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Abstract Averaging is a standard technique in applied machine learning for
combining multiple classifiers to achieve greater accuracy. Such accuracy could be
useful in software effort estimation which is an important part of software process
management. To investigate the use of ensemble multiple classifiers learning in
terms of predicting software effort. The use of ensemble multiple classier combi-
nation is demonstrated and evaluated against individual classifiers using 10
industrial datasets in terms of the smoothed error rate. Experimental results show
that multiple classifier combination can improve software effort prediction with
boosting, bagging and feature selection achieving higher accuracy rates.
Accordingly, good performance is consistently derived from static parallel systems
while dynamic classifier selection systems exhibit poor accuracy rates. Most of the
base classifiers are highly competitive with each other. The success of each method
appears to depend on the underlying characteristics of each of the ten industrial
datasets.
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1 Introduction

Software effort estimation is an important area for software development. If the
software development effort is under estimated tight time schedules will result
leading to the possibility of inadequate testing and poor quality software. In con-
trast, if the software development effort is overestimated over allocation of man
power and resources may result. Thus, accurate software effort estimation is an
important part of the software management process in terms of productivity and
quality. Many software effort estimation models have been proposed [2, 6, 18] and
unbiased effort prediction is an important contributor to effective software project
management. It is also generally accepted that the highest accuracy results that a
classifier system can achieve depend on the quality of data and the appropriate
selection of a learning algorithm for the data [7, 27, 35]. One of the central tasks of
classifiers is determining whether a particular instance belongs to a specified class,
given a description of that instance. The wealth and complexity of industrial data
lends itself well to the application of classifiers for prediction or classification of
software projects according to factors that influence software effort rates.

Machine learning (ML) deals with the problem of building computer programs
that improve their performance at some tasks through experience and has proven to
be of great value in a variety of applications including software development effort
estimation (the process of predicting the effort required to develop a software
system). In recent years, several machine learning approaches have been applied in
software systems development and deployment in order to establish more sound
predictive models for software quality [41]. Averaging is a standard technique in
applied and theoretical ML for combining multiple classifiers in order to achieve
great accuracy. In fact, in recent years, there has been an explosion of papers in the
ML and statistical pattern recognition (SPR) communities discussing how to
combine models or model predictions in order to improve predictive accuracy.

Research in both ML and SPR communities has shown that combining
(ensemble) individual classifiers is an effective technique for improving predictive
accuracy. In other words, developing an effective decision combination function is
critical to the success of a multiple classifier system (MCS). Such a function should
take advantage of the strengths of individual classifiers while avoiding their
weaknesses, and improve classification correctness. The performance of multiple
classifier systems not only depends on the power of the individual classifiers in the
system but is also influenced by the independence between classifiers.

It has long been recognized that software effort estimation is a key consideration
for good software cost estimation. However, effort prediction in terms of using
multiple classifier (machine) learning or ensembles has attracted some attention in
areas such as pattern recognition [24, 25], information security [8], credit risk [37],
engineering [36], and so on, but yet received little attention in the software engi-
neering community. Work by Wettschereck [26] provides a solid start to the use of
multiple classifier learning by proposing a hybrid strategy that combines the
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nearest-hyper-rectangle and k-nearest neighbour algorithms in terms of improving
classification accuracy.

Follow up research work by Braga et al. [3] and Kultur et al. [23] shows how
bagging may improve software effort predictive accuracy in comparison with the
use of a single classifier; although the results from both studies are inconclusive.
Khoshgoftaar et al. [19] propose a hybrid software quality prediction model that
combines rule-based and case-based learning which outperforms the best individual
rule-based model. Kocaguneli et al. [21] suggest that ensembles are not able to
improve predictive accuracy of single learning classifiers, contradicting the findings
of Khoshgoftaar et al.’s research. However, the Kocaguneli et al.’s [21] research
work lacks any statistical justification. In their most recent research work,
Kocaguneli et al. [22] show ensemble methods significantly outperforming single
classifiers with error rates significantly less than are shown by their earlier work.
The ranking of the best ensemble methods were also shown to be stable by
Kocaguneli et al. [22]. Twala and Cartwright [37] showed that the ensemble
approach can also be used to improve software effort predictive accuracy in the
presence of missing values.

