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Abstract Because of economical, technological and marketing reasons today’s
software systems are more frequently being built as families where each product
variant implements a different combination of features. Software families are
commonly called Software Product Lines (SPLs) and over the past three decades
have been the subject of extensive research and application. Among the benefits of
SPLs are: increased software reuse, faster and easier product customization, and
reduced time to market. However, testing SPLs is specially challenging as the
number of product variants is usually large making it infeasible to test every single
variant. In recent years there has been an increasing interest in applying evolu-
tionary computation techniques for SPL testing. In this chapter, we provide a
concise overview of the state of the art and practice in SPL testing with evolu-
tionary techniques as well as to highlight open questions and areas for future
research.
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1 Introduction

A Software Product Line (SPL) is a family of related software systems each of
which provides a different combination of features [1], where a feature is commonly
defined as an increment in program functionality [2]. Extensive research and
practice attest to the substantial benefits of SPL practices such as increased software
reuse, faster product customization, and reduced time to market (e.g. [3]). SPLs
typically involve large number of software systems, which make it infeasible to
individually test each one of them. To address this need, several testing techniques
and approaches have been proposed, all with distinct advantages and drawbacks [4–
7].

Search Based Software Engineering (SBSE) is an emerging discipline that
focuses on the application of search-based optimization techniques to software
engineering problems [8]. Among the techniques SBSE relies on is evolutionary
computation—an area of artificial intelligence that studies algorithms that follow
Darwinian principles of evolution [9]. Evolutionary computation techniques are
generic, robust, and have been shown to scale to large search spaces. These
properties have been extensively exploited for testing standard one-off systems (e.g.
[10]), but their application to SPLs remains largely unexplored.

In this book chapter we present a concise overview of current techniques for SPL
testing, describe and illustrate the salient work on evolutionary computation tech-
niques applied to SPL testing, and highlight some of the open challenges that
remain to be addressed. The chapter is structured as follows. Section 2 provides the
basic background on SPL and evolutionary algorithms needed for this chapter.
Section 3 provides a general overview on the state of the art of SPL testing.
Section 4 describes Combinatorial Interaction Testing (CIT), the main approach for
evolutionary SPL testing, and presents a simple illustrative algorithm that follows
this approach. Section 5 presents a formal description of SPL testing as a
multi-objective optimization problem, describes an algorithm to compute exact
Pareto fronts, and summarizes the state of the art of research in this area. Section 7
summarizes the open questions and challenges. Section 8 presents the conclusions
to our work.

2 Background

In this section we provide the basic background on the two topics that crosscut the
chapter: Software Product Lines and Evolutionary Algorithms.
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2.1 SPL Foundations—Feature Models and Running
Example

Feature models have become a de facto standard for modelling the common and
variable features of an SPL [11]. Features are depicted as labelled boxes and their
relationships as lines, collectively forming a tree-like structure. Feature models then
denote the set of feature combinations that the systems of an SPL can have [11, 12].

Figure 1 shows the feature model of our running example, the Graph Product
Line (GPL), a standard SPL of basic graph algorithms that has been extensively
used as a case study in the SPL community [13]. In this SPL, a software system has
feature GPL (the root of the feature model) which contains its core functionality,
and a driver program (Driver) that sets up the graph examples (Benchmark) to
which a combination of graph algorithms (Algorithms) are applied. The graphs
(GraphType) can be either directed (Directed) or undirected (Undirected),
and can optionally have weights (Weight). Two graph traversal algorithms
(Search) can be optionally provided: Depth First Search (DFS) or Breadth First
Search (BFS). A software system must provide at least one of the following
algorithms: numbering of nodes in the traversal order (Num), connected components
(CC), strongly connected components (SCC), cycle checking (Cycle), shortest
path (Shortest), minimum spanning trees with Prim’s algorithm (Prim) or
Kruskal’s algorithm (Kruskal).

In a feature model, each feature has exactly one parent feature and can have a set
of child features. A child feature can only be selected in a feature combination of a
valid software system if its parent is selected as well. The exception is the root
feature that does not have any parent and it is always selected in any software
system of a SPL. There are four kinds of feature relationships:

– Mandatory features are depicted with a filled circle. A mandatory feature is
selected whenever its respective parent feature is selected. For example, features
Algorithms and GraphType.

Fig. 1 Graph Product Line Feature Model [13]
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– Optional features are depicted with an empty circle. An optional feature may or
may not be selected if its respective parent feature is selected. An example is
feature Search.

– Exclusive-or relations are depicted as empty arcs crossing over the lines con-
necting a parent feature with its child features. They indicate that exactly one of
the features in the exclusive-or group must be selected whenever the parent
feature is selected. For example, if feature GraphType is selected, then either
feature Directed or feature Undirected must be selected.

– Inclusive-or relations are depicted as filled arcs crossing over a set of lines
connecting a parent feature with its child features. They indicate that at least one
of the features in the inclusive-or group must be selected if the parent is selected.
If for instance, feature Algorithms is selected then at least one of the features
Num, CC, SCC, Cycle, Shortest, Prim, or Kruskal must be selected.

