
Studies in Computational Intelligence 617

Witold Pedrycz
Giancarlo Succi
Alberto Sillitti Editors

Computational
Intelligence and
Quantitative
Software
Engineering

Studies in Computational Intelligence

Volume 617

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Witold Pedrycz • Giancarlo Succi
Alberto Sillitti
Editors

Computational Intelligence
and Quantitative Software
Engineering

123

Editors
Witold Pedrycz
Department of Electrical and Computer
Engineering

University of Alberta
Edmonton, AL
Canada

Giancarlo Succi
Innopolis University
Innopolis
Russia

Alberto Sillitti
Center for Applied Software Engineering
Genova
Italy

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-25962-8 ISBN 978-3-319-25964-2 (eBook)
DOI 10.1007/978-3-319-25964-2

Library of Congress Control Number: 2015957101

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

Undoubtedly, Software Engineering is an intensive knowledge-based endeavor of
inherent human-centric nature, which profoundly relies on acquiring semiformal
knowledge and then processing it to produce a running system. The knowledge
spans a wide variety of artifacts, from requirements, captured in the interaction with
humans, the customers, to design practices, testing, and code management strate-
gies, which rely on the knowledge of the running system.

It is worth noticing that all the knowledge in place can be only partially for-
malized, and this relates not only to the interactions with customers to gather
requirements, where the human factors make the impossibility of a complete for-
malization very evident, but also dealing with design and coding, where the
intrinsic complexity of the underlying system, its evolvability and instability make
unfeasible a precise and unique description of its features.

The chapters of this volume reflect upon a comprehensive body of knowledge
positioned at the junction of the broadly perceived discipline of Software
Engineering and Computational Intelligence. In particular, the visible pillars of the
discipline embrace the following:

• Quantitative Software Engineering, which aims at building sound and practi-
cally viable methodologies of developing software artifacts,

• Nature of software models as nonlinear and highly adaptive architectures with a
visible reliance on granular character of available data and knowledge,

• Global optimization commonly supported by evolutionary and population-based
optimization technologies, delivering a necessary framework of structural and
parametric optimization.

It is instructive to walk over the contributions of this volume. The two concise
opening chapters cover the principles of Software Engineering and the associ-
ated relationship with Computational Intelligence (Chapter “The Role of
Computational Intelligence in Quantitative Software Engineering”) and funda-
mentals of Computational Intelligence (Chapter “Computational Intelligence: An
Introduction”). They serve two main objectives. First, they set up a stage for more

v

http://dx.doi.org/10.1007/978-3-319-25964-2_1
http://dx.doi.org/10.1007/978-3-319-25964-2_1
http://dx.doi.org/10.1007/978-3-319-25964-2_2
http://dx.doi.org/10.1007/978-3-319-25964-2_2

detailed and focused discussions presented in the sequence of chapters. Second,
these chapters make the volume self-contained and help the reader acquire some
useful prerequisites and establish a general conceptual and algorithmic setting.

Feature selection is an essential phase of any pattern classification scheme being
crucial to the success of ensuing classifiers. As a matter of fact, selecting the best
suite of features is of paramount relevance to the improved classification rate,
prediction accuracy, and reduced computing overhead. There have been numerous
approaches addressing this problem including a series of representative examples
such as information gain attribute ranking (IG), Relief (RLF), principal component
analysis (PCA), correlation-based feature selection (CFS), consistency-based subset
evaluation (CNS), wrapper subset evaluation (WRP), and an evolutionary com-
putation method including genetic programming (GP). Classification of artifacts of
Software Engineering is not an exception to this rule and speaks loudly to the
relevance of processes of feature selection. The chapter authored by Afzal and
Torkar studies this important topic in the setting of software fault prediction
models. The authors demonstrated quantifiable advantages of feature selection
clearly manifesting in the increased classification accuracy.

Software testing is the critical development phase irrespectively of the specific
methodology of software architecture and design and becomes of paramount rel-
evance to the quality of the constructed software. In virtue of its nature, software
testing is a highly computationally intensive process. Exhaustive testing is not
feasible at all; hence, there is an ongoing quest to develop an efficient heuristics that
reduces computing overheard while still retaining the effectiveness of a suite of
tests. The study by Lopez-Heron, Fervier, Chiclano, Wegedyd, and Alba tackles the
essence of this evident and timely challenge: The authors investigate a highly
promising avenue of evolutionary computing as a vehicle supporting testing of
software product lines. Along with a concise exposition of the key benefits of
evolutionary computing, the authors identify key challenges associated with the
specificity of software testing and the immensely overwhelming curse of
dimensionality.

The study authored by Patrick delivers an authoritative treatment of the subject
of software testing by focusing on test data generation where such data are gen-
erated via meta-heuristics and mechanisms of mutation. Mutation is a well-known
testing approach that helps assess the abilities (quality) of existing suites of test
cases to identify faults. It produces a large number of mutants—programs
exhibiting some small syntactic change of the code. The key challenge is to form a
suitable fitness function which helps assess the quality of this suite of tests. The
chapter brings forward a large collection of fitness functions developed by
nature-inspired algorithms.

The realm of Computational Intelligence, especially pattern recognition with its
plethora of classification schemes, is investigated by Pizzi in his contribution
devoted to the quantifying the utility of functional-based software. The quality of
software components developed in this way is described by a series of software
metrics and their labeling for classification purposes is completed with the use of
centroid-based method and the technology of fuzzy sets.

vi Preface

In the chapter authored by Twala and Verner, a central problem of software cost
estimation is analyzed with the use of multiple classifier systems. The paradigm of
multiple classifiers has been shown to exhibit tangible benefits in numerous
applications: Simple classifiers of relatively weak performance combined together
(though bagging or boosting) tend to offer a significant improvement in terms
of their combined classification performance. The study exemplifies the perfor-
mance when using 10 industrial datasets and showing the improved performance in
terms of the achieved smoothed error rate.

Tamir, Mueller, and Kandel study the technology of fuzzy sets in application to
Quantitative Software Engineering Requirements specification. Requirements
specification is very much a human-oriented process that helps eliciting, docu-
menting, and formalizing software requirements about the tasks that the software
must support. Generalizing this notion of viewing software from an operator’s
perspective yields the concepts of viewing software requirements from the external
tasks. The authors propose a novel idea of complex fuzzy logic reasoning to artic-
ulate and prudently quantify intricate relations existing among various software
engineering constraints including quality, software features, and development effort.
Complex fuzzy logic has been around for some time and the authors demonstrate its
abilities to capture and quantify the essence of expressing requirements.

The theory of possibility and necessity, being an integral part of the discipline of
fuzzy sets, has been creatively investigated by Bellandi, Cimato, Damiani, and
Gianini. The thorough discussion convincingly articulates the need of granular
constructs (fuzzy sets) along with the possibilities and necessities to quantify and
characterize risk assessment. The detailed studies are focused on disclosure risk
assessment in cloud processes described by a possibilistic model of information
disclosure. The ensuing case study concerns cloud-based computations.

We really enjoyed working on this project on a timely, highly relevant and truly
multidisciplinary and hope the readers will find this volume informative and helpful in
pursuing research and applied studies in a creative exploration of the concepts,
methodology, and algorithms of Computational Intelligence in Software Engineering.

Our thanks go to the contributors of this volume whose expertise and enthusiasm
made this project successful. We would like to express our thanks to Professor
Janusz Kacprzyk, Editor-in-Chief of this book series for his continuous support,
vision, and to bring advanced technologies of Computational Intelligence and their
recent and the most successful practices. It was our genuine pleasure working with
the professional staff of Springer throughout the realization of this publication
project.

Support from the Department for Educational Policies, Universities, and
Research of the Autonomous Province of Bolzano, South Tyrol, to Witold Pedrycz
is gratefully acknowledged.

June 2015 Witold Pedrycz
Giancarlo Succi
Alberto Sillitti

Preface vii

Contents

The Role of Computational Intelligence in Quantitative
Software Engineering . 1
Witold Pedrycz, Alberto Sillitti and Giancarlo Succi

Computational Intelligence: An Introduction . 13
Witold Pedrycz, Alberto Sillitti and Giancarlo Succi

Towards Benchmarking Feature Subset Selection Methods
for Software Fault Prediction . 33
Wasif Afzal and Richard Torkar

Evolutionary Computation for Software Product Line Testing:
An Overview and Open Challenges . 59
Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano,
Alexander Egyed and Enrique Alba

Metaheuristic Optimisation and Mutation-Driven Test Data
Generation . 89
Matthew Patrick

Measuring the Utility of Functional-Based Software
Using Centroid-Adjusted Class Labelling . 117
Nick J. Pizzi

Toward Accurate Software Effort Prediction Using Multiple
Classifier Systems . 135
Bhekisipho Twala and June Verner

Complex Fuzzy Logic Reasoning-Based Methodologies
for Quantitative Software Requirements Specifications 153
Dan E. Tamir, Carl J. Mueller and Abraham Kandel

Possibilistic Assessment of Process-Related Disclosure
Risks on the Cloud . 173
Valerio Bellandi, Stelvio Cimato, Ernesto Damiani and Gabriele Gianini

ix

http://dx.doi.org/10.1007/978-3-319-25964-2_1
http://dx.doi.org/10.1007/978-3-319-25964-2_1
http://dx.doi.org/10.1007/978-3-319-25964-2_2
http://dx.doi.org/10.1007/978-3-319-25964-2_3
http://dx.doi.org/10.1007/978-3-319-25964-2_3
http://dx.doi.org/10.1007/978-3-319-25964-2_4
http://dx.doi.org/10.1007/978-3-319-25964-2_4
http://dx.doi.org/10.1007/978-3-319-25964-2_5
http://dx.doi.org/10.1007/978-3-319-25964-2_5
http://dx.doi.org/10.1007/978-3-319-25964-2_6
http://dx.doi.org/10.1007/978-3-319-25964-2_6
http://dx.doi.org/10.1007/978-3-319-25964-2_7
http://dx.doi.org/10.1007/978-3-319-25964-2_7
http://dx.doi.org/10.1007/978-3-319-25964-2_8
http://dx.doi.org/10.1007/978-3-319-25964-2_8
http://dx.doi.org/10.1007/978-3-319-25964-2_9
http://dx.doi.org/10.1007/978-3-319-25964-2_9

The Role of Computational Intelligence
in Quantitative Software Engineering

Witold Pedrycz, Alberto Sillitti and Giancarlo Succi

Software development has been often considered as a “standard” manufacturing
activity, whose actions can be sequenced and optimized quite like the production of
cars. From this the “Waterfall Model” of software production was defined. But, like
most human activities, even what people consider a “simple” production of a
Cappuccino, cannot be represented as such, and software is definitely more difficult
than making a Cappuccino; in particular, in software three major problems occur:
irreversibility, uncertainty, and complexity. This has lead to the emergence of novel
approach to software production that acknowledges such problems and reverts
upside-down the idea of formalizing software processes with a waterfall approach.
However, such acknowledgment has not yet been fully received in the area of
empirical and quantitative software engineering, where software processes have
been still modeled usually with standard statistics and other traditional mathemat-
ical tools. We advocate that the usage of Computational Intelligence can translate
into empirical and quantitative software engineering the paradigm shift imple-
mented by the new, emerging process models in software development.

W. Pedrycz (&)
Department of Electrical and Computer Engineering, University of Alberta,
Edmonton, AB T6R 2V4, Canada
e-mail: wpedrycz@ualberta.ca

W. Pedrycz
Department of Electrical and Computer Engineering, Faculty of Engineering,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

A. Sillitti
Center for Applied Software Engineering, Genova, Italy

G. Succi
Innopolis University, Innopolis, Russia

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_1

1

1 Introduction—Software Development and the Art
of Cappuccino

Software development is not a simple and straightforward process; it must be
approached in an organized way. We illustrate some of the organizational issues
with an extended example—preparing a cup of cappuccino.

Suppose you want to have a good cup of cappuccino and suppose you are at
home, so you cannot go to Starbucks and get one! Preparing a cappuccino requires
a sequence of operations. We can represent such operations with a flowchart. After
all, we are software engineers, so flowcharts are quite familiar to us.

The graph in Fig. 1 makes a lot of sense. It is clear, and unambiguous. When we
follow its well-defined set of operations, we accomplish our goal of having an
excellent cup of cappuccino, or … we think (hope?) we do…

However, there is an additional fact that doesn’t appear in the chart: we should
not let the espresso get cold while we steam the milk.

Indeed, describing how to draw this step is not a problem for us. After all, we are
software engineers and we know how to draw a Petri net (Fig. 2).

The horizontal line represent points at which the activities are synchronized. The
execution of the tasks proceeds only when all the activities above the bar
(“entering” the bar) have been completed.

Well, now we are ready to get our MSC.1

However, if you try to accomplish the cappuccino-making tasks as shown in
Fig. 2, you will realize that there are a few problems still to cope with:

1. If you live in the mountains, it may be possible that your cup of espresso is not
as good as that the cup you might enjoy at the sea level: The water boils earlier
at higher elevations, so you might lose some of the aroma.

2. The choice of the coffee from which you make the espresso has a significant
impact on the resulting quality of the cappuccino; the same for the quality of the
water you use, (sometimes bottled water is required) and the same for the kind
of milk.

3. The basic resources are perishable. Once you have made a bad espresso, there is
no way to undo the process and get back the original coffee. The coffee is simply
wasted. Moreover, the milk cannot be steamed too many times. After a while,
steaming the milk does not produce any more foam; the milk is just gone.

4. The magic touch! You need a special touch to make a good cappuccino. The
touch is needed when you prepare the espresso. Otherwise the espresso would
become a Lungo or an Americano. The touch is needed when you have the foam
ready and you pour it in the cup. Without such touch, the cappuccino could well
become just a Latte.

1Master in the Science of Cappuccino.

2 W. Pedrycz et al.

http://dx.doi.org/10.1007/978-3-319-25964-2_2

Fig. 1 A chart explaining
how to prepare a cup of
cappuccino

The Role of Computational Intelligence … 3

To make evident that the inability of formalizing properly the production process
is not just a problem of a few coffee-enthusiasts, we can also consider the product
lifestyle used by civil engineers who build homes. In building a home, the engineer
and the future homeowners follow a few essential steps, which were learned and

Prepare the Espresso

Put the espresso in the

Cappuccino cup

Steam the milk, producing a

thick foam

Start

Put the foamed milk in the

cappuccino cup

Add the sugar and stir the

cappuccino till perfection

Fig. 2 A Petri net explaining how to prepare a cup of cappuccino

4 W. Pedrycz et al.

refined from the experience of several centuries of building and owning houses.
Such steps can be summarized as follows.

• Analyze the requirements of the customers.
• Design the home.
• Purchase the land on which to build the home.
• Commission the development to a builder.
• Check the resulting building for conformance to our requirements and to the

municipal, provincial, and federal standards.
• Maintain the house through regular cleaning, restorations, and additions.

Notice that also in this case:

• The lifecycle is based on experience and does not depend on some predefined
model.

• The lifecycle stages aim at reducing uncertainty in the use of the product and at
reducing the complexity in the overall development.

• The stages are changeable; they could be altered if better or more suitable stages
could be found.

2 Persistent Problems in Software Development

Altogether, we can claim that both in the case of the cappuccino and in the case of
the construction of buildings, not all factors are under our control. We cannot travel
to get to sea level for a better cup of cappuccino. Worse, not all of the factors are
predictable. Look at the magic touch or at the ever-changing desires of the cus-
tomers. You can identify its presence or absence only after the cappuccino making
is complete or the home is fully built. In fact, the entire process of preparing a good
cappuccino is permeated by a terrible characteristic, one that makes us very nervous
each time we hear it: “uncertainty.” This is why, once we do realize to have found
an excellent cappuccino shop, we stick to it with a religious faith. And this is
practically the same when we build a home.

Moreover, there is another issue to consider: “We always get older!” There is no
way to revert this irreversible passage of time, despite years of medical studies, and
the efforts of Superman, Wonder Woman, and Austin Powers. And there is no way
to rescue a bad espresso: the coffee is gone. And even worse, after a while, there is
no way to produce foam from already steamed milk! So, overall there are situations
that are irreversible throughout the production of cappuccino. Likewise, once we
have build a home, we cannot move it by 50 cm more north or rotate it a bit more so
that the master bedroom looks properly at the rising sun.

Now, suppose you get good in producing espressos and you start building a little
business for your classmates. You are now faced with the problem of preparing ten
cappuccinos at the same time. You might be tempted to ask for help. You might
even think to ask your boyfriend or girlfriend to assist you. Do not do it! If you did,

The Role of Computational Intelligence … 5

you would realize soon that you would have to decide upfront the tasks for each one
of you, determine when you need to accomplish such tasks, and how you can
synchronize your different actions. This requires time and discipline. If you do not
believe us, go to the closest Starbucks and watch at what the waiters do! We call
this the problem of “complexity.”

Successful software managers, engineers, and developers need to cope with
these three factors to deliver software “on time and within budget” [8]. Uncertainty,
irreversibility and coordination are present throughout the life of software systems,
before, during, and after development. Table 1 summarizes these relationships, and
each is further explained in the sections that follow.

3 Uncertainty

Before development, uncertainty comes from the difficulty of communication
among customers, among developers, and between customers and developers.
Uncertainty is present before development in the expectations of the customers:
often the customer has not set his/her mind to what is really wanted; often the
customer does not manage to express what s/he wants in terms understandable by
the developers. Or, the business goals of the managers and the personal goals of
developers may be not entirely clear to everyone in the team. Such goals may not be
aligned and thus not point to customer satisfaction.

During development, the developers may have the unpleasant surprise of finding
that the supporting tools do not work as they expected, that the libraries do not
adhere to the available documentation. The resources required to develop the
system may not be available or reliable.

Table 1 Examples of uncertainty, irreversibility, and coordination throughout software
development

Before development During development After development

Uncertainty in The desires of
customer; the business
goals of managers; the
personal goals of
developers

The resources required
to develop the system;
the reliability of the
tools and the libraries
used for the system

The failures of the
system; the
possibility for the
system to work in
different OSs and
architectures

Irreversibility
in

The definition of the
expected level of
reliability

The architecture of the
system; structures of
packages

The level of support
decided; upgrading
to a new platform

Complexity in Customers, managers,
marketing people, and
analysts

Cowboy coding,
spaghetti code

Customers, customer
service, developers,
and managers

6 W. Pedrycz et al.

After development, the user may find that the system crashes every now and then,
with a quite unpredictable pattern. In addition, porting the system to a new PC or
upgrading the operating system may result in the system not working as expected.

4 Irreversibility

Irreversibility comes from the impossibility of reverting to a previous state. In a
sense, we always experience irreversibility: there is no way to reverse time! A major
source of irreversibility lies in the fact that resources spent never come back. So if
we waste useless time in doing work that later appear to be not needed, such time is
not recoverable easily. This aspect of irreversibility is closely related to the problem
of uncertainty. We do not know upfront all what will be needed. So we estimate,
and our ability to estimate well reduces the waste. However, estimates may depend
on factors beyond our knowledge.

Before development, irreversible decisions may be made when the customer
specifies a given quality of the resulting system. For example, the customer may
consider acceptable a tool that crashes every second hour. Later, it may be difficult
to increase the expected quality of the software system. An even worse situation
arises when the customer does not specify such a quality level, but developers
incorrectly make assumptions of what is acceptable.

During development, irreversible decisions can permeate the entire process, from
deciding the architecture of the system, to the selection of design patterns, down to
the structure of the unit tests. Each one of these decisions commits the developer to
subsequent choices and blocks other choices. Undoing such decisions is expensive,
even more with passing time.

After development, irreversible decisions can also include a decision to upgrade
or not to upgrade a software system to a new architecture, this may introduce
irreversible mechanisms that affect the future life of the system.

5 Complexity

Complexity comes from the Latin words “cum,” meaning “with,” and “plexo,”
meaning “put together.” It expresses the difficulty of mastering all the details of a
very intricate issue.

In software projects, the number of decisions that must be is much higher than in
any other field. After all, we call the product “soft”ware to evidence that we deal
with soft entities, that are easy to modify and rearrange according to our needs.
There is therefore a high risk of ending with an intractable complexity.

Before development, complexity is high. Coordinating different—any persons
who are interested in the system—is a very complex task involving customers
(who pay for the system), users (who use the system), managers, designers,

The Role of Computational Intelligence … 7

developers, marketing people, and so on. Successful development requires aligning
the goals of these multitudes of people to the common end of a working system in
time and on budget.

After development, uncertainty may persist. Uncertainty and irreversibility make
it hard to synchronize plans completely early in the lifecycle of a project. Therefore,
such coordination among stakeholders is required throughout the development
cycle, before, during, and after.

6 Handling Uncertainty, Irreversibility, and Complexity
… and Cappuccino!

Indeed, there have been multiple proposals to handle Uncertainty, Irreversibility,
and Complexity in Software Development. Among the most notable, there have
been the efforts of the whole agile movement. To get to that point, we revisit now
the example of the preparation of the Cappuccino.

The product lifecycle of a cup of cappuccino at a good cappuccino shop is the
following:

1. Training of waiters: The waiters are taught how to prepare the cappuccino.
2. Acquisition of raw materials: Fresh milk and Arabic coffee beans are purchased.
3. Preparation of the ingredients: The espresso is prepared and the milk is foamed.
4. Finalization of the cappuccino: The espresso is put in the cup followed by the

foamed milk.
5. Delivery: The cup of cappuccino is served to the customer.
6. Consumption: The customer enjoys the cappuccino.

A good product relies on the understanding and appreciation of all the people
involved in its production and in its consumption.

• Cappuccino developers understand “the big picture” of the preparation of a cup
of cappuccino and learn how to make it.

• Cappuccino consumers appreciate the complex process required to develop a
cappuccino and are patient for the few extra minutes required to prepare a good
cappuccino, rather than quickly grabbing a regular American coffee that can be
served instantaneously.

• A clear difference can be drawn between good cappuccino shops and standard
cappuccino shops (the one where an instantaneous pseudo-cappuccino comes
from a strange, metallic box).

Good cappuccino shops try to explain such steps to their customers, making the
process of preparing a cappuccino a ceremony visible to everyone, and providing
leaflets on coffee, espresso machines, and related materials.

Formalizing the steps in the process is more or less what the ISO 9000 quality
process requires. Please refer to the later chapter of this book for a more detailed
description.

8 W. Pedrycz et al.

Altogether, the definition of the lifecycle for a product reduces the effects of the
three beasts of uncertainty, irreversibility, and complexity:

• It reduces the uncertainty of customers, because descriptions are provided
stating what will be done.

• It reduces the complexity of development, because descriptions are provided
stating what will be done and why.

Also, the lifecycle stages for a product may not always be the same in every
context. In the case of the cup of cappuccino, you go to one of the most fashionable
coffee shops in Rome, the “Caffè Sant’Eustachio,” you will see a different process
for cappuccino. The actual process is kept secret and the cappuccino is developed in
the dark of a little closet. The stages are just steps learned from experience. That
experience ensures the consistency of the final results.

Starting with the late ‘90 people have started to target this problem with alter-
native models that appear to stem form the experiences of Lean Management [12]
in manufacturing and of Spiral Development Models in Software Engineering [4]:
the so-called Agile Models [1], which have emerged and acquired a prominent role.
Agile Models of software development, like XP [3], Scrum [9], Kanban [2] are now
very common in the industry [10] and are part of most software engineering cur-
ricula. They are based on the idea of eliminating the “waste” from software pro-
duction, including the expensive long-term planning sessions and large upfront
design activities, to focus on what is predictable with reliability and developable
with a reliable understanding that will be effectively useful in the construction of
what is desired by the customer. Moreover, Agile Methods focus on establishing a
high band of communication with the customer, so that a better mutual under-
standing of what is desired (from the side of the customer) and what is feasible
(from the side of the developer) is achieved, with the positive resulting implications
of the system under development.

7 The Pivotal Role of Computational Intelligence
in Quantitative Software Engineering

So far we have seen that the traditional “divide-and-conquer” approach of the
so-called scientific management falls short in the preparation of the cappuccino and
in the construction of homes and does not hold for software development. This
concept is now largely diffused and accepted.

Still, when we deal with modeling and interpreting software development pro-
cesses, when we try to determine the effort required to build a software system or its
resulting quality, we still rely on pretty conventional mathematical abstractions,
which do not take into account the presence of complexity, irreversibility, and
uncertainty.

The Role of Computational Intelligence … 9

This is the place where Computational Intelligence plays a pivotal role, since:

• It expresses uncertainty by its own nature. Just as an example, fuzzy systems
represent well elements whose natures are not defined in a two-valued Boolean
way. Consider the case of requirements: only at the end of the project we know
which requirements have been implemented, and only partially, as we know
from the halting problem. Still, at the beginning of a project, regardless of the
lifecycle model, requirements are assigned priority, planned resources, etc.
Needless to say, all such numerifications of the problem are by their own nature
mistake, since they do not take into account the fact that the reliability of such
number is often similar to the one of an unprofessional psychic2 predicting the
future.

• It handles complexity by its own nature. Just as an example, neural networks are
able to model the behaviours of systems by observing them and learning from
such observations. Therefore, neural network are suitable when a formal and
explicit modeling is not derivable. This is the case, for instance, in building
predictive models of the effort and the time to produce a software system: in this
area there have been countless proposals so far, but the only comprehensive
models date decades and, indeed, are absolutely unusable in practical contexts.

• It incorporates the nature of irreversibility, that is, the fact that solutions are
typically non-linear and, therefore, not associable and dissociable, i.e., that the
path leading to a solution influences also the solution which is found. This is
what happens in typical problems of minimization in computational intelligence,
where the initial conditions indeed impact the final solution. A clear example of
this in the production of software systems is the selection of the order of
implementation of requirements. There are researchers who have assumed a
hedonic model, where we assign a cost to each requirement and then whatever is
the sequence of their implementation, then the final cost is the sum of the partial
costs. This is simply false. And, please note that we are not referring to the clear
case when, for instance, to build a transaction on a database we need to have the
database in place—in this case it is obvious that building the transaction before
the database would result in much higher costs. We are rather referring to the
situation of allegedly independent requirements: implementing a requirement
and, if the case, showing it to the customer, has the potential and the likelihood
to alter the developers and, if it is the case, the customers perceptions of the
system being built, and thus, how the future requirements will be taken care of.

People might be puzzled why, if our argumentation is true, computational
intelligence has not been implemented more often and systematically in Software
Engineering. Our idea is that it is a learning process that follows with some delay
the fate of the various proposal for software lifecycles to the proposals of how to
quantify aspects of the production process building suitable models. Therefore, after

2Professional psychic in general are better in this, since they are able to express their predictions in
a very dubitative form, which makes them useless but rarely falsifiable.

10 W. Pedrycz et al.

about a decade and a half from the beginning of the heavy diffusion of Agile
Methods in the industry, it is now the time that Computational Intelligence takes the
leading role, offering to researchers the suitable models and techniques to build
quantitative models of software production, this achieving higher reliability in
process control and estimation, which would result in better selecting also the
lifecycle models to adopt in the various situations; to this end some effort has
already started [6].

8 Conclusions

The production of even of simple artifact, like a cappuccino, can be hardly repre-
sented by formal mathematical elements and managed accordingly. Software
development, which is far from being simple, repels from any crisp representation
and management. To this end, innovative methods of handling software production
have been proposed, like Agile Methods.

If it is not possible to manage the software in such “scientific way,” it is com-
pletely unfeasible the idea to represent software with linear models and/or well
defined formulas. This acknowledgement paves the way for the adoption of tech-
niques from Computational Intelligence, which model more effectively and reliably
unclear and uncertain situations, like the ones typical of software.

While there have been proposals already in the past, we think that only now is
the proper time to run deep and systematic investigations in the use of these
techniques in software, since:

• there has been a full acknowledgement in the technical and scientific community
of the unfeasibility of scientific management in software,

• after years of scarce availability of software engineering data, also thanks to the
adoption of non invasive software measurement techniques, there is finally an
abundance of it, that makes possible to perform analysis previously unfeasible.

The hope is that with the adoption of suitable techniques of Computational
Intelligence [7], it will be finally possible to answer the typical questions of soft-
ware production, like whether Pair Programming is indeed beneficial [5, 10], in
which context it is suitable to perform upfront design and when, in converse, it is
better to perform pure incremental development [11].

References

1. Agile Manifesto: Manifesto for Agile software development (1999). URL: http://
agilemanifesto.org. Visited on the 21 May 2015

2. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, USA (2010)

The Role of Computational Intelligence … 11

http://agilemanifesto.org
http://agilemanifesto.org

3. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(1999)

4. Boehm, B.W.: A spiral model of software development and enhancement. IEEE Comput. 21
(5), 61–72 (1988)

5. Coman, I.D., Sillitti, A., Succi, G.: Investigating the usefulness of pair-programming in a
mature agile team. In: Agile Processes in Software Engineering and Extreme Programming,
Proceedings of XP2008, pp. 127–136. Springer, Berlin

6. Fronza, I., Sillitti, A., Succi, G., Terho, M., Vlasenko, J.: Failure prediction based on log files
using random indexing and support vector machines. J. Syst. Softw. 86(1), 2–11 (2013)

7. Pedrycz, W., Succi, G., Sillitti, A., Iljazi, J.: Data description: a general framework of
information granules. Knowl. Based Syst. 80, 98–108 (2015)

8. Putnam, L.H., Myers, W.: Measures for Excellence: Reliable Software on Time. Within
Budget, Yourdon (1992)

9. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, USA (2004)
10. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming on

developers attention: a case study on a large industrial experimentation. In: Proceedings of the
34th International Conference on Software Engineering, Zurich, CH, pp. 1094–1101

11. Valerio, A., Succi, G., Fenaroli, M.: Domain analysis and framework-based software
development. Appl. Comput. Rev. 5(2), 4–15 (1997)

12. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in Your
Corporation. Productivity Press, Revised and Updated (2003)

12 W. Pedrycz et al.

Computational Intelligence:
An Introduction

Witold Pedrycz, Alberto Sillitti and Giancarlo Succi

Abstract The study offers an introduction to the paradigm, concepts and algo-
rithms of Computational Intelligence (CI). We elaborate on the main technologies
of CI: neural networks, fuzzy sets or Granular Computing, in general, and evolu-
tionary optimization and identify their focal points and stress an overall synergistic
character of these technologies, which ultimately gives rise to the highly symbiotic
processing environment. Furthermore, the main advantages and limitations of the
CI technologies are discussed. The key linkages of CI with the area of Software
Engineering, especially its quantitative facet, are stressed.

Keywords Computational intelligence � Neurocomputing � Fuzzy sets �
Information granules � Granular computing � Interpretation � Synergy � Software
engineering

1 Introduction

In this study, we discuss the main conceptual, methodological and algorithmic
pillars of Computational Intelligence (CI), identify their main features and elaborate
on their role in biomedical signal processing. To a significant extent, the content of

W. Pedrycz (&)
Department of Electrical and Computer Engineering, University of Alberta,
Edmonton, AB T6R 2V4, Canada
e-mail: wpedrycz@ualberta.ca

W. Pedrycz
Department of Electrical and Computer Engineering, Faculty of Engineering,
King Abdulaziz University, Jeddah 21589, Saudi Arabia

A. Sillitti
Center for Applied Software Engineering, Genova, Italy

G. Succi
Innopolis University, Innopolis, Russia

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_2

13

this study is self-contained and the most essential ideas are elaborated on from
scratch. The reader can benefit from some introductory knowledge of the subject
matter on neural networks, fuzzy sets and evolutionary computing; see, for instance
[25, 26]. The presentation is structured in a top-down manner. We start with a
concise introduction to Computational Intelligence (CI) being viewed as a highly
synergistic environment bringing a number of highly visible technologies of
Granular Computing, neural networks, and evolutionary optimization (Sect. 2). In a
sequence of sections, Sects. 3–5, we discuss neurocomputing, evolutionary opti-
mization, and Granular Computing. Furthermore we show that the three main
technologies of CI are naturally inclined to foster and exploit useful synergistic
linkages. Formal platforms of information granularity are discussed in Sect. 6. We
elaborate on information granularity and its role in signal representation in Sect. 7.
The concept of information granulation-degranulation is discussed in Sect. 8. The
design of information granules regarded as semantically sound abstractions is
covered in Sect. 8. Here we discuss ways where not only numeric data—experi-
mental evidence is taken into account but various tidbits of domain knowledge are
also used in the formation of information granules. In Sect. 9, we visualize a role of
CI in software engineering.

With regard to the notation used in this study is concerned we follow the
symbols being in common usage. Patterns (data) x1, x2,…, xN are treated as vectors
located in n-dimensional space Rn, ||.|| is used to denote a distance (Euclidean,
Mahalanobis, Hamming, Tchebyshev, etc.). Fuzzy sets will be described by capital
letters; the same notation is being used for their membership functions.

2 Computational Intelligence: An Agenda of Synergy
of Algorithms of Learning, Optimization
and Knowledge Representation

Computational Intelligence can be defined in many different ways. Let us start by
recalling two definitions or descriptions, which are commonly encountered in the
literature

A system is computationally intelligent when it: deals with only numerical (low-level) data,
has pattern recognition components, does not use knowledge in the AI sense; and addi-
tionally when it (begins to) exhibit (1) computational adaptivity; (2) computational fault
tolerance, (3) speed approaching human-like turnaround, and (4) error rates that approxi-
mate human performance [5, 6]

The description provided by W. Karplus comes as follows

CI substitutes intensive computation for insight how the system works. Neural networks,
fuzzy systems and evolutionary Computation were all shunned by classical system and
control theorists. CI umbrellas and unifies these and other revolutionary methods

The first description captures the essence of the area. Perhaps today such a
definition becomes slightly extended by allowing for some new trends and

14 W. Pedrycz et al.

technologies, which are visible in the design of intelligent systems. Nevertheless the
essence of CI is well-captured.

The comprehensive monograph on CI [26] emphasizes the importance of syn-
ergy of the contributing and very much complementary technologies of fuzzy sets,
neurocomputing and evolutionary optimization. In a nutshell, CI is about effective
and omnipresent mechanisms of synergy exploited in a variety of tasks of analysis
and design of intelligent systems. The reader may refer to Fulcher and Jain [8] and
Mumford and Jain [15], which serve as comprehensive sources of updated material
on Computational Intelligence.

The emergence of CI is justifiable, and in some sense, unavoidable. Over time,
being faced with more advanced problems, increased dimensionality and com-
plexity of systems one has to deal with, neural networks, fuzzy sets and evolu-
tionary computing started to exhibit some clear limitations. This is not startling at
all as their research agendas are very much distinct and they focus on different
aspects of the design of intelligent systems. The synergistic environment, in which
knowledge representation, learning and global optimization go hand in hand,
becomes a highly justifiable development environment.

Let us discuss in more detail on knowledge representation as being captured by
fuzzy sets. Fuzzy sets offer a unique and general opportunity to look at information
granules as semantically meaningful entities endowed with detailed numeric
description. For instance, consider an information granule termed high amplitude of
signal. On the one hand, high is just a single symbol and as such could be processed
at the level of symbolic processing encountered in Artificial Intelligence (AI). For
instance, it could be one of the symbols used in syntactic pattern classifier captured
by a collection of syntactic production rules or automata. On the other hand, the
same granular entity high is associated with the detailed numeric description, which
calibrates the concept in presence of available numeric evidence. A suitable level of
abstraction helps us establish the most promising tradeoff between detailed and
abstract view at the problem/data. Of course, the choice of the tradeoff is problem
driven and depends upon the task and the main objectives specified therein.
Likewise, the same information granule high can be looked at in less detail and
through the use of some partially specified numeric content (that is in the form of
higher type information granules, say fuzzy sets of type-2) could be processed in a
semi-numeric fashion. In this way, the granularity of information and a formal
mechanism used in granulation itself offers a way to position anywhere in-between
symbolic view and numeric perception or quantification of the reality.

One may emphasize an important and enlightening linkage between
Computational Intelligence and Artificial Intelligence (AI). To a significant extent,
AI is a synonym of symbol-driven processing faculty. CI effectively exploits
numeric data however owing to the technology of Granular Computing, it may
invoke computing based on information described at various levels of granularity
by inherently associating such granules with their underlying semantics described
in a numeric or semi-numeric fashion (such as e.g., membership functions, char-
acteristic functions or interval-valued mappings). The granularity of results supports
the user-friendly nature of CI models. They can also form an important construct to

Computational Intelligence: An Introduction 15

be further used in facilitating interaction with the user as well as forming linkages
with symbolic processing of AI constructs. The three fundamental components of
CI along with an emphasis on their synergy of the main function give rise to a
plethora of architectures in which various technologies assume a dominant role.
This comes with various names such as neurofuzzy systems, evolutionary neural
networks, genetic neural classifiers, etc. Let us recall that knowledge representation
associated with the component of information granularity (along with its abstraction
facet), learning (adaptive) abilities and global structural optimization (supported by
evolutionary methods).

3 Neural Networks and Neurocomputing

There exists an immensely vast body of literature on neural networks. Neural
networks are viewed as highly versatile distributed architectures realizing a concept
of universal approximation [10, 27], which offers a very much attractive feature of
approximating nonlinear (continuous) mappings to any desired level of accuracy
and in this way supporting various classification tasks.

The two main taxonomies encountered in neurocomputing can be established
centered around: (a) topologies of networks and (b) a variety of ways of their
development (training) schemes. With regard to the first coordinate of the taxon-
omy, one looks at a way in which individual neurons are arranged together into
successive layers and a way in which processing is realized by the network, namely
if this is of feedforward nature or there are some feedback linkages within the
structure. Typically, within the spectrum of learning scenarios one distinguishes
between supervised learning and unsupervised learning however there are a number
of interesting learning schemes, which fall in-between these two extreme positions
(say, learning with partial supervision, proximity-based learning, etc.).

One needs to be aware of some limitations of neural networks that start mani-
festing in practical scenarios (those drawbacks might be alleviated to some extent
but it is unlikely they will vanish completely). From the perspective of practice of
neural networks in the context of biomedical signal processing, we can list a
number of advantages. The main of those include: universal approximation capa-
bilities (neural networks are universal approximators), significant learning abilities
with a large repository of algorithms, well-developed and validated training
methods. Neural networks support distributed processing, which as a result exhibit
high potential for endowing them with significant fault tolerance capabilities. Just
recently, there is a visible interest in the efficient realizations of networks, especially
when considering their usage in portable medical devices. Along with these evident
advantages, one has to be aware of several limitations of which neural networks are
not free from. Neural networks exhibit black-box architectures (in other words,
there is some effort to interpret constructed networks). Gradient-based optimization
exhibits all limitations associated with this type of learning.

16 W. Pedrycz et al.

We witness non-repetitive results of learning of the networks (depending upon
initial learning condition, parameters of the learning algorithm, etc.) while the
learning realized in the presence of high-dimensional and large data sets could be
slow and inefficient.

We should highlight that by no means neural networks can be sought as a
plug-and-play technology. To the contrary: its successful usage does require careful
planning, data organization and data preprocessing, a prudent validation and a
careful accommodation of any prior domain knowledge being available. The black
box nature of neural networks can bring some hesitation and reluctance to use the
neural network solution and one has to be prepared for further critical evaluation of
the obtained results.

4 Evolutionary and Biologically Inspired Computing:
Towards a Holistic View at Global Optimization

The attractiveness of this paradigm of computing stems from the fact that all
pursuits are realized by a population of individual potential solutions so that this
offers a very much appealing opportunity of exploring or exploiting a search space
in a holistic manner [9]. The search is realized by a population—a collection of
individuals, which at each iteration (generation) carry out search on their own and
then are subject to some processes of interaction/communication.

In case of genetic algorithms, evolutionary methods, and population-based
methods (say, genetic algorithms, evolutionary strategies, particle swarm opti-
mization), in general, a population undergoes evolution; the best individuals are
retained, they form a new population through recombination. They are subject to
mutation. Each operator present in the search process realizes some mechanism of
exploration or exploitation of the search space. A general processing scheme can be
outlined as follows

{evaluate population (individuals)
select mating individuals (selection process)
recombination
mutation}

The above basic sequence scheme is repeated (iterated).
In contrast to evolutionary methods, in the swarm-based methods [7], we

encounter an interesting way of sharing experience. Each particle relies on its own
experience accumulated so far but it is also affected by the cognitive component
where one looks at the performance of other members of the population as well as
an overall behavior of the population.

The essential phase of any evolutionary and population-based method (directly
affecting its performance) is a representation problem. It is concerned about a way
how to represent the problem in the language of the search strategy so that (a) the

Computational Intelligence: An Introduction 17

resulting search space is made compact enough (to make the search less time
consuming) and (b) is well reflective of the properties of the fitness function to be
optimized. By forming a suitable search space we pay attention to avoid forming
extended regions of the search space where the fitness function does not change its
values.

The forte of the methods falling under the rubric of these population-based
optimization techniques is the genuine flexibility of the fitness function—there is a
great deal of possibilities on how it can be formulated to capture the essence of the
optimization problem. This translates into an ability to arrive at a suitable solution
to the real-world task.

The inevitable challenges come with the need to assess how good the obtained
solution really is and a formation of the feature space itself.

5 Information Granularity and Granular Computing

Information granules permeate numerous human endeavors [1, 3, 19, 29, 30]. No
matter what problem is taken into consideration, we usually express it in a certain
conceptual framework of basic entities, which we regard to be of relevance to the
problem formulation and problem solving. This becomes a framework in which we
formulate generic concepts adhering to some level of abstraction, carry out pro-
cessing, and communicate the results to the external environment. Consider, for
instance, image processing. In spite of the continuous progress in the area, a human
being assumes a dominant and very much uncontested position when it comes to
understanding and interpreting images. Surely, we do not focus our attention on
individual pixels and process them as such but group them together into semanti-
cally meaningful constructs—familiar objects we deal with in everyday life. Such
objects involve regions that consist of pixels or categories of pixels drawn together
because of their proximity in the image, similar texture, color, etc. This remarkable
and unchallenged ability of humans dwells on our effortless ability to construct
information granules, manipulate them and arrive at sound conclusions. As another
example, consider a collection of time series. From our perspective we can describe
them in a semi-qualitative manner by pointing at specific regions of such signals.
Specialists can effortlessly interpret various diagnostic signals including ECG
recordings. They distinguish some segments of such signals and interpret their
combinations. Experts can interpret temporal readings of sensors and assess the
status of the monitored system. Again, in all these situations, the individual samples
of the signals are not the focal point of the analysis and the ensuing signal inter-
pretation. We always granulate all phenomena (no matter if they are originally
discrete or analog in their nature). Time is another important variable that is sub-
jected to granulation. We use seconds, minutes, days, months, and years.
Depending upon a specific problem we have in mind and who the user is, the size of
information granules (time intervals) could vary quite dramatically. To the
high-level management time intervals of quarters of year or a few years could be

18 W. Pedrycz et al.

meaningful temporal information granules on basis of which one develops any
predictive model. For those in charge of everyday operation of a dispatching plant,
minutes and hours could form a viable scale of time granulation. For the designer of
high-speed integrated circuits and digital systems, the temporal information gran-
ules concern nanoseconds, microseconds, and perhaps microseconds. Even such
commonly encountered and simple examples are convincing enough to lead us to
ascertain that (a) information granules are the key components of knowledge rep-
resentation and processing, (b) the level of granularity of information granules (their
size, to be more descriptive) becomes crucial to the problem description and an
overall strategy of problem solving, and (c) there is no universal level of granularity
of information; the size of granules is problem-oriented and user dependent.

What has been said so far touched a qualitative aspect of the problem. The
challenge is to develop a computing framework within which all these represen-
tation and processing endeavors could be formally realized. The common platform
emerging within this context comes under the name of Granular Computing. In
essence, it is an emerging paradigm of information processing. While we have
already noticed a number of important conceptual and computational constructs
built in the domain of system modeling, machine learning, image processing,
pattern recognition, and data compression in which various abstractions (and
ensuing information granules) came into existence, Granular Computing becomes
innovative and intellectually proactive in several fundamental ways.

• It identifies the essential commonalities between the surprisingly diversified
problems and technologies used there, which could be cast into a unified
framework known as a granular world. This is a fully operational processing
entity that interacts with the external world (that could be another granular or
numeric world) by collecting necessary granular information and returning the
outcomes of the granular computing

• With the emergence of the unified framework of granular processing, we get a
better grasp as to the role of interaction between various formalisms and visu-
alize a way in which they communicate.

• It brings together the existing formalisms of set theory (interval analysis) [14],
fuzzy sets [28, 30], rough sets [16–18] under the same roof by clearly visual-
izing that in spite of their visibly distinct underpinnings (and ensuing process-
ing), they exhibit some fundamental commonalities. In this sense, Granular
Computing establishes a stimulating environment of synergy between the
individual approaches.

• By building upon the commonalities of the existing formal approaches, Granular
Computing helps build heterogeneous and multifaceted models of processing of
information granules by clearly recognizing the orthogonal nature of some of the
existing and well established frameworks (say, probability theory coming with
its probability density functions and fuzzy sets with their membership functions)

• Granular Computing fully acknowledges a notion of variable granularity whose
range could cover detailed numeric entities and very abstract and general

Computational Intelligence: An Introduction 19

information granules. It looks at the aspects of compatibility of such information
granules and ensuing communication mechanisms of the granular worlds.

• Interestingly, the inception of information granules is highly motivated. We do
not form information granules without reason. Information granules arise as an
evident realization of the fundamental paradigm of abstraction.

Granular Computing forms a unified conceptual and computing platform. Yet, it
directly benefits from the already existing and well-established concepts of infor-
mation granules formed in the setting of set theory, fuzzy sets, rough sets and
others. While Granular Computing offers a unique ability to conveniently translate
the problem into the language of information granules, it also exhibits some limi-
tations associated with the lack of effective learning schemes, and quite commonly
prescriptive nature of granular constructs (so there might be some danger of not
carefully considering experimental evidence).

While all the three classes of technologies discussed so far offer tangible benefits
and help address various central problems of intelligent systems, it becomes
apparent that they are very much complementary. The strength of one technology is
a quite visible limitation of some other. It is not surprising that there have been
various ways of forming hybrid approaches dwelling upon the complementarity of
neurocomputing, fuzzy sets (Granular Computing), and evolutionary methods, out
of which a concept of Computational Intelligence (CI) has emerged.

6 Formal Platforms of Information Granularity

There exists a plethora of formal platforms in which information granules are
defined and processed.

Sets (intervals) realize a concept of abstraction by introducing a notion of
dichotomy: we admit element to belong to a given information granule or to be
excluded from it. Sets are described by characteristic functions taking on values in
{0,1}. A family of sets defined in a universe of discourse X is denoted by P(X).

Fuzzy sets [28, 30] offer an important generalization of sets. By admitting partial
membership to a given information granule we bring an important feature which
makes the concept to be in rapport with reality. The description of fuzzy sets is
realized in terms of membership functions taking on values in the unit interval.
A family of fuzzy sets defined in X is denoted by F(X).

Probability-based information granules are expressed in the form of some
probability density functions or probability functions. They capture a collection of
elements resulting from some experiment. In virtue of the concept of probability,
the granularity of information becomes a manifestation of occurrence of some
elements.

Rough sets [16–18] emphasize a roughness of description of a given concept X
when being realized in terms of the indiscernibility relation provided in advance.
The roughness of the description of X is manifested in terms of its lower and upper

20 W. Pedrycz et al.

approximations of a certain rough set. A family of fuzzy sets defined in X is denoted
by R(X).

Shadowed sets [21] offer a description of information granules by distinguishing
among elements, which fully belong to the concept, are excluded from it and whose
belongingness is completely unknown. Formally, these information granules are
described as a mapping X: X → {1, 0, [0,1]} where the elements with the mem-
bership quantified as the entire [0,1] interval are used to describe a shadow of the
construct. Given the nature of the mapping here, shadowed sets can be sought as a
granular description of fuzzy sets where the shadow is used to localize partial
membership values, which in fuzzy sets are distributed over the entire universe of
discourse. A family of fuzzy sets defined in X is denoted by S(X).

Probability-grounded sets are defined over a certain universe where the mem-
bership grades are represented as some probabilistic constructs. For instance, each
element of a set comes with a truncated to [0,1] probability density function, which
quantifies a degree of membership to the information granule. There are a number
of variations of these constructs with probabilistic sets [11] being one of them.

Other formal models of information granules involve axiomatic sets, soft sets,
and intuitionistic sets.

6.1 Information Granules of Higher Type and Higher Order

In general, we distinguish between information granules of higher type and higher
order.

Higher type information granules. The quantification of levels of belongingness
to a given information granule is granular itself rather than numeric as encountered
in sets or fuzzy sets. This type of quantification is of interest in situations it is not
quite justifiable or technically sound to quantify the membership in terms of a single
numeric value. These situations give rise to ideas of type-2 fuzzy sets or
interval-valued fuzzy sets. In the first case the membership is quantified by a certain
fuzzy set taking on values in the unit interval. In the second case we have a
subinterval of [0,1] representing membership values. One can discuss fuzzy sets of
higher type in which the granular quantification is moved to the higher levels of the
construct. For instance, one can talk about type-3, type-4, … fuzzy sets. Albeit
conceptually sound, one should be aware that the computing overhead associated
with further processing of such information granules becomes more significant. In
light of the essence of these constructs, we can view probabilistic granules to be
treated as higher type information granules as we admit membership values to be
granulated in a probabilistic manner.

Higher order information granules. The notion of higher order of information
granules points at a space in which an information granule is defined. Here the
universe of discourse is composed of a family of information granules. For instance,
a fuzzy set of order 2 is constructed in the space of a family of so-called reference
fuzzy sets. This stands in a sharp contrast with fuzzy sets of order 1, which are

Computational Intelligence: An Introduction 21

defined in individual elements of the universe of discourse. One could remark that
fuzzy modeling quite often involve order 2 fuzzy sets.

The illustration of these concepts is included in Fig. 1.
These types of construct could be generalized by invoking a number of con-

secutive levels of the structure. In all situations, we could assess whether moving to
the higher level or order constructs is legitimate from the perspective of the problem
at hand.

6.2 Hybrid Models of Information Granules

Information granules can embrace several granulation formalisms at the same time
forming some hybrid models. This constructs become of particular interest when
information granules have to capture a multifaceted nature of the problem. There
are a large number of interesting options here. Some of them, which have been
found convincing concern.

(a) fuzzy probabilities. Probability and fuzzy sets are orthogonal concepts and as
such they could be considered together as a single entity. The concepts of a
fuzzy event and fuzzy probabilities (viz. probabilities whose values are
quantified in terms of fuzzy sets, say high probability, very low probability)
are of interest here.

(b) fuzzy rough and rough fuzzy information granules. Here the indiscernibility
relation can be formed on a basis of fuzzy sets. Fuzzy sets, rather than sets are
also the entities that are described in terms of the elements of the indis-
cernibility relation. The original object X for which a rough set is formed
might be a fuzzy set itself rather than a set used in the original definition of
rough sets.

Fig. 1 Examples of information granules of type-2 (type-2 fuzzy set A) contrasted with a fuzzy
set (a) and order 2 fuzzy set B (defined over a collection of information granule forming the
universe of discourse) (b)

22 W. Pedrycz et al.

7 The Concept of Information Granulation-Degranulation

When it comes to numeric information x forming a vector in a certain multidi-
mensional space, we can develop an interesting granulation-degranulation scheme
[25]. We assume that the information granules forming a collection (codebook)
A are described by their prototypes v1, v2, …, vc. Such prototypes can be formed as
a result of fuzzy clustering [4, 12, 24]. The granulation-degranulation task is for-
mulated as a certain optimization problem. In what follows, we assume that the
distance used in the solutions is the Euclidean one. The granulation of x returns its
representation in terms of the collection of available information granules expressed
in terms of their prototypes. More specifically, x is expressed in the form of the
membership grades ui of x to the individual granules Ai, which form a solution to
the following optimization problem

Min
Xc

i¼1

umi ðxÞjjx� vijj2 ð1Þ

subject to the following constraints imposed on the degrees of membership

Xc

i¼1

uiðxÞ ¼ 1 uiðxÞ 2 ½0; 1� ð2Þ

where “m” stands for the so-called fuzzification coefficient, m > 1 [4]. The derived
solution to the problem above reads as follows

uiðxÞ ¼ 1
Pc

j¼1
jjx�vijj
jjx�vjjj

� �2=ðm�1Þ ð3Þ

For the degranulation phase, given ui(x) and the prototypes vi, the vector x̂ is
considered as a solution to the minimization problem in which we reconstruct
(degranulate) original x when using the prototypes and the membership grades

Xc

i¼1

umi ðxÞjjx̂� vijj2 ð4Þ

Because of the use of the Euclidean distance in the above performance index, the
calculations here are straightforward yielding the result

x̂ ¼
Pc

i¼1 u
m
i ðxÞviPc

i¼1 u
m
i ðxÞ

ð5Þ

It is important to note that the description of x in more abstract fashion realized by
means of Ai and being followed by the consecutive degranulation brings about a

Computational Intelligence: An Introduction 23

certain granulation error (which is inevitable given a fact that we move back and
forth between different levels of abstraction). While the above formulas pertain to
the granulation realized by fuzzy sets, the granulation-degranulation error is also
present when dealing with sets (intervals). In this case we are faced with a quan-
tization error, which becomes inevitable when working with A/D (granulation) and
D/A (degranulation) conversion mechanisms.

8 Clustering as a Means of Design of Information
Granules

Clustering is a commonly encountered way of forming information granules. In
objective function-based clustering there is usually a certain constraint imposed on
the relationship between the resulting information granules. For instance, one
requires that the union of information granules “covers” the entire data set, that isSc

i¼1 Ac ¼ D. Obviously the union operation has to be specified in accordance to
the formalism of information granules used there. There are a large number of
clustering methods and depending on the formalism being used we end up with the
granules expressed in the language of sets, P(X), fuzzy sets F(X), rough sets R(X),
shadowed sets S(X) and others. The form of the granules depends on the clustering
algorithm and the formulation of the objective function (and partition matrix, in
particular). The number of information granules has been another point of com-
prehensive study as this pertains to the problem of cluster validity.

By having a quick look at the plethora of clustering methods one can conclude
that they predominantly realize the concept of closeness between elements: data,
which are close to each other form the same information granule. There is another
aspect of functional resemblance and this facet is captured through so-called
knowledge-based clustering, cf. [24].

8.1 Unsupervised Learning with Fuzzy Sets

Unsupervised learning, quite commonly treated as an equivalent of clustering is
aimed at the discovery of structure in data and its representation in the form of
clusters—groups of data.

In reality, clusters, in virtue of their nature, are inherently fuzzy. Fuzzy sets
constitute a natural vehicle to quantify strength of membership of patterns to a
certain group. An example shown in Fig. 2 clearly demonstrates this need. The
pattern positioned in-between the two well structured and compact groups exhibit
some level of resemblance (membership) to each of the clusters. Surely enough, one
could be hesitant to allocate it fully to either of the clusters. The membership values

24 W. Pedrycz et al.

such as e.g., 0.55 and 0.45 are not only reflective of the structure in the data but they
flag (highlight) the distinct nature of this data—and maybe trigger some further
inspection of this pattern. In this way we remark a user-centric character of fuzzy
sets, which make interaction with users more effective and transparent.

8.2 Fuzzy C-Means as an Algorithmic Vehicle of Data
Reduction Through Fuzzy Clusters

Fuzzy sets can be formed on a basis of numeric data through their clustering
(groupings). The groups of data give rise to membership functions that convey a
global more abstract and general view at the available data. With this regard Fuzzy
C-Means (FCM, for brief) is one of the commonly used mechanisms of fuzzy
clustering [24].
Let us review its formulation, develop the algorithm and highlight the main
properties of the fuzzy clusters. Given a collection of n-dimensional data set {xk},
k = 1,2,…,N, the task of determining its structure—a collection of “c” clusters, is
expressed as a minimization of the following objective function (performance
index) Q being regarded as a sum of the squared distances between data and their
representatives (prototypes)

Q ¼
Xc

i¼1

XN

k¼1

umikjjxk � vijj2 ð6Þ

Here vi s are n-dimensional prototypes of the clusters, i = 1, 2,…, c and U = [uik]
stands for a partition matrix expressing a way of allocation of the data to the
corresponding clusters; uik is the membership degree of data xk in the i-th cluster.
The distance between the data zk and prototype vi is denoted by ||.||. The fuzzifi-
cation coefficient m (>1.0) expresses the impact of the membership grades on the
individual clusters. It implies as certain geometry of fuzzy sets. A partition matrix
satisfies two important and intuitively appealing properties

Fig. 2 Example of two-dimensional data with patterns of varying membership degrees to the two
highly visible and compact clusters

Computational Intelligence: An Introduction 25

að Þ 0\
XN

k¼1

uik\N; i ¼ 1; 2; . . .; c

bð Þ
Xc

i¼1

uik ¼ 1; k ¼ 1; 2; . . .;N

ð7Þ

Let us denote by U a family of matrices satisfying (a)–(b). The first requirement
states that each cluster has to be nonempty and different from the entire set. The
second requirement states that the sum of the membership grades should be con-
fined to 1.

