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    Chapter 17   
 Green Leaf Volatiles in Plant Signaling 
and Response                     

       Kenji     Matsui      and     Takao     Koeduka   

    Abstract     Most ‘green’ plants form green leaf volatiles (GLVs). GLVs are a familiar 
plant secondary metabolite, but knowledge of their physiological and ecological 
functions is limited. GLV formation is tightly suppressed when plant tissues are 
intact, but upon mechanical wounding, herbivore attack, or abiotic stresses, GLVs 
are formed rapidly, within seconds or minutes. Thus, this may be an important sys-
tem for defense responses, allowing plants to protect themselves from damage as 
soon as possible. Because GLV formation in the natural environment is roughly 
related to the degree of stress in the plant life, sensing the amount of GLVs in the 
atmosphere might allow plants to recognize their surroundings. Because some 
plants respond to GLVs, they may communicate with GLVs. GLVs that contain α,β-
unsaturated carbonyl groups might activate signaling systems regulated under the 
redox state of plant cells. Plasma membranes would also be targets of interactions 
with GLVs. Additionally, the metabolism of GLVs in plant cells after absorption 
from the atmosphere could also be classifi ed as a plant–plant interaction.  

  Keywords     Green leaf volatile   •   Hexenal   •   Reactive electrophilic species   •   Plant–
plant communication  

      Introduction 

 Lipids, in general, have three important roles in living organisms. First, they are 
essential components of the cell membrane, which can separate the cells from an 
abiotic environment. Lipids are also important nutrients for many organisms, and the 
catabolism through β-oxidation of lipid constituents yields large amounts of energy. 
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Lipids can also be used as signal molecules. Lipid mediators in mammalian cells, 
such as prostaglandins, leukotrienes, or platelet-activating factors, have various bio-
logical functions in infl ammation, blood clotting, and immune systems (Murakami 
 2011 ). This is also the case with plants, even though the structures and functions of 
the lipid mediators found in plants are usually different from those in mammals. 

 Jasmonates are typical and important lipid mediators in plants, as described in 
detail elsewhere of this book. Volatile compounds with six carbon (C6) backbones, 
which are collectively called  green leaf volatiles (GLVs)   (Fig.  17.1 ), are also formed 
in plants. They use a biosynthetic pathway similar to that for jasmonates, i.e., using 
lipoxygenases to form fatty acid hydroperoxides, followed by the homolytic cleav-
age of the hydroperoxide by cytochrome P450s (Grechkin et al.  2006 ). GLVs con-
sist of C6 volatile compounds containing aldehyde, alcohol, and esters. Because 
almost all green leaves on the Earth form GLVs, human beings correlate the olfac-
tory sensation emitted by GLVs with green leaves, and thus, we usually sense the 
volatiles as a green note.

   One GLV, ( E )-2-hexenal (leaf aldehyde), was isolated in 1912 by Curtius and 
Franzen as a component in the essential oil prepared from 600 kg of hornbeam 
leaves by steam distillation (Curtius and Franzen  1912 ). Since then, because of their 
peculiar aromatic properties and common occurrence in plants, GLVs have been 
studied in fl avor chemistry. However, their functions in ecological systems have 
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also been noticed, especially because plants usually accumulate only small amounts 
of GLVs but quickly form them after mechanical wounding or herbivore attack 
(Scala et al.  2013 ). 

 In this chapter we discuss novel knowledge regarding the biosynthesis of GLVs 
and their evolution. Thereafter, we give up-to-date reviews of signaling and plant 
responses elicited by GLVs.  

    Biosynthesis of GLVs 

 GLVs are  formed   from fatty acids through a dioxygenation reaction catalyzed by 
lipoxygenases (LOXs) to yield fatty acid hydroperoxide, and a subsequent rear-
rangement reaction to cleave fatty acid hydroperoxides by hydroperoxide lyase 
(HPL) to form C6 aldehydes and 12 carbon oxo acids as counterparts (Fig.  17.2 ). 
The general outline of the GLV-forming pathway shares similarities with those for 
other oxylipin products, including jasmonates, and each branch in the oxylipin path-
way could have diverged from one ancestral pathway. Based on the structure of 
allene oxide synthase (AOS) and HPL, and also on the results of the interconversion 
of AOS to HPL, Lee et al. ( 2008 ) proposed that the HPL pathway was established 
fi rst and that the AOS pathway diverged thereafter. This view might be changed 
through the accumulation of knowledge regarding the distribution of HPL and AOS 
among algae, bryophytes, ferns, or gymnosperms as described in section “ Evolution 
of genes involved in GLV formation ”.