Besides the parent-child relations, features can also relate across different
branches of the feature model with Cross-Tree Constraints (CTCs). Figure 1 tex-
tually shows the CTCs of GPL. For instance, Cycle requires DFS means that
whenever feature Cycle is selected, feature DFS must also be selected. As another
example, Prim excludes Kruskal means that both features cannot be selected
at the same time in any product. These constraints as well as those implied by the
hierarchical relations between features are usually expressed and checked using
propositional logic, for further details refer to [12]. Now we present the basic
definitions on which SPL testing terminology is defined in the next section.

Definition 1 (Feature list) A feature list (FL) is the list of features in a feature
model.

The FL for the GPL feature model is [GPL, Driver, Benchmark,
GraphType, Directed, Undirected, Weight, Search, DFS, BFS,
Algorithms, Num, CC, SCC, Cycle, Shortest, Prim, Kruskal].

Definition 2 (Feature set) A feature set fs is a 2-tuple [sel,sel] where fs.sel
and fs. sel are respectively the set of selected and not-selected features in a
system part of a SPL. Let FL be a feature list, thus sel,sel�FL, sel\sel ¼ £,
and sel[sel ¼ FL. Wherever unambiguous we use the term product as a syn-
onym of feature set.

Definition 3 (Valid feature set) A feature set fs is valid with respect to a feature
model fm iff fs.sel and fs. sel do not violate any constraints described by fm.
The set of all valid feature sets represented by fm is denoted as FSfm.

GPL has 73 distinct valid feature sets, some of them depicted in Table 1, where
selected features are ticked (✓) and unselected features are empty. An example of
valid feature set is fs1 that computes the algorithms Kruskal and CC, on
Undirected graphs using DFS search. Thus, the selected features are fs1.
sel={GPL, Driver, GraphType, Weight, Search, Algorithms,
Benchmark, Undirected, DFS, CC, Kruskal}, and the unselected fea-
tures fs1. sel={Directed, BFS, Num, SCC, Cycle, Shortest,
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Prim}. Consider now another feature set gs with selected features BFS and
Cycle, meaning {BFS,Cycle} � gs.sel. This feature set is invalid because
these two features violate the CTC that establishes that whenever Cycle feature is
selected then feature DFS must be selected, i.e. Cycle requires DFS.

2.2 Basics of Evolutionary Algorithms

Evolutionary Computation is an area of computer science, artificial intelligence
more concretely, that studies algorithms that follow Darwinian principles of evo-
lution [9]. Algorithm 1 sketches the general structure of an evolutionary algorithm
adapted from [9, 14]. It starts by creating an initial population of candidate solutions
for the particular problem to address (Lines 1–2). The population is denoted by term
P(t) where t stands for the generation of the population. A measure of fitness to
solve the problem is used to evaluate each member of the population (Line 3).
Then, while not reaching a termination condition such as a given number of gen-
erations or fitness threshold (Lines 4–9), a new population is selected from the
previous population and the newly created offspring (Lines 5–6). The new popu-
lation is randomly mutated to promote solution diversity (Line 7) and is subse-
quently re-evaluated (Line 8).

Algorithm 1. Basic Evolutionary Algorithm

There are several types of evolutionary algorithms [9]; however, Genetic
Algorithms (GA) are undoubtedly the most commonly used ones [15]. They typi-
cally employ a binary list representation and are commonly used for optimization
problems such as job scheduling problems. In the coming sections we will explain
how this basic algorithm is adapted for the problem of SPL testing.

3 Overview of SPL Testing

As SPL development practices become more prevalent, there is an increasing need
of adequate and scalable SPL testing techniques. In recent years, there has been a
growing interest by the research and practitioners communities to propose and
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evaluate new methods and tools to address this need. The results have been cap-
tured and analyzed in several systematic mapping studies and surveys. In this
section, we summarize the most salient works among such studies and surveys to
provide the context on which to place evolutionary computation techniques for
SPL.

Engström and Runerson [4] performed a mapping study that takes a higher level
view of the subject by focusing for instance on the organization and process for
testing, and the type of testing techniques performed such as acceptance testing,
unit testing, or integration testing. A similar and complementary mapping study was
carried out by Neto et al. [5]. They analyzed, for instance, the different strategies
that have been taken for SPL testing such as testing product by product, incremental
testing (i.e. first product tested individually and the following products with
regression testing), or opportunistic reuse (i.e. employ test assets available from
other products). They also analyzed others factors and aspects of SPL testing such
as the use of static and dynamic analysis techniques, the effort reduction, or
non-functional testing. Among their most salient findings, is the lack of evidence on
when to select a given testing strategy considering factors such as development
processes employed or delivery time and budget constraints. The complementary
nature of these two studies has been further analyzed and reported [16, 17].

More recent studies by do Carmo Machado et al. [7, 18] have taken a closer look
at the techniques used for SPL testing. They classify the works in two so-called
interests: papers that focus on selecting the products of the SPL to test, and papers
that describe approaches to actually carry out the testing on the selected products.
Their study found that the de facto approach for selecting which SPL products to
test is Combinatorial Interaction Testing (CIT) which aims at constructing samples
to drive the systematic testing of software system configurations [19, 20]. For the
second interest, they found an array of techniques, mostly based on extensions to
UML activity and sequence diagrams.1 Their study highlights also several short-
comings, such as the lack of robust empirical evaluation and adequate tool support.

