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Abstract Quantitative software engineering is one of the most important para-
digms for software development. That is, Requirements, Analysis, Design, Coding,
and Testing. One of the challenges associated with quantitative software engi-
neering is the fact that many of the quantifiable parameters are concomitant with
uncertainty. Part of the uncertainty is due to the fact that a significant portion of the
software engineering process involves human beings presenting rational, yet diffi-
cult to quantify, behavior. Due to this fact, soft computing approaches, specifically
fuzzy logic based reasoning, present significant opportunities for constructing
sound quantitative software engineering models. This work presents a new and
innovative approach for fuzzy logic based quantitative software engineering pro-
cedures. We present a complex fuzzy logic based inference system used to account
for the intricate relations between software engineering constraints such as quality,
software features, and development effort. The new model concentrates on the
requirements specifications part of the software engineering process. Moreover, the
new model significantly improves the expressive power and inference capability of
the soft computing component in the soft computing based quantitative software
engineering.
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1 Introduction

Since Software Engineering’s introduction in 1968, one of the challenges facing
practitioners is to eliminate the uncertainties arising from the chaotic nature of
software development [1]. One of the most widely known outcomes of the
first International Conference on Software Engineering in Garmisch, Germany was
the detection of a gap between the available design and implementation practices
and the complexity of the software under development [1]. The gap and crisis
identified in Garmisch relates to the notion that the tools and techniques used to
develop computer software are inadequate for the complexity of the needed soft-
ware. Consequently, much of the software engineering research conducted fol-
lowing this conference focuses on providing tools and techniques for reducing the
uncertainty and assuring the quality of software with ever-growing complexity. Of a
specific concern, is the uncertainty related to the requirements specifications phase.
As the first phase in the development chain, the requirement specification phase has
a profound effect on the quality of the entire software development process and on
the final product, i.e., the hardware/software system.

One of the approaches for reducing uncertainty in the software development
process, adopted by mainstream software engineering researchers, has been to
introduce the discipline of quantitative software engineering. The quantitative
software engineering research and practice stream, however, cannot completely
cope with uncertainty, as some of this uncertainty is inherent to the process.
Moreover, the fact that software engineering is a human-intensive process adds a
challenging uncertainty dimension since human beings’ reasoning is often char-
acterized by inexact and fuzzy logic. This prompted a new interdisciplinary col-
laborative research direction that combines knowledge from the disciplines of
uncertainty management and mitigation and the field of software engineering.
Numerous research efforts in the area have been conducted, and many papers
addressing soft computing and quantitative software engineering have been pub-
lished [2–5]. Fuzzy logic is one of the most commonly and successfully used
“tools” for handling uncertainty [6–10]. Indeed some papers addressing the role of
fuzzy logic in quantitative software engineering have been published [11–14].

This chapter presents a new and innovative approach for fuzzy logic based
quantitative software engineering procedures. The proposed complex fuzzy logic
based model enables reasoning about processes with multi-dimensional compo-
nents where each component is carrying fuzzy information and the interaction
between the components cannot be decomposed and represented via primitive, one
dimensional, fuzzy set theory and fuzzy logic operations such as conjunction,
disjunction, negation, union, and intersection. In specific, we present the founda-
tions of a complex fuzzy logic based inference system used to account for the
intricate relations between software engineering constraints such as quality, soft-
ware features, and development effort. The new model concentrates on the
requirements specifications part of the software engineering process. Our model
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significantly improves the expressive power and inference capability of classic
fuzzy logic as the tool for handling the uncertainty in this environment.

The problem addressed in this chapter boils down to the suitability of fuzzy logic
as a soft computing model for dealing with uncertainty in software requirements
specifications in tandem with applying quantitative software engineering methods.
We ascertain that the fuzzy logic approach is a strong and excellent methodology
for handling the uncertainty that is inherent in quantitative software engineering.
Nevertheless, we show that the traditional single dimension fuzzy logic might fall
short on dealing with real-world problems where several features such as quality,
cost, development time, and usability, are involved. Especially, when these features
are intertwined in a way that cannot be readily reduced to traditional fuzzy logic
expressions composed of basic fuzzy logic connectives (conjunction, disjunction,
negation, etc.).

The solution proposed is to use complex fuzzy logic as the underlying theory for
dealing with the uncertainty involved in software requirements specifications. Via
constructive examples we show that complex fuzzy logic is highly suitable for the
task at hand.