   The HPL and AOS pathways share the fi rst part of a metabolic pathway, and they 
also use the same substrate. HPL and AOS  should   catalyze their reactions without 
competition to meet the demands for GLVs and JAs, respectively, under certain 
growth conditions because they have distinct physiological functions. Most HPL 
and AOS enzymes identifi ed so far have chloroplast transit peptides. Their chloro-
plast localizations have been established through investigations using marker pro-
teins, such as  green fl uorescence protein (GFP)  , and the fractionation of chloroplasts. 
In some plants, HPLs are localized to the lipid bodies (Mita et al.  2005 ), outer enve-
lopes of chloroplasts (Froehlich et al.  2001 ), stroma (Bonaventure  2014 ), and, in 
some cases, no specifi c localization is observed (Phillips and Galliard  1978 ; Shibata 
et al.  1995 ; Noordermeer et al.  2000 ). Rice HPL3 (OsHPL3), which has the shortest 
extension on its N-terminal among the three rice HPLs, was transported to chloro-
plasts when a fusion protein of the transit peptide of OsHPL3 with GFP was 
expressed in Arabidopsis leaves (Savchenko et al.  2014 ). This is also the case with 
Arabidopsis, and Arabidopsis HPL fused with GFP was transported to the plastids 
(Mwenda et al.  2015 ). Although it is still possible for the two CYP74 enzymes to be 
segregated at the level of sub-chloroplast membrane, or even within the same mem-
brane (Mita et al.  2005 ), the close localization of two enzymes sharing the same 
substrate would cause disordered competition, especially when the enzymes form 
their products in the disrupted tissues during rapid oxylipin bursts (Matsui  2006 ; 
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Glauser et al.  2008 ,  2009 ). To avoid such competition, they should have different 
spatiotemporal expression patterns. 

 With a transgenic Arabidopsis harboring the GUS gene downstream of 
Arabidopsis HPL promoter, an intense expression  of   GUS activity was found in 
fl oral organs in a different manner than when the GUS activity was controlled by 
the Arabidopsis AOS promoter (Mwenda et al.  2015 ).  The   GUS activity under the 
control of the HPL promoter in intact cotyledons was low, but extensively enhanced 
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  Fig. 17.2     Biosynthetic   pathway to form green leaf volatiles (GLVs). It has been believed that a 
lipase is essential in forming free fatty acids from esterifi ed lipids in the fi rst committed step to 
form GLVs; however, recently we found that GLVs are formed even without the lipase reaction. 
In that case, lipoxygenase is the fi rst enzyme that acts on the esterifi ed lipids to form lipid hydro-
peroxides, which in turn is subsequently cleaved by hydroperoxide lyase to form the 6 carbon 
volatile aldehyde and 12 carbon oxo acid esterifi ed to the glycerol backbone       
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after mechanical wounding, especially at their rims. However, high GUS activity 
under the control of the AOS promoter was detected in the vascular tissues of 
 cotyledons (Kubigsteltig et al.  1999 ). Therefore, the promoter activities of HPL and 
AOS are distinctly spatially regulated after mechanical wounding, which may allow 
them to avoid competition. The distribution of the ability to form C6 volatiles 
roughly correlated with the profi le of HPL promoter activity; however, the abilities 
showed little change after mechanical wounding. An inconsistency between the 
AOS promoter activity and JA levels was also evident. Accordingly, an additional 
factor, other than spatial segregation of HPL and AOS, also controls the GLV- and 
JA-forming abilities. 

 The most prominent feature of the HPL reaction is the rapid ‘burst’ of GLV for-
mation after mechanical wounding. In intact leaf tissues,    the amounts of GLVs are 
usually low, but after tissue disruption, the extensive formation of GLVs is induced. 
In Arabidopsis leaves, the amount of ( Z )-3-hexenal went up to 1.5 μmol g FW −1  
within 5 min after disruption (Matsui et al.  2012 ). This value corresponded to as 
much as ~30 % of the total amount of trienoic fatty acids in the leaf tissues. Because 
of the short period needed for the burst and the cells disruption, which made it 
impossible to activate the gene expression operating in intact cells, this burst should 
depend on enzymes and substrates that already exist in the cells. One possible 
explanation for the burst is a rapid mixing of enzymes and substrates; however, the 
situation is not that simple because some of the enzymes involved in GLV forma-
tion, such as lipoxygenases and HPLs, are usually localized in chloroplasts where 
their substrates, such as galactolipids, are abundant. A lipase that liberates free fatty 
acids from lipids might play a role in GLV formation by turning on the burst,    but 
the fact that GLVs are formed even without free fatty acids (Nakashima et al.  2013 ) 
makes the possibility less likely. Another possibility is the segregation of enzymes 
and substrates at the cellular level, as found for glucosinolates and myrosinase in 
Brassicaceae plants (Kissen et al.  2009 ), but the distributions of LOX and HPL 
appear rather uniform in tissues when observed using their promoter::GUS con-
structs in reporter plants (Mwenda et al.  2015 ). Therefore, there must be a system to 
activate enzymes after tissue disruption. Such a regulatory mechanism is known for 
mammalian phospholipase A2 and lipoxygenases, and it has been shown that cal-
cium ions play a signifi cant role in the regulation (Murakami  2011 ). However, 
again, the disruption of leaf tissues in the presence of a calcium ion-chelating 
reagent, such as EGTA, showed no effect on the GLV formation rate. Apparently, 
the system to turn on the GLV burst is still unknown, and further studies are needed. 