We should point out that CIT is a generic testing approach not only applicable in
the context of SPL testing. In this general sense, CIT consists of four phases [21]:
(i) modeling whose goal is to model the System Under Test (SUT) and its input
space, (ii) sampling which produces a set of configurations that will be used for
testing, (iii) testing that actually carries of the test based on different CIT param-
eters, and (iv) analysis where the results obtained are examined to identify faults
and their underlying causes. In other words, the first two stages deal with the what
should be tested, whereas the last two stages deal with the how should be tested
[21].

Within the area of Search-Based Software Engineering a major research focus
has been software testing [8, 22]. A recent overview by McMinn [10] highlights the
major achievements made in the area and some of the open questions and chal-
lenges. We have performed a systematic mapping study whose focus is on SBSE

1http://www.uml.org/.

Evolutionary Computation for Software Product Line Testing … 65

http://www.uml.org/


techniques applied to SPLs [23],2 among such techniques are those based on
evolutionary computation. Overall we found that almost all the research on evo-
lutionary computation applied to SPL testing falls within the first two stages of CIT,
modeling (based on feature models) and sampling (using different techniques), as
we elaborate more on next section.

4 Combinatorial Interaction Testing for Software Product
Lines

When Combinational Interaction Testing is applied to SPLs, the goal is to select a
representative subset of products where interaction errors are more likely to occur
rather than testing the complete product family [19]. In this section, we provide the
basic terminology of CIT for SPLs,3 use a simple evolutionary algorithm to illus-
trate CIT for the case of pairwise testing, and presents an overview of state of the art
in CIT for SPL testing. In Sect. 5, we address the case when optimization of
multiple objectives is considered.

4.1 Basic Terminology

Definition 4 (t-set) A t-set ts is a 2-tuple [sel, sel] representing a partially
configured product, defining the selection of t features of the feature list FL, i.e.
ts:sel[ts:sel�FL ^ ts:sel\ts:sel ¼ £ ^ jts:sel[ts:selj ¼ t. We say
t-set ts is covered by feature set fs iff ts:sel� fs:sel ^ ts:sel� fs:sel.

Definition 5 (Valid t-set) A t-set ts is valid in a feature model fm if there exists a
valid feature set fs that covers ts. The set of all valid t-sets for a feature model is
denoted with VT Sfm.

Definition 6 (t-wise covering array) A t-wise covering array tCA for a feature
model fm is a set of valid feature sets that covers all valid t-sets in VT Sfm.
Formally, tCA�PðFSfmÞ where 8ts 2 VTSfm; 9fs 2 tCA such that fs covers ts.

Let us illustrate these concepts for pairwise testing, meaning when t = 2. From
the feature model in Fig. 1, a valid 2-set is [{Driver},{Prim}]. It is valid
because the selection of feature Driver and the non-selection of feature Prim do not
violate any constraints. As another example, the 2-set [{Kruskal,DFS}, £] is

2An early version is available in [24].
3Definitions based on [12, 25].
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valid because there is at least one feature set, for instance fs1 in Table 1, where both
features are selected. The 2-set [£, {SCC,CC}] is also valid because there are
valid feature sets that do not have any of these features selected, for instance feature
sets fs0, fs2, and fs3. Notice, however, that the 2-set [£, {Directed,
Undirected}] is not valid. This is because feature GraphType is present in all
the feature sets (mandatory child of the root) so either Directed or
Undirected must be selected. In total, our running example has 418 valid 2-sets,
so a 2-wise covering array must have all these pairs covered by at least one feature
set. A covering array can be visually depicted as shown in Fig. 2 [26].

4.2 SPL Genetic Solver (SPLGS)

The SPL Genetic Solver (SPLGS) is a constructive genetic algorithm that computes
pairwise covering arrays for SPLs based on a feature model that receives as input. It
is based on the Prioritized Genetic Solver (PGS) by Ferrer et al. that takes into
account priorities during the generation of test suites [27]. SPLGS extends and
adapts PGS for generating test suites of product lines. In each iteration SPLGS adds
a new feature set that contributes the most coverage to the partial solution until all

Fig. 2 Graph Product Line 2-wise covering array example [26]
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pairwise combinations are covered. SPLGS has been implemented using two
framework tools: (i) jMetal [28], a Java framework aimed at the development,
experimentation, and study of metaheuristics for solving optimization problems;
and (ii) FAMA, an extensible framework for the representation and analysis of
feature models [29]. The architecture of the SPLGS is presented in Fig. 3.

Algorithm 2 sketches the pseudocode of SPLGS. It takes as inputs the feature
model FM. At the beginning, the test suite (TS) is initialized with an empty list
(Line 4), and the set of remaining pairs (RP) is initialized with all valid pairs that
need to be covered (Line 5). In each iteration of the external loop (Lines 6–24), the
algorithm creates a random initial population of individuals (feature sets in our
case) in (Line 8), and enters an inner loop which applies the traditional steps of a
generational evolutionary algorithm (Lines 9–21). That is, some individuals are
selected from the population PðtÞ, recombined, mutated, evaluated, and finally
inserted in offspring population Q. If a generated offspring individual is not a valid
feature set (i.e. it violates any constraint derived from the feature model), it is
transformed into a valid one by applying a Fix operation (Line 15) provided by the
FAMA tool [29]. The fitness value of an offspring individual is the number of pairs
that remains to be covered, and hence it should be minimized (Line 16). In Line 19,
the best individuals of PðtÞ and Q are kept for the next generation Pðtþ 1Þ. The
internal loop is executed until a maximum number of evaluations is reached. Then,
the best individual found is included in the test suite (Line 22) and RP is updated by
removing the new pairs covered by the selected best solution (Line 23). Then, the
external loop starts again until there is no pair left in the RP set. Finally, in Line 25
the computed test suite is returned. SPLGS has been shown to generate competitive
test suites when compared against other leading CIT approaches for SPL, for further
details refer to [30].4