The main contribution of the research described in the chapter is the formulation
of a model that can enable better handling of the uncertainty in quantitative soft-
ware engineering. To the best of our knowledge, this is the first research that is
exploring the utility of complex fuzzy logic for handling uncertainty in the
framework of quantitative software engineering. Furthermore, the research, which
concentrates on software requirements specifications, can be extended to other
phases of the software development process.

The rest of the chapter is organized in the following way. Sections 2 and 3,
respectively, provide background concerning uncertainty involved in the software
development process and the Quality Function Deployment approach to software
requirements specifications. Section 4 contains a literature review listing relevant
work. Section 5 introduces the concept of complex fuzzy logic and presents several
ways in which it can be used for inference in the context of uncertainty in quan-
titative software requirements specifications. Finally, Sect. 6 includes the
conclusions.

2 Uncertainty and the Software Development Process

One of the first techniques addressing the uncertainty and the growing complexity
in the software development process was the Waterfall software development
model introduced at the IEEE WESCON conference in 1970 by Royce [15]. In this
seminal paper on the software development process; Royce introduced the first
formalization of the process; organizing it into a series of five major sub-processes
of: Requirements, Analysis, Design, Coding, and Testing. Over the years,
researchers have made a number of changes to the model. One of the most sig-
nificant changes was the absorption of the Analysis phase into the Requirements
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and Design phases. With the addition of minor name changes, the Waterfall
development model has evolved to include four phases that are generally associ-
ated with the model: Requirements, Design, Implementation or Construction, and
Validation.

Even though the Waterfall model has served the software development industry
well for almost 50 years, there are a number of problems with the model. One of the
most significant issues is that it focuses on reducing machine utilization with a
result of increased personnel utilization, thereby making software development a
labor-intensive process. Another issue with the Waterfall model is that the software
developers are dependent on the quality of the requirement specifications estab-
lished in the first phase of the process when analysts and developers know the least
about the application. Frequently, these requirements originate from sources that do
not understand the information necessary to build software and have a limited
knowledge of the application, causing the developers to have questions about the
requirement specifications. One of the major causes of costly software maintenance
or project failure is poor requirement specifications [16, 17]. Hence, as developers
began to gain more experience with the Waterfall model, they started to investigate
a number of techniques to resolve the amount of human labor necessary to produce
high quality software products and to reduce the impact of vague or incomplete
software requirement specifications.

One of the first proposed approaches to address the uncertainty of software
requirements was prototyping. Software prototypes can have two forms: throwaway
and evolutionary [18]. A throwaway prototype provides information about the
general structure and layout of the software but does not provide any information
about the operation. A major disadvantage of this approach is that at the end of the
design phase developers discard the prototype. Although this approach provides a
great deal of information about user interfaces and links, it is expensive; and
generally, it is not popular with the financial stakeholders within an organization.
As its name implies, an evolutionary prototype is a working model of the desired
software implemented without the use of traditional quality control tools. An
evolutionary prototype becomes version-0, and the test engineers have the task of
assuring that there are no defects in the software. From this version-0, analysts
reverse engineer the software to create any required documentation.

Because of the many issues with prototyping, software engineers have turned to
the notion of iterative software development. Iterative software development is a
maintenance-based strategy used to reduce both risk and uncertainty during the
construction of the application. One of the most widely known iterative techniques
is Barry Boehm’s Spiral Model [19]. In addition to the Spiral Model, most of the
agile development methods also employ this concept for the same reasons [20–22].

In addition to the risks and uncertainty that are inherent in developing software,
there is a great deal of uncertainty in describing the features needed in the software.
Extracting the user needs and describing these needs in a format understandable by
non-technical and technical individuals provides a source of considerable uncer-
tainty in software engineering. Two of the major sources of uncertainty in the
process of establishing the specifications for the needed software are the software
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engineers and the non-technical individuals providing the information upon which
to base these specifications. Since it is unlikely that researchers will resolve all of
the challenges in human communications any time soon, it is probably better to
defer this challenge for future research. One of the tools being proposed as a first
step in addressing these communication challenges is changing the perspective of
requirement specifications to focusing on the tasks that the software’s operators
perform. A second tool proposed is utilizing soft computing methodologies for
handling this uncertainty. Fuzzy logic has been successfully applied to resolve
uncertainty at each of the five major processes of the waterfall model [23–26]. In
this chapter, however, the soft computing model proposed is complex fuzzy logic.