 GLV formation is induced in occasions other than tissue disruption. When 
tomato plants were exposed to high temperatures (>46 °C), GLVs were extensively 
formed (Copolovici et al.  2012 ). Because several GLVs and their related carbonyl 
species, harboring α,β-unsaturated carbonyl groups, induce resistance to high tem-
perature stress by inducing several genes involved in responses against abiotic 
stresses (Yamauchi et al.  2015 ), the formation of GLVs after heat stress may be a 
plant defense response. Under heat stress,    plant cells generally encounter oxidative 
stress, which in turn, causes the deterioration of the membrane organization through 
oxidation of membrane components (Suzuki et al.  2012 ). This might induce GLV 
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formation. GLV bursts following light-dark transitions have also been reported 
(Jardine et al.  2012 ). With this GLV burst, which was enhanced by darkening, there 
was a positive relationship between the amount of GLVs formed and the photosyn-
thetic activity prior to darkening. This implies the involvement of a photosynthetic 
electron transport system in the GLV burst; however, details have not been eluci-
dated. By investigating the mechanism behind the GLV burst that is elicited after 
darkening, insights into the regulatory mechanisms of GLV formation could be 
revealed.  

     Evolution of Genes Involved in GLV Formation 

 The CYP74 family is  a   class of enzymes, including HPL and AOS, that uses unsatu-
rated fatty acid hydroperoxides derived from linoleic acid or α-linolenic acid as 
substrates. The CYP74B subfamily contains HPLs, which are widely distributed in 
higher plants (Grechkin  2002 ; Matsui  2006 ). Bell pepper HPL was the fi rst CYP74B 
isolated in the 1990s, and since then an increasing number of HPL isoforms have 
been identifi ed in the complete genome sequences of  Arabidopsis thaliana , rice, 
and other plant species (Matsui et al.  1996 ; Bate et al.  1998 ). Recently, it has been 
reported that the moss  Physcomitrella patens  contains three CYP74 orthologs 
(Stumpe et al.  2006 ; Scholz et al.  2012 ). One of the three orthologs in moss has been 
identifi ed as  bona fi de  HPL and the others as AOSs. A database search revealed that 
liverwort  Marchantia  and Charophyta  Klebsormidium  encode two and one CYP74 
genes, respectively (Table  17.1 ). However, they are AOSs, not HPLs (Koeduka 
et al.  2015 ). These observations raise the important questions of when and how an 
ancestral CYP74 may have functioned as an HPL. The investigation of the genetic 
context of CYP74 uncovered that the  Selaginella  genome includes ten CYP74 
orthologs, whereas  Chlamydomonas  and  Nostoc  do not contain CYP74 genes. 

  Table 17.1    Survey of the 
CYP74 orthologs involved in 
green leaf volatiles  

 Plant species  Hydroperoxide lyase  CYP74 orthologs 

  Arabidopsis   + a   2 
 Rice  +  5 
  Amborella   − b   2 
  Selaginella   −  10 
  Physcomitrella   +  3 
  Marchantia   0  2 
  Klebsormidium   0  1 
  Chlamydomonas   0  0 
  Nostoc   0  0 

   a Hydroperoxide lyase genes were present in the public data-
bases and biochemically characterized 
  b Hydroperoxide lyase orthologs were identifi ed but have not 
been characterized  
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Thus, the acquisition of CYP74 genes may have occurred during the evolutionary 
process from  Chlamydomonas  to  Klebsormidium , and then a CYP74 gene duplica-
tion event and the  functional   divergence of AOS to HPL, or vice versa, arose mul-
tiple times during plant evolution. This is a totally distinct view of the evolution of 
CYP74s from that proposed by Lee et al. ( 2008 ).