Fig. 3 Architecture of SPLGS

4In [30] the algorithm is named PGS. We changed its name for this chapter to avoid confusions
with the original algorithm PGS in [27] that was not designed for SPLs.
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Algorithm 2. Pseudocode of SPLGS

4.3 State of the Art CIT for SPL Testing

There exists an important body of literature on CIT for SPL testing; however, only
few examples rely on evolutionary algorithms. In this section we first present these
approaches, followed by those that do not rely on evolutionary algorithms. In
Sect. 5.4 we present the related work for Multi-Objective Evolutionary Algorithms
for SPL testing.

Evolutionary Approaches. Ensan et al. [31] propose a genetic algorithm
approach for test case generation for SPLs that uses a variation of cyclomatic
complexity metric adapted to feature models and hence their goal is not to provide
n-wise coverage. Henard et al. [32] propose an approach based on a (1 + 1) evo-
lutionary algorithm that uses similarity heuristic as a viable alternative for t-wise
coverage for coping with large scale feature models and large values of t up to 6.
This approach is supported by a tool called PLEDGE that in addition provides a
product line editor [33]. Work by Xu et al. [34] uses a genetic algorithm for
continuous test augmentation. Their CONTESA tool incrementally generates test
cases for branches that have not yet been covered by existing tests. Recent work by
Henard et al. [35] creates so called mutants of a feature model which in addition to
the original feature model are passed to a (1 + 1) evolutionary algorithm to produce
test suites.
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Non-Evolutionary Approaches. Garvin et al. [36] applied simulated annealing
to combinatorial interaction testing for computing n-wise coverage for SPLs. Their
algorithm CASA, performs three nested search strategies aiming at iteratively
reducing the sizes of the test suites. Perrouin et al. propose an approach that first
transforms t-wise coverage problems into Alloy programs and then uses Alloy’s
automatic instance generation to obtain covering arrays [37]. Oster et al. [38]
propose MoSo-PoLiTe, an approach that transforms feature models into Constraint
Solver Problems (CSP) to compute pairwise covering arrays. MoSo-PoLiTe can
also include pre-selected products as part of the covering arrays. Hervieu et al. [39]
follow a similar approach of using constraint programming for computing pairwise
coverage. Regarding model based testing, the work by Lochau et al. [40] relates
feature models with a reusable test model expressed with state charts to define and
analyse feature dependencies and interactions. Cichos et al. [41] proposed an
application of the so-called 150 % model, a model with all variable options
included, whose goal is to provide complete test coverage for a given coverage
criterion. Johansen et al. [25] propose a greedy approach to generate n-wise test
suites that adapts Chvátal’s algorithm to solve the set cover problem that makes
several enhancements, for instance they parallelize the data independent processing
steps. Calvagna et al. have developed CITLab [42], a tool for integrating multiple
CIT approaches for SPLs.

5 Multi-objective SPL Testing

The approaches presented in Sect. 4 primarily focus on obtaining test suites that
achieve complete coverage of the desired t strength. In other words, their single
optimization objective is maximizing t-wise coverage. Though useful in many
contexts, this single-objective perspective does not reflect the prevailing scenario
where software engineers do face trade-offs among multiple and often conflicting
objectives that represent technical and economical constraints. In this section, we
first present a formalization of SPLs testing as a multi-objective optimization
problem and provide a brief motivation example. Then as an example, we describe
our exact algorithm to compute the optimal solutions for pairwise testing for
coverage and test suite size optimization. And conclude with an overview of related
multi-objective SPL testing approaches.

5.1 Multi-objective Optimization Formalization

There exists a wealth of literature in the context of Evolutionary Multi-Objective
Optimization [43] and the application of Search-Based Software Engineering
(SBSE) to software testing [44]. In this section we provide the formalization of SPL
testing as a multi-objective optimization problem. Our definitions are based on
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[45–47] and are generalizations of our previous work for the case of bi-objective
pairwise testing [48].

Definition 7 (Decision space) The decision space is the set of possible solutions to
an optimization problem. In our context, it corresponds to the set of all possible
subsets of valid feature sets represented by a feature model fm, denoted as
DSfm ¼ PðFSfmÞ. A decision vector is an element of the decision space, that
is x 2 DSfm.

Definition 8 (Objective functions) An objective function is a function that repre-
sents a goal to optimize, e.g. f fm : DSfm ! N.

