaining an understanding of TAG accumula-
tion in microalgae may also provide important insights for the engineering of TAG 
accumulation in vegetative tissues of plants. 

 Algal TAGs usually have  acyl chains   with 16 or 18 carbons esterifi ed to the 
glycerol (Fig.  8.2 ) (Liu et al.  2013 ). These fatty acyl chains are chemically similar 
to diesel fuel components that typically have 10–15 carbons per molecule, and alga- 
derived biodiesel is directly compatible with diesel engines (ASTM  2002 ; Durrett 
et al.  2008 ). Thus, oleaginous microalgae can theoretically be used for producing 
both biodiesel derived from their oil and bioethanol/bioelectricity derived from the 
biomass left after oil extraction maximizing the overall energy yield (Jones and 
Mayfi eld  2012 ; Ohlrogge et al.  2009 ).

   Moreover, using microalgae as feedstocks for biofuel  products   has potential 
advantages as compared to current biofuel crops such as corn and oil palm. Firstly, 
microalgae accumulate a substantial amount of TAG, commonly 20–50 % of dry 
weight (Chisti  2007 ; Hu et al.  2008 ). Secondly, microalgae grow fast (usually 1–3 
doublings per day) and they are more effi cient than terrestrial plants in the conver-
sion of solar energy to biomass (Chisti  2013 ; Stephenson et al.  2011 ). Thirdly, in 
principle microalgae require less land area for the same yield of biofuel compared 
with terrestrial crops and their cultivation can utilize marginal lands such as deserts 
and saline lake beds that cannot be used for conventional agriculture (Georgianna 
and Mayfi eld  2012 ; Stephenson et al.  2011 ). Microalgae can be incubated in 
enclosed photobioreactors throughout the year independent of seasons (Georgianna 
and Mayfi eld  2012 ; John et al.  2011 ), and can use nutrient-rich wastewater to meet 
the relatively high demand for water (Venkata Mohan et al.  2015 ). Marine microal-
gae cultivation can utilize abundant sea water, but requires a costal location of the 
production site (Stephenson et al.  2011 ). Thus, cultivation of microalgae has the 
potential to minimize or avoid the competition with food crops for arable land and 
other crop-based agricultural production schemes for biofuels. Fourthly, microalgae 
produce a variety of valuable co-products or by-products such as biopolymers, pro-
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teins, animal feed and fertilizer (Brennan and Owende  2010 ; Hu et al.  2008 ). All 
these advantages promise a great potential for microalgae-based production of fuels 
and other products, a promise that, however, still needs to be realized in  cost effec-
tive   ways. But the promise of algae as sustainable feed stocks certainly has globally 
“fueled” research to explore mechanisms of TAG accumulation in microalgae and 
to develop algae-based production schemes (Liu and Benning  2013 ). 

    Factors Affecting Triacylglycerol Accumulation in Microalgae 

 Oleaginous microalgae produce only small amounts of TAG during optimal growth 
or under favorable environmental conditions, under which polar membrane lipids 
(5–20 % of dry weight) are generally the major lipid compounds (Hu et al.  2008 ). 

  Fig. 8.2    Triacylglycerol is accumulated in nutrient-limited cultures of  Chlamydomonas rein-
hardtii . Triacylglycerol (TAG) consists of three acyl chains (in  black ) that are esterifi ed to a glyc-
erol (in  red ). Cells of wild-type Chlamydomonas strain dw 15-1 were incubated in 
Tris-acetate-phosphate medium supplemented with or without 10 mM NH 4 Cl. The ratio of fatty 
acids (FA) from TAG over total-lipid fatty acids was calculated in Chlamydomonas samples fol-
lowing indicated nitrogen deprivation.  +N  nitrogen replete,  −N  nitrogen deprived. Averages of 
three independent measurements are given.  Error bars  indicate SD       
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As already mentioned, synthesis and accumulation of TAG in microalgae is induced 
by stress conditions, accompanied by complicated changes in overall fatty acid and 
lipid composition. Stresses can be  chemical or non-chemical   in nature and the major 
chemical-based inducers of TAG accumulation are various nutrient limitations, 
whereas the major non-chemical stress inducers are temperature and light intensity. 
Growth phase of a  culture and aging   of microalgal cultures also affect TAG content 
and fatty acid composition, likely because nutrients become limited and toxins 
accumulate as the cultures enter stationary phase. 