       Physiological and Ecological Function of GLVs 

     Do Plants Sense GLVs? 

 Since the confi rmation of GLVs as aroma constituents in green leaves, scientists 
have been considering their physiological functions.    At the beginning, the effect of 
GLVs on insect behavior was investigated. For example, in 1967, Riddiford ( 1967 ) 
found that ( E )-2-hexenal was an essential mating stimulant for polyphemus moths 
( Antheraea polyphemus ). At present, the effects of just one GLV, ( E )-2-hexenal, for 
example, acts as an attractant, allomone, kairomone, or pheromone on 186 different 
species of arthropods, which are listed in The Pherobase (  www.pherobase.com    ). A 
review on the involvement of GLVs in plant–herbivore and plant–pathogen interac-
tions was published recently (Scala et al.  2013 ). GLVs also exert several kinds  of 
  physiological effects on mammals. For example,  n -hexanal increases the dopamine 
release from rat brains (Kako et al.  2011 ). 

 It has been repeatedly reported that the volatile organic chemicals formed by 
stress-treated plants induce several defense responses in neighboring plants (Dicke 
and Baldwin  2010 ). Because GLVs are common  and   abundant volatiles emitted 
from stressed plants, the effects of GLVs on plants were examined. Vapors from a 
series of alkenals and alkanals, including ( E )-2-hexenal, induced the formation of 
phytoalexins, such as cadalene and scopoletin, in developing cotton bolls (Zeringue 
 1992 ). Among the aldehydes used in his study, ( E )-2-alkenal induced a higher pro-
duction of phytoalexins than saturated alkanals. Therefore, the structure of com-
pounds might be important in eliciting  the   phytoalexin formation in cotton bolls. 
Aerial treatments of Arabidopsis seedlings with ( E )-2-hexenal at 10 μM induced a 
subset of defense-related genes, including chalcone synthase, lipoxygenase, and 
AOS, all of which are somehow involved in the biosynthesis of secondary metabo-
lites (Bate and Rothstein  1998 ). ( E )-2-Hexenal and the other ( E )-2-alkenals used to 
treat cotton bolls are reactive carbonyl species (RES) because they contain α,β- 
unsaturated carbonyl moieties that have the potential to inactivate biological mole-
cules through a spontaneous reaction (Michael addition reaction) with nucleophilic 
substances containing amino or sulfhydryl groups. Therefore, it is assumed that 
( E )-2-alkenal induced defense responses because of the stress response elicited by 
the toxicity of ( E )-2-alkenal. In the case of Arabidopsis, the response was observed 
in the  jar1 - 1  mutant that had a defi ciency in JA signaling (Bate and Rothstein  1998 ), 
and thus, the response was thought to use a signaling system different from that 
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used by JA. Even though α,β-unsaturated carbonyl moieties are important factors in 
eliciting defense responses in plants, ( Z )-3-hexen-1-yl acetate, which is a much less 
harmful compound because of the absence of the α,β-unsaturated carbonyl moiety, 
was also effective to inducing the lipoxygenase gene  in   Arabidopsis seedlings. This 
implies that plants also sense some GLVs in a way other than as a response to toxic 
compounds containing α,β-unsaturated carbonyl groups. 

 We also found that treating with GLVs or an isoprenoid at 10 μM in the vapor 
phase elicited the induction of chalcone synthase, caffeic acid- O -methyltransferase, 
diacylglycerol kinase1, glutathione- S -transferase1, and lipoxygenase2 in 
Arabidopsis (Kishimoto et al.  2005 ). As a result of the induction of  these   defense- 
related genes, Arabidopsis acquired a higher resistance to the necrotrophic fungal 
pathogen,  Botrytis cinerea . We also noticed that ( E )-2-hexenal was a powerful elici-
tor, but at the same time, ( Z )-3-hexenal, ( Z )-3-hexen-1-ol, and  allo -ocimene, also 
induced defense genes and resistance against  B. cinerea  to a level similar to or even 
higher than ( E )-2-hexenal. The responses of Arabidopsis to these volatile com-
pounds were partially suppressed in  jar1 - 1  and  etr1  mutants, thus, the involvement 
of JA signaling and ethylene signaling was hypothesized. The pre-treatment of 
Arabidopsis with okadaic acid also suppressed the response, which indicated the 
involvement of protein phosphatases in the system that sensed the volatiles. Treating 
with aerial GLVs also induced defense responses in lima bean (Arimura et al.  2000 ) 
and corn (Engelberth et al.  2004 ; Farag et al.  2005 ). In corn seedlings, GLVs primed 
the plants for the higher production of JAs and sesquiterpene volatiles after subse-
quent herbivore attacks (Engelberth et al.  2004 ). 