The minimization of Q completed with respect to U 2 U and the prototypes vi of
V = {v1, v2,…vc} of the clusters. More explicitly, we write it down as follows

min Q with respect to U 2 U; v1; v2; . . .; vc 2 Rn ð8Þ

The successive entries of the partition matrix are expressed as follows

ust ¼ 1
Pc

j¼1
jjxt�vsjj
jjxt�vjjj

� �2=ðm�1Þ ð9Þ

Assuming the Euclidean form of distance, the prototypes v1, v2, …, vc come in the
form

vs ¼
PN

k¼1 u
m
ikxkPN

k¼1 u
m
ik

ð10Þ

In addition to the Euclidean distance studied are different distances, say the
Hamming or the Tchebyschev one [20]. Overall, the FCM clustering is completed
through a sequence of iterations where we start from some random allocation of
data (a certain randomly initialized partition matrix) and carry out the following
updates by adjusting the values of the partition matrix and the prototypes. The
iterative process is continued until a certain termination criterion has been satisfied.
Typically, the termination condition is quantified by looking at the changes in the
membership values of the successive partition matrices. Denote by U(t) and U(t + 1)
the two partition matrices produced in the two consecutive iterations of the algo-
rithm. If the distance ||U(t + 1) − U(t)|| is les than a small predefined threshold ε
(say, ε = 10−5 or 10−6), then we terminate the algorithm. Typically, one considers
the Tchebyschev distance between the partition matrices meaning that the termi-
nation criterion reads as follows

maxi;kjuikðtþ 1Þ � uikðt)j � e ð11Þ

26 W. Pedrycz et al.

8.3 Knowledge-Based Clustering

Clustering and classification are positioned at the two opposite poles of the learning
paradigm. In reality, there is no “pure” unsupervised learning as usually there is
some limited amount of domain knowledge. There is no fully supervised learning as
some labels might not be completely reliable (as those encountered in case of
learning with probabilistic teacher).

There is some domain knowledge and it has to be carefully incorporated into the
generic clustering procedure. Knowledge hints can be conveniently captured and
formalized in terms of fuzzy sets. Altogether with the underlying clustering algo-
rithms, they give rise to the concept of knowledge-based clustering—a unified
framework in which data and knowledge are processed together in a uniform
fashion.

We can distinguish several interesting and practically viable ways in which
domain knowledge is taken into consideration:

A subset of labeled patterns The knowledge hints are provided in the form of a
small subset of labeled patterns K � N [22, 23]. For each of them we have a vector
of membership grades fk, k 2 K which consists of degrees of membership the
pattern is assigned to the corresponding clusters. As usual, we have fik 2 [0, 1] andPc

i¼1 fik = 1.
Proximity-based clustering Here we are provided a collection of pairs of patterns

[13] with specified levels of closeness (resemblance) which are quantified in terms
of proximity, prox(k, l) expressed for xk and xl. The proximity offers a very general
quantification scheme of resemblance: we require reflexivity and symmetry, that is
prox(k, k) = 1 and prox(k, l) = prox(l, k) however no transitivity is needed.

“belong” and “not-belong” Boolean relationships between patterns These two
Boolean relationships stress that two patterns should belong to the same clusters,
R(xk, xl) = 1 or they should be placed apart in two different clusters, R(xk, xl) = 0.
These two requirements could be relaxed by requiring that these two relationships
return values close to one or zero.

Uncertainty of labeling/allocation of patterns We may consider that some pat-
terns are “easy” to assign to clusters while some others are inherently difficult to
deal with meaning that their cluster allocation is associated with a significant level
of uncertainty. Let F(xk) stands for the uncertainty measure (e.g., entropy) for xk (as
a matter of fact, F is computed for the membership degrees of xk that is F(uk) with
uk being the kth column of the partition matrix. The uncertainty hint is quantified by
values close to 0 or 1 depending upon what uncertainty level a given pattern is
coming from.

Depending on the character of the knowledge hints, the original clustering
algorithm needs to be properly refined. In particular the underlying objective
function has to be augmented to capture the knowledge-based requirements. Below
shown are several examples of the extended objective functions dealing with the
knowledge hints introduced above.

Computational Intelligence: An Introduction 27

When dealing with some labeled patterns we consider the following augmented
objective function

Q ¼
Xc

i¼1

XN

k¼1

umikjjxk � vijj2 þ a
Xc

i¼1

XN

k¼1

ðuik � fikbkÞ2jjxk � vijj2 ð12Þ

where the second term quantifies distances between the class membership of the
labeled patterns and the values of the partition matrix. The positive weight factor
(a) helps set up a suitable balance between the knowledge about classes already
available and the structure revealed by the clustering algorithm. The Boolean
variable bk assumes values equal to 1 when the corresponding pattern has been
labeled.

The proximity constraints are accommodated as a part of the optimization
problem where we minimize the distances between proximity values being pro-
vided and those generated by the partition matrix P(k1, k2)

Q ¼
Xc

i¼1

XN

k¼1

umikjjxk � vijj2

prox k1; k2ð Þ� P k1; k2ð Þk k ! Min k1; k2 2 K

ð13Þ

with K being a pair of patterns for which the proximity level has been provided. It
can be shown that given the partition matrix the expression

Pc
i¼1 min(uik1; uik2Þ

generates the corresponding proximity value.
For the uncertainty constraints, the minimization problem can be expressed as

follows

Q ¼
Xc

i¼1

XN

k¼1

umikjjxk � vijj2

F ukð Þ � gkk k ! Min k 2 K

ð14Þ

where K stands for the set of patterns for which we are provided with the uncer-
tainty values gk.

Undoubtedly the extended objective functions call for the optimization scheme
that is more demanding as far as the calculations are concerned. In several cases we
cannot modify the standard technique of Lagrange multipliers, which leads to an
iterative scheme of successive updates of the partition matrix and the prototypes. In
general, though, the knowledge hints give rise to a more complex objective function
in which the iterative scheme cannot be useful in the determination of the partition
matrix and the prototypes. Alluding to the generic FCM scheme, we observe that
the calculations of the prototypes in the iterative loop are manageable in case of the
Euclidean distance. Even the Hamming or Tchebyshev distance brings a great deal
of complexity. Likewise, the knowledge hints lead to the increased complexity: the
prototypes cannot be computed in a straightforward way and one has to resort

28 W. Pedrycz et al.

himself to more advanced optimization techniques. Evolutionary computing arises
here as an appealing alternative. We may consider any of the options available there
including genetic algorithms, particle swarm optimization, ant colonies, to name
some of them. The general scheme can be schematically structured as follows:

– repeat {EC (prototypes); compute partition matrix U;}

One can recall also studies in the formation of granular prototypes [2].

9 Computational Intelligence and Software Engineering

Software Engineering with its scope of challenges and open problems whose for-
mulation can be expressed in the setting of CI. CI can offer some viable solutions to
the problem. There are several essential facets to be raised here:

Quality of data In software processes and software artifacts, we envision exis-
tence of data at different levels of abstraction (granularity). There might be data
expressed numerically (coming as a results of measuring). There are pieces of data
expressed by experts and those could be expressed as outcomes of questionnaires
and because of this, they might be expressed in linguistic terms. Some initial
documents of software requirements could include linguistic rather than numeric
quantification. The data could be incomplete and call for mechanisms of data
imputation.

In view of the nature of the categories of the problems listed above, one can
stress that Granular Computing (fuzzy sets, rough sets, interval analysis) deliver a
sound solution both in terms of the underlying methodology and the ensuing
algorithms. The processing of information granules regarded as input variables of
the models leads to the results that are again expressed as information granules (by
adhering to the ideas of propagation of information granularity). Some optimization
activities required here could be supported by population-based methods of CI.

Structure of models Software Engineering is not subject to laws of physics and
does not adhere to general and quantifiable general laws. For instance, this mani-
fests very profoundly in software cost estimation. While COCOMO-like models
offer sound alternative, it becomes quite apparent that the accuracy of any model is
limited and intensive calibrating of the model becomes a necessity. There is a great
deal of diversity of software systems, process, quality indexes and each software
project calls for a quite different model to form its proper and efficient description.
Here the three pillars of CI assume an essential role. Neural networks serve as
adaptive and nonlinear models whose flexibility arises as an important asset in
capturing the essence of available data. Information granules help accommodate
non-numeric data, which becomes crucial to evaluate the quality of the results and
create a feedback as to the refinement (specialization) of available experimental
evidence.

Computational Intelligence: An Introduction 29

The complexity of the models and a genuine requirement to optimize them both
structurally and parametrically emphasizes a need for the involvement of
population-based optimization to construct the models.

Interpretation of results In light of propagation of information granularity, the
results of processing are information granules. Their use creates an evident
advantage by delivering an efficient means to quantify the precision of the results
depending upon the granularity of the available input data. The granularity of the
results makes them to become in a stronger rapport with the reality as to the
specificity of obtained findings.

10 Conclusions

We have outlined the fundamentals of Computational Intelligence showing that the
synergy of the technologies of fuzzy sets becomes a vital component in the analysis
of software data and design models of software artifacts.

With this regard, fuzzy sets or being more general, information granules, form an
important front- and back-end of these constructs. By forming the front end, they
help develop a suitable view at the software data, incorporate available domain
knowledge and come up with a feature space that supports the effectiveness of
ensuing processing, quite commonly engaging various schemes of neurocomputing
or evolutionary neurocomputing. Equally important role is played by fuzzy sets in
the realization of the back end of the overall processing scheme: they strengthen the
interpretability of results of data analysis or outcomes produced by models of
software processes and systems.

References

1. Bargiela, A., Pedrycz, W.: Recursive information granulation: aggregation and interpretation
issues. IEEE Trans. Syst. Man Cybern. B 33(1), 96–112 (2003)

2. Bargiela, A., Pedrycz, W., Hirota, K.: Granular prototyping in fuzzy clustering. IEEE Trans.
Fuzzy Syst. 12(5), 697–709 (2004)

3. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic
Publishers, Dordrecht (2002)

4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York (1981)

5. Bezdek, J.C.: On the relationship between neural networks, pattern recognition and
intelligence. Int. J. Approx. Reason. 6(2), 85–107 (1992)

6. Bezdek, J.C.: What is computational intelligence. In: Robinson, C.J., Zurada, J.M., Marks II,
R.J. (eds.) Computational Intelligence Imitating Life, pp. 1–12. IEEE Press, Piscataway, NJ
(1994)

7. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, London, UK
(2005)

30 W. Pedrycz et al.

8. Fulcher, J., Jain, L.C. (eds): Computational Intelligence: A Compendium. Springer, Berlin
(2008)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison
Wesley, Reading, MA (1989)

10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall Upper
Saddle River, NJ (1999)

11. Hirota, K.: Concepts of probabilistic sets. Fuzzy Sets Syst. 5(1), 31–46 (1981)
12. Hoppner, F., et al.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)
13. Loia, V., Pedrycz, W., Senatore, S.: P-FCM: a proximity-based fuzzy clustering for

user-centered web applications. Int. J. Approx. Reason. 34, 121–144 (2003)
14. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)
15. Mumford, C.L., Jain, L.C. (eds.): Computational Intelligence. Springer, Berlin (2009)
16. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
17. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer Academic

Publishers, Dordercht (1991)
18. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)
19. Pedrycz, W., Bargiela, A.: Granular clustering: a granular signature of data. IEEE Trans. Syst.

Man Cybern. 32(2), 212–224 (2002)
20. Pedrycz, W., Bargiela, A.: A model of granular data: a design problem with the

Tchebyschev FCM. Soft. Comput. 9(3), 155–163 (2005)
21. Pedrycz, W.: Shadowed sets: representing and processing fuzzy sets. IEEE Trans. Syst. Man

Cybern Part B 28, 103–109 (1998)
22. Pedrycz, W., Waletzky, J.: Neural network front-ends in unsupervised learning. IEEE Trans.

Neural Netw 8, 390–401 (1997)
23. Pedrycz, W., Waletzky, J.: Fuzzy clustering with partial supervision. IEEE Trans. Syst. Man

Cybern. 5, 787–795 (1997)
24. Pedrycz, W.: Knowledge-Based Clustering: From Data to Information Granules. J. Wiley,

Hoboken, NJ (2005)
25. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering. Wiley, Hoboken, NJ (2007)
26. Pedrycz, W.: Computational Intelligence: An Introduction. CRC Press, Boca Raton, Fl (1997)
27. Wassermann, P.D.: Neural Computing: Theory and Practice. Van Nostrand, Reinhold, New

York, NY (1989)
28. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
29. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human

reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–117 (1997)
30. Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU)—An outline. Inf. Sci. 172, 1–

40 (2005)

Computational Intelligence: An Introduction 31

Towards Benchmarking Feature Subset
Selection Methods for Software Fault
Prediction

Wasif Afzal and Richard Torkar

Abstract Despite the general acceptance that software engineering datasets often
contain noisy, irrelevant or redundant variables, very few benchmark studies of
feature subset selection (FSS) methods on real-life data from software projects have
been conducted. This paper provides an empirical comparison of state-of-the-art
FSS methods: information gain attribute ranking (IG); Relief (RLF); principal
component analysis (PCA); correlation-based feature selection (CFS); consistency-
based subset evaluation (CNS); wrapper subset evaluation (WRP); and an evolu-
tionary computation method, genetic programming (GP), on five fault prediction
datasets from the PROMISE data repository. For all the datasets, the area under the
receiver operating characteristic curve—the AUC value averaged over 10-fold
cross-validation runs—was calculated for each FSS method-dataset combination
before and after FSS. Two diverse learning algorithms, C4.5 and naïve Bayes
(NB) are used to test the attribute sets given by each FSS method. The results show
that although there are no statistically significant differences between the AUC
values for the different FSS methods for both C4.5 and NB, a smaller set of FSS
methods (IG, RLF, GP) consistently select fewer attributes without degrading
classification accuracy. We conclude that in general, FSS is beneficial as it
helps improve classification accuracy of NB and C4.5. There is no single best

W. Afzal (&)
School of Innovation, Design & Engineering, Mälardalen University,
Västerås, Sweden
e-mail: wasif.afzal@mdh.se

R. Torkar
Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: richard.torkar@cse.gu.se

R. Torkar
Chalmers University of Technology, Gothenburg, Sweden

R. Torkar
University of Gothenburg, Gothenburg, Sweden

W. Afzal
Department of Computer Science, Bahria University, Islamabad, Pakistan

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_3

33

FSS method for all datasets but IG, RLF and GP consistently select fewer attributes
without degrading classification accuracy within statistically significant boundaries.

Keywords Feature subset selection � Fault prediction � Empirical

1 Introduction

A bulk of literature on prediction and estimation in software engineering contributes
to software fault/defect prediction (also termed as software quality classification/
software quality modeling). Software fault prediction research uses software metrics
to predict the response variable which can either be the class of a module (e.g.,
fault-prone and not fault-prone) or a quality factor (e.g., number of faults) for a
module [1]. This paper is concerned with classifying software components/modules
as fault-prone and not fault-prone [2, 3, 4]. Such a classification task is useful for
the following reasons:

• Knowing which software components are likely to be fault-prone supports better
targeting of software testing effort. This in turn has the potential to improve test
efficiency and effectiveness.

• Fault-prone software components are candidates of refactoring whereby their
internal structure can be improved.

Despite the presence of a large number of models for software fault prediction,
there is lack of a definitive advice on what prediction models are useful under
different contexts. In order to increase confidence in the results of software fault
prediction studies, more and more research is focussing on the need for a robust
process and methodology to build prediction models [5, 3, 6]. Central to such a
methodology are issues such as data quality, measurement of predictive performance
[7], resampling methods to use [8] and reporting of fault prediction experiments [3].
For data quality, important issues are data preprocessing [9], class imbalance [10, 11]
and impact of feature subset selection (FSS) methods [12, 13]. This paper contributes
to the last aspect of data quality: use of FSS methods in software fault prediction.

The purpose of FSS is to find a subset of the original features of a dataset, such
that an induction algorithm that is run on data containing only these features
generates a classifier with the highest possible accuracy [14]. There are several
reasons to keep the number of features in a data set as small as possible:

1. Reducing the number of features allows classification algorithms to operate
faster, more effectively [15] and with greater simplicity [16].

2. Smaller number of features help reduce the curse of dimensionality.1

1The requirement that the number of training data points to be an exponential function of the
feature dimension.

34 W. Afzal and R. Torkar

3. Smaller number of features reduce measurement cost as less data needs to be
collected [17].

4. FSS helps to achieve a better understandable model and simplifies the usage of
various visualization techniques [18].

The simplest approach to FSS would require examining all possible subsets of
the desired number of features in the selected subset and then selecting the subset
with the smallest classification error. However, this leads to a combinatorial
explosion, making exhaustive search all but impractical for most of the data sets
[16]. Naturally many FSS methods are search-based [19], combined with an
attribute utility estimator to evaluate the relative merit of alternate subsets of
attributes [15].

Several researchers in software engineering have emphasized the need to
investigate only relevant variables. According to Dybå et al. [20]: “Careful selec-
tion of which independent variables to include and which variables to exclude, is,
thus, crucial to raising the power of a study and the legitimacy of its potential
findings”. Further emphasizing the importance of FSS, Song et al. [6] argue that
“[…] before building prediction models, we should choose the combination of all
three of learning algorithm, data pre-processing and attribute selection method,
not merely one or two of them”. It is also generally accepted that software engi-
neering data sets often contain noisy, irrelevant, or redundant variables [17, 21],
therefore, it is important to evaluate FSS methods for software engineering data
sets. In literature, there are few studies that compare FSS methods for software fault
prediction (Sect. 2) but no benchmark study on commonly used FSS methods on
real-life public data from software projects has been conducted. Moreover, the use
of evolutionary algorithms (e.g., genetic algorithm, genetic programming) have
sporadically been investigated as FSS methods [22, 23, 24, 25] but not to an extent
of comparing with state-of-the-art FSS methods, using publicly available real-life
data from software projects.

This paper provides an empirical comparison of the state-of-the-art FSS methods
and an evolutionary computation method (genetic programming (GP)) on five
software fault prediction data sets from the PROMISE data repository [26]. Two
diverse learning algorithms, C4.5 and naïve Bayes (NB), are used to test the
attribute sets given by each FSS method. We are interested in investigating if
the classification accuracy of C4.5 and NB significantly differ before and after the
application of FSS methods. In order to formalize the purpose of the empirical
study, we set forth the following hypotheses to test:

H0: The classification accuracy of C4.5 and NB is not significantly different before
and after applying the FSS methods, i.e., ACCC4:5 ¼ ACCN B.
H1: The classification accuracy of C4.5 and NB is significantly different before and
after applying the FSS methods, i.e., ACCC4:5 6¼ ACCN B.

The results of this study indicate that FSS is generally useful for software fault
prediction using NB and C4.5. However there are no clear winners for either of the
two learning algorithms for the variety of FSS methods used. Based on individual

Towards Benchmarking Feature Subset Selection Methods … 35

accuracy values, RLF, IG and GP are the best FSS methods for software fault
prediction accuracy while CNS and CFS are also good overall performers.

The paper is organized as follows. The next Section describes related work.
Section 3 describes the FSS methods used in this study while Sect. 4 describes the
datasets used, the evaluation measure and the experimental setup of the replication
study. Section 5 presents the results of the empirical study and presents a discus-
sion. Validity evaluation is given in Sect. 6 while the paper is concluded in Sect. 7.

2 Related Work

Molina et al. [27], Guyon and Elisseeff [28], Blum and Langley [29], Dash and Liu
[30] and Liu and Yu [31] provide good surveys reviewing work in machine learning
on FSS. This section will, however, summarize the work done on FSS in predictive
modeling within software engineering. FSS techniques in software engineering
have been applied for software cost/effort estimation and software quality classi-
fication (also called as software defect/fault prediction). As the below paragraphs
would illustrate, there is no definitive guidance available on FSS techniques to use
in software engineering predictive modeling.

Dejaeger et al. [32] used a generic backward input selection wrapper for FSS and
reported significantly improved performance for software cost modeling in com-
parison to when no FSS was used. Similar results were reported by Chen et al. [17,
33]. They showed that using wrapper improves software cost prediction accuracy
and is further enhanced when used in combination with row pruning. However, for
the COCOMO-styled datasets used in a study by Menzies et al. [34] for estimating
software effort/cost, wrapper FSS technique did not improve the estimation accu-
racy. Kirsopp et al. [35] used random seeding, hill climbing and forward sequential
selection to search for optimal feature subsets for predicting software project effort.
They showed that hill climbing and forward sequential selection produce better
results than random searching. Azzeh et al. [36], on the other hand, showed that
their proposed fuzzy FSS algorithm consistently outperforms hill climbing, forward
subset selection and backward subset selection for software effort estimation. Li
et al. [37] showed that a hybrid of wrapper and filter FSS techniques known as
mutual information based feature selection (MICBR) can select more meaningful
features while the performance was comparable to exhaustive search, hill climbing
and forward sequential selection.

Menzies et al. [38] showed that there are no clear winners in FSS techniques for
learning defect predictors for software fault/defect prediction. They compared
information gain, correlation-based feature selection, relief and consistency based
subset evaluation. Rodriguez et al. [12, 13] also compared filter and wrapper FSS
techniques for predicting faulty modules. They, however, concluded that wrapper
FSS techniques have better accuracy than filter FSS techniques. Song et al. [6] used
wrapper FSS with forward selection and backward elimination search strategies for
defect proneness prediction. They showed that different attribute selectors are

36 W. Afzal and R. Torkar

suitable to different learning algorithms. Catal and Diri [39] applied correlation-
based FSS method on class-level and method-level metrics for software fault pre-
diction. They showed that random forests gives the best results when using this FSS
method. Khoshgoftaar et al. [40] found that the use of a stepwise regression model
and a correlation-based FSS with greedy forward search did not yield improved
predictions. Wang et al. [41] compared seven filter based FSS techniques and
proposed their own combination of filter-based and consistency-based FSS algo-
rithm. Their proposed algorithm and the Kolmogorov-Smirnov technique per-
formed competitively with other FSS techniques. Koshgoftaar et al. [42] also
showed better results with a FSS method based on the Kolmogorov-Smirnov
two-sample statistical test. Altidor et al. [43] compared their new wrapper FSS
algorithm against 3-fold cross-validation, 3-fold cross-validation risk impact and a
combination of the two. They showed that the performance of their new FSS
technique is dependent on the base classifier (ranker aid), the performance metric
and the methodology. Gao et al. [44] concluded that data sampling followed by
wrapper FSS technique improves the accuracy of predicting high-risk program
modules. Gao et al. [45] compared seven feature ranking techniques and four FSS
techniques. Their proposed automatic hybrid search performed best among FSS
techniques. Khoshgoftaar et al. [46] compared seven filter-based feature ranking
techniques, including a signal-to-noise (SNR) technique. SNR performed as well as
the best performer of the six commonly used techniques. Wang et al. [47] compared
several ensemble FSS techniques and concluded that although there are no clear
winners but ensembles of few rankers are effective then ensembles of many rankers.
Khoshgoftaar et al. [10] investigated the relation between six filter-based FSS
methods with random under-sampling technique. They concluded that FSS based
on sampled data resulted in significantly better performance than FSS based on
original data.

3 Feature Subset Selection (FSS) Methods

There are two commonly known categories of FSS methods: the filter approach and
the wrapper approach. In the filter approach, the feature selection takes place
independently of the learning algorithm and is based only on the data character-
istics. The wrapper approach, on the other hand, conducts a search for a good subset
using the learning algorithm itself as part of the evaluation function [14, 15] pro-
vides another categorization for FSS methods, namely, those methods that evaluate
individual attributes and those that evaluate subset of attributes.

We have chosen to empirically evaluate a total of seven FSS methods, two
that evaluate individual attributes (information gain attribute ranking and Relief),
three that evaluate subsets of attributes (correlation-based feature selection,
consistency-based subset evaluation, wrapper subset evaluation), one classical
statistical method for dimensionality reduction (principal components analysis) and

Towards Benchmarking Feature Subset Selection Methods … 37

one evolutionary computational method (genetic programming). Following is a
brief description of the FSS methods used in this study.

3.1 Information Gain (IG) Attribute Ranking

The foundation of IG attribute ranking is the concept of entropy which is considered
as a measure of system’s unpredictability. If C is the class, the entropy of C is
given by:

HðCÞ ¼ �
X

pðcÞ log pðcÞ

where p(c) is the marginal probability density function for class C. If the observed
values of C are partitioned based on an attribute A and the entropy of C after
observing the attribute is less than the entropy of C prior to it, there is a relationship
between C and A. The entropy of C after observing A is:

HðCjAÞ ¼ �
X

a2A
pðaÞ

X

c2C
pðcjaÞ log pðcjaÞ

where pðcjaÞ is the conditional probability of c given a.
Given that entropy is a measure of system’s unpredictability, information gain is

the amount by which the entropy of C decreases [48]. It is given by:

IG ¼ HðCÞ � HðCjAÞ ¼ HðAÞ � HðAjCÞ

IG is a symmetrical measure meaning that information gained about C after
observing A is equal to the information gained about A after observing C.

IG attribute ranking is one of the simplest and fastest attribute ranking methods
[15] but its weakness is that it is biased in favor of attributes with more instances
even when they are not more informative [49]

In this study, IG attribute ranking is used with the ranker search method that
ranks attributes by their individual evaluations.

3.2 Relief (RLF)

Relief is an instance-based attribute raking algorithm proposed by Kira and Rendell
[50]. It estimates the quality of attributes according to how they differentiate
between instances from different classes that are near to each other. So given a
randomly selected instance R, Relief searches for a nearest hit H (a nearest neighbor
from the same class) and a nearest miss M (a nearest neighbor from a different
class). It then updates the relevance score for attributes depending on their values

38 W. Afzal and R. Torkar

for R, M and H. The process is repeated for a user-defined number of instances
m. The basic Relief algorithm, taken from [51], is given in Fig. 1.

The function diff (Attibute, Instance1, Instance2) calculates the difference
between the values of attribute for two instances. For discrete attributes, the dif-
ference is either 1 (the values are different) or 0 (the values are the same). For
continuous attributes the difference is the actual difference normalized to the
interval [0, 1] [15].

In this study the Relief method is used with the ranker search method that ranks
attributes by their individual evaluations and the value of m is set to 250 which is a
recommended figure [15].

3.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique that transforms a set
of possibly correlated variables into a set of linearly uncorrelated variables. These
linearly uncorrelated variables are called principal components. The transformation
is done by first computing the covariance matrix of the original variables and then
finding its Eigen vectors (principal components). The principal components have
the property that most of their information content is stored in the first few features
so that remainder can be discarded. In this study, PCA is used with the ranker
search method that ranks attributes by their individual evaluations.

3.4 Correlation-Based Feature Selection (CFS)

Correlation-based feature selection (CFS) evaluates subsets of attributes rather than
individual attributes [52]. The technique uses a heuristic to evaluate subset of
attributes. The heuristic balances how predictive a group of features are and how
much redundancy is among them.

Algorithm Relief
Input: for each training instance a vector of attribute values and the class value
Output: the vector W of estimations of the qualities of attributes

1. set all weights W[A] := 0.0;

2. for i := 1 to m do begin
3. randomly select an instance R;

5. for A := 1 to #all_attributes do
6. W[A] := W[A] - diff(A,R,H)/m + diff(A,R,M)/m;

7. end;

Fig. 1 The basic Relief
algorithm

Towards Benchmarking Feature Subset Selection Methods … 39

Merits ¼ krcfffi
kþ kðk � 1Þrf f

p

where Merits is the heuristic merit of a feature subset s containing k features, rcf is
the average feature-class correlation and rff is the average feature-feature intercor-
relation [15]. In order to applyMerits, a correlation matrix has to be calculated and a
heuristic search to find a good subset of features. In this study, CFS is used with the
Greedy stepwise forward search through the space of attribute subsets.

3.5 Consistency-Based Subset Evaluation (CNS)

Consistency-based subset evaluation (CNS) is also an attribute subset selection
technique that uses class consistency as an evaluation metric [53]. CNS looks for
combinations of attributes whose values divide the data into subsets containing a
strong single class majority [15]. Liu and Setiono [53] proposed the following
consistency metric:

Consistencys ¼ 1�
P j

i¼0 Dij j � Mij j
N

where s is an attribute subset, j is the number of distinct combinations of attribute
values for s; jDij is the number of occurrences of the ith attribute value combina-
tion, jMij is the cardinality of the majority class for the ith attribute value combi-
nation and N is the total number of instances in the data set.

In this study, greedy stepwise forward search is used to produce a set of attri-
butes, ranked according to their overall contribution to the consistency of the
attribute set [15].

3.6 Wrapper Subset Evaluation (WRP)

The wrapper feature subset evaluation conducts a search for a good subset using the
learning algorithm itself as part of the evaluation function. In this study, repeated
five-fold cross-validation is used as an estimate for the accuracy of the classifier
while a greedy stepwise forward search is used to produce a list of attributes, ranked
according to their overall contribution to the accuracy of the attribute set with
respect to the target learning algorithm [15].

40 W. Afzal and R. Torkar

3.7 Genetic Programming (GP)

Genetic programming (GP) is an evolutionary computation technique and is an
extension of genetic algorithms. It is a “systematic, domain-independent method for
getting computers to solve problems automatically starting from a high-level
statement of what needs to be done” [54]. GP applies iterative, random variation to
an existing pool of computer programs to form a new generation of programs by
applying analogs of naturally occurring genetic operators [19]. The basic steps in a
GP system are given below [54]:

1. Randomly create an initial population of programs.
2. Repeat (until stopping criterion is reached):

(a) Execute each program and evaluate its fitness.
(b) Select one or two programs to undergo genetic operations.
(c) Create new programs by applying the genetic operations.

3. Return the best individual.

As compared with genetic algorithms, the population structures (individuals) in
GP are not fixed length character strings, but programs that, when executed, are the
candidate solutions to the problem.

The evolution of software fault prediction models using GP is an example of a
symbolic regression problem. Symbolic regression is an error-driven evolution as it
aims to find a function, in symbolic form, that fits (or approximately fits) data from
an unknown curve [55]. In simpler terms, symbolic regression finds a function
whose output matches some target values. GP is well suited for symbolic regression
problems, as it does not make any assumptions about the structure of the function.

Programs are expressed in GP as syntax trees, with the nodes indicating the
instructions to execute and are called functions (e.g., min; �; þ ; =), while the tree
leaves are called terminals which may consist of independent variables of the
problem and random constants (e.g., x, y, 3). The fitness evaluation of a particular
individual is determined by the correctness of the logical output produced for all of
the fitness cases [55]. The fitness function guides the search in promising areas of
the search space and is a way of communicating a problem’s requirements to the GP
algorithm. The control parameters limit and control how the search is performed
like setting the population size and probabilities of performing the genetic opera-
tions. The termination criterion specifies the ending condition for the GP run and
typically includes a maximum number of generations [19]. GP iteratively trans-
forms a population of computer programs into a new generation of programs using
various genetic operators. Typical operators include crossover, mutation and
reproduction. It is expected that over successive iterations, more and more useful
structures or programs be evolved, eventually resulting in a structure having most
useful sub-components. That structure would then represent the optimal or
near-optimal solution to the problem. The crossover operator creates new structure
(s) by combining randomly chosen parts from two selected programs or structures.

Towards Benchmarking Feature Subset Selection Methods … 41

The mutation operator creates a new structure by randomly altering a chosen part of
a program. The reproduction operator simply copies a selected structure to the new
population. Figure 2 shows the flowchart of the GP process.

For this study, the best GP program (having the minimum
Pn

i¼1 jei � e0ij, where
ei is the actual outcome, e0i is the classification result and n is the size of the data set

Start

generation = 0

generate initial
population

Fitness evaluation

termination
criteria

reached?

return
results

Stop

Population
size

reached?

Select
genetic

operators

mutationcrossoverreproduction

Insert into
population

No

No

generation+=1
Yes

Yes

Fig. 2 The GP process

42 W. Afzal and R. Torkar

used to train the GP models) over the 10 runs of each fold of the 10-fold
cross-validation is selected. The features making up this best GP program is then
designated as the features selected by the GP algorithm. The control parameters that
were chosen for the GP system are shown in Table 1. We did not fine tune these
parameters for each new data set so as not to bias the results. The population size is
related to the size of search space because if the search space is too large, GP will
take longer times to find better solutions. The population size was fixed to 50 and
this decision was based on our prior experience in experimentation with GP. The
termination condition was set to 500 generations and was selected to give enough
chance to GP for promoting variety in each generation. The tree initialization
method selected was ramped half-and-half which results in very diverse population
of trees, with balanced and unbalanced trees of several different depths [56]. The
probabilities of crossover, mutation and reproduction were set to 0.8, 0.1 and 0.1
respectively which was done again to promote maximum variation. The selection
method used was roulette-wheel which is one of the few sampling methods used in
GP to select parent individuals to produce their children.

4 Experimental Setup

In order to compare the performance of different FSS methods, the attribute sets
selected by each method are tested with two learning algorithms, namely C4.5 and
NB. These algorithms represent two different approaches (C4.5 being a
decision-tree learner and NB being a probabilistic learner) and are considered
state-of-the-art techniques. Also one of the previous benchmark studies [15] have
used the same algorithms for comparing the effectiveness of attribute selection.

The NB classifier is based on the Bayesian theorem. It analyses each data
attribute independently and being equally important. The NB classifier learns the
conditional probability of each attribute Ai given the class label C, from the training
data. Classification is done by applying the Bayes rule to compute the probability of
C given the particular instance of A1 . . .An, and then predicting the class with the
highest posterior probability [57]. The NB classifier assumes that features are
independent given class, that is, PðXjCÞ ¼ Qn

i¼1 PðXijCÞ where X ¼ ðX1. . .XnÞ is a

Table 1 GP control parameters

Control parameter Value

Population size 50

Termination condition 500 generations

Function set þ ; �; �; =; sin, cos, log, sqrtf g
Tree initialization Ramped half-and-half method

Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1

Selection method roulette-wheel

Towards Benchmarking Feature Subset Selection Methods … 43

feature vector and C is a class [58]. By independence, it is meant as probabilistic
independence, that is, A is independent of B given C whenever PrðAjB;CÞ ¼
PrðAjCÞ for all possible values of A, B and C, whenever Pr(C) > 0 [57].

C4.5 is the most well-known algorithm in the literature for building decision
trees [59, 48]. C4.5 first creates a decision-tree based on the attribute values of the
available training data such that the internal nodes denote the different attributes, the
branches correspond to value of a certain attribute and the leaf nodes correspond to
the classification of the dependent variable. The decision tree is made recursively by
identifying the attribute(s) that discriminates the various instances most clearly, i.e.,
having the highest information gain. Once a decision tree is made, the prediction for
a new instance is done by checking the respective attributes and their values.

We have applied the selected FSS methods to five real-world datasets from
the PROMISE repository [26]. These data sets are jEdit, AR5, MC1, CM1 and
KC1_Mod. The datasets are available in ARFF (Attribute-Relation File Format),
useable in the open source machine learning tool called WEKA (Waikato
Environment for Knowledge Analysis) [60]. The datasets are selected based on
their variance in terms of number of instances and the number of attributes.
The number of instances vary from being less than 50 up to several thousands, with
the number of attributes varying from being in a single digit to nearly a hundred.
The characteristics of datasets are given in Table 2.

The source of jEdit data set is jEdit editor source code in Java and its Apache
Subversion (SVN) log data. The data set contains metrics data computed by
Understand C++ metric tool while bug data is extracted from SVN log files. The
metrics are computed for jEdit release 4.0 while bugs are calculated between the
releases 4.0 and 4.2. The source of AR5 data set is an embedded software used in
manufacturing and implemented in C. Function/method level static code attributes
are collected using Prest Metrics Extraction and Analysis Tool. The rest of the data
sets (MC1, CM1, KC1_Mod) are NASA Metrics Data Program defect data sets.
The metrics data consist of static code measures such as The McCabe and Halstead
measures.

We restrict ourselves to evaluate the performance of binary classifiers which
categorizes instances or software modules as being either fault-prone (fp) or
non-fault prone (nfp). We are interested in predicting whether or not a module
contains any faults, rather than the total number of faults. A common assessment

Table 2 Characteristics of datasets used in the study

No. Dataset Features No. of
classes

Train
size

Test
sizeAll Nominal Continuous

1 jEdit 9 1 8 2 369 CV

2 AR5 30 1 29 2 36 CV

3 MC1 39 1 38 2 9466 CV

4 CM1 22 1 21 2 498 CV

5 KC1_Mod 95 1 94 2 282 CV

44 W. Afzal and R. Torkar

procedure for binary classifiers is to count the number of correctly predicted
modules over hold-out (test set) data. A fault prediction sheet [61]. as in Fig. 3, is
commonly used.

Based on the different possibilities in the fault prediction sheet, various measures
are typically derived. El-Emam et al. [62] have derived a number of measures based
on this; the most common ones being rate of faulty module detection (or probability
of detection (PD) or specificity), overall prediction accuracy (acc), probability of
false alarm (PF or recall) and precision (prec). However the measure of overall
accuracy acc has been criticized as being misleading since it ignores the data
distribution and cost information [63]. The other measures of PD, PF and prec also
reveal only one aspect of the prediction models at a time; thus their use introduces
bias in performance assessment. Use of these measures also complicate compar-
isons and model selection since there is always a tradeoff between three measures,
e.g. one model might exhibit a high PD but lower prec [63].

A receiver operating characteristic (ROC) curve [64] and the area under a ROC
curve (AUC) [65] have been shown to be more statistically consistent and dis-
criminating than predictive accuracy, acc [66]. The ROC curve is also a more
general way, than numerical indices, to measure a classifier’s performance [67].
A ROC curve provides an intuitive way to compare the classification performances
of different techniques. ROC is a plot of the trade-off between the ability of the
classifier to correctly detect fault-prone modules (PD) and the number of non-fault
prone modules that are incorrectly classified (PF) across all possible experimental
threshold settings [63, 68]. In short the (PF, PD) pairs generated by adjusting the
algorithms threshold settings forms an ROC curve. A typical ROC curve is shown
in Fig. 4.

This concave curve has the probability of detection (PD) on y-axis while the
x-axis shows the probability of false alarms (PF). The start and end points for the
ROC curve are (0, 0) to (1, 1), respectively. The software engineers need to identify
the points on the ROC curve that suits their risks and budgets for the project [69].
A straight line from (0, 0) to (1, 1) offers no information while the point (PF = 0,
PD = 1) is the ideal point on the ROC curve. A negative curve bends away from the
ideal point while a preferred curve bends up towards the ideal point. As such, if we
can divide the ROC space into four regions as shown in Fig. 5, the only region with
practical value for software engineers is region A with acceptable PD and PF
values. The regions B, C and D represent poor classification performance and hence
are of little to no interest to software engineers [63].

FN: False NegativeTN: True Negative

FP: False Positive TP: True Positive

NO

NO

YES

YES

er
 p

re
di

ct
s

fa
ul

ts

Module actually has faults

Fig. 3 The fault prediction sheet (confusion matrix)

Towards Benchmarking Feature Subset Selection Methods … 45

Area under the curve (AUC) [70] acts as a single scalar measure of expected
performance and is an obvious choice for performance assessment when ROC
curves for different classifiers intersect [4] or if the algorithm does not allow
configuring different values of the threshold parameter. AUC, as with the ROC
curve, is also a general measure of predictive performance since it separates pre-
dictive performance from class and cost distributions [4]. The AUC measures the
probability that a randomly chosen fp module has a higher output value than a
randomly chosen nfp module [64]. The value of AUC is always between 0 and 1;
with a higher AUC indicating that the classifier is on average more to the upper left
region A in Fig. 5.

We have used AUC as a measure of classification performance for the different
FSS methods. For all the datasets, the AUC value averaged over 10 fold
cross-validation runs, was calculated for each FSS method-dataset combination
before and after FSS. For each cross-validation fold, the FSS method reduced the
number of features in the dataset before being passed to C4.5 and NB classifiers.

A B

DC

P
D

 =
pr

ob
ab

ili
ty

 o
f d

et
ec

tio
n

 PF = probability of false alarm
0.0 0.5 1.0

0.
5

1.
0Fig. 5 Four regions in the

ROC space

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

P
D

=
 p

ro
ba

bi
lit

y
of

 d
et

ec
tio

n

PF= probability of false alarm

risk-adverse region

cost-
adverse
region

PF=PD=no
information

negative
curve

preferred curve
Fig. 4 A typical ROC curve

46 W. Afzal and R. Torkar

5 Results and Analysis

Table 3 show results for all the datasets for FSS with NB. This table shows the
AUC statistic for each FSS method and along with the AUC statistic when no
feature selection is performed (the second column). The values in bold indicate if
the use of the FSS method leads to an improvement of the AUC value, in com-
parison with when no FSS method is used. A number of FSS methods give an
improved AUC value in comparison with the original AUC value without any
feature selection. However, we need to test for any statistically significant differ-
ences between the different groups of AUC values. Since we have more than two
samples with non-normal distributions, the Kruskal-Wallis test with significance
level of 0.05 is used to test the null hypothesis that all samples are drawn from the
same population. The result of the test (p = 0.86) suggested that it is not possible to
reject the null hypothesis and, thus, there is no difference between any of the AUC
values for the different FSS methods using NB and the AUC values of using NB as
a classifier before and after applying the FSS methods.

Table 4 shows the number of attributes selected by each FSS method for NB.
Wrapper, CFS, Relief and GP produce comparable AUC values with fewer number
of selected features. PCA and IG, on the other hand, tend to select a much wider
range of features to provide comparable classification results using NB.

Table 5 shows the AUC statistic for each FSS method using C4.5 along with the
AUC statistic when no feature selection is used (second column). Again, the values
in bold indicate that the use of FSS method leads to an improvement of the AUC
value, in comparison with when no FSS is used. The result show that multiple FSS
methods do improve the classification performance across all data sets. However,
the result of using the Kruskal-Wallis test with α = 0.05 (p = 0.628) suggested that it
is not possible to reject the null hypothesis of all samples being drawn from the
same population. Thus there is no significant difference between: (a) any of the
AUC values for the different FSS methods using C4.5 and (b) the AUC values of
using C4.5 as a classifier before and after applying the FSS methods.

Table 6 shows the number of attributes selected by each FSS method for C4.5.
WRP, IG, CFS and GP produce comparable average AUC values with fewer
number of selected features. RLF, PCA and CNS tend to select a wider range of
features to provide comparable classification results using C4.5.

Table 3 FSS results with NB

Dataset NB IG RLF PCA CFS CNS WRP GP

jEdit 0.659 0.67 0.67 0.629 0.668 0.67 0.629 0.67
AR5 0.907 0.933 0.942 0.938 0.942 0.866 0.875 0.915
MC1 0.909 0.919 0.92 0.907 0.881 0.906 0.794 0.93
CM1 0.658 0.718 0.728 0.653 0.691 0.685 0.738 0.68
KC1_Mod 0.78 0.851 0.938 0.854 0.84 0.86 0.802 0.87

Towards Benchmarking Feature Subset Selection Methods … 47

T
ab

le
4

N
um

be
r
of

fe
at
ur
es

se
le
ct
ed

by
ea
ch

FS
S
m
et
ho

d
fo
r
N
B
.
T
he

fi
gu

re
s
in

%
in
di
ca
te

th
e
pe
rc
en
ta
ge

of
or
ig
in
al

fe
at
ur
es

re
ta
in
ed

D
at
as
et

O
rg
.

IG
R
L
F

PC
A

C
FS

C
N
S

W
R
P

G
P

jE
di
t

9
6
(6
6.
67

%
)

6
(6
6.
67

%
)

5
(5
5.
55

%
)

5
(5
5.
55

%
)

6
(6
6.
67

%
)

3
(3
3.
33

%
)

2
(2
2.
22

%
)

A
R
5

30
4
(1
3.
33

%
)

2
(6
.6
7
%
)

7
(2
3.
33

%
)

2
(6
.6
7
%
)

2
(6
.6
7
%
)

1
(3
.3
3
%
)

6
(2
0
%
)

M
C
1

39
20

(5
1.
28

%
)

12
(3
0.
77

%
)

14
(3
5.
90

%
)

4
(1
0.
26

%
)

15
(3
8.
46

%
)

1
(2
.5
6
%
)

4
(1
0.
26

%
)

C
M
1

22
5
(2
2.
73

%
)

3
(1
3.
64

%
)

4
(1
8.
18

%
)

7
(3
1.
82

%
)

11
(5
0
%
)

2
(9
.0
9
%
)

14
(6
3.
64

%
)

K
C
1_

M
od

95
3
(3
.1
6
%
)

8
(8
.4
2
%
)

17
(1
7.
89

%
)

8
(8
.4
2
%
)

2
(2
.1
0
%
)

4
(4
.2
1
%
)

7
(7
.3
7
%
)

A
ve
ra
ge

39
7.
6
(1
9.
49

%
)

6.
2
(1
5.
90

%
)

9.
4
(2
4.
10

%
)

5.
2
(1
3.
33

%
)

7.
2
(1
8.
46

%
)

2.
2
(5
.6
4
%
)

6.
6
(1
6.
92

%
)

48 W. Afzal and R. Torkar

As is clear from the above discussion, NB and C4.5 show insignificantly dif-
ferent classification accuracies for the variety of FSS methods used. This result is in
agreement with the study by Hall and Holmes [15] where the authors concluded
that there is no single best approach for FSS for all situations. Song et al. [6] and
Menzies et al. [38] also reach a similar conclusion:

[…] we see that a data preprocessor/attribute selector can play different roles with different
learning algorithms for different data sets and that no learning scheme dominates, i.e.,
always outperforms the others for all data sets. This means we should choose different
learning schemes for different data sets, and consequently, the evaluation and decision
process is important [6].

[…] the best attribute subsets for defects predictors can change dramatically from data set to
data set. Hence, conclusions regarding the best attribute(s) are very brittle, i.e., may not still
apply when we change data sets [38].

Below we discuss the individual AUC values given for NB and C4.5 for dif-
ferent FSS methods.

From Table 3, it can be seen that for attribute selection with NB, the best AUC
values are from three FSS methods (RLF, IG and GP) that improve NB on all five
data sets and degrade it on none. CFS is the second best with improvement on four
data sets and degradation on one. CNS, WRP and PCA give better performance on
two data sets but also degrade performance on three data sets.

An overall pattern that is clear from Table 3 is that FSS is generally useful for
NB’s application to software fault prediction studies without significantly affecting
classification accuracy. The results for NB in this study differ with the results given
in the study by Hall and Holmes [15]. In that study, WRP was a clear winner in
accuracy for NB. The potential reason for this performance could be attributed to
the nature of the forward selection search in WRP which is used to generate the
ranking such that strong attribute rankings are not identified. This search mecha-
nism potentially works well in tandem with NB which has an attribute indepen-
dence assumption [15]. However our results suggest that WRP is not at all a clear
winner for NB where other FSS methods are also giving statistically insignificant
results. This suggests that there are reasons other than the attribute independence
assumption of NB that affects classification accuracy of NB with different FSS
methods.

Table 5 FSS results with C4.5

Dataset NB IG RLF PCA CFS CNS WRP GP

jEdit 0.594 0.644 0.623 0.636 0.612 0.592 0.636 0.62
AR5 0.717 0.817 0.866 0.763 0.866 0.757 0.817 0.797
MC1 0.791 0.829 0.796 0.708 0.795 0.776 0.747 0.854
CM1 0.558 0.615 0.587 0.506 0.542 0.596 0.49 0.644
KC1_Mod 0.599 0.806 0.684 0.555 0.553 0.589 0.579 0.69

Towards Benchmarking Feature Subset Selection Methods … 49

T
ab

le
6

N
um

be
r
of

fe
at
ur
es

se
le
ct
ed

by
ea
ch

FS
S
m
et
ho

d
fo
r
C
4.
5.

T
he

fi
gu

re
s
in

%
in
di
ca
te

th
e
pe
rc
en
ta
ge

of
or
ig
in
al

fe
at
ur
es

re
ta
in
ed

D
at
as
et

O
rg
.

IG
R
L
F

PC
A

C
FS

C
N
S

W
R
P

G
P

jE
di
t

9
3
(3
3.
33

%
)

4
(4
4.
44

%
)

5
(5
5.
55

%
)

5
(5
5.
55

%
)

6
(6
6.
67

%
)

5
(5
5.
55

%
)

2
(2
2.
22

%
)

A
R
5

30
1
(3
.3
3
%
)

2
(6
.6
7
%
)

7
(2
3.
33

%
)

2
(6
.6
7
%
)

2
(6
.6
7
%
)

1
(3
.3
3
%
)

6
(2
0
%
)

M
C
1

39
9
(2
3.
08

%
)

19
(4
8.
72

%
)

14
(3
5.
90

%
)

4
(1
0.
26

%
)

15
(3
8.
46

%
)

1
(2
.5
6
%
)

4
(1
0.
26

%
)

C
M
1

22
2
(9
.0
9
%
)

9
(4
0.
91

%
)

4
(1
8.
18

%
)

7
(3
1.
82

%
)

11
(5
0
%
)

2
(9
.0
9
%
)

14
(6
3.
64

%
)

K
C
1_

M
od

95
3
(3
.1
6
%
)

7
(7
.3
7
%
)

17
(1
7.
89

%
)

8
(8
.4
2
%
)

2
(2
.1
0
%
)

4
(4
.2
1
%
)

7
(7
.3
7
%
)

A
ve
ra
ge

39
3.
6
(9
.2
3
%
)

8.
2
(2
1.
02

%
)

9.
4
(2
4.
10

%
)

5.
2
(1
3.
33

%
)

7.
2
(1
8.
46

%
)

2.
6
(6
.6
7
%
)

6.
6
(1
6.
92

%
)

50 W. Afzal and R. Torkar

In terms of number of features selected for NB, the methods retaining the least
number of features on average are WRP, CFS, RLF and GP. From Table 4 it can be
seen that CFS chooses fewer features to all other FSS methods. From the techniques
that were better on accuracy based on AUC values for NB, i.e., RLF and GP, are
also among the methods that retains the least number of features. This is encour-
aging and shows that RLF and GP produce higher AUC values for NB while
retaining minimum number of features on average, considering the data sets used in
the experiment. PCA turns out to be worst in terms of retaining few features.

From Table 5, one can see the individual AUC values for attribute selection with
C4.5. The results are in agreement with the results from NB. The best FSS methods
for C4.5 are IG, RLF and GP which improve C4.5’s performance on five data sets
and degrade it on none. CFS improve C4.5’s performance on three data sets and
degrades it on two. CNS and PCA improve C4.5’s performance on two data sets
and degrades it on three. Result for WRP is that it degrades performance on four
data sets and improves it on one.

As with NB, an overall pattern clear from Table 5 is that FSS is generally useful
for C4.5’s application to software fault prediction without significantly affecting
classification accuracy. According to the study by Hall and Holmes [15]. “The
success of ReliefF and consistency with C4.5 could be attributable to their ability to
identify attribute interactions (dependencies). Including strongly interacting attri-
butes in a reduced subset increases the likelihood that C4.5 will discover and use
interactions early on in tree construction before the data becomes too fragmented”.
The fact that we did not get consistent results with both RLF and CNF allows us to
suggest that the ability to identify attribute interactions (dependencies) might not be
the only differentiating factor in classification accuracy with respect to C4.5. As was
our argument in case of NB, we argue that there are factors other than the ability to
identify attribute interactions that are affecting classification accuracy of C4.5.

In terms of number of features retained for C4.5 (Table 6), WRP retains the
minimum percentage of features on average, followed by IG, CFS, GP, CNS and
RLF respectively. PCA is the worst in terms of retaining features for C4.5 with
24.10 %. Our results show WRP as a clear winner in our case while CFS is at third
place in terms of retaining the minimum number of features on average. From the
methods that were better on accuracy based on AUC values for C4.5 (IG, RLF and
GP), IG and GP are at second and fourth place respectively in terms of retaining
minimum percentage of features on average. This might suggest that IG and GP are
suitable FSS methods for C4.5 considering the data sets we used in this study. RLF
is down in ranking in Table 6, however its larger feature set sizes are justified by
higher classification accuracy than the other methods.

Below we summarize the results of our study:

– FSS is useful and generally improves classification accuracy.
– There are no statistically significant differences for either NB or C4.5 for the

variety of FSS methods used.
– Based on individual AUC values, IG, RLF and GP improve NB and C4.5 on

five data sets and degrade them on none.

Towards Benchmarking Feature Subset Selection Methods … 51

– CFS, RLF and GP retain the minimum percentage of features on average for
NB.

– PCA is the worst in terms of retaining the minimum percentage of features on
average for NB.

– There are factors other than the attribute independence assumption of NB that
affect its classification accuracy with different FSS methods.

– IG, RLF and GP improve importance of C4.5 on five data sets and degrades it
on none.

– WRP and CFS retains the minimum percentage of features on average for C4.5.
– There are factors other than the ability to identify attribute interactions that are

affecting classification accuracy of C4.5.

After having discussed the results, we come to a crucial question: If various FSS
methods perform differently for different machine learning algorithms, what factors
are most important to consider while selecting FSS methods to use? Hall and
Holmes [15] argue in their paper that there are three factors to consider:

1. An understanding of how different FSS methods work.
2. Strengths and weaknesses of the target learning algorithm.
3. Background knowledge about data.

While agreeing to all of the above factors, we add that if the goal is to improve
classification accuracy of a learner, a decision about selecting a FSS method has to
be reached in combination with following additional criteria:

1. Choice of resampling method.
2. Choice of data filtering technique (to address class imbalance, outlier removal,

handling missing values and discretizing numeric attributes).
3. Choice of accuracy measure to use.

Choice of a resampling method concerns how to divide historical data into
training and test data. In order to assess the generalizability of a learner, it is
necessary that the test data are not used in anyway to build the learners [6]. A recent
study by Afzal et al. [8] recommended the use of bootstrapping for software defect
prediction studies. If not bootstrapping, the second recommended choice is to use
leave-one-out cross validation for smaller data sets and 10-fold cross validation for
large data sets. This subject however require more empirical studies to further
strengthen these recommendations.

We also argue that the role of a data filtering technique in accurately classifying
software components is important. A study by Gao et al. [44] demonstrated that
data sampling (over-sampling or under-sampling) can counteract the adverse effect
attributed to class imbalance in software fault prediction. They also concluded that
feature selection became more efficient when used after data sampling. There are
other examples of the use of data filtering techniques in software fault prediction,
e.g., Menzies et al. [38] and Song et al. [6] used a log filtering preprocessor which
replaces all numerics with their logarithms.

52 W. Afzal and R. Torkar

Choice of an accuracy indicator to evaluate the performance of defect predictors
is also an important decision criterion. The use of MMRE as an accuracy indicator
has been criticized by several authors [7, 71, 72]. Consequently, area under the
receiver operating characteristic curve (AUC) is increasingly being used as a
standard choice for performance evaluation in software fault predictions studies.2

It is important to highlight the performance of an evolutionary computational
method (GP) as a FSS method. For both NB and C4.5, GP improved the AUC
values for maximum number of data sets and degraded on the least number of data
sets. For NB, GP is also among the methods that retained minimum percentage of
features on average. It is worth noting that for GP feature selection is an implicit
part of GP evolution. This enables automatic or semi-automatic selection of features
during model generation. GP allows almost any combination of a number of fea-
tures. Evolution can freely add remove multiple features and can reconsider pre-
vious selections as new combinations are tried [73]. A potential disadvantage of
using an evolutionary algorithm like GP is that it can take more computational
resources as compared with other methods. Therefore with GP it has to be a tradeoff
between how much improvement in classification accuracy is required against
available resources.

6 Validity Evaluation

Wohlin et al. [74] discuss four types of threats to an experimental study: external
(ability to generalize), conclusion (ability to apply statistical tests), internal (ability
to correctly infer connections between dependent and independent variables) and
construct (ability of dependent variable to capture the effect being measured).

External validity The datasets used in this study represent real-world use, col-
lected during the course of real industry projects developed by professionals. The
datasets differed in their number of attributes and sizes. However as noted by Gao
et al. [44] analysis of another data set from different application domain may
provide different results which is a likely threat in all empirical software engi-
neering research.

Conclusion validity We were mindful that the type of statistical tests could
potentially affect end results, therefore Kruskal Wallis test was used as we had more
than two samples with non-normal distributions. This empirical study was per-
formed using 10-fold cross-validation for statistically reliable results (recommended
in Kohavi [75] and Afzal et al. [8]). The performance of classifiers is compared
using area under the receiver operating characteristic curve (AUC) which we
motivate is a standard way of evaluating classification results.

Internal validity According to Gao et al. [44], different factors can affect the
internal validity of fault proneness estimates: measurement errors while collecting

2Section 4 provides more details about AUC.

Towards Benchmarking Feature Subset Selection Methods … 53

and recording software metrics; modeling errors due to the unskilled use of software
applications; errors in model selection during the modeling process; and the pres-
ence of outliers and noise in the training dataset. We used the publicly available
data sets so other researchers can replicate our work. Secondly we have given the
parameter settings for different methods used to ease replication of our work.

Construct validity The datasets used in this study are the ones donated by the
authors of fault prediction studies and mostly use structural measures. Structural
measures are widely used in software fault prediction studies [39], however finding
the right predictors for software fault proneness is an active area of research.

7 Conclusions

Feature subset selection (FSS) methods are used to keep the number of features in a
dataset as small as possible. Out of the various perceived advantages of using these
FSS methods (Sect. 1), this study evaluate whether or not the use of FSS methods
have any significant affect on the classification accuracy of software fault prediction
when used with two diverse learning algorithms, C4.5 and naïve Bayes.

We compare a total of seven FSS methods, representing a mix of state-of-the-art
methods and an evolutionary computation method, on five software fault prediction
datasets from the PROMISE data repository. Our findings show that feature subset
selection is generally useful for software fault prediction using naïve Bayes and
C4.5. However there are no clear winners for either of the two learning algorithms
for the variety of FSS methods used.

Based on individual AUC values, IG, RLF and GP improve naïve Bayes and
C4.5 on five data sets and degrade it on none. RLF, GP and CFS also retain the
minimum percentage of features on average for naïve Bayes. WRP and CFS retain
the minimum percentage of features on average for C4.5.

In summary, our results suggest that RLF, IG and GP are the best FSS methods
for software fault prediction accuracy using naïve Bayes and C4.5. CNS and CFS
are also good overall performers. We recommend that any future software fault
prediction study be preceded by an initial analysis of FSS methods, not missing on
methods that have shown to be more consistent than their competitors. It is rec-
ommended in literature that for selecting a FSS method, a data miner needs to have
an understanding of how different FSS methods work, strengths and weaknesses of
the target learning algorithm and background knowledge about data. In the context
of software fault prediction studies, we additionally recommend that the data miner
needs to have an understanding of different resampling methods, data filtering
techniques and accuracy measures for increasing the reliability and validity of
prediction results. In this study, we do not offer an interpretation of features retained
by different FSS methods. It is, nevertheless, an interesting future work to relate
features retained by different FSS methods with functioning of the target learning
algorithm and background knowledge about data.