As examples, let us consider two objective functions:

– Coverage function. We want to maximize the number of t-wise sets covered by
a test suite as follows:

f fm1 : DSfm ! N;

f fm1 ðxÞ ¼ jcoversðxÞj;

wherecovers computes the t-wise sets covered by the feature sets of test suite x.
– Test suite size function. We want to minimize the number of feature sets in the

test suite. We define this function as follows:

f fm2 : DSfm ! N;

f fm2 ðxÞ ¼ jxj:

Definition 9 (Vector function) A vector function associated to a feature model fm
is defined as5:

Ffm : DSfm ! OSfm

FfmðxÞ ¼ f fm1 ðxÞ; f fm2 ðxÞ; . . .; f fmn ðxÞ
� �

where OS is the corresponding objective space, in our context is OSfm ¼ N
n.

Definition 10 (Objective vector) An objective vector is the result of applying the
vector function to an element of the decision space. Let x 2 DSfm, its objective
vector u is defined as: u ¼ FfmðxÞ ¼ ðf fm1 ðxÞ; f fm2 ðxÞ; . . .; f fmn ðxÞÞ.

5For notational brevity we omit on the vector function and the objective vectors the T that denotes
the transpose on vectors.
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Pareto dominance is the most commonly accepted notion of superiority in
multi-objective optimization because it is the canonical generalization of the
single-objective case [45].

Definition 11 (Pareto dominance) Let x; y 2 DSfm, u ¼ FfmðxÞ ¼ ðu1; u2; . . .; unÞ,
and v ¼ FfmðyÞ ¼ ðv1; v2; . . .; vnÞ for a feature model fm. Let u4 v mean that u is
better than v if there is at least one objective i for which f fmi ðxÞ is better than f fmi ðyÞ,
and there are no objectives for which it is worse. Then we say that objective vector
u Pareto-dominates objective vector v iff u4 v and v� u.

Definition 12 (Multi-Objective SPL n-wise testing problem) A multi-objective
n-wise SPL testing problem for a feature model fm is a 4-tuple
ðDSfm;OSfm;Ffm;4Þ whose goal is to find a decision vector x� 2 DSfm such that
it minimizes vector function Ffm.

Definition 13 (Pareto optimal decision vector) A decision vector x 2 DSfm is
Pareto optimal iff it does not exist another y 2 DSfm such that Pareto-dominates it,
that is FðyÞfm 4FðxÞfm.

Definition 14 (Pareto optimal set) The Pareto optimal set Pfm
� of a multiobjective

n-wise SPL testing problem for feature model fm and its vector function Ffm is:
Pfm
� ¼ fx 2 DSfmj6 9x0 2 DSfmsuch thatFfmðx0Þ4FfmðxÞg.

Definition 15 (Pareto front) For a given multi-objective n-wise SPL testing
problem for feature model fm and a Pareto optimal set Pfm

� , the Pareto front is
defined as: PFfm

� ¼ FfmðPfm
� Þ.

5.2 An Example Scenario

Let us now motivate the importance of multi-objective optimization for SPL with a
simple and illustrative example. Consider for instance our two objective functions
f fm1 and f fm2 , as described above, that respectively represent the t-wise coverage and
test suite size. On one hand we want to maximize t-wise coverage while at the same
time we want to minimize the test suite size. Figure 4 shows the Pareto front for our
running example GPL for the case of pairwise testing. Objective function f fm1 is
shown on the vertical axis as percentage of coverage pairs, while objective function
f fm2 is shown on the horizontal axis.

Taking a multi-objective approach and computing a Pareto front allows software
engineers to select not just one solution, as in the case of single-objective tech-
niques, but instead to select from an array the solution that best matches the eco-
nomical and technological constraints of their testing context. In our example, some
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of the questions that can be answered and hence can help software engineers make
informed decisions are:

– What is the minimum size of a test suite that guarantees full pairwise coverage?
Clearly, from Fig. 4, this can only be achieved with 12 feature sets.

– How many feature sets are needed to get a certain percentage coverage, for
example 90 % coverage? Again, from the information provided by the Pareto
front we can affirm that only 4 products are needed to attain 90 % coverage.

– If only 3 feature sets can be tested because of economical constraints, what is
the maximum coverage that can be achieved? Once more, using the information
of the Pareto front, the maximum coverage is 80.86 %.

For this kind of concerns, software engineers not only get a single value, like the
number of feature sets to test, but in addition they can also obtain a list of test suites
that meet the desired criteria. In sharp contrast with single-objective approaches
that can only provide a single solution. For example, the test suite shown in Fig. 2
is just but a single point that is mapped to the GPL Pareto front, in our case the
rightmost point in Fig. 4 in the best scenario. Hence, for instance, the questions
posed above cannot be addressed with a single-objective method. Next section we
present an approach to compute the exact Pareto front which we used for computing
the front for GPL.

5.3 Computation of Exact Pareto Fronts

In this section we present an overview of our work on computing exact Pareto
fronts for SPL pairwise testing for two objectives, maximizing the pairwise cov-
erage while minimizing the test suite size. For further details please refer to [49].
The algorithm we proposed for obtaining the optimal Pareto set is given in
Algorithm 3, and is based on the work of Arito et al. [50] for solving a

Fig. 4 Graph Product Line
Paiwise Pareto Front
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multi-objective test suite minimization problem in regression testing. From the
definitions in the previous subsection, recall that a Pareto optimal set is a set of
non-dominated solutions each of which is not dominated by any other solution in
the decision space, while the Pareto front is the projection of this set in the objective
space, that is, a plot containing the values of the objective functions for each
solution.