  Nitrogen defi ciency   is the most frequently studied condition inducing TAG 
accumulation in different algae (Hu et al.  2008 ). Microalgae including green algae 
and diatoms accumulate TAG ~20–50 % upon nitrogen defi ciency (Hu et al.  2008 ). 
Silicon is another important nutrient that affects cellular lipid metabolism especially 
in diatoms. In the brackish-water diatom  Cyclotella cryptica , silicon defi ciency 
induces TAG accumulation in lipid droplets with higher proportions of saturated 
and mono-unsaturated fatty acids over silicon-replete cells (Roessler  1988 ; Traller 
and Hildebrand  2013 ). Other macro nutrients affecting cellular lipid metabolism 
include sulfur and phosphorus. For example, sulfur starvation increases the neutral 
lipids in the green algae  Chlorella ellipsoidea  (Otsuka  1961 ) and  Chlamydomonas 
reinhardtii  (Matthew et al.  2009 ).  Phosphorus starvation   also promotes TAG accu-
mulation in the fresh water alga  Monodus subterraneus  (Khozin-Goldberg and 
Cohen  2006 ) and various marine microalgae such as the diatom  Phaeodactylum 
tricornutum  and the haptophyte alga  Isochrysis galbana  (Abida et al.  2015 ; Reitan 
et al.  1994 ). Besides macro nutrients, studies on the green alga Chlamydomonas 
have shown that defi ciency in micro nutrients such as zinc and iron also induce 
TAG accumulation (Kropat et al.  2011 ; Urzica et al.  2013 ). In addition, drugs such 
as  Brefeldin A   (an ER-stress inducer) have been found to rapidly stimulate TAG 
accumulation in Chlamydomonas and the freshwater alga  Chlorella vulgaris  (Kim 
et al.  2013 ). 

 Many studies have reported that  non-chemical based stresses   lead to the forma-
tion of TAG in microalgae including unfavorable temperature, light intensity, high 
salinity and dehydration. For example, increased temperature results in the eleva-
tion of lipid content in the freshwater phytofl agellate  Ochromonas danica  (Aaronson 
 1973 ), the marine alga  Nannochloropsis salina  (Boussiba et al.  1987 ) and 
Chlamydomonas (Hemme et al.  2014 ). High light intensity increases neutral storage 
lipid content, mainly TAGs, accompanied by a decrease in total polar lipids (Brown 
et al.  1996 ; Khotimchenko and Yakovleva  2005 ; Napolitano  1994 ). Furthermore, 
TAG accumulates in Chlamydomonas during hypoxia in darkness or during 
extended (24 h) darkness alone (Hemschemeier et al.  2013 ). Synthesis of TAG can 
also be induced by high salinity as seen in the green algae  Dunaliella salina  (Takagi 
et al.  2006 ) and Chlamydomonas (Siaut et al.  2011 ), or by dehydration during illu-
mination in the green alga  Chlorella kessleri  (Shiratake et al.  2013 ). 

 When reaching the stationary phase, some microalgae such as the green alga 
 Parietochloris incisa  and the marine dinofl agellate  Gymnodinium  sp. have shown an 
increase in TAG content (Bigogno et al.  2002 ; Mansour et al.  2003 ), which is probably 
a consequence of nutrient depletion or accumulation of toxic metabolic products. 
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Culture aging or  senescence   during prolonged stationary phase also affects lipid 
metabolism in microalgae. For example, the total lipid content increases along with 
culture aging in the green alga  Chlorococcum macrostigma  (Collins and Kalnins 
 1969 ), and diatoms such as  Thalassiosira fl uviatillis  (Conover  1975 ) and  Coscinodiscus 
eccentricus  (Pugh  1971 ). These fi ndings indicate possible roles of TAG accumulation 
in response to various stimuli, and a better understanding of the mechanism of TAG 
induction during stress conditions will provide strategies for the engineering of TAG 
accumulation and TAG quality under conditions favorable for biomass accumulation 
of microalgae.  