54 W. Afzal and R. Torkar

References

1. Khoshgoftaar, T.M., Seliya, N.: Fault prediction modeling for software quality estimation:
Comparing commonly used techniques. Empirical Softw. Eng. 8(3), 255–283 (2004)

2. Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl.
36(4), 7346–7354 (2009)

3. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic review of fault
prediction performance in software engineering. IEEE Trans. Softw. Eng. (99) (2011)

4. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification models for
software defect prediction: a proposed framework and novel findings. IEEE Trans. Softw. Eng.
34(4), 485–496 (2008)

5. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans. Softw.
Eng. 25(5), 675–689 (1999)

6. Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: A general software defect-proneness
prediction framework. IEEE Trans. Softw. Eng. 37(3), 356–370 (2011)

7. Foss, T., Stensrud, E., Kitchenham, B.A., Myrtveit, I.: A simulation study of the model
evaluation criterion MMRE. IEEE Trans. Softw. Eng. 29(11) (2003)

8. Afzal, W., Torkar, R., Feldt, R.: Resampling methods in software quality classification. Int.
J. Software Eng. Knowl. Eng. 22, 203–223 (2012)

9. Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The misuse of the NASA metrics
data program data sets for automated software defect prediction. IET Semin. Dig. 1, 96–103
(2011)

10. Khoshgoftaar, T.M., Gao, K., Seliya, N.: Attribute selection and imbalanced data: Problems in
software defect prediction. IEEE Computer Society, Los Alamitos, CA, USA (2010)

11. Shivaji, S., Whitehead, J.E.J, Akella, R., Kim, S. Reducing features to improve bug prediction.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (ASE’09), IEEE Computer Society, Washington, DC, USA (2009)

12. Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J.: Detecting fault modules
applying feature selection to classifiers. In: IEEE International Conference on Information
Reuse and Integration (IRI’07) (2007a)

13. Rodriguez, D., Ruiz, R., Cuadrado-Gallego, J., Aguilar-Ruiz, J., Garre, M.: Attribute selection
in software engineering datasets for detecting fault modules. In: 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (EUROMICRO’07) (2007b)

14. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324
(1997)

15. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data
mining. IEEE Trans. Knowl. Data Eng. 15, 1437–1447 (2003)

16. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans.
Pattern Anal. Mach. Intell. 22, 4–37 (2000)

17. Chen, Z., Boehm, B., Menzies, T., Port, D.: Finding the right data for software cost modeling.
IEEE Softw. 22, 38–46 (2005)

18. Janecek, A., Gansterer, W., Demel, M., Ecker, G.: On the relationship between feature
selection and classification accuracy. In: Proceedings of the 3rd Workshop on New Challenges
for Feature Selection in Data Mining and Knowledge Discovery (FSDM’08), Microtome
Publishing, Brookline, MA, USA (2008)

19. Burke, E.K., Kendall, G. (eds.): Search methodologies—Introductory tutorials in optimization
and decision support techniques. Springer Science and Business Media, Inc., 233 Spring
Street, New York, USA (2005)

20. Dybå, T., Kampenes, V.B., Sjøberg, D.I.: A systematic review of statistical power in software
engineering experiments. Inf. Softw. Technol. 48(8), 745–755 (2006)

Towards Benchmarking Feature Subset Selection Methods … 55

21. Afzal, W., Torkar, R., Feldt, R., Gorschek, T.: Genetic programming for cross-release fault
count predictions in large and complex software projects. In: Chis, M. (ed.) Evolutionary
Computation and Optimization Algorithms in Software Engineering: Applications and
Techniques, pp. 94–126. IGI Global, Hershey, USA (2009)

22. Muni, D., Pal, N., Das, J.: Genetic programming for simultaneous feature selection and
classifier design. IEEE Trans. Syst. Man Cybern. B Cybern. 36(1), 106–117 (2006)

23. Smith, M.G., Bull. L.: Feature construction and selection using genetic programming and a
genetic algorithm. In: Proceedings of the 6th European Conference on Genetic Programming
(EuroGP’03), Springer-Verlag, Berlin, Heidelberg (2003)

24. Vivanco, R., Kamei, Y., Monden, A., Matsumoto, K., Jin, D.: Using search-based metric
selection and oversampling to predict fault prone modules. In: 2010 23rd Canadian
Conference on Electrical and Computer Engineering (CCECE’10) (2010)

25. Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intell. Syst.
and Their Appl. 13(2), 44–49 (1998)

26. Boetticher, G., Menzies, T., Ostrand, T.: PROMISE repository of empirical software
engineering data. http://promisedata.org/ repository, West Virginia University, Department of
Computer Science (2007)

27. Molina, L.C., Belanche, L., Nebot, Àngela: Feature selection algorithms: a survey and
experimental evaluation. Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM’02), pp. 306–313. IEEE Computer Society, Washington, DC, USA (2002)

28. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res.
3, 1157–1182 (2003)

29. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.
Artif. Intell. 97, 245–271 (1997)

30. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1(1–4), 131–
156 (1997)

31. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and
clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005)

32. Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software
effort estimation: a comparative study. IEEE Trans. Softw. Eng. 38, 375–397 (2012)

33. Chen, Z., Menzies, T., Port, D., Boehm, B.: Feature subset selection can improve software cost
estimation accuracy. SIGSOFT Softw. Eng. Notes 30(4), 1–6 (2005)

34. Menzies, T., Jalali, O., Hihn, J., Baker, D., Lum, K.: Stable rankings for different effort
models. Autom. Softw. Eng. 17, 409–437 (2010)

35. Kirsopp, C., Shepperd, M.J., Hart, J.: Search heuristics, case-based reasoning and software
project effort prediction. Proceedings of the 2002 Genetic and Evolutionary Computation
Conference (GECCO’02), pp. 1367–1374. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2002)

36. Azzeh, M., Neagu, D., Cowling, P.: Improving analogy software effort estimation using fuzzy
feature subset selection algorithm. In: Proceedings of the 4th International Workshop on
Predictor Models in Software Engineering (PROMISE’08), ACM, New York, NY, USA
(2008)

37. Li, Y., Xie, M., Goh, T.: A study of mutual information based feature selection for case based
reasoning in software cost estimation. Expert Systems with Applications 36(3, Part 2):5921–
5931 (2009)

38. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect
predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)

39. Catal, C., Diri, B.: Investigating the effect of dataset size, metrics sets, and feature selection
techniques on software fault prediction problem. Inf. Sci. 179, 1040–1058 (2009)

40. Khoshgoftaar, T.M., Seliya, N., Sundaresh, N.: An empirical study of predicting software
faults with case-based reasoning. Softw. Qual. Control 14, 85–111 (2006)

41. Wang, H., Khoshgoftaar, T., Gao, K., Seliya, N.: High-dimensional software engineering data
and feature selection. In: 21st International Conference on Tools with Artificial Intelligence
(ICTAI’09), pp. 83–90 (2009)

56 W. Afzal and R. Torkar

http://promisedata.org/

42. Khoshgoftaar, T.M., Nguyen, L., Gao, K., Rajeevalochanam, J.: Application of an attribute
selection method to CBR-based software quality classification. In: Proceedings of the 15th
IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03), IEEE
Computer Society, Washington, DC, USA (2003)

43. Altidor, W., Khoshgoftaar, T.M., Gao, K.: Wrapper-based feature ranking techniques for
determining relevance of software engineering metrics. Int. J. Reliab. Qual. Saf. Eng. 17, 425–
464 (2010)

44. Gao, K., Khoshgoftaar, T., Seliya, N.: Predicting high-risk program modules by selecting the
right software measurements. Softw. Qual. J. 20, 3–42 (2012)

45. Gao, K., Khoshgoftaar, T.M., Wang, H., Seliya, N.: Choosing software metrics for defect
prediction: an investigation on feature selection techniques. Softw. Pract. Experience 41(5),
579–606 (2011)

46. Khoshgoftaar, T.M., Gao, K., Napolitano, A.: An empirical study of feature ranking
techniques for software quality prediction. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 22, 161–
183 (2012)

47. Wang, H., Khoshgoftaar, T.M., Napolitano, A.: Software measurement data reduction using
ensemble techniques. Neurocomputing 92, 124–132 (2012)

48. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1993)

49. Novakovic, J.: Using information gain attribute evaluation to classify sonar targets. In:
Proceedings of the 17th Telecommunications forum (TELFOR’09) (2009)

50. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new
algorithm. In: Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI’92) (1992)

51. Sikonja, M., Kononenko, I.: An adaptation of relief for attribute estimation in regression. In:
Proceedings of the 14th International Conference on Machine Learning (ICML’97) (1997)

52. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine
learning. In: Proceedings of the 2000 International Conference on Machine Learning
(ICML’00), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

53. Liu, H., Setiono, R.: A probabilistic approach to feature selection—A filter solution.
Proceedings of the 1996 International Conference on Machine Learning (ICML’96), pp. 319–
327. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1996)

54. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk. URL: http://www.gp-
field-guide.org.uk, (with contributions by Koza, J.R.) (2008)

55. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection. MIT Press, Cambridge, MA, USA (1992)

56. Silva, S.: GPLAB—A genetic programming toolbox for MATLAB. http://gplab.sourceforge.
net, Last checked: 22 Dec 2014 (2007)

57. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29(2–
3), 131–163 (1997)

58. Rish, I.: An empirical study of the naive Bayes classifier. In: Proceedings of the workshop on
empirical methods in AI (IJCAI’01) (2001)

59. Kotsiantis, S., Zaharakis, I., Pintelas, P.: Machine learning: a review of classification and
combining techniques. Artif. Intell. Rev. 26(3), 159–190 (2007)

60. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

61. Menzies, T., DiStefano, J., Orrego, A., Chapman, R.M.: Assessing predictors of software
defects. In: Proceedings of the Workshop on Predictive Software Models, collocated with
ICSM’04. URL: http://menzies.us/pdf/04psm.pdf (2004)

62. El-Emam, K., Benlarbi, S., Goel, N., Rai, S.N.: Comparing case-based reasoning classifiers for
predicting high risk software components. J. Syst. Softw. 55(3), 301–320 (2001)

Towards Benchmarking Feature Subset Selection Methods … 57

http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://gplab.sourceforge.net
http://gplab.sourceforge.net
http://menzies.us/pdf/04psm.pdf

63. Ma, Y., Cukic, B.: Adequate and precise evaluation of quality models in software engineering
studies. In: Proceedings of the 3rd International Workshop on Predictor Models in Software
Engineering (PROMISE’07), IEEE Computer Society, pp 1, Washington, DC, USA(2007)

64. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
65. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 143(1):29–36 (1982)
66. Ling, C.X., Huang, J., Zhang, H.: AUC: a statistically consistent and more discriminating

measure than accuracy. In: Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI’03) (2003)

67. Yousef, W.A., Wagner, R.F., Loew, M.H.: Comparison of non-parametric methods for
assessing classifier performance in terms of ROC parameters. In: Proceedings of the 33rd
Applied Imagery Pattern Recognition Workshop (AIPR’04), IEEE Computer Society,
Washington, DC, USA (2004)

68. Jiang, Y., Cukic, B., Menzies, T., Bartlow, N.: Comparing design and code metrics for
software quality prediction. In: Proceedings of the 4th international workshop on predictor
models in software engineering (PROMISE’08), ACM, New York, NY, USA (2008)

69. Jiang, Y., Cukic, B., Menzies, T.: Fault prediction using early lifecycle data. In: Proceedings
of the 18th IEEE International Symposium on Software Reliability (ISSRE’07), IEEE
Computer Society, Washington, DC, USA (2007)

70. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning
algorithms. Pattern Recogn. 30, 1145–1159 (1997)

71. Kitchenham, B.A., Pickard, L.M., MacDonell, S., Shepperd, M.: What accuracy statistics
really measure? IEE Proc. Softw. 148(3) (2001)

72. Myrtveit, I., Stensrud, E., Shepperd, M.: Reliability and validity in comparative studies of
software prediction models. IEEE Trans. Softw. Eng. 31(5), 380–391 (2005)

73. Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer
patients. Genet. Program Evolvable Mach. 5, 251–257 (2004)

74. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experimentation in
software engineering: an introduction. Kluwer Academic Publishers, USA (2000)

75. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the 14th International Joint conference on Artificial Intelligence
(IJCAI’95), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995)

Author Biographies

Wasif Afzal is a postdoctoral research fellow at Mälardalen University, Sweden. He received his
PhD in Software Engineering from Blekinge Institute of Technology in 2011. His research
interests are within software testing, prediction and estimation in software engineering and
application of artificial intelligence techniques to software engineering problems.

Richard Torkar works as a professor of software engineering at Chalmers and the University of
Gothenburg, Sweden. His interests lie mainly in quantitative software engineering and statistics.

58 W. Afzal and R. Torkar

Evolutionary Computation for Software
Product Line Testing: An Overview
and Open Challenges

Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano,
Alexander Egyed and Enrique Alba

Abstract Because of economical, technological and marketing reasons today’s
software systems are more frequently being built as families where each product
variant implements a different combination of features. Software families are
commonly called Software Product Lines (SPLs) and over the past three decades
have been the subject of extensive research and application. Among the benefits of
SPLs are: increased software reuse, faster and easier product customization, and
reduced time to market. However, testing SPLs is specially challenging as the
number of product variants is usually large making it infeasible to test every single
variant. In recent years there has been an increasing interest in applying evolu-
tionary computation techniques for SPL testing. In this chapter, we provide a
concise overview of the state of the art and practice in SPL testing with evolu-
tionary techniques as well as to highlight open questions and areas for future
research.

Keywords Software product lines � Product line testing � Search based software
engineering � Feature models � Feature set � Reverse engineering � Variability
modeling

R.E. Lopez-Herrejon (&) � A. Egyed
Software Systems Engineering Institute, Johannes Kepler University, Linz, Austria
e-mail: roberto.lopez@jku.at

A. Egyed
e-mail: alexander.egyed@jku.at

J. Ferrer � F. Chicano � E. Alba
Universidad de Málaga, Andalucía Tech, Sevilla, Spain
e-mail: ferrer@lcc.uma.es

F. Chicano
e-mail: chicano@lcc.uma.es

E. Alba
e-mail: eat@lcc.uma.es

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_4

59

1 Introduction

A Software Product Line (SPL) is a family of related software systems each of
which provides a different combination of features [1], where a feature is commonly
defined as an increment in program functionality [2]. Extensive research and
practice attest to the substantial benefits of SPL practices such as increased software
reuse, faster product customization, and reduced time to market (e.g. [3]). SPLs
typically involve large number of software systems, which make it infeasible to
individually test each one of them. To address this need, several testing techniques
and approaches have been proposed, all with distinct advantages and drawbacks [4–
7].

Search Based Software Engineering (SBSE) is an emerging discipline that
focuses on the application of search-based optimization techniques to software
engineering problems [8]. Among the techniques SBSE relies on is evolutionary
computation—an area of artificial intelligence that studies algorithms that follow
Darwinian principles of evolution [9]. Evolutionary computation techniques are
generic, robust, and have been shown to scale to large search spaces. These
properties have been extensively exploited for testing standard one-off systems (e.g.
[10]), but their application to SPLs remains largely unexplored.

In this book chapter we present a concise overview of current techniques for SPL
testing, describe and illustrate the salient work on evolutionary computation tech-
niques applied to SPL testing, and highlight some of the open challenges that
remain to be addressed. The chapter is structured as follows. Section 2 provides the
basic background on SPL and evolutionary algorithms needed for this chapter.
Section 3 provides a general overview on the state of the art of SPL testing.
Section 4 describes Combinatorial Interaction Testing (CIT), the main approach for
evolutionary SPL testing, and presents a simple illustrative algorithm that follows
this approach. Section 5 presents a formal description of SPL testing as a
multi-objective optimization problem, describes an algorithm to compute exact
Pareto fronts, and summarizes the state of the art of research in this area. Section 7
summarizes the open questions and challenges. Section 8 presents the conclusions
to our work.

2 Background

In this section we provide the basic background on the two topics that crosscut the
chapter: Software Product Lines and Evolutionary Algorithms.

60 R.E. Lopez-Herrejon et al.

2.1 SPL Foundations—Feature Models and Running
Example

Feature models have become a de facto standard for modelling the common and
variable features of an SPL [11]. Features are depicted as labelled boxes and their
relationships as lines, collectively forming a tree-like structure. Feature models then
denote the set of feature combinations that the systems of an SPL can have [11, 12].

Figure 1 shows the feature model of our running example, the Graph Product
Line (GPL), a standard SPL of basic graph algorithms that has been extensively
used as a case study in the SPL community [13]. In this SPL, a software system has
feature GPL (the root of the feature model) which contains its core functionality,
and a driver program (Driver) that sets up the graph examples (Benchmark) to
which a combination of graph algorithms (Algorithms) are applied. The graphs
(GraphType) can be either directed (Directed) or undirected (Undirected),
and can optionally have weights (Weight). Two graph traversal algorithms
(Search) can be optionally provided: Depth First Search (DFS) or Breadth First
Search (BFS). A software system must provide at least one of the following
algorithms: numbering of nodes in the traversal order (Num), connected components
(CC), strongly connected components (SCC), cycle checking (Cycle), shortest
path (Shortest), minimum spanning trees with Prim’s algorithm (Prim) or
Kruskal’s algorithm (Kruskal).

In a feature model, each feature has exactly one parent feature and can have a set
of child features. A child feature can only be selected in a feature combination of a
valid software system if its parent is selected as well. The exception is the root
feature that does not have any parent and it is always selected in any software
system of a SPL. There are four kinds of feature relationships:

– Mandatory features are depicted with a filled circle. A mandatory feature is
selected whenever its respective parent feature is selected. For example, features
Algorithms and GraphType.

Fig. 1 Graph Product Line Feature Model [13]

Evolutionary Computation for Software Product Line Testing … 61

– Optional features are depicted with an empty circle. An optional feature may or
may not be selected if its respective parent feature is selected. An example is
feature Search.

– Exclusive-or relations are depicted as empty arcs crossing over the lines con-
necting a parent feature with its child features. They indicate that exactly one of
the features in the exclusive-or group must be selected whenever the parent
feature is selected. For example, if feature GraphType is selected, then either
feature Directed or feature Undirected must be selected.

– Inclusive-or relations are depicted as filled arcs crossing over a set of lines
connecting a parent feature with its child features. They indicate that at least one
of the features in the inclusive-or group must be selected if the parent is selected.
If for instance, feature Algorithms is selected then at least one of the features
Num, CC, SCC, Cycle, Shortest, Prim, or Kruskal must be selected.

Besides the parent-child relations, features can also relate across different
branches of the feature model with Cross-Tree Constraints (CTCs). Figure 1 tex-
tually shows the CTCs of GPL. For instance, Cycle requires DFS means that
whenever feature Cycle is selected, feature DFS must also be selected. As another
example, Prim excludes Kruskal means that both features cannot be selected
at the same time in any product. These constraints as well as those implied by the
hierarchical relations between features are usually expressed and checked using
propositional logic, for further details refer to [12]. Now we present the basic
definitions on which SPL testing terminology is defined in the next section.

Definition 1 (Feature list) A feature list (FL) is the list of features in a feature
model.

The FL for the GPL feature model is [GPL, Driver, Benchmark,
GraphType, Directed, Undirected, Weight, Search, DFS, BFS,
Algorithms, Num, CC, SCC, Cycle, Shortest, Prim, Kruskal].

Definition 2 (Feature set) A feature set fs is a 2-tuple [sel,sel] where fs.sel
and fs. sel are respectively the set of selected and not-selected features in a
system part of a SPL. Let FL be a feature list, thus sel,sel�FL, sel\sel ¼ £,
and sel[sel ¼ FL. Wherever unambiguous we use the term product as a syn-
onym of feature set.

Definition 3 (Valid feature set) A feature set fs is valid with respect to a feature
model fm iff fs.sel and fs. sel do not violate any constraints described by fm.
The set of all valid feature sets represented by fm is denoted as FSfm.

GPL has 73 distinct valid feature sets, some of them depicted in Table 1, where
selected features are ticked (✓) and unselected features are empty. An example of
valid feature set is fs1 that computes the algorithms Kruskal and CC, on
Undirected graphs using DFS search. Thus, the selected features are fs1.
sel={GPL, Driver, GraphType, Weight, Search, Algorithms,
Benchmark, Undirected, DFS, CC, Kruskal}, and the unselected fea-
tures fs1. sel={Directed, BFS, Num, SCC, Cycle, Shortest,

62 R.E. Lopez-Herrejon et al.

T
ab

le
1

Sa
m
pl
e
fe
at
ur
e
se
ts
of

G
PL

FS
G
PL

D
ri

G
tp

W
Se

A
lg

B
D

U
D
FS

B
FS

N
C
C

SC
C

C
yc

Sh
Pr
im

K
ru

fs
0

✓
✓

✓
✓

✓
✓

✓
✓

fs
1

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

fs
2

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

fs
3

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

fs
4

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

fs
5

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

fs
6

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

fs
7

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

D
ri
ve
r
(D

ri
),
G
ra
ph

T
yp

e
(G

tp
),
W
ei
gh

t
(W

),
Se
ar
ch

(S
e)
,A

lg
or
ith

m
s
(A

lg
),
B
en
ch
m
ar
k
(B
),
D
ir
ec
te
d
(D

),
U
nd

ir
ec
te
d
(U

),
N
um

(N
),
C
yc
le

(C
yc
),
Sh

or
te
st

(S
h)
,
K
ru
sk
al

(K
r)

Evolutionary Computation for Software Product Line Testing … 63

Prim}. Consider now another feature set gs with selected features BFS and
Cycle, meaning {BFS,Cycle} � gs.sel. This feature set is invalid because
these two features violate the CTC that establishes that whenever Cycle feature is
selected then feature DFS must be selected, i.e. Cycle requires DFS.

2.2 Basics of Evolutionary Algorithms

Evolutionary Computation is an area of computer science, artificial intelligence
more concretely, that studies algorithms that follow Darwinian principles of evo-
lution [9]. Algorithm 1 sketches the general structure of an evolutionary algorithm
adapted from [9, 14]. It starts by creating an initial population of candidate solutions
for the particular problem to address (Lines 1–2). The population is denoted by term
P(t) where t stands for the generation of the population. A measure of fitness to
solve the problem is used to evaluate each member of the population (Line 3).
Then, while not reaching a termination condition such as a given number of gen-
erations or fitness threshold (Lines 4–9), a new population is selected from the
previous population and the newly created offspring (Lines 5–6). The new popu-
lation is randomly mutated to promote solution diversity (Line 7) and is subse-
quently re-evaluated (Line 8).

Algorithm 1. Basic Evolutionary Algorithm

There are several types of evolutionary algorithms [9]; however, Genetic
Algorithms (GA) are undoubtedly the most commonly used ones [15]. They typi-
cally employ a binary list representation and are commonly used for optimization
problems such as job scheduling problems. In the coming sections we will explain
how this basic algorithm is adapted for the problem of SPL testing.

3 Overview of SPL Testing

As SPL development practices become more prevalent, there is an increasing need
of adequate and scalable SPL testing techniques. In recent years, there has been a
growing interest by the research and practitioners communities to propose and

64 R.E. Lopez-Herrejon et al.

evaluate new methods and tools to address this need. The results have been cap-
tured and analyzed in several systematic mapping studies and surveys. In this
section, we summarize the most salient works among such studies and surveys to
provide the context on which to place evolutionary computation techniques for
SPL.

Engström and Runerson [4] performed a mapping study that takes a higher level
view of the subject by focusing for instance on the organization and process for
testing, and the type of testing techniques performed such as acceptance testing,
unit testing, or integration testing. A similar and complementary mapping study was
carried out by Neto et al. [5]. They analyzed, for instance, the different strategies
that have been taken for SPL testing such as testing product by product, incremental
testing (i.e. first product tested individually and the following products with
regression testing), or opportunistic reuse (i.e. employ test assets available from
other products). They also analyzed others factors and aspects of SPL testing such
as the use of static and dynamic analysis techniques, the effort reduction, or
non-functional testing. Among their most salient findings, is the lack of evidence on
when to select a given testing strategy considering factors such as development
processes employed or delivery time and budget constraints. The complementary
nature of these two studies has been further analyzed and reported [16, 17].

More recent studies by do Carmo Machado et al. [7, 18] have taken a closer look
at the techniques used for SPL testing. They classify the works in two so-called
interests: papers that focus on selecting the products of the SPL to test, and papers
that describe approaches to actually carry out the testing on the selected products.
Their study found that the de facto approach for selecting which SPL products to
test is Combinatorial Interaction Testing (CIT) which aims at constructing samples
to drive the systematic testing of software system configurations [19, 20]. For the
second interest, they found an array of techniques, mostly based on extensions to
UML activity and sequence diagrams.1 Their study highlights also several short-
comings, such as the lack of robust empirical evaluation and adequate tool support.

We should point out that CIT is a generic testing approach not only applicable in
the context of SPL testing. In this general sense, CIT consists of four phases [21]:
(i) modeling whose goal is to model the System Under Test (SUT) and its input
space, (ii) sampling which produces a set of configurations that will be used for
testing, (iii) testing that actually carries of the test based on different CIT param-
eters, and (iv) analysis where the results obtained are examined to identify faults
and their underlying causes. In other words, the first two stages deal with the what
should be tested, whereas the last two stages deal with the how should be tested
[21].

Within the area of Search-Based Software Engineering a major research focus
has been software testing [8, 22]. A recent overview by McMinn [10] highlights the
major achievements made in the area and some of the open questions and chal-
lenges. We have performed a systematic mapping study whose focus is on SBSE

1http://www.uml.org/.

Evolutionary Computation for Software Product Line Testing … 65

http://www.uml.org/

techniques applied to SPLs [23],2 among such techniques are those based on
evolutionary computation. Overall we found that almost all the research on evo-
lutionary computation applied to SPL testing falls within the first two stages of CIT,
modeling (based on feature models) and sampling (using different techniques), as
we elaborate more on next section.

4 Combinatorial Interaction Testing for Software Product
Lines

When Combinational Interaction Testing is applied to SPLs, the goal is to select a
representative subset of products where interaction errors are more likely to occur
rather than testing the complete product family [19]. In this section, we provide the
basic terminology of CIT for SPLs,3 use a simple evolutionary algorithm to illus-
trate CIT for the case of pairwise testing, and presents an overview of state of the art
in CIT for SPL testing. In Sect. 5, we address the case when optimization of
multiple objectives is considered.

4.1 Basic Terminology

Definition 4 (t-set) A t-set ts is a 2-tuple [sel, sel] representing a partially
configured product, defining the selection of t features of the feature list FL, i.e.
ts:sel[ts:sel�FL ^ ts:sel\ts:sel ¼ £ ^ jts:sel[ts:selj ¼ t. We say
t-set ts is covered by feature set fs iff ts:sel� fs:sel ^ ts:sel� fs:sel.

Definition 5 (Valid t-set) A t-set ts is valid in a feature model fm if there exists a
valid feature set fs that covers ts. The set of all valid t-sets for a feature model is
denoted with VT Sfm.

Definition 6 (t-wise covering array) A t-wise covering array tCA for a feature
model fm is a set of valid feature sets that covers all valid t-sets in VT Sfm.
Formally, tCA�PðFSfmÞ where 8ts 2 VTSfm; 9fs 2 tCA such that fs covers ts.

Let us illustrate these concepts for pairwise testing, meaning when t = 2. From
the feature model in Fig. 1, a valid 2-set is [{Driver},{Prim}]. It is valid
because the selection of feature Driver and the non-selection of feature Prim do not
violate any constraints. As another example, the 2-set [{Kruskal,DFS}, £] is

2An early version is available in [24].
3Definitions based on [12, 25].

66 R.E. Lopez-Herrejon et al.

valid because there is at least one feature set, for instance fs1 in Table 1, where both
features are selected. The 2-set [£, {SCC,CC}] is also valid because there are
valid feature sets that do not have any of these features selected, for instance feature
sets fs0, fs2, and fs3. Notice, however, that the 2-set [£, {Directed,
Undirected}] is not valid. This is because feature GraphType is present in all
the feature sets (mandatory child of the root) so either Directed or
Undirected must be selected. In total, our running example has 418 valid 2-sets,
so a 2-wise covering array must have all these pairs covered by at least one feature
set. A covering array can be visually depicted as shown in Fig. 2 [26].

4.2 SPL Genetic Solver (SPLGS)

The SPL Genetic Solver (SPLGS) is a constructive genetic algorithm that computes
pairwise covering arrays for SPLs based on a feature model that receives as input. It
is based on the Prioritized Genetic Solver (PGS) by Ferrer et al. that takes into
account priorities during the generation of test suites [27]. SPLGS extends and
adapts PGS for generating test suites of product lines. In each iteration SPLGS adds
a new feature set that contributes the most coverage to the partial solution until all

Fig. 2 Graph Product Line 2-wise covering array example [26]

Evolutionary Computation for Software Product Line Testing … 67

pairwise combinations are covered. SPLGS has been implemented using two
framework tools: (i) jMetal [28], a Java framework aimed at the development,
experimentation, and study of metaheuristics for solving optimization problems;
and (ii) FAMA, an extensible framework for the representation and analysis of
feature models [29]. The architecture of the SPLGS is presented in Fig. 3.

Algorithm 2 sketches the pseudocode of SPLGS. It takes as inputs the feature
model FM. At the beginning, the test suite (TS) is initialized with an empty list
(Line 4), and the set of remaining pairs (RP) is initialized with all valid pairs that
need to be covered (Line 5). In each iteration of the external loop (Lines 6–24), the
algorithm creates a random initial population of individuals (feature sets in our
case) in (Line 8), and enters an inner loop which applies the traditional steps of a
generational evolutionary algorithm (Lines 9–21). That is, some individuals are
selected from the population PðtÞ, recombined, mutated, evaluated, and finally
inserted in offspring population Q. If a generated offspring individual is not a valid
feature set (i.e. it violates any constraint derived from the feature model), it is
transformed into a valid one by applying a Fix operation (Line 15) provided by the
FAMA tool [29]. The fitness value of an offspring individual is the number of pairs
that remains to be covered, and hence it should be minimized (Line 16). In Line 19,
the best individuals of PðtÞ and Q are kept for the next generation Pðtþ 1Þ. The
internal loop is executed until a maximum number of evaluations is reached. Then,
the best individual found is included in the test suite (Line 22) and RP is updated by
removing the new pairs covered by the selected best solution (Line 23). Then, the
external loop starts again until there is no pair left in the RP set. Finally, in Line 25
the computed test suite is returned. SPLGS has been shown to generate competitive
test suites when compared against other leading CIT approaches for SPL, for further
details refer to [30].4

Fig. 3 Architecture of SPLGS

4In [30] the algorithm is named PGS. We changed its name for this chapter to avoid confusions
with the original algorithm PGS in [27] that was not designed for SPLs.

68 R.E. Lopez-Herrejon et al.

Algorithm 2. Pseudocode of SPLGS

4.3 State of the Art CIT for SPL Testing

There exists an important body of literature on CIT for SPL testing; however, only
few examples rely on evolutionary algorithms. In this section we first present these
approaches, followed by those that do not rely on evolutionary algorithms. In
Sect. 5.4 we present the related work for Multi-Objective Evolutionary Algorithms
for SPL testing.

Evolutionary Approaches. Ensan et al. [31] propose a genetic algorithm
approach for test case generation for SPLs that uses a variation of cyclomatic
complexity metric adapted to feature models and hence their goal is not to provide
n-wise coverage. Henard et al. [32] propose an approach based on a (1 + 1) evo-
lutionary algorithm that uses similarity heuristic as a viable alternative for t-wise
coverage for coping with large scale feature models and large values of t up to 6.
This approach is supported by a tool called PLEDGE that in addition provides a
product line editor [33]. Work by Xu et al. [34] uses a genetic algorithm for
continuous test augmentation. Their CONTESA tool incrementally generates test
cases for branches that have not yet been covered by existing tests. Recent work by
Henard et al. [35] creates so called mutants of a feature model which in addition to
the original feature model are passed to a (1 + 1) evolutionary algorithm to produce
test suites.

Evolutionary Computation for Software Product Line Testing … 69

Non-Evolutionary Approaches. Garvin et al. [36] applied simulated annealing
to combinatorial interaction testing for computing n-wise coverage for SPLs. Their
algorithm CASA, performs three nested search strategies aiming at iteratively
reducing the sizes of the test suites. Perrouin et al. propose an approach that first
transforms t-wise coverage problems into Alloy programs and then uses Alloy’s
automatic instance generation to obtain covering arrays [37]. Oster et al. [38]
propose MoSo-PoLiTe, an approach that transforms feature models into Constraint
Solver Problems (CSP) to compute pairwise covering arrays. MoSo-PoLiTe can
also include pre-selected products as part of the covering arrays. Hervieu et al. [39]
follow a similar approach of using constraint programming for computing pairwise
coverage. Regarding model based testing, the work by Lochau et al. [40] relates
feature models with a reusable test model expressed with state charts to define and
analyse feature dependencies and interactions. Cichos et al. [41] proposed an
application of the so-called 150 % model, a model with all variable options
included, whose goal is to provide complete test coverage for a given coverage
criterion. Johansen et al. [25] propose a greedy approach to generate n-wise test
suites that adapts Chvátal’s algorithm to solve the set cover problem that makes
several enhancements, for instance they parallelize the data independent processing
steps. Calvagna et al. have developed CITLab [42], a tool for integrating multiple
CIT approaches for SPLs.

5 Multi-objective SPL Testing

The approaches presented in Sect. 4 primarily focus on obtaining test suites that
achieve complete coverage of the desired t strength. In other words, their single
optimization objective is maximizing t-wise coverage. Though useful in many
contexts, this single-objective perspective does not reflect the prevailing scenario
where software engineers do face trade-offs among multiple and often conflicting
objectives that represent technical and economical constraints. In this section, we
first present a formalization of SPLs testing as a multi-objective optimization
problem and provide a brief motivation example. Then as an example, we describe
our exact algorithm to compute the optimal solutions for pairwise testing for
coverage and test suite size optimization. And conclude with an overview of related
multi-objective SPL testing approaches.

5.1 Multi-objective Optimization Formalization

There exists a wealth of literature in the context of Evolutionary Multi-Objective
Optimization [43] and the application of Search-Based Software Engineering
(SBSE) to software testing [44]. In this section we provide the formalization of SPL
testing as a multi-objective optimization problem. Our definitions are based on

70 R.E. Lopez-Herrejon et al.

[45–47] and are generalizations of our previous work for the case of bi-objective
pairwise testing [48].

Definition 7 (Decision space) The decision space is the set of possible solutions to
an optimization problem. In our context, it corresponds to the set of all possible
subsets of valid feature sets represented by a feature model fm, denoted as
DSfm ¼ PðFSfmÞ. A decision vector is an element of the decision space, that
is x 2 DSfm.

Definition 8 (Objective functions) An objective function is a function that repre-
sents a goal to optimize, e.g. f fm : DSfm ! N.

As examples, let us consider two objective functions:

– Coverage function. We want to maximize the number of t-wise sets covered by
a test suite as follows:

f fm1 : DSfm ! N;

f fm1 ðxÞ ¼ jcoversðxÞj;

wherecovers computes the t-wise sets covered by the feature sets of test suite x.
– Test suite size function. We want to minimize the number of feature sets in the

test suite. We define this function as follows:

f fm2 : DSfm ! N;

f fm2 ðxÞ ¼ jxj:

Definition 9 (Vector function) A vector function associated to a feature model fm
is defined as5:

Ffm : DSfm ! OSfm

FfmðxÞ ¼ f fm1 ðxÞ; f fm2 ðxÞ; . . .; f fmn ðxÞ
� �

where OS is the corresponding objective space, in our context is OSfm ¼ N
n.

Definition 10 (Objective vector) An objective vector is the result of applying the
vector function to an element of the decision space. Let x 2 DSfm, its objective
vector u is defined as: u ¼ FfmðxÞ ¼ ðf fm1 ðxÞ; f fm2 ðxÞ; . . .; f fmn ðxÞÞ.

5For notational brevity we omit on the vector function and the objective vectors the T that denotes
the transpose on vectors.

Evolutionary Computation for Software Product Line Testing … 71

Pareto dominance is the most commonly accepted notion of superiority in
multi-objective optimization because it is the canonical generalization of the
single-objective case [45].

Definition 11 (Pareto dominance) Let x; y 2 DSfm, u ¼ FfmðxÞ ¼ ðu1; u2; . . .; unÞ,
and v ¼ FfmðyÞ ¼ ðv1; v2; . . .; vnÞ for a feature model fm. Let u4 v mean that u is
better than v if there is at least one objective i for which f fmi ðxÞ is better than f fmi ðyÞ,
and there are no objectives for which it is worse. Then we say that objective vector
u Pareto-dominates objective vector v iff u4 v and v� u.

Definition 12 (Multi-Objective SPL n-wise testing problem) A multi-objective
n-wise SPL testing problem for a feature model fm is a 4-tuple
ðDSfm;OSfm;Ffm;4Þ whose goal is to find a decision vector x� 2 DSfm such that
it minimizes vector function Ffm.

Definition 13 (Pareto optimal decision vector) A decision vector x 2 DSfm is
Pareto optimal iff it does not exist another y 2 DSfm such that Pareto-dominates it,
that is FðyÞfm 4FðxÞfm.
Definition 14 (Pareto optimal set) The Pareto optimal set Pfm

� of a multiobjective
n-wise SPL testing problem for feature model fm and its vector function Ffm is:
Pfm
� ¼ fx 2 DSfmj6 9x0 2 DSfmsuch thatFfmðx0Þ4FfmðxÞg.

Definition 15 (Pareto front) For a given multi-objective n-wise SPL testing
problem for feature model fm and a Pareto optimal set Pfm

� , the Pareto front is
defined as: PFfm

� ¼ FfmðPfm
� Þ.

5.2 An Example Scenario

Let us now motivate the importance of multi-objective optimization for SPL with a
simple and illustrative example. Consider for instance our two objective functions
f fm1 and f fm2 , as described above, that respectively represent the t-wise coverage and
test suite size. On one hand we want to maximize t-wise coverage while at the same
time we want to minimize the test suite size. Figure 4 shows the Pareto front for our
running example GPL for the case of pairwise testing. Objective function f fm1 is
shown on the vertical axis as percentage of coverage pairs, while objective function
f fm2 is shown on the horizontal axis.

Taking a multi-objective approach and computing a Pareto front allows software
engineers to select not just one solution, as in the case of single-objective tech-
niques, but instead to select from an array the solution that best matches the eco-
nomical and technological constraints of their testing context. In our example, some

72 R.E. Lopez-Herrejon et al.

of the questions that can be answered and hence can help software engineers make
informed decisions are:

– What is the minimum size of a test suite that guarantees full pairwise coverage?
Clearly, from Fig. 4, this can only be achieved with 12 feature sets.

– How many feature sets are needed to get a certain percentage coverage, for
example 90 % coverage? Again, from the information provided by the Pareto
front we can affirm that only 4 products are needed to attain 90 % coverage.

– If only 3 feature sets can be tested because of economical constraints, what is
the maximum coverage that can be achieved? Once more, using the information
of the Pareto front, the maximum coverage is 80.86 %.

For this kind of concerns, software engineers not only get a single value, like the
number of feature sets to test, but in addition they can also obtain a list of test suites
that meet the desired criteria. In sharp contrast with single-objective approaches
that can only provide a single solution. For example, the test suite shown in Fig. 2
is just but a single point that is mapped to the GPL Pareto front, in our case the
rightmost point in Fig. 4 in the best scenario. Hence, for instance, the questions
posed above cannot be addressed with a single-objective method. Next section we
present an approach to compute the exact Pareto front which we used for computing
the front for GPL.

5.3 Computation of Exact Pareto Fronts

In this section we present an overview of our work on computing exact Pareto
fronts for SPL pairwise testing for two objectives, maximizing the pairwise cov-
erage while minimizing the test suite size. For further details please refer to [49].
The algorithm we proposed for obtaining the optimal Pareto set is given in
Algorithm 3, and is based on the work of Arito et al. [50] for solving a

Fig. 4 Graph Product Line
Paiwise Pareto Front

Evolutionary Computation for Software Product Line Testing … 73

multi-objective test suite minimization problem in regression testing. From the
definitions in the previous subsection, recall that a Pareto optimal set is a set of
non-dominated solutions each of which is not dominated by any other solution in
the decision space, while the Pareto front is the projection of this set in the objective
space, that is, a plot containing the values of the objective functions for each
solution.

Algorithm 3 takes as input a feature model (Line 2) and computes the optimal
Pareto set (Line 3). It first initializes the optimal set to empty (Line 4). Then it adds
to the set two solutions that are always in the set: the empty solution with zero
coverage (Line 5) and one arbitrary solution (Line 7) with coverage C f

2 , that is, the
number 2-combinations of the set of features (Line 6). The algorithm then enters a
loop (Lines 9–15) in which successive zero-one linear programs are generated (Line
12) for an increasing number of products starting at 2. A zero-one program is an
integer program in which the variables can take as value either 0 or 1 [51]. In our
case, this program serves to compute a solution which has the maximum coverage
that can be obtained with i feature sets. In short, we describe this process in more
detail.

Each mathematical model is then solved using an extended SAT solver (Line
13), in our case MiniSat+.6 This solver provides a test suite with the maximum
coverage for the given number of feature sets. This solution is subsequently added
to the optimal Pareto set (Line 10), and the corresponding coverage is adjusted
(Line 14). The algorithm stops when adding a new product to the test suite does not
increase the coverage. The obtained Pareto optimal set is finally returned (Line 16).

Now we describe how to build the zero-one program for pairwise coverage. Let
n be the fixed number of feature sets we want to compute and let f be the number of
features of the input feature model FM. We use the set of decision variables
xi;j 2 f0; 1g where i 2 f1; 2; . . .; ng and j 2 f1; 2; . . .; f g, such that variable xi;j is 1
if feature set i has feature j selected and 0 otherwise. The zero-one program consists
of four parts as described next.

1. Constraints from feature model. Recall that not all the combinations of fea-
tures form valid products. The validity of any feature set denoted by a feature
model FM can be expressed as a Boolean formula following the standard
mapping to Conjunctive Normal Form (CNF) [12]. Each of the CNF clauses is
then converted to a constraint of a zero-one program. First, let us define the
Boolean vectors v and u as follows [52]:

6Available at URL: http://minisat.se/MiniSat+.html.

74 R.E. Lopez-Herrejon et al.

http://minisat.se/MiniSat%2b.html

Algorithm 3. Algorithm for obtaining the Pareto optimal set

vj ¼ 1 if feature j appears in the clause ;
0 otherwise;

�

uj ¼ 1 if feature j appears negated in the clause ;
0 otherwise:

�

With the definitions of u and v, Eq. 1 describes how to write the constraint that
corresponds to a CNF clause for the ith product.

Xf

j¼1

vjðujð1� xi;jÞþ ð1� ujÞxi;jÞ>1 ð1Þ

As an illustration, let us suppose in our GPL running example that feature
Search is the 8th feature in the feature list and Num is the 12th feature. The
cross-tree constraint “Num requires Search”, shown in Fig. 1, can be written in
CNF with the clause :Num _ Search and its translation to a zero-one constraint
is: 1� xi;12 þ xi;8>1.

2. Constraints for pairwise coverage per feature set. Because our focus is
pairwise coverage, we need to consider four possible combinations between two
features: (i) both features unselected, (ii) first feature unselected and second
feature selected, (iii) first feature selected and second feature unselected,
(iv) both features selected.
We introduce one variable in our program for each feature set, each pair of
features and each of these four possibilities. The variables, called ci;j;k;l, take
value 1 if feature set i covers the pair of features j and k with the combination l.

Evolutionary Computation for Software Product Line Testing … 75

The combination l is a number between 0 and 3 representing the selection
configuration of the features according to the next mapping: l ¼ 0, both unse-
lected; l ¼ 1, first unselected and second selected; l ¼ 2, first selected and second
unselected; and l ¼ 3 both selected. The values of the variables ci;j;k;l depend on
the values of xi;j. In order to reflect this dependence in the mathematical program
we add the following constraints for all i 2 f1; . . .; ng and all 16j\k6f :

2ci;j;k;06ð1� xi;jÞþ ð1� xi;kÞ61þ ci;j;k;0 ð2Þ

2ci;j;k;16ð1� xi;jÞþ xi;k61þ ci;j;k;1 ð3Þ

2ci;j;k;26xi;j þð1� xi;kÞ61þ ci;j;k;2 ð4Þ

2ci;j;k;36xi;j þ xi;k61þ ci;j;k;3 ð5Þ

3. Constraints for pairwise coverage of all feature sets. Variables ci;j;k;l inform
about the coverage in one feature set. We need new variables to count the pairs
covered when all the feature sets are considered. These variables are called dj;k;l,
and take value 1 when the pair of features j and k with combination l is covered
by some product and 0 otherwise. This dependence between the ci;j;k;l variables
and the dj;k;l variables is represented by the following set of inequalities for all
16j\k6f and 06l63:

dj;k;l6
Xn

i¼1

ci;j;k;l6n � dj;k;l ð6Þ

4. Maximization goal. Finally, the goal of our program is to maximize the pair-
wise coverage, which is given by the number of variables dj;k;l that are 1. This is
expressed
as:

max
Xf�1

j¼1

Xf

k¼jþ 1

X3

l¼0

dj;k;l ð7Þ

In summary, the mathematical program is composed of the goal (7) subject to
the 4ðnþ 1Þf ðf � 1Þ constraints given by (2) to (6) plus the constraints of the
FM expressed with the inequalities (1) for each product. The number of vari-
ables of the program is nf þ 2ðnþ 1Þf ðf � 1Þ. The solution to this zero-one
linear program is a test suite with the maximum coverage that can be obtained
with n feature sets.

Evaluation. We have evaluated our approach using a benchmark of 118 feature
models publicly available in two open repositories [49], whose results are shown in
Fig. 5.These featuremodels havenumber offeature sets that ranges from16 to640.We
found that execution time does not grow linearly with the number of feature sets of the

76 R.E. Lopez-Herrejon et al.

feature models, but instead it grows faster. Consequently we found scalability issues
with our approach. Even though the majority of our examples finishedwithin an hour,
therewere a significant portion that required aday and a few less that required aweekof
devoted computation in a standard desktop environment. Scalability issues of exact
methods are the main reason for using approximate methods based onmulti-objective
evolutionary algorithms that we summarize in the next section.

5.4 Sate of the Art in Evolutionary Multi-objective
Optimization for SPL Testing

We have performed a systematic mapping study on SBSE techniques applied to
SPLs [23].7 In this section we shortly summarize all the works found by this study
and in addition describe the salient related work that uses evolutionary
multi-objective algorithms for SPLs but not for testing.

Our previous work makes a comparison of four classical multi-objective evolu-
tionary algorithms for SPL pairwise testing, namely: NSGA-II, PAES, MOCell, and
SPEA2 [48]. In addition, this work analyzes the performance impact of three different
seeding strategies that exploit different levels of domain knowledge to create the
initial populations. We evaluated this work using 19 representative feature models
from different application domains, ranging in number of features from 9 to 117, and
in number of feature sets from 32 to 1,741,824. We found that the algorithms
NSGA-II, SPEA2 or MOCell perform comparatively equal and perform best when
using the seeding strategy that exploits the most domain knowledge (i.e. seeds the
initial population based on a test suite computed using a single-objective algorithm).

Fig. 5 Time (log scale) to
compute Pareto optimal set
versus number of feature sets

7An early version is available in [24].

Evolutionary Computation for Software Product Line Testing … 77

The work by Wang et al. present an approach to minimize test suites using
weights in the fitness function [53], that is, it uses a scalarizing function that
transforms a multi-objective problem to a single-objective one [47]. Their work
uses three objectives: test minimization percentage, pairwise coverage, and fault
detection capability. A similar approach is taken in recent work by Henard et al. that
present an ad-hoc multi-objective algorithm whose fitness function is also scalar-
ized [54]. Their work focuses also on maximizing coverage, minimizing test suite
size, and minimizing cost. We should remark that neither of these two approaches
are multi-objective evolutionary algorithms in the strict sense. Clearly, this is
because these approaches compute only one single solution, that is, just a single
point in the Pareto front. Incidentally, we should point out there is an extensive
body of work on the downsides of scalarization in multi-objective optimization (e.g.
[55]). Among the shortcomings are the fact that weights may show a preference of
one objective over the other and, most importantly, the impossibility of reaching
some parts of the Pareto front when dealing with convex fronts.

We should also point out that there is a considerable number of applications of
multi-objective evolutionary algorithms but outside of the testing activities of SPL
development. A common task where these algorithms is employed is in product
configuration. For example, Cruz et al. employ the multi-objective algorithm
NSGA-II to create and manage product portfolios based on customer satisfaction
and costs [56]. As another example, the work by Sayyad et al. performs a more
thorough exhaustive application and analysis of multi-objective evolutionary
algorithms for configuration tasks [57, 58]. Our own previous work has also
explored using several classical multi-objective evolutionary algorithms for the
configuration of dynamic product lines for mobile applications [59].

For sake of completeness, we should also indicate ongoing work on exact
multi-objective method by Olaechea et al. who propose an exact method to compute
Pareto fronts showing their capability to handle small and medium size problems
and provide basic guidelines for choosing either exact or evolutionary approaches
[60]. Similarly, Murashkin et al. present a tool for the visualization and exploration
of variants in a multi-dimensional space but do not address SPL testing issues [61].

6 Evolutionary Testing of SPLs in Practice

The most common scenario for the development of SPLs in industrial setting comes
after the realization that developing and maintaining multiple similar systems, an
approach called “Clone and Own”, is not economically feasible [62]. The main
goals of reverse engineering a SPL from a set of similar software systems are:
(i) capture the knowledge of what is common and what is variable (e.g. com-
monality and variability) in all the artifacts employed throughout the development
life-cycle, and (ii) express with a feature model all the valid feature combinations
required for the SPL. The result of the reverse engineering process is illustrated in
Fig. 6.

78 R.E. Lopez-Herrejon et al.

There has been extensive work over the last two decades on how to capture the
variability and commonality knowledge for SPLs (i.e. Variability Management
Mechanism in Fig. 6), for a summary see for example [63]. Regarding the
extraction of feature models, recent work by Lopez-Herrejon et al. also uses evo-
lutionary algorithms in combination of information retrieval metrics for obtaining
feature models based on the feature combinations [64, 65]. Alternative approaches
can obtain feature models based on generic propositional logic constraints [66].

Once a SPL infrastructure has been put in place, SPL testing can proceed. There
has been recent accounts of SPL testing in industrial settings, some of them relying
on evolutionary approaches. For instance, Wang et al. report on an experience in the
application of multi-objective algorithms for a video conference application [67].
The common trend in such experiences is that the critical factor is eliciting the right
feature models from the software engineers, this is so because the information of the
valid feature combinations are commonly not well documented if at all. The
application of the testing techniques in general do not require expensive hardware
or software infrastructure, as in the common cases their execution takes a few
minutes or hours in typical off-the-shelf desktop computers. There are, however,
empirical and theoretical studies on large scale feature models, mostly of academic
interest, that consider large number of features, products, or higher array strengths
(e.g. up to 6) which show approaches for coping with scalability issues (e.g. [32]).

Fig. 6 Overview of reversed engineered SPL

Evolutionary Computation for Software Product Line Testing … 79

7 Open Challenges and Questions

In this section we describe what we consider the most salient open challenges and
questions for SPL testing with evolutionary techniques.

Multi-objective optimization. There is an extensive body of research literature
in multi-objective optimization that remains largely untapped, for an overview see
for example [45, 46]. An open question is whether other multi-objective evolu-
tionary algorithms can yield better results and under which circumstances. In
addition, further studies are needed that explore dealing with more optimization
objectives which can for instance include information such as control-flow or
non-functional properties. Furthermore, it is an open question if so-called many-
objective optimization algorithms, those that deal with four or more objectives, can
also be effectively applied to the context of SPL testing. Of crucial importance is
their scalability as the complexity of the feature models or the strength of covering
arrays increases.

Need of community-wide testing benchmarks and comparison frameworks.
We found that the majority of works employs feature models extracted from
common repositories such as SPLOT.8 However, the selection of which feature
models to analyze in each paper appears to be arbitrary most of the times. The first
steps towards a benchmark for CIT SPL testing are advocated in [30]. Work by
Perrouin et al. proposed a comparison framework which is applied to two different
approaches [68]. However, comparisons can only be made per feature model, which
makes it infeasible to identify which approach performs overall better or under what
characteristics of the feature models [30]. Without a proper and fair benchmark and
comparison framework, the progress in the research and its transfer to industry are
severely hampered.

Exploiting more SPL domain knowledge. Because of the typically large
number of individual systems of a SPL, any information that could be exploited to
reduce the search effort is worth of consideration. For example, Haslinger et al.
leverage information from feature models to speed up the computation of covering
arrays by eliminating redundant t-sets [69, 70]. As other examples, the work by Xu
et al. that exploits static analysis techniques for achieving coverage more effectively
[34], and the work by Lopez-Herrejon et al. that studies seeding strategies [48]. It
remains an open question, whether any of the analysis techniques recently surveyed
by Thüm et al. (see [71]) could be exploited for this purpose. Also, recent work by
Fischer et al. (see [72]) computes traceability links from features and feature
interactions to the artifacts that realize them. It is an open question whether such
traceability information could also be helpful to prune the search space.

Test suite prioritization. Johansen et al. [73] propose a greedy algorithm that
adds weights to products to guide the computation of the t-wise sets. These weights
are meant to represent priority values such as commercial importance. An alter-
native parallel evolutionary algorithm was proposed by Lopez-Herrejon et al. for

8http://www.splot-research.org/.

80 R.E. Lopez-Herrejon et al.

http://www.splot-research.org/

this scheme that can produce smaller test suites [74]. Additionally, once test suites
have been computed their feature sets can be ordered according to some criteria. For
example, Al-Hajjaji et al. propose a prioritization based on similarity [75], while
Sánchez et al. compare five SPL-specific prioritization criteria and analyze their
effect in detecting faults in order to provide faster feedback and reduce debugging
efforts [76]. Another example is the recent work by Wang et al. who proposed a
scalarized four-objective function to prioritize quasi-pairwise (not considering all
four possible combinations of a 2-wise set) tests suites [67]. Test suite prioritization
has a long research literature for single software systems (e.g. [77]) which has not
been thoroughly researched within the context of SPLs. Some open research issues
are prioritization using combinations of clustering techniques and classical
multi-objective evolutionary algorithms (instead of scalarization approaches) that
exploit the values obtained for instance from non-functional properties.

Supporting testing and analysis phases of CIT. As mentioned before, CIT
consists of four phases [21]. However, the current focus for SPL has mostly been on
the first two: modeling relying on feature models, and sampling as summarized in
Sects. 4.3 and 5.4. Hence, there is a dire need of research and practice that addresses
this limitation. Tools such as EvoSuite9 could be leveraged as starting point for
such tasks.

8 Conclusions

Software Product Lines are an emerging software development paradigm that aims
to provide a systematic and methodological reuse of all the assets involved in the
development of families of software systems, where products share common
functionality but also can have unique distinct features. The proven benefits of SPL
practices (e.g. [3]) have resulted in an increasing interest both by researchers and
practitioners on effective techniques and tools for adequately testing SPLs. The
most important challenge faced is dealing with the generally large number of
products, i.e. combinations of features, which makes an infeasible alternative testing
individually each one of them.

Recent surveys not only highlight the increasing interest in the area but also
several shortcomings and opportunities that exist on the field [4, 5, 7, 16–18].
Within the area of Search-Based Software Engineering a major research focus has
been software testing [8, 10, 22], also including evolutionary computation tech-
niques. However, most of the applications are for one-off systems rather than SPLs.
The goal of this chapter is to provide an overview of the state of the art in SPL
testing and framing evolutionary approaches within that context. We have put
forward several challenges and open questions that we believe could be fruitful
avenues for further research and practice.

9http://www.evosuite.org/.

Evolutionary Computation for Software Product Line Testing … 81

http://www.evosuite.org/

Acknowledgments This research is partially funded by the Austrian Science Fund
(FWF) projects P 25513-N15, P 25289-N15, and Lise Meitner Fellowship M1421-N15, and by the
Spanish Ministry of Economy and Competitiveness and FEDER under contract TIN2011-28194
and fellowship BES-2012-055967. It is also partially founded by projects 8.06/5.47.4142 (col-
laboration with the VSB-Tech. Univ. of Ostrava) and 8.06/5.47.4356 (Andalusian Agency of
Public Works).