3 Requirements Specification via Quality Function
Deployment

In the 1970s, requirements engineers began to formulate a notion of the information
that is necessary to develop a software application. These efforts evolved into the
development of the IEEE Recommended Practice for Software Requirements
Specifications, which is divided into sections describing the required interface,
software functionality, non-functional or quality requirements, and constraints [16,
17]. The IEEE Recommended Practice-model centers on the items that are neces-
sary for the software engineers to build the software. Although this general model
has served the software industry very well, it does not provide a view of the
software from the end user’s perspective. The IEEE recommendation views security
and usability as quality issues and documents them as non-functional requirements.
This may explain the reason that these areas have remained challenges for software
developers. Documenting software requirements from the perspective of the
end-user or software operator (a.k.a. human centric) is an approach that is gaining in
popularity. A human-centric approach to eliciting and documenting software
requirements concentrates on the tasks that the software must support and on the
operators that perform those tasks [27–29]. Generalizing this notion of viewing
software from an operator’s perspective yields the concepts of addressing software
requirements from the external tasks (performed by operators and/or machines) that
the software is intended to support. The Unified Modeling Language
(UML) implements this concept in its use case diagram [30]. Software modeling
techniques are also evolving to support the change to a user-centric approach [30–
32]. One of the changes to software modeling techniques is the practice of
employing use cases or user stories to describe the high-level characteristics of an
application.

All of these innovations have acted to reduce the uncertainty of defining spec-
ifications and developing software applications, but there are many areas where the
opportunity to further reduce challenges in software development activity exists.
One such area is selecting the order of implementing the software requirements.
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Selecting the order of implementing requirements can permit an early deployment
of the product or service.

A number of innovative techniques have migrated into modern software
development practice from research, conducted by Japanese investigators in the
1960s and 1970s, into improving manufacturing and quality assurance. One of the
techniques making the migration from quality assurance into software development
is Quality Function Deployment (QFD). Mizuno and Akao conducted research
directed at bringing quality assurance into the design phase, rather than in the
manufacturing phase resulting in QFD [33]. Their vision was to include the cus-
tomers’ view of the quality into all aspects of product design and manufacturing,
thereby increasing the acceptance of the product in the marketplace [34].

According to Zultner, applying QFD to software requirements is a relatively
simple process [35]. Customers receive a copy of the specification of an appli-
cation and they assign one of three QFD categories to each requirement. These
classification categories are normal, expected, and exciting. A customer classifying
a requirement as normal means that a product such as the one specified has that
feature. A requirement classified as expected means that the customer believes a
product that does not contain that feature is disappointing. A requirement
receiving an exciting classification is one exceeding what the customer expects to
find in the specified product. There are two challenges not addressed in Zultner’s
discussion on QFD: Customer priority assignment and using QFD throughout the
development process [35].

After receiving the customers’ individual classification of the requirements,
requirements engineers have several methods for establishing the classification of
each requirement. One of these methods of applying customer priorities is to assign
the requirement classification receiving the most votes. Another approach is to
record the votes for each category providing later processes with more data for
decision-making.

Although simple, QFD presents a number of challenges to requirements engi-
neers. One important challenge that requirements engineers are facing is selecting
the customers for providing the classifications because the quality of data is
dependent on the customers’ knowledge of the product and/or market. Another
significant challenge for QFD relates to the quality of the customers asked to
classify requirements. A QFD classification does not provide the requirements
engineer insight into missing requirements. An advantage of QFD, outweighing
both of these challenges, is that it provides the requirements engineer with customer
insight as to the value of the specified facilities.

A challenge related to the customer’s skill in evaluating requirements, but one
that requirements engineers can control, is the focus and structure of the require-
ments. There are three major sections in a traditional requirement specification:
interface, functional, and non-functional requirements [16, 17]. An issue arising
with this type of document is that the interface, function and performance speci-
fications are in three different locations making it difficult to pull all of this infor-
mation together and classify each of the features. An approach that can improve
requirement classification accuracy is an external-task or user-centric specification
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[28, 30, 31]. A user-centric specification differs from traditional specification in that
the requirements are organized based on the task that a customer is intended to
perform with the software. Expressing the software’s functionality in terms of use
cases or user stories based on tasks they will perform with the software can produce
better classifications [30, 31].

One of the possible uses, later in the development process, for these priorities is
establishing implementation priorities. Prioritizing feature implementation is a
significant challenge facing software developers using iterative development tech-
niques such as Boehem’s Spiral model or Schwalbe’s Agile Scrum [19, 21]. In both
the spiral model and Agile Scrum, developers must select a set of features for
implementation during the next iteration. Usually, developers accomplish this by
selecting features, based on effort estimates, fitting to the duration of the devel-
opment increment. A better selection approach employs both the QFD classification
and estimated effort. Using these two factors, is even more appropriate for situations
where one or more iterations results in phase deployment or release.