     Chlamydomonas   as a Reference Microalgae to Answer 
Questions about TAG Accumulation 

 The unicellular green alga Chlamydomonas traditionally has been used as a model 
for studies of  photosynthesis   (Rochaix  1995 ) or fl agella biogenesis (Harris  2001 ), 
and has recently been widely adopted as a reference organism for algal TAG metab-
olism research. Reasons are its simple life cycle and well-developed genetic tools 
and techniques (Liu and Benning  2013 ; Merchant et al.  2012 ). As summarized 
above, Chlamydomonas cells accumulate TAGs upon various unfavorable condi-
tions such as nutrient defi ciency and non-chemical stresses (Liu and Benning  2013 ; 
Merchant et al.  2012 ).  Nitrogen deprivation   is frequently used to induce TAG accu-
mulation in Chlamydomonas (Fig.  8.2 ), and will lead to a cessation of cell division 
and eventually to a cellular state known as cellular quiescence (Tsai et al.  2014 ). 

 To understand the  mechanism   of TAG accumulation in Chlamydomonas, sev-
eral studies have been carried out to identify key genes by reverse and forward 
genetic approaches (Liu and Benning  2013 ; Merchant et al.  2012 ). For instance, 
forward genetic screening using  insertional mutagenesis   (Khozin-Goldberg and 
Cohen  2011 ; Li et al.  2012 ; Merchant et al.  2012 ; Zhang et al.  2014 ), deep transcrip-
tome analysis by RNA sequencing (Blaby et al.  2013 ; Hemschemeier et al.  2013 ; 
Juergens et al.  2015 ; Miller et al.  2010 ; Park et al.  2015 ; Schmollinger et al.  2014 ; 
Tsai et al.  2014 ), and proteomics by mass spectrometry (Hemme et al.  2014 ; 
Schmollinger et al.  2014 ; Wang et al.  2009 ) using wild-type Chlamydomonas or 
mutant strains have identifi ed genes involved in TAG accumulation and its regula-
tion. Several lipid droplet-focused proteomic studies have reported the presence of 
a major lipid droplet protein MLDP, which is considered a functional equivalent of 
plant oleosins (James et al.  2011 ; Moellering and Benning  2010 ; Nguyen et al. 
 2011 ).  Reverse genetic screening   based on the analysis of orthologs of character-
ized genes from yeast, animals and plants have provided candidates for genes 
involved in TAG biosynthesis (Khozin-Goldberg and Cohen  2011 ; Merchant et al. 
 2012 ; Riekhof and Benning  2009 ). Previous studies on other eukaryotes such as 
yeast and Arabidopsis identifi ed two key enzyme families in TAG synthesis, 
DGATs and PDATs, which are also found in Chlamydomonas (Merchant et al. 
 2012 ). Currently, six genes encoding DGATs from two families, type one DGAT 
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and type two DGTT, are known in Chlamydomonas including  DGAT1  and  DGTT1 - 
to-  DGTT5  (Boyle et al.  2012 ; La Russa et al.  2012 ; Miller et al.  2010 ). In contrast, 
only one   PDAT    has been described for Chlamydomonas, which participates in 
membrane lipid turnover and TAG synthesis (Boyle et al.  2012 ; Yoon et al.  2012 ). 

 A recent mutant screening for Chlamydomonas low TAG mutants led to the dis-
covery of a galactoglycerolipid lipase designated  PGD1   (PLASTID GALACTOLIPID 
DEGRADATION 1), and the respective  pgd1  null-mutant provides a tool to experi-
mentally test the role of TAG accumulation following  nitrogen deprivation   (Fig.  8.3 ) 
(Li et al.  2012 ). A  classic hypothesis   is that  de novo  TAG synthesis serves as an 
electron sink to sequester excess electrons from the photosynthetic electron transport 
chain, thereby counteracting its possible overreduction which can lead to the forma-
tion of harmful reactive oxygen species (ROS) at photosystem I through the Mehler 
reaction (Hu et al.  2008 ). The study of the  pdg1  mutant supports the hypothesis that 