The performance of several multiple classifier systems are evaluated in terms of
their ability to predict software effort using 10 industrial datasets in this research.
Initially single classifiers are constructed using five base methods for classifier
construction. These are then used to provide benchmarks against which various
multiple classifier systems are assessed. To the best of our knowledge this is the
first study where such a combination of methods in terms of classifier learning and
ensemble learning approaches have been used to create different ensemble multiple
classifier systems across ten industrial datasets. A classifier ensemble is generated
by training multiple learners for the same task and then combining their predictions
as demonstrated in Sect. 3 of the paper. There are different ways in which
ensembles can be generated, and the resulting output combined for the classification
of new instances. Popular approaches for creating ensembles include changing the
instances used for training through techniques such as bagging [4], boosting [13],
stacked generalization or stacking [40], changing the features used in training [15],
and introducing randomness in the classifier itself [10].

Bagging is a combination of bootstrapping and averaging used to decrease the
variance part of prediction errors; boosting is one of the most well-known tech-
niques for solving classification problems; stacking combines various machine
learning methods using a stacking generalization technique; randomization is based
on bagging models built using a random tree strategy in which classification trees
are grown on a random subset of descriptors; feature selection aims for an optimal
set as a whole rather than a combination of stand-alone high performance attributes.

The rest of this paper is organised as follows. Section 2 briefly provides details
of the five classifiers used in this paper; this is followed by a description of different
types of multiple classifier system architectures. Section 4 empirically explores the
robustness and accuracy of five multiple classifier systems when used with ten
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industrial datasets in terms of the smoothed error rate. This section also presents
empirical results from the application of the ensemble procedures. Section 5 pro-
vides our conclusions and future research directions.

2 Classifiers

In supervised learning, for multivariate data, a classification function y = f
(x) from training examples of the form {(x,y,),. . .,(Xm,¥;) }» predicts one (or more)
output attribute(s) or dependent variable(s) given the values of the input attributes
of the form (x, f{x)). The x; values are vectors of the form {x;i,...,x;,} whose
components can be numerically ordered, nominal or categorical, or ordinal.
The y values are drawn from a discrete set of classes {1, ..., K} in the case of
classification. Depending on the usage, the prediction can be “definite” or proba-
bilistic over possible values. Given a set of training examples and any given prior
probabilities and misclassification costs, a learning algorithm outputs a classifier.
The classifier is an hypothesis about the true classification function that is learned
from, or fitted to, training data. The classifier is then tested on test data.

The five base methods for classifier construction considered in our study are
presented below.

2.1 Logistic Discrimination

Logistic discrimination analysis (LgDA) Cox [9] is related to logistic regression.
The dependent variable can only take the values 0 and 1, say, given two classes.
This technique is partially parametric, as the probability density functions for the
classes are not modelled but rather the ratios between them are used as described
below.

Let y € {0,1} be the dependent or response variable and let x = x;1, ..., x;, be
the predictor variables vector. A linear predictor {; is given by B, + By where f is
the constant and f’ is the vector of regression coefficients ([fl,...,,[fp)) to be

estimated from the data. They are directly interpretable as log-odds ratios or in
terms of exp(f'), as odds ratios.

The a posteriori class probabilities are computed by the logistic distribution.
These terms are often referred to as “predictions” for the given characteristic vector
x. Therefore, a new element is classified as 0 if 7y <c and as 1 if g > ¢, where c is
the cut-off point score and my is the predictor. Typically, the error rate is lowest for
cut-off point = 0.5 [30]. In fact, the slope of the cumulative logistic probability
function has been shown to be steepest in the region where, say, m; = 0.5. Thus, if
7; > 0.5, the unknown instance is classified as “1” and if 7; <0.5, the unknown
instance is classified as “0”. The generalisation of the LgDA approach to the case of
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three or more classes is known as the multinomial logit model and the derivation is
similar to that of the logistic discrimination model. The reader is referred to Hosmer
and Lameshow [16] for more details.