References

1. Pohl, K., Bockle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer, Berlin (2005)

2. Batory, D.S., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans.
Softw. Eng. 30(6), 355–371 (2004)

3. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action—The Best
Industrial Practice in Product Line Engineering. Springer, Berlin (2007)

4. Engström, E., Runeson, P.: Software product line testing—A systematic mapping study. Inf.
Softw. Technol. 53(1), 2–13 (2011)

5. da Mota Silveira Neto, P.A., do Carmo Machado, I., McGregor, J.D., de Almeida, E.S., de
Lemos Meira, S.R.: A systematic mapping study of software product lines testing. Inf. Softw.
Technol. 53(5), 407–423 (2011)

6. Lee, J., Kang, S., Lee, D.: A survey on software product line testing. 16th International
Software Product Line Conference, pp. 31–40 (2012)

7. do Carmo Machado, I., McGregor, J.D., de Almeida, E.S.: Strategies for testing products in
software product lines. ACM SIGSOFT Softw. Eng. Notes 37(6), 1–8 (2012)

8. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11 (2012)

9. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
10. McMinn, P.: Search-based software testing: past, present and future. In: ICST Workshops,

pp. 153–163. IEEE Computer Society (2011)
11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

12. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later: a
literature review. Inf. Syst. 35(6), 615–636 (2010)

13. Lopez-Herrejon, R.E., Batory, D.S.: A standard problem for evaluating product-line
methodologies. In: Bosch, J. (ed.) GCSE. Volume 2186 of Lecture Notes in Computer
Science, pp. 10–24. Springer, Berlin (2001)

14. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn. Springer, Berlin
(2010)

15. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

16. da Mota Silveira Neto, P.A., Runeson, P., do Carmo Machado, I., de Almeida, E.S., de Lemos
Meira, S.R., Engström, E.: Testing software product lines. IEEE Software 28(5), 16–20 (2011)

17. Wohlin, C., Runeson, P., da Mota Silveira Neto, P.A., Engström, E., do Carmo Machado, I.,
de Almeida, E.S.: On the reliability of mapping studies in software engineering. J. Syst. Softw.
86(10), 2594–2610 (2013)

18. do Carmo Machado, I., McGregor, J.D., Cavalcanti, Y.C., de Almeida, E.S.: On strategies for
testing software product lines: a systematic literature review. Inf. Softw. Technol. 56(10),
1183–1199 (2014)

82 R.E. Lopez-Herrejon et al.

19. Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-configurable
systems in the presence of constraints: a greedy approach. IEEE Trans. Softw. Eng. 34(5),
633–650 (2008)

20. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. 43(2), 11:1–11:29
(February 2011)

21. Yilmaz, C., Fouché, S., Cohen, M.B., Porter, A.A., Demiröz, G., Koc, U.: Moving forward
with combinatorial interaction testing. IEEE Comput. 47(2), 37–45 (2014)

22. de Freitas, F.G., de Souza, J.T.: Ten years of search based software engineering: a bibliometric
analysis. In: Cohen, M.B., Cinnéide, M.Ó. (eds.) SSBSE. Volume 6956 of Lecture Notes in
Computer Science, pp. 18–32. Springer, Berlin (2011)

23. Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A.: A systematic mapping study of search-based
software engineering for software product lines. Inf. Softw. Technol. J. (to appear)

24. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Linsbauer, L., Egyed, A., Alba, E.: A
hitchhiker’s guide to search-based software engineering for software product lines. CoRR
abs/1406.2823 (2014)

25. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise covering arrays
from large feature models. 16th International Software Product Line Conference, pp. 46–55
(2012)

26. Lopez-Herrejon, R.E., Egyed, A.: Towards interactive visualization support for pairwise
testing software product lines. In: Telea, A., Kerren, A., Marcus, A. (eds.) VISSOFT, pp. 1–4.
IEEE (2013)

27. Ferrer, J., Kruse, P.M., Chicano, J.F., Alba, E.: Evolutionary algorithm for prioritized pairwise
test data generation. InL: Soule, T., Moore, J.H. (eds.) GECCO, pp. 1213–1220. ACM (2012)

28. Durillo, J.J., Nebro, A.J.: jmetal: a java framework for multi-objective optimization. Adv. Eng.
Softw. 42(10), 760–771 (2011)

29. Trinidad, P., Benavides, D., Ruiz-Cortes, A., Segura, S., Jimenez, A.: Fama framework. In:
Software Product Line Conference, 2008. SPLC’08. 12th International (Sept.), pp. 359–359

30. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Haslinger, E.N., Egyed, A., Alba, E.: Towards a
benchmark and a comparison framework for combinatorial interaction testing of software
product lines. CoRR abs/1401.5367 (2014)

31. Ensan, F., Bagheri, E., Gasevic, D.: Evolutionary search-based test generation for software
product line feature models. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.)
CAiSE. Volume 7328 of Lecture Notes in Computer Science, pp. 613–628. Springer, Berlin
(2012)

32. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Traon, Y.L.: Bypassing the
combinatorial explosion: using similarity to generate and prioritize t-wise test configurations
for software product lines. IEEE Trans. Softw. Eng. 40(7), 650–670 (2014)

33. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Pledge: a product line editor
and test generation tool. In: SPLC Workshops, pp. 126–129. ACM (2013)

34. Xu, Z., Cohen, M.B., Motycka, W., Rothermel, G.: Continuous test suite augmentation in
software product lines. In: Proceedings SPLC, pp. 52–61 (2013)

35. Henard, C., Papadakis, M., Traon, Y.L.: Mutation-based generation of software product line
test configurations. In: SSBSE, pp. 92–106 (2014)

36. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Softw. Eng. 16(1), 61–102 (2011)

37. Perrouin, G., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Automated and scalable t-wise test
case generation strategies for software product lines. In: ICST, pp. 459–468. IEEE Computer
Society (2010)

38. Oster, S., Markert, F., Ritter, P.: Automated incremental pairwise testing of software product
lines. In Bosch, J., Lee, J. (eds.) SPLC. Volume 6287 of Lecture Notes in Computer Science,
pp. 196–210. Springer, Berlin (2010)

Evolutionary Computation for Software Product Line Testing … 83

39. Hervieu, A., Baudry, B., Gotlieb, A.: Pacogen: automatic generation of pairwise test
configurations from feature models. In: Dohi, T., Cukic, B. (eds.) ISSRE, pp. 120–129. IEEE
(2011)

40. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based pairwise testing for feature
interaction coverage in software product line engineering. Softw. Qual. J. 20(3–4), 567–604
(2012)

41. Cichos, H., Oster, S., Lochau, M., Schürr, A.: Model-based coverage-driven test suite
generation for software product lines. In: Whittle, J., Clark, T., Kühne, T. (eds.) MoDELS.
Volume 6981 of Lecture Notes in Computer Science, pp. 425–439. Springer, Berlin (2011)

42. Calvagna, A., Gargantini, A., Vavassori, P.: Combinatorial testing for feature models using
citlab. In: ICST Workshops, pp. 338–347 (2013)

43. Coello, C.C.: Evolutionary multi-objective optimization website. http://delta.cs.cinvestav.mx/
ccoello/EMOO/

44. Zhang, Y.: Search Based Software Engineering Repository. http://crestweb.cs.ucl.ac.uk/
resources/sbse_repository/

45. Coello, C.C., Lamont, G.B., Veldhuizen, D.A.: Evolutionary Algorithms for Solving
Multi-objective Problems, 2nd edn. Genetic and Evolutionary Computation. Springer,
Berlin (2007)

46. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, 1st edn. Wiley, New
York (June 2001)

47. Zitzler, E.: Evolutionary multiobjective optimization. In: Handbook of Natural Computing,
pp. 871–904 (2012)

48. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Egyed, A., Alba, E.: Comparative analysis of
classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing of
software product lines. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2014, Beijing, China, 6–11 July 2014, pp. 387–396. IEEE (2014)

49. Lopez-Herrejon, R.E., Chicano, J.F., Ferrer, J., Egyed, A., Alba, E.: Multi-objective optimal
test suite computation for software product line pairwise testing. In: ICSM, pp. 404–407. IEEE
(2013)

50. Arito, F., Chicano, F., Alba, E.: On the application of sat solvers to the test suite minimization
problem. In: Proceedings of the Symposium of Search Based Software Engineering. Volume
7515 of LNCS, pp. 45–59 (2012)

51. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)
52. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the exact

correlation structure of k-satisfiability landscapes. In: Proceedings of GECCO, pp. 365–372
(2009)

53. Wang, S., Ali, S., Gotlieb, A.: Minimizing test suites in software product lines using
weight-based genetic algorithms. In: GECCO, pp. 1493–1500 (2013)

54. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.: Multi-objective test generation
for software product lines. In: Proceedings of SPLC, pp. 62–71 (2013)

55. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct.
Multi. Optim. 26(6), 369–395 (2004)

56. Cruz, J., Neto, P.S., Britto, R., Rabelo, R., Ayala, W., Soares, T., Mota, M.: Toward a hybrid
approach to generate software product line portfolios. In: IEEE Congress on Evolutionary
Computation, pp. 2229–2236 (2013)

57. Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-based
software engineering: a case study in software product lines. In: Proceedings of ICSE,
pp. 492–501 (2013)

58. Sayyad, A.S., Ingram, J., Menzies, T., Ammar, H.: Scalable product line configuration: a straw
to break the camel’s back. In: ASE, pp. 465–474 (2013)

59. Pascual, G.G., Lopez-Herrejon, R.E., Pinto, M., Fuentes, L., Egyed, A.: Applying
multiobjective evolutionary algorithms to dynamic software product lines for reconfiguring
mobile applications. J. Syst. Softw. (2015, to appear)

84 R.E. Lopez-Herrejon et al.

http://delta.cs.cinvestav.mx/ccoello/EMOO/
http://delta.cs.cinvestav.mx/ccoello/EMOO/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

60. Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison of exact and approximate
multi-objective optimization for software product lines. In: Gnesi, S., Fantechi, A. (eds.) 18th
International Software Product Line Conference, SPLC’14, pp. 92–101. Florence, Italy, 15–19
Sept 2014. ACM (2014)

61. Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.: Visualization and exploration of
optimal variants in product line engineering. In: Proceedings of SPLC, pp. 111–115 (2013)

62. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An exploratory
study of cloning in industrial software product lines. In: Cleve, A., Ricca, F., Cerioli, M. (eds.)
CSMR, pp. 25–34. IEEE Computer Society (2013)

63. Chen, L., Babar, M.A.: A systematic review of evaluation of variability management
approaches in software product lines. Inf. Softw. Technol. 53(4), 344–362 (2011)

64. Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D., Segura, S.,
Egyed, A.: An assessment of search-based techniques for reverse engineering feature models.
J. Syst. Softw. Spec. Issue Search-Based Softw. Eng. (2015)

65. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Feature model synthesis with genetic
programming. In: Goues, C.L., Yoo, S. (eds.) Search-Based Software Engineering—6th
International Symposium, SSBSE 2014, Fortaleza, Brazil, 26–29 Aug 2014. Proceedings.
Volume 8636 of Lecture Notes in Computer Science, pp. 153–167. Springer, Berlin (2014)

66. She, S., Ryssel, U., Andersen, N., Wasowski, A., Czarnecki, K.: Efficient synthesis of feature
models. Inf. Softw. Technol. 56(9), 1122–1143 (2014)

67. Wang, S., Buchmann, D., Ali, S., Gotlieb, A., Pradhan, D., Liaaen, M.: Multi-objective test
prioritization in software product line testing: an industrial case study. In: Gnesi, S., Fantechi,
A. (eds.) 18th International Software Product Line Conference, SPLC’14, pp. 32–41. Florence,
Italy, 15–19 Sept 2014. ACM (2014)

68. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Pairwise testing for
software product lines: comparison of two approaches. Softw. Qual. J. 20(3–4), 605–643
(2012)

69. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Using feature model knowledge to speed
up the generation of covering arrays. In: Gnesi, S., Collet, P., Schmid, K. (eds.) VaMoS, p. 16.
ACM (2013)

70. Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A.: Improving casa runtime performance by
exploiting basic feature model analysis. CoRR abs/1311.7313 (2013)

71. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis
strategies for software product lines. ACM Comput. Surv. 47(1), 6 (2014)

72. Fischer, S., Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Enhancing clone-and-own with
systematic reuse for developing software variants. 30th International Conference on Software
Maintenance and Evolution (2014, to appear)

73. Johansen, M.F., Haugen, Ø., Fleurey, F.: An algorithm for generating t-wise covering arrays
from large feature models. In: SPLC (1), pp. 46–55 (2012)

74. Lopez-Herrejon, R.E., Ferrer, J., Chicano, F., Haslinger, E.N., Egyed, A., Alba, E.: A parallel
evolutionary algorithm for prioritized pairwise testing of software product lines. In: Arnold, D.
V. (ed.) Genetic and Evolutionary Computation Conference, GECCO’14, Vancouver, BC,
Canada, 12–16 July 2014, pp. 1255–1262. ACM (2014)

75. Al-Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., Saake, G.: Similarity-based prioritization
in software product-line testing. In: Gnesi, S., Fantechi, A. (eds.) 18th International Software
Product Line Conference, SPLC’14, pp. 197–206. Florence, Italy, 15–19 Sept 2014. ACM
(2014)

76. Sánchez, A.B., Segura, S., Cortés, A.R.: A comparison of test case prioritization criteria for
software product lines. In: ICST, pp. 41–50 (2014)

77. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Test., Verif. Reliab. 22(2), 67–120 (2012)

Evolutionary Computation for Software Product Line Testing … 85

Author Biographies

Dr. Roberto Erick Lopez-Herrejon is currently a senior postdoctoral researcher at the Johannes
Kepler University in Linz, Austria. He was an Austrian Science Fund (FWF) Lise Meitner Fellow
(2012–2014) at the same institution. From 2008 to 2014 he was an External Lecturer at the
Software Engineering Masters Programme of the University of Oxford, England. From 2010 to
2012 he held an FP7 Intra-European Marie Curie Fellowship sponsored by the European
Commission. He obtained his Ph.D. from the University of Texas at Austin in 2006, funded in part
by a Fulbright Fellowship sponsored by the U.S. State Department. From 2005 to 2008, he was a
Career Development Fellow at the Software Engineering Centre of the University of Oxford
sponsored by Higher Education Founding Council of England (HEFCE). His expertise is software
product lines, variability management, feature oriented software development, model driven
software engineering, and consistency checking.

Mr. Javier Ferrer is a Ph.D. candidate. He had his 5-year Combined Bachelor’s and Master’s
Engineering Degree by the University of Malaga. He has also obtained his M.Sc. in computer
science (artificial intelligence) and his postgraduate certificate in education by the same university.
His research interests are mainly related to metaheuristics optimization techniques. Specifically, he
has several publications on the search based software engineering field. Overall, he has more than
20 publications including journal articles, conference papers, and book chapters. Currently his
main research line is focused on the evolutionary testing domain.

Francisco Chicano is an associate professor in the Department of Languages and Computing
Sciences of the University of Malaga, Spain. He studied Computer Science (2003) and Ph.D. in
Computer Science (2007) at University of Malaga, and Physics (2014) in the National Distance
Education University. His research interests include the application of randomized search
techniques to Software Engineering problems. In particular, he contributed to the domains of
software testing, model checking and software project scheduling. He also works on the
landscapes theory of combinatorial optimization problems and the application of theoretical results
to the design of new search algorithms and operators. He is the author of more than 70 refereed
publications, has 3 best paper awards and has served on more than 30 program committees. He has
served as Program Chair in the EvoCOP 2015 conference, as Track Chair in GECCO 2013 and
GECCO 2015 and as Guest Editor in Special Issues of Evolutionary Computation (MIT), Journal
of Systems and Software and Algorithmica. He is frequent reviewer in more than 10 international
top journals and during the course 2014/2015 is Faculty Affiliate in the Colorado State University.

Alexander Egyed is a Full Professor at the Johannes Kepler University (JKU), Austria. He
received his Doctorate degree from the University of Southern California, USA and previously
work at Teknowledge Corporation, USA (2000–2007) and University College London, UK
(2007–2008). Dr. Egyed’s work has been published at over a hundred refereed scientific books,
journals, conferences, and workshops, with over 3500 citations to date. He was recognized as a
Top 1 % scholar in software engineering in the Communications of the ACM, Springer
Scientometrics, and Microsoft Academic Search. He was also named an IBM Research Faculty
Fellow in recognition to his contributions to consistency checking, received a Recognition of
Service Award from the ACM, Best Paper Awards from COMPSAC and WICSA, and an
Outstanding Achievement Award from the USC. He has given many invited talks including four
keynotes, served on scientific panels and countless program committees, and has served as
program (co-) chair, steering committee member, and editorial board member. He is a member of
the IEEE, IEEE Computer Society, ACM, and ACM SigSoft.

86 R.E. Lopez-Herrejon et al.

Prof. Enrique Alba had his degree in engineering and Ph.D. in Computer Science in 1992 and
1999, respectively, by the University of Málaga (Spain). He works as a Full Professor in this
university with different teaching duties: data communications, distributed programing, software
quality, and also evolutionary algorithms, bases for R+D+i and smart cities at graduate and master
programs. Prof. Alba leads an international team of researchers in the field of complex
optimization/learning with applications in smart cities, bioinformatics, software engineering,
telecoms, and others. In addition to the organization of international events (ACM GECCO, IEEE
IPDPS-NIDISC, IEEE MSWiM, IEEE DS-RT, …) Prof. Alba has offered dozens postgraduate
courses, multiple seminars in more than 20 international institutions, and has directed several
research projects (6 with national funds, 5 in Europe, and numerous bilateral actions). Also, Prof.
Alba has directed 7 projects for innovation and transference to the industry (OPTIMI, Tartessos,
ACERINOX, ARELANCE, TUO, INDRA, ZED) and presently he also works as invited professor
at INRIA, the Univ. of Luxembourg, and Univ. of Ostrava. He is editor in several international
journals and book series of Springer-Verlag and Wiley, as well as he often reviews articles for
more than 30 impact journals. He has published 80 articles in journals indexed by Thomson ISI, 17
articles in other journals, 40 papers in LNCS, and more than 250 refereed conferences. Besides
that, Prof. Alba has published 11 books, 39 book chapters, and has merited 6 awards to his
professional activities. Pr. Alba’s H index is 41, with more than 8000 cites to his work.

Evolutionary Computation for Software Product Line Testing … 87

Metaheuristic Optimisation
and Mutation-Driven Test Data
Generation

Matthew Patrick

Abstract Metaheuristic optimisation techniques can be used in combination with
mutation analysis to generate test data that is effective at finding faults and reduces
the human effort involved in software testing. This chapter describes and evaluates
various different metaheuristic techniques and considers their underlying properties
in relation to test data generation. This represents the first attempt to bring together,
compare and review ideas and research related to mutation analysis and meta-
heuristic optimisation. The intention is that by considering these application areas
together, we can appreciate and understand important aspects of their strengths and
weaknesses. This will allow us to make suggestions with regards to the ways in
which they may be used together for maximum effectiveness and efficiency.

Keywords Metaheuristic optimisation �Mutation analysis � Test data generation �
Search based software engineering � Fitness function � Hill climbing � Evolutionary
optimisation � Swarm intelligence

1 Introduction

Metaheuristic techniques are abstract procedures that can be used to find or generate
lower-level heuristics [1]. Although metaheuristic optimisation is not guaranteed to
identify the global optimum solution to a problem [2], it is typically able to find a
solution that is sufficiently good enough to be practically useful. Metaheuristic
optimisation is particularly effective compared to simple deterministic heuristics
when the information available is incomplete, imperfect or limited in some way [1].
The key advantage that metaheuristic optimisation has over other techniques is that
it is not necessary to specify how to produce an effective test suite in advance [3].

M. Patrick (&)
Department of Plant Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EA, UK
e-mail: mtp33@cam.ac.uk

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_5

89

Instead, metaheuristic optimisation uses a fitness function to automatically search
for optimal solutions from those that are available [4]. It evaluates how good
(fit) each potential solution is and takes advantages of patterns in the fitness
landscape in order to seek out and identify optimal solutions to complex and
challenging problems.

Metaheuristic optimisation can be applied to the task of test data generation by
representing the set of test cases being optimised as a search space for the opti-
misation technique to explore [3]. Most test adequacy criteria can be encoded
directly as fitness functions so that every time a testing goal is achieved, the value
returned by the fitness function is slightly higher. For example, in order to generate
a test suite that exercises all the branches in the program under test, a fitness
function can be constructed so that it counts the number of branches [3] that have
been covered so far and assesses how close a test input comes to executing each
uncovered branch.

This chapter investigates the ways in which different forms of metaheuristic
optimisation have been applied to generate test suites that perform well under
mutation analysis. Mutation analysis is a stringent and powerful technique for
evaluating the ability of a test suite to find faults [5]. It generates a large number of
program variants (known as mutants), each of which features a small syntactic
change to the logical and arithmetic constructs of the program code. Mutants are
designed to be based on faults programmers are likely to make, so that a test suite
which detects most of the artificial mutants is expected to perform well against
actual faults [6].

It is difficult to represent the results of mutation analysis as a fitness function, as
the procedure is more complex than other testing criteria [7]. Not only is it necessary
for the execution of some test case to reach point of mutation, but it must also be able
to cause a difference at the point of mutation and propagate that difference to the
output. A number of different fitness functions are described in this chapter ranging
from simple techniques that count the proportion of mutants detected by the test suite
[7–9] through to advanced methodologies that encourage individual test cases to
reach, effect and propagate a difference to the output [10–12].

A wide variety of metaheuristic optimisation techniques are explored. They
range from simple procedures such as the alternating variable method [12, 13]
through to nature-inspired algorithms inspired by biological models of population
genetics [7, 11] and coordination within self-organising ant colonies [14, 15]. The
techniques have been divided into three broad categories: hill climbing techniques
search locally for optimal solutions by increasing or decreasing the current values
by a certain amount; evolutionary optimisation techniques evolve a population of
candidate solutions by selecting, adapting and recombining existing candidates; and
finally swarm intelligence techniques, which optimise a diverse range of solutions
that can adapt and respond rapidly to changes in the environment as and when
necessary.

Testing is an important part of the software development process because, if left
undetected, faults can have serious harmful effects [16]. Mutation Analysis may be
used to evaluate the fault-finding abilities of test cases and metaheuristic

90 M. Patrick

optimisation can apply this information to generate highly effective test suites [5].
There a wide range of ways in which mutation analysis and metaheuristic opti-
misation can be combined and it is difficult to know which of these techniques to
apply. This chapter compares the similarities and differences between the tech-
niques that have been developed so far and attempts to identify some important
properties. It is not possible to identify one technique that is always the best, as they
are highly dependent on the particular application. However, it is hoped this chapter
will serve as a starting point to guide the practitioner in the right direction.

2 Test Data Generation

Software testing is the process of exercising software with a sample of possible
inputs, chosen so as to demonstrate its correctness in a convincing manner [25].
Testing is a key part of the development lifecycle because it helps to ensure that
programs function as intended. Test data may be generated according to the
specification (black-box) or internal structure (white-box) of the software [16]. It is
typically too expensive in computation and human effort to apply black-box or
white-box techniques to test software exhaustively [16]. Programs have too many
paths and potential input values to test them all. As a result, black-box testing is
often performed using randomly chosen inputs and white-box testing is considered
adequate once a certain set of structural components are covered by the test suite.

Inadequate testing may result in software products that are unsatisfactory or
unsafe. For example, during the first Gulf war, a rounding error in a Patriot
surface-to-air missile battery led to it failing to identify an incoming Iraqi Scud
missile [17]. As a result, 28 American soldiers were killed and many more were
injured. In 2012, an undisclosed fault in a high frequency trading program caused a
financial services firm (Knight Capital Group) to lose $440 million in 30 min [18].
The firm lost 75 % of the value of its stock in two days and was sold to another
trading company four months later. Testing is crucial for detecting failures and
mistakes in software.

Developers make various kinds of mistakes, ranging from incorrectly inter-
preting the specification through to underestimating the usage requirements or just
plain typographic mistakes [19]. Developer mistakes are known as faults. More
broadly, a fault is defined as an incorrect step, process or data definition within a
program [20]. Faults lead to errors in software behaviour. Testing aims to find as
many of the faults in a program as possible by executing it with a variety of inputs
and conditions so as to reveal errors [16]. Each set of inputs and conditions used in
testing is known as a test case and a collection of test cases is called a test suite.
Successful test data generation finds faults in the program under test with as few test
cases as possible.

Software is difficult to test because it is intangible, unique and highly specialised
to a particular purpose [21]. It is estimated that between 30 and 90 % of the labour
resources required to produce a working program are spent on software testing [19].

Metaheuristic Optimisation and Mutation-Driven Test Data … 91

For example, Microsoft employ approximate one test engineer for every developer
[22]. Yet, despite this investment many faults are often missed. The Java
Compatibility Kit [23] is an extensive test suite developed for the Java
Development Kit (JDK), yet there are still thousands of additional JDK bug reports
in Sun’s bug database [24]. Most programs have too many paths to show that they
are all correct [25]. Testing is very expensive and, partly as a result, it is often
incomplete.

Test data generation techniques save time and money, as well as improve the
standard of testing by creating test suites automatically according to some adequacy
criterion [26]. Zhu et al. [27] describe three categories of criteria: Structural testing
emphasises the need to exercise particular components in the program code
(statements, branches, paths etc.); Error-based testing ensures the input domain is
covered thoroughly (e.g. by partition testing); and Fault-based testing (i.e. mutation
analysis) aims to detect a range of artificially introduced mistakes in the software.

3 Mutation Analysis

Mutation Analysis is a fault-based testing technique based around the idea that
small syntactic changes can be used to simulate actual faults. The concept was first
introduced in 1971 by Richard Lipton [28]. Since then, there have been over 400
research papers and at least 36 software tools have been developed [5, 29].
Mutation analysis is considered superior to other testing criteria because it measures
a test suite’s ability to find faults (of course this depends on how representative the
mutants are).

Mutation analysis is supported by the competent programmer hypothesis (ex-
perienced programmers produce programs that are either correct or very close to
being correct) [30] and the coupling effect hypothesis (test suites capable of detecting
all the simple faults in a program can also detect most of the more complex ones)
[31]. Developers may understand how the program should behave and make a small
mistake in its implementation, or have a slight misconception about the intended
behaviour and carry it through to the implementation. In either case, small syntactic
changes are claimed to be sufficient to represent most faults [6].

A mutant is a copy of the original program that has had a small syntactic change
(known as a mutation) made to its logical and arithmetic constructs. Mutations are
typically applied one at a time. For example, in Fig. 1, the greater-than inequality of
line 1 has been replaced with a greater-than-or-equal-to inequality. A mutant is said
to be killed by input values that cause it to output a different result to the original
program. The mutant in Fig. 1 is killed when the value of ‘a’ is equal to 10 and the
value of ‘b’ is not equal to zero. Mutation analysis evaluates test suites according to
the number of mutants they kill. A test suite is considered to be effective for the
program under test if it kills a large proportion of the mutants that are produced.

The proportion of mutants killed by the test suite is known as its mutation score
(see Eq. 1). This value may be used to indicate weaknesses, since if the test suite

92 M. Patrick

fails to kill some of the mutants, it is also likely to miss actual faults. Some mutants
cannot be killed, since they function equivalently to the original program for every
possible input; they are typically removed from the calculation, so that mutation
score is correctly scaled between 0 and 1. Mutation scores are a more useful
measurement for test data generation than the actual number of faults detected
because finding many faults in the program under test may indicate good test data
or poor software. In this way, Mutation analysis functions as an independent
adequacy criterion that can be used to provide confidence in the quality of software.

Mutation score ¼ number of mutants killed
number of non-equivalent mutants

ð1Þ

Mutation analysis can be applied iteratively to help improve the quality and
efficiency of a test suite (see Fig. 2). The presence of mutants that are not killed by

Fig. 1 A simple syntactic
mutation

Fig. 2 The process of mutation analysis, adapted from [32]

Metaheuristic Optimisation and Mutation-Driven Test Data … 93

the existing test suite indicate behaviours of the program under test that are not
adequately represented. Test cases may be added or removed in an attempt to kill
the remaining mutants as efficiently as possible. Mutation analysis is the reapplied
and the test suite is improved until it is able to kill all (or most of) the
non-equivalent mutants. The intention is that by generating test data to improve the
test suite against a set of mutants, its ability to detect actual faults will also be
improved.

4 Metaheuristic Optimisation

Metaheuristic optimisation has been used on a wide variety of problems, from
scheduling and planning through to data mining and machine intelligence [2]. It
explores candidate solutions to a problem efficiently and identifies optimal or
near-optimal solutions. Metaheuristic techniques are not problem-specific [4]. They
make few assumptions about the problem being solved, so can be applied ‘out of
the box’ as generalised tools for optimisation. Metaheuristics range from straight-
forward search strategies through to advanced methodologies inspired by nature.
They can be used to solve complex optimisation problems [4] and have been shown
to be effective on problems that involve uncertain, stochastic or dynamic
information.

Metaheuristics guide the search procedure through a fitness landscape of can-
didate solutions (see Fig. 3). For example, each point in the landscape may rep-
resent the suitability (or fitness) of a particular test suite. The landscape features
peaks and troughs with various heights, gradients and spatial arrangements, as well
as other areas where fitness is approximately the same [2]. The aim of metaheuristic
optimisation is to guide the search towards the highest possible value in the
landscape. In our example, this would correspond to a highly effective test suite.

Fig. 3 A metaheuristic
fitness landscape

94 M. Patrick

Metaheuristics guide the search using a simple set of rules that describe what to
do when particular fitness values are encountered. Typically these rules are
stochastic, so that the decisions made and the solutions found are dependent on a set
of random variables [4]. Fitness values are not usually calculated in advance, but
evaluated as and when needed by the optimisation technique. For example, each
test suite can be applied to a set of mutants to generate a mutation score.
Metaheuristic optimisation does not guarantee that a globally optimal solution will
be found, but it typically finds good solutions with less computational effort than
other techniques.

Rather than specifying how to produce an effective test suite, metaheuristic
optimisation searches the fitness landscape iteratively, taking advantage of patterns
of suitability as it goes along [2]. Figure 4 describes the general processes involved
in metaheuristic optimisation. First, one (or a set of) initial candidates is chosen
(typically at random). If a candidate meets the fitness termination criteria, the
candidate solution is saved and the optimisation process is stopped. Otherwise,
further optimisation is performed to create new candidates to evaluate. The process
continues until a candidate is found that meets the fitness criteria.

Metaheuristic techniques have to find a balance between intensifying and
diversifying their search. Intensification exploits information from previous good
solutions to fine tune parameters on a local scale [2]. Diversification explores new
regions of the landscape on a global scale and finds solutions different from those
found before. Rather than fixing the rates at which diversification and intensification
are used, metaheuristic techniques typically alternate between the two approaches
dynamically [33]. This allows flexibility to the patterns of fitness they encounter.

A decision must also be made regarding the number of candidate solutions to
maintain concurrently. Single solution approaches maintain one candidate at a time

Fig. 4 The process of metaheuristic optimisation

Metaheuristic Optimisation and Mutation-Driven Test Data … 95

[33], adapting and enhancing its parameter values to form a continuous search
trajectory through the fitness landscape. By contrast, population-based approaches
maintain multiple candidates [33] and adapt their parameter values simultaneously,
so as to evolve a set of points in the fitness landscape. Single solution approaches
are typically biased towards intensification [1]. They are effective at fine-tuning
parameter values through local search. Population-based approaches typically focus
on diversification [1]. They are better suited towards exploring the entire landscape.

5 Using Metaheuristic Optimisation to Kill Mutants

Metaheuristic optimisation is an efficient way to generate and select test suites for
mutation analysis. A wide variety of techniques have been used, ranging from hill
climbing through to evolutionary optimisation and swarm intelligence. There are
also a number of ways to describe and evaluate the fitness landscape. It may be
constructed so as to optimise input values for individual test cases or for the entire
test suite. This section explores the various metaheuristic techniques and fitness
functions that have been used in mutation analysis for test data generation.

There is a danger of introducing new techniques just because they are based
upon a new biological metaphor or perform optimisation in a slightly different way,
rather than because they are more effective than any other technique. Sörensen [34]
argues this could lead metaheuristic research away from scientific rigour. We
therefore focus on the general principles, advantages and disadvantages of each
technique.

5.1 Fitness Functions Based on Mutation Analysis

The choice of fitness function is important for successful metaheuristic optimisa-
tion. Good fitness functions have two key properties: they must be able to differ-
entiate effectively between desirable and undesirable candidate solutions—without
this, optimisation may converge to a poor solution, or not converge at all; they must
also be inexpensive to calculate—since the fitness function is used extensively
during optimisation, if it is too expensive, the optimisation process will become
unfeasible.

One option is to evaluate candidate test suites according to their mutation score
(see Eq. 1). The higher the mutation score, the fitter the test suite is considered to
be. Ghiduk [7] and Mishra et al. [8] apply mutation score as a fitness function in
their genetic algorithms for test data generation. Baudry et al. [9] take a similar
approach, but with a bacteriological algorithm. Mutation score is a simple and
direct fitness function, but it can also be very expensive. Every time a test case is
added or changed, it must be run against all of the mutants to find out which ones
are killed.

96 M. Patrick

Other fitness functions exist that are cheaper than mutation analysis, but still
guide optimisation towards mutant killing test cases. Independent path coverage
[35] uses McCabe’s Cyclomatic Complexity metric to identify a set of ‘basis paths’
that can be combined to describe all the paths through a program, then counts how
many are covered by the test suite. Mala and Mohan [36] apply independent path
coverage as part of their fitness function. It is more stringent than branch coverage
and (unlike full path coverage) it is computationally feasible.

Independent Path Coverage ¼ number of basis paths covered
total number of basis paths

ð2Þ

The techniques described so far are suitable for optimising an entire test suite at
once, but sometimes it is more efficient to use other intermediate criteria that guide
the optimisation of individual test cases to kill each mutant. With mutation score, it
is only possible to know whether a particular mutant is killed. Intermediate criteria
may be used to evaluate which of the branches leading up to the mutant are
exercised, the size of difference that the mutant introduces in the program state and
the depth of its propagation through to the output [3]. Each one of these criteria can
be considered individually for a more incremental measure of test suite fitness.

The approach level and branch distance metrics (see Fig. 5) can be used to
describe how close a test case is towards causing the program execution to reach a
point of mutation [3]. The branch containing the mutated statement is given an
approach level of zero, and then it is incremented by one for every branch that could
prevent the mutation being reached. This means branches with the highest approach
level are farthest from the point of mutation. Branch distance measures the dif-
ference between the evaluated and required value at the first branch condition where

Fig. 5 Example of approach level and branch distance

Metaheuristic Optimisation and Mutation-Driven Test Data … 97

execution diverts from the intended path [3]. Together, approach level and branch
distance can be used to guide test cases towards reaching each point of mutation.

Another metric is needed to describe how far the test data is away from causing a
difference at the point of mutation. Papadakis and Malevris [12] measure this using
a metric called mutation distance, which is based on the previously described metric
for branch distance. For example, consider the original expression a[b. If it is
mutated to a� b, the mutation distance is absða� bÞ, if it is mutated to a\b it is
infinite and if it is mutated to a� b it is zero. When combined, the approach level,
branch distance and mutation distance satisfy a condition known as weak mutation.

For strong mutation to be achieved, the effects of each mutant must be propa-
gated to the output. Bottaci [10] measures propagation in terms of the number of
unequal state pairs that occur between a mutant and the original program once the
mutation point is reached. It can be difficult to synchronise the sequence of state
pairs when a mutant causes the path to diverge. This is because path divergence
does not guarantee state divergence and the program may return back to the original
path and state at some later point. It is also prohibitively expensive to keep track of
and compare all the program states that result from test data generation. This is why
Ayari et al. [15] only implement Bottaci’s metrics for reaching and causing a
difference at the point of mutation in their optimisation technique for test data
generation.

Fraser and Zeller [11] measure the potential for a test case to propagate the effect
of a mutant in terms of its impact on statement coverage and function return values.
This alleviates the previous problems regarding synchronisation because it does not
matter in which order the statements are executed. As well as considering how the
impact of a mutant is affected by the choice of test case, we can also consider how
the execution of each node in the program affects the mutant’s impact. Certain
nodes are more likely to propagate the effect of a mutant to the output than others.
For every node following the point of mutation, Papadakis et al. [12] count the
number of mutants that are killed when that node is executed. The more mutants
that are killed, the greater the impact that particular node is considered to have.

Clearly there is a trade-off between the expressive capability and cost of the
criteria used to evaluate fitness. Simple criteria such as branch coverage are com-
putationally inexpensive, but produce test suites that are inefficient at killing
mutants. Smaller test suites may be produced that achieve a higher mutation score
by incorporating propagation into the fitness criteria, but this is typically more
expensive. Kaur and Goyal [14] improve the efficiency of their generated test suites
by maximising the ratio of mutants killed to execution time (see Eq. 3). However, it
is also important to consider the human effort involved in evaluating and under-
standing the outputs produced by a test suite. One way to do this is to specialise the
tests so that they kill specific mutants. Patrick et al. [45] apply the fitness function in
Eq. 4 to target each test case at a different group of mutants. Ultimately, human
effort is more costly than computational expense and test data generation techniques
are more attractive if they reduce the time required to evaluate the test cases.

98 M. Patrick

Test case quality =
number of mutants killed
test case execution time

ð3Þ

Test case specialisation ¼ P
m2M

P
s2S

ð�Km��KÞ2
ðKs;m��KmÞ2

�Km ¼ P
s2S

Ks;m

� �
=jSj �K ¼ P

m2M
Ks;m

� �
=jMj

ð4Þ

(S is the set of test suites,M the set of mutants, Ks;m is the number of times s kills
m, �Km is the average number of times m is killed and �K is the average number of
times any mutant is killed).

5.2 Hill Climbing

Hill climbing is a simple, yet powerful technique for metaheuristic optimisation. It
is considered to be a form of local search [37] because it only explores candidates in
the neighbourhood of the current solution. Hill climbing is not guaranteed to find
the best possible solution across the entire landscape, but it does quickly find a
solution that is locally optimum [37]. In many cases, this is sufficient. Other, more
advanced techniques may give better results under certain circumstances, but hill
climbing often performs equally well [38] and the algorithm is easier to understand
[37]. As such, hill climbing is typically used as a starting point for optimisation
research and a benchmark with which to compare other more complicated algo-
rithms [38]. Hill climbing is simple to implement, easy to understand and yet
surprisingly effective.

Hill climbing starts with an initial candidate solution (typically selected at ran-
dom), then updates its parameter values through a series of iterations. At each step,
one of the parameter values is changed to a new value in the neighbourhood of the
current solution. Hill climbing takes advantage of local gradients in fitness by
selecting neighbouring candidates if they improve the fitness evaluation. The
candidate’s values are repeatedly adjusted until no further improvement in fitness is
obtained.

A decision must be made as to the neighbourhood of candidate solutions to
evaluate. Once the neighbours are evaluated, hill climbing moves to the neighbour
with the highest fitness and a new neighbourhood is created. The simplest strategy
is to adjust the value of each parameter systematically (e.g. from left to right), then
select the first such move that improves the fitness evaluation [38]. By contrast,
steepest ascent hill climbing evaluates the fitness of all possible moves in the
neighbourhood, then selects the one that provides the greatest improvement [38].
The steepest ascent strategy takes more time to find the best possible move at each
step, but it typically requires fewer steps to reach an optimal solution than simple
hill climbing.

Metaheuristic Optimisation and Mutation-Driven Test Data … 99

The solution found by both the above strategies is only guaranteed to be locally
optimal. To increase the chance of finding the global optimum, it may be better not
to evaluate every possible move. Stochastic hill climbing selects neighbours to
evaluate at each step sparsely according to a probability distribution. In an exper-
iment with combinatorial optimisation, stochastic hill climbing found an optimum
faster than both simple and steepest-ascent hill climbing [39]. It was also shown to
perform better than two Genetic Algorithms, with populations of 128 and 1024
respectively [39]. This confirms the findings of Harman and McMinn [40] that even
though hill climbing is straightforward to implement and easy to understand, it is
still effective at test data generation compared to other more complex optimisation
techniques.

Hill climbing is often applied to test data generation, using the Alternating
Variable Method (AVM), a technique first introduced by Korel [13]. AVM sim-
plifies the process of optimising a test case by adjusting each input parameter in
isolation from the rest. Hill climbing is applied to the input parameters one at a time
in turn. Whilst hill climbing is being applied to one of the input parameters, the
values for all other parameters remain fixed. If adjusting the value for the first
variable does not improve the fitness evaluation, the algorithm tries adjusting the
next variable, and so on, until every parameter value in the test case has been
adjusted.

Adjustments to parameter values are typically made using a combination of
exploratory and pattern moves. Exploratory moves change the value of a parameter
by a small amount. They are used to determine a suitable direction for the hill
climb. If one of the exploratory moves increases the fitness evaluation, then the
value that gave the improvement will be used as the new candidate solution.
A pattern search is made in the direction of improvement, applying increasingly
larger changes to the chosen variable as long as a better solution is found. If none of
the neighbours have a higher fitness than the current solution, AVM continues to
perform exploratory searches on the other parameters, until either a better neighbour
has been found or all the parameters have been unsuccessfully explored.

Papadakis and Malevris [12] applied AVM to kill mutants from 8 small Java
programs. Test inputs were optimised, according to a number of different control
flow criteria; first so that they reach each point of mutation, then so that they kill the
mutants located at each point. The results showed AVM to be more effective than
random testing, but only by a small amount. There was little or no difference in
effectiveness with fewer than 4500 fitness evaluations [12]. With 50,000 evalua-
tions, AVM killed on average 22 % more mutants than random testing. However,
AVM was significantly more effective for two programs (variants of the Triangle
program). Arcuri [41] performed a full run-time analysis of AVM on the triangle
program. The program performs a simple calculation to determine whether a tri-
angle is a valid equilateral, isosceles or scalene. Hill climbing and the Alternating
Variable Method may perform less well may on non-numerical and more complex
programs.

In particular, hill climbing performs poorly on fitness landscapes where there are
a number of local (i.e. non-global) optima (see Fig. 6). Once optimisation reaches a

100 M. Patrick

local maximum fitness value, all the neighbouring solutions have lower fitness, so
an exploratory search is likely to fail [37]. Similarly at a plateau, the neighbours all
have the same fitness and there is no indication as to which direction for the hill
climb to travel. The result is that hill climbing often becomes stuck at a local
optimum, terminates prematurely, or (in the case of a plateaux) is left wandering
aimlessly through the landscape. Success depends largely on the initial conditions,
which are determined by the starting point for the hill climb [38]. For example, the
global maximum in Fig. 6 has a plateau on one side, which forms a shoulder. This
makes the global optimum much harder to reach from one direction than the other.
One way to address this problem is to restart the hill climb from a number of
different locations (usually chosen at random) to achieve a new maximum fitness
value each time. The fitness values are compared and the highest one selected, so as
to identify a local optimum that is closer to the global one.

Another option (where available) is to initialise hill climbing using pre-existing
test cases. Most test data generation techniques start from scratch, assuming that no
test cases already exist [42]. Yet, this is seldom the case. Throughout the various
stages of a project, people gather test data for a a variety of different purposes:
Requirements engineers capture and explain the ways in which the software is
intended to behave with use-cases; software designers expand upon this information
using interaction diagrams to describe the flow of information through the system;
and programmers use simple test cases to check their code is functioning as they
work on it. In addition, test case may be available from testing that was performed
on a previous version of the program (these are known as regression tests). Even if
this data has been lost, or was not created, it is still possible to generated initial tests
used some automated tool, such as Dynamic Symbolic Execution [42]. Overall,
there is typically no need to start testing a program from scratch.

Yoo and Harman [42] applied this idea to generate test cases for methods from
two real world Java libraries: binarySearch is an implementation of the binary
search algorithm from a scientific computing library developed at CERN; whereas
read number is a numerical parser taken from an Internet event notification library.

Fig. 6 A challenging landscape for hill climbing

Metaheuristic Optimisation and Mutation-Driven Test Data … 101

They started with a small initial test suite for each program, manually constructed
so that it exercises each branch in the code, and allowed their testing tool to search
for new test cases by making simple changes to the existing tests. Yoo and
Harman’s technique achieved mutation scores that were 3.1 and 22.2 % higher for
binarySearch and read number respectively, when compared to another test data
generation tool (Iguana) that uses the more popular alternating variable method.

Pre-existing test cases can be exploited to reduce the time and effort involved in
test data generation and produce more effective tests [42]. These test cases are a
suitable starting point for hill climbing, since they are likely to be closer to a global
optimum than test cases chosen at random. Although testing cannot be used to
prove that a program is correct, some confidence may be provided in the success of
a large number of test cases. Techniques, such as hill climbing, that apply a local
search to existing test data, can be used inexpensively to generate further test cases
for evaluation. This makes it less likely for the test cases to be over-specialised to
the mutants they were created for, which is useful in ensuring repairs to a program
do not allow test cases to pass without fixing the underlying problems [42].

In summary, hill climbing has been shown to be an effective technique for
generating test data to kill mutants. It is particularly efficient at fine tuning test
cases, but depending on the starting conditions, it is prone to becoming stuck in a
local optimum. For this reason, hill climbing is suitable for being used with multiple
restarts or combined with some other, more global, optimisation techniques.

5.3 Evolutionary Optimisation

Evolutionary optimisation techniques are inspired by the process of evolution in
nature [43]. Candidate solutions compete for the rights to survive and reproduce.
Yet, only the fittest candidates are allowed to proceed to the next generation. This
leads, over a number of generations, to individuals that are highly adapted to their
environment. Evolutionary optimisation techniques are able to find the global
optimum even when the fitness landscape is large and complex [44]. For example,
they perform well when the fitness function is discontinuous, noisy, changes over
time, or has many local optima [43]. This makes evolutionary optimisation tech-
niques suitable for the task of generating test data for large, complex programs that
have many different input parameters or types and an intricate system of control and
data flow.

As with stochastic hill climbing, evolutionary optimisation applies a randomised
process of trial and error to seek for optimal solutions [43]. However, in contrast to
hill climbing, evolutionary optimisation is non-local and it maintains a population
of multiple candidates at the same time. Non-local optimisation searches a wider
range of values in the fitness landscape and is less likely to get stuck in a local
optimum. Population-based techniques are intrinsically parallel in nature [44]. It is
not necessary to restart the optimisation process when a member of the population

102 M. Patrick

fails to reach an optimum, as useful information is preserved in the other
candidates.

Since the population of an evolutionary optimisation technique is fixed in size
and candidates are selected to be replaced at random, some highly fit individuals are
inevitably lost from the population [43]. Although it seems this could cause
problems, it actually improves the optimisation. Losing highly fit (and potentially
over-trained) candidates allows the search to descend into valleys in order to reach
different (and potentially higher) optima [43]. This makes evolutionary optimisation
more likely to find values that are closer to the global optimum than hill climbing.

Algorithm 1 presents an overview of the algorithm used by evolutionary opti-
misation. The initial population is typically chosen at random. Then as long as the
termination condition has not been reached, the candidate solutions are evaluated
and the fittest individuals are selected to continue into the next generation, after first
being adapted and/or recombined according to the particular evolutionary
technique.

Algorithm 1 Algorithm for Evolutionary Optimisation
1: Generate the initial population (typically at random)
2: repeat
3: Evaluate fitness values for each candidate solution
4: Candidate solutions compete to continue into the next generation
5: Select the fittest candidates (allowing for some randomisation)
6: Allow the fittest selected candidate solutions to remain unchanged*
7: Adapt the selected candidates by changing some of their values at random
8: Combine values from the selected candidates to create new candidates*
9: Form a new population from the various modifications of candidates in the previous one
10: until Some termination condition is reached (e.g. fitness above certain level)

* Steps 6 and 8 are not present in all evolutionary optimisation algorithms,
they are used by elitist and recombinatorial techniques respectively

Ghiduk [7] represents a candidate solution of test cases using a binary vector of
ones and zeroes. The length of this vector is set according to the number and
precision of input values to the program under test. Initially the value of each bit is
set at random, but they are adjusted throughout the optimisation process and
selected according to how much they improve the mutation score of the resulting
test suite [7]. Optimisation is terminated when the maximum number of generations
(100) is reached or there are no further improvements in mutation score. In
experiments with 13 Java programs, evolutionary optimisation achieved a mutation
score of 81.8 %, compared to the 68.1 % achieved by random testing.

The encoding of candidate solutions is important as it has a significant impact on
the optimisation process. Binary vector representations provide a large number of
ways in which candidate solutions can be modified, but some changes are less
productive than others and this can make it take longer to reach an optimum. For
example, changing the most significant bit of a numerical value has a very different
effect to changing the least significant bit. Fraser and Zeller [11] introduce an
alternative test case representation using a sequence of method calls. The sequence

Metaheuristic Optimisation and Mutation-Driven Test Data … 103

may be modified by the optimisation technique through the deletion, insertion or
modification of program statements. In addition, Fraser and Zeller [11] use a more
sophisticated fitness function, using control flow criteria in a similar way to
Papadakis and Malevris [12]. The new technique was evaluated against manually
devised test suites for two large Java libraries: Joda-Time and Commons-Math.
Evolutionary optimisation produced fewer tests and killed more of the mutants from
Joda-Time, but produced more tests and killed fewer mutants from
Commons-Math.

There are two main driving forces in evolutionary optimisation: variation and
selection [43]. At each generation, new candidate values are created by making
random adaptations to the parameter values of the existing candidates. This ensures
that the diversity of the population is maintained and allows new parameter values
and combinations of values to be explored. Also at each generation, allowing for
some randomisation in the selection process, the fittest candidates are generally
selected and the weaker candidates are removed. This means that as optimisation
progresses, there should be a trend towards increasingly fitter candidate solutions.
The strengths of the existing candidates in the population are exploited, as their
parameter values are carried through into the next generation.

The challenge in setting up an effective evolutionary optimisation technique is to
balance the processes of exploration and exploitation so as to achieve an efficient
trade-off between them [44]. If the technique concentrates on making the best use of
the candidates that are currently available, it might not be able to reach the global
optimum. Yet, if it spends time searching for other (potentially more effective)
candidates, there is no guarantee that a fitter candidate will be found. Either way,
the technique risks wasting time and resources that may be better applied in a
different way. Mishra et al. [8] propose the use of an elitist GA to evolve test cases
for each unit, whilst maintaining the test cases that have been shown to be par-
ticularly effective, in case they are effective on other units. However, it can be
difficult to determine in advance for any given situation, which strategy will be the
most effective, as this depends on both the program under test and the type of
evolutionary algorithm that is used. In practice, it is useful to implement a small
trial to compare a number of different options when starting a new project.

A further decision must be made as to whether to include recombination as part of
the evolutionary optimisation technique. Recombination is used to combine
parameter values from different candidates in the hope that the new combination of
values will have the strengths of the previous candidates without any of their
weaknesses [44]. In contrast to adaptation, which takes a single candidate solution
and changes its parameter values to produce a new candidate, recombination takes
two or more candidate solutions and selects parameter values from one or more of the
previous candidates [43]. This allows a transfer of information in that candidates can
benefit from what other candidates have learnt [44]. However, there is no guarantee
that combining parameter values from different solutions will be effective—the
values may only be effective in the context of the other parameter values in the
original candidate. Recombination can be destructive as well as beneficial, so it is
important to consider its role in an evolutionary optimisation technique carefully.

104 M. Patrick

Without recombination, candidates explore the fitness landscape on their own,
without interference from the other candidates, but with recombination they are able
to take of things other candidates have discovered [44].

Harman and McMinn [40] claim that hill climbing outperforms evolutionary
optimisation in its ability to generate effective test suites, as recombination is often
disruptive to the optimisation process rather than helpful. Forrest et al. [39] claim
that certain ‘royal road’ functions are particularly suitable for recombination
because they allow different sections of the solution to be evolved individually then
combined together to form the global optimum. However, it should be noted that
since these examples are artificially constructed to be suitable for recombination, it
is unclear how frequently these kinds of functions occur in practice. Harman and
McMinn [40] claim that recombination should be avoided in most circumstances,
so they prefer the use of the Alternating Variable Method for hill climbing.

Nevertheless, recombination does not necessary need to be included as part of an
evolutionary optimisation technique and there are a number of ways in which local
search can be combined with evolution so as to take advantage of the benefits of
each approach. For example, Mala and Mohan [36] use a memetic algorithm to
generate test suites. Memetic algorithms apply a local search at each generation to
improve the fitness by exploring the immediate neighbourhood of the current
candidate. This allows evolutionary optimisation to take advantage of local gradi-
ents in fitness as well as searching on a global scale. Mala and Mohan [36] eval-
uated 18 Java programs from industry and academia and found that they were able
to achieve a similar mutation score to a genetic algorithm, but with fewer test cases.
Other options include the CMA-ES algorithm, which uses a multivariate Gaussian
distribution to describe the neighbourhood of the current best solution in a way that
is a compromise between local and global search. Patrick et al. [45] applied a
CMA-ES along with dynamic transformation of the program under test to identify
effective subdomains of test input. In a study with 6 Java programs, they achieved a
160 % improvement in mutation score compared to random testing.

5.4 Swarm Intelligence

Swarm intelligence techniques are also inspired by a biological concept [46].
However, instead of being based on the inheritance of genetic information, they
focus on the ways in which individuals cooperate by sharing information. For
example, ants decide where to forage using networks of pheromone trails [47]. If
ants encounter an obstacle (see Fig. 7), they look for ways around it at random.
However, when some of the ants find a way around it, the other ants follow their
pheromone trail to form a new route. There is a genetic element to the coordination
of populations (e.g. polymorphism in ants), but the most significant factor in
cooperation is self-organisation [46]. Self-organisation refers to the spontaneous
way in which coordination arises at the global scale out of local interactions
between organisms that are initially disorganised [49]. Individual organisms exhibit

Metaheuristic Optimisation and Mutation-Driven Test Data … 105

simple behaviour and when viewed in isolation, their actions appear noisy and
random. However, when multiple organisms work together, complex collective
behaviour emerges.

Self-organisation uses simple actions as seeds for random growth in order to
create complex behaviour among the collective [48]. It is the way in which the
simple actions of individuals interact that allows the collective to search for
effective new solutions to a problem. Two forms of interaction exist: positive
feedback and negative feedback [49]. Positive feedback reinforces actions that lead
to a useful result. For example, when a foraging bee brings nectar back to the hive,
it will choose from one of three options: If the bee has found a good source of
nectar, it will dance to indicate its direction to other bees; if the source of nectar is
mediocre, the bee will return back to the source but not dance; or, if the bee has
found a poor source of nectar, it will abandon the source and follow the other bees
[48].

Negative feedback acts as a counterbalance to positive feedback by dissuading
individuals against making less useful actions [49]. For example, when a source of
nectar is exhausted, or merely saturated from too many bees seeking after it at once,
the bees will stop dancing so as to prevent other bees from travelling to it [48]. Even
when a suitable source of nectar has been found, competition with other sources
may prevent bees from travelling to it. Typically, the vigour with which a bee
dances is in proportion to the quality of the source it has encountered, so that the
majority of bees travel to the best source of nectar [48]. In this way, negative
feedback helps to stabilise the behaviour of the collective. Together with positive
feedback, negative feedback allows the colony to maintain an optimal supply of
nectar to the hive.

Fig. 7 Ants following pheromones to find their way around an obstacle

106 M. Patrick

Kaur and Goyal [14] use mutation analysis and an artificial bee colony to select
and prioritise test cases for regression testing. They evaluate their approach on two
C++ programs, for which test suites have been manually developed: a college
system for managing course admissions (which has 35 test cases); and a Hotel
Reservation system (which has 40 test cases). Kaur and Goyal [14] aim to select a
subset of these test cases that form an optimised test suite. Two types of ‘bees’ are
employed: scout bees apply a global search to explore potential candidate test suites
and evaluate their fitness according to mutation analysis; by contrast, forager bees
start at the fittest test suites that were observed by the scout bees and apply a local
search to exploit the neighbourhood of each candidate. Test cases are selected such
that they detect faults not detected by the test cases already selected. As a result, test
suites can be ordered such that they kill more mutants in less time [14].

Ayari et al. [15] use ant colony optimisation to generate test suites that achieve a
high mutation score. The technique starts with a global search performed by ‘ants’
who evaluate the fitness of random test cases according to how far away they are
from killing a mutant. This distance is measured in terms of the number of critical
decision nodes that are not traversed and the difference between the current and
required value at the node where execution deviates from the path to the mutant
[15]. Subsequent ants follow the pheromone trails left by previous ants and perform
a local search to take advantage of previous fitness evaluations. Pheromone trails
guide ants in constructing test cases, one parameter value at a time. At each step, the
ant selects a value that was previously evaluated, or chooses a new value, in
proportion to the fitness of the corresponding test cases. Ayari et al. [15] evaluate
their approach using two programs written in Java: the Triangle program (as
described before); and NextDate, which validates the date that is input and deter-
mines the date of the next day. Ant colony optimisation is able to kill more than
twice as many mutants as a genetic algorithm and more than three times as many as
hill climbing.

Artificial bee colony and ant colony optimisation require the fitness landscape to
be described in a discrete way. This makes it difficult to use these algorithms for
continuous optimisation tasks, such as generating test cases for programs with
numerical inputs. Kaur and Goyal [14] try to get around this problem by generating
test cases in advance and optimising the order in which they are executed. Whereas,
Ayari et al. [15] discretise the fitness landscape into a limited number of values for
each input parameter (spread evenly over the input domain) and then optimise the
combination of those input values. These options both help to simplify the opti-
misation process, and it may be worthwhile to choose them for that reason alone.
Yet other models of swarm intelligence (based on particle swarm optimisation) can
be applied directly to continuous optimisation problems. Two of these techniques
are reviewed below: artificial immune systems and bacteriologic algorithms.

May et al. [50] implement an artificial immune system to generate test suites that
are efficient at killing mutants. Artificial immune systems optimise antibodies that
are effective against specific antigens. In this case, each antibody represents a test

Metaheuristic Optimisation and Mutation-Driven Test Data … 107

case and each antigen represents a mutant [50]. Test cases are optimised so that they
kill at least one mutant not killed by any of the test cases stored in memory as
antibodies. The collection of antibodies in memory at the end of the optimisation
process are returned to the user as a test suite. The mechanism used to search for
new test cases that are effective against the remaining mutants is known as clonal
selection theory [50]. Clonal selection theory describes the way in which antigens
activate specific antibodies according to their affinity. These antibodies then mul-
tiply in numbers by cloning and adapt to be even more effective against the antigen
by a process of mutation and selection. May et al. [50] consider test cases that kill
more mutants to have a higher affinity (or fitness). New test cases are mutated from
the previous ones according to their affinity. High affinity antibodies generate more
clones than low affinity ones, but mutate less (as they are closer to the desired
solution). May et al. [50] show the artificial immune system is able to kill more
mutants with fewer fitness evaluations than a genetic algorithm on four Java
programs.