Algorithm 3 takes as input a feature model (Line 2) and computes the optimal
Pareto set (Line 3). It first initializes the optimal set to empty (Line 4). Then it adds
to the set two solutions that are always in the set: the empty solution with zero
coverage (Line 5) and one arbitrary solution (Line 7) with coverage C f

2 , that is, the
number 2-combinations of the set of features (Line 6). The algorithm then enters a
loop (Lines 9–15) in which successive zero-one linear programs are generated (Line
12) for an increasing number of products starting at 2. A zero-one program is an
integer program in which the variables can take as value either 0 or 1 [51]. In our
case, this program serves to compute a solution which has the maximum coverage
that can be obtained with i feature sets. In short, we describe this process in more
detail.

Each mathematical model is then solved using an extended SAT solver (Line
13), in our case MiniSat+.6 This solver provides a test suite with the maximum
coverage for the given number of feature sets. This solution is subsequently added
to the optimal Pareto set (Line 10), and the corresponding coverage is adjusted
(Line 14). The algorithm stops when adding a new product to the test suite does not
increase the coverage. The obtained Pareto optimal set is finally returned (Line 16).

Now we describe how to build the zero-one program for pairwise coverage. Let
n be the fixed number of feature sets we want to compute and let f be the number of
features of the input feature model FM. We use the set of decision variables
xi;j 2 f0; 1g where i 2 f1; 2; . . .; ng and j 2 f1; 2; . . .; f g, such that variable xi;j is 1
if feature set i has feature j selected and 0 otherwise. The zero-one program consists
of four parts as described next.

1. Constraints from feature model. Recall that not all the combinations of fea-
tures form valid products. The validity of any feature set denoted by a feature
model FM can be expressed as a Boolean formula following the standard
mapping to Conjunctive Normal Form (CNF) [12]. Each of the CNF clauses is
then converted to a constraint of a zero-one program. First, let us define the
Boolean vectors v and u as follows [52]:

6Available at URL: http://minisat.se/MiniSat+.html.

74 R.E. Lopez-Herrejon et al.

http://minisat.se/MiniSat%2b.html


Algorithm 3. Algorithm for obtaining the Pareto optimal set

vj ¼
1 if feature j appears in the clause ;
0 otherwise;

�

uj ¼
1 if feature j appears negated in the clause ;
0 otherwise:

�

With the definitions of u and v, Eq. 1 describes how to write the constraint that
corresponds to a CNF clause for the ith product.

Xf

j¼1

vjðujð1� xi;jÞþ ð1� ujÞxi;jÞ>1 ð1Þ

As an illustration, let us suppose in our GPL running example that feature
Search is the 8th feature in the feature list and Num is the 12th feature. The
cross-tree constraint “Num requires Search”, shown in Fig. 1, can be written in
CNF with the clause :Num _ Search and its translation to a zero-one constraint
is: 1� xi;12 þ xi;8>1.

2. Constraints for pairwise coverage per feature set. Because our focus is
pairwise coverage, we need to consider four possible combinations between two
features: (i) both features unselected, (ii) first feature unselected and second
feature selected, (iii) first feature selected and second feature unselected,
(iv) both features selected.
We introduce one variable in our program for each feature set, each pair of
features and each of these four possibilities. The variables, called ci;j;k;l, take
value 1 if feature set i covers the pair of features j and k with the combination l.
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The combination l is a number between 0 and 3 representing the selection
configuration of the features according to the next mapping: l ¼ 0, both unse-
lected; l ¼ 1, first unselected and second selected; l ¼ 2, first selected and second
unselected; and l ¼ 3 both selected. The values of the variables ci;j;k;l depend on
the values of xi;j. In order to reflect this dependence in the mathematical program
we add the following constraints for all i 2 f1; . . .; ng and all 16j\k6f :

2ci;j;k;06ð1� xi;jÞþ ð1� xi;kÞ61þ ci;j;k;0 ð2Þ

2ci;j;k;16ð1� xi;jÞþ xi;k61þ ci;j;k;1 ð3Þ

2ci;j;k;26xi;j þð1� xi;kÞ61þ ci;j;k;2 ð4Þ

2ci;j;k;36xi;j þ xi;k61þ ci;j;k;3 ð5Þ

3. Constraints for pairwise coverage of all feature sets. Variables ci;j;k;l inform
about the coverage in one feature set. We need new variables to count the pairs
covered when all the feature sets are considered. These variables are called dj;k;l,
and take value 1 when the pair of features j and k with combination l is covered
by some product and 0 otherwise. This dependence between the ci;j;k;l variables
and the dj;k;l variables is represented by the following set of inequalities for all
16j\k6f and 06l63:

dj;k;l6
Xn
i¼1

ci;j;k;l6n � dj;k;l ð6Þ

4. Maximization goal. Finally, the goal of our program is to maximize the pair-
wise coverage, which is given by the number of variables dj;k;l that are 1. This is
expressed
as:

max
Xf�1

j¼1

Xf

k¼jþ 1

X3
l¼0

dj;k;l ð7Þ

In summary, the mathematical program is composed of the goal (7) subject to
the 4ðnþ 1Þf ðf � 1Þ constraints given by (2) to (6) plus the constraints of the
FM expressed with the inequalities (1) for each product. The number of vari-
ables of the program is nf þ 2ðnþ 1Þf ðf � 1Þ. The solution to this zero-one
linear program is a test suite with the maximum coverage that can be obtained
with n feature sets.