Based on the definition of the QFD categories, it is apparent that it is an ordinal
scale where requirements in an expected category are more desirable than
requirements in the normal category; and requirements in the exciting category are
more desirable than requirements in the expected category. Using this scale for
development priorities would mean that exciting requirements are developed first
followed by expected and then normal; but to have each iteration possess the
maximum desirability to the customer base, the development priorities are expected
requirements, followed by normal requirements, and then exciting. Implementing
expected requirements is critical because they are the requirements that can increase
customer dissatisfaction with the deployed product. Exciting requirements can
increase the marketability of the product but might not improve customer satis-
faction. Therefore, implementing the normal requirements before implementing the
exciting requirements increases customer satisfaction and assures that the product is
equal to the completion.

Designing the development process to work only on the requirements in a
specific category is not a guarantee that developers will produce software maxi-
mizing the development time and overall customer satisfaction. Because of the
complexity of the variables, traditional algorithmic approaches are not viable.
Hence, a new approach to produce a list of requirements in rank order for an
iteration cycle is needed.

The discussion in Sect. 2, has presented the software development process and
the uncertainty involved in the process. The current section concentrated on using
quantifiable methodologies for software specifications. It is quite clear that the
quantification process reduces yet does not eliminate uncertainty. When it is all said
and done, the engineers and stakeholders have to make decisions that optimize a
utility, effort, and risk function. This function, however, is “ill defined” due to the
inherent uncertainty and the fuzzy nature of human communication and human
reasoning. For example, assigning ranks such as normal, expected, and exciting is a
classic example of (human) fuzzy logic based reasoning. In this chapter, we propose
to formulize two of the dimensions of the QFD space, namely utility and effort,
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using complex fuzzy logic. Later on, risk can be added as a third dimension in a
multi-dimensional complex fuzzy logic based QFD process. In the next section, we
list relevant work.

4 Literature Review

This section includes a review of literature associated with software requirements
and describes work related to the use of fuzzy logic in formulating methods for
handling uncertainty in software development. A new and innovative method for
handling the uncertainty, which is proposed in this chapter, is the utilization of
complex fuzzy logic. This original method is further elaborated in the next section.

A review of recent literature for software requirements reveals a limited amount
of investigation into ways for writing and organizing requirements. Books like
Wiegers’ Software Requirements, Lauesen’s Software Requirements: Style and
Techniques, and Leffingwell’s Agile Software Requirements discuss most of the
research into writing and organizing requirements [36–38]. Each of these texts
investigates most of the core issues of requirements analysis, but they do not
investigate using formal methods for dealing with the uncertainty inherent in the
process. Although similar, each text presents the topic from differing perspectives:
traditional, linguistic, and lean software development methodologies, such as
Agile-Scrum.

In the book Software Requirements, Weigers investigates most of the issues
relating to the development of traditional requirements specification documents and
the management of those requirements throughout the development process [36].
One of the features that make this book an important resource for the topic of
software requirements is that it provides a large number of examples on soliciting
requirements in a business environment. Even though Weigers addresses almost
every aspect of software requirements, some might argue that the areas of speci-
fication style and Agile requirements practice need additional investigation. In the
chapter addressing writing software requirements, Wiegers provides an excellent
discussion on the mechanics of writing specifications, but he does not discuss the
effects of different styles. In the book Software Requirements: Styles and
Techniques, the author provides a better discussion on this issue. On lean software
development or Agile methodologies [37], the discussion explains some of the
differences between traditional requirements elicitation and the approach introduced
with Agile-Scrum, but does not address the way that these differences affect the
developers and the stakeholders. In the book Agile Software Requirements,
Leffingwell provides a view of the effects of requirements on the developers and
stakeholders [38].

The book Software Requirements: Styles and Techniques by Lauesen provides
an overview to the requirements elicitation process, but focuses on linguistics
techniques for achieving a specific objective [37]. Like Wiegers’ approach, Lauesen
provides a large number of cases studies and examples in writing requirements to
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achieve specific results and illustrates that different writing styles can achieve
different results. This work, however, does not address ways for writing and
organizing the requirements in order to enable software development using an Agile
development methodology.

One of the most unusual approaches to software requirements specifications is
described in the book Agile Software Requirements by Leffingwell [38]. In this
work, Leffingwell combines Agile Modeling with requirements analysis and
describes the ways that requirements are used in Agile development methodologies.
The book suggests that requirements have a hierarchical characteristic, which is a
subtle change from the “flat” approach suggested in other works. Using a hierar-
chical approach provides a level of details that is appropriate to the stakeholder and
the developer.