Baudry et al. [9] use a bacterial foraging algorithm to create an effective test suite
for a C# parser. Bacteria locate food sources in their environment by sensing and
following chemical gradients. They propel themselves along the gradients using
long thin structures called flagella. Baudry et al. [9] interpret improvements in
mutation score as gradients in food sources and model individual test cases as
bacteria that are travelling towards them. Each movement of a bacterium is
implemented with a small change to one of the input parameters. Test cases are
selected according to their mutation score and the best test cases are allowed to
remain within the new population [9]. By remembering which candidates achieve a
high mutation score, it is not necessary to recalculate the mutation score for every
individual in each generation. Baudry et al. [9] showed that their bacterial foraging
algorithm achieved a higher mutation score than a genetic algorithm with fewer
mutant executions.

Baudry et al.’s implementation differs from the classic version of a bacterial
foraging algorithm [51], in that bacteria only have one mode of movement. In the
original paper, Passino [51] described the way in which bacteria move by either
swimming or tumbling. Initially, bacteria have no way of knowing which way to
travel in order to reach a food source, so they move chaotically through their
environment (tumbling). However, once a bacterium is able to detect a gradient, it
starts to travel quickly towards the food source (swimming). This can be imple-
mented by dynamically modifying the step size by which parameter values are
adapted according to the strength and direction of the fitness gradient. This
approach is similar to the multivariate Gaussian adaption used by CMA-ES and the
combination of pattern and exploratory search moves in the alternating variable
method.

108 M. Patrick

5.5 Comparing Metaheuristic Techniques for
Killing Mutants

Table 1 summarises the empirical studies that have been discussed in this chapter.
Although it contains a significant proportion of the literature, the table is not
intended to be definitive. There are other techniques that have been used to generate
test data for mutation analysis which are not included. These techniques, such as
adaptive random testing [54] and dynamic symbolic execution [52, 53], are outside
the scope of this chapter. The studies that have been included were chosen to
demonstrate are broad sample of techniques for metaheuristic optimisation.

Table 1 contains two studies on hill climbing (HC), four studies on evolutionary
optimisation (EO) and four studies on swarm intelligence (SI). The studies were
primarily conducted in Java, although C, C++, C# and Eiffel have also been used.
Table 1 also lists the number of programs included in each study, as well as the total
code length (in classes or in lines of code) and the number of mutants generated
from the programs under test. Question marks indicate details that were not pro-
vided. The studies are arranged in order of the number of mutants (ranging from
some unknown number up to 117,913). The latter study included 1416 classes and,
although not directly specified, it probably includes the largest number of lines of
code as well.

Empirical studies typically compare the performance of the technique they
propose against a benchmark of random testing. Papadakis and Malevris [12]
showed with 50,000 test cases that hill climbing killed on average 22 % more
mutants than random testing [12]. Similarly, Ghiduk [7] showed with 1000 test
cases that evolutionary optimisation achieved a mutation score of 81.8 %, compared
to the 68.1 % achieved by random testing. Finally, Kaur and Goyal [14] showed
that swarm intelligence selected 35 and 40 test cases respectively for two different
programs in an order that killed more mutants in less time than random testing. We
can therefore state with reasonable authority that metaheuristic optimisation tech-
niques can be more efficient than random testing. Metaheuristic optimisation can be

Table 1 Summary of empirical studies

Study Technique Language #Programs Code length #Mutants

Kaur and Goyal [14] SI C++ 2 NA NA

Mala and Mohan [36] EO Java/C++ 18 305 (classes) NA

Ayari et al. [15] SI Java 2 127 (LOC) 198

Yoo and Harman [42] HC C 4 NA 1267

Baudry et al. [9] SI Eiffel/C# 2 35 (classes) 1647

Ghiduk [7] EO Java 13 927 (LOC) 1772

Papadakis and Malevris [12] HC Java 8 395 (LOC) 2759

May et al. [21] SI Java 4 290 (LOC) 3958

Patrick et al. [45] EO Java 10 1945 (LOC) 8114

Fraser and Zeller [11] EO Java 10 1416 (classes) 117,913

NA not available

Metaheuristic Optimisation and Mutation-Driven Test Data … 109

said to be an effective technique for automatically generating test suites to kill
mutants.

Metaheuristic optimisation techniques are able to select test cases more effi-
ciently than random testing because they generate test cases by taking into account
the results of previous tests. This can be understood through the use of a simple
example (see Fig. 8). Consider the problem of selecting test cases to reach two
mutants (M1 and M2). Assume the three input variables (a, b and c) have integer
input domains from 0 to 9 inclusive. The probability of a randomly selected test
case reaching M1 is 0.1 * 0.9 * 0.1 = 0.009 and the probability of it reaching M2 is
0.1 * 0.1 * 0.2 = 0.002. Metaheuristic optimisation may measure the distance
between the current and required value at each branch condition to target the correct
branch.

If in our example the value of ‘a’ at the point of reaching the first branch
condition is 6, the branch distance is measured as 1 (i.e. 6–5). The branch condition
may thus be met by decreasing the value of ‘a’ by 1 (from 6 down to 5). Typically,
the task of optimising input values to meet a particular branch condition is less
trivial than this, since the value of a variable at a certain point in the program
depends upon the branches and statements that were executed before. Nevertheless,
metaheuristic optimisation techniques can use the information provided by metrics
such as branch distance to guide the selection of test cases to reach and kill each
mutant.

It is difficult to identify the most effective metaheuristic technique from the
results of the empirical studies. The results cannot be directly compared because
they use different test programs written in different program languages and with
different settings for the techniques. Some studies compare multiple techniques, yet
their conclusions are based upon experiments with only a small number of pro-
grams. Ayari claimed [15] ant colony optimisation was able to kill more than twice
as many mutants as a genetic algorithm and more than three times as many as hill
climbing. May [21] showed an artificial immune system to kill more mutants than a
genetic algorithm with just 12.9 % the number of fitness evaluations. Similarly
Baudry [9] showed a bacterial foraging algorithm to achieve 96 % mutation score in

a=5?

b=3?

c<2?

M2. . .

F T

c=1?

M1. . .

F T

F T

. . .

F T

Fig. 8 A simple branch
structure leading to two
mutants

110 M. Patrick

just 30 generations, compared to a genetic algorithm’s 85 % after 200 generations.
Yet in total, these three studies are based on experiments with just 8 programs.
Certainly this is not enough to say swarm intelligence techniques are more effective
in general. It is possible the researchers unwittingly chose programs for which it is
more effective.

Each metaheuristic technique has advantages and disadvantages with respect to
the program under test. For some programs, different parts of a test case can be
evolved individually and then joined together by recombination in a genetic
algorithm [39]. Yet for most programs, techniques such as hill climbing may be
more efficient [40]. Similarly, there is no guarantee that techniques which reuse
existing test cases (memetic algorithms and swarm intelligence) will be any more
efficient than restarting the search. One suggestion is to evaluate a number of
techniques in an attempt to determine empirically which one is the most effective
for the program under test. However, in practice there is rarely enough time to
fine-tune every technique to reach the full potential of its effectiveness. We need
some general guidelines as to the techniques which might be effective for a par-
ticular program.

Hill climbing only stores one candidate solution at a time. This makes it difficult
to take advantage of input values that were previously successful at killing mutants.
Consider the example in Fig. 8. A test case may have been found to kill M1, but
when targeting M2 the program could follow a different path. If this path includes a
condition which prevents ‘c’ being less than two, this introduces a local optimum
that hill climbing can only resolve by restarting the search. It may be possible to get
around this problem by starting the search with input values from a test case that
killed a nearby mutant. Yet, the steps taken from these values may still lead to a
local optimum. The mutant might only be killed after a certain number of loop
iterations or a particular branch is taken. Of course, hill climbing can be restarted as
many times as is necessary, but in the worst case this degenerates to random testing.

Evolutionary optimisation techniques maintain a population of candidate solu-
tions, which allows them to be more robust against local optima. Even if most of the
candidates follow a path that prevents the goal being reached, a candidate which
follows the right path can be used to create a new population and avoid having to
restart the search. Techniques such as CMA-ES [45] use information about the rate
at which fitness increases to maintain a population of candidates that is likely to be
efficient at finding the global optimum solution. In addition, recombination can
sometimes be applied to two locally optimum solutions to produce a candidate that
is nearer to the global optimum. For example, when trying to kill M2, recombi-
nation can take the value of ‘b’ from the test case that fails at the ‘c < 2’ branch
condition and the value of ‘c’ that kills M1. Since ‘c = 1’ is completely subsumed
by the ‘c < 2’ condition, the new test case will kill M2. Evolutionary techniques are
more likely to find the global optimum in program that as lots of local optima than
hill climbing.

It seems counter-intuitive not to take advantage of local fitness gradients when
available. Swarm intelligence combines the best of evolutionary optimisation and
hill climbing in an approach that is population-based and involves local search.

Metaheuristic Optimisation and Mutation-Driven Test Data … 111

They make it easier to kill M2, not only by remembering the test case which kills
M1, but also a number of other tests that are found to be fit. Yet it is difficult to
uniquely define these techniques, since evolutionary optimisation can also keep
some of the fittest solutions in its population and variation may be applied locally as
well as globally. Swarm intelligence has not yet been evaluated as thoroughly for
test data generation as evolutionary optimisation. More work is required to deter-
mine what distinguishes these techniques, both in their definition and effectiveness.

6 Conclusions

Testing is a challenging, but vitally important part of the software development
process. Time and effort spent on improving a test suite is worthwhile if it reduces
the damage caused by faults and the work required to repair them later. Mutation
Analysis may be used to evaluate the effectiveness of test cases and it provides
indications as to how to improve them. The effectiveness of a test suite can be
improved iteratively by combining mutation analysis with metaheuristic optimisa-
tion. Metaheuristic optimisation is highly suitable for this task because it makes few
assumptions about the problem being solved. Rather than specifying how to pro-
duce an effective test suite, metaheuristic optimisation searches the fitness land-
scape iteratively and takes advantage of patterns of suitability as it goes along.

This chapter explored the application of three kinds of metaheuristic optimisation
technique for test data generation. Hill climbing is efficient at fine tuning test cases,
but depending on the starting conditions, it is prone to becoming stuck in a local
optimum. Evolutionary optimisation is able to find the global optimum even when
the fitness landscape is large, complex, noisy or discontinuous. However, swarm
intelligence is more adaptable to change because it optimises a range of potential
solutions and favours diversity over perfection. This means that when the software
changes, or new unexpected faults are found, swarm intelligence is able to react
more quickly to the new situation than other techniques. On the other hand, since
swarm intelligence is based upon redundancy, it can be less efficient than other
techniques and the candidate solutions it produces are not equally as effective. Each
technique has its advantages and disadvantages, so it is necessary to choose between
them according to purpose, or take a hybrid approach using multiple techniques.

Metaheuristic techniques are often applied as a ‘black box’ tool for optimisation.
This has its obvious advantages, but it also brings with it some problems. First, the
results can be difficult to understand. Why were these input values chosen? What is
the purpose of this particular test case? Secondly, it is difficult to know what the
best settings for a metaheuristic technique will be. How should we set the fitness
function? Should we use recombination or elitism etc. and what should the ter-
mination criteria be? Finally, they can also take longer than deterministic tech-
niques. We need to be prepared to leave metaheuristic optimisation techniques
running in the background and allow enough time for them to produce an effective
test suite.

112 M. Patrick

The key to success when designing a metaheuristic technique for mutation
analysis is not to focus too much on the metaphor that is being used, but on the
decisions that cut across the different kinds of optimisation technique. A suitable
balance must be found between intensifying and diversifying the search. A decision
must also be made regarding the number of candidate solutions to maintain. A large
population allows a broad range of options to be explored and is less likely to
become stuck in a local optimum, but it tends to be less appropriate for fine-tuning
the solution. The choice of fitness function is also very important. Good fitness
functions must differentiate clearly between desirable and undesirable candidate
solutions, but not be too expensive to calculate. It is not usually possible to make
the correct decisions in advance, so it is important to compare and evaluate the
different options empirically.

References

1. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)
2. Yang, X.-S.: Metaheuristic optimization: algorithm analysis and open problems. Lect. Notes

Comp. Sci. 6630, 21–32 (2011)
3. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliab.

14, 105–156 (2004)
4. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A Survey on metaheuristics for

stochastic combinatorial optimization. Nat. Comput. 8, 239–287 (2009)
5. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE

Trans. Softw. Eng. 37, 649–678 (2011)
6. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Trans. Softw. Eng.

Methodol. 1, 5–20 (1992)
7. Ghiduk, A.S.: Using evolutionary algorithms for higher-order mutation testing. Int.

J. Comp. Sci. Issues 11, 93–104 (2014)
8. Mishra, K.K., Tiwari, S., Kumar, A., Misra, A.K.: An approach for mutation testing using

elitist genetic algorithm. In: Proceedings of IEEE International Conference Computer Science
Information Technology 426–429 (2010)

9. Baudry, B., Fleurey, F., Jézéquel, J.-M., Le Traon, Y.: From genetic to bacteriological
algorithms for mutation-based testing. Softw. Test. Verif. Reliab. 15, 73–96 (2005)

10. Bottaci, L.: A genetic algorithm fitness function for mutation testing. In: Proceedings of
International Works. Software Engineering Metaheuristic Innovative Algorithms, pp. 3–7
(2001)

11. Fraser, G., Zeller, A.: Mutation driven generation of unit tests and oracles. In: Proceedings of
19th International Symposium Software Testing Analysis, pp. 147–158 (2010)

12. Papadakis, M., Malevris, N.: Searching and generating test inputs for mutation testing.
SpringerPlus 2 (2013)

13. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16, 870–879
(1990)

14. Kaur, A., Goyal, S.: A bee colony optimization algorithm for fault coverage based regression
test suite prioritization. Int. J. Adv. Sci. Tech. 29, 17–30 (2011)

15. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation via ant
colony. In: Proceedings of 9th Annual Conference Genetic Evolutionary Computation,
pp. 1074–1081 (2007)

16. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley, Hoboken (2012)

Metaheuristic Optimisation and Mutation-Driven Test Data … 113

17. Blair, M., Obenski, S., Bridickas, P.: Patriot missile software problem. Technical report
GAO/IMTEC-92-26, United States General Accounting Office (2002)

18. Heusser,M.: Software testing lessons learned fromKnightCapital Fiasco. CIOMagazine (2012).
http://www.cio.com/article/713628/Software_Testing_Lessons_Learned_From_Knight_Capital_
Fiasco/. Cited 28 Sep 2014

19. Bezier, B.: Software Testing Techniques. Van Nostrand Reinhold, New York (1990)
20. Jay, F., Mayer, R.: IEEE standard glossary of software engineering terminology. Technical

report 610.12-1990, IEEE (1990)
21. May, P.S.: Test data generation: two evolutionary approaches to mutation testing. Ph.D. thesis,

Department of Computer Science, University of Kent, Canterbury, UK (2007)
22. Pacheco, C., Lahiri, S., Ball, T.: Finding errors in .NET with feedback-directed random

testing. Technical report MSR-TR-2008-29, Microsoft Research (2008)
23. Sun Microsystems: Java Compatability Kit 6b User’s Guide. Sun Microsystems (2012).

http://openjdk.java.net/groups/conformance/docs/JCK6bUsersGuide/JCK6b_Users_Guide.pdf.
Cited 28 Sep 2014

24. Oracle: Java Bug Database. Oracle (2012). http://bugs.sun.com. Cited 28 Sept 2014
25. Dijkstra, E.W.: Notes on structured programming. In: Dahl, O.J., Dijkstra, E.W., Hoare, C.A.

R. (eds.) Structured Programming, pp. 1–82. Academic Press Ltd., London (1972)
26. Mahmood, S.: A systematic review of automated test data generation techniques. Masters

thesis, School of Engineering., Institute of Technology Box, Ronneby, Sweden (2007)
27. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.

Surv. 29, 366–427 (1997)
28. Lipton, R.: Fault diagnosis of computer programs. Technical report, School of Computer

Science, Carnegie Mellon University (1971)
29. Jia, Y., Harman, M.: Java mutation testing repository. UCL (2014). http://crestweb.cs.ucl.ac.

uk/resources/mutation_testing_repository/. Cited 28 Sept 2014
30. Budd, T.A.: Mutation analysis of program test data. Ph.D. thesis, Department of Computer

Science, Yale University, New Haven, CT (1980)
31. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing

programmer. Computer 11, 34–41 (1978)
32. Offutt, A.J., Untch, R.H.: Mutation 2000: uniting the orthogonal. In: Wong, W.E. (ed.)

Mutation Testing for the New Century, pp. 34–44. Kluwer Academic Publishers, Norwell
(2001)

33. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual
comparison. ACM Comput. Surv. 35, 268–308 (2003)

34. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. (in press)
35. Burnstein, I.: Practical Software Testing: A Process-Oriented Approach. Springer, New York

(2003)
36. Mala, D.J., Mohan, V.: Quality improvement and optimization of test cases: a hybrid genetic

algorithm based approach. ACM SIGSOFT Softw. Eng. Notes 35, 1–14 (2010)
37. Burke, E.K., Kendall, G.: Search methodologies: introductory tutorials in optimization and

decision support techniques. Springer, New York (2010)
38. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)
39. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In:

Whitley, D. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann, San
Mateo (1993)

40. Harman, M., McMinn, P.: A theoretical and empirical analysis of evolutionary testing and hill
climbing for structural test data generation. In: Proceedings of 16th International Symposium
Software Testing Analysis, pp. 73–83 (2007)

41. Arcuri, A.: Full theoretical runtime analysis of alternating variable method on the triangle
classification problem. In: Proceedings 1st International Symposium Search Based Software
Engineering, pp. 113–121 (2009)

42. Yoo, S., Harman, M.: Test data regeneration: generating new test data from existing test data.
Softw. Test. Verif. Reliab. 22, 171–201 (2012)

114 M. Patrick

http://www.cio.com/article/713628/Software_Testing_Lessons_Learned_From_Knight_Capital_Fiasco/
http://www.cio.com/article/713628/Software_Testing_Lessons_Learned_From_Knight_Capital_Fiasco/
http://openjdk.java.net/groups/conformance/docs/JCK6bUsersGuide/JCK6b_Users_Guide.pdf
http://bugs.sun.com
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/

43. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York (2003)
44. Koza, J.R.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan

Kaufmann, San Francisco (1999)
45. Patrick, M., Alexander, R., Oriol, M., Clark J.A.: Selecting highly efficient sets of subdomains

for mutation adequacy. In: Proceedings 20th Asia-Pacific Software Engineering Conference,
pp. 91–98 (2013)

46. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, New York (1999)

47. Blum, C., Merkle, D.: Swarm Intelligence: Introduction and Applications. Springer, New York
(2008)

48. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau, E.:
Self-organization in Biological Systems. Princeton University Press, Princeton (2003)

49. Serugendo, G.M., Gleizes, M.-P., Karageorgos, A.: Self-organising Software: From Natural to
Artificial Adaptation. Springer, New York (2011)

50. May, P., Timmis, J., Mander, K.: Immune and evolutionary approaches to software mutation
testing. Lect. Notes Comput. Sci. 4628, 336–347 (2007)

51. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst. 22, 52–67 (2002)

52. Papadakis, M., Malevris, N.: Automatic mutation test case generation via dynamic symbolic
execution. In: Proceedings of 21st International Symposium Software Reliability Engineering,
pp. 121–130 (2010)

53. Harman, M., Yue, J., Langdon, W.B.: Strong higher order mutation-based test data generation.
In: Proceedings of 21st ACM SIGSOFT Symposium Foundations Software Engineering,
pp. 212–222 (2011)

54. Chen, T.Y., Kuo, F.-C., Liu, H., Wong, W.E.: Code coverage of adaptive random testing.
IEEE Control Syst. 62, 226–237 (2013)

Author Biography

Matthew Patrick is a Research Associate in the Department of Plant Sciences, in the University
of Cambridge. He is currently working on the characterisation and regeneration of heterogeneous
host landscapes for epidemiological modelling, although his interests also include software testing
and search-based software engineering. Matthew strives to work at the confluence between
Biology and Software Engineering.

Metaheuristic Optimisation and Mutation-Driven Test Data … 115

Measuring the Utility of Functional-Based
Software Using Centroid-Adjusted Class
Labelling

Nick J. Pizzi

Abstract The functional programming paradigm involves stateless computation on
immutable data constructs. While this paradigm’s historical context dates back to
the early twentieth century with lambda calculus and a formal study of com-
putability and function definition, there has been a resurgence in functional pro-
gramming, especially in the area of predictive analytics. New, purely functional,
languages have recently emerged, and functional extensions have been added to
several popular programming languages. It is sometimes difficult to estimate the
overall utility and extensibility of functional programming software components. At
the same time, many software metrics exist that attempt to quantify various qual-
itative attributes of software components. Here, we use a computational intelligence
strategy that uses a set of software metrics to predict the qualitative utility of a
software system’s underlying components. Centroid-adjusted class labelling is a
pattern classification preprocessing method that compensates for the possible
imprecision of an established external reference test (gold standard) by adjusting,
when necessary, design pattern class labels while maintaining the reference test’s
discriminatory power. The adjusted design labels incorporate within-class centroid
information using robust measures of location and dispersion. This method is
applied to a biomedical data analysis software system written in a functional pro-
gramming style. It is shown that significant improvement to the discriminatory
power of the classifier is obtained when using this preprocessing method.

Keywords Functional programming � Pattern classification � Software utility �
Software metrics � Java lambda � Software engineering

N.J. Pizzi (&)
InfoMagnetics Technologies Corporation, Research and Technology Development,
Winnipeg, MB R3C 3Z5, Canada
e-mail: pizzi@imt.ca

N.J. Pizzi
Department of Computer Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_6

117

1 Introduction

Software systems are utilized to model increasingly sophisticated problems across
many application domains. Given the complexity of these contemporary systems, it
is often difficult to gauge the utility of their underlying software components.
A possible strategy to evaluate the qualitative attributes of a system’s components is
to use software metrics as quantitative predictors. Examples of software metrics
include the coupling between components, the number of lines of code, the number
of unique operators and operands, cyclomatic complexity, and the ratio of lines of
comments to code. If an external reference test can be identified to label the utility
of these components then this strategy may be viewed as a problem of classifica-
tion. That is, predict a component’s qualitative attribute (based on the reference test)
using a set of metrics. No single metric can be an indicator of quality for all types of
software systems; however, determining the ‘‘optimal’’ combination of multiple
software metrics would certainly be a non-trivial exercise. Incorporating the
expertise of software architects into a ‘‘quality filter’’ analysis system may be an
ideal complement to finding a mapping from metrics to quality. Couching the
mapping problem as one of classification where the qualitative assessments are
initially determined by the expert is a potentially viable option as will be demon-
strated in this investigation.

Pattern classification involves finding a mapping (relationship) from patterns to a
set of classes. Patterns are composed of features (for example, a set of software
metrics) and class labels (for example, software component utility) are assigned
using an external reference test (for example, assessment by a software architect).
Effective pattern classification requires the coupling of an efficient classifier with a
synergistic preprocessing strategy. The motivation for pre-processing strategies [42,
68] is to simplify the determination and construction of class boundaries in the
feature space. For instance, Grandvalet and Canu [25] describe the identification of
relevant input variables through a constrained scaling strategy for a support vector
machine [73] used in a facial expression recognition task. A sequential search
method is presented in Pudil et al. [57], which iteratively examines varying num-
bers of features, and is shown to be more computationally efficient than a branch
and bound method. Using a set of multispectral images in a prostate cancer clas-
sification task, Tahir et al. [67] empirically demonstrate the effectiveness of feature
selection using a hybrid classifier approach combining the K-nearest neighbour
algorithm [12] with a search heuristic based on Tabu search [24]. Schmitt et al. [59]
empirically evaluate a feature extraction strategy employing Choquet integration
[48] within a fuzzy rule classifier, and demonstrate that by extracting relevant
features the total number of fuzzy rules generated is reduced. Preprocessing
strategies also exist to deal with the possible imprecision of external reference tests
while maintaining their essential (and domain-accepted) discriminatory power [52,
53, 71, 76].

118 N.J. Pizzi

While reference tests may be well-established benchmarks, they are seldom
perfectly accurate and sometimes incorrectly applied. Nevertheless, any method
that compensates for their imprecision must ensure that mappings are correctly
validated against these benchmarks. Factors contributing to a tarnished gold stan-
dard include subjective estimates by a domain expert (or expert panel), simple
clerical errors, unreliable or imperfect sample acquisition techniques, or anomalous
sensor readings. One such preprocessing method, centroid-adjusted class labelling
[54], compensates for the possible imprecision of class labels using a fuzzy simi-
larity measure based on robust measures of location and dispersion for each class of
design patterns. In essence, this produces, for each pattern, a list of “membership”
values (on the unit interval) for every class. If a design pattern is sufficiently
dissimilar to other patterns from its class and sufficiently similar to those from
another class, then its class label is changed to the latter class.

We empirically evaluate the centroid-adjusted class labelling preprocessing
method using software components from a biomedical data analysis software
system implemented using the functional programming paradigm. The patterns
comprise software metrics for each component and the class labels are measures of
software utility as determined by a domain expert (a software architect). We begin
with a discussion of the functional programming paradigm in Sect. 2. Section 3
describes pattern classification and performance assessment and Sect. 5 provides
details of the centroid-adjusted class labelling method. The experiment design and
results are presented in Sects. 6 and 7, respectively, followed by some concluding
remarks.

2 Functional Programming

Functional programming is a paradigm that treats computation in terms of immu-
table values and functions that translate between them [22]. The notion of functional
programming goes back to the 1930s with Church’s [10] formulation of the lambda
calculus, a formal mathematical logic system for the expression of computation
based on function abstraction and application, recursion, and variable binding and
substitution. A key difference between functional programming and other para-
digms is the notion of referential transparency. With functional programming, the
output value of a function depends only on its input; eliminating “side effects” can
make it easier to understand and predict program behaviour, hence one of the main
motivators in its adoption. While the functional paradigm has methodological
benefits [3, 33, 34, 50], functional languages have been slower than their imperative
and object-oriented counterparts, but with recent compiler optimizations and
well-designed data structures this gap is much narrower and much less of a concern.
Functional programming languages include Haskell [49], Clojure [17], Erlang [8],
and Objective Caml [40]. Programming in a functional style can also be

Measuring the Utility of Functional-Based Software … 119

accomplished in some imperative and object-oriented through functional exten-
sions: C# [66], F# [64], R [1], Mathematica [44] and Java 8 [78]. As the biomedical
data analysis system used in the experiment described in Sect. 7 was written in Java
8 using its new lambda expressions, we now discuss some of the functional pro-
gramming extensions for this most recent version of Java.

2.1 Functions and Java 8

In Java 8, functions are treated very differently from methods. For instance, func-
tions are independent of any component instance, they do not access global state,
modify input, or change state; that is, they possess complete referential trans-
parency. Functions may be stored in variables, passed as parameters, or returned
from other functions. Let us look at several examples. First, here is a lambda
expression involved in updating a time series value based on the current time step:

IntToDoubleFunction newMagnitude = timeStep -> 2.28 +
8.87 * timeStep;

where IntToDoubleFunction represents a function that accepts an
integer-valued argument and produces a double-valued result, timeStep is the
input, and newMagnitude is a function. Note that this is similar in notation to a
Java anonymous implementation of an interface with a single method. We can also
use a generic function interface for a function from one object to another, for
example,

where the first type, String, is the parameter and the second type, Integer, is
the return type. We can also make lambda expressions with multiple parameters, in
which case parentheses are needed around the parameter names. They may also
contain more than one expression, in which case curly braces are needed around the
expressions as well as a “return” for the last expression, as in

BiFunction<String, Integer, Boolean> exceedsMaxLen = (s,
maxLen) -> {

int actualLen = s.length();
return actualLen > maxLen;

};

where BiFunction represents a function that accepts two arguments and
produces a result (a two-arity specialization of Function).

Function<String, Integer> geneCount = s-> s.split(“ ”).length;

120 N.J. Pizzi

3 Pattern Classification

3.1 Design and Validation

We now introduce some formal notation to more accurately describe the design and
validation of a pattern classifier. A classification exercise always involves a set of N
pattern-class pairs, X

X ¼ ðxk;wkÞ; ðk ¼ 1; 2; . . .;NÞjxk 2 <n;wk 2 w ¼ f1; 2; . . .; cgf g ð1Þ

where xk = [x1, x2, …, xn] is an n-dimensional pattern and wk is its corresponding
class. Let us divide the pattern space into a set of W = {W1, W2, …, Wc} regions.
Now, if xk is found in the region Wj, then wk = j. Pattern classification is a
two-stage empirical process: design and verification. Design is the process of
finding a mapping (decision boundaries), f, which partitions the patterns into k
spatial regions, such that, if a pattern has the class label, wj, it will also lie in the
spatial region, Wj, containing all and only those patterns with class label, wj. On the
other hand, verification refers to the application of the mapping, found during the
design process, to new (previously unseen) patterns in order to predict their
respective class labels. Finally, let us define the feature, pi, as the set of xi values for
all patterns, x.

In our specific software engineering investigation: the features are the software
metrics that are used in the experiment; xj is the set of values for the respective
metrics for the jth software component; and wj is the utility level (class) for
component j. The utility level (for instance, low, medium, and high) would be
determined by an external reference test (for instance, a software engineer or panel
of developers).

An important question to address during the design process is the performance of
the classifier, or, in other words, the accuracy of the mapping [47]. Prior to selecting
the performance measure, we randomly allocate the patterns into two subsets: ND

design patterns, XD; and NV validation patterns, XV (ND + NV = N). The design
subset is used to find the mapping, f:XD → w. The validation subset is used to
evaluate the accuracy (performance) of the decision rule, f:XV → w. For example,
say (xj, wj) is a pair where xj 2 XV and f produces the class, wj′. Now, if wj′ = wj, f
has correctly predicted the class for xj, otherwise f has made an incorrect prediction
(a classification error).

3.2 Performance Assessment

One issue that needs to be addressed is how the performance of a classifier should
be assessed using the patterns from the validation subset. A typical approach is to
construct a c × c accuracy matrix, A = [aij], of predicted versus assigned classes

Measuring the Utility of Functional-Based Software … 121

[14]. Say, we have a validation pattern assigned to class i and the classifier mapping
predicted that the pattern belonged to class j: if i = j, then aij is incremented by one,
otherwise a misclassification occurs and aij is incremented. The conventional per-
formance measure used in much of the pattern classification literature is PO, the
ratio of correctly classified validation patterns to NV

pO ¼ N�1
V

X
i

aii i = 1,2,. . .; cð Þ ð2Þ

Unfortunately, PO does not take into account any agreement that may be due to
chance, PL

PL ¼ N�2
V

X
i

X
j

aij
X
j

aji

 !
i; j ¼ 1; 2; . . .; cð Þ ð3Þ

A more conservative measure is the κ score [18, 21], a chance-corrected measure of
agreement between the predicted and assigned classes

j ¼ Po � PL
1� PL

ð4Þ

where κ = 1 means there is perfect agreement between the predicted and assigned
classes, κ = 0 means that the agreement is due strictly to chance, κ > 0 means that
there is partial agreement not due to chance, and, finally, κ < 0 means that the
agreement is actually less than chance (with the floor depending upon the marginal
distributions of the validation patterns within each class [39]).

3.3 Classifiers

Myriad classifiers, algorithmic systems used to construct decision boundaries, exist
with different properties, architectures, advantages and limitations. Details of these
various considerations may be found in [2, 4, 14, 15, 16, 28, 47, 69]. We now
briefly describe the pattern classifier that is used in this investigation.

The support vector machine (SVM) [60, 74] is an important family of supervised
learning algorithms that are used for pattern classification. SVM selects class
models that maximize the error margin of a design subset. For instance, given a set
of patterns that belong to one of two classes, an SVM finds the hyperplane leaving
the largest possible fraction of patterns of the same class on the same side while
maximizing the distance of either class from the hyperplane. The approach is
usually formulated as a constrained optimization problem and solved using con-
strained quadratic programming. While the original method [75] could only pro-
duce linearly separable class regions, it may be extended by introducing non-linear
“kernels” [77] that exploits the fact that a nonlinear mapping of sufficiently high

122 N.J. Pizzi

dimension can project the patterns to a new parameter space in which the classes
may be separated by a hyperplane. In general, it cannot be determined a priori
which kernel will contribute to producing the best classification results for a given
dataset and one must rely on trial and error experimentation. For patterns xi and xj,
common kernel functions (a, b, and d are user-defined scalars), K(xi, xj), are: power,
(xi · xj)

d; polynomial, (a xi · xj + b)d; sigmoid, tanh(a xi · xj + b); and Gaussian, exp
(−0.5| xi − xj|2/σ). In the interest of brevity, we restrict ourselves to the Gaussian
kernel for this investigation.

4 Software Attributes and Measuring Utility

A software metric [6, 9, 36–38, 51, 79] is a mapping from a software component
(object, function, method, class, and so on) to a set of scalar values to quantify one
or more qualitative attributes [19]. Metrics are commonly regarded as important
factors reflecting the nature of software systems including characteristics such as
the qualitative properties of complexity, extensibility, and, in our case, utility [55,
58, 62]. The proper use of metrics described in the software engineering literature
[20, 31, 43, 56, 65] requires a fundamental understanding of what is being mea-
sured and a sound interpretation of how the measurements are being acquired both
of which are necessary prerequisites to refactoring, that is, changing a software
component to improve its conceptual structure without affecting its behaviour [23,
45]. Metrics may be used by developers to identify “high risk” software compo-
nents; that is, components that are too complex to understand and test, exhibit poor
usability for clients, or are not sufficiently reusable. Maintainability, as defined by
the ISO/IEC 9126 standard [36], is the set of attributes that bear on the effort needed
to make specified modifications, and includes the notions of stability, analyzability,
changeability, and testability. It also involves the concept of how difficult it is to
make small or incremental changes to existing software components without
introducing errors in logic or design. Utility involves the amount and quality of
code comments, the overall size of the component, and the overall flow of control
[7, 36].

This investigation did not involve an a priori determination that the software
metrics used here were, in some sense, optimal or ideal predictors of software
component utility. It is more than likely that this set is neither wholly necessary nor
sufficient for this purpose. These metrics were selected for the purely practical
reason that metric generation software was available to compile this specific set of
metrics.

Measuring the Utility of Functional-Based Software … 123

4.1 Metrics Used as Features

Table 1 lists the software metrics, and their corresponding feature indices, used in
the experiments described in Sect. 6. Several procedural metrics are used: the
number of lines of code, p1; the ratio of comments to lines of code, p2, and
comments to non-comments, p3; the total number of operands and operators, p4 and
p5; the total number of unique operands and operators, p6 and p7; the number of
functions, p23; the maximum number of parameters defined for a single operation,
p8; the nesting depth of decision/loop constructs; the number of attributes, p9; the
number of reference types used in attribute declarations, p10. McCabe’s [46]
cyclomatic complexity, p11, of a component is the number of possible paths in its
decision flow graph (informally, one more than the number of binary decisions) and
p24 is the number of functions weighted by p11.

While functional programming is a paradigm different from object-oriented
programming, some of the latter’s metrics [9, 29] are relevant in functional software
code, especially for hybridized languages such as Java 8 [78]. (Of course, some are
not relevant such as metrics relating to inheritance; however, even in
object-oriented programming the notion of inheritance is being replaced by inter-
face design methods [11].) Coupling between components, p12, is the count of
reference types that are used in attribute declarations, formal parameters and return
types, and represents the number of other components to which component is
coupled (if this metric is large, modularity decreases). Abstraction coupling, p13, is
the number of reference types used in attribute declarations. Another potentially

Table 1 Summary of software metrics

Feature Metric Feature Metric

p1 Lines of code p15 Number of members

p2 Comment ratio 1 p16 Program length

p3 Comment ratio 2 p17 Program vocabulary

p4 Number of operands p18 Program volume

p5 Number of operators p19 Program difficulty

p6 Number of unique operands p20 Program effort

p7 Number of unique operators p21 Attribute Access

p8 Maximum number of parameters
defined for a single operation

p22 Function dissimilarity

p9 Nesting depth of decision/loop
constructs

p23 Number of functions

P10 Number of attributes p24 Number of functions weighted
by cyclomatic complexity

p11 Cyclomatic complexity p25 Call-graph fan-in

p12 Component coupling p26 Call-graph fan-out

p13 Abstraction coupling p27 Call-graph nesting depth

p14 Acquaintance components p28 Call-graph edges

124 N.J. Pizzi

useful metric is the number of “acquaintance” components, p14, for a given com-
ponent [41]; large values for this metric may suggest excess coupling, which is
detrimental to software reuse. We also include a component’s total number of
members, p15, the percentage of a component’s functions that do not access a
particular attribute averaged over all of its attributes, p21, and p22 = (Σj rj − r)/
(s − s × r) (where r is the number of methods, s is the number of attributes, and rj is
the number of functions that access attribute j) measures the dissimilarity of func-
tions in a component by attributes [29].

While some controversy exists concerning their utility [35], we also use software
metrics introduced by Halstead [27] (as they are used in software engineering to
measure complexity), including: program length, p16 = p4 + p5; program vocabu-
lary, p17 = p6 + p7; program volume, p18 = p16 × log2 p17; program difficulty,
p19 = (p7/2) × (p4/p6); AND, program effort, p20 = p18 × p19.

Finally, we use several graph-based metrics that are germane to functional
programming including fan-in, p25, fan-out, p26, nesting depth, p27, and number of
edges, p28. Van den Berg and van den Broek [72] describes in detail the use of these
metrics with respect to function-based call-graphs.

5 Adjusting Design Class Labels

Class labels assigned by an external reference test are not necessarily perfect due to
issues relating to subjective estimates by a subject matter expert (or panel of
experts), clerical errors, unreliable sample acquisition techniques, or anomalous
sensor readings. A useful pre-processing strategy, prior to pattern classification, is
to compensate for the possible imprecision of the assigned design classes while
simultaneously maintaining their domain accepted discriminatory power. There are
three approaches to design class adjustments for the purpose of mitigating the
effects of potentially unreliable reference tests [54]: (i) reassignment, a pattern’s
class is changed if it is more “similar” to patterns from another class; (ii) surro-
gation, introduces new classes wS = {1, 2, …, d}; and (iii) gradation, patterns
belong to all classes to varying degrees, thereby moving from a crisp assignment,
w = {1, 2, …, c}, to a fuzzy [81] assignment, wG = [0,1]c.

One such pre-processing strategy, which uses reassignment, is centroid-adjusted
class labeling (CACL) [53] that compensates for potential class assignment
imprecision by using a similarity measure based on robust measures of location and
dispersion. If a design pattern is sufficiently dissimilar to other design patterns from
its class and sufficiently similar to patterns from another class then its class is
reassigned to the latter one. The centre of each class (centroid) is computed using
robust measures of location (see below), as they are insensitive to slight deviations
from requisite normality assumptions about the underlying pattern distribution [30,
32, 61]. The centroids are computed using only design patterns; hence, the efficacy
of this method is always measured against the original external reference test.
Dispersion-adjusted distances are computing between each design pattern and each

Measuring the Utility of Functional-Based Software … 125

class centroid. The further a design pattern is from a class centroid, the lower its
membership value for that class; however, reassignment will only take place if the
pattern is sufficiently distant from the centroid of its assigned class and sufficiently
near the centroid of another class.

5.1 Robust Location and Dispersion Measures

The breakdown point, b 2 [0.0,0.5], which measures the robustness of location
estimators, indicates what proportion of the data may be contaminated without
significantly affecting the value of the estimator [13]. For example, b → 0 for the
mean since any one extreme value can cause this location estimator to become
correspondingly large. An affine equivariant location estimator is unaffected by
changes in shift and scale. So, a good location measure should have the properties
of affine equivariance and b → 0.5.

The median is an excellent location estimator for the univariate case precisely
because it is affine equivariant and has a high breakdown point, b = 0.5. For the
multivariate case, the feature-wise median [26], mc = [z1, z2, …, zn] (where zi is the
median of feature pi), has the same high breakdown point as the univariate median
but, while it is shift and scale invariant, it is not orthogonally invariant. The spatial
median [5], ms, minimizes

XN
i¼1

xi �msk k ð5Þ

where ||.|| is the Euclidean distance. This median has a high breakdown point,
b ≈ (N + 1)/2N, is shift and orthogonally invariant, but it is not scale invariant.

For this investigation, we use the halfspace median [70], mh, which is affine
equivariant and has a reasonably high breakdown point, b = [1/(N + 1), 1/3]. The
halfspace median is defined as the set of points, {Θ}, of maximal depth, where a
pattern’s location depth, Θ, relative to a dataset is defined as the smallest number of
patterns in a closed halfspace with boundary through Θ. Generally, there is no
unique point; however, Small [63] has shown that this set of points is closed,
bounded, and convex. Since, CACL requires only a single median, we will ran-
domly select a single point in {Θ}, if there is more than one.

We define a robust measure of dispersion for the class k centroid, τk, as

sk xð Þ ¼ mh x�mh xð Þ�� ��� �
m

ð6Þ

where x are class k patterns and ν is set to 0.6745 (similar to the univariate median
of absolute deviations, this ensures that τk behaves as the standard deviation when
the error distribution is normal [80]).

126 N.J. Pizzi

We may now define a similarity measure (inverse weighted distance), sk,
between a design pattern, xj, and the class k centroid mh

k

sk xj
� � ¼ 1þ xj �mh

k

sk

����
����

� ��1

ð7Þ

The set, sj = {s1(xj), s2(xj), …, sc(xj)}, represents the similarity of xj to each class
centroid. In other words, xj can be said to belong to each class to varying degrees;
the further xj is from the class k centroid, the smaller sk (its “membership” value).
Normally, the maximum value of sj will correspond to the design pattern’s assigned
class, that is, the pattern’s assigned class accurately reflects the “similarity” (or
proximity) to its class centroid. However, if the maximum element in sj corresponds
to a class different from the one xj was originally assigned then a class reassignment
takes place. In the unlikely scenarios of two or more maximal elements in sj: (i) if
the assigned class is one of the elements then no reassignment is made; (ii) if the
assigned class is not one of the maximal elements but one of the other maximal
elements is nearer to the assigned class, in some domain-specific sense (as deter-
mined by the reference test), then this class is chosen for reassignment; (iii) other-
wise, the reassignment is either randomly sampled from the maximal values or xj is
excluded from the experiment.

Figure 1 diagrams the rationale behind this approach. We have a set of design
patterns (n = 2, c = 2) with groupings (dark grey versus light grey) of class 1 and
class 2 patterns and their respective spatial regions, W1 and W2, centroids mh

1 and
mh

2, and dispersions, τ1 and τ2. Now, examine the patterns, xi (small light grey
circle) and xj (small gradient grey), which belong to class 2. While xi is outside the

x
1

x
2

m
2

m
1

2

1

W
1

W
2

x i

x j

x
h

h

Fig. 1 Two classes of design patterns with respective centroids, mh
1 and mh

2, dispersions, τ1 and
τ2, and spatial regions, W1 and W2. If the class 2 pattern, xj, is not reassigned then a classifier may
produce a class boundary represented by the dashed line. However, if it is reassigned to class 1
then the same classifier may produce a potentially more representative boundary (solid line)

Measuring the Utility of Functional-Based Software … 127

two-dimensional hypersphere of class 2 patterns, that is, s2(xi) is small, it is still
greater than s1(xi) so no reassignment takes place (it is not sufficiently near mh

1).
However, xj is another matter; in this case, s1(xj) > s2(xj). Hence, we reassign xj
from class 2 to class 1. What effect does this reassignment have with a classifier
during the design process? With this reassignment, the class boundary is repre-
sented as the solid line in Fig. 1. Without the reassignment, the decision boundary is
represented as the dashed line. Now, let us look at the validation process and,
specifically, the validation pattern xa (smaller dark grey), with an assigned class of
1. With the reassignment made during the design phase, the validation pattern will
be correctly classified, as it will lie in the W1 spatial region; however, without the
adjustment, xa will be misclassified, that is, the classifier mapping will assign it to
class 2 as it lies in the W2 spatial region.

6 Experiment Design

6.1 Software System

In this section, we present a brief discussion of the software whose components
were extracted and assessed for the pattern classification experiment. The software
is a biomedical data analysis system used to analyze stages of a disease relating to a
hemostatic defect. This system interprets, visualizes, and aggregates information
from a range of categories including laboratory results, responses from a detailed
questionnaire, demographics, family history of illnesses, health risk factors, and
various social determinants. Some specific features include: adenosine diphosphate;
archidonic acid; bilirubin; alkaline phosphate; several blood cofactors (components
with which others must unite in order to function), such as FVIIIc; age; underlying
chronic conditions (for example, heart disease and asthma); screening records;
immunizations; blood type; allergies; developmental history; and prescribed med-
ications. This software system is written in Java using functional extensions, via
lambda expressions, found in Java 8.

6.2 Quality Assessment by Architect

A software architect was asked to carefully scrutinize the software components of
the biomedical data analysis system. Based on the architect’s expert judgment, each
component was assigned to one of three utility classes: low, medium, or high. The
expert considered low quality components inferior, either in design or implemen-
tation; these components needed to be reviewed and possibly rewritten. The expert
considered high quality components as well designed and well implemented; these
components struck an excellent balance between functionality, performance,

128 N.J. Pizzi

complexity, and developer ease of use. All other components were assigned a
medium quality class label; these components were adequately designed and
implemented, but not as well as high quality components, and did not require
extensive review or revision, unlike the low quality components. The expert’s
subjective assessment was based on a number of software engineering considera-
tions including: clarity of purpose; documentation adequacy; error handling and
reporting; and overall complexity with respect to distribution of functions and
attributes (this is an overall subjective evaluation and not the objective use of
metrics described in Sect. 4); number of developers (found in comments) and their
level of expertise; use of enumeration, typedef, and numeric constants; use of
developer tags such as “todo”, “future”, and “implement”; the use of deprecated
code; presence of code that has been commented out; the use of components that
instantiate common software design patterns. After this thorough assessment, the
expert assigned each component to one of the high, medium, or low classes.

7 Results and Discussion

The software component dataset (N = 302, n = 28, c = 3) was assessed by the
software architect and was assigned to one of three utility classes: low (N1 = 75),
medium (N2 = 129), and high (N3 = 98). For the experiments, we use SVM with the
Gaussian kernel with and without CACL preprocessing. We randomly allocate 50
patterns from each class (Table 2) to the design subset (ND = 1373) with the
remaining patterns assigned to the validation subset (NV = 684).

During the design phase of the classification process, we present the design
patterns with the original (non-adjusted) class labels to the SVM classifier. We then
preprocess the patterns using CALC and present the same patterns, with potentially
adjusted class labels, to the same classifier. Subsequently, for the validation phase,
we use the mappings and the validation patterns to test the mappings’ effectiveness
and record the accuracy matrices and performance measures. Table 3 lists the
number of adjustments made using CALC. A total of 17 (11 %) design patterns had
their class labels altered. In the case of the medium utility class, for instance, three
design patterns were reassigned to the low utility class and one to the high utility
class, while five design patterns were reassigned to it (two from low and three from
high). Interestingly, no design patterns were reassigned across two utility classes
(low to high or high to low), which would be considered far apart in a domain
(software engineering) sense.

Table 2 The random
allocation of patterns into
design, XD, and validation,
XV, subsets

Class Ni Design Validation

Low N1 = 75 50 25

Medium N2 = 129 50 79

High N3 = 98 50 48

Total 302 ND = 150 NV = 152

Measuring the Utility of Functional-Based Software … 129

Table 4(i) lists the classification accuracy matrix for SVM (with the Gaussian
kernel) using the validation patterns without CACL. We see that SVM had an
overall classification accuracy of κ = 0.63 (PO = 0.76) and 8 % of the validation
patterns were incorrectly predicted to belong to a utility class that was far (in a
domain sense) from the assigned class (4 low patterns were predicted to belong to
the high utility class and 20 high patterns were predicted to belong to the low utility
class).

Table 4(ii) lists the classification accuracy matrices for SVM (with the Gaussian
kernel) using the validation patterns and CACL. The overall classification accuracy
is κ = 0.78, which is a 24 % improvement over SVM without CACL preprocessing
(there is also a 12 % improvement with respect to PO (0.85 versus 0.76)). Only 1 %
of the validation patterns were incorrectly predicted to belong to a utility class that
was far (in a domain sense) from the assigned class (1 low patterns were predicted
to belong to the high utility class and 1 high patterns were predicted to belong to the
low utility class).

After the classification experiments were completed and the performance results
tabulated, we applied CACL to the validation patterns to ascertain if any of the
validation patterns would have had their labels adjusted had they instead been
included in the design subset. A total of 7 patterns would have had their class labels
changed: 3 low patterns would have become medium patterns; and 3 medium
patterns would have become high patterns; and 1 high pattern would have become a
medium pattern. It is an interesting aside to examine what would have happened
with the classifier performance if we had actually adjusted the class labels of these 7

Table 3 The original and adjusted (using CACL) distributions of XD patterns: y → z indicates
that y design patterns were relabeled from their original utility class to class z, while y ← z
indicates that y design patterns were relabeled to class z from their original utility

Class Original (ND = 150) CALC (ND′ = 150) Design adjustments

Low 50 51 2 → medium (3 ← medium)

Medium 50 51 3 → low, 1 → high (2 ← low,
3 ← high)

High 50 48 3 → medium, (1 ← medium)

Table 4 Classification
accuracy matrix for SVM
(i) and SVM with CALC (ii)

Assigned
versus
predicted

Low Medium High Performance

(i) Low 57 14 4 κ = 0.63
(PO = 0.76)Medium 18 97 14

High 20 4 74

(ii) Low 64 10 1 κ = 0.78
(PO = 0.85)Medium 14 110 5

High 1 13 84

130 N.J. Pizzi

validation patterns. Using the same mappings that produced the results in Table 4,
we would have had better performance for the SVM classifier, κ = 0.81 (PO = 0.88).
Given this post facto information, it would be a worthwhile exercise to present the
patterns (software components), whose utility class labels were adjusted, to the
software architect in order to confirm that the class labels actually reflect the
assignments as determined by the reference test.

8 Conclusion

The performance results from our experiments empirically demonstrate that
centroid-adjusted class labelling is an effective preprocessing method for the utility
analysis and classification of software components. By adjusting utility class labels,
within a design subset, to reflect their proximity (similarity) to all class centroids, a
concomitant performance gain was realized with the validation subset. Moreover,
utility misclassifications of the software components tended to be more conserva-
tive. While adjustments may only be made to the design patterns, suspect validation
patterns may be flagged by this method for subsequent analysis by a software
architect. An avenue of future investigation would be to examine clustering
strategies that would allow for several centroids for each utility class. Moreover,
other quantile-based robust measures of dispersion may also be examined.

Acknowledgment The Natural Sciences and Engineering Research Council of Canada (NSERC)
is gratefully acknowledged for its support of this investigation.

References

1. Adler, J.: R in a Nutshell, 2nd edn. O’Reilly Media Inc, Sebastopol (2012)
2. Aggarwa, C.C.: Data Classification: Algorithms and Applications. CRC Press, Boca Raton

(2014)
3. Backus, J.: Can programming be liberated from the von Neumann style? A functional style

and its algebra of programs. Commun. ACM 21(8), 613–641 (1978)
4. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York (2007)
5. Brown, B.M.: Statistical use of spatial median. J. Roy. Stat. Soc. B 45, 25–35 (1983)
6. Canfora, G., Troiano, L.: The importance of dealing with uncertainty in the evaluation of

software engineering methods and tools. In: Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering, Ischia, Italy, 15–19 July, pp. 691–698
(2002)

7. Card, D., Glass, R.: Measuring Software Design Quality. Prentice-Hall, Englewood Cliffs
(1990)

8. Cesarini, F., Thompson, S.: Erlang Programming: A Concurrent Approach to Software
Development. O’Reilly Media Inc, Sebastopol (2014)

9. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object-oriented design. IEEE Trans.
Softw. Eng. 20, 476–493 (1994)

Measuring the Utility of Functional-Based Software … 131

10. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363
(1936)

11. Coad, P., Mayfield, M., Kern, J.: Java Design: Building Better Apps & Applets. Prentice Hall,
Upper Saddle River (1999)

12. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13,
21–27 (1967)

13. Donoho, D.L.: Breakdown properties of multivariate location estimators. Ph.D. Qualifying
Paper, Department of Statistics, Harvard University (1982)

14. Dougherty, G.: Pattern Recognition and Classification: An Introduction. Springer, New York
(2013)

15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience,
Hoboken (2004)

16. El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T.: Advances in Intelligent
Informatics. Springer, Berlin (2014)

17. Emerick, C., Carper, B., Grand, C.: Clojure Programming: Practical Lisp for the Java World.
O’Reilly Media Inc, Sebastopol (2012)

18. Everitt, B.S.: Moments of the statistics kappa and weighted kappa. Br. J. Math. Stat. Psychol.
21(1), 97–103 (1968)

19. Fenton, N.E., Kaposi, A.A.: Metrics and software structure. Inf. Softw. Technol. 29, 301–320
(1987)

20. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS
Publishing, Boston (1997)

21. Fleiss, J.L.: Measuring agreement between judges on the presence or absence of a trait.
Biometrics 31(3), 651–659 (1975)

22. Ford, N.: Functional Thinking: Paradigm Over Syntax. O’Reilly Media Inc, Sebastopol (2014)
23. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading

(1999)
24. Glover, F.: Tabu search, I. ORSA J. Comput. 1, 190–206 (1989)
25. Grandvalet, Y., Canu, S.: Adaptive scaling for feature selection in SVMs. In: Advances in

Neural Information Processing Systems, vol. 15 (NIPS 2002), pp. 569–576. Cambridge, MIT
Press (2003)

26. Haldane, J.B.S.: Note on the median of a multivariate distribution. Biometrika 35(3–4), 414–
415 (1948)

27. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
28. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. Springer, New York (2011)
29. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice Hall,

Upper Saddle River (1995)
30. Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding Robust and Exploratory Data

Analysis. Wiley-Interscience, New York (2000)
31. Huang, S.-J., Lin, C.-Y., Chiu, N.-H.: Fuzzy decision tree approach for embedding risk

assessment information into software cost estimation model. J. Inf. Sci. Eng. 22, 297–313
(2006)

32. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)
33. Hudak, P., Jones, M.P.: Haskell vs. Ada vs. C++ vs. Awk vs. … An experiment in software

prototyping productivity 1994, 17 p. http://haskell.cs.yale.edu/wp-content/uploads/2011/03/
HaskellVsAda-NSWC.pdf

34. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107 (1989)
35. Jones, C.: Software metrics: good. Bad Missing Comput. 27, 98–100 (1994)
36. Jung, H.-W., Kim, S.-G., Chung, C.-S.: Measuring software product quality: a survey of

ISO/IEC 9126. IEEE Softw. 21, 88–92 (2004)
37. Kasabov, N., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its

application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

132 N.J. Pizzi

http://haskell.cs.yale.edu/wp-content/uploads/2011/03/HaskellVsAda-NSWC.pdf
http://haskell.cs.yale.edu/wp-content/uploads/2011/03/HaskellVsAda-NSWC.pdf

38. Kitchenham, B.A., Hughes, R.T., Kinkman, S.G.: Modeling software measurement data. IEEE
Trans. Softw. Eng. 27, 788–804 (2001)

39. Landis, J.R., Koch, G.G.: The measurements of observer agreement for categorical data.
Biometrics 33(1), 159–174 (1997)

40. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml system
release 4.02: documentation and user’s manual. Institut National de Recherche en
Informatique et en Automatique (2014). http://caml.inria.fr/distrib/ocaml-4.02/ocaml-4.02-
refman.pdf

41. Lieberherr, K.J., Holland, I.M.: Assuring good style for object-oriented programs. IEEE
Softw. 6, 38–48 (1989)

42. Liu, Q., Sung, A., Chen, Z., Xu, J.: Feature mining and pattern classification for LSB matching
steganography in grayscale images. Pattern Recogn. 41, 56–66 (2008)

43. Lyu, M.R.: Handbook of Software Reliability Engineering. McGraw-Hill, Toronto (1996)
44. Mangano, S.: Mathematica Cookbook. O’Reilly Media Inc, Sebastopol (2010)
45. Marinescu, R.: Detecting design flaws via metrics in object-oriented system. International

Conference and Exhibition on Technology of Object-Oriented Languages and Systems, Santa
Barbara, USA, 29 July–3 August, pp. 173–182 (2001)

46. McCabe, T.J.: A complexity metric. IEEE Trans. Softw. Eng. 2, 308–320 (1976)
47. Mohri, M.: Foundations of Machine Learning. MIT Press, Cambridge (2012)
48. Murofushi, T., Sugeno, M.: A theory of fuzzy measures: Representations, the Choquet

integral, and null sets. J. Math. Anal. Appl. 159, 532–549 (1991)
49. O’Sullivan, B., Goerzen, J., Stewart, D.B.: Real World Haskell: Code You Can Believe In.

O’Reilly Media Inc, Sebastopol (2008)
50. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cambridge

(1998)
51. Pedrycz, W., Sosnowski, Z.A.: The design of decision trees in the framework of granular data

and their application to software quality models. Fuzzy Sets Syst. 123, 271–290 (2001)
52. Phelps, C.E., Hutson, A.: Estimating diagnostic test accuracy using a “fuzzy gold standard”.

Med. Decis. Mak. 15(1), 44–57 (1995)
53. Pizzi, N.J.: Fuzzy preprocessing of gold standards as applied to biomedical spectra

classification. Artif. Intell. Med. 16(2), 171–182 (1999)
54. Pizzi, N.J.: Discrimination of biomedical patterns using centroid-adjusted class labels. Can.

Appl. Math. Q. (2014, in press)
55. Poels, G., Dedene, G.: Distance-based software measurement: necessary and sufficient

properties for software measures. Inf. Softw. Technol. 42, 35–46 (2000)
56. Pressman, R.S., Maxim, B.R.: Software Engineering: A Practitioner’s Approach, 8th edn.