  Fig. 8.3    Proposed roles of triacylglycerol accumulation in Chlamydomonas in response to abiotic 
stresses.  ER  endoplasmic reticulum,  PtdOH  phosphatidic acid,  PL  phospholipid,  DAG  diacylglyc-
erol,  TAG  triacylglycerol,  DGAT  diacylglycerol acyltransferase,  PDAT  phospholipid:diacylglycerol 
acyltransferase,  LD  lipid droplet,  MLDP  Chlamydomonas major lipid droplet protein,  acyl-CoA  
acyl-coenzyme A,  FA  fatty acid,  oE  outer envelope,  iE  inner envelope,  PGD1  PLASTID 
GALACTOLIPID DEGRADATION 1,  MGDG  monogalactosyldiacylglycerol,  acyl-ACP  acyl- 
acyl carrier protein,  FAS  fatty acid synthase complex,  e  -  electron,  FD  ferredoxin,  FNR  
ferredoxin:NADP +  reductase,  PQ  plastoquinone and plastoquinol,  b   6   f , cytochrome  b   6   f  complex, 
 PC  plastocyanin; H + , proton,  LHCII  light-harvesting complex II,  PSI and II  photosystems I and II, 
 ATPs  ATP synthase,  ADP/ATP  adenosine di-/triphosphate,  Thy  thylakoid. Different  color arrows  
indicate different fl uxes:  black , fatty acid and lipid pathway;  orange , linear electron fl ow;  blue , 
proton;  brown , others       
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TAG accumulation is essential for Chlamydomonas cells to survive under nitrogen 
starvation (Li et al.  2012 ). Results of activity assay,  in vivo  pulse-chase and lipid 
analysis have shown that Chlamydomonas PGD1 hydrolyzes newly incorporated 
acyl groups at the  sn - 1  position of MGDG that can be converted to acyl-CoA for  de 
novo  TAG synthesis in the cytosol. During nitrogen deprivation, the  pgd1  mutant 
produces only about 50 % of TAG compared to the wild type, and becomes chlorotic 
after ~7 days of treatment. Because of the large TAG decrease in the  pgd1  mutant, 
presumably reduction pressure of the electron transport chain is increased and 
molecular oxygen at photosystem I (PSI) could serve under these conditions as an 
alternative electron acceptor to form ROS that will cause damage to thylakoid mem-
branes and chloroplasts and eventually lead to cell death. Indeed, formation of ROS 
indicated by  thiobarbituric acid reactive substances (TBARS     ) (Baroli et al.  2003 ) has 
been observed in the  pgd1  mutant by day 7 of nitrogen deprivation concomitant with 
chlorosis (Li et al.  2012 ). Moreover, blocking of electron transfer at the acceptor side 
of PSII by 3-(3,4-dichlorophenyl)-1,1-dimethylurea ( DCMU     ) can reverse the chloro-
sis of the  pgd1  mutant, but not TAG accumulation, supporting a possible role of TAG 
as a sink for electrons (Li et al.  2012 ). However, it should be noted that comparative 
transcriptome analysis has shown that following nitrogen deprivation, protein bio-
synthesis in general and the expression of genes encoding many photosynthesis com-
ponents is down-regulated (Blaby et al.  2013 ; Juergens et al.  2015 ; Miller et al.  2010 ; 
Park et al.  2015 ; Schmollinger et al.  2014 ). Therefore other explanations for the role 
of TAG accumulation, such as the transient and safe storage of acyl chains for latter 
resynthesis of membranes, when conditions improve, need to be considered. 
Furthermore, these experiments were conducted in acetate medium and hence under 
photoheterotrophic conditions that may promote TAG formation from acetate. In 
fact, nitrogen deprivation also leads to a redirection of carbon metabolism such that 
acetate in the medium is no longer converted to cell building blocks by the glyoxylate 
cycle and gluconeogenesis, but channeled directly into fatty acid biosynthesis (Miller 
et al.  2010 ). Recently, it has been suggested that TAG accumulates to particularly 
high levels when carbon supply exceeds the capacity of starch synthesis in 
Chlamydomonas, which is usually the case for microalgae under stress conditions 
such as nutrient defi ciency (Fan et al.  2012 ). Hence, Chlamydomonas starchless 
mutants are capable to produce more TAG compared to the wild type (Li et al.  2010 ; 
Wang et al.  2009 ; Work et al.  2010 ). In some microalgae, TAG synthesis is coordi-
nated with the synthesis of carotenoids such as  β -carotene, lutein and astaxanthin 
that can be sequestered in cytosolic carotenoid-rich lipid droplets. Their  peripheral 
distribution   in cells has been proposed to serve as a sun screen to prevent excessive 
photons from striking the chloroplast and photosynthetic membrane under stress 
conditions (Rabbani et al.  1998 ; Zhekisheva et al.  2002 ). An increase in TAG synthe-
sis has also been observed in the marine alga  Desmodesmus  sp. during high light 
growth following nitrogen deprivation, which is believed to prevent at least in part 
photo-oxidative damage under these stress conditions (Gorelova et al.  2015 ).