One of the deficiencies that almost all of the works on software requirements
have in common is their way of treatment of non-functional requirements, a.k.a.
Quality Requirements or “ileitis”. Originally, non-functional requirements were
addressing system level topics such as reliability and maintainability. Over time,
other topics such as human factors and security were introduced under
non-functional requirements because many experts viewed these topics as system
level issues that did not directly relate to the functionality of the software. Today
two of the most severe challenges to software engineers are software usability and
security.

In recent years, there has been a significant interest in the area of quantitative
software engineering [2–5]. Several papers have addressed computational intelli-
gence and quantitative software engineering [11–14]. Additionally, several survey
papers and books/book-chapters such as [39–43] are useful in gaining access into
recent developments in the field.

Alongside the interest in the general area of computational intelligence and
software engineering, there has been increasing interest in the use of fuzzy set
theory and fuzzy logic based reasoning as the soft computing paradigm [44–49].
With this respect [44, 45] are some of the most comprehensive accounts on fuzzy
logic models in quantitative software engineering. The utilization of fuzzy logic to
quantitative software engineering makes a lot of sense and provides highly valuable
and usable tools for coping with the uncertainty in quantitative software engi-
neering [44–49]. Nevertheless, this approach falls short of providing a rich and
expressive way to take into account the intricate relations between major parameters
affecting the software development process, such as quality, usability, development
effort, and features included in release, cost, reliability, and risk. It is our assertion
that the intricate relations can be effectively addressed using complex fuzzy logic.

Complex fuzzy logic has been introduced by Ramot et al. [50, 51] and several
related applications have been considered [52]. Tamir et al. [53–56] refined the
definition provided by Ramot and introduced examples where the interpretation
provides for a rich and effective paradigm for reasoning which can capture
uncertainty and human reasoning in a highly effective way.
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An exhaustive search in research databases did not reveal any work that connects
complex fuzzy logic with quantitative software engineering. To the best of our
knowledge, this is the first research effort that reports on such a research direction.

5 Complex Fuzzy Systems

Several aspects of the software requirements specifications can utilize the concept
of complex fuzzy logic [53]. Complex fuzzy logic can be used to represent the
two-dimensional information embedded in the description of trade-offs between
design effort and software feature inclusion. Additionally, complex fuzzy logic
based inference can be utilized to exploit the fact that variables related to the
uncertainty are inherent in the software requirements specifications. The software
requirements space is multi-dimensional and cannot be readily defined via single
dimensional clauses connected by single dimensional connectives. Finally, the
multi-dimensional fuzzy space defined as a generalization of complex fuzzy logic
can serve as a media for clustering of specifications related information in a lin-
guistic variable-based feature space.

Tamir et al. [53, 55] introduced a new interpretation of complex fuzzy mem-
bership grade and derived the concept of pure complex fuzzy classes. This section
includes a review of the concept of a pure complex fuzzy grade of membership, the
interpretation of this concept as the denotation of a fuzzy class, and the basic
operations on fuzzy classes.

To distinguish between classes, sets, and elements of a set we use the following
notation: a class is denoted by an upper case Greek letter, a set is denoted by an
upper case Latin letter, and a member of a set is denoted by a lower case Latin
letter.

The Cartesian representation of the pure complex grade of membership is given
in the following way:

l V ; zð Þ ¼ lr Vð Þþ jli zð Þ;

where lr Vð Þ and li zð Þ, the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
lr Vð Þ and li zð Þ can get any value in the interval [0,1]. The polar representation of
the pure complex grade of membership is given by:

l V ; xð Þ ¼ r Vð Þejr/ zð Þ;

where r Vð Þ and / zð Þ, the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
they can get any value in the interval [0,1]. The scaling factor r is in the interval
ð0; 2pÞ. It is used to control the behavior of the phase within the unit circle
according to the specific application. Typical values of r are f1; p2 ; p; 2pg. Without
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loss of generality, for the rest of the discussion in this section we assume that
r ¼ 2p.

The difference between pure complex fuzzy grades of membership and the
complex fuzzy grade of membership proposed by Ramot et al. [50, 51] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set. This entails a different interpretation of the concept as well as a
different set of operations and a different set of results obtained when these oper-
ations are applied to pure complex grades of membership. This is detailed in the
following sections.