McGraw-Hill, New York (2014)
57. Pudil, P., Novovicová, J., Kittler, J.: Floating search methods in feature selection. Pattern

Recogn. Lett. 15, 1119–1125 (1994)
58. Reformat, M., Pedrycz, W., Pizzi, N.J.: Software quality analysis with the use of

computational intelligence. Inf. Softw. Technol. 45, 405–417 (2003)
59. Schmitt, E., Bombardier, V., Wendling, L.: Improving fuzzy rule classifier by extracting

suitable features from capacities with respect to the Choquet integral. IEEE Trans. Syst. Man
Cybern. 38, 1195–1206 (2008)

60. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge (2002)

61. Seber, G.A.F.: Multivariate Observations. Wiley, Hoboken (2007)
62. Sicilia, M.A., Cuadrado, J.J., Crespo, J., García-Barriocanal, E.: Software cost estimation with

fuzzy inputs: fuzzy modeling and aggregation of cost drivers. Kybernetika 41, 249–264 (2005)
63. Small, C.G.: Measures of centrality of multivariate and directional distributions. Can. J. Stat.

15(1), 31–39 (1987)
64. Smith, C.: Programming F# 3.0: A Comprehensive Guide for Writing Simple Code to Solve

Complex Problems, 2nd edn. O’Reilly Media, Inc., Sebastopol (2012)
65. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Boston (2010)

Measuring the Utility of Functional-Based Software … 133

http://caml.inria.fr/distrib/ocaml-4.02/ocaml-4.02-refman.pdf
http://caml.inria.fr/distrib/ocaml-4.02/ocaml-4.02-refman.pdf

66. Sturm, O.: Functional Programming in C#: Classic Programming Techniques for Modern
Projects. Wiley, Chichester (2011)

67. Tahir, M., Bouridane, A., Kurugollu, F.: Simultaneous feature selection and feature weighting
using Hybrid Tabu Search/K-nearest neighbor classifier. Pattern Recogn. Lett. 28, 438–446
(2007)

68. Tang, E.K., Suganthan, P.N., Yao, X.: Gene selection algorithms for microarray data based on
least square support vector machine. BMC Bioinformatics 7(95) (2006)

69. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, San Diego
(2008)

70. Tukey, J.W.: Mathematics and picturing data. In: Proceedings of the International Congress of
Mathematicians, Vancouver, Canada, pp. 523–531 (1975)

71. Valenstein, P.N.: Evaluating diagnostic tests with imperfect standards. Am. J. Clin. Pathol. 93
(2), 252–258 (1990)

72. van den Berg, K.G., van den Broek, P.M.: Static analysis of functional programs. Inf. Softw.
Technol. 37(4), 213–224 (1995)

73. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
74. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
75. Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote

Control 24(6), 774–780 (1963)
76. Walter, S.D., Irwig, L.M.: Estimation of test error rates, disease prevalence, and relative risk

from misclassified data: A review. J. Clin. Epidemiol. 41(9), 923–937 (1988)
77. Wang, L.: Support Vector Machines: Theory and Applications. Springer, Berlin (2005)
78. Warburton, R.: Java 8 Lambdas: Functional Programming for the Masses. O’Reilly Media,

Inc., Sebastopol (2014)
79. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng. 14, 1357–

1365 (1988)
80. Yehuda, V., Zhang, C.: The multivariate L1-median and associated data depth. Proc. Natl.

Acad. Sci. 97(4), 1423–1426 (2000)
81. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision

processes. IEEE Trans. Syst. Man. Cybern. SMC-3(1), 28–44 (1973)

Author Biography

Nick Pizzi is the Chief Data Scientist with InfoMagnetics Technologies Corporation and Adjunct
Professor with the University of Manitoba, Department of Computer Science. Dr. Pizzi has
extensive experience with scientific computing, pattern recognition, machine learning, biomedical
informatics, and multivariate statistical analysis. He analyzes and interprets complex, voluminous
data in order to discover new generalizations, trends, and unanticipated patterns.

134 N.J. Pizzi

Toward Accurate Software Effort
Prediction Using Multiple Classifier
Systems

Bhekisipho Twala and June Verner

Abstract Averaging is a standard technique in applied machine learning for
combining multiple classifiers to achieve greater accuracy. Such accuracy could be
useful in software effort estimation which is an important part of software process
management. To investigate the use of ensemble multiple classifiers learning in
terms of predicting software effort. The use of ensemble multiple classier combi-
nation is demonstrated and evaluated against individual classifiers using 10
industrial datasets in terms of the smoothed error rate. Experimental results show
that multiple classifier combination can improve software effort prediction with
boosting, bagging and feature selection achieving higher accuracy rates.
Accordingly, good performance is consistently derived from static parallel systems
while dynamic classifier selection systems exhibit poor accuracy rates. Most of the
base classifiers are highly competitive with each other. The success of each method
appears to depend on the underlying characteristics of each of the ten industrial
datasets.

Keywords Multiple classifiers � Machine learning � Software effort � Predictive
accuracy

B. Twala (&)
Department of Electrical and Electronic Engineering Science, University of Johannesburg,
P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
e-mail: btwala@uj.ac.za

J. Verner
Computer Science and Engineering, University of New South Wales UNSW,
Sydney, NSW 2052, Australia
e-mail: june.verner@gmail.com

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_7

135

1 Introduction

Software effort estimation is an important area for software development. If the
software development effort is under estimated tight time schedules will result
leading to the possibility of inadequate testing and poor quality software. In con-
trast, if the software development effort is overestimated over allocation of man
power and resources may result. Thus, accurate software effort estimation is an
important part of the software management process in terms of productivity and
quality. Many software effort estimation models have been proposed [2, 6, 18] and
unbiased effort prediction is an important contributor to effective software project
management. It is also generally accepted that the highest accuracy results that a
classifier system can achieve depend on the quality of data and the appropriate
selection of a learning algorithm for the data [7, 27, 35]. One of the central tasks of
classifiers is determining whether a particular instance belongs to a specified class,
given a description of that instance. The wealth and complexity of industrial data
lends itself well to the application of classifiers for prediction or classification of
software projects according to factors that influence software effort rates.

Machine learning (ML) deals with the problem of building computer programs
that improve their performance at some tasks through experience and has proven to
be of great value in a variety of applications including software development effort
estimation (the process of predicting the effort required to develop a software
system). In recent years, several machine learning approaches have been applied in
software systems development and deployment in order to establish more sound
predictive models for software quality [41]. Averaging is a standard technique in
applied and theoretical ML for combining multiple classifiers in order to achieve
great accuracy. In fact, in recent years, there has been an explosion of papers in the
ML and statistical pattern recognition (SPR) communities discussing how to
combine models or model predictions in order to improve predictive accuracy.

Research in both ML and SPR communities has shown that combining
(ensemble) individual classifiers is an effective technique for improving predictive
accuracy. In other words, developing an effective decision combination function is
critical to the success of a multiple classifier system (MCS). Such a function should
take advantage of the strengths of individual classifiers while avoiding their
weaknesses, and improve classification correctness. The performance of multiple
classifier systems not only depends on the power of the individual classifiers in the
system but is also influenced by the independence between classifiers.

It has long been recognized that software effort estimation is a key consideration
for good software cost estimation. However, effort prediction in terms of using
multiple classifier (machine) learning or ensembles has attracted some attention in
areas such as pattern recognition [24, 25], information security [8], credit risk [37],
engineering [36], and so on, but yet received little attention in the software engi-
neering community. Work by Wettschereck [26] provides a solid start to the use of
multiple classifier learning by proposing a hybrid strategy that combines the

136 B. Twala and J. Verner

nearest-hyper-rectangle and k-nearest neighbour algorithms in terms of improving
classification accuracy.

Follow up research work by Braga et al. [3] and Kultur et al. [23] shows how
bagging may improve software effort predictive accuracy in comparison with the
use of a single classifier; although the results from both studies are inconclusive.
Khoshgoftaar et al. [19] propose a hybrid software quality prediction model that
combines rule-based and case-based learning which outperforms the best individual
rule-based model. Kocaguneli et al. [21] suggest that ensembles are not able to
improve predictive accuracy of single learning classifiers, contradicting the findings
of Khoshgoftaar et al.’s research. However, the Kocaguneli et al.’s [21] research
work lacks any statistical justification. In their most recent research work,
Kocaguneli et al. [22] show ensemble methods significantly outperforming single
classifiers with error rates significantly less than are shown by their earlier work.
The ranking of the best ensemble methods were also shown to be stable by
Kocaguneli et al. [22]. Twala and Cartwright [37] showed that the ensemble
approach can also be used to improve software effort predictive accuracy in the
presence of missing values.

The performance of several multiple classifier systems are evaluated in terms of
their ability to predict software effort using 10 industrial datasets in this research.
Initially single classifiers are constructed using five base methods for classifier
construction. These are then used to provide benchmarks against which various
multiple classifier systems are assessed. To the best of our knowledge this is the
first study where such a combination of methods in terms of classifier learning and
ensemble learning approaches have been used to create different ensemble multiple
classifier systems across ten industrial datasets. A classifier ensemble is generated
by training multiple learners for the same task and then combining their predictions
as demonstrated in Sect. 3 of the paper. There are different ways in which
ensembles can be generated, and the resulting output combined for the classification
of new instances. Popular approaches for creating ensembles include changing the
instances used for training through techniques such as bagging [4], boosting [13],
stacked generalization or stacking [40], changing the features used in training [15],
and introducing randomness in the classifier itself [10].

Bagging is a combination of bootstrapping and averaging used to decrease the
variance part of prediction errors; boosting is one of the most well-known tech-
niques for solving classification problems; stacking combines various machine
learning methods using a stacking generalization technique; randomization is based
on bagging models built using a random tree strategy in which classification trees
are grown on a random subset of descriptors; feature selection aims for an optimal
set as a whole rather than a combination of stand-alone high performance attributes.

The rest of this paper is organised as follows. Section 2 briefly provides details
of the five classifiers used in this paper; this is followed by a description of different
types of multiple classifier system architectures. Section 4 empirically explores the
robustness and accuracy of five multiple classifier systems when used with ten

Toward Accurate Software Effort Prediction … 137

industrial datasets in terms of the smoothed error rate. This section also presents
empirical results from the application of the ensemble procedures. Section 5 pro-
vides our conclusions and future research directions.

2 Classifiers

In supervised learning, for multivariate data, a classification function y = f
(x) from training examples of the form fðx1,y1),. . .,(xm,ymÞg, predicts one (or more)
output attribute(s) or dependent variable(s) given the values of the input attributes
of the form (x, f(x)). The xi values are vectors of the form fxi1,. . .; xing whose
components can be numerically ordered, nominal or categorical, or ordinal.
The y values are drawn from a discrete set of classes {1, …, K} in the case of
classification. Depending on the usage, the prediction can be “definite” or proba-
bilistic over possible values. Given a set of training examples and any given prior
probabilities and misclassification costs, a learning algorithm outputs a classifier.
The classifier is an hypothesis about the true classification function that is learned
from, or fitted to, training data. The classifier is then tested on test data.

The five base methods for classifier construction considered in our study are
presented below.

2.1 Logistic Discrimination

Logistic discrimination analysis (LgDA) Cox [9] is related to logistic regression.
The dependent variable can only take the values 0 and 1, say, given two classes.
This technique is partially parametric, as the probability density functions for the
classes are not modelled but rather the ratios between them are used as described
below.

Let y 2 0; 1f g be the dependent or response variable and let x ¼ xi1; . . .; xip be
the predictor variables vector. A linear predictor fi is given by b0þ b0X where b0 is
the constant and b0 is the vector of regression coefficients b1; . . .; bp

� �
) to be

estimated from the data. They are directly interpretable as log-odds ratios or in
terms of exp b0ð Þ, as odds ratios.

The a posteriori class probabilities are computed by the logistic distribution.
These terms are often referred to as “predictions” for the given characteristic vector
x. Therefore, a new element is classified as 0 if p0� c and as 1 if p0 [c, where c is
the cut-off point score and p0 is the predictor. Typically, the error rate is lowest for
cut-off point = 0.5 [30]. In fact, the slope of the cumulative logistic probability
function has been shown to be steepest in the region where, say, πi = 0.5. Thus, if
pi [0:5, the unknown instance is classified as “1” and if pi� 0:5, the unknown
instance is classified as “0”. The generalisation of the LgDA approach to the case of

138 B. Twala and J. Verner

three or more classes is known as the multinomial logit model and the derivation is
similar to that of the logistic discrimination model. The reader is referred to Hosmer
and Lameshow [16] for more details.

2.2 k-Nearest Neighbour

One of the most accepted algorithms in ML is the k-nearest neighbour (k-NN),
which is sometimes referred to as instance-based learning or memory-based rea-
soning [1]. k-NN methods have been used for classification tasks. The method
essentially works by assigning to an unclassified sample point the classification of
the nearest of a set of previously classified points. The entire training set (a set of
data used to discover potentially predictive relationships in different areas of
information science) is stored in the memory. Consider a set of n pairs is
(x1,C1),. . .,(xn,Cn), where xi’s take values in the metric space X upon which is
defined a metric d, and the Ci’s take values in the set {1, 2, …, K}. A new mea-
surement x is observed, and it is desired to estimate C by utilising the information
contained in the set of correctly classified points. x0n 2 fx1,. . .,xng is called a nearest
neighbour to x if mind(xi, x) ¼ d(x0n, x) i ¼ 1, 2,. . ., n. The nearest neighbour rule
decides that x belongs to the category C0n of its nearest neighbour x

0
n: A mistake is

made if C0n 6¼ C. Notice that only classification of the nearest neighbour is utilised
by this, simplest, nearest neighbours rule. The remaining n − 1 classifications Ci are
ignored.

To classify a new instance, the Euclidean distance (possibly weighted) is
computed between the instance and each stored training instance and the new
instance is assigned the class of the nearest neighbouring instance. More generally,
these k-nearest neighbours (k-NNs) are computed, and the new instance is assigned
the class that is most frequent amongst the k neighbours. IBL’s have three defining
general characteristics: a similarity function (how close together the two instances
are), a “typical instance” selection function (which instances to keep as examples),
and a classification function (deciding how a new case relates to the learned cases).
The lack of a formal framework for choosing the size of neighbourhood “k” can be
problematic. To determine the distance between a pair of instances we apply the
Euclidean distance metric. In our experiments, k is set to five. Three to five
neighbours have been shown to make a good prediction [38].

2.3 Artificial Neural Network

Artificial neural networks (ANNs) use nonparametric approaches (i.e. no assump-
tions about the data are made). ANNs are represented by connections between a
very large number of simple computing processors or elements (neurons). ANNs

Toward Accurate Software Effort Prediction … 139

have been used for a variety of classification and regression problems. There are
many types of ANNs, but for the purposes of this study we concentrate on single
unit and multi-layer perceptrons [29] which utilizes a supervised learning technique
known as backpropagation.

The backpropagation learning algorithm performs a hill-climbing search pro-
cedure on the weight space described above or a (noisy or stochastic) gradient
descent numerical method whereby an error function is minimised. At each itera-
tion, each weight is adjusted proportionally to its effect on the error. One cycles
through the training set and on each example changes each weight proportionally to
its effect on lowering the error. One may compute the error gradient using the chain
rule and the information propagates backwards through the network through the
interconnections, which accounts for the procedure’s name.

There are two stages associated with the backpropagation method: training and
classification. The ANN is trained by supplying it with a large number of learned
(input data pattern) whose corresponding classifications (target values or desired
output) are known. During training, the final sum-of-squares error over the vali-
dation data for the network is calculated. The selection of the optimum number of
hidden nodes is made on the basis of this error value. The question of how to
choose the structure of the network is beyond the scope of this thesis and is a
current research issue in neural networks. Once the network is trained, a new object
is classified by sending its attribute values to the input nodes of the network,
applying the weights to those values, and computing the values of the output units
or output unit activations. The assigned class is that with the largest output unit
activation.

2.4 Decision Trees

Decision tree (DT) classifiers have four major objectives. According to Safavian
and Landgrebe [31], these are: (1) to classify correctly as much of the training
sample as possible; (2) generalise beyond the training sample so that unseen
samples could be classified with as high accuracy as possible; (3) be easy to update
as more training samples become available (i.e., be incremental); (4) and have as
simple a structure as possible. Objective (1) is actually highly debatable as this
might not be the case and to some extent conflicts with objective (2). Also, not all
tree classifiers are concerned with objective (3). DTs are non-parametric and a
useful means of representing the logic embodied in software routines. A DT [5, 28]
takes as input a case or example described by a set of attribute values, and outputs a
Boolean or multi-valued “decision”. For the purpose of this paper, we shall stick to
the Boolean case.

One property that sets DTs apart from all other classifiers is their invariance to
monotone transformations of the predictor variables. For example, replacing any
subset of the predictor variables xj

� �
by (possible different) arbitrary strictly

140 B. Twala and J. Verner

monotone functions of them xj mj xj
� �� �

, gives rise to the same tree model.
Thus, there is no issue with having to experiment with different possible trans-
formations mj xj

� �
for each individual predictor xj to try to find the best. This

invariance provides immunity to the presence of extreme values (“outliers” or
noise) in the predictor variable space [5].

2.5 Naïve Bayes Classifer

The NBC is perhaps the simplest and most widely studied probabilistic learning
method. It learns from the training data the conditional probability of each attribute
Ai given the class label C [11]. The NBC can handle an arbitrary number of
independent attributes whether continuous or categorical. The strong major
assumption is that all attributes Ai are independent given the value of the class C.
Classification is therefore done applying Bayes rule to compute the probability of,
say, C given A1; . . .;An and then predicting the class with the highest posterior
probability. The probability of a class value Ci given an instance X ¼ A1,. . .,Anf g
for n observations is given by:

p(CijX) ¼ p(XjCi) � p(Ci)/p(X)

a p(A1,. . .,AnjCi) � p(Ci)

¼
Yn

j¼1
p Aj

��Ci
� � � p(Ci)

The assumption of conditional independence of a collection of random variables
is very important for the above result. It would be impossible to estimate all the
parameters without such an assumption. This is a fairly strong assumption that is
often not applicable. However, bias in estimating probabilities may not make a
difference in practice—it is the order of the probabilities, not the exact values that
determine the probabilities. When the strong attribute independence assumption is
violated, the performance of the NBC might be poor.

3 Multiple Classifier System Architectures

Multiple classifier systems can be classified into one of three architectural types
[12]: (1) static parallel (SP); (2) multi-stage (MS); and (3) dynamic classifier
selection (DCS). The outputs from each classifier are combined to deliver a final
classification decision. A large number of combination functions are available.
These include: voting methods (simple majority vote, weighted majority vote, the

Toward Accurate Software Effort Prediction … 141

product or sum of model outputs also known as the product rule, the minimum rule,
the maximum rule); rank based methods (borda-count); and probabilistic methods
(Bayesian methods).

3.1 Static Parallel

SP is probably the most popular architecture and it is where two or more classifiers
are developed independently in parallel [42]. The outputs from each classifier are
then combined to deliver a final classification decision (where the decision is
selected from a set of possible class labels). A large number of combination
functions are available. These include majority voting, weighted majority voting,
the product or sum of model outputs, the minimum rule, the maximum rule and
Bayesian methods. In practice most combination strategies are reported to yield
very similar levels of performance. However, a simple majority vote or weighted
majority vote are often favoured due to the simplicity of their application and their
applicability to situations where the raw outputs from each classifier may not all be
interpretable in the same way.

3.2 Multi-stage

The second type of architectures is MS, where the classifiers are constructed iter-
atively. At each iteration (and at previous stages), the parameter estimation process
is dependent upon the classification properties of the classifier(s) developed.
Some MS approaches generate models that are applied in parallel using the same
type of combination rules used for SP methods. For example, most forms of
boosting generate a set of weak classifiers that are combined to create stronger ones
[33]. Adaboost [13] is one of the most well-known algorithms that uses a MS
architecture.

3.3 Dynamic Classifer Selection

For DCS, different classifiers are developed or applied to different regions within
the problem domain. While one classifier may be shown to outperform all others
based on global measures of performance, it may not entirely dominate all other
classifiers. Weaker competitors will sometimes outperform the overall best across
some regions [20]. DCS problems are normally approached from a global and local
accuracy perspective [24, 25]. With a DCS global approach classifiers are con-
structed using all observations within the development sample. Classifier perfor-
mance is then assessed over each region on interest (I am not sure what this term

142 B. Twala and J. Verner

means) and the best classifier is chosen for each region. With DCS local, regions of
interest are determined first, and then separate classifiers are developed for each
region.

3.4 Classifier Ensemble

A generalised classifier ensemble algorithm is summarised in the following
steps [34].

1. Partition original dataset into n training datasets, TR1, TR2, TRn.
2. Construct n individual models (M1, M2, Mn) with the different training datasets

TR1, TR2, …, TRn to obtain n individual classifiers (ensemble members) gen-
erated by different algorithms, thus different.

3. Select m de-correlated classifiers from n classifiers using de-correlation maxi-
mization algorithm.

4. Using Step 3, obtain m classifier output values (misclassification error rates) of
unknown instance.

5. Transform output value to reliability degrees of positive class and negative class,
given the imbalance of some datasets.

6. Fuse the multiple classifiers into aggregate output in terms of majority voting.

4 Experimental Design

In order to test the suitability of multiple classifiers for predicting software effort, w
performed experiments on ten industrial datasets in terms of the smoothed mis-
classification error rate. The smoothed error rate is used due to its variance
reduction benefit. Instead of summing terms that are either zero or one as in the
error-count estimator, the smoothed estimator uses a continuum of values between
zero and one in the terms that are summed. The resulting estimator has a smaller
variance than the error-count estimate. Each dataset, used in the experiments defines
a different learning problem as summarized in Table 1. Most of the datasets are
available at predictor models in software engineerinig (PROMISE) [32] with the
exception of ISBSG and Company X which is not available for public use due to
non-disclosure agreement.

For the simulation study, the five base methods of classifier construction were
chosen. Each method utilizes a different form of parametric estimation/learning;
between them they generate different models forms: linear models, density esti-
mation, trees and networks; and they are all practically applicable within software
engineering environments, with known examples of their application within the
engineering management industry. To begin, single classifiers were constructed
using each method. These were used to provide benchmarks against which various

Toward Accurate Software Effort Prediction … 143

multiple classifier systems were assessed. To select an appropriate number of
ensemble members, the de-correlation maximization method [17] was utilized.
10-fold cross validation is used for all the experiments.

For all the classifiers, the implementation in WEKA data mining software
package library [39] is used, with the default parameters used for each classifier.
These models were built in WEKA by performing five-fold cross validation.

Analyses of variance are used to examine the main effect and their respective
interactions. This was done using a 3-way repeated measures design (where each
effect was tested against its interaction with datasets). The fixed effect factors are
multiple classifier methods; the ensemble learning approaches used to build the
multiple classifier systems and the multiple classifier architectures. The random
effect is the ten datasets. Friedman ranking test [14] was also used to check if the
difference in performances between the multiple classifiers (ensembles) and the
individual classifiers were significantly different in terms of the smoothed error rate.

To measure the performance of classifiers, the training set/test set methodology
is employed. For each run, each dataset is split randomly into 80 % training set and
20 % testing or validation set. The performance of each classifier is then assessed
on the smoothed error rate.

Although, an operational definition of accurate prediction is hard to come by
predictive accuracy is mostly operationally defined as the prediction with the
minimum misclassification costs (the proportion of misclassified instances). The
need for minimizing costs, rather than the proportion of misclassified instances,
arises when some predictions that fail are more catastrophic than others, or when
some predictions that fail occur more frequently than others. Minimizing costs,
however, does correspond to minimizing the proportion of misclassified instances
when priors (i.e. the probability estimates drawn from the training data that one
would make for each possible target value prior to knowing anything about the

Table 1 Industrial datasets problem

Dataset Instances Attributes Mean development effort

Numerical Categorical

Test equipment 16 17 4 236

Kemerer 18 4 2 261

Test equipment 16 17 4 379

Bank 18 2 7 1470

Test equipment 16 17 4 550

Data science institute 26 5 0 2528

Moser 32 1 1 2874

Desharnais 77 3 6 4834

Experience 95 1 5 1443

ISBSG-version 7 166 2 7 1668

China 499 16 2 3921

Company X 10,434 4 18 41,643

144 B. Twala and J. Verner

predictor values) are taken to be proportional to the class sizes and when mis-
classification costs are taken to be equal for every class [5]. This is the approach we
follow in the paper.

5 Experimental Results

The results across all the ten datasets are summarized in Figs. 1, 2, 3 and 4 (and
Tables 2, 3 and 4) in terms of smoothed error rate against the baseline classifiers
(BASE) and their respective ensemble multiple classifiers (i.e. ENS1, ENS2, ENS3,
ENS4, ENS5). The components of the ensembles are ENS1 (ANN, DT, NBC,

0

5

10

15

20

25

30

35

40

45

ANN DT k-NN LgD NBC

sm
oo

th
ed

 e
rr

or
 r

at
e

(%
)

classifiers

Fig. 1 Overall means for base classifiers

2

6

10

14

18

22

26

30

34

38

BASE ENS1 ENS2 ENS3 ENS4 ENS5

sm
oo

th
ed

 e
rr

or
 r

at
e

base and multiple classifiers

Bagging Boosting Stacking Feauture Selection Randomization

Fig. 2 Ensemble multiple classifiers (static parallel)

Toward Accurate Software Effort Prediction … 145

2

6

10

14

18

22

26

30

34

38

BASE ENS1

sm
oo

th
ed

 e
rr

or
 r

at
e

base and multiple classifiers

Bagging Boosting

ENS2 ENS3 ENS4 ENS5

Stacking Feauture Selection Randomization

Fig. 3 Ensemble multiple classifiers (multi-stage)

2

6

10

14

18

22

26

30

34

38

BASE ENS1 ENS2 ENS3 ENS4 ENS5

sm
oo

th
ed

 e
rr

or
 r

at
e

base and multiple classifiers

Bagging Boosting Stacking Feauture Selection Randomization

Fig. 4 Ensemble multiple classifiers (dynamic classifier selection)

Table 2 Overall means (individual classifiers and multiple clasifier systems)

Classifier/ensemble multiple classifiers Average generalization performance (%)

ANN 34.1 ± 3.63
DT 27.6 ± 3.99
NBC 35.6 ± 3.27
k-NN 32.4 ± 3.51
LgD 38.1 ± 3.90
ENS1 20.4 ± 2.95
ENS2 17.9 ± 1.75
ENS3 22.0 ± 3.23
ENS4 23.7 ± 3.27
ENS5 25.6 ± 3.61

146 B. Twala and J. Verner

k-NN, LgD) ENS2 (ANN, DT, NBC, LgD) ENS 3(ANN, DT, k-NN, LgD) ENS4
(ANN, NBC, k-NN, LgD) and ENS5 (DT, NBC, k-NN, LgD).

For the baseline classifiers, DT achieves the lowest smoothed error rate (27.6 %),
followed by k-NN (32.4 %), ANN (34.1 %) and NBC (35.6 %), respectively. The
worst performance for predicting software effort is by LgD with a smoothed error
rate of 38.1 %. The differences in performance between the base individual clas-
sifiers are significant at the 5 % level (with the exception of ANN against NBC).

From Table 2 the multiple classifier performances (ENS1, ENS2, ENS3,
ENS4, ENS5) is significantly better when compared to the individual
classifiers (ANN, DT, NBC, k-NN, LgD) at the 95 % level of significance
(Fstatistic = 13.141 > Fcritical value(10, 75) = 2.056).

When comparing the smoothed error rates in Table 3, bagging outperforms all
the other sampling methods whenever it is used to construct the ensemble multiple
classifier systems in software effort prediction. Bagging exhibits a smoothed error
rate of 16.5 %, followed by boosting (19.4 %) and feature selection (20.3 %).
However, there appears to be no significant difference in performance between
boosting and feature selection at the 5 % level. Poor performance is observed when
stacking is used, achieving a smoothed error rate of 26.9 %.

From Table 4, the results show that static parallel ensemble multiple classifier
systems performs better in terms of predicting software effort when compared with
either dynamic classifier selection or multi-stage systems. The difference in per-
formance between the three systems is significantly different at the 5 % level.

All the static parallel systems (Fig. 2) show some potential to significantly
outperform the baseline. However, stacking and bagging are the weakest, with only
ensembles using ANN, LgD and DT showing major improvement over the other
multiple classifier architectures.

Table 3 Overall means (ensemble learning approaches)

Learning approaches Average generalization performance (%)

Bagging 16.5 ± 2.82

Boosting 19.4 ± 3.32

Feature selection 20.3 ± 3.51

Stacking 26.9 ± 4.73

Randomization 22.1 ± 3.38

Table 4 Overall means (multiple classifier architectures)

Multiple classifier architectures Average generalization performance (%)

Dynamic classifier selection 24.2 ± 3.64

Multi stage 21.9 ± 3.41

Static parallel 17.4 ± 2.95

Toward Accurate Software Effort Prediction … 147

Multi-stage systems provide statistically significant benefits over baseline
models. The clear winners are feature selection and boosting, which provide large
and significant improvements over the baseline and other multiple classifier systems
for all methods considered, with best performance when applied to NBC (Fig. 3).

DCSs that look to segment the population into a number of sub-regions are
consistently poor performers, with all the experiments yielding results that are
inferior to the single best classifier. However, the performance of most static par-
allel and multi-stage combination strategies provide statistically significant
improvements compared to DCSs (Fig. 4).

6 Conclusion

Machine learning has proved to be promising for automating software development
effort. The rise of big data is most likely the largest catalyst. There are other factors
as well that have made machine learning algorithms faster and easier to run which
has been of great benefit to engineers. Not only does it enable the replication of
results it provides some of the much needed automation capability in terms of
engineering analysis and automated process planning. This covers design of soft-
ware development processes in a wide range of domains. Multiple classifier
learning could be involved here in areas such as learning process plans, learning
error recovery strategies, learning and models for physical processes, and so on.

In this chapter we have proposed a strategy that uses machine learning tech-
niques to improve software effort predictive accuracy. In summary, it has been
found that a combination of multiple classifiers can enhance the classification and
prediction accuracy of software effort to a great extent. Based on the experiments
and findings on this paper, it can be concluded that multiple classifier combination
can play an important role in the accurate and unbiased prediction of software effort
by making full use of the abundant and detailed information in software projects
and integrating the benefits of different classifiers. Thus, we can conclude that
practitioners and researchers may use bagging and boosting for constructing models
to predict software effort especially when measuring the quality of systems in
software development. In fact, multiple classifier learning provides a new style of
software development. But there are still many issues for further study, for example,
developing models that would identify trends in effort revisions, selection of larger
datasets, selection of member classifier, optimization of feature sets and determi-
nation of combination strategy. We intend to present our future findings in the next
research journal paper.

Acknowledgments The project was sponsored by the Department of Electrical and Electronic
Engineering Science at the University Of Johannesburg, South Africa. The authors would like to
thank their colleagues for their valuable comments and suggestions to improve the paper.

148 B. Twala and J. Verner

References

1. Aha, D.W., Kibbler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6
(37), 37–66 (1991)

2. Basha, S., Dhavechelvan, P.: Analyisis of empirical software effort estimation models. Int.
J. Comput. Sci. Inf. Secur. 7(3), 68–77 (2010)

3. Braga, P.L., Oliveira, A., Ribeiro, G., Meira, S.: Bagging predictors for estimation of software
project effort. In: International Joint Conference on Neural networks, Orlando, pp. 1595–1600
(2007)

4. Breiman, L.: Bagging predictors. Mach. Learn. 26(2), 123–140 (1996)
5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees.

Wadsworth (1984)
6. Briand, L.C., Wieczorek, I.: Resource estimation in software engineering. In: Marcinak, J.

J. (ed.) Encyclopedia of Software Engineering, pp. 1160–1196. Wiley, New York (2002)
7. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J Artif. Intell. Res. 11, 131–

167 (1999)
8. Corona, I., Giacinto, G., Roli, F.: Intrusion detection in computer systems using multiple

classifier systems. In: Okun, O., Valentini, G. (eds.) Supervised and Unsupervised Ensemble
Methods and Their Applications, vol 126, pp. 91–114. Springer, Berlin (2008)

9. Cox, D.R.: Some procedures associated with the logistic qualitative response curve. In: David,
F.N. (ed.) Research Papers in Statistics: Festschrift for J. Neyman, pp. 55–71. Wiley, New
York (1966)

10. Dietterich, T.: An experimental comparison of three methods for constructing ensembles of
decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–158 (2000)

11. Duda, R.O., Hart, P.E.: Pattern Classification, 2nd edn. Wiley, New York (1973)
12. Finlay, S.M.: Multiple classifier architectures and their application to credit risk assessment.

Working Paper 2008/012, Department of Management Science, Lancaster University, UK
(2008)

13. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. 55, 119–139 (1996)

14. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. J. Am. Stat. Assoc 32(200), 675–701 (1937)

15. Ho, T.K.: Random decision forests. In: Proceedings of the 3rd International Conference on
Document Analysis and Recognition, pp. 278–282 (1995)

16. Hosmer, D.W., Lameshow, S.: Applied Logistic Regression. Wiley, New York (1989)
17. Jolliffe, I.: Principal Component Analysis. Springer, Berlin (1986)
18. Jørgensen, M.: A review of studies on expert estimation of software development effort.

J. Syst. Softw. 70(1–2), 37–60 (2004)
19. Khoshgoftaar, T.M., Xiao, Y., Gao, K.: Software quality assessment using a multi-strategy

classifier. Inf Sci (2010, in press)
20. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern

Anal. Mach. Intell. 20(3), 226–239 (1998)
21. Kocaguneli, E., Bener, A., Kultur, Y.: Combining multiple learners induced on multiple

datasets on software effort prediction. In: International Symposium on Software Reliability
Engineering, Mysuri, India, p. 6 (2009)

22. Kocaguneli, E., Menzies, T., Keung, J.: On value of ensemble effort estimation. IEEE Trans.
Softw. Eng. 38(06), 1403–1416 (2012)

23. Kultur, Y., Turhan, B., Bener, A.: Ensemble of neural networks with associative memery
(ENNA) for estimating software development costs. Knowl. Based Syst. 22, 395–402 (2009)

24. Kuncheva, L.I.: Swithcing between selection and fusion in combining classifers: an
experiment. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32(2), 146–156 (2002)

25. Kuncheva, L.: A theoretical study in six classifier fusion strategies. IEEE Trans. Pattern Anal.
Mach. Intell. 24(2), 281–286 (2002)

Toward Accurate Software Effort Prediction … 149

27. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Pechenizkiy, O.: Class noise and supervised
learning in medical domains: the effect of feature extraction. In: Proceedings of the 19th IEEE
Symposium on Computer-Based Medical Systems, pp. 708–713 (2006)

28. Quinlan, J.R.: C4.5: Programs for Machine Learning. Los Altos, California. Morgan Kauffman
Publishers INC, Burlington (1993)

29. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge and Wiley, New York (1992)

30. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error
propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol.
1, pp. 318–362. MIT Press, Cambridge (1986)

31. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans.
Syst. Man Cybern. 21, 660–674 (1991)

32. Sayyad, J.S., Menzies, T.J.: The PROMISE repository of software engineering databases.
School of Information Technology and Engineering, University of Ottawa, Canada (2005).
http://promise.site.uottawa.ca/SERepository. Accessed on 01 Dec 2014

33. Schapire, R., Freund, Y., Bartlett, P., Lee, W.: Boosting the margin: a new explanation for the
effectiveness of voting methods. In: Proceedings of International Conference on Machine
Learning, Morgan Kaufmann, San Francisco pp. 322–330 (1997)

34. Twala, B.: multiple classifier application to credit risk assessment. Expert Syst. Appl. 37(4),
3236–3336 (2010)

35. Twala, B.: Effective techniques for dealing with incomplete data using decision trees.
Published PhD thesis, Open University, Milton Keynes, UK (2005)

36. Twala, B.: software faults prediction using multiple classifiers. In: IEEE International
Conference on Computer Research and Development (ICCRD2011), Shanghai, China, 11–13
Mar 2011

37. Twala, B., Cartwright, M.: Ensemble missing data methods in software effort prediction. Intell.
Data Anal. 14, 299–331 (2010)

38. Venables, W., Ripley, B.: Modern Applied Statistics with S-Plus. Springer, Berlin (1997)
26. Wettschereck, D.: A hybrid nearest neighbour and nearest hyperrectangle algorithm. In:

Bergadano, F., Raedt, L.D. (eds.) Proceedings of European Conference on Machine Learning,
pp 323–335 (1994)

39. Witten, I., Frank, E.: Data Mining Practical Machine Learning Tools and Techniques, 2nd edn.
Morgan Kauffman, Burlington (2005)

40. Wolpert, D.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
41. Zhang, D., Tsai, J.J.P.: Advances in Machine Learning Applications in Software Engineering

(2007)
42. Zhu, H., Beling, P.A., Overstreet, G.A.: A study in the combination of two consumer credit

scores. J. Oper. Res. Soc. 52, 2543–2559 (2001)

Author Biography

Bhekisipho Twala is a Professor in Artificial Intelligence and Statistical Sciences and the Head of
the Electrical and Electronic Engineering Science Department at the University of Johannesburg.
Before then he was a Principal Research Scientist at the Council of Science and Industrial
Research (CSIR) within the Modelling and Digital Science unit. His current work involves
promoting and conducting research in artificial intelligence within the electrical and electronic
engineering fields and developing novel and innovative solutions to key research problems in this
field. He earned his B.A. in Economics and Statistics from the University of Swaziland in 1993;
his MSc in Computational Statistics from Southampton University (UK) in 1995; and his Ph.D. in
Machine Learning and Statistics from the Open University (UK) in 2005. Prof. Twala was a

150 B. Twala and J. Verner

http://promise.site.uottawa.ca/SERepository

post-doctoral researcher and Bournemouth University (UK) and later at Brunel University in the
UK, mainly focussing on empirical software engineering research. His broad research interests
include multivariate statistics, classification methods, knowledge discovery and reasoning with
uncertainty, sensor data fusion and inference, and the interface between statistics and computing.
He has particular interests in applications in finance, medicine, psychology, software engineering
and most recently in robotics and has published over 70 scientific papers. Prof. Twala has a wide
ranging work experience to organisations ranging from banks, through universities, to
governments. He is currently an associate editor of the Intelligent Data Analysis journal,
Journal of Computers, International Journal of Advanced Information Science and Technology,
International Journal of Big Data Intelligence, Journal of Image and Data Fusion, Journal of
Information Processing Systems, and a fellow of the Royal Statistical Society. Other professional
memberships include the Association of Computing Machinery (ACM); the Chartered Institute of
Transport (CIT), South Africa and a senior member of the Institute of Electrical and Electronics
Engineers (IEEE).

Toward Accurate Software Effort Prediction … 151

Complex Fuzzy Logic Reasoning-Based
Methodologies for Quantitative Software
Requirements Specifications

Dan E. Tamir, Carl J. Mueller and Abraham Kandel

Abstract Quantitative software engineering is one of the most important para-
digms for software development. That is, Requirements, Analysis, Design, Coding,
and Testing. One of the challenges associated with quantitative software engi-
neering is the fact that many of the quantifiable parameters are concomitant with
uncertainty. Part of the uncertainty is due to the fact that a significant portion of the
software engineering process involves human beings presenting rational, yet diffi-
cult to quantify, behavior. Due to this fact, soft computing approaches, specifically
fuzzy logic based reasoning, present significant opportunities for constructing
sound quantitative software engineering models. This work presents a new and
innovative approach for fuzzy logic based quantitative software engineering pro-
cedures. We present a complex fuzzy logic based inference system used to account
for the intricate relations between software engineering constraints such as quality,
software features, and development effort. The new model concentrates on the
requirements specifications part of the software engineering process. Moreover, the
new model significantly improves the expressive power and inference capability of
the soft computing component in the soft computing based quantitative software
engineering.

Keywords Fuzzy logic � Fuzzy set theory � Fuzzy inference � Complex fuzzy
logic � Complex fuzzy set theory � Complex fuzzy inference � Software engi-
neering � Software development � Software requirements specifications �
Quantitative software engineering � Quantitative software development �
Quantitative software requirements specifications � Computational intelligence

D.E. Tamir (&)
Department of Computer Science, Texas State University, San Marcos, TX, USA
e-mail: dt19@txstate.edu

C.J. Mueller
Department of Computer Information Systems, Texas A&M University—Central Texas,
Killeen, TX, USA

A. Kandel
School of Computing and Information Sciences, Florida International University,
Miami, FL, USA

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_8

153

1 Introduction

Since Software Engineering’s introduction in 1968, one of the challenges facing
practitioners is to eliminate the uncertainties arising from the chaotic nature of
software development [1]. One of the most widely known outcomes of the
first International Conference on Software Engineering in Garmisch, Germany was
the detection of a gap between the available design and implementation practices
and the complexity of the software under development [1]. The gap and crisis
identified in Garmisch relates to the notion that the tools and techniques used to
develop computer software are inadequate for the complexity of the needed soft-
ware. Consequently, much of the software engineering research conducted fol-
lowing this conference focuses on providing tools and techniques for reducing the
uncertainty and assuring the quality of software with ever-growing complexity. Of a
specific concern, is the uncertainty related to the requirements specifications phase.
As the first phase in the development chain, the requirement specification phase has
a profound effect on the quality of the entire software development process and on
the final product, i.e., the hardware/software system.

One of the approaches for reducing uncertainty in the software development
process, adopted by mainstream software engineering researchers, has been to
introduce the discipline of quantitative software engineering. The quantitative
software engineering research and practice stream, however, cannot completely
cope with uncertainty, as some of this uncertainty is inherent to the process.
Moreover, the fact that software engineering is a human-intensive process adds a
challenging uncertainty dimension since human beings’ reasoning is often char-
acterized by inexact and fuzzy logic. This prompted a new interdisciplinary col-
laborative research direction that combines knowledge from the disciplines of
uncertainty management and mitigation and the field of software engineering.
Numerous research efforts in the area have been conducted, and many papers
addressing soft computing and quantitative software engineering have been pub-
lished [2–5]. Fuzzy logic is one of the most commonly and successfully used
“tools” for handling uncertainty [6–10]. Indeed some papers addressing the role of
fuzzy logic in quantitative software engineering have been published [11–14].

This chapter presents a new and innovative approach for fuzzy logic based
quantitative software engineering procedures. The proposed complex fuzzy logic
based model enables reasoning about processes with multi-dimensional compo-
nents where each component is carrying fuzzy information and the interaction
between the components cannot be decomposed and represented via primitive, one
dimensional, fuzzy set theory and fuzzy logic operations such as conjunction,
disjunction, negation, union, and intersection. In specific, we present the founda-
tions of a complex fuzzy logic based inference system used to account for the
intricate relations between software engineering constraints such as quality, soft-
ware features, and development effort. The new model concentrates on the
requirements specifications part of the software engineering process. Our model

154 D.E. Tamir et al.

significantly improves the expressive power and inference capability of classic
fuzzy logic as the tool for handling the uncertainty in this environment.

The problem addressed in this chapter boils down to the suitability of fuzzy logic
as a soft computing model for dealing with uncertainty in software requirements
specifications in tandem with applying quantitative software engineering methods.
We ascertain that the fuzzy logic approach is a strong and excellent methodology
for handling the uncertainty that is inherent in quantitative software engineering.
Nevertheless, we show that the traditional single dimension fuzzy logic might fall
short on dealing with real-world problems where several features such as quality,
cost, development time, and usability, are involved. Especially, when these features
are intertwined in a way that cannot be readily reduced to traditional fuzzy logic
expressions composed of basic fuzzy logic connectives (conjunction, disjunction,
negation, etc.).

The solution proposed is to use complex fuzzy logic as the underlying theory for
dealing with the uncertainty involved in software requirements specifications. Via
constructive examples we show that complex fuzzy logic is highly suitable for the
task at hand.

The main contribution of the research described in the chapter is the formulation
of a model that can enable better handling of the uncertainty in quantitative soft-
ware engineering. To the best of our knowledge, this is the first research that is
exploring the utility of complex fuzzy logic for handling uncertainty in the
framework of quantitative software engineering. Furthermore, the research, which
concentrates on software requirements specifications, can be extended to other
phases of the software development process.

The rest of the chapter is organized in the following way. Sections 2 and 3,
respectively, provide background concerning uncertainty involved in the software
development process and the Quality Function Deployment approach to software
requirements specifications. Section 4 contains a literature review listing relevant
work. Section 5 introduces the concept of complex fuzzy logic and presents several
ways in which it can be used for inference in the context of uncertainty in quan-
titative software requirements specifications. Finally, Sect. 6 includes the
conclusions.

2 Uncertainty and the Software Development Process

One of the first techniques addressing the uncertainty and the growing complexity
in the software development process was the Waterfall software development
model introduced at the IEEE WESCON conference in 1970 by Royce [15]. In this
seminal paper on the software development process; Royce introduced the first
formalization of the process; organizing it into a series of five major sub-processes
of: Requirements, Analysis, Design, Coding, and Testing. Over the years,
researchers have made a number of changes to the model. One of the most sig-
nificant changes was the absorption of the Analysis phase into the Requirements

Complex Fuzzy Logic Reasoning-Based Methodologies … 155

and Design phases. With the addition of minor name changes, the Waterfall
development model has evolved to include four phases that are generally associ-
ated with the model: Requirements, Design, Implementation or Construction, and
Validation.

Even though the Waterfall model has served the software development industry
well for almost 50 years, there are a number of problems with the model. One of the
most significant issues is that it focuses on reducing machine utilization with a
result of increased personnel utilization, thereby making software development a
labor-intensive process. Another issue with the Waterfall model is that the software
developers are dependent on the quality of the requirement specifications estab-
lished in the first phase of the process when analysts and developers know the least
about the application. Frequently, these requirements originate from sources that do
not understand the information necessary to build software and have a limited
knowledge of the application, causing the developers to have questions about the
requirement specifications. One of the major causes of costly software maintenance
or project failure is poor requirement specifications [16, 17]. Hence, as developers
began to gain more experience with the Waterfall model, they started to investigate
a number of techniques to resolve the amount of human labor necessary to produce
high quality software products and to reduce the impact of vague or incomplete
software requirement specifications.

One of the first proposed approaches to address the uncertainty of software
requirements was prototyping. Software prototypes can have two forms: throwaway
and evolutionary [18]. A throwaway prototype provides information about the
general structure and layout of the software but does not provide any information
about the operation. A major disadvantage of this approach is that at the end of the
design phase developers discard the prototype. Although this approach provides a
great deal of information about user interfaces and links, it is expensive; and
generally, it is not popular with the financial stakeholders within an organization.
As its name implies, an evolutionary prototype is a working model of the desired
software implemented without the use of traditional quality control tools. An
evolutionary prototype becomes version-0, and the test engineers have the task of
assuring that there are no defects in the software. From this version-0, analysts
reverse engineer the software to create any required documentation.

Because of the many issues with prototyping, software engineers have turned to
the notion of iterative software development. Iterative software development is a
maintenance-based strategy used to reduce both risk and uncertainty during the
construction of the application. One of the most widely known iterative techniques
is Barry Boehm’s Spiral Model [19]. In addition to the Spiral Model, most of the
agile development methods also employ this concept for the same reasons [20–22].

In addition to the risks and uncertainty that are inherent in developing software,
there is a great deal of uncertainty in describing the features needed in the software.
Extracting the user needs and describing these needs in a format understandable by
non-technical and technical individuals provides a source of considerable uncer-
tainty in software engineering. Two of the major sources of uncertainty in the
process of establishing the specifications for the needed software are the software

156 D.E. Tamir et al.

engineers and the non-technical individuals providing the information upon which
to base these specifications. Since it is unlikely that researchers will resolve all of
the challenges in human communications any time soon, it is probably better to
defer this challenge for future research. One of the tools being proposed as a first
step in addressing these communication challenges is changing the perspective of
requirement specifications to focusing on the tasks that the software’s operators
perform. A second tool proposed is utilizing soft computing methodologies for
handling this uncertainty. Fuzzy logic has been successfully applied to resolve
uncertainty at each of the five major processes of the waterfall model [23–26]. In
this chapter, however, the soft computing model proposed is complex fuzzy logic.

3 Requirements Specification via Quality Function
Deployment

In the 1970s, requirements engineers began to formulate a notion of the information
that is necessary to develop a software application. These efforts evolved into the
development of the IEEE Recommended Practice for Software Requirements
Specifications, which is divided into sections describing the required interface,
software functionality, non-functional or quality requirements, and constraints [16,
17]. The IEEE Recommended Practice-model centers on the items that are neces-
sary for the software engineers to build the software. Although this general model
has served the software industry very well, it does not provide a view of the
software from the end user’s perspective. The IEEE recommendation views security
and usability as quality issues and documents them as non-functional requirements.
This may explain the reason that these areas have remained challenges for software
developers. Documenting software requirements from the perspective of the
end-user or software operator (a.k.a. human centric) is an approach that is gaining in
popularity. A human-centric approach to eliciting and documenting software
requirements concentrates on the tasks that the software must support and on the
operators that perform those tasks [27–29]. Generalizing this notion of viewing
software from an operator’s perspective yields the concepts of addressing software
requirements from the external tasks (performed by operators and/or machines) that
the software is intended to support. The Unified Modeling Language
(UML) implements this concept in its use case diagram [30]. Software modeling
techniques are also evolving to support the change to a user-centric approach [30–
32]. One of the changes to software modeling techniques is the practice of
employing use cases or user stories to describe the high-level characteristics of an
application.

All of these innovations have acted to reduce the uncertainty of defining spec-
ifications and developing software applications, but there are many areas where the
opportunity to further reduce challenges in software development activity exists.
One such area is selecting the order of implementing the software requirements.

Complex Fuzzy Logic Reasoning-Based Methodologies … 157

Selecting the order of implementing requirements can permit an early deployment
of the product or service.

A number of innovative techniques have migrated into modern software
development practice from research, conducted by Japanese investigators in the
1960s and 1970s, into improving manufacturing and quality assurance. One of the
techniques making the migration from quality assurance into software development
is Quality Function Deployment (QFD). Mizuno and Akao conducted research
directed at bringing quality assurance into the design phase, rather than in the
manufacturing phase resulting in QFD [33]. Their vision was to include the cus-
tomers’ view of the quality into all aspects of product design and manufacturing,
thereby increasing the acceptance of the product in the marketplace [34].

According to Zultner, applying QFD to software requirements is a relatively
simple process [35]. Customers receive a copy of the specification of an appli-
cation and they assign one of three QFD categories to each requirement. These
classification categories are normal, expected, and exciting. A customer classifying
a requirement as normal means that a product such as the one specified has that
feature. A requirement classified as expected means that the customer believes a
product that does not contain that feature is disappointing. A requirement
receiving an exciting classification is one exceeding what the customer expects to
find in the specified product. There are two challenges not addressed in Zultner’s
discussion on QFD: Customer priority assignment and using QFD throughout the
development process [35].

After receiving the customers’ individual classification of the requirements,
requirements engineers have several methods for establishing the classification of
each requirement. One of these methods of applying customer priorities is to assign
the requirement classification receiving the most votes. Another approach is to
record the votes for each category providing later processes with more data for
decision-making.

Although simple, QFD presents a number of challenges to requirements engi-
neers. One important challenge that requirements engineers are facing is selecting
the customers for providing the classifications because the quality of data is
dependent on the customers’ knowledge of the product and/or market. Another
significant challenge for QFD relates to the quality of the customers asked to
classify requirements. A QFD classification does not provide the requirements
engineer insight into missing requirements. An advantage of QFD, outweighing
both of these challenges, is that it provides the requirements engineer with customer
insight as to the value of the specified facilities.

A challenge related to the customer’s skill in evaluating requirements, but one
that requirements engineers can control, is the focus and structure of the require-
ments. There are three major sections in a traditional requirement specification:
interface, functional, and non-functional requirements [16, 17]. An issue arising
with this type of document is that the interface, function and performance speci-
fications are in three different locations making it difficult to pull all of this infor-
mation together and classify each of the features. An approach that can improve
requirement classification accuracy is an external-task or user-centric specification

158 D.E. Tamir et al.

[28, 30, 31]. A user-centric specification differs from traditional specification in that
the requirements are organized based on the task that a customer is intended to
perform with the software. Expressing the software’s functionality in terms of use
cases or user stories based on tasks they will perform with the software can produce
better classifications [30, 31].

One of the possible uses, later in the development process, for these priorities is
establishing implementation priorities. Prioritizing feature implementation is a
significant challenge facing software developers using iterative development tech-
niques such as Boehem’s Spiral model or Schwalbe’s Agile Scrum [19, 21]. In both
the spiral model and Agile Scrum, developers must select a set of features for
implementation during the next iteration. Usually, developers accomplish this by
selecting features, based on effort estimates, fitting to the duration of the devel-
opment increment. A better selection approach employs both the QFD classification
and estimated effort. Using these two factors, is even more appropriate for situations
where one or more iterations results in phase deployment or release.

Based on the definition of the QFD categories, it is apparent that it is an ordinal
scale where requirements in an expected category are more desirable than
requirements in the normal category; and requirements in the exciting category are
more desirable than requirements in the expected category. Using this scale for
development priorities would mean that exciting requirements are developed first
followed by expected and then normal; but to have each iteration possess the
maximum desirability to the customer base, the development priorities are expected
requirements, followed by normal requirements, and then exciting. Implementing
expected requirements is critical because they are the requirements that can increase
customer dissatisfaction with the deployed product. Exciting requirements can
increase the marketability of the product but might not improve customer satis-
faction. Therefore, implementing the normal requirements before implementing the
exciting requirements increases customer satisfaction and assures that the product is
equal to the completion.

Designing the development process to work only on the requirements in a
specific category is not a guarantee that developers will produce software maxi-
mizing the development time and overall customer satisfaction. Because of the
complexity of the variables, traditional algorithmic approaches are not viable.
Hence, a new approach to produce a list of requirements in rank order for an
iteration cycle is needed.

The discussion in Sect. 2, has presented the software development process and
the uncertainty involved in the process. The current section concentrated on using
quantifiable methodologies for software specifications. It is quite clear that the
quantification process reduces yet does not eliminate uncertainty. When it is all said
and done, the engineers and stakeholders have to make decisions that optimize a
utility, effort, and risk function. This function, however, is “ill defined” due to the
inherent uncertainty and the fuzzy nature of human communication and human
reasoning. For example, assigning ranks such as normal, expected, and exciting is a
classic example of (human) fuzzy logic based reasoning. In this chapter, we propose
to formulize two of the dimensions of the QFD space, namely utility and effort,

Complex Fuzzy Logic Reasoning-Based Methodologies … 159

using complex fuzzy logic. Later on, risk can be added as a third dimension in a
multi-dimensional complex fuzzy logic based QFD process. In the next section, we
list relevant work.

4 Literature Review

This section includes a review of literature associated with software requirements
and describes work related to the use of fuzzy logic in formulating methods for
handling uncertainty in software development. A new and innovative method for
handling the uncertainty, which is proposed in this chapter, is the utilization of
complex fuzzy logic. This original method is further elaborated in the next section.

A review of recent literature for software requirements reveals a limited amount
of investigation into ways for writing and organizing requirements. Books like
Wiegers’ Software Requirements, Lauesen’s Software Requirements: Style and
Techniques, and Leffingwell’s Agile Software Requirements discuss most of the
research into writing and organizing requirements [36–38]. Each of these texts
investigates most of the core issues of requirements analysis, but they do not
investigate using formal methods for dealing with the uncertainty inherent in the
process. Although similar, each text presents the topic from differing perspectives:
traditional, linguistic, and lean software development methodologies, such as
Agile-Scrum.

In the book Software Requirements, Weigers investigates most of the issues
relating to the development of traditional requirements specification documents and
the management of those requirements throughout the development process [36].
One of the features that make this book an important resource for the topic of
software requirements is that it provides a large number of examples on soliciting
requirements in a business environment. Even though Weigers addresses almost
every aspect of software requirements, some might argue that the areas of speci-
fication style and Agile requirements practice need additional investigation. In the
chapter addressing writing software requirements, Wiegers provides an excellent
discussion on the mechanics of writing specifications, but he does not discuss the
effects of different styles. In the book Software Requirements: Styles and
Techniques, the author provides a better discussion on this issue. On lean software
development or Agile methodologies [37], the discussion explains some of the
differences between traditional requirements elicitation and the approach introduced
with Agile-Scrum, but does not address the way that these differences affect the
developers and the stakeholders. In the book Agile Software Requirements,
Leffingwell provides a view of the effects of requirements on the developers and
stakeholders [38].

The book Software Requirements: Styles and Techniques by Lauesen provides
an overview to the requirements elicitation process, but focuses on linguistics
techniques for achieving a specific objective [37]. Like Wiegers’ approach, Lauesen
provides a large number of cases studies and examples in writing requirements to

160 D.E. Tamir et al.

achieve specific results and illustrates that different writing styles can achieve
different results. This work, however, does not address ways for writing and
organizing the requirements in order to enable software development using an Agile
development methodology.

One of the most unusual approaches to software requirements specifications is
described in the book Agile Software Requirements by Leffingwell [38]. In this
work, Leffingwell combines Agile Modeling with requirements analysis and
describes the ways that requirements are used in Agile development methodologies.
The book suggests that requirements have a hierarchical characteristic, which is a
subtle change from the “flat” approach suggested in other works. Using a hierar-
chical approach provides a level of details that is appropriate to the stakeholder and
the developer.

One of the deficiencies that almost all of the works on software requirements
have in common is their way of treatment of non-functional requirements, a.k.a.
Quality Requirements or “ileitis”. Originally, non-functional requirements were
addressing system level topics such as reliability and maintainability. Over time,
other topics such as human factors and security were introduced under
non-functional requirements because many experts viewed these topics as system
level issues that did not directly relate to the functionality of the software. Today
two of the most severe challenges to software engineers are software usability and
security.

In recent years, there has been a significant interest in the area of quantitative
software engineering [2–5]. Several papers have addressed computational intelli-
gence and quantitative software engineering [11–14]. Additionally, several survey
papers and books/book-chapters such as [39–43] are useful in gaining access into
recent developments in the field.