2.2 k-Nearest Neighbour

One of the most accepted algorithms in ML is the k-nearest neighbour (k-NN),
which is sometimes referred to as instance-based learning or memory-based rea-
soning [1]. <-NN methods have been used for classification tasks. The method
essentially works by assigning to an unclassified sample point the classification of
the nearest of a set of previously classified points. The entire training set (a set of
data used to discover potentially predictive relationships in different areas of
information science) is stored in the memory. Consider a set of n pairs is
x1,C),. - »(x%,,Ch), where x;’s take values in the metric space X upon which is
defined a metric d, and the C;’s take values in the set {1, 2, ..., K}. A new mea-
surement x is observed, and it is desired to estimate C by utilising the information
contained in the set of correctly classified points. X!, € {xi,...,x,} is called a nearest
neighbour to x if mind(x;, x) = d(x/,x) i = 1, 2,..., n. The nearest neighbour rule
decides that x belongs to the category C), of its nearest neighbour x/. A mistake is
made if C], # C. Notice that only classification of the nearest neighbour is utilised
by this, simplest, nearest neighbours rule. The remaining n — 1 classifications C; are
ignored.

To classify a new instance, the Euclidean distance (possibly weighted) is
computed between the instance and each stored training instance and the new
instance is assigned the class of the nearest neighbouring instance. More generally,
these k-nearest neighbours (k-NNs) are computed, and the new instance is assigned
the class that is most frequent amongst the £ neighbours. IBL’s have three defining
general characteristics: a similarity function (how close together the two instances
are), a “typical instance” selection function (which instances to keep as examples),
and a classification function (deciding how a new case relates to the learned cases).
The lack of a formal framework for choosing the size of neighbourhood “k” can be
problematic. To determine the distance between a pair of instances we apply the
Euclidean distance metric. In our experiments, k is set to five. Three to five
neighbours have been shown to make a good prediction [38].

2.3 Artificial Neural Network

Artificial neural networks (ANNs) use nonparametric approaches (i.e. no assump-
tions about the data are made). ANNs are represented by connections between a
very large number of simple computing processors or elements (neurons). ANNs
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have been used for a variety of classification and regression problems. There are
many types of ANNSs, but for the purposes of this study we concentrate on single
unit and multi-layer perceptrons [29] which utilizes a supervised learning technique
known as backpropagation.

The backpropagation learning algorithm performs a hill-climbing search pro-
cedure on the weight space described above or a (noisy or stochastic) gradient
descent numerical method whereby an error function is minimised. At each itera-
tion, each weight is adjusted proportionally to its effect on the error. One cycles
through the training set and on each example changes each weight proportionally to
its effect on lowering the error. One may compute the error gradient using the chain
rule and the information propagates backwards through the network through the
interconnections, which accounts for the procedure’s name.

There are two stages associated with the backpropagation method: training and
classification. The ANN is trained by supplying it with a large number of learned
(input data pattern) whose corresponding classifications (target values or desired
output) are known. During training, the final sum-of-squares error over the vali-
dation data for the network is calculated. The selection of the optimum number of
hidden nodes is made on the basis of this error value. The question of how to
choose the structure of the network is beyond the scope of this thesis and is a
current research issue in neural networks. Once the network is trained, a new object
is classified by sending its attribute values to the input nodes of the network,
applying the weights to those values, and computing the values of the output units
or output unit activations. The assigned class is that with the largest output unit
activation.

2.4 Decision Trees

Decision tree (DT) classifiers have four major objectives. According to Safavian
and Landgrebe [31], these are: (1) to classify correctly as much of the training
sample as possible; (2) generalise beyond the training sample so that unseen
samples could be classified with as high accuracy as possible; (3) be easy to update
as more training samples become available (i.e., be incremental); (4) and have as
simple a structure as possible. Objective (1) is actually highly debatable as this
might not be the case and to some extent conflicts with objective (2). Also, not all
tree classifiers are concerned with objective (3). DTs are non-parametric and a
useful means of representing the logic embodied in software routines. A DT [5, 28]
takes as input a case or example described by a set of attribute values, and outputs a
Boolean or multi-valued “decision”. For the purpose of this paper, we shall stick to
the Boolean case.

One property that sets DTs apart from all other classifiers is their invariance to
monotone transformations of the predictor variables. For example, replacing any
subset of the predictor variables {x,-} by (possible different) arbitrary strictly
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monotone functions of them {xj — my (Jg,-)}, gives rise to the same tree model.
Thus, there is no issue with having to experiment with different possible trans-
formations m; (xj) for each individual predictor x; to try to find the best. This
invariance provides immunity to the presence of extreme values (“outliers” or
noise) in the predictor variable space [5].