5.1 Complex Fuzzy Class

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that can be
defined in an unambiguous way and comply with the axioms of fuzzy sets given by
Tamir et al. and the axioms of fuzzy classes given in [53, 54, 57, 58]. While a
general fuzzy class can contain individual objects as well as fuzzy sets, a pure fuzzy
class of order one can contain only fuzzy sets. In other words, individual objects
cannot be members of a pure fuzzy class of Order 1. A pure fuzzy class of order
M is a collection of pure fuzzy classes of order M − 1. We define a Complex Fuzzy
Class C to be a pure fuzzy class of order one, i.e., a fuzzy set of fuzzy sets. That is,
C ¼ fVig1i¼1; or C ¼ fVigNi¼1 where Vi is a fuzzy set and N is a finite integer. Note
that despite the fact that we use the notation C ¼ fVig1i¼1, we do not imply that the
set of sets Vif g is enumerable. The set of sets Vif g can be finite, countably infinite,
or uncountably infinite. The use of the notation fVig1i¼1 is just for convenience.

The class C is defined over a universe of discourse T . It is characterized by a
pure complex membership function lC V ; zð Þ that assigns a complex-valued grade
of membership in C to any element z 2 U (where U is the universe of discourse).
The values that lC V ; zð Þ can receive lie within the unit square or the unit circle in
the complex plane and are in one of the following forms:

lC V ; zð Þ ¼ lr Vð Þþ jli zð Þ;
lC z;Vð Þ ¼ lr zð Þþ jli Vð Þ;

where lrðaÞ and liðaÞ, are real functions with a range of [0,1].
Alternatively:

lC V ; zð Þ ¼ r Vð Þejh/ zð Þ;

lC z;Vð Þ ¼ rðzÞejh/ðVÞ;

where rðaÞ and /ðaÞ, are real functions with a range of [0, 1] and h 2 ð0; 2p�.
In order to provide a concrete example, we define the following pure fuzzy class.

Let the universe of discourse be the set of all the features that can be added to a
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specific software application along with a set of attributes related to the features,
such as related development effort and perception of importance (i.e., “expected”,
“normal”, and “exciting”). Let Mi denote the set of features considered in step i of
the software development process. Furthermore, consider a function f1ð Þ that
associates a number between 0 and 1 with each set of features, where this function
reflects the level of importance of the features included in the set. In addition,
consider a second function f2ð Þ that associates a number between 0 and 1 with each
specific feature, where this function denotes the development effort associated with
including the feature in step i of the software development process. The functions
f1; f2ð Þ can be used to define a pure fuzzy class of order 1. A compound of the two
functions in the form of a complex number can represent the degree of membership
in the pure fuzzy class of “highly desired features” for the set of features considered
in the last k development steps.

Formally, let U be a universe of discourse and let 2U be the power-set of U. Let
f1 be a function from 2U to [0,1] and let f2 be a function that maps elements of U to
the interval [0,1]. For V 2 2U and z 2 U define lC V ; zð Þ to be:

lC V ; zð Þ ¼ lr Vð Þþ jli zð Þ ¼ f1 Vð Þþ jf2 zð Þ

Then, lC V ; zð Þ defines a pure fuzzy class of order 1, where for every V 2 2U ,
and for every z 2 U, lC V ; zð Þ is the degree of membership of z in V and the degree
of membership of V in C. Hence, a complex fuzzy class C can be represented as the
set of ordered triples: C ¼ fV ; z; lCðV ; zÞjV 2 2U ; z 2 Ug

Depending on the form of lCðaÞ (Cartesian or polar), lrðaÞ, μi(α), rðaÞ, and
/ðaÞ denote the degree of membership of z in V and/or the degree of membership
of V in C: Without loss of generality, however, we assume that lrðaÞ and rðaÞ
denote the degree of membership of V in C for the Cartesian and the polar rep-
resentations respectively. In addition, we assume that liðaÞ and /ðaÞ denote the
degree of membership of z in V for the Cartesian and the polar representations
respectively. Throughout this chapter, the term complex fuzzy class refers to a pure
fuzzy class with pure complex-valued membership function, while the term fuzzy
class refers to a traditional fuzzy class such as the one defined by [57].

5.2 Degree of Membership of Order N

The traditional fuzzy grade of membership is a scalar defining a fuzzy set. It can be
considered as degree of membership of order 1. The pure complex degree of
membership defined in this chapter is a complex number that defines a pure fuzzy
class. That is, a fuzzy set of fuzzy sets. This degree of membership can be con-
sidered as degree of membership of order 2 and the class defined can be considered
as a pure fuzzy class of order 1. Additionally, one can consider the definition of a
fuzzy set (a class of order 0) as a mapping into a one-dimensional space and the

164 D.E. Tamir et al.



definition of a pure fuzzy class (a class of order 1) as a mapping into a
two-dimensional space. Hence, it is possible to consider a degree of membership of
order N as well as a mapping into an N-dimensional space. The following is a
recursive definition of a fuzzy class of order N. Part 2 of the definition is not
necessary; it is given in order to connect the term pure complex fuzzy grade of
membership and the term grade of membership of order 2.