 Some claimed that  the   concentrations of volatiles used in these studies (10 μM in 
vapor phase, which corresponds to 224 ppmV) was unrealistically high and that the 
responses observed were not physiologically and ecologically relevant (Dicke et al. 
 2003 ). However, most green plants have the ability to form massive amounts of 
GLVs after mechanical wounding, and, in the case of Arabidopsis leaves, the local 
concentration in the disrupted leaf tissue could go up to 1 mM (in the aqueous phase 
in plant tissues) (Matsui et al.  2012 ). Also,    volatiles usually diffuse into the atmo-
sphere in a non-concentric manner as fragmented plumes directed by a turbulent 
fl ow (Baldwin et al.  2006 ). Therefore, it is possible for the plants to encounter rela-
tively high concentrations of GLVs. Because it is diffi cult to simulate the diffusion 
or fate of volatiles once they are released into the atmosphere, the best way to know 
if the response is physiologically or ecologically relevant is to observe the effects of 
volatiles on plants in a natural environment or in an environment equivalent to 
nature. 

 When volatiles released by hybrid poplar ( Populus deltoids  ×  P. nigra ) after her-
bivore damage were introduced into  undamaged   adjacent leaves, the exposed leaves 
had elevated defensive responses against feeding by gypsy moth larvae ( Lymantria 
dispar  L.) (Frost et al.  2008 ). Even though a detailed analysis of volatiles emitted by 
herbivore-damaged leaves was not performed in this study, it should contain sub-
stantial amounts of GLVs (Frost et al.  2008 ). Lima bean plants ( Phaseolus lunatus ) 
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secrete extrafl oral nectar to recruit carnivorous ants that feed on herbivores. 
Exposing intact lima bean plants to volatiles released from herbivore-damaged con-
specifi cs induced the secretion of the extrafl oral nectar (Kost and Heil  2006 ). For an 
interaction mediated by herbivore-induced volatiles, ( Z )-3-hexen-1-yl acetate being 
the most abundant, in lima beans, their effects were reproduced using a low concen-
tration of synthetic ( Z )-3-hexen-1-yl acetate. Also, in an open chamber experiment 
conducted using transgenic  Nicotiana attenuata  that had a lowered HPL activity 
through an antisense technique, it was indicated that GLVs were responsible for the 
induction of some defense genes in plant–plant interactions (Paschold et al.  2006 ). 
We also observed that intact tomato plants acquired higher defense responses 
against herbivores after receiving volatiles released from damaged plants (Sugimoto 
et al.  2014 ). In the  volatiles   emitted from the herbivore-damaged tomato plants, ( Z )-
3-hexen-1-ol was the most abundant GLV. Because of these results, many scientists 
started to consider that plants perceive GLVs even under non-stressed conditions, 
and that, in some instances, the plants that sensed GLVs in their surrounding atmo-
sphere changed their behavior to achieve a higher fi tness in their environment.  

    How Do Plants Sense GLVs? 

    Perception as Toxic Xenobiotics 

 Even though  the   involvement of GLVs in plant–plant communication has been 
mostly established in section “ Do plants sense GLVs? ”, we still do not know the 
mechanism behind how plants sense GLVs. To dissect the mechanism, it is better to 
separate members of the GLVs into two groups based on their chemical reactivity, 
RES and the others (Fig.  17.3 ). ( E )-2-Hexenal is a representative RES-type GLV 
because it contains an α,β-unsaturated carbonyl group. ( E )-2-Hexenal is formed by 
the isomerization of ( Z )-3-hexenal, which is the fi rst product of HPL.    The ability to 
isomerize ( Z )-3-hexenal to ( E )-2-hexenal varies among plant species, and as a 
result, the ratio between the two hexenals is also different. The isomerization might 
have physiological and ecological relevance because the herbivore  Manduca sexta  
has the isomerase in its oral secretion, and it decreases the ( Z )/( E ) ratio of GLVs 
formed by  Nicotiana attenuata  (Allmann and Baldwin  2010 ). The parasite of  M. 
sexta  is recruited by monitoring the ( Z )/( E ) ratio.