Alongside the interest in the general area of computational intelligence and
software engineering, there has been increasing interest in the use of fuzzy set
theory and fuzzy logic based reasoning as the soft computing paradigm [44–49].
With this respect [44, 45] are some of the most comprehensive accounts on fuzzy
logic models in quantitative software engineering. The utilization of fuzzy logic to
quantitative software engineering makes a lot of sense and provides highly valuable
and usable tools for coping with the uncertainty in quantitative software engi-
neering [44–49]. Nevertheless, this approach falls short of providing a rich and
expressive way to take into account the intricate relations between major parameters
affecting the software development process, such as quality, usability, development
effort, and features included in release, cost, reliability, and risk. It is our assertion
that the intricate relations can be effectively addressed using complex fuzzy logic.

Complex fuzzy logic has been introduced by Ramot et al. [50, 51] and several
related applications have been considered [52]. Tamir et al. [53–56] refined the
definition provided by Ramot and introduced examples where the interpretation
provides for a rich and effective paradigm for reasoning which can capture
uncertainty and human reasoning in a highly effective way.

Complex Fuzzy Logic Reasoning-Based Methodologies … 161

An exhaustive search in research databases did not reveal any work that connects
complex fuzzy logic with quantitative software engineering. To the best of our
knowledge, this is the first research effort that reports on such a research direction.

5 Complex Fuzzy Systems

Several aspects of the software requirements specifications can utilize the concept
of complex fuzzy logic [53]. Complex fuzzy logic can be used to represent the
two-dimensional information embedded in the description of trade-offs between
design effort and software feature inclusion. Additionally, complex fuzzy logic
based inference can be utilized to exploit the fact that variables related to the
uncertainty are inherent in the software requirements specifications. The software
requirements space is multi-dimensional and cannot be readily defined via single
dimensional clauses connected by single dimensional connectives. Finally, the
multi-dimensional fuzzy space defined as a generalization of complex fuzzy logic
can serve as a media for clustering of specifications related information in a lin-
guistic variable-based feature space.

Tamir et al. [53, 55] introduced a new interpretation of complex fuzzy mem-
bership grade and derived the concept of pure complex fuzzy classes. This section
includes a review of the concept of a pure complex fuzzy grade of membership, the
interpretation of this concept as the denotation of a fuzzy class, and the basic
operations on fuzzy classes.

To distinguish between classes, sets, and elements of a set we use the following
notation: a class is denoted by an upper case Greek letter, a set is denoted by an
upper case Latin letter, and a member of a set is denoted by a lower case Latin
letter.

The Cartesian representation of the pure complex grade of membership is given
in the following way:

l V ; zð Þ ¼ lr Vð Þþ jli zð Þ;

where lr Vð Þ and li zð Þ, the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
lr Vð Þ and li zð Þ can get any value in the interval [0,1]. The polar representation of
the pure complex grade of membership is given by:

l V ; xð Þ ¼ r Vð Þejr/ zð Þ;

where r Vð Þ and / zð Þ, the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
they can get any value in the interval [0,1]. The scaling factor r is in the interval
ð0; 2pÞ. It is used to control the behavior of the phase within the unit circle
according to the specific application. Typical values of r are f1; p2 ; p; 2pg. Without

162 D.E. Tamir et al.

loss of generality, for the rest of the discussion in this section we assume that
r ¼ 2p.

The difference between pure complex fuzzy grades of membership and the
complex fuzzy grade of membership proposed by Ramot et al. [50, 51] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set. This entails a different interpretation of the concept as well as a
different set of operations and a different set of results obtained when these oper-
ations are applied to pure complex grades of membership. This is detailed in the
following sections.

5.1 Complex Fuzzy Class

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that can be
defined in an unambiguous way and comply with the axioms of fuzzy sets given by
Tamir et al. and the axioms of fuzzy classes given in [53, 54, 57, 58]. While a
general fuzzy class can contain individual objects as well as fuzzy sets, a pure fuzzy
class of order one can contain only fuzzy sets. In other words, individual objects
cannot be members of a pure fuzzy class of Order 1. A pure fuzzy class of order
M is a collection of pure fuzzy classes of order M − 1. We define a Complex Fuzzy
Class C to be a pure fuzzy class of order one, i.e., a fuzzy set of fuzzy sets. That is,
C ¼ fVig1i¼1; or C ¼ fVigNi¼1 where Vi is a fuzzy set and N is a finite integer. Note
that despite the fact that we use the notation C ¼ fVig1i¼1, we do not imply that the
set of sets Vif g is enumerable. The set of sets Vif g can be finite, countably infinite,
or uncountably infinite. The use of the notation fVig1i¼1 is just for convenience.

The class C is defined over a universe of discourse T . It is characterized by a
pure complex membership function lC V ; zð Þ that assigns a complex-valued grade
of membership in C to any element z 2 U (where U is the universe of discourse).
The values that lC V ; zð Þ can receive lie within the unit square or the unit circle in
the complex plane and are in one of the following forms:

lC V ; zð Þ ¼ lr Vð Þþ jli zð Þ;
lC z;Vð Þ ¼ lr zð Þþ jli Vð Þ;

where lrðaÞ and liðaÞ, are real functions with a range of [0,1].
Alternatively:

lC V ; zð Þ ¼ r Vð Þejh/ zð Þ;

lC z;Vð Þ ¼ rðzÞejh/ðVÞ;

where rðaÞ and /ðaÞ, are real functions with a range of [0, 1] and h 2 ð0; 2p�.
In order to provide a concrete example, we define the following pure fuzzy class.

Let the universe of discourse be the set of all the features that can be added to a

Complex Fuzzy Logic Reasoning-Based Methodologies … 163

specific software application along with a set of attributes related to the features,
such as related development effort and perception of importance (i.e., “expected”,
“normal”, and “exciting”). Let Mi denote the set of features considered in step i of
the software development process. Furthermore, consider a function f1ð Þ that
associates a number between 0 and 1 with each set of features, where this function
reflects the level of importance of the features included in the set. In addition,
consider a second function f2ð Þ that associates a number between 0 and 1 with each
specific feature, where this function denotes the development effort associated with
including the feature in step i of the software development process. The functions
f1; f2ð Þ can be used to define a pure fuzzy class of order 1. A compound of the two
functions in the form of a complex number can represent the degree of membership
in the pure fuzzy class of “highly desired features” for the set of features considered
in the last k development steps.

Formally, let U be a universe of discourse and let 2U be the power-set of U. Let
f1 be a function from 2U to [0,1] and let f2 be a function that maps elements of U to
the interval [0,1]. For V 2 2U and z 2 U define lC V ; zð Þ to be:

lC V ; zð Þ ¼ lr Vð Þþ jli zð Þ ¼ f1 Vð Þþ jf2 zð Þ

Then, lC V ; zð Þ defines a pure fuzzy class of order 1, where for every V 2 2U ,
and for every z 2 U, lC V ; zð Þ is the degree of membership of z in V and the degree
of membership of V in C. Hence, a complex fuzzy class C can be represented as the
set of ordered triples: C ¼ fV ; z; lCðV ; zÞjV 2 2U ; z 2 Ug

Depending on the form of lCðaÞ (Cartesian or polar), lrðaÞ, μi(α), rðaÞ, and
/ðaÞ denote the degree of membership of z in V and/or the degree of membership
of V in C: Without loss of generality, however, we assume that lrðaÞ and rðaÞ
denote the degree of membership of V in C for the Cartesian and the polar rep-
resentations respectively. In addition, we assume that liðaÞ and /ðaÞ denote the
degree of membership of z in V for the Cartesian and the polar representations
respectively. Throughout this chapter, the term complex fuzzy class refers to a pure
fuzzy class with pure complex-valued membership function, while the term fuzzy
class refers to a traditional fuzzy class such as the one defined by [57].

5.2 Degree of Membership of Order N

The traditional fuzzy grade of membership is a scalar defining a fuzzy set. It can be
considered as degree of membership of order 1. The pure complex degree of
membership defined in this chapter is a complex number that defines a pure fuzzy
class. That is, a fuzzy set of fuzzy sets. This degree of membership can be con-
sidered as degree of membership of order 2 and the class defined can be considered
as a pure fuzzy class of order 1. Additionally, one can consider the definition of a
fuzzy set (a class of order 0) as a mapping into a one-dimensional space and the

164 D.E. Tamir et al.

definition of a pure fuzzy class (a class of order 1) as a mapping into a
two-dimensional space. Hence, it is possible to consider a degree of membership of
order N as well as a mapping into an N-dimensional space. The following is a
recursive definition of a fuzzy class of order N. Part 2 of the definition is not
necessary; it is given in order to connect the term pure complex fuzzy grade of
membership and the term grade of membership of order 2.

Definition

1. A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of
membership of order 1 and a mapping into a one-dimensional space.

2. A fuzzy class of order 1 is a set of fuzzy sets. It is characterized by a pure
complex degree of membership. Alternatively, it can be characterized by a
degree of membership of order 2 and a mapping into a two-dimensional space.

3. A fuzzy class of order N is a fuzzy set of fuzzy classes of order N − 1; it is
characterized by a degree of membership of order Nþ 1 and a mapping into an
ðNþ 1Þ-dimensional space.

5.3 Generalized Complex Fuzzy Logic

A general form of a complex fuzzy proposition is: “x…A…B…” where A and B are
values assigned to linguistic variables and “…” denotes natural language constants.
A complex fuzzy proposition P can get any pair of truth values from the Cartesian
interval 0; 1½ � � ½0; 1� or from the unit circle. Formally a fuzzy interpretation of a
complex fuzzy proposition P is an assignment of fuzzy truth value of the form
pr þ jpi; or of the form rðpÞejhðpÞ, to P. In this case, assuming a proposition of the
form “x…A…B…,” then p rð Þ r pð Þð Þ is assigned to the term A and pi h pð Þð Þ is
assigned to the term B.

For example, under one interpretation, the complex fuzzy truth value associated
with the complex proposition:

“x is an expected yet highly difficult to implement feature of the application”
can be 0:1þ j0:5. Alternatively, in another context, the same proposition can be

interpreted as having the complex truth value 0:3ej0:2. As in the case of traditional
propositional fuzzy logic, we use the tight relation between complex fuzzy classes /
complex fuzzy membership to determine the interpretation of connectives. For
example, let C denote the complex fuzzy set of “features that are exciting and easy
to implement”, and let fC ¼ cr þ jci, be a specific fuzzy membership function of C,
then fC can be used as the basis for the interpretation of P. Next we define several
connectives along with their interpretation.

Complex Fuzzy Logic Reasoning-Based Methodologies … 165

Table 1 includes a specific definition of connectives along with their interpre-
tation. In this table P, Q and S denote complex fuzzy propositions and f sð Þ denotes
the complex fuzzy interpretation of S. We use the fuzzy Łukasiewicz logical system
as the basis for the definitions [57, 59]. Hence, the max t-norm is used for con-
junction and the min t-conorm is used for disjunction. Nevertheless, other logical
systems, such as Gödel fuzzy systems, can be used [59, 60]

The same axioms used for fuzzy logic are used for complex fuzzy logic, and
modus ponens is the rule of inference.

5.4 Complex Fuzzy Propositions and Connectives Examples

Consider the following propositions ðP;Q; and S respectively):
P “x is a very exciting yet highly difficult to implement feature.”
Q “x is expected yet quite easy to implement feature.”
S “x is a high ranked feature planned for release in the near future.”

Let A be the term “x is an exciting feature” and let B denote the term “difficult to
implement.” Furthermore, let C be the term “ is an expected feature,” let D be the
term “x is a high ranked feature,” and let E be the term “future.” Hence, P is of the
form: “x is a very A that is highly B,” and Q is of the form “x is C that is not quite
B.” In this case, the terms “expected,” “normal,” “difficult,” “ranked,” and “future”
are linguistic variables. Furthermore, a term such as “exciting,” can get fuzzy truth
values (between 0 and 1) or fuzzy linguistic values such as “moderately,” “highly,”
and “very,” (the terms “is,” “that,” etc. are linguistic constants). Assume that the
complex fuzzy interpretation (i.e., degree of confidence or complex fuzzy truth
value) of P is pr þ jpi, while the complex fuzzy interpretation of Q is qr þ jqi. Thus,
the truth value of “x is an exciting feature,” is pR, and the truth value assigned to “x
is difficult to implement,” is pi. The truth value of “x is an expected feature,” is qr.
Suppose that the term “easy” stands for “not difficult,” the term “low,” stands for
“not high,” and the term “dull” stands for “not exciting”. In a similar way, S is of
the form: “x is high D that is … near E,” where the complex fuzzy interpretation of
S is sr þ jsi. This, however, is not the only way to define these linguistic terms, and
it is used to exemplify the expressive power and the inference power of the logic.
Hence, the complex fuzzy interpretation of the following composite proposition is:

Table 1 Basic propositional fuzzy logic connectives

Operation Interpretation

Negation f 0Pð Þ ¼ ð1þ j1Þ � f ðPÞ
Disjunction f P� Qð Þ ¼ maxðpR; qRÞþ j�maxðpI ; qIÞ
Conjunction f P� Qð Þ ¼ minðpR; qRÞþ j�minðpI ; qIÞ
Implication f P ! Qð Þ ¼ min 1; 1� pR þ qRð Þþ j�minð1; 1� pI þ qIÞ

166 D.E. Tamir et al.

1. f 0pð Þ ¼ ð1� prÞþ jð1� pIÞ
That is, 0P denotes the proposition “x is a dull yet easy to implement feature.”
The confidence level in 0P is ð1� prÞþ jð1� piÞ, where the fuzzy truth value of
the term “x is a non exciting feature,” is ð1� prÞ and the fuzzy truth value of the
term “x is an easily implemented feature.” is ð1� piÞ

2. f P� Qð Þ ¼ maxðpr; 1� qrÞþ j�maxðpi; 1� qiÞ:
That is, P� Qð Þ denotes the proposition “x is a very exciting yet highly
difficult to implement feature.” OR
“x is an expected yet quite easy to implement feature.” The truth values of
individual terms, as well as the truth value of P� Q are calculated according to
Table 1.

3. f 0P� Qð Þ ¼ minð1� pr; qrÞþ j�minð1� pi; qiÞ
That is, 0P� Qð Þ denotes the proposition “x is a dull yet difficult to implement
feature.” AND
“x is an expected yet quite easy to implement feature.” The truth values of
individual terms, as well as the truth value of 0P� Q are calculated according to
Table 1.

4. Let the term R stand for ðP� QÞ, (the complex fuzzy interpretation of R is
rr þ jri.) then,

R ! S ¼ minð1; 1� rr þ srÞþ j�minð1; 1� ri þ siÞ:
Thus, R ! Sð Þ denotes the proposition
IF “x is a very exciting yet highly difficult to implement feature.” OR
“x is an expected, yet quite easy to implement feature.”
THEN `̀ x is a high ranked feature planned for release in the near future:” The

truth values of individual terms, as well as the truth value of R ! S are calculated
according to Table 1.

5.5 Complex Fuzzy Inference Example

Assume that the degree of confidence in the proposition R as defined above is
rr þ jri; and assume that the degree of confidence in the fuzzy implication T ¼
R ! S is tr þ jti. Then, using modus ponens
R

R→S

S

One can infer S with a degree of confidence min rr; trð Þþ j�min ri; tið Þ:
In other words if one is using:

“x is an exciting yet difficult to implement feature:” OR

Complex Fuzzy Logic Reasoning-Based Methodologies … 167

“x is an expected yet easy to implement feature:

IF “x is an exciting yet difficult to implement feature:” OR

“x is an expected yet easy to implement feature:”

THEN “x is a high ranked feature planned for release in the near future.”

“x is a high ranked feature planed for release in the near future:”

Hence, using modus ponens one can infer:

“x is a high ranked feature planned for release in the near future” with a degree of
confidence of min rr; trð Þþ j�min ri; tið Þ.

This example shows the potential of complex fuzzy inference to enhance the
ability for resolving uncertainty involving the requirements specifications process.
The actual process of using this approach for inference is described [51]. In this
case a complex fuzzy rule-based system is generated via complex fuzzification and
used for complex fuzzy inference. Eventually via de-fuzzification actual crisp
conclusions are obtained [51]. In [26] we have described Software Testing Using
Artificial Neural Networks and Info-Fuzzy Networks. We are currently working on
extending this research to using complex fuzzy inference. Finally, we are currently
exploring the use of complex fuzzy logic and inference for non-functional
requirements such as usability requirements.

6 Conclusions

In this chapter, we have introduced an innovative approach for fuzzy logic based
quantitative software engineering procedures. We have presented a complex fuzzy
logic based inference system used to account for the intricate relations between
software engineering constraints such as quality, software features, and develop-
ment effort. The model presented concentrates on the requirements specifications
part of the software engineering process. Furthermore, the presented model sig-
nificantly improves the expressive power and inference capability of the soft
computing component in the soft computing based quantitative software
engineering.

In the future, we plan to concentrate on software requirements for human
computer interaction applications. Additionally, we plan to further investigate the
utility of the new model in the development of software requirements for large-scale
software systems. Furthermore, we plan to increase the dimensionality of the fuzzy
terms to include other factors such as risk, reliability, usability etc. Finally, we plan
to expand the work to include other components of the software development
process.

168 D.E. Tamir et al.

References

1. Software Engineering: Report of a Conference Sponsored by the NATO Science Committee,
Garmisch, Germany, 7–11 Oct 1968. Scientific Affairs Division, NATO, Brussels (1969)

2. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring challenges and
benefits at microsoft. Softw. Eng. IEEE Trans. 40(7), 633–649 (2014)

3. Lazaro, M., Marcos, E.: An approach to the integration of qualitative and quantitative research
methods in software engineering research. In: CAISE*06 Workshop on Philosophical
Foundations on Information Systems Engineering, Luxemburg (2006)

4. Dyba, T.: An empirical investigation of the key factors for success in software process
improvement. Softw. Eng. IEEE Trans. 31(5), 410–424 (2005)

5. Verner, J.M., Evanco, W.M.: In-house software development: what project management
practices lead to success? IEEE Softw. 22(1), 338–353 (2005)

6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
7. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
8. Kandel, A.: Fuzzy mathematical techniques with applications, reading. Addison-Wesley, MA

(1986)
9. Tamir, D.E., Kandel, A.: An axiomatic approach to fuzzy set theory. Inf. Sci. 52, 75–83 (1990)
10. Tamir, D.E., Kandel, A.: Fuzzy semantic analysis and formal specification of conceptual

knowledge. Info. Sci. Intell. Syst. 82(3–4), 181–196 (1995)
11. Pillai, S.K., Jeyakumar, M.K.: Evaluation of neural networks for software development effort

estimation using a new criterion. SigSoft Softw. Eng. Notes 39(5), 1–6 (2014)
12. Nagendra Kumar, G., Aswani Kumar, C.: Generation of high level views in reverse

engineering using formal concept analysis. In: First International Conference on Networks &
Soft Computing (ICNSC), Hyderabad (2014)

13. Singh, C., Pratap, A., Singhal, A.: Estimation of software reusability for component-based
systems using soft computing techniques. In: Confluence The Next Generation Information
Technology Summit (Confluence), 2014 5th International Conference, Noida (2014)

14. Bakshi, T., Sarkar, B., Sanyal, S.K.: A new soft-computing based framework for project
management using game theory. In: 2012 International Conference on Communications,
Devices and Intelligent Systems (CODIS), Kolkata (2012)

15. Royce, W.W.: Managing the development of large software systems: concepts and techniques.
In: IEEE WESON 26 (August): 1–9, Los Angeles (1970)

16. IEEE: IEEE Std 1233-1998 IEEE Guide for Developing System Requirement Specification.
IEEE Computer Society, New York, NY (1998)

17. IEEE: IEEE Std-830-1988 IEEE Recommended Practice for Software Requirements. IEEE
Computer Society, New York, NY (1998)

18. Pressman, R.: Software Engineering: A Practioner’s Approach. McGraw-Hill, New York, NY
(2010)

19. Boehm, B.W.: A spiral model of software development and enhancement. Computer 21(5),
61–72 (1988)

20. Ambler, S.W.: Agile modeling. Ambysoft Inc. (2014). [Online]. Available: http://www.
agilemodeling.com. Accessed 30 Sept 2014

21. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall, Upper
Saddle River, NJ (2002)

22. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addion-Wesley Professional (2004)

23. Pedrycz, W., Succi, G., Reformat, M., Musilek, P., Bai, X.: Self-organizing maps as a tool for
software analysis. In: Canadian Conference of Electrical and Computer Engineering 2001,
Toronto, Canada (2001)

24. Noppen, J., van den Broek, P., Aksit, M.: Dealing with fuzzy information in software design
methods. In: Proceedings of the IEEE Annual Meeting of the North American Fuzzy
Information Processing NAFIPS ‘04, Alberta, Canada (2004)

Complex Fuzzy Logic Reasoning-Based Methodologies … 169

http://www.agilemodeling.com
http://www.agilemodeling.com

25. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.: An adaptive fuzzy decision matrix model
for software requirements prioritization. In: Sobecki, J.B.V.C.S. (ed.) Advanced Approaches
to Intelligent Information and Database Systems, vol. 551, pp. 129–138. Springer International
Publishing, Switzerland (2014)

26. Agrawal, D., Tamir, D.E., Last, M., Kandel, A.: A comparative study of software testing using
artificial neural networks and info-fuzzy networks. IEEE Trans Man Mach. Cybern. 42(5),
1183–1193 (2012)

27. Hickey, A.M., Davis, A.M.: A unified model of requirements elicitation. J. Manage. Info. Syst.
20(4), 65–84 (2004)

28. Constantine. L.L., Lockwood, L.A.D.: Software for Use: A practical Guide to the models and
methods of Usage-Centered Design, Reading. ACM Press, MA (1999)

29. Sutcliffe, A.: Scenario-based requirments analysis. Requirements Eng. 3(1), 48–65 (1998)
30. Booch, G., Rumbaugh, J., Jacobon, I.: Unified Modeling Language User Guide, 2nd edn.

Addison-Wesley Professional, New York, NY (2005)
31. Ambler, S.W.: Agile Modeling: Effective Practices of Modeling and Documentation.

Ambysoft Inc. (2014). [Online]. Available: http://www.agilemodeling.com/. Accessed 11
Nov 2014

32. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach, Redwood
City. Addison Wesley Longman Publishing Co., CA, USA (2004)

33. Mazur, G.: History of QFD. Quality Function Deployment Institute [Online]. Available: http://
ww.gfdi.org/what_is_qfd/history_of_qfd.html. Accessed 29 Sept 2014

34. Akao, Y.: Quality Function Deployment: Integrating Customer Requirements into Product
Design. Productivity Press, Cambridge, MA (1990)

35. Zultner, R.E.: Quality function deployment for software: satisfying customers. American
Programmer, pp. 28–41 (1992)

36. Wiegers, K., Beatty, J.: Software Requirements. Microsoft Press, Readmond, WA (2013)
37. Lauesen, S.: Software Requirements: Styles and Techniques. Pearson Education, Edinburg

Gate (2002)
38. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,

Programs and the Enterprise. Pearson Education Inc., Boston, MA (2011)
39. Bhuyan, M.K., Mohapatra, D.P., Sethi, S.: A survey of computational intelligence approaches

for software reliability prediction. ACM SigSoft Softw. Eng. Notes 39(2), 1–10 (2014)
40. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,

techniques and applications. ACM Comput. Surv. 45(1), 61 (2012)
41. Lee, J.: Software Engineering with Computational Intelligence. Springer, Secaucus, NJ (2003)
42. Dick, S., Kandel, A.: Computational Intelligence in Software Quality Assurance. World

Scientific, Singapore (2005)
43. Last, M., Kandel, A.: Automated test reduction using an info-fuzzy network. In: Software

Engineering with Computational Intelligence, vol. 731, pp. 235–258. Springer International
(2003)

44. Pedrycz, W., Succi, G.: Fuzzy logic classifiers and models in quantitative software
engineering. In: Advances in Machine Learning Applications in Software Engineering,
pp. 146–167. IGI Global, USA (2007)

45. Pedrycz, W., Breuer, A., Pizzi, N.J.: Fuzzy adaptive logic networks as hybrid models of
quantitative software engineering. Intell. Autom. Soft Comput. 12(2), 189–209 (2008)

46. Lee, J., Kuo, J.-Y.: New approach to requirements trade-off analysis for complex systems.
Knowl. Data Eng. IEEE Trans. 10(4), 551–562 (1998)

47. Georgieva, O., Dimov, A.: Software reliability assessment via fuzzy logic model. In:
Proceedings of the 12th International Conference on Computer Systems and Technologies
(CompSysTech ‘11), Vienna, Austria (2011)

48. Cooper, K., Cangussu, J.W., Lin, R., Sankaranarayanan, G., Soundararadjane, R., Wong, E.:
An empirical study on the specification and selection of components using fuzzy logic. In:
Proceedings of the 8th international conference on Component-Based Software Engineering
(CBSE’05), St. Louis (2005)

170 D.E. Tamir et al.

http://www.agilemodeling.com/
http://ww.gfdi.org/what_is_qfd/history_of_qfd.html
http://ww.gfdi.org/what_is_qfd/history_of_qfd.html

49. George, R., Srikanth, R., Petry, F.E., Buckles, B.P.: Uncertainty management issues in the
object-oriented data model. Fuzzy Syst. IEEE Trans. 4(2), 179–192 (1996)

50. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex Fuzzy Sets. Fuzzy Syst. IEEE Trans.
10(2), 171–186 (2002)

51. Ramot, D., Friedman, M., Langholz, G., Kandel, A.: Complex fuzzy logic. Fuzzy Syst. IEEE
Trans. 11(4), 450–461 (2003)

52. Dick, S.: Towards complex fuzzy logic. Fuzzy Syst. IEEE Trans. 13(3), 405–414 (2005)
53. Tamir, D.E., Lin, J., Kandel, A.: A new interpretation of complex membership grade. Int.

J. Intell. Syst. 26(4) (2011)
54. Tamir, D.E., Kandel, A.: Axiomatic theory of complex fuzzy logic and complex fuzzy classes.

Int. J. Comput. Commun. Control 6(3) (2011)
55. Tamir, D.E., Last, M., Kandel, A.: Complex fuzzy logic. In: Seising, R., Trillas, E., Termini,

S., Moraga, C. (eds) On Fuzziness, p. 429. Springer, Heidelberg (2013)
56. Tamir, D.E., Last, M., Kandel, A.: The theory and applications of generalized complex fuzzy

propositional logic. In: Yager, R.R., Abbasov, A.M., Reformat, M.Z., Shahbazova, S.N.
(eds) Soft Computing: State of the Art Theory and Novel Applications. Springer, Heidelberg
(2013)

57. Behounek, L., Cintula, P.: Fuzzy class theory. Fuzzy Sets Syst. 154(1), 34–55 (2005)
58. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory, 2nd edn. Elsivier,

Amsterdam (1973)
59. Cintula, P.: Advances in LΠ and LΠ1/2 logics. Arch. Math. Logic 42, 449–468 (2003)
60. Montagna, F.: On the predicate logics of continuous t-norm BL-algebras. Arch. Math. Logic

44, 97–114 (2005)

Author Biographies

Dr. Tamir is an associate professor in the Department of
Computer Science, Texas State University, San Marcos, Texas
(2005—to date). He obtained the Ph.D.-CS from Florida State
University in 1989, and the M.S./B.S.-EE from Ben-Gurion
University, Israel in 1983, 1986 respectively.
From 1996–2005, he managed applied research and design in

DSP Core technology in Motorola-SPS/Freescale. From 1989–
1996, he served as an assistant/associate professor in the CS
Department at Florida Tech. Between 1983 and 1986, he worked
in the applied research division, Tadiran, Israel.
Dr. Tamir is conducting research in the areas of data

compression and pattern recognition, complex fuzzy logic, and effort based usability evaluation.
Additional research areas include signal processing and combinatorial optimization. He is teaching
graduate and undergraduate courses in formal languages, computer architecture, multi-media
programming, graphical user interfaces, and computer graphics. He is supervising research and
individual study courses with graduate and undergraduate students; twenty eight students have
completed their master’s thesis/Ph.D. dissertation under his supervision.
Dr. Tamir has published more than 90 refereed journal and conference papers as well as four

book chapters in the areas of combinatorial optimization, computer vision, audio, image, and video
compression, human computer interaction, and pattern recognition. He has been a member of the
Israeli delegation to the MPEG committee and a Summer Fellow at NASA KSC.

Complex Fuzzy Logic Reasoning-Based Methodologies … 171

Dr. Mueller is an assistant professor in the Department of
Computer Information Systems, Texas A&M University—
Central Texas, Killeen, Texas (2012—to date). He obtained the
M.S. and Ph.D. degrees in Computer Science from the Illinois
Institute of Technology in 1997 and 2003 respectively, and the B.
T. degree in Computer Applications from Washington University
in St. Louis Missouri in 1975.
From 1968 to 1985, he acted in various capacities developing

and testing inventory control software, data base query lan-
guages, and telephony applications. From 1985 to 2008, he was
an independent-contract Software Engineer. He has developed
and tested high reliability software such as medical devices,
specialized networking application, and avionics.

Dr. Mueller is a Senior Member of the ACM and the IEEE. In addition, he is a member of
(ISC)2 holding the Certified Information Systems Security Professional (CISSP) credential.
Dr. Mueller is conducting research in several Software Engineering topics including

cyber-security, software requirements, software testing, and effort based software usability. He
has supervised 3 master’s thesis and published 15 refereed journal and conference papers on
human factors, cyber-security, and software testing.

Dr. Kandel received the B.S. degree in Electrical Engineering
from the Technion-Israel Institute of Technology, Haifa, Israel,
the M.S. degree in Electrical Engineering from the University of
California, Santa Barbara, and the Ph.D. degree in Electrical
Engineering and Computer Science from the University of New
Mexico, Albuquerque.
He was the Chairman of the Computer Science and

Engineering Department, University of South Florida, during
1991–2003 and the Founding Chairman of the Computer Science
Department at the Florida State University during 1978–1991. He
was a Distinguished University Research Professor and Endowed
Eminent Scholar in Computer Science and Engineering at the
University of South Florida, Tampa, and the Executive Director
of the National Institute for Applied Computational Intelligence.
Dr. Kandel is the author or coauthor of more than 800 research

papers for numerous professional publications in Computer Science and Engineering. He is the
author, coauthor, editor, or coeditor of 51 text books and research monographs, with the most
recent text “Calculus Light” coauthored with Prof. M. Friedman and published in 2011 by
Springer-Verlag. He is a member of the editorial boards and advisory boards of several leading
international journals in Computer Science and Engineering.
Dr. Kandel is a Fellow of the Association for Computing Machinery, the Institute for Electrical

and Electronics Engineers, the New York Academy of Sciences, the American Association for the
Advancement of Science, and the International Fuzzy Systems Association. He was the recipient
of the Fulbright Senior Research Fellow Award at Tel-Aviv University during 2003–2004. In 2005
and 2013, he was selected by the Fulbright Foundation as a Fulbright Senior Specialist in applied
fuzzy logic and computational intelligence. Dr. Kandel is the recipient of numerous professional
awards, including the 2012 IEEE Computational Intelligence Society Fuzzy Systems Pioneer
Award.
Presently, Dr. Kandel is a Distinguished University Professor Emeritus at the University of

South Florida (retired in 2012), and since 2013 he is a Visiting Professor in the School of
Computing and Information Sciences at the Florida International University, Miami, Florida.

172 D.E. Tamir et al.

Possibilistic Assessment of Process-Related
Disclosure Risks on the Cloud

Valerio Bellandi, Stelvio Cimato, Ernesto Damiani
and Gabriele Gianini

Keywords Cloud computing � Risk assessment � Secure computation �
Possibility � Theory

1 Introduction

Business processes that involve storing or transmitting personal data are subject to
strict regulatory and compliance requirements. The choice of deploying such pro-
cesses on a shared platform like the cloud hinges on the process owner being
convinced that the cloud platform is fully compliant with regulations. If a highly
regulated business process (e.g. a e-health or e-government one) is to take place on
a public cloud, then its deployment must fully meet all applicable regulations and
laws regarding data confidentiality and leakage prevention. Otherwise, the process
owner risks liability for violating privacy or other legal requirements. In this chapter
we focus on a specific but important category of data disclosure events, the ones
that bring one or more parties taking part to a cloud-based business process to know
more information than the process execution would entail. These unwanted dis-
closures may be due to intentional publishing of supposedly protected information
items, or to carelessness in the communication protocol implementation and
deployment, e.g. when one party is using the same mobile terminal previously used
by another and can reconstruct the information items held. We call these events

V. Bellandi (&) � S. Cimato � E. Damiani � G. Gianini
Department of Computer Science, Università degli Studi di Milano, Milano, Italy
e-mail: valerio.bellandi@unimi.it

S. Cimato
e-mail: stelvio.cimato@unimi.it

E. Damiani
e-mail: ernesto.damiani@unimi.it

G. Gianini
e-mail: gabriele.gianini@unimi.it

© Springer International Publishing Switzerland 2016
W. Pedrycz et al. (eds.), Computational Intelligence and Quantitative
Software Engineering, Studies in Computational Intelligence 617,
DOI 10.1007/978-3-319-25964-2_9

173

process-related data disclosures, in order to distinguish them from disclosures due
to conventional eavesdropping attacks. Here we present a novel, process-oriented
risk assessment methodology aimed at assessing process-related data disclosure
risks on cloud computing platforms. likelihood estimates, which allow analysing
threats for which a detailed history is not available (iii) support for quick visual
comparisons of risk profiles from alternative processes even when impact cannot be
exactly quantified.

Risk Definition

From the economic standpoint, the risk of an “adverse event” (a.k.a. “feared event”)
E for a given actor A is often represented as the product of the damage
I(E) (expressed in currency units) in which A incurs when E really happens, times
the likelihood that E might happen, traditionally represented in terms of probabil-
ities. In symbols: RðA;EÞ ¼ IðEÞPrðEÞ:

In the computer security context, one needs to identify all the adverse events as
manifestations of security threats and for each estimate I(E) and Pr(E); then the
overall risk is computed by a suitable aggregator. Typically [1], the risk analyst puts
herself in the place of a specific actor (e.g. the process owner, i.e. the stakeholder in
whose name, a business process P is executed) and asks the following questions:

• Which adverse event can happen to the information assets involved in P? (threat
categorization)

• How severe could that event be for the process owner? (threat impact
assessment)

• How much is this event plausible? (threat likelihood assessment)

Likelihood

As far as the estimate of the likelihood is concerned, many risk assessment methods
use predictive models involving a certain number of parameters, and each param-
eter is usually affected by some degree of uncertainty. There are cases where the
probability of adverse events can eventually be obtained by propagating this
uncertainty (i.e. either by analytical or Monte Carlo methods). However, in many
cases, assessing the probability of the parameter values is too difficult due to
incompleteness of information. As put forward in [2] “Probability is perfect, but we
cannot elicit it perfectly”. In fact, the uncertainty involved in risk assessment has
typically two distinct origins: it can be due either to variability or to imprecision (or
to both factors). Variability (also referred to as “objective uncertainty”) arises often
(but not exclusively) from the random character of natural processes. Imprecision
(also referred to as incomplete information, partial ignorance or “subjective
uncertainty”) arises from the partial character of individual knowledge about the
state of the world. Traditionally, in risk assessment no distinction was made
between these two types of uncertainty, both being represented by means of a single
probability distribution. However, in case of partial ignorance, the use of proba-
bility measures introduces information that is in fact not available: this may seri-
ously bias the outcome of a risk analysis [3]. While random variability can be

174 V. Bellandi et al.

suitably represented by probability measures and propagated by the methods of
Probability Theory, incomplete information is better accounted for and propagated
by the methods of Possibility Theory. Possibility Theory is similar to Probability
Theory in that it is based on set functions, but differs from it by the use of a pair of
dual set-functions (the possibility measure and the necessity measure) instead of
only one (the probability measure) and by the fact that is not additive, but
sub-additive, and can be cast either in an ordinal or in a numerical setting (the two
formulations differ in terms of conditioning, and independence notions). The latter
form will be used in this chapter. The development of Possibility Theory is due to a
large number of authors, especially to Zadeh [4] and to Dubois and Prade [5, 6]
(a systematic exposition can be found in [7], a review in [8–10]). In our method-
ology, we rely on the knowledge of the business process model and its underlying
micro-economics to attach possibilities to actors misbehavior/violation of confi-
dentiality. We are going to indicate (Sect. 5.2) how the knowledge about the
likelihood of an adverse event can be elicited and suitably represented in possi-
bilistic form.

Impact

As far as the impact (a.k.a. severity) is concerned, its precise quantification is often
a challenge. In our methodology, we provide an evaluation of costs taking into
account the value of the disclosed information by means of a set of techniques
known as Value of Information (VoI) analysis. As we shall see, uncertain knowl-
edge about the impact of adverse events on processes can be suitably represented in
possibilistic form (Sect. 5.3). By composing possibilistic information about the
likelihood of an event and the possibilistic information about the impact of that
event, one can obtain a possibilistic representation of the risk of an adverse event
and use this as the basis for taking decisions.

In this chapter, first we review related work (Sect. 2); then we briefly introduce
Possibility Theory (Sect. 3) and, after illustrating the structure of a generic process
model (Sect. 4), we describe our methodology (Sect. 5). Finally, we define an
instance of our process model and illustrate the application of our methodology to
that specific case (Sect. 6).

2 Related Work

Cloud computing is a computing paradigm where “massively scalable IT-enabled
capabilities are delivered ‘as a service’ to external customers using Internet tech-
nologies” [11]. If on the one hand the adoption of such a model provides cost
savings through economies of scale, on the other it introduces some peculiar risk
challenges that increase the risks traditionally introduced by any externally pro-
vided IT service.

Possibilistic Assessment of Process-Related … 175

Security Risk Assessment on the Cloud

From the perspective of the security analyst, cloud-based services are outsourced in
the least transparent way, since data are stored and processed on unspecified servers
located in some unknown places, out of the control of the data owner. For these
reasons, some researchers have started introducing techniques to deal with specific
cloud-related issues [12–14].

Various bodies such as the Cloud Security Alliance (CSA), the European
Network and Information Security Agency (ENISA), and the US National Institute
of Standards and Technology (NIST) have released documents assisting organi-
zations and customers in the evaluation of the security issues related to cloud
computing [15–17]. The Cloud Controls Matrix released by CSA provides an
useful description of the security principles aiming to guide cloud vendors and help
cloud clients in assessing overall security risks of a cloud service provider [16].
NIST Special Publication 800-144 provides an overview of the security and privacy
challenges for public cloud computing. In an early study by ENISA [15], a
cloud-specific, semi-qualitative risk assessment process was anecdotally described
using three use-cases: the SMEs’ perspective on cloud computing, the impact of
cloud computing on service resilience, and a scenario on cloud-based e-Health
applications. Within the feared events mentioned in the study is the unwanted
disclosure of information to co-tenants: an event which may be due to failure of
mechanisms separating storage, memory and routing between different tenants of
the shared infrastructure caused by different kind of threats, such as guest-hopping
attacks, or SQL injection attacks exposing multiple customers’ data stored in the
same table.

The industrial whitepaper [18] describes a qualitative risk assessment method-
ology specific for clouds. It starts by considering risk factors that change when an
organization shifts from a traditional infrastructure to a cloud-based one. The
analysis is based on the risk taxonomy presented by the Open Group [19]. Some
cloud specific threats are identified, such as the possibility for an attacker to escape
from the virtualized environment, the possibility to ride or hijack sessions in shared
web applications, threats to the integrity and confidentiality of data caused by the
insecure usage of cryptography or the selection of flawed implementation of
cryptographic primitives. Other specific threats are those concerning problems with
standard security controls, such as the difficulties to execute network security
controls in virtualized environment, poor management of the of encryption keys,
difficulty of establishing security metrics suitable to monitor the status of cloud
resources.

Another interesting case study showing qualitative risk assessment at work in a
cloud computing scenario is described in [20], where the case of a software com-
pany developing business software and adopting a IAAS provided by another CSP
is analyzed. The methodology is based on the Risk IT framework, which provides a
detailed process model for the management of IT-related risk, as well as on the
COBIT 5 framework by the Information Systems Audit and Control Association
(ISACA) [21], which assists enterprises in achieving their objectives for the

176 V. Bellandi et al.

governance and management of Information Technology (IT). RISK IT includes a
list of generic high-level risk scenarios and a mapping between those scenarios and
more general COBIT control objectives, so that a map of risks showing the
impact/magnitude and likelihood/frequency of key risks can be created. Based on
this map organisations adopt a risk mitigation approach, balancing the benefit from
deploying security controls and the costs necessary for their implementation.

Some initial work toward a quantitative risk assessment framework for cloud
computing, called QUIRC, has been presented in [22]. The QUIRC framework
classically defines risk as a combination of (a rough estimate of) the probability of a
feared event and its severity. QUIRC lists six key Security Objectives (SO) for
cloud platforms, claiming that most of the typical attack vectors and feared events
map to one of these six categories. Its strong point is its fully quantitative approach,
which enables stakeholders to comparatively assess the robustness of cloud vendor
offerings. However, lack of reliable data on the occurrences of cloud threats in
many vertical domains can make QUIRC probability assignment somewhat
arbitrary.

Another quantitative framework for assessing some security risks associated
with cloud computing platforms has been proposed in [23]. The model relies on
subjective assessments by experts of likelihood and severity of adverse events that
allows the definition of the weights of the coefficients for the basic security prop-
erties (CIA—Confidentiality, Integrity, and Availability) and the corresponding
values of assets relevant for the project. Even if the resulting prioritisation of the
risks is valuable, this approach only considers threats to some specific security
properties.

Focusing on the same set of security properties, Khan et al. [24] introduced a
systematic approach combining existing tools and techniques such as CORAS [25],
and the IRAM (Information Risk Analysis Methodology) with the Threat and
Vulnerability Assessment tool (T&VA) [26]. Their technique uses a list of threats
provided by the Information Security Forum (ISF). Depending on the priority of the
assets and on the perceived likelihood of the ISF threats, they construct an evalu-
ation matrix and use it to rate the threats’ impact on the business. Due to the
anecdotal nature of the ISF threat list, this technique can be considered a
semi-quantitative one.

Integration of Disclosure Risk Assessment with Privacy Risk Management
Frameworks

Business processes involving personal data present specific risks due to the liability
brought upon the process owner (often called controller in this context) and,
possibly, upon other stakeholders by violations of the privacy of third parties (data
subjects). A special regulatory framework for personal data processing is currently
in force at the European level, prescribing—among other things—that the purposes
of the business process involving personal data are clearly defined, that personal
data are relevant to such purposes, that personal data are erased at the end of a given
time, and that all data subjects have the opportunity to exercise their rights (such as
opposition, access, rectification and deletion of their personal data). In addition, the

Possibilistic Assessment of Process-Related … 177

controller has an obligation to take all useful precautions in order to ensure the
security of the personal data he processes.

Privacy authorities and regulators have been devoting a huge effort to develop
Privacy Risk Management (PRM) frameworks [27]. As observed in [28], we still
lack of a systematic approach to identify privacy threats and design privacy sup-
portive business processes. According to recent studies [29], privacy threat analysis
should begin at the earliest possible stage of the lifecycle of any business process
involving personal data, when there are more opportunities to influence the business
process’ implementation; also, it should continue along the business process life-
cycle. In principle, privacy risks may be targeted by all forms of risk analysis
introduced in previous Sections. Qualitative Analysis uses ordinal scales expressed
in words to quickly assess the relative severity of risks. This technique is often used
when numerical data is not available and/or the process targeted by privacy risk
assessment is only partially known by the risk assessor, as is often the case at early
design stage. The quantitative approach is generally more complex to undertake,
requiring full knowledge of the business processes to be analyzed and, in many
cases, the development of organization-specific value models to assess the value of
disclosed information as seen by different actors.

Possibility Theory in Risk Assessment

The drawbacks of the approach in computing the risk as a product of perfectly
known factors, such as probability and impact, have been pointed out by several
authors. A major criticism regards the way experts assign precise numerical values
to risk parameters (see for instance [30–32]). Possibility Theory was initiated by
Zadeh [4], and later developed by several authors among which Dubois and Prade
[6]. In its variants, it has found applications in several domains including project
investment decision [33], project network analysis [34], contract decision making
[35] safety performance [36]. Within risk assessment, Possibility Theory has been
used in various hybrid forms and in a limited number of use cases (see for instance
[37]). From the methodological point of view, several works have focussed on the
problem of merging data and expert opinion [38, 39]. In the context of general
decision making with possible applications to risk management, most works focus
on the joint propagation of variability and imprecision in the risk assessment
process [3, 40, 41].

3 Elements of Possibility Theory

3.1 Possibility Distributions

The basic entity of Possibility Theory is the possibility distribution, denoted π,
which represents the subjective knowledge of an agent about the actual state of
affairs x of a quantity. It consists in a mapping π from a set of states of affairs S to a

178 V. Bellandi et al.

totally ordered scale of plausibility, such as the unit interval px : s 2 S ! pðsÞ 2
½0; 1� and it distinguishes what is plausible from what is less plausible for the
ill-known quantity x according to the following conventions:

• pxðsÞ ¼ 0 means that the state s is rejected as impossible for x;
• pxðsÞ ¼ 1 means that the state s is totally possible (= unsurprising) for x.

If the state space is complete, at least one of its elements should be the actual
state (closed word hypothesis), so that at least one state is totally possible: this is
referred to as the normalisation condition: maxs2S pxðsÞ ¼ 1. Distinct values within
S may simultaneously have a degree of possibility equal to 1. This framework can
represent extreme forms of partial knowledge:

• complete knowledge: for some state s0, pðs0Þ ¼ 1 and for all the others pðsÞ ¼ 0,
i.e. only s0 is possible;

• complete ignorance: pðsÞ ¼ 1 8s 2 S, i.e. all the states are totally possible.

The simplest non-extreme form of a possibility distribution on the set S is the
bipolar characteristic function of a subset E of S, i.e. pðx 2 EÞ ¼ 1 and
pðx 62 EÞ ¼ 0. It models the situation when all that is known about x is that it cannot
lie outside E. This type of possibility distribution is naturally obtained from experts
stating that a quantity x lies between values a and b: in which case E is the interval
[a, b]. However, this binary representation is not entirely satisfactory: sometimes,
even the widest set of possible values does not rule out some residual possibility
that the value of x lies outside it: so it is natural to use a graded notion of possibility.
In this case, formally, a possibility distribution π coincides with the membership
function lF of a fuzzy subset F� S, such that lFðsÞ ¼ pxðsÞ. The core of a possi-
bility distribution pxðsÞ is the set of s such that pxðsÞ ¼ 1; the support is the set such
that pxðsÞ[0.

3.2 Possibility and Necessity

Based on the knowledge captured by the possibility distribution, Possibility Theory
provides two dual evaluations of the likelihood of an event (for instance, that the
actual value x of an ill-know quantity, should lie within a certain interval): the
possibility P and the necessity N of the event. Given a subset of states A and the
event “the actual value x of the unknown quantity lies in A” the normalized measure
of possibility P and necessity N are defined from the possibility distribution p :
S ! ½0; 1� such that sups2S pxðsÞ ¼ 1 as follows:

PðAÞ ¼ sup
s2A

pxðsÞ NðAÞ ¼ 1�Pð�AÞ ¼ inf
s62A

ð1� pxðsÞÞ ð1Þ

P tells to what extent at least one element of A is consistent with the knowledge
px (i.e. is possible), while N(A) tells to what extent no element outside A is possible

Possibilistic Assessment of Process-Related … 179

(i.e. to what extent A is implied by the knowledge px), i.e. the possibility measure
refers to the idea of plausibility, while the dual necessity measure refer to the idea of
certainty. They are dually related: NðAÞ ¼ 1�PðAcÞ, where Ac is the complement
of A, the certainty of an event reflects a lack of plausibility of its opposite. However
they cannot be obtained one from another. This represents a remarkable difference
with Probability Theory, where probability is a self-dual measure (in probability
theory PrðAÞ ¼ 1� Prð�AÞ), however, degrees of necessity can be equated to lower
probability bounds and degrees of possibility to upper probability bounds.

The possibility measure and the necessity measure verify respectively the fol-
lowing maxivity and the minitivity axioms:

PðA[BÞ ¼ maxðPðAÞ;PðBÞÞ NðA\BÞ ¼ minðNðAÞ;NðBÞÞ 8A;B� S

3.3 Possibility Propagation in Risk Assessment

Most Risk Analysis methodologies prescribe to proceed by a bottom-up compo-
sitional approach towards the risk estimate. One should start by breaking the
system/process under analysis down to the elementary component level; then for
each component, one should list all the possible failure modes; obtain the failure
likelihood of each mode and each component; propagate that information from
component level to the next level of hierarchy, up to system level so as to obtain
eventually, integrating impacts in the calculation, the risk value for each failure
mode. At this point, depending on the type of decision to be supported by the
analysis, one can take different steps, for instance prioritise risks by failure mode or
by component and state the degree of conformance to the objectives or take con-
sequent actions.

In risk assessment the following issues are considered fundamental:

1. Representing the available information faithfully;
2. Accounting for dependencies, correlations between the parameters
3. Choosing a suitable propagation technique.

3.3.1 Input Variables and Their Relationships

Most of the information relevant to the risk assessment of the process of interest
come from expert opinion elicitation (for a review of elicitation methods see [42]):
for this kind of information the possibilistic representation is commonly deemed
more effective than the probabilistic one, since it is difficult for experts to assign
precise numerical values to risk parameters. If different opinions about a parameter
are provided by different experts or sources, they can be merged by the use of
suitable operators or knowledge fusion procedures [38]. In order to illustrate our

180 V. Bellandi et al.

methodology, we assume, for sake of simplicity, that a single expert has been
consulted, and that, provided with the available knowledge, (s)he has expressed its
opinion in terms of possibility distributions over the space of the possible events.

Also the assumptions on dependencies can be elicited from expert opinion. The
most conservative attitude in absence of contrary expert statements is to make the
least specific assumption, corresponding to the hypothesis that the events are sep-
arable. For illustrative purposes, hereafter, we adopt this simplifying assumption.

3.3.2 Reliability Propagation

Knowledge propagation, from the system/process components level description to
the system/process as a whole, can be carried on through the application of logical
aggregators and functional aggregators defined on the basis of the extension prin-
ciple [43]. For instance, following [44, 45] (other possibilistic approaches to reli-
ability are reviewed in [46]) one can perform a fault-tree based propagation of the
possibility of failure: from the possibility distributions of a variable describing the
failure of individual system/process components it is possible to work out the
possibility distribution of variables describing the failure of the whole
system/process.

Consider a reliability model where a system component at any instant of time is
in one of two states: perfectly functioning s = 1 or completely failed s = 0, i.e.
s 2 S ¼ f0; 1g ¼ ffail;workg. Assume event behaviour is fully characterised in
terms of possibility measures: this set up is called PosBiSt (from “Possibilistic,
Binary States”). Assume that expert opinion has assigned to the ill-known state xi of
the i-th component the possibilities ri � pðxi ¼ 1Þ and u1 � pðxi ¼ 0Þ: here ri is
called possibilistic reliability of the component, while ui is called possibilistic
unreliability of the component. In a possibilistic setting in general ri 6¼ 1� ui so
one needs to deal with the two quantities separately [47].

If the system state is completely determined by the states of its components,
the structure function of an n components system can be written
G ¼ G px1 ; . . .; pxi ; . . .pxnð Þ. Also for the ill-known system state G we adopt the
convention G = 1 if it is functioning and G = 0 if it is failed and define the system
Possibilistic Reliability as RG ¼ pðG ¼ 1Þ and the system Possibilistic Unreliability
as UG ¼ pðG ¼ 0Þ.

For instance, consider the important class of systems whose structure function is
composed of only AND and OR gates of the Boolean states of its components.
Among them a common class is the class of k-out-of-n systems. A system with
n unrelated components is said to have a k-out-of-n G structure if it operates when
at least k components operate: fully parallel systems are 1-out-of-n G systems, fully
series systems are n-out-of-n G systems. For general k-out-of-n systems the relia-
bility and unreliability can be computed as follows. The Possibilistic Reliability

Rk=n
G of a k-out-of-n system based on a set A of components whose possibilistic

reliabilities form a strictly descending ordered list ðr1; r2; . . .; rnÞ and whose

Possibilistic Assessment of Process-Related … 181

possibilistic unreliabilities form a strictly ascending ordered list ðu1; u2; . . .; unÞ are
respectively

Rk=n
G ¼ max

E22A:jEj¼k
min
i2E

ðriÞ
� �

¼ rk ri [rði�1Þ 8i 2 f2; ng

Uk=n
G ¼ max

E22A:jEj¼ðn�kþ 1Þ
min
i2E

ðuiÞ
� �

¼ uk ui\uði�1Þ 8i 2 f2; ng

Arbitrarily complex fault trees consisting—whose details depends on the
system/process structure—can be used to propagate the uncertainty through any
specified system/process, so as to obtain the possibility of system/process failure
events.

3.3.3 Risk Assessment

The propagation of possibilistic reliability from the components to the system
allows to obtain the possibility pGðG ¼ 0Þ of the adverse event (G = 0) (failure) at
system/process level. However, to compute risk one needs also to assess impacts.

Impact Assessment

The impact of the adverse events can be estimated by different approaches: we will
illustrate the approach—based on Value of Information analysis—used by our
methodology in Sect. 5.

Also the knowledge about the impact is suitable to a possibilistic representation.
Typically the output of impact assessment is a fuzzy possibility distribution pI over
the economical value of the incurred damage. The shape of the distribution is
obtained by propagation of uncertainty from the input parameters of the impact to
the overall impact through fuzzy algebraic operations.

The propagation problem can be stated as follows. Let the impact I : Rn ! R be
a function of m variables yi (i.e. y ¼ ðy1; . . .; ymÞ)—possibly represented as an array
of fuzzy sets ðpy1 ; . . .; pymÞ carrying the semantics of possibility distributions. The
problem consists in carrying over to IðyÞ the uncertainty attached to the variables so
as to obtain I’s possibility distribution, the distribution pIðyÞ—with the least pos-
sible loss of initial information.

Risk Computation

Once the knowledge about the likelihood of the adverse event A is represented in
terms of the possibility distribution pG and the knowledge about its impact is
represented in terms of the possibility distribution pI a possibility distribution pR of
the risk R can be obtained by the product-convolution of the two distributions,
corresponding to the product of the two variables: pR ¼ pG � pI .

182 V. Bellandi et al.

The output of this operation is a possibility distribution pRðR ¼ rÞ over the
admissible economic values of risk. Based on this distribution one can make further
computations to support the decision process. Given pRðrÞ, one can choose different
approaches to support the decision. For instance if the aim of the risk analysis is to
assess whether the risk exceeds some predefined threshold t, one can define the
event F as r[t and compute possibility PðFÞ and necessity NðFÞ of the event F.
A decision can then be based, for instance, on the synthesis value given by their
average or on a different synthesis value. A technique for obtaining synthesis values
suitable to risk assessment consists in taking account the subjective risk aversion of
the decision maker by adopting the so called Hurwicz criterion, generalised to
possibility distributions as proposed by Gyuonnet et al. [48].

The methodology described in this chapter aims to allow comparison among the
residual risks of competing risk mitigation strategies. In this case the decision can
be taken either based on the ordering of synthesis indicators or based on ranking
criteria for fuzzy intervals [49] as proposed by Dubois and Prade (called the four
grades of dominance method) [50].

4 Process Model

Let us now formalise our notion of business process model. Since the aim of our
model is enabling risk assessment, the process representation will focus on
risk-related rather than design-related aspects. We start by representing the business
process’ set of actors as a set A ¼ fA1; . . .;Ang. Each actor Aj holds a (possibly
empty) information item INFOj whose content is used to generate messages to be
exchanged during the business process’ execution. Also, we denote by fIj;kg the
impact of the disclosure of INFOj to Ak (as assessed by Aj). In principle, this impact
can be positive or negative, and can depend on a number of factors, including the
content of INFOj or of other information items.1 In our view, security controls
(when present) are an integral part of the business process definition. In order to be
able to represent a complete set of security controls, message exchange in our
process model is a general time-stamped choreography [51] consisting of:

• Messages, i.e. triples ðAi;Aj;mtsÞ, where mts is (a part of) an INFO item and ts is
an integer representing a discrete time.2

• Local computations ðAi; f ðÞ; INFOi;tsÞ i.e. functions computed by actors on
(portions of) locally held information at a given time.

Figure 1 (left) shows an illustrative process model.

1Of course, the impact of disclosing an empty item is always 0.
2For the sake of simplicity, in our model we assume synchronous clocks and instant message
delivery.

Possibilistic Assessment of Process-Related … 183

4.1 Process Model Assumptions

Our process model is completed by some additional assumptions. Here b denotes
the possibility of an event, however assessed (for our own possibility assessment
technique see Sect. 5.2):

• Protocol efficacy: Given a message delivery ðAs;Ad;mtsÞ, with mts ¼ INFOs

then biðEsdÞ ¼ MAX for all actors Ai.
• Information completeness: Given a message delivery ðAs;Ad;mtsÞ, with

mts � INFOs, then biðEsdÞ ¼ 0
• Strong local computation transparency: Given a local computation

ðAi; f ðÞ; INFOi;tsÞ, then INFOi ¼ INFOi;ts [f ðINFOi;ts [Sf Þ for t	 ts, where Sf
is the specification of f as an algorithm or a closed formula.

• Belief propagation: Given a message delivery ðAs;Ad;mtsÞ, then for t	 ts,
biðEskÞ ¼ biðCðAd;AkÞÞ for k 6¼ d, where CðAd ;AkÞ denotes the event of
information sharing between Ad and Ak.

It is important to remark that our local computation transparency assumption
implies that any actor computing a function f ðÞ over its local data becomes aware of
the results of that function as well as of its specification Sf , represented e.g. as a
computer program. However, research has shown that this assumption may be
weakened by obfuscation or garbling techniques [52].