Evaluation. We have evaluated our approach using a benchmark of 118 feature
models publicly available in two open repositories [49], whose results are shown in
Fig. 5.These featuremodels havenumber offeature sets that ranges from16 to640.We
found that execution time does not grow linearly with the number of feature sets of the
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feature models, but instead it grows faster. Consequently we found scalability issues
with our approach. Even though the majority of our examples finishedwithin an hour,
therewere a significant portion that required aday and a few less that required aweekof
devoted computation in a standard desktop environment. Scalability issues of exact
methods are the main reason for using approximate methods based onmulti-objective
evolutionary algorithms that we summarize in the next section.

5.4 Sate of the Art in Evolutionary Multi-objective
Optimization for SPL Testing

We have performed a systematic mapping study on SBSE techniques applied to
SPLs [23].7 In this section we shortly summarize all the works found by this study
and in addition describe the salient related work that uses evolutionary
multi-objective algorithms for SPLs but not for testing.

Our previous work makes a comparison of four classical multi-objective evolu-
tionary algorithms for SPL pairwise testing, namely: NSGA-II, PAES, MOCell, and
SPEA2 [48]. In addition, this work analyzes the performance impact of three different
seeding strategies that exploit different levels of domain knowledge to create the
initial populations. We evaluated this work using 19 representative feature models
from different application domains, ranging in number of features from 9 to 117, and
in number of feature sets from 32 to 1,741,824. We found that the algorithms
NSGA-II, SPEA2 or MOCell perform comparatively equal and perform best when
using the seeding strategy that exploits the most domain knowledge (i.e. seeds the
initial population based on a test suite computed using a single-objective algorithm).

Fig. 5 Time (log scale) to
compute Pareto optimal set
versus number of feature sets

7An early version is available in [24].
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The work by Wang et al. present an approach to minimize test suites using
weights in the fitness function [53], that is, it uses a scalarizing function that
transforms a multi-objective problem to a single-objective one [47]. Their work
uses three objectives: test minimization percentage, pairwise coverage, and fault
detection capability. A similar approach is taken in recent work by Henard et al. that
present an ad-hoc multi-objective algorithm whose fitness function is also scalar-
ized [54]. Their work focuses also on maximizing coverage, minimizing test suite
size, and minimizing cost. We should remark that neither of these two approaches
are multi-objective evolutionary algorithms in the strict sense. Clearly, this is
because these approaches compute only one single solution, that is, just a single
point in the Pareto front. Incidentally, we should point out there is an extensive
body of work on the downsides of scalarization in multi-objective optimization (e.g.
[55]). Among the shortcomings are the fact that weights may show a preference of
one objective over the other and, most importantly, the impossibility of reaching
some parts of the Pareto front when dealing with convex fronts.

We should also point out that there is a considerable number of applications of
multi-objective evolutionary algorithms but outside of the testing activities of SPL
development. A common task where these algorithms is employed is in product
configuration. For example, Cruz et al. employ the multi-objective algorithm
NSGA-II to create and manage product portfolios based on customer satisfaction
and costs [56]. As another example, the work by Sayyad et al. performs a more
thorough exhaustive application and analysis of multi-objective evolutionary
algorithms for configuration tasks [57, 58]. Our own previous work has also
explored using several classical multi-objective evolutionary algorithms for the
configuration of dynamic product lines for mobile applications [59].

For sake of completeness, we should also indicate ongoing work on exact
multi-objective method by Olaechea et al. who propose an exact method to compute
Pareto fronts showing their capability to handle small and medium size problems
and provide basic guidelines for choosing either exact or evolutionary approaches
[60]. Similarly, Murashkin et al. present a tool for the visualization and exploration
of variants in a multi-dimensional space but do not address SPL testing issues [61].

6 Evolutionary Testing of SPLs in Practice

The most common scenario for the development of SPLs in industrial setting comes
after the realization that developing and maintaining multiple similar systems, an
approach called “Clone and Own”, is not economically feasible [62]. The main
goals of reverse engineering a SPL from a set of similar software systems are:
(i) capture the knowledge of what is common and what is variable (e.g. com-
monality and variability) in all the artifacts employed throughout the development
life-cycle, and (ii) express with a feature model all the valid feature combinations
required for the SPL. The result of the reverse engineering process is illustrated in
Fig. 6.
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There has been extensive work over the last two decades on how to capture the
variability and commonality knowledge for SPLs (i.e. Variability Management
Mechanism in Fig. 6), for a summary see for example [63]. Regarding the
extraction of feature models, recent work by Lopez-Herrejon et al. also uses evo-
lutionary algorithms in combination of information retrieval metrics for obtaining
feature models based on the feature combinations [64, 65]. Alternative approaches
can obtain feature models based on generic propositional logic constraints [66].