   Even though Chlamydomonas  PGD1   is a galactolipid lipase, it is proposed to not 
contribute to degradation of membranes but aide in the  de novo  synthesis of TAGs 

8 Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae



192

from newly formed fatty acids (Li et al.  2012 ). However, loss of PGD1 only leads 
to 50 % reduction in TAG content and other mechanisms to supply precursors of 
TAG biosynthesis have to be considered.  Global transcript analysis   indicates that 
during nitrogen deprivation, genes encoding putative lipases are among those dis-
playing the strongest variations in transcript abundance in Chlamydomonas, which 
could be a sign for degradation of structural membrane lipids, such as mature 
MGDG containing 18:3 and 16:4 acyl chains. In fact, a small fraction of TAG con-
tains 16:4 acyl chains, otherwise only found in MDGD of the thylakoid membrane 
(Liu et al.  2013 ). These fi ndings are further supported by microscopic observation 
and lipid analyses indicating that nitrogen deprivation-induced TAG accumulation 
in lipid droplets occurs concomitantly with the breakdown of thylakoid membranes 
(Boyle et al.  2012 ; Iwai et al.  2014 ). Thus  lipid droplet formation   is at least in part 
accompanied by the conversion of polar membrane lipids such as mature MGDG 
and phosphatidylglycerol (PG) to TAG (Yoon et al.  2012 ). 

 Aside from the mechanisms discussed thus far, TAG synthesis involving a 
PDAT, designated PDAT1, was observed in Chlamydomonas (Fig.  8.3 ) (Boyle 
et al.  2012 ; Yoon et al.  2012 ). Based on mutants obtained by insertional mutagen-
esis or artifi cial microRNA silencing, Chlamydomonas PDAT1 was estimated to 
contribute up to ~25 % of the total TAG accumulating following nitrogen depriva-
tion due to the turnover of chloroplast membrane lipids, particularly MGDG, sulfo-
quinovosyldiacylglycerol (SQDG) and PG (Boyle et al.  2012 ; Yoon et al.  2012 ). 
Besides nitrogen deprivation, limitation of iron and zinc in Chlamydomonas cells 
can also lead to chloroplast/chlorophyll degradation and lipid remodeling (Kropat 
et al.  2011 ; Urzica et al.  2013 ). Under nitrogen deprivation, similar lipid remodeling 
events that occur in Chlamydomonas have been observed for other algal species 
such as the model diatom  P. tricornutum  (Abida et al.  2015 ; Yang et al.  2013 ), the 
freshwater alga  M. subterraneus  (Khozin-Goldberg and Cohen  2006 ), the marine 
algae  Nannochloropsis gaditana  (Simionato et al.  2013 ) and  Nannochloropsis oce-
anica  IMET1 (Jia et al.  2015 ), and even land plants such as Arabidopsis (Lippold 
et al.  2012 ). Thus, TAG accumulation from precursors derived from lipids of the 
photosynthetic membrane could serve in part as a mechanism to sequester acyl 
groups for later use, when membranes have to be resynthesized. 

 Other than nutrient deprivation, stresses such as heat and dark anoxia also trigger 
TAG accumulation in Chlamydomonas cells (Hemme et al.  2014 ; Hemschemeier 
et al.  2013 ). These stresses lead to the conversion of membrane lipids to TAG which 
is similar to the observations under nutrient deprivation. However, heat- and dark 
anoxia-induced TAGs tend to accumulate unsaturated fatty acids, particularly 
 polyunsaturated ones such as linolenic acid (C18:3), compared with TAG produced 
during nutrient deprivation (Hemme et al.  2014 ; Hemschemeier et al.  2013 ).  Factors   
such as temperature and light intensity strongly affect the fatty acid composition in 
microalgae. For example, it has been observed in many microalgae that increasing 
temperature leads to more saturated fatty acids whereas decreasing temperature pro-
motes unsaturation of fatty acids (Lynch and Thompson  1982 ; Renaud et al.  2002 ; 
Sato and Murata  1980 ). High light intensity can also increase the saturation of fatty 
acids in  Nannochloropsis  sp. cells (Fabregas et al.  2004 ). It has been reported that 
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TAG serves as a reservoir of polyunsaturated fatty acids for the rapid formation of 
membrane lipids upon changes in environmental conditions (e.g. sudden decreases 
in temperature) in the red alga  Porphyridium cruentum  (Cohen et al.  2000 ). Thus, in 
Chlamydomonas polyunsaturated fatty acids derived from the degradation of mem-
brane lipids are likely stored in TAG during non-nutrient deprivation-induced envi-
ronmental stresses (e.g. heat and dark anoxia) for future utilization. Interestingly, 
ER stress by Brefeldin A can induce a similar membrane lipid turnover and increase 
in unsaturation of TAG in Chlamydomonas and  Chlroella vulgaris  (Kim et al. 
 2013 ). 