   Because ( E )-2-hexenal is a RES, its reactivity against biological substances is 
higher than the other GLVs, such as ( Z )-3-hexenal, ( Z )-3-hexen-1-ol, and ( Z )-3- 
hexen- 1-yl acetate. However, ( Z )-3-hexenal is sensitive to enzymatic and  spontane-
ous   oxygenation to form 4-hydroperoxy-( E )-2-hexenal, which in turn, is converted 
into 4-hydroxy-( E )-2-hexenal or 4-oxo-( E )-2-hexenal (Matsui et al.  2012 ; 
Bonaventure et al.  2011 ) (Fig.  17.3 ). Because of this, ( Z )-3-hexenal should also be 
considered as a ‘potential’ RES-type GLV. 
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 12-Oxophytodienoic acid (OPDA) functions not only as a precursor of JA, but 
also as a signal molecule per se, inducing a distinct set of genes other than those 
induced by the JA (Taki et al.  2005 ). Phytoprostanes, which are formed non- 
enzymatically by the reaction of polyunsaturated fatty acid with  reactive oxygen 
species (ROS)  , are structurally related to the OPDA group, especially because of 
the presence of the α,β-unsaturated carbonyl  group   found in the conjugated cyclo-
pentenone group. Phytoprostanes also induce a subset of genes in plants, and it is 
assumed that this ability is largely because of their α,β-unsaturated carbonyl group. 
In Arabidopsis, TGA transcription factors are essential factors in mediating the 
response to OPDA and phytoprostanes (Mueller et al.  2008 ). Additionally, 
cyclophilin 20-3 in plastids was identifi ed as a protein capable of binding OPDA, 
relaying the signal to induce gene expression (Park et al.  2013 ). Because the α,β- 
unsaturated carbonyl group is the essential structural requirement for the induction 
of this distinct signal transduction pathway, it is probable that GLVs having α,β- 
unsaturated carbonyl groups also activate the same signaling pathway. 

 Another important (bio)chemical aspect of RES is its high reactivity with nucleo-
philes in cells. Glutathione (GSH) reacts with ( E )-2- hexenal   either enzymatically 
using glutathione  S -transferases or non-enzymatically at a physiological pH like 
7.0. In tobacco leaves where hypersensitive responses were elicited by treating with 

CHO

CHO

CH2O(CO)CH3

CH2OH

(E)-2-hexenal

(Z)-3-Hexenal

(Z)-3-Hexenol

(Z)-3-hexenyl acetate

CHO

OOH

CHO

OH

CHO

O

Aldehyde reductase NADPH

NADP+

Acetyl CoA:(Z)-3-hexenol 
acetyltransferase 

CH3CO-CoA

Spontaneous/Enzymatic

SpontaneousO2

4-hydroperoxy-(E)-2-hexenal (HPHE)

Peroxygenase (?) ?

4-hydroxy-(E)-2-hexenal (HHE) 4-oxo-(E)-2-hexenal (OHE)

?

  Fig. 17.3    ( Z )-3-Hexenal is a ‘potential’  reactive electrophile species (RES)  -type green leaf vola-
tile (GLV). Because ( Z )-3-hexenal does not contain a α,β-unsaturated carbonyl group, it is not a 
member of the RES-type GLVs. However, spontaneous and enzymatic isomerization, or oxygen-
ation, results in the formation of RES-type structures as shown in the chemical structures with the 
 gray  background       

 

K. Matsui and T. Koeduka



437

cryptogein, several species of GSH adducts, such as OPDA-GSH, ketooctadecadi-
enoic acid-GSH, 4-hydroxy-( E )-2-nonenal-GSH, and hexenal-GSH, are formed, 
probably as a detoxifi cation reaction, to cope with potentially active and even toxic 
substances (Davoine et al.  2006 ). Among these adducts, the GSH adduct with ( E )-
2-hexenal accumulated to the highest level, as much as 100 nmol g −1  dry weight. 
When plants were exposed to volatile compounds having α,β-unsaturated carbonyl 
species, the volatiles would be partitioned into the plant tissues under the gas phase/
water phase (inside of tissues) equilibrium determined by the Henry’s law. Even 
though the partition would be much more complicated because volatiles could cross 
cell walls in apoplasts and plasma membranes,    this indicated that it is inevitable for 
plants to accumulate such reactive xenobiotics in cells during normal gas-exchanges 
in photosynthesis through stomata. If the compounds were not appropriately detoxi-
fi ed, they would react with GSH to form adducts. Accordingly, endogenous GSH 
would be consumed, and the consumption of GSH would lead to an imbalance in 
the redox state (GSH/GSSG), which might cause the induction of several genes 
under redox regulation. 