2.5 Naive Bayes Classifer

The NBC is perhaps the simplest and most widely studied probabilistic learning
method. It learns from the training data the conditional probability of each attribute
A; given the class label C [11]. The NBC can handle an arbitrary number of
independent attributes whether continuous or categorical. The strong major
assumption is that all attributes A; are independent given the value of the class C.
Classification is therefore done applying Bayes rule to compute the probability of,
say, C given Aj,...,A, and then predicting the class with the highest posterior
probability. The probability of a class value C; given an instance X = {Ay,...,A,}
for n observations is given by:

p(Ci|X) = p(X|Cy) - p(C;)/p(X)
ap(Ar,. . ..AL|C) - p(C)

= []r(AjlC) - p©C)
=1

The assumption of conditional independence of a collection of random variables
is very important for the above result. It would be impossible to estimate all the
parameters without such an assumption. This is a fairly strong assumption that is
often not applicable. However, bias in estimating probabilities may not make a
difference in practice—it is the order of the probabilities, not the exact values that
determine the probabilities. When the strong attribute independence assumption is
violated, the performance of the NBC might be poor.

3 Multiple Classifier System Architectures

Multiple classifier systems can be classified into one of three architectural types
[12]: (1) static parallel (SP); (2) multi-stage (MS); and (3) dynamic classifier
selection (DCS). The outputs from each classifier are combined to deliver a final
classification decision. A large number of combination functions are available.
These include: voting methods (simple majority vote, weighted majority vote, the
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product or sum of model outputs also known as the product rule, the minimum rule,
the maximum rule); rank based methods (borda-count); and probabilistic methods
(Bayesian methods).

3.1 Static Parallel

SP is probably the most popular architecture and it is where two or more classifiers
are developed independently in parallel [42]. The outputs from each classifier are
then combined to deliver a final classification decision (where the decision is
selected from a set of possible class labels). A large number of combination
functions are available. These include majority voting, weighted majority voting,
the product or sum of model outputs, the minimum rule, the maximum rule and
Bayesian methods. In practice most combination strategies are reported to yield
very similar levels of performance. However, a simple majority vote or weighted
majority vote are often favoured due to the simplicity of their application and their
applicability to situations where the raw outputs from each classifier may not all be
interpretable in the same way.

3.2  Multi-stage

The second type of architectures is MS, where the classifiers are constructed iter-
atively. At each iteration (and at previous stages), the parameter estimation process
is dependent upon the classification properties of the classifier(s) developed.
Some MS approaches generate models that are applied in parallel using the same
type of combination rules used for SP methods. For example, most forms of
boosting generate a set of weak classifiers that are combined to create stronger ones
[33]. Adaboost [13] is one of the most well-known algorithms that uses a MS
architecture.

3.3 Dynamic Classifer Selection

For DCS, different classifiers are developed or applied to different regions within
the problem domain. While one classifier may be shown to outperform all others
based on global measures of performance, it may not entirely dominate all other
classifiers. Weaker competitors will sometimes outperform the overall best across
some regions [20]. DCS problems are normally approached from a global and local
accuracy perspective [24, 25]. With a DCS global approach classifiers are con-
structed using all observations within the development sample. Classifier perfor-
mance is then assessed over each region on interest (I am not sure what this term
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means) and the best classifier is chosen for each region. With DCS local, regions of
interest are determined first, and then separate classifiers are developed for each
region.

3.4 C(lassifier Ensemble

A generalised classifier ensemble algorithm is summarised in the following
steps [34].

1. Partition original dataset into n training datasets, TR, TR,, TR,,.

2. Construct n individual models (M, M,, M,)) with the different training datasets
TR, TR,, ..., TR, to obtain n individual classifiers (ensemble members) gen-
erated by different algorithms, thus different.

3. Select m de-correlated classifiers from n classifiers using de-correlation maxi-
mization algorithm.

4. Using Step 3, obtain m classifier output values (misclassification error rates) of
unknown instance.

5. Transform output value to reliability degrees of positive class and negative class,
given the imbalance of some datasets.

6. Fuse the multiple classifiers into aggregate output in terms of majority voting.

4 Experimental Design

In order to test the suitability of multiple classifiers for predicting software effort, w
performed experiments on ten industrial datasets in terms of the smoothed mis-
classification error rate. The smoothed error rate is used due to its variance
reduction benefit. Instead of summing terms that are either zero or one as in the
error-count estimator, the smoothed estimator uses a continuum of values between
zero and one in the terms that are summed. The resulting estimator has a smaller
variance than the error-count estimate. Each dataset, used in the experiments defines
a different learning problem as summarized in Table 1. Most of the datasets are
available at predictor models in software engineerinig (PROMISE) [32] with the
exception of ISBSG and Company X which is not available for public use due to
non-disclosure agreement.