 Several attempts have been carried out to engineer TAG production in 
Chlamydomonas (La Russa et al.  2012 ). For example, three type-two  DGATs , 
 DGTT1  to  DGTT3  (also referred to as  DGAT2a ,  b  and  c ) have been independently 
overexpressed in Chlamydomonas cells but did not increase the intracellular TAG 
accumulation or signifi cantly alter the composition of the fatty acids compared to 
the wild type during regular growth condition or under nitrogen or sulfur depriva-
tion (La Russa et al.  2012 ). In contrast, another research group overexpressed 
 DGTT4  using a sulphoquinovosyldiacylglycerol 2 ( SQD2     ) promoter that is up- 
regulated during phosphorus starvation, resulting in strongly increased TAG accu-
mulation over the wild type. However, the respective TAG production (~15 mg L −1 ) 
was still far below the levels needed for commercial use (Iwai et al.  2014 ). 

 A recent study has identifi ed a gene encoding a   SQUAMOSA  promoter-binding- 
protein-domain   containing protein designated  NRR1  (Boyle et al.  2012 ). It is con-
sidered to be an important regulator of TAG synthesis following nitrogen starvation 
because the  nrr1  mutant produces only ~50 % TAG over the wild type (Boyle et al. 
 2012 ). Considering that the single-gene strategies in plant engineering were not 
very successful whereas triple-gene coexpression of  OLEOSIN ,  WRI1  and  DGAT1  
(genes encoding lipid droplet protein, transcription factor and type-one DGAT, 
respectively) substantially increased TAG production in tobacco vegetative tissues 
(Vanhercke et al.  2014 ), multiple-gene coexpression in starchless mutants could be 
employed to enhance TAG production in Chlamydomonas using its  endogenous 
genes   such as  MLDP ,  NRR1  and DGATs in the future. While Chlamydomonas is 
usually not considered an oleaginous alga for biodiesel production, but a reference 
organism for the research on lipid metabolism in microalgae, the fi ndings on 
Chlamydomonas could direct studies on more biotechnologically relevant species 
such as Nannochloropsis.  