 The involvement of GSH in responding to ( E )-2-hexenal and ( Z )-3-hexenal was 
confi rmed using the  pad2 - 1  Arabidopsis mutant that had a lower level of GSH 
because of a defect in GSH biosynthesis. The expression of  PDF1.2  elicited by 
hexenals was not affected by the  pad2 - 1  mutation, but that of  VSP1  was totally 
eliminated in the mutant (Kishimoto et al.  2006 ). This, again, indicated that redox 
regulation, mediated by GSH, should play a crucial role in responding to GLVs 
containing α,β-unsaturated carbonyl groups. 

 Because the  reactivity   of RES is based on a simple chemical reaction, it is also 
possible for RES to react with the other biological components, such as proteins, 
nucleotides, and membrane components. Of course, there might be a distinct set of 
molecules that show a specifi city, depending on the chemical nature of RES, and 
nucleophiles that might be involved in the reaction (Mano  2012 ; Mano et al.  2014 ). 
For GLVs containing α,β-unsaturated carbonyl groups, their moderate hydropho-
bicity allows them accumulate in a hydrophobic environment, such as a biological 
membrane. If this was the case, then a protein in the membrane would be a primary 
target for the GLVs. Also, the nucleophilicity of residues on the surface of biologi-
cal molecules would be a determinant for the target. Signaling mediated by covalent 
binding is well studied in mammalian systems, and the Nrf/Keap1 system plays a 
central role (Higdon et al.  2012 ). There has been no report of Nrf/Keap1 homologs 
in plants and our preliminary BLAST search also failed to fi nd the counterparts in 
plants,    although it is still possible for plants to use a similar, covalent binding- 
mediated signaling pathway.  

    Interactions with Membranes 

 When volatiles  released   from herbivore-damaged tomato plants were blown across 
the surface of intact tomato leaves, their plasma membrane potential jumped to a 
depolarized value (from −114 to −76 mV) within 10 or 20 s (Zebelo et al.  2012 ). 
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GLVs were the most abundant volatiles released by the herbivore-infested tomato. 
As expected, a similar membrane potential depolarization was observed by blowing 
vapors of ( Z )-3-hexenal, ( E )-2-hexenal, or ( Z )-3-hexen-1-yl acetate. ( Z )-3-Hexen- 
1-yl acetate, even though it is not the RES-type, causes depolarization as much as, 
or even to higher degree than, ( E )-2-hexenal, a RES, or (Z)-3-hexenal, a potential 
RES. The reactivity caused by the α,β-unsaturated carbonyl group should not be the 
prerequisite of depolarization. 

 It was expected that the  volatile   affected the nature of ion channels located in the 
plasma membrane. The α,β-unsaturated carbonyl group might be partially involved 
in the modulation of ion channels, but volatiles without the reactive moiety could 
induce almost the same depolarization, which indicates that the moiety does not 
play the critical role. These GLVs also induced a calcium infl ux into the cytosols of 
epidermal cells (Zebelo et al.  2012 ). The ability to promote calcium infl ux appar-
ently varied depending on the molecular species used, and ( Z )-3-hexen-1-yl acetate 
was the most potent. Using fl uorescence microscopy, the integrity of chloroplasts in 
parenchymal cells could also be examined because of the autofl uorescence of chlo-
rophyll. Interestingly, exposure to a gas containing ( E )-2-hexenal or ( Z )-3-hexenal 
seemed to be toxic to the cells, and the integrity of the chloroplast was extensively 
damaged by the treatment.    However, the ( Z )-3-hexen-1-yl acetate treatment resulted 
in no apparent change in the chloroplasts’ integrity. From this observation, again, it 
is proposed that the reactivity belonging to α,β-unsaturated carbonyl group does not 
always correlated to the ability to induce a calcium infl ux into the cytoplasm. 

 Heil et al. ( 2008 ) investigated the structure-activity relationship of a series of 
alka(e)nyl acetates of different chain lengths,  and   different degrees and positions of 
unsaturation by monitoring the amount of extrafl oral nectar secreted by lima bean 
plants after exposure to the vapor. They found a relatively broad spectrum of activ-
ity for each compound, and apparently there was no essential structural requirement 
to exert the effect. Accordingly, they proposed that a physicochemical processes 
based on the amphiphilic nature of the compound was the important factor for the 
effect. Because plasma membranes should be the fi rst site of penetration for exog-
enously supplied volatiles, the deposition of volatiles in the plasma membrane 
would cause the effect by distorting the membrane’s organization. Alternatively, it 
is possible that some proteins, such as odorant binding proteins or lipid transfer 
proteins, are involved in the system.  