For the simulation study, the five base methods of classifier construction were
chosen. Each method utilizes a different form of parametric estimation/learning;
between them they generate different models forms: linear models, density esti-
mation, trees and networks; and they are all practically applicable within software
engineering environments, with known examples of their application within the
engineering management industry. To begin, single classifiers were constructed
using each method. These were used to provide benchmarks against which various
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Table 1 Industrial datasets problem

Dataset Instances | Attributes Mean development effort
Numerical | Categorical
Test equipment 16 17 4 236
Kemerer 18 4 2 261
Test equipment 16 17 4 379
Bank 18 2 7 1470
Test equipment 16 17 4 550
Data science institute 26 5 0 2528
Moser 32 1 1 2874
Desharnais 77 3 6 4834
Experience 95 1 5 1443
ISBSG-version 7 166 2 7 1668
China 499 16 2 3921
Company X 10,434 4 18 41,643

multiple classifier systems were assessed. To select an appropriate number of
ensemble members, the de-correlation maximization method [17] was utilized.
10-fold cross validation is used for all the experiments.

For all the classifiers, the implementation in WEKA data mining software
package library [39] is used, with the default parameters used for each classifier.
These models were built in WEKA by performing five-fold cross validation.

Analyses of variance are used to examine the main effect and their respective
interactions. This was done using a 3-way repeated measures design (where each
effect was tested against its interaction with datasets). The fixed effect factors are
multiple classifier methods; the ensemble learning approaches used to build the
multiple classifier systems and the multiple classifier architectures. The random
effect is the ten datasets. Friedman ranking test [14] was also used to check if the
difference in performances between the multiple classifiers (ensembles) and the
individual classifiers were significantly different in terms of the smoothed error rate.

To measure the performance of classifiers, the training set/test set methodology
is employed. For each run, each dataset is split randomly into 80 % training set and
20 % testing or validation set. The performance of each classifier is then assessed
on the smoothed error rate.

Although, an operational definition of accurate prediction is hard to come by
predictive accuracy is mostly operationally defined as the prediction with the
minimum misclassification costs (the proportion of misclassified instances). The
need for minimizing costs, rather than the proportion of misclassified instances,
arises when some predictions that fail are more catastrophic than others, or when
some predictions that fail occur more frequently than others. Minimizing costs,
however, does correspond to minimizing the proportion of misclassified instances
when priors (i.e. the probability estimates drawn from the training data that one
would make for each possible target value prior to knowing anything about the
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predictor values) are taken to be proportional to the class sizes and when mis-
classification costs are taken to be equal for every class [5]. This is the approach we
follow in the paper.

5 Experimental Results

The results across all the ten datasets are summarized in Figs. 1, 2, 3 and 4 (and
Tables 2, 3 and 4) in terms of smoothed error rate against the baseline classifiers
(BASE) and their respective ensemble multiple classifiers (i.e. ENS1, ENS2, ENS3,
ENS4, ENSS5). The components of the ensembles are ENS1 (ANN, DT, NBC,

45
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35
30
25
20 |
15 -
10

smoothed error rate (%)

ANN DT k-NN LgD NBC
classifiers

Fig. 1 Overall means for base classifiers

@Bagging M@Boosting @ Stacking @Feauture Selection @Randomization

smoothed error rate

BASE ENS1 ENS2 ENS3 ENS4 ENS5
base and multiple classifiers

Fig. 2 Ensemble multiple classifiers (static parallel)
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Fig. 3 Ensemble multiple classifiers (multi-stage)

smoothed error rate
®

BASE ENS1

mBagging M@Boosting @Stacking #Feauture Selection @ Randomization

ENS3 ENS4 ENS5

base and multiple classifiers

Fig. 4 Ensemble multiple classifiers (dynamic classifier selection)

Table 2 Overall means (individual classifiers and multiple clasifier systems)

Classifier/ensemble multiple classifiers

Average generalization performance (%)

ANN

34.1 +3.63

DT 27.6 + 3.99
NBC 35.6 327
k-NN 324 +3.51
LgD 38.1 + 3.90
ENS1 20.4 + 2.95
ENS2 17.9 + 1.75
ENS3 22.0 323
ENS4 237 +327
ENS5 25.6 + 3.61
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Table 3 Overall means (ensemble learning approaches)