      Nannochloropsis  , an Emerging Model to Study Lipid 
Metabolism 

 The oleaginous microalga Nannochloropsis sp., belonging to a genus of unicellular 
photosynthetic microalgae of the heterokonts, accumulates TAG as the major car-
bon and energy storage compound under regular or stress conditions (Liu et al. 
 2013 ; Meng et al.  2015 ; Simionato et al.  2013 ). Nannochloropsis does not 
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accumulate starch (Vieler et al.  2012b ; Wang et al.  2014 ), which is very similar to 
the starch-less Chlamydomonas mutants that accumulate substantially more TAG 
than the starch-containing wild type under nitrogen deprivation (Li et al.  2010 ; 
Wang et al.  2009 ; Work et al.  2010 ). Thus, TAG may serve as an essential sink for 
photosynthate and as a primary storage compound during stresses in Nannochloropsis 
and Chlamydomonas. However, unlike Chlamydomonas, Nannochloropsis already 
synthesizes substantial amounts of TAG (~10 % of dry weight) under nutrient-rich 
conditions (Taleb et al.  2015 ). Even though Nannochloropsis produces up to 20 % 
of dry weight of carbohydrates such as mono- and polysaccharides under nutrient 
deprivation (Jia et al.  2015 ; Vieler et al.  2012b ; Wang et al.  2014 ), TAG is the major 
reserve compound under those conditions (Jia et al.  2015 ; Simionato et al.  2013 ; 
Taleb et al.  2015 ; Vieler et al.  2012b ), making Nannochloropsis an interesting 
model genus for lipid metabolism research. In terms of lipid metabolism, another 
big difference between the green alga Chlamydomonas and the oleaginous alga 
Nannochloropsis is that Chlamydomonas only contains the betaine lipid 
diacylglyceryl- N,N,N-trimethyl-homoserine (DGTS) that is believed to be a substi-
tution for PtdCho, a common structural lipid in plants and alga with a similar struc-
ture as DGTS (Klug and Benning  2001 ), whereas Nannochloropsis possesses both 
DGTS and PtdCho (Jia et al.  2015 ). In addition, Nannochloropsis has been consid-
ered one of the more suitable algal species for feedstocks for biofuel production due 
to its rapid growth and high oil content (Taleb et al.  2015 ). It also produces large 
amounts of high-value polyunsaturated fatty acids such as eicosapentaenoic acid 
(EPA) that can be used for nutritional supplements (Vieler et al.  2012b ). Previous 
studies have focused on six species of Nannochloropsis, and fi ve of them are marine 
algae that are widely distributed in the marine ecosystems especially in coastal 
regions (Andersen et al.  1998 ; Vieler et al.  2012b ). In recent years, the genomes of 
several Nannochloropsis species have been sequenced, e.g.  N. oceanica  CCMP1779 
(Vieler et al.  2012b ),  N. gaditana  (Radakovits et al.  2012 ) and  N. oceanica  IMET1 
(Wang et al.  2014 ), and genetic tools and techniques such as nuclear transformation 
have been developed to facilitate investigations on gene functions and engineering 
of metabolic pathways (Li et al.  2014a ; Radakovits et al.  2012 ; Vieler et al.  2012b ). 
For example,  N. oceanica  CCMP1779, a small marine alga of ~3 μm in diameter 
(Fig.  8.4a ), has a relative small genome (28.7 Mb) with ~12,000 genes (Vieler et al. 
 2012b ). It can accumulate considerable amounts of TAG in lipid droplets following 
nitrogen deprivation, and remetabolizes TAG for growth during nitrogen resupply 
(Fig.  8.4b, c ). RNA sequencing analyses of nitrogen-replete or -deprived cells have 
identifi ed 19 putative genes that are probably directly involved in TAG synthesis, 
including 13  DGAT  and 2  PDAT  genes (Table  8.1 ) (Vieler et al.  2012b ). Most of the 
genes are up-regulated in response to nitrogen deprivation with the exception of a 
phosphatidate phosphatase ( PAP ) and  DGAT1  (Table  8.1 ). Another proteomic study 
of the lipid droplet of CCMP1779 cells has identifi ed a predominant lipid droplet 
surface protein, designated as LDSP. Expression of the respective cDNA in the 
embryo of an Arabidopsis oleosin mutant,  oleo1 , could partially rescue the function 
of Arabidopsis OLEOSIN1 (Vieler et al.  2012a ).
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    Besides  N. oceanica  CCMP1779, genome sequencing and comparative analysis 
of transcriptomes and lipidomes of other Nannochloropsis species such as  N. gadi-
tana  (Corteggiani Carpinelli et al.  2014 ) and  N. oceanica  IMET1 (Li et al.  2014b ; 
Wang et al.  2014 ) have shown putative TAG synthesis pathways and genes involved. 
Transcriptomic analyses of  N. oceanica  IMET1 cells under nitrogen-replete and 
-deprived conditions have revealed that many TAG synthesis genes of the Kennedy 
pathway (acyl-CoA dependent), especially genes encoding seven putative DGATs, 
are up-regulated upon nitrogen deprivation (Li et al.  2014b ). Simultaneously, many 
genes involved in carbohydrate and protein degradation, as well as genes supplying 
carbon precursors and energy for  de novo  fatty acid biosynthesis, are increased in 
their expression and eventually contribute to TAG accumulation. Furthermore, lipi-
domic analyses using the same Nannochloropsis strain have shown recycling of 
fatty acids from membrane glycerolipids for TAG biosynthesis following nitrogen 
deprivation (Li et al.  2014b ). Thus, similar lipid remodeling events as shown for 

  Fig. 8.4    Accumulation of triacylglycerol in  Nannochloropsis oceanica  CCMP1779 following 
nitrogen deprivation. ( a ) Wild-type  N. oceanica  grown in nitrogen-replete medium. Bar = 10 μm. 
( b ) Confocal microscopy images of Nile red-stained wild-type  N. oceanica  cells grown in nitrogen- 
replete (−N0) or -deprived (−N24) media. Nile red fl uorescence ( orange ) indicates lipid droplets 
(TAG, triacylglycerol). Bars = 10 μm. ( c ) Thin-layer chromatogram of lipid extracts stained for 
neutral lipids from nitrogen-replete (−N0), -deprived (−N24 to –N120) and -resupplied (NR24–
NR72) cultures of wild-type  N. oceanica  at times (hours) indicated. Stained TAG is marked by 
 black arrows        
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Chlamydomonas have been found in Nannochloropsis, indicating that the fi ndings 
in Chlamydomonas are invaluable for further research on Nannochloropsis (Jia 
et al.  2015 ; Martin et al.  2014 ; Simionato et al.  2013 ). Taken together, 
Nannochloropsis information and tool development is rapidly establishing this alga 
as a potential new reference organism for lipid metabolism research in a biotechno-
logically relevant microalga.    