    Metabolism 

 Most plants also have  the   ability to detoxify reactive xenobiotics such as 
RES. Cucumber plants and Arabidopsis contain several reductases that detoxify 
them. An alkenal/one oxidoreductase (AOR) catalyzes the reduction of the α,β- 
unsaturated bond in RES (Yamauchi et al.  2011 ). Aldo-keto reductase (AKR) and 
aldehyde reductase catalyze the reduction of aldehyde to alcohol. In cucumber, 
acrolein was effi ciently reduced to form propionaldehyde by two distinct AORs 
localized in the chloroplasts and cytosol, respectively. Yamauchi et al. ( 2011 ) also 
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detected the reducing activity to form alcohol from aldehyde. For example, 
Arabidopsis has both AKR  and   aldehyde reductase in its chloroplasts. When intact 
Arabidopsis was exposed to a vapor containing ( Z )-3-hexenal, the aldehyde was 
taken up by tissues, effi ciently converted into ( Z )-3-hexen-1-ol in a NADPH- 
dependent manner, and released in its alcohol form into the atmosphere (Matsui 
et al.  2012 ). This reduction is also an important detoxifi cation system to Arabidopsis, 
where the excess amount of ( Z )-3-hexenal above the reducing capacity of 
Arabidopsis resulted in the suppression of PSII activity estimated by PAM. This 
implies that exposing plant tissues to ( Z )-3-hexenal at a level where the tissues 
employ a reductive detoxifi cation system as much as they can would cause an 
imbalance in  the   redox state maintained by the NADPH/NADP +  ratio. The imbal-
ance caused by the volatile might result in the modulation of gene expression levels 
in tissues. This might be a scenario caused by GLVs during plant–plant 
interactions. 

 Even though the alcohol, ( Z )-3-hexen-1-ol, is a rather inert compound, it is 
sometimes converted into ( Z )-3-hexen-1-yl acetate, which is more volatile than ( Z )-
3-hexen-1-ol according to their  Henry’s law constants   (25 and 1 M atm −1 , respec-
tively). Because this conversion requires acetyl-CoA, which would otherwise be 
used in growth, this defi nitely is an active process.    This suggests that ( Z )-3-hexen- 
1-ol is also an active compound, and a surplus supply during the reduction of ( Z )-3- 
hexenal or from the atmosphere would cause an imbalance in the homeostasis of 
plant cells (Farag et al.  2005 ). When tomato plants were exposed to volatile com-
pounds released from herbivore-damaged conspecifi cs, the receiver plants adsorb 
( Z )-3-hexen-1-ol, and converted it to a glycoside, ( Z )-3-hexenyl vicianocide (Fig.  17.4 ). 
Because the glycoside has a slight but distinct activity to suppress the growth of 
herbivore, the glycosidation and subsequent accumulation of the compound from 

  Fig. 17.4    Glycosidation is one way to ‘sense’ green leaf volatiles (GLVs). A herbivore-damaged 
tomato plant releases ( Z )-3-hexen-1-ol into atmosphere. The neighboring plant takes up the GLV 
and converts it to ( Z )-3-hexenyl vicianoside. Because the glycoside has an insecticidal activity, the 
‘receiver’ plant acquires a higher resistance against the herbivore. Even though this is the metabo-
lism of the plant responding to an exogenous compound, as a whole, this metabolism can be con-
sidered as an example of plant–plant interaction       
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the atmosphere benefi tted the receiver plants.    Therefore, glycosidation could be one 
way for tomato plants to carry out plant–plant communications. All fl owering plants 
examined so far accumulated glycosides after exposure to vapor containing ( Z )-3- 
hexen- 1-ol. Therefore, the perception of volatiles through glycosidation is a general 
property of plants.

         Concluding Remarks 

 Because of their abundance in nature, GLVs are familiar plant secondary metabo-
lites. We enjoy their smells when we eat foods made from plants or when we walk 
through forests. Of course, plants form GLVs because it is benefi cial. Since the 
discovery of the volatile sex pheromones of silkworms, we have been accumulating 
examples of the physiological and ecological functions of volatiles. GLVs are 
largely involved in the defense responses of plants against herbivores and patho-
gens, or even abiotic stresses. We are interested in when plants fi rst acquired the 
ability to form GLVs because this knowledge would give us insights into how plants 
survive in environments where they interact with the other organisms. Also, the 
recent fi nding that plants respond to GLVs opens many areas to further study. 
Because they lack the nervous and olfactory systems of animals, plants may employ 
their own original systems to ‘sense’ GLVs. Chemical reactivity, physicochemical 
nature, and the nature of metabolization are the ways plants detect GLVs, but these 
fail to explain the phenomena found in nature completely. We are still beginning to 
decipher how plants ‘sense’ volatiles, and further extensive studies await.     
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