Definition

1. A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of
membership of order 1 and a mapping into a one-dimensional space.

2. A fuzzy class of order 1 is a set of fuzzy sets. It is characterized by a pure
complex degree of membership. Alternatively, it can be characterized by a
degree of membership of order 2 and a mapping into a two-dimensional space.

3. A fuzzy class of order N is a fuzzy set of fuzzy classes of order N − 1; it is
characterized by a degree of membership of order Nþ 1 and a mapping into an
ðNþ 1Þ-dimensional space.

5.3 Generalized Complex Fuzzy Logic

A general form of a complex fuzzy proposition is: “x…A…B…” where A and B are
values assigned to linguistic variables and “…” denotes natural language constants.
A complex fuzzy proposition P can get any pair of truth values from the Cartesian
interval 0; 1½ � � ½0; 1� or from the unit circle. Formally a fuzzy interpretation of a
complex fuzzy proposition P is an assignment of fuzzy truth value of the form
pr þ jpi; or of the form rðpÞejhðpÞ, to P. In this case, assuming a proposition of the
form “x…A…B…,” then p rð Þ r pð Þð Þ is assigned to the term A and pi h pð Þð Þ is
assigned to the term B.

For example, under one interpretation, the complex fuzzy truth value associated
with the complex proposition:

“x is an expected yet highly difficult to implement feature of the application”
can be 0:1þ j0:5. Alternatively, in another context, the same proposition can be

interpreted as having the complex truth value 0:3ej0:2. As in the case of traditional
propositional fuzzy logic, we use the tight relation between complex fuzzy classes /
complex fuzzy membership to determine the interpretation of connectives. For
example, let C denote the complex fuzzy set of “features that are exciting and easy
to implement”, and let fC ¼ cr þ jci, be a specific fuzzy membership function of C,
then fC can be used as the basis for the interpretation of P. Next we define several
connectives along with their interpretation.
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Table 1 includes a specific definition of connectives along with their interpre-
tation. In this table P, Q and S denote complex fuzzy propositions and f sð Þ denotes
the complex fuzzy interpretation of S. We use the fuzzy Łukasiewicz logical system
as the basis for the definitions [57, 59]. Hence, the max t-norm is used for con-
junction and the min t-conorm is used for disjunction. Nevertheless, other logical
systems, such as Gödel fuzzy systems, can be used [59, 60]

The same axioms used for fuzzy logic are used for complex fuzzy logic, and
modus ponens is the rule of inference.

5.4 Complex Fuzzy Propositions and Connectives Examples

Consider the following propositions ðP;Q; and S respectively):
P “x is a very exciting yet highly difficult to implement feature.”
Q “x is expected yet quite easy to implement feature.”
S “x is a high ranked feature planned for release in the near future.”

Let A be the term “x is an exciting feature” and let B denote the term “difficult to
implement.” Furthermore, let C be the term “ is an expected feature,” let D be the
term “x is a high ranked feature,” and let E be the term “future.” Hence, P is of the
form: “x is a very A that is highly B,” and Q is of the form “x is C that is not quite
B.” In this case, the terms “expected,” “normal,” “difficult,” “ranked,” and “future”
are linguistic variables. Furthermore, a term such as “exciting,” can get fuzzy truth
values (between 0 and 1) or fuzzy linguistic values such as “moderately,” “highly,”
and “very,” (the terms “is,” “that,” etc. are linguistic constants). Assume that the
complex fuzzy interpretation (i.e., degree of confidence or complex fuzzy truth
value) of P is pr þ jpi, while the complex fuzzy interpretation of Q is qr þ jqi. Thus,
the truth value of “x is an exciting feature,” is pR, and the truth value assigned to “x
is difficult to implement,” is pi. The truth value of “x is an expected feature,” is qr.
Suppose that the term “easy” stands for “not difficult,” the term “low,” stands for
“not high,” and the term “dull” stands for “not exciting”. In a similar way, S is of
the form: “x is high D that is … near E,” where the complex fuzzy interpretation of
S is sr þ jsi. This, however, is not the only way to define these linguistic terms, and
it is used to exemplify the expressive power and the inference power of the logic.
Hence, the complex fuzzy interpretation of the following composite proposition is:

Table 1 Basic propositional fuzzy logic connectives

Operation Interpretation

Negation f 0Pð Þ ¼ ð1þ j1Þ � f ðPÞ
Disjunction f P� Qð Þ ¼ maxðpR; qRÞþ j�maxðpI ; qIÞ
Conjunction f P� Qð Þ ¼ minðpR; qRÞþ j�minðpI ; qIÞ
Implication f P ! Qð Þ ¼ min 1; 1� pR þ qRð Þþ j�minð1; 1� pI þ qIÞ
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1. f 0pð Þ ¼ ð1� prÞþ jð1� pIÞ
That is, 0P denotes the proposition “x is a dull yet easy to implement feature.”
The confidence level in 0P is ð1� prÞþ jð1� piÞ, where the fuzzy truth value of
the term “x is a non exciting feature,” is ð1� prÞ and the fuzzy truth value of the
term “x is an easily implemented feature.” is ð1� piÞ

2. f P� Qð Þ ¼ maxðpr; 1� qrÞþ j�maxðpi; 1� qiÞ:
That is, P� Qð Þ denotes the proposition “x is a very exciting yet highly
difficult to implement feature.” OR
“x is an expected yet quite easy to implement feature.” The truth values of
individual terms, as well as the truth value of P� Q are calculated according to
Table 1.

3. f 0P� Qð Þ ¼ minð1� pr; qrÞþ j�minð1� pi; qiÞ
That is, 0P� Qð Þ denotes the proposition “x is a dull yet difficult to implement
feature.” AND
“x is an expected yet quite easy to implement feature.” The truth values of
individual terms, as well as the truth value of 0P� Q are calculated according to
Table 1.

4. Let the term R stand for ðP� QÞ, (the complex fuzzy interpretation of R is
rr þ jri.) then,

R ! S ¼ minð1; 1� rr þ srÞþ j�minð1; 1� ri þ siÞ:
Thus, R ! Sð Þ denotes the proposition
IF “x is a very exciting yet highly difficult to implement feature.” OR
“x is an expected, yet quite easy to implement feature.”
THEN `̀ x is a high ranked feature planned for release in the near future:” The

truth values of individual terms, as well as the truth value of R ! S are calculated
according to Table 1.

5.5 Complex Fuzzy Inference Example

Assume that the degree of confidence in the proposition R as defined above is
rr þ jri; and assume that the degree of confidence in the fuzzy implication T ¼
R ! S is tr þ jti. Then, using modus ponens
R

R→S

S

One can infer S with a degree of confidence min rr; trð Þþ j�min ri; tið Þ:
In other words if one is using:

“x is an exciting yet difficult to implement feature:” OR
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“x is an expected yet easy to implement feature:

IF “x is an exciting yet difficult to implement feature:” OR

“x is an expected yet easy to implement feature:”

THEN “x is a high ranked feature planned for release in the near future.”

“x is a high ranked feature planed for release in the near future:”

Hence, using modus ponens one can infer:

“x is a high ranked feature planned for release in the near future” with a degree of
confidence of min rr; trð Þþ j�min ri; tið Þ.

This example shows the potential of complex fuzzy inference to enhance the
ability for resolving uncertainty involving the requirements specifications process.
The actual process of using this approach for inference is described [51]. In this
case a complex fuzzy rule-based system is generated via complex fuzzification and
used for complex fuzzy inference. Eventually via de-fuzzification actual crisp
conclusions are obtained [51]. In [26] we have described Software Testing Using
Artificial Neural Networks and Info-Fuzzy Networks. We are currently working on
extending this research to using complex fuzzy inference. Finally, we are currently
exploring the use of complex fuzzy logic and inference for non-functional
requirements such as usability requirements.

6 Conclusions

In this chapter, we have introduced an innovative approach for fuzzy logic based
quantitative software engineering procedures. We have presented a complex fuzzy
logic based inference system used to account for the intricate relations between
software engineering constraints such as quality, software features, and develop-
ment effort. The model presented concentrates on the requirements specifications
part of the software engineering process. Furthermore, the presented model sig-
nificantly improves the expressive power and inference capability of the soft
computing component in the soft computing based quantitative software
engineering.

In the future, we plan to concentrate on software requirements for human
computer interaction applications. Additionally, we plan to further investigate the
utility of the new model in the development of software requirements for large-scale
software systems. Furthermore, we plan to increase the dimensionality of the fuzzy
terms to include other factors such as risk, reliability, usability etc. Finally, we plan
to expand the work to include other components of the software development
process.
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