    Conclusions and Perspectives 

 Plants and algae are highly effi cient photosynthetic organisms providing sustainable 
and clean feedstocks for the production of liquid transportation fuels. Since photo-
synthetic cells of plants and algae tend to accumulate oils under stress conditions, 
understanding the mechanism of lipid biosynthesis and metabolism under these 
condition may provide novel avenues towards the genetic engineering and breeding 
of stress-tolerant crops and algae. Furthermore, more complete mechanistic insights 
into stress-induced TAG accumulation will enable the engineering of plants and 
algae with higher oil content in vegetative cells, but without growth inhibition or 
yield penalty. Current fi ndings demonstrate similar pathways of TAG biosynthesis 

    Table 8.1    Putative genes involved in triacylglycerol biosynthesis in  Nannochloropsis oceanica  
CCMP1779   

 Gene  ID  Function  −N/+N 

  GPAT1   CCMP1779_4533  Glycerol-3-phosphate acyltransferase  1.3 
  LPAT1   CCMP1779_2512  1-sn-acyl-glycerol-3-phosphate acyltransferase  2.8 
  LIPIN   CCMP1779_161  Lipin like/ Phosphatidate phosphatase  1.7 
  PAP   CCMP1779_4742  Phosphatidate phosphatase  1.0 
  DGAT1   CCMP1779_4340  Diacylglycerol acyltransferase, DGAT Type2  0.6 
  DGAT2   CCMP1779_3705  Mono/diacylglycerol acyltransferase, Type2  1.2 
  DGAT3   CCMP1779_7206  Mono/diacylglycerol acyltransferase, Type2  1.7 
  DGAT4   CCMP1779_9929  Mono/diacylglycerol acyltransferase, Type2  2.8 
  DGAT5   CCMP1779_3915  Mono/diacylglycerol acyltransferase, Type2  1.4 
  DGAT6   CCMP1779_9590  Mono/diacylglycerol acyltransferase, Type2  2.5 
  DGAT7   CCMP1779_3159  Mono/diacylglycerol acyltransferase, Type2  1.5 
  DGAT8   CCMP1779_358  Mono/diacylglycerol acyltransferase, Type2  1.5 
  DGAT9   CCMP1779_10272  Mono/diacylglycerol acyltransferase, Type2  2.1 
  DGAT10   CCMP1779_3159  Mono/diacylglycerol acyltransferase, Type2  1.5 
  DGAT11   CCMP1779_5368  Mono/diacylglycerol acyltransferase, Type2  3.2 
  DGAT12   CCMP1779_3592  Mono/diacylglycerol acyltransferase, Type2  3.8 
  DGAT13   CCMP1779_3520  Diacylglycerol acyltransferase, DGAT Type1  1.8 
  PDAT1   CCMP1779_2212  Phospholipid/diacylglycerol acyltranferase  1.3 
  PDAT2   CCMP1779_8602  Phospholipid/diacylglycerol acyltranferase  1.7 

   −N  N-deprived for 30 h,  +N  N-replete  
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in response to stresses for plants and algae, indicating that the discoveries made dur-
ing plant or algal studies, especially the knowledge gained for reference organisms 
such as Arabidopsis and Chlamydomonas, may be widely applicable. By broadly 
screening of naturally occurring species, high oil algae such as Nannochloropsis 
were selected as candidates for industrial production. The recent genome sequenc-
ing of several Nannochloropsis species, as well as establishment of transcriptome, 
proteome, lipidome, transformation and cultivation, have provided resources and 
tools for the engineering of oil content and algal biomass quality to eventually over-
come the barriers for the commercialization of algal oil. Likewise, fi ndings about 
stress-induced accumulation of TAGs in algae have the potential to inspire new 
strategies for the engineering of oil content in vegetative tissues of plants. Taking a 
multipronged approach learning from algal and plant system is expected to create 
synergy towards efforts to meet the challenge of green- sustainable biofuel produc-
tion in the future.     
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