Learning approaches Average generalization performance (%)
Bagging 16.5 +2.82
Boosting 19.4 £3.32
Feature selection 20.3 £ 3.51
Stacking 269 +£4.73
Randomization 22.1 £3.38

Table 4 Overall means (multiple classifier architectures)

Multiple classifier architectures Average generalization performance (%)
Dynamic classifier selection 242 £ 3.64
Multi stage 21.9 + 341
Static parallel 17.4 +£2.95

k-NN, LgD) ENS2 (ANN, DT, NBC, LgD) ENS 3(ANN, DT, k-NN, LgD) ENS4
(ANN, NBC, k-NN, LgD) and ENS5 (DT, NBC, k-NN, LgD).

For the baseline classifiers, DT achieves the lowest smoothed error rate (27.6 %),
followed by k-NN (32.4 %), ANN (34.1 %) and NBC (35.6 %), respectively. The
worst performance for predicting software effort is by LgD with a smoothed error
rate of 38.1 %. The differences in performance between the base individual clas-
sifiers are significant at the 5 % level (with the exception of ANN against NBC).

From Table 2 the multiple classifier performances (ENS1, ENS2, ENS3,
ENS4, ENSS) is significantly better when compared to the individual
classifiers (ANN, DT, NBC, k-NN, LgD) at the 95 % level of significance
(Fstatistic = 13.141 > Fegigical value(10, 75) = 2.056).

When comparing the smoothed error rates in Table 3, bagging outperforms all
the other sampling methods whenever it is used to construct the ensemble multiple
classifier systems in software effort prediction. Bagging exhibits a smoothed error
rate of 16.5 %, followed by boosting (19.4 %) and feature selection (20.3 %).
However, there appears to be no significant difference in performance between
boosting and feature selection at the 5 % level. Poor performance is observed when
stacking is used, achieving a smoothed error rate of 26.9 %.

From Table 4, the results show that static parallel ensemble multiple classifier
systems performs better in terms of predicting software effort when compared with
either dynamic classifier selection or multi-stage systems. The difference in per-
formance between the three systems is significantly different at the 5 % level.

All the static parallel systems (Fig. 2) show some potential to significantly
outperform the baseline. However, stacking and bagging are the weakest, with only
ensembles using ANN, LgD and DT showing major improvement over the other
multiple classifier architectures.
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Multi-stage systems provide statistically significant benefits over baseline
models. The clear winners are feature selection and boosting, which provide large
and significant improvements over the baseline and other multiple classifier systems
for all methods considered, with best performance when applied to NBC (Fig. 3).

DCSs that look to segment the population into a number of sub-regions are
consistently poor performers, with all the experiments yielding results that are
inferior to the single best classifier. However, the performance of most static par-
allel and multi-stage combination strategies provide statistically significant
improvements compared to DCSs (Fig. 4).

6 Conclusion

Machine learning has proved to be promising for automating software development
effort. The rise of big data is most likely the largest catalyst. There are other factors
as well that have made machine learning algorithms faster and easier to run which
has been of great benefit to engineers. Not only does it enable the replication of
results it provides some of the much needed automation capability in terms of
engineering analysis and automated process planning. This covers design of soft-
ware development processes in a wide range of domains. Multiple classifier
learning could be involved here in areas such as learning process plans, learning
error recovery strategies, learning and models for physical processes, and so on.

In this chapter we have proposed a strategy that uses machine learning tech-
niques to improve software effort predictive accuracy. In summary, it has been
found that a combination of multiple classifiers can enhance the classification and
prediction accuracy of software effort to a great extent. Based on the experiments
and findings on this paper, it can be concluded that multiple classifier combination
can play an important role in the accurate and unbiased prediction of software effort
by making full use of the abundant and detailed information in software projects
and integrating the benefits of different classifiers. Thus, we can conclude that
practitioners and researchers may use bagging and boosting for constructing models
to predict software effort especially when measuring the quality of systems in
software development. In fact, multiple classifier learning provides a new style of
software development. But there are still many issues for further study, for example,
developing models that would identify trends in effort revisions, selection of larger
datasets, selection of member classifier, optimization of feature sets and determi-
nation of combination strategy. We intend to present our future findings in the next
research journal paper.
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