Once a SPL infrastructure has been put in place, SPL testing can proceed. There
has been recent accounts of SPL testing in industrial settings, some of them relying
on evolutionary approaches. For instance, Wang et al. report on an experience in the
application of multi-objective algorithms for a video conference application [67].
The common trend in such experiences is that the critical factor is eliciting the right
feature models from the software engineers, this is so because the information of the
valid feature combinations are commonly not well documented if at all. The
application of the testing techniques in general do not require expensive hardware
or software infrastructure, as in the common cases their execution takes a few
minutes or hours in typical off-the-shelf desktop computers. There are, however,
empirical and theoretical studies on large scale feature models, mostly of academic
interest, that consider large number of features, products, or higher array strengths
(e.g. up to 6) which show approaches for coping with scalability issues (e.g. [32]).

Fig. 6 Overview of reversed engineered SPL
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7 Open Challenges and Questions

In this section we describe what we consider the most salient open challenges and
questions for SPL testing with evolutionary techniques.

Multi-objective optimization. There is an extensive body of research literature
in multi-objective optimization that remains largely untapped, for an overview see
for example [45, 46]. An open question is whether other multi-objective evolu-
tionary algorithms can yield better results and under which circumstances. In
addition, further studies are needed that explore dealing with more optimization
objectives which can for instance include information such as control-flow or
non-functional properties. Furthermore, it is an open question if so-called many-
objective optimization algorithms, those that deal with four or more objectives, can
also be effectively applied to the context of SPL testing. Of crucial importance is
their scalability as the complexity of the feature models or the strength of covering
arrays increases.

Need of community-wide testing benchmarks and comparison frameworks.
We found that the majority of works employs feature models extracted from
common repositories such as SPLOT.8 However, the selection of which feature
models to analyze in each paper appears to be arbitrary most of the times. The first
steps towards a benchmark for CIT SPL testing are advocated in [30]. Work by
Perrouin et al. proposed a comparison framework which is applied to two different
approaches [68]. However, comparisons can only be made per feature model, which
makes it infeasible to identify which approach performs overall better or under what
characteristics of the feature models [30]. Without a proper and fair benchmark and
comparison framework, the progress in the research and its transfer to industry are
severely hampered.

Exploiting more SPL domain knowledge. Because of the typically large
number of individual systems of a SPL, any information that could be exploited to
reduce the search effort is worth of consideration. For example, Haslinger et al.
leverage information from feature models to speed up the computation of covering
arrays by eliminating redundant t-sets [69, 70]. As other examples, the work by Xu
et al. that exploits static analysis techniques for achieving coverage more effectively
[34], and the work by Lopez-Herrejon et al. that studies seeding strategies [48]. It
remains an open question, whether any of the analysis techniques recently surveyed
by Thüm et al. (see [71]) could be exploited for this purpose. Also, recent work by
Fischer et al. (see [72]) computes traceability links from features and feature
interactions to the artifacts that realize them. It is an open question whether such
traceability information could also be helpful to prune the search space.

Test suite prioritization. Johansen et al. [73] propose a greedy algorithm that
adds weights to products to guide the computation of the t-wise sets. These weights
are meant to represent priority values such as commercial importance. An alter-
native parallel evolutionary algorithm was proposed by Lopez-Herrejon et al. for

8http://www.splot-research.org/.
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this scheme that can produce smaller test suites [74]. Additionally, once test suites
have been computed their feature sets can be ordered according to some criteria. For
example, Al-Hajjaji et al. propose a prioritization based on similarity [75], while
Sánchez et al. compare five SPL-specific prioritization criteria and analyze their
effect in detecting faults in order to provide faster feedback and reduce debugging
efforts [76]. Another example is the recent work by Wang et al. who proposed a
scalarized four-objective function to prioritize quasi-pairwise (not considering all
four possible combinations of a 2-wise set) tests suites [67]. Test suite prioritization
has a long research literature for single software systems (e.g. [77]) which has not
been thoroughly researched within the context of SPLs. Some open research issues
are prioritization using combinations of clustering techniques and classical
multi-objective evolutionary algorithms (instead of scalarization approaches) that
exploit the values obtained for instance from non-functional properties.

Supporting testing and analysis phases of CIT. As mentioned before, CIT
consists of four phases [21]. However, the current focus for SPL has mostly been on
the first two: modeling relying on feature models, and sampling as summarized in
Sects. 4.3 and 5.4. Hence, there is a dire need of research and practice that addresses
this limitation. Tools such as EvoSuite9 could be leveraged as starting point for
such tasks.

8 Conclusions

Software Product Lines are an emerging software development paradigm that aims
to provide a systematic and methodological reuse of all the assets involved in the
development of families of software systems, where products share common
functionality but also can have unique distinct features. The proven benefits of SPL
practices (e.g. [3]) have resulted in an increasing interest both by researchers and
practitioners on effective techniques and tools for adequately testing SPLs. The
most important challenge faced is dealing with the generally large number of
products, i.e. combinations of features, which makes an infeasible alternative testing
individually each one of them.

Recent surveys not only highlight the increasing interest in the area but also
several shortcomings and opportunities that exist on the field [4, 5, 7, 16–18].
Within the area of Search-Based Software Engineering a major research focus has
been software testing [8, 10, 22], also including evolutionary computation tech-
niques. However, most of the applications are for one-off systems rather than SPLs.
The goal of this chapter is to provide an overview of the state of the art in SPL
testing and framing evolutionary approaches within that context. We have put
forward several challenges and open questions that we believe could be fruitful
avenues for further research and practice.

9http://www.evosuite.org/.
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