4.2 Garbling Outsourcing Scheme

Garbled circuits, a classical idea rooted in early work by Andrew Yao, are a
well-known example of obfuscation techniques. Here, we follow the literature [52]

Fig. 1 Left an illustrative process model. Right a sample cloud process model

184 V. Bellandi et al.

to briefly describe a garbling outsourcing scheme corresponding to Yao’s garbling
technique. The purpose of our simplified description is to show how obfuscation is
represented within our process model. Let us assume Alice wants Bob to compute
for her a function f ðÞ on a set of inputs, some of which are held by herself and
others by Bob, without sharing with Bob the function specification Sf . At a high
level of abstraction, the scheme works as follows: Alice creates a “garbled circuit”,
i.e. the specification S0f of a garbled function f 0ðÞ having the same input-output
table as f ðÞ, and sends it to Bob. Bob uses S0f to build f 0ðÞ, compute it with his
inputs B and returns the result to Alice. The result of f 0ðB; xÞ evaluation with x ¼ A
(where A is Alice’s inputs) coincides with the function f ðÞ that Alice wanted Bob to
compute; but by computing f 0ðÞ, Bob has learnt nothing about Sf . Note that in this
scheme Alice does not send her inputs to Bob; rather, her inputs are encoded into
the “garbled circuit” in such a way that Bob cannot determine what they are. As an
example, assume that Bob has x ¼ 2 bits, ða; bÞ, and Alice has y ¼ 2 bits, ðc; dÞ.
The function f ðÞ is:

f ðx; yÞ ¼ ðaþ cÞ _ ðbþ dÞ ð2Þ

For the construction of the garbled circuit, one simply constructs a new truth
table for each gate in the original circuit. A sample truth table for an AND gate is
shown Fig. 2, with inputs p; q and output z. Alice picks two random keys for each
wire and obtains the garbled truth table by encrypting the output-wire key with the
corresponding pair of input-wire keys.

After Bob has received the garbled specification Sf 0 and the corresponding truth
tables, he still needs Alice’s inputs before he can evaluate the function. Bob can get
these inputs using a 1-out-of-2 instantiation of Rabin’s oblivious transfer protocol.3

Once Bob has received the input values from Alice via the oblivious transfer
protocol, he can “decrypt” each of the gates, and using his own inputs he can
evaluate the circuit. Today, efficient garbling schemes are available achieving
privacy as well as obliviousness and authenticity, the latter properties being needed
for private and verifiable outsourcing of computation. Highly efficient
block-cipher-based instantiations of garbling schemes have been described in the
literature. For our purposes, it is sufficient to observe that when a garbling out-
sourcing scheme is in force within a process, a weaker assumption (weak local
computation transparency) can be adopted for our business process model, where
the party executing a local computation f ðÞ learns the output of the function, but not
its specification. More formally, let P be a process including a local computation
ðAi; f ðÞ; INFOi;tsÞ. Let GðÞ be a functional acting on the f ðÞ function specification
Sf , so that GðSf Þ ¼ Sf 0 .

3In an oblivious transfer protocol, a sender transfers one of potentially many pieces of information
to a receiver, but remains oblivious as to what piece (if any) has actually been transferred [53].

Possibilistic Assessment of Process-Related … 185

We call GðSf Þ ¼ Sf 0 a garbled specification of f ðÞ if and only if f 0ðxÞ ¼ f ðxÞ for
all inputs x and:

t	 ts : ðAi; f ðÞ; INFOi;tsÞ ! INFOi ¼ INFOi;ts [f 0ðINFOi;tsÞ

It is important to remark that the computation of GðSf Þ ¼ S0f can itself be a local
computation of the process P. This way, any actor can outsource a local compu-
tation to another actor, who will compute the garbled function under our weak
transparency assumption.

5 Methodology for Disclosure-Risk Assessment
in Cloud Processes

In this Section we describe the key elements of our quantitative risk assessment
approach, namely, the identification of the adverse events and threats, the estima-
tion of threats’ possibility distributions and of their impacts.

5.1 The Threat Space

Any risk model must clearly specify the event space where risk will be quantified.
In this chapter we focus on a single, albeit large, family of threats, namely data
process-related leakage threats, i.e. the disclosure of one or more information items
to be exchanged in a multi-party protocol to participating parties who are not the
originally intended recipients. A major adverse event happens when actors (in-
cluding service and cloud providers) put together the partial information they hold
to reconstruct knowledge that is not available to them when taken individually. We
remark that this adverse event is not caused uniquely by collusion among rogue
participants. Indeed, different parties may put together their information for other
reasons, including:

• eDisclosure, i.e. the mandatory process of disclosing information to adversaries
during litigation4

Fig. 2 Garbled computation for an AND gate

4http://www.edisclosureinformation.co.uk.

186 V. Bellandi et al.

http://www.edisclosureinformation.co.uk

• An information request from a regulatory authority5

• Inadvertent or dysfunctional behaviour of employees.

For the first factor, data sharing imposed by courts of law may generate leaks
that are difficult to identify a priori even for experienced security auditors. The
second factor—the intervention of a regulatory authority—is also difficult to pre-
dict. For instance, e-mails containing bids for a auction held in one country may be
stored on a server located in another jurisdiction, where a regulatory authority can
ask the service provider—for reasons unrelated to the auction—full access to the
storage of the mail server, without informing the auctioneer. This way, a third party
would get to know in advance the outcome of the auction.

As one would expect, the third factor has the strongest documentary evidence.
A global security study on data leakage, commissioned by Cisco and conducted by
a U.S.-based market research firm [54] polled more than 2000 employees and
information technology professionals in 10 countries, including major EU markets.
The study identified the adverse event of unwanted information sharing, related to
sloppy implementations of interchange protocols, or intentional communication
with unauthorized parties. For instance, a plain-text email containing a business
offer sent in good faith through a “secure” cloud-based mail service poses a danger
if disclosed by the cloud provider to a competitor of the original sender. Today, it is
very challenging even for experienced process owners to fully identify, analyze and
handle data leakage risks, due to the complexity and diversity of business processes
and of the underlying IT systems; the trend toward outsourcing and the cloud is
further blurring the scenario. Many organizations have little visibility into where
their confidential data is stored on the cloud or control over where that data is
transferred during the execution of a process. Even when insight is available,
organizations often lack a clear methodology to assess whether the process involves
an acceptable level of risk. The methodology and models presented in this chapter
are aimed at filling this gap.

5.2 Possibilistic Model of Information Disclosure

In this Section we will discuss how to estimate the possibility that subsets of
process actors collude, i.e. put together the information they know. We make use of
the notion that the dysfunctional behaviour of actors in a business process is often
due the unfairness of the redistribution of payoffs in the process, (e.g. a benefit
allocation structure that responds to organisation efficiency more than to fairness).
Our technique does not rely on frequency-based probability estimates, rather we
derive the possibility based on the degree / of unfairness in the process resource
allocation and then associate to each subset of actors the possibility distribution of

5Whether data is on premises or in the cloud, the obligation to comply with the demands of the
court or regulatory authorities remains essentially the same.

Possibilistic Assessment of Process-Related … 187

the event in which the subset members decide to put together the information they
hold.

The problem of how profits of a coalition should be redistributed is a
well-known one. A principled solution can be obtained by attributing to each actor
an amount corresponding to the actor’s Shapley Value [55]. Indeed, given a
coalition, the contributions of the actors to the process, and the value of the surplus
value produced by the process, the Shapley value yields a unique ideal allocation of
that value fulfilling some largely accepted requirements. With N actors, this solu-
tion can be visualized as a point on the hyperplane of the feasible allocations in an
N-dimensional space.

This approach can be applied to the actors of an organization to find the fairness
point and compare it to the point representing the current allocation of the value in
the organization: the distance between these two points provides for each actor an
estimate of its individual dissatisfaction. The farther the two points, the more likely
there will be dysfunctional behavior on the part of that actor. Elicitation of expert
opinion can transform this information, into a possibility distribution for the
defection of the individual actor (for a use of a similar method within a probabilistic
approach see [56–62]).

Hereafter first we provide a formal definition of the Shapley Value and of the
computation of the dissatisfaction parameter, then illustrate the use of this infor-
mation in the determination of the actors’ unreliability.

5.2.1 The Shapley Value

The Shapley Value, is an allocation respecting some generally accepted criterion of
fairness. The idea behind it is that each party taking part to a process should be
given a payoff equal to the average of the contribution that she could make con-
sidering each of the possible coalitions underlying the process.

In Game Theory it is customary to call security level of a coalition C the quantity
lðCÞ expressing the total surplus that its members can achieve on their own even if
the non-members took the action that was the worst from C’s perspective.

Let us consider a general game with a set N of N participants. The Shapley
Value is defined as an allocation of payoffs: a payoff vi for each actor i 2 N . Any
subset of players in N is a potential coalition C. A coalition can strike deals among
its own members to exploit all the available knowledge for mutual advantage.
Combinatorially, there are ð2N � 1Þ possible coalitions altogether. In order to
produce each coalition one has to run ideally over all the permutations of actors:
each ideal ordering of the actors corresponds to a non-decreasing surplus value
achieved by the members. One has to take note of the added value introduced by the
actor i, whose Shapley Value is being computed, i.e. one has to compute the added
value DiðCÞ � l fC [igð Þ � lðCÞð Þ which is defined by the difference in security

188 V. Bellandi et al.

levels. The Shapley Value for the actor is then computed as the average over all
permutations of its added values:

vShapleyi ¼ 1
N!

X

r

DiðrÞ ð3Þ

where the index r runs over all the permutations of N objects.
Now let vfactuali be the actual resource allocation for an actor. If the difference

between this quantity and the actor’s Shapley Value is positive, the actor is
under-rewarded for her contribution: this situation may feed its propensity toward a
defection; if, instead, this difference is negative, the actor is over-rewarded and the
discrepancy will not contribute to its propensity towards defection. One needs also
to relate the discrepancy, to the absolute value of vShapleyi . For all the above con-
siderations, the dissatisfaction parameter /i for an actor i can be defined as follows:

/i � h vShapleyi � vfactuali

� �
=vShapleyi ð4Þ

where hðzÞ is such that hðzÞ � 0 if z\0 and as hðzÞ � z otherwise.

Elicitation of Expert Opinions

Following the conventions used so far, we adopt the following notation: xi indicates
the ill known quantity representing the state of the individual actor, the actor can be
defecting, i.e. contribute to data disclosures (xi ¼ 0) or non-defecting, i.e. behaving
correctly with respect to data disclosures (xi ¼ 1); the possibility distribution for the
individual actor, given its / is denoted pxið�j/iÞ : s 2 f0; 1g ! pxiðsj/iÞ 2 ½0; 1�.
Based on this one can define, in correspondence to the two values of s, two distinct
functions of /: the possibilistic reliability function as a function of /, i.e.
rið/Þ � pxiðs ¼ 1j/Þ, and the possibilistic The above defined dissatisfaction
parameter / can be translated into possibilistic reliability rð/Þ and unreliability
uð/Þ based on the elicitation of expert opinion and the application of obvious
constraints—namely rð/ ¼ 0Þ ¼ 1 and uð/ ¼ 0Þ ¼ 0, the non-increasing character
of rð/Þ and non-decreasing character of uð/Þ.

We note, in passing, that due to the monotonicity of r and u, already the value of
the parameter / alone, without further elicitation of knowledge, can be used to rank
the individual actors’ reliabilities and unreliabilities. However expressing, in
addition, expert knowledge in terms of r and u enables the quantitative assessment
of the disclosure risk.

The elicitation of experts’ knowledge in order to obtain a function of a con-
tinuous variable is a well-known problem. In our methodology we use a technique
based on the Bézier curves. Those curves have often been used in in the elicitation
of expert opinion (see for instance [63, 64]) also in the form of membership
functions [65]: they can be used to approximate a smooth (continuously differen-
tiable) function on a bounded interval up to an arbitrary level of detail by forcing
the curve to pass in the vicinity of an arbitrarily high number of control points

Possibilistic Assessment of Process-Related … 189

(in two-dimensional Euclidean space) selected by an expert. Overall, the compu-
tation of the possibility of defection for the individual actor involves the following
steps:

• Expert opinion is elicited to determine the possibilistic reliability rð/Þ and
unreliability uð/Þ as a function of the dissatisfaction parameter /: Bézier curve
based methods are suitable candidates for eliciting expert opinion.

• Given a specific instance of the collaborative process definition, and the actual
allocation to the actors of the resources deriving from the process surplus, the
numerical value of /i is computed for each actor.

• Based on rð/Þ and uð/Þ we compute possibilistic reliability ri and unreliability
ui for each actor.

Note that the individual level unreliabilities already hint at the weak points of the
process: when units of valuable information are fully known by individual process
actors, the individual unreliabilities can be used to quantitatively assess the risk of
its disclosure. Furthermore, this knowledge can be used to support the many-actor
level risk assessment. As it has been shown in Sect. 3.3.2, from individual level (un)
reliabilities one can obtain many-actors (un)reliabilities based on the structure
function of the failure model. The main results can be translated into the possibility
of disclosure. For instance given the reliabilities ri and unreliabilities ui of n actors

• (series analogy) if the failure model is such that it is necessary that all the actors
not to defect in order for the information to be disclosed, i.e. if it is sufficient that
k ¼ 1 actor defects for the disclosure to take place, then the possibilistic relia-
bility is r ¼ miniðriÞ ¼ rn and the possibilistic unreliability is maxiðuiÞ ¼ u1

• (parallel analogy) if the failure model is such that it is sufficient that k ¼ 1 actor
does not defect for the disclosure not to take place, i.e. it is necessary that all
the actors defect in order for the information to be disclosed, then the possi-
bilistic reliability is r ¼ maxiðriÞ ¼ r1 and the possibilistic unreliability is
miniðuiÞ ¼ un

• (k-out-of-n analogy): in this case the failure model is such that it is sufficient that
k (out of n) actors do not defect for the disclosure not to take place, i.e. it is
necessary that ðn� kþ 1Þ actors defect in order for the information to be dis-
closed; as a consequence, the possibilistic reliability is equal to the k-th largest
reliability rk and the possibilistic unreliability is equal to the k-th smallest
unreliability uk.

5.3 Impact Assessment by Value of Information Analysis

The technique we use for estimating impact of information disclosure relies on
quantifying the Value of Information (VoI) for each knowledge item (or set of
items) potentially reconstructed by a subset of colluding process actors. Also the
estimated value of a knowledge item has an intrinsic possibilistic character since it

190 V. Bellandi et al.

will be known to lie in a range but its precise economical value will depend from
several incompletely known factors.

5.3.1 Value of Information Analysis

VoI has been defined as the analytic framework used to establish the value of
acquiring additional information to solve a decision problem. In the risk man-
agement domain, VoI has been successfully used since the Sixties in several areas
of research including engineering and environmental risk analysis [66]. From a
purely rational perspective, it is clear that acquiring extra information is only useful
for an actor A if knowing it can significantly modify its behaviour.

Classic VoI analysis typically involves constructing a complex decision-analytic
model to fully characterise all information items available to each process actor, the
loss each actor would incur should these items become known to other actors, the
costs of interventions that could be executed to prevent them. This comprehensive
approach to VoI often turns out to be prohibitively expensive for use in prioritising
interventions [67]. As alternatives to full VoI, we identified three approaches to
analysing the value of information that are less burdensome:

1. The conceptual approach to VoI, where context information is used to provide
informative bounds on the value of information without formally quantifying it
through modeling. For instance, the VoI of the design information about a
device that is already available on the market cannot be higher than the cost of
reverse-engineering the device itself;

2. The minimal approach to VoI, which is possible when evidence of the net
benefit of holding a piece of information, are readily available from existing
research. For example, the VoI of the design information about a device that is
currently available on the market cannot be higher than the net profit coming
from its sales to its current supplier.

3. The maximal modeling approach to VoI, where the value of an information item
is estimated from previous VoI studies concerning similar information in dif-
ferent contexts. For instance, the VoI of the design information about a
solid-state storage device is quantified according to previous VoI studies on
disks.

These three low-cost VoI methods can be readily applied in priority-setting of
risk-mitigation countermeasure, and raises the question about how the use of VoI to
assess disclosure risk in the framework of our methodology.

Value of Total Information and Value of Partial Information

Here, we take a process-oriented view of VoI, in order to assess the impact of
information disclosure. Let us consider once again a set of actors A ¼ fA1; . . .;Ang
who take part to a business process P, and the expected benefit for each actor Ak,
BenAk resulting from the execution of P. The starting point of our VoI analysis of

Possibilistic Assessment of Process-Related … 191

P is to consider the Value of Total Information (VoTI), i.e. answering the question
“What would be the change to BenAi should Ai know all information (local memory
plus messages) held by the other actors of P?”. If there is no such change, then
achieving extra information is worthless. If such a change exists, then the impact on
Ak of Ai ’s (i 6¼ k) complete knowledge can be estimated as the corresponding
change in the value of BenAk .

For the security-aware process designer, our simple VoTI provides a useful
upper bound, because it tells the maximum value that any information held by other
actors may have for each participant to P. If that value is negligible, or achieving
that information would cost more than that, a rational actor will not pursue dis-
closure any further (i.e., it would not enter agreements for information sharing with
other actors).

A different type of check involves looking at the Value of Partial Information
(VoPI). For any process participant Ai, getting to know some information beyond
the one that is strictly necessary to carry out its part in the process (e.g., the
messages exchanged among other actors, or the content of another actor’s local
memory) may or may not bring a benefit, i.e. a change in BenAi . For each subset
K of knowledge items used in the process, VoPI focuses on (i) checking whether
the benefit of knowing K would match the cost of collecting it and (ii) quantifying
the impact of each actor Ai getting to know K on the benefits BenAk of the other
participants (for i 6¼ k).

5.3.2 Possibilistic Value of Information

The fact that the output of the Value of Information analysis is in nature possi-
bilistic and fuzzy has been broadly recognised and accepted in several domains
[68–72]. Indeed, the knowledge of an expert who has performed VoI analysis can
be best conveyed by means of a possibility distribution (in this case it will not be a
distribution over discrete values but over continuous values). In line with the tra-
ditional representation of the risk as the product of the likelihood of the adverse
event by the impact of the event, one can represent the possibilistic risk by the
(fuzzy) product of the possibility distribution of the event and the possibility dis-
tribution of the values that the impact can take. This point is discussed further in the
next Section.

5.4 The Overall Methodology

In our approach, managing risks related to the execution of a business process P in
presence of threats constitutes itself a process (usually called risk management
process, in symbols MRðPÞ) where alternative techniques for dealing with threats are
compared according to a procedure. The output of MRðPÞ is a risk mitigation

192 V. Bellandi et al.

strategy, which consists of modifications to P that have some effect on the risk of
executing it, including the introduction or removal of security controls.

In this Section, we describe our methodology for comparing alternative risk
mitigation strategies. This methodology does not provide specific guidance on the
choice of mechanisms that will actually counter the threats; rather, it allows com-
paring the residual risk of competing risk strategies. Although qualitative com-
parison is supported, the methodology aims to quantitative cost-benefit calculations,
assessments of risk tolerance, and quantification of preferences involved in MRðPÞ.
We are now ready to provide a step-by-step description:

• The first step is the stakeholder identification, where we identify the actor set A
of our business process P and compute its power set 2A. In our approach,
process stakeholders include all participants to P. Namely, our actor set includes
all actors who, according to the risk assessor, may in any way get the capability
of reading (or writing) information shared during P‘s execution. As we shall see
in Sect. 6.1, actors in A can be further refined by type according to their role in
the computation.

• The second step consists in the formalization of the business process model,
using the syntax introduced in Sect. 4, which represents two types of actions:
(i) message exchanges and (ii) local computations. It is important to remark that
while execution-oriented process models usually contain control structures like
conditions and loops [73], our process model syntax expresses all possible
execution paths independently, i.e. as separate models. The next step takes care
of this.

• The third step consists of process streamlining, which includes loop unrolling
and re-encoding of conditions as parallel paths. Here we do not enter into the
details of business process streamlining, as process improvement techniques
have been deeply studied since the Eighties and are discussed in detail in the
technical literature (see for instance the rich bibliography of [73]). However,
software toolkits supporting our methodology will have to provide guidance w.r.
t. process streamlining.

• The fourth step, identifying reconstructible knowledge, consists in computing
the knowledge set KS for each subset S 2 2A. Each knowledge set includes all
the knowledge that members of A can achieve by putting together the infor-
mation they hold.

• The fifth step consists in estimating the disclosure impact of KS for each subset
S in 2A at each step of the business process P, and to give it a possibilistic
representation (see Sect. 5.3)

• The sixth step consists in estimating the possibility distribution for the defection
for each individual actor, based on process related information, on elicitation of
expert opinion and on the techniques shown in Sect. 5.2. Also to this infor-
mation will be given a possibilistic representation.

• The seventh step consists in estimating the collusion possibility distribution for
each subset S in 2A at each step of the process P (see Sect. 5.1). Once again it is
important to remark that this estimate needs to be process-specific (as it will take

Possibilistic Assessment of Process-Related … 193

into account the micro-economics and social relations underlying P) and take
into account multiple causes of collusion, including dysfunctional behavior,
intervention of regulatory authority and others. The estimation will be based on
on uncertainty propagation methods as those shown in Sect. 3.3.2.

• The eight step consists in aggregating the products between (i) the possibility
distributions of collusion for each subset S in 2A and (ii) the possibility distri-
butions of the impact of KS at each step of the process P, obtaining the total risk
related to the process, in the form of a possibility distribution, based on which
one can take the risk management decisions (see Sect. 3.3.3).

6 A Cloud-Based Case Study

Here we specialize the process model presented in Sect. 4 to describe cloud-based
computations. We rely on a variation of Bogdanov et al.’s representation of cloud
actors [74].

6.1 The Cloud Process Model

In order to make our representation of our multi-party business process actors
suitable for describing cloud-based computations, our actor set A becomes a
(non-necessarily disjoint) triple fIN;COMP;RESg where IN denotes actors holding
non-empty information items (a.k.a. input nodes), while COMP and RES are
auxiliary sets of actors (a.k.a. compute and result actors) whose information items
are initially empty. Such actors respectively perform local computations (COMP)
and publish results (RES). The following constraints—looser versions of the ones in
[74]—are in place for our cloud model:

• Separation of duties: Sender actors belong to IN and COMP only.
• Local information integrity: Any actor can send part of an INFO item it holds

entirely, or relay parts it has previously received from other actors.

Figure 1 (right) shows a sample visual representation of a cloud-based process,
where a buyer sends messages to two sellers who respond with their offers.

6.2 Possibilistic Assessment of Likelihood and Impact

For each subset S 2 2A of the set of actors we can now compute the risk of
disclosure for information shared within S, at each time t as a product of the impact
and the likelihood of the collusion event ESðtÞ, expressed in terms of the event
possibility.

194 V. Bellandi et al.

With regard to the former, we will indicate by ISðAk; tÞ the damage that members
of S can do the actor Ak 2 A, using all messages in the process incoming then with
timing lower or equal to t. We will indicate by KSðtÞ the (possibly empty) common
knowledge of S, which consists then in the INFO items that the actors can jointly
reconstruct from the shares they hold at time t. The knowledge KSðtÞ can be
estimated based on the choreography (and the security features) of the process, the
impact can be estimated from expert opinion and expressed in terms of a possibility
distribution pISðAk ;tÞ over the feasible impact values (a fuzzy set). Hereafter, for sake
of notational simplicity, we indicate such possibility distribution by ISðAk; tÞ.
Furthermore, in the following algebraic expressions, if the individual addends or
factors are fuzzy sets, the arithmetic operations have to be understood as a fuzzy
operations.

Computing the risk posed by S to Ak also requires estimating the possibility
pðESðtÞÞ of members of S having colluded at time t. We will denote this quantity
simply by PSðtÞ. Multiplying the two quantities will yield the possibility distribu-
tion of the risk R posed at time t to actor Ak by the collusion of the set S: we will
denote this possibility distribution by the shorthand RðAk;ESÞ ¼ PSðtÞISðAk; tÞ.

6.3 Sample Assessments

Let us start with the simplest example: a business process where a client uses a
cloud-based computation service to add two integer numbers and another one to
publish the result. In this case, we have the actor set A ¼ ðIN1;COMP1;RESÞ
where actor IN1 holds the information item INFO1 containing the two summands
INFO1½1� and INFO1½2�, actor COMP1 is the outsourced service that computes the
addition, while actor RES publishes the result. The process is represented by the
choreography shown in Fig. 3 (left), where the input actor IN1 sends INFO1 to

Fig. 3 Left sample business process. Right choreography for the garbled sum computation

Possibilistic Assessment of Process-Related … 195

COMP1, who computes the local function f ðINFO1Þ ¼ INFO1½1� þ INFO1½2�, i.e.
adds the summands, and sends the outcome to the result node RES who outputs it.

According to the definitions given in the previous Section, the (possibly empty)
common knowledge of any subset of actors S 2 2A at time t, namely KSðtÞ, is
composed of the INFO items that have been received in their entirety by all
members of S at or before time t. The power set 2A of the actor set is the simple
Boolean lattice (Fig. 4):

Running our sample business process, we obtain the following knowledge sets
KSðtÞ for t ¼ 1; 2; 3 (we omit the formal step K;ð0Þ ¼ K;ð1Þ ¼ K;ð2Þ ¼ ;):
The Process Initialization t ¼ 0

First Step t ¼ 1
Second Step t ¼ 2

The disclosure risk estimated by actor IN1 at t ¼ 0 is zero, as there are no
subsets X 2 2A such that KXð0Þ 6¼ ; but the singleton fIN1g, whose only member
coincides with the risk evaluating actor IN1 (Figs. 5, 6 and 7).

At t ¼ 1, however, there is another singleton such that KXð1Þ 6¼ ;, namely the
subset X ¼ fCOMP1g. All the other subsets for which KXð1Þ 6¼ ; can be obtained
by computing the ideal generated by {IN1, COMP1} w.r.t. the Boolean lattice’s
join ([), so their contribution to the risk estimation is zero (all their members
separately had the same knowledge as they have when taken together).

Fig. 4 The Boolean lattice
for the considered actor set

Fig. 5 The knowledge sets at
time t ¼ 0

196 V. Bellandi et al.

The estimate by actor IN1 of disclosure risk in the part of COMP1 of infor-
mation INFO1 [Sf at t ¼ 1 can therefore be written as follows:

RðAk;ESÞ ¼ RðIN1;EfCOMP1gÞ ¼ PfCOMP1gð1ÞIfCOMP1gðIN1; 1Þ

where PfCOMP1gð1Þ is the possibility distribution (assessed by IN1) that COMP1
will disclose at t ¼ 1 the information it now holds, i.e. the data INFO1 and the
specification Sf of the local function f ðÞ it computes (i.e. the addition).
IfCOMP1gðIN1; 1Þ is the resulting total damage to IN1 of the service provider
COMP1 disclosing what it knows, i.e. the summands INFO1 and the specification
Sf . At t ¼ 2, another singleton set such that KXð1Þ 6¼ ; pops up, namely
X ¼ fRESg.

Again, all the other subsets for which KXð1Þ 6¼ ; can be obtained by computing
the ideal generated by {IN1, COMP1, RES} w.r.t. the Boolean lattice’s join ([) (in
this case, the entire lattice) so their contribution to the risk estimation is zero (all
their members had the same knowledge separately than they have together).

Total risk estimate at t ¼ 2 by IN1 is therefore:

RðAk;ESÞ ¼ RðIN1;EfCOMP1g [EfRESgÞ ð5Þ

Fig. 6 The knowledge sets at
time t ¼ 1

Fig. 7 The knowledge sets at
time t ¼ 2

Possibilistic Assessment of Process-Related … 197

that becomes:

RðAk;ESÞ ¼ PfCOMP1gð1ÞIfCOMP1gðIN1; 1ÞþPfRESgð2ÞIfRESgðIN1; 2Þ

Of course, risk seen by other actors of P can also be evaluated by the same
procedure. For instance, the risk estimated by RES at t ¼ 0 is related to the sin-
gleton subset fIN1g (the only one whose knowledge set is not empty; note that in
this case, unlike before, it does not coincide with the risk assessor). We get:

RðAk;ESÞ ¼ RðRES;EfIN1gÞ ¼ PfIN1gð0ÞIfIN1gðRES; 0Þ

In the same line, risk estimated by RES at t ¼ 1 can be written as follows:

RðAk;ESÞ ¼ RðRES;EfIN1g [EfCOMP1gÞ

that becomes:

RðAk;ESÞ ¼ PfIN1gð0ÞIfIN1gðRES; 0ÞþPfCOMP1gð1ÞIfCOMP1gðRES; 1Þ

6.4 Mitigating Disclosure Risk

In order to mitigate disclosure risk, we apply our risk management methodology
MRðPÞ to compare alternative strategies for dealing with risks connected to disclo-
sure threats. The output of MRðPÞ is a risk mitigation strategy, which consists of
modifications to the process P (including the deployment of security controls) that
have the desired effect on the risk of executing it. While our methodology does not
include specific guidance in the choice of such controls, we remark that the user can
identify possible changes to the process by searching pattern libraries offering
alternative mechanisms for achieving and certifying the security properties of
business process and services (e.g. see [75]).6

We consider first a pattern of obfuscation of the local function f ðÞ. Instead of
pushing the plain-text specification of Sf to the service provider COMP1, actor IN1
can use an obfuscation technique for computing the sum. While the obfuscation
techniques themselves are outside the scope of this chapter, we remark that a variety
of obfuscation mechanisms have been proposed in the literature, including homo-
morphic encryption, evaluation of branching programs, and Garbled Circuits (GC).
GC evaluation and homomorphic encryption are in principle both suitable for
obfuscation of simple arithmetics operations like the one in our example.

6Also, links between security properties and the corresponding threat spaces have been defined in
the framework of several certification schemes [76].

198 V. Bellandi et al.

Let us assume that a GC technique is used for obfuscating addition (the size of
the garbled adder circuit is small, linear in the size of the inputs), and its secure
evaluation is efficient, as it is linear in the number of Oblivious Transfers (OT) and
in the number of evaluations of a cryptographic hash function (for example
SHA-256).7 In other words, in this representation of our business process P, our
functional Gðf Þ denotes a Garbling Outsourcing Scheme mechanism that locally
(i.e., within its own trusted environment) computes a garbled function Gðf Þ ¼ f 0ðÞ
corresponding to the sum, then pushes the garbled specification of f 0ðÞ, namely Sf 0
to COMP1. The corresponding sample choreography is depicted in Fig. 3 (right).

The subset analysis carried out in Sect. 6.3 is now repeated after applying our
modifications to the process P, but we can now apply the weaker version of our
computation transparency assumption (Sect. 4). This way, the information disclosed
to COMP1 does not include the local function specification any more. We get:

RðAk;ESÞ ¼ RðIN1;EfCOMP1gÞ ¼ PfCOMP1gð1ÞI 0fCOMP1gðIN1; 1Þ

where, since the knowledge reconstructible by COMP1 is now smaller than before,
I 0fCOMP1g � IfCOMP1g. The modification to P has therefore decreased risk; however,

the amount of such decrease needs to be compared with the combined costs of
(i) the local computation of garbling Gðf Þ on the part of IN1 and (ii) the additional
complexity of computing the garbled function f 0ðÞ—instead of the original addition
f ðÞ—on the part of COMP1.

Another version of P that can be envisioned in order to decrease disclosure risk
features multiple service provisioning, where the confidentiality of INFO1 is
increased by outsourcing the computation of f ðÞ to multiple services, each getting to
know only a portion (a share) of INFO1. In this case of course we will need to
extend our actor set to become A ¼ ðIN1;COMP1;COMP2;RESÞ where, once
more, at t ¼ 0 actor IN1 holds the entire information item INFO1 containing the
two summands INFO1½1� and INFO1½2�. The power set 2A of the actors is (Fig. 8):

In words, the alternative version of our process P can be described as follows:

1. The input actor IN1 computes a local function to divide each summand into two
shares, obtaining INFO1½1; 1�; INFO1½1; 2�; INFO1½2; 1�, INFO1½2; 2�.

2. IN1 sends INFO1½1; 1� and INFO1½2; 2� to COMP1, and INFO1½1; 2� and
INFO1½2; 1� to COMP2

3. The two computation nodes compute a local function each on the shares they
received, fCOMP1 ¼ INFO1½1; 1� þ INFO1½2; 2� and fCOMP2 ¼ INFO1½1; 2� þ
INFO1½2; 1�

7Garbled integer arithmetics has attracted much attention in the past few years [77, 78] both
following Yao's original formulation and the alternative Goldreich-Micali-Wigderson
(GMW) protocol. Also, [79] summarises several depth-optimised circuit constructions for vari-
ous standard arithmetic tasks.

Possibilistic Assessment of Process-Related … 199

4. The two computation nodes send the results to the result node RES
5. RES computes fRES ¼ fCOMP1 þ fCOMP2 and outputs the result

For the sake of simplicity, let us assume that IN1 will generate two shares of
INFO1 using a naive technique, i.e. by taking respectively the Most Significant and
the Least Significant Part (MSP-LSP) from the original value INFO1.

For instance, if INFO1½1� ¼ 28 and INFO1½2� ¼ 61, then COMP1 receives
INFO1½1; 1� ¼ 20 and INFO1½2; 2� ¼ 01 and computes 21, while COMP2 receives
INFO1½1; 2� ¼ 08 and INFO1½2; 1� ¼ 60 and computes 68. Finally, RES receives 21
and 68 and computes the final result 89.

Of course, this simplified share generation would not really prevent COMP
nodes from guessing the original values, so our assumption of Information com-
pleteness: “Given a message delivery ðAs;Ad ;mtsÞ, with mts � INFOs, then
biðEsdÞ ¼ 0” (see Sect. 4) should now be revised here to, say, biðEsdÞ ¼ 1

10,
assuming they both COMP nodes know that the summands are two-figure integers.
However, we will not deal with autonomous guessing in this example, as the threat
space we are considering involves only collusions among multiple parties. After
defining this revised version of process P, we can estimate the knowledge sets
corresponding to this new, secured version of the business process. Figures 9, 10,
11, 12 show the evolution of the knowledge sets starting from the initialisation time
t = 0 to time t = 3.

Third Step t ¼ 3

Our risk estimate at t ¼ 1 by IN1 is therefore:

RðAk;ESÞ ¼ RðIN1;EfCOMP1g [EfCOMP1gÞ ¼ PfCOMP1gð1ÞIfCOMP1gðIN1; 1Þ

where, again, PfCOMP1gð1Þ is IN1’s estimated possibility distribution that COMP1
will disclose at t ¼ 1 the information it now holds, and IfCOMP1gðIN1; 1Þ is the
resulting damage to IN1. We recall once again our assumption of Information

Fig. 8 The Boolean lattice for the new actor set

200 V. Bellandi et al.

Fig. 9 The knowledge sets at time t = 0

Fig. 10 The knowledge sets at time t = 1

Fig. 11 The knowledge sets at time t = 2

Possibilistic Assessment of Process-Related … 201

completeness (Sect. 4): given a message delivery ðAs;Ad;mtsÞ, with mts � INFOs,
then biðEsdÞ ¼ 0. This property expresses an estimated possibility of zero that the
sharing generation scheme can be broken. Therefore IN1 will attribute no risk to
this stage, where no subset of actors not including itself has knowledge of both
INFO1 shares. Once again, we remark that a weaker version of the information
completeness assumption can be adopted here to reflect the weakness of the naive
share generation scheme, which could be easily broken by COMP1 via an educated
guess. However, the threat space under consideration does not include autonomous
guesses, and the original assumption is kept. At t ¼ 2, unlike the previous example,
no other singleton exists such that KXð1Þ ¼ INFO1. However, this time other
subsets for which KXð1Þ ¼ INFO1 can be obtained, namely fCOMP1;COMP2g.

Risk estimate at t ¼ 2 by IN1 is therefore:

RðAk;ESÞ ¼ RðIN1;EfCOMP1;COMP2gÞ

that becomes:

RðAk;ESÞ ¼ PfCOMP1gð1ÞIfCOMP1gðIN1; 1Þ
þPfCOMP1;COMP2gð2ÞIfCOMP1;COMP2gðIN1; 2Þ

ð6Þ

PfCOMP1;COMP2g is the possibility of the event where fCOMP1;COMP2g will
actually share the information they have to reconstruct INFO½1� multiplied by the
damage IN1 would incur in, should the disclosure event actually happen. Note that,
if this possibility is considered zero by default (e.g. the assessor is completely sure
that COMP1 and COMP2 do not know of each other) then the risk at t ¼ 2 is also 0.

Fig. 12 The knowledge sets at time t = 3

202 V. Bellandi et al.

7 Conclusions

The possibilistic risk analysis methodology presented in this chapter provides a
fresh look at fully quantitative risk management on the cloud, enabling the com-
parison of cloud-based process models including different security mechanisms
from the point of view of the changes in risk they imply. Our approach can be
extended to cover most “cost versus risk” assessment activities. Also, the process
model used in our methodology gracefully extends existing machine-readable
specification of processes like the W3C candidate recommendation for chore-
ographies WS-CDL (http://www.w3.org/2002/ws/chor/) and is supported by an
open source software toolkit (http://sesar.di.unimi.it/cloudrisk) integrating a
choreography editor.

Acknowledgements This work was partly supported by the European Commission within the
PRACTICE project (contract n. FP7-609611) by the Italian MIUR project SecurityHorizons (c.n.
2010XSEMLC) and by the CMIRA2014/AcceuilPro (Subv. 14.004390) and COOPERA program
of the Region Rhone-Alpes, France.

References

1. Winkler, V.: Cloud computing: risk assessment for the cloud. Technet Magazine, 01/2012
2. O’Hagan, A., Oakley, J.E.: Probability is perfect, but we can’t elicit it perfectly. Reliab. Eng.

Syst. Safety 85(13), 239–248 (2004) (Alternative Representations of Epistemic Uncertainty)
3. Baudrit, C., Couso, I., Dubois, D.: Joint propagation of probability and possibility in risk

analysis: towards a formal framework. Int. J. Approx. Reasoning 45(1), 82–105 (2007)
4. Zadeh, A.L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)
5. Dubois, D.: Fuzzy Sets and Systems: Theory and Applications, v.144. Academic press,

New York (1980)
6. Dubois, D., Prade, H.: Default reasoning and possibility theory. Artif. Intell. 35(2), 243–257

(1988)
7. De Cooman, G.:Possibility theory i: the measure-and integral-theoretic groundwork. Int.

J. Gen. Syst. 25(4), 291–323 (1997); Gert De Cooman. Possibility theory ii: Conditional
possibility. International Journal Of General System, 25(4):325–351, 1997; Gert De Cooman.
Possibility theory iii: Possibilistic independence. International Journal of General Systems,
25:353–372, 1997

8. Couso, I., Dubois, D., Sanchez, L.: Random Sets and Random Fuzzy Sets As Ill-Perceived
Random Variables. Springer Publishing Company Incorporated, Heidelberg (2014)

9. Dubois, D., Prade, H.: Possibility theory and its applications: a retrospective and prospective
view. In: Decision Theory and Multi-Agent Planning pp. 89–109. Springer, Heidelberg (2006)

10. Dubois, D., Prade, H.: Possibility theory. Scholarpedia 2(10), 2074 (2007)
11. Heiser, J., Nicolett, M.: Assessing the security risks of cloud computing (2008)
12. Drissi, S., Houmani, H., Medromi, H.: Survey: risk assessment for cloud computing. Int.

J. Adv. Comput. Sci. Appl. 4, 143–148 (2013)
13. Fitó, J.O., Guitart, J.: Introducing risk management into cloud computing. Technical Report

UPC-DAC-RR-2010-33, Technical University of Catalonia (2010)
14. Sangroya, A., Kumar, S., Dhok, J., Varma, V.: Towards analyzing data security risks in cloud

computing environments. In: Information Systems, Technology and Management—
International Conference ICISTM 2010, Proceedings, pp. 255–265 (2010)

Possibilistic Assessment of Process-Related … 203

http://www.w3.org/2002/ws/chor/
http://sesar.di.unimi.it/cloudrisk

15. Catteddu, D., Hogben, G.: Cloud computing: benefits, risks and recommendations for
information security. Technical report, ENISA 2009 at www.enisa.europa.eu

16. Cloud Security Alliance: Security guidance for critical areas of focus in cloud computing v2.1,
Technical Report 2009

17. NIST: Recommended security controls for federal information systems (2009)
18. ATOS: Risk analysis framework for a cloud specific environment. www.atos.net (2008)
19. The Open Group: Risk taxonomy. www.opengroup.org (2008)
20. Gadia, Sailesh: Cloud computing risk assessment: A case study. ISACA Journal 1, 1–6 (2012)
21. Information Systems Audit and Control Association: Cobit 5. http://www.isaca.org/

Knowledge-Center/Research/ResearchDeliverables/Pages/Risk-Scenarios-Using-COBIT-5-for-
Risk.aspx (2013)

22. Saripalli, P., Walters, B.: QUIRC: A quantitative impact and risk assessment framework for
cloud security. In: IEEE 3rd International Conference on Cloud Computing (CLOUD),
pp. 280–288 (2010)

23. Sendi, A.S., Cheriet, M.: Cloud computing: a risk assessment model. In: IEEE International
Conference on Cloud Engineering (IC2E), pp. 147–152 (2014)

24. Khan, A.U., Oriol, M., Kiran, M., Jiang, M., Djemame, K.: Security risks and their
management in cloud computing. In: IEEE 4th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 121–128 (2012)

25. den Braber, F., Brndeland, G., Dahl, H.E.I., Engan, I., da Hogganvik, I., Lund, M.S., Solhaug,
B., Stlen, K., Vraalsen, F.: The coras model-based method for security risk analysis. Technical
report, SINTEF, 2006

26. Information risk analysis methodology, IRAM
27. Cavoukian, A.: Privacy risk management. Technical report, Information and Privacy

Commissioner—Ontario - Canada, 2010
28. Kung, A., Crespo Garcia, A., Notario McDonnell, N., Kroener, I., Le Mtayer, D., Troncoso,

C., Mara del Lamo, J., Martns, Y.S.: Pripare: A new vision on engineering privacy and
security by design. Technical report, PRIPARE (2014)

29. Wright, D.: Should privacy impact assessments be mandatory? Commun. ACM 54(8),
121–131 (2011)

30. Garcia, P.A.A., Schirru, R., et al.: A fuzzy data envelopment analysis approach for FMEA.
Prog. Nucl. Energy 46(3), 359–373 (2005)

31. Gargama, H., Chaturvedi, S.K.: Criticality assessment models for failure mode effects and
criticality analysis using fuzzy logic. Reliab. IEEE Trans. 60(1), 102–110 (2011)

32. Yang, Z., Bonsall, S., Wang, J.: Fuzzy rule-based Bayesian reasoning approach for
prioritization of failures in FMEA. Reliab. IEEE Trans. 57(3), 517–528 (2008)

33. Mohamed, S., McCowan, A.K.: Modelling project investment decisions under uncertainty
using possibility theory. Int. J. Project Manage. 19(4), 231–241 (2001)

34. Lorterapong, P., Moselhi, O.: Project-network analysis using fuzzy sets theory. J. Constr. Eng.
Manage. 122(4), 308–318 (1996)

35. Wong, K.C., So, A.T.P.: A fuzzy expert system for contract decision making. Constr. Manage.
Econ. 13(2), 95–103 (1995)

36. Tam, C.M., Fung, I.: Assessing safety performance by fuzzy reasoning. Asia Pacific Build.
Constr. Manage. J. 2(1), 6–13 (1996)

37. Karimi, I., Hüllermeier, E.: Risk assessment system of natural hazards: a new approach based
on fuzzy probability. Fuzzy Sets Syst. 158(9), 987–999 (2007) (Selected papers from {IFSA}
2005 11th World Congress of International Fuzzy Systems Association)

38. Dubois, D., Prade, H.: Possibility theory in information fusion. Data fusion and perception. In:
International Centre for Mechanical Sciences, vol. 431, pp. 53–76. Springer, Heidelberg
(2001)

39. Dubois, D., Prade, H.: On the use of aggregation operations in information fusion processes.
Fuzzy Sets Syst. 142(1), 143–161 (2004)

40. Dubois, D.: Representation, propagation, and decision issues in risk analysis under incomplete
probabilistic information. Risk Anal. 30(3), 361–368 (2010)

204 V. Bellandi et al.

http://www.enisa.europa.eu
http://www.atos.net
http://www.opengroup.org

41. Pedroni, N., Zio, E.: Empirical comparison of methods for the hierarchical propagation of
hybrid uncertainty in risk assessment, in presence of dependence. Int. J. Uncertainty Fuzziness
Know. Based Syst. 20(04), 509–557 (2012)

42. Bilgiç, T., Türksen, I.B.: Measurement of membership functions: theoretical and empirical
work. In: Fundamentals of fuzzy sets, pp. 195–227. Springer, Heidelberg (2000)

43. Zadeh, A.L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
44. He, L., Xiao, J., Huang, H.-Z., Luo, Z.: System reliability modeling and analysis in the

possibility context. In: IEEE International Conference on Quality, Reliability, Risk,
Maintenance, and Safety Engineering (ICQR2MSE), pp. 361–367 (2012)

45. Huang, H.-Z., Tong, X., Zuo, M.J.: PosBist fault tree analysis of coherent systems. Reliab.
Eng. Syst. Saf. 84(2), 141–148 (2004)

46. He, L., Huang, H., Du, L., Zhang, X., Miao, Q.: A review of possibilistic approaches to
reliability analysis and optimization in engineering design. In: Human-Computer Interaction.
HCI Applications and Services, Lecture Notes in Computer Science, vol. 4553,
pp. 1075–1084. Springer, Heidelberg (2007)

47. Onisawa, T.: An approach of system reliability analysis using failure possibility and success
possibility. In: IV IEEE International Conference on Fuzzy Systems and II International Fuzzy
Engineering Symposium, Proceedings of 1995 IEEE vol. 4, pp. 2069–2076 (1995)

48. Guyonnet, D., Bellenfant, G., Bouc, O.: Soft methods for treating uncertainties: applications in
the field of environmental risks. In: Soft Methods for Handling Variability and Imprecision,
Advances in Soft Computing, vol. 48, pp. 16–26. Springer, Heidelberg (2008)

49. Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. Fuzzy Sets
Syst. 15(1), 1–19 (1985)

50. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30
(3), 183–224 (1983)

51. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In Proceedings of
International Conference on World Wide Web, WWW 2011, pp. 795–804 (2011)

52. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: The ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC, pp. 784–796
(2012)

53. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive 2005, 187 (2005)

54. CISCO: Data leakage worldwide white paper: the high cost of insider threats (2011)
55. In Networks and Groups, Studies in Economic Design. (2003)
56. Anisetti, M., Bellandi, V., Damiani, E., Frati, F., Gianini, G., Jeon, G., Jeong, J.: Supply chain

risk analysis: open source simulator. In Proceedings of V International Conference Signal
Image Technology and Internet Based Systems, SITIS, pp. 443–450 (2009)

57. Anisetti, M., Damiani, E., Frati, F., Cimato, S., Gianini, G.: Using incentive schemes to
alleviate supply chain risks. In: Proceedings of International Conference on Management of
Emergent Digital Eco Systems, MEDES’10, pp. 221–228. ACM, New York, NY (2010)

58. Ceravolo, P., Damiani, E., Fasoli, D., Gianini, G.: Representing immaterial value in business
model. In: Enterprise Distributed Object Computing Conference Workshops 2010,
pp. 323–329

59. Damiani, E.: Risk-aware collaborative processes. In: International Conference on Enterprise
Information Systems (ICEIS). ISBN 978-989-8111-88-3 (2009)

60. Damiani, E., Frati, F., Tchokpon, R.: The role of information sharing in supply chain
management: the securescm approach. Int. J. Innov. Technol. Manage. 08(03), 455–467
(2011)

61. Frati, F., Damiani, E., Ceravolo, P., Cimato, S., Fugazza, C., Gianini, G., Marrara, S., Scotti,
O.: Hazards in full-disclosure supply chains. In: Conference on Advanced Information
Technologies for Management (AITM). Publishing house of the Wroclaw University of
Economics (2008)

Possibilistic Assessment of Process-Related … 205

62. Kerschbaum, F., Pibernik, R., Damiani, E., Gianini, G.: Toward value-based control of
knowledge sharing in networked services design. Prace Naukowe Uniwersytetu
Ekonomicznego we Wrocllawiu 85, 51–65 (2009)

63. Chan, S.Y.: An alternative approach to the modeling of probability distributions. Risk Anal.
13(1), 97–102 (1993)

64. van Dorp, J.R., Rambaud, S.C., Pérez, J.G., Pleguezuelo, R.H.: An elicitation procedure for
the generalized trapezoidal distribution with a uniform central stage. Decis. Anal. 4(3),
156–166 (2007)

65. MacDonell, S.G., Gray, A.R., Calvert, J.M.: FULSOME: A fuzzy logic modeling tool for
software metricians. In: IEEE International Conference of the North American Fuzzy
Information Processing Society, NAFIPS 1999, pp. 263–267 (1999)

66. Howard, R.A.: Information value theory. IEEE Trans. Sys. Science Cybern. 2(1), 22–26
(1966)

67. Hoomans, T., Seidenfeld, J., Basu, A., Meltzer, D.: Systematizing the use of value of
information analysis in prioritizing systematic reviews. Technical Report 12-EHC109-EF,
Agency for Healthcare Research and Quality (2012)

68. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy
multi-level security: an experiment on quantified risk-adaptive access control. In: IEEE
Symposium on Security and Privacy, SP’07, 2007, pp. 222–230

69. Chowdhury, S., Champagne, P., McLellan, P.J.: Uncertainty characterization approaches for
risk assessment of {DBPs} in drinking water: a review. J. Environ. Manage. 90(5), 1680–1691
(2009)

70. Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput.
Chem. Eng. 27(89), 1219–1227 (2003) (2nd Pan American Workshop in Process Systems
Engineering)

71. Hanratty, T., Hammell II, R.J., Heilman, E.: A fuzzy-based approach to the value of
information in complex military environments. In Scalable Uncertainty Management, Lecture
Notes in Computer Science, vol. 6929, pp. 539–546. Springer, Heidelberg (2011)

72. Tanaka, H., Ichihashi, H., Asai, K.: A value of information in FLP problems via sensitivity
analysis. Fuzzy Sets Syst. 18(2), 119–129 (1986)

73. Scheer, A.-W., Nüttgens, M.: ARIS architecture and reference models for business process
management. In: Business Process Management, Models, Techniques, and Empirical Studies,
pp. 376–389 (2000)

74. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party data
analysis: end-user validation and practical experiments. Cryptology ePrint Archive, Report
2013/826 (2013)

75. Buckley, I., Fernández, E.B., Anisetti, M., Ardagna, C.A., Sadjadi, S.M., Damiani, E.:
Towards pattern-based reliability certification of services. In: On the Move to Meaningful
Internet Systems Proceedings, Part II, pp. 560–576 (2011)

76. Damiani, E., Ardagna, C.A., EI Ioini, N.: Open Source Systems Security Certification.
Springer, Heidelberg (2009). ISBN 978-0-387-77323-0

77. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation.
In: Advances in Cryptology—ASIACRYPT 2005, 11th International Conference on the
Theory and Application of Cryptology and Information Security, Proceedings, pp. 136–155
(2005)

78. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay—secure two-party computation system.
In: Proceedings of the 13th USENIX Security Symposium, August 9–13, 2004, San Diego,
CA, USA, pp. 287–302 (2004)

79. Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low
depth circuits. In: Financial Cryptography and Data Security—17th International
Conference FC 2013, Okinawa, Japan, April 1–5, 2013, Revised Selected Papers,
pp. 275–292 (2013)

206 V. Bellandi et al.

Author Biographies

Valerio Bellandi received the M.S. and Ph.D. degrees in computer science at the Università degli
Studi di Milano (Italy) in 2004 and 2009, respectively. He is currently a Post-Doctoral Fellow in
the Department of Computer Science of the Università degli Studi di Milano and he is a member of
the staff of the SESAR LAB. His main research interests and in the Area of Collaborative
Environment, Mobile Networks and Business Processes. He has published several papers in
journals and conferences and has served in the program committee of several international
conferences.

Stelvio Cimato is an Assistant Professor with the Dipartimento di Informatica of the Università
degli Studi di Milano (Italy). He got the Ph.D. in Computer Science at the Università degli Studi di
Bologna (Italy) in 1999. His main research interests are in the area of cryptography, network
security, and Web applications. He has published several papers in the field and is active in the
community, serving as member of the program committee of several international conferences in
the area of cryptography and data security.

Ernesto Damiani is a full professor at Università degli Studi di Milano (Italy), the director of the
University’s Ph.D. program in computer science and the coordinator of SESAR Research Lab
(http://sesar.di.unimi.it). He has held visiting positions at a number of international institutions,
including George Mason University in Virginia, US, La Trobe University in Melbourne, Australia,
Tokyo Denki University, Japan and INSA-Lyon, France. Ernesto Damiani’s research interests
include cloud assurance, Web services and business process security and Big Data processing. He
has served as Chair of many conferences, including the IEEE International Conference on Web
Services (ICWS), the IEEE Conference on Digital Ecosystems series (IEEEDEST) and the IFIP
Working Conference on Open Source Systems (OSS). Ernesto Damiani has published more than
300 papers, books and international patents. He is a senior member of the IEEE and a
Distinguished Scientist of the ACM. He is the author of “Open Source Security Certification”,
Springer, 2009.

Gabriele Gianini has received a Ph.D. in Physics 1996 from the Università degli Studi di Pavia
(Italy). Since 2005 is Assistant Professor at the Department of Computer Science of the Università
degli Studi di Milano (Italy), where he is a lecturer of Probability and Statistics. He has held
visiting positions at a number of international institutions, including INSA de Lyon (France),
University of Passau (Germany), CERN (Switzerland), Fermilab (US), CBPF (Brasil). He has been
Adjoint professor at the Free University of Bolzano (Italy) from 2005 to 2012. Among his research
interests: game theoretic applications to networking and to security, quantitative modeling of
processes, statistical and soft computing techniques. He has been conducting research activities
within several FP7 projects. From 1992 to present has co-authored over 150 papers published in
internationally refereed journals.

Possibilistic Assessment of Process-Related … 207

http://sesar.di.unimi.it

	Preface
	Contents
	1 The Role of Computational Intelligence in Quantitative Software Engineering
	1 Introduction---Software Development and the Art of Cappuccino
	2 Persistent Problems in Software Development
	3 Uncertainty
	4 Irreversibility
	5 Complexity
	6 Handling Uncertainty, Irreversibility, and Complexity 2026 and Cappuccino!
	7 The Pivotal Role of Computational Intelligence in Quantitative Software Engineering
	8 Conclusions
	References

	2 Computational Intelligence: An Introduction
	Abstract
	1 Introduction
	2 Computational Intelligence: An Agenda of Synergy of Algorithms of Learning, Optimization and Knowledge Representation
	3 Neural Networks and Neurocomputing
	4 Evolutionary and Biologically Inspired Computing: Towards a Holistic View at Global Optimization
	5 Information Granularity and Granular Computing
	6 Formal Platforms of Information Granularity
	6.1 Information Granules of Higher Type and Higher Order
	6.2 Hybrid Models of Information Granules

	7 The Concept of Information Granulation-Degranulation
	8 Clustering as a Means of Design of Information Granules
	8.1 Unsupervised Learning with Fuzzy Sets
	8.2 Fuzzy C-Means as an Algorithmic Vehicle of Data Reduction Through Fuzzy Clusters
	8.3 Knowledge-Based Clustering

	9 Computational Intelligence and Software Engineering
	10 Conclusions
	References

	3 Towards Benchmarking Feature Subset Selection Methods for Software Fault Prediction
	Abstract
	1 Introduction
	2 Related Work
	3 Feature Subset Selection (FSS) Methods
	3.1 Information Gain (IG) Attribute Ranking
	3.2 Relief (RLF)
	3.3 Principal Component Analysis (PCA)
	3.4 Correlation-Based Feature Selection (CFS)
	3.5 Consistency-Based Subset Evaluation (CNS)
	3.6 Wrapper Subset Evaluation (WRP)
	3.7 Genetic Programming (GP)

	4 Experimental Setup
	5 Results and Analysis
	6 Validity Evaluation
	7 Conclusions
	References

	4 Evolutionary Computation for Software Product Line Testing: An Overview and Open Challenges
	Abstract
	1 Introduction
	2 Background
	2.1 SPL Foundations---Feature Models and Running Example
	2.2 Basics of Evolutionary Algorithms

	3 Overview of SPL Testing
	4 Combinatorial Interaction Testing for Software Product Lines
	4.1 Basic Terminology
	4.2 SPL Genetic Solver (SPLGS)
	4.3 State of the Art CIT for SPL Testing

	5 Multi-objective SPL Testing
	5.1 Multi-objective Optimization Formalization
	5.2 An Example Scenario
	5.3 Computation of Exact Pareto Fronts
	5.4 Sate of the Art in Evolutionary Multi-objective Optimization for SPL Testing

	6 Evolutionary Testing of SPLs in Practice
	7 Open Challenges and Questions
	8 Conclusions
	Acknowledgments
	References

	5 Metaheuristic Optimisation and Mutation-Driven Test Data Generation
	Abstract
	1 Introduction
	2 Test Data Generation
	3 Mutation Analysis
	4 Metaheuristic Optimisation
	5 Using Metaheuristic Optimisation to Kill Mutants
	5.1 Fitness Functions Based on Mutation Analysis
	5.2 Hill Climbing
	5.3 Evolutionary Optimisation
	5.4 Swarm Intelligence
	5.5 Comparing Metaheuristic Techniques for Killing Mutants

	6 Conclusions
	References

	6 Measuring the Utility of Functional-Based Software Using Centroid-Adjusted Class Labelling
	Abstract
	1 Introduction
	2 Functional Programming
	2.1 Functions and Java 8

	3 Pattern Classification
	3.1 Design and Validation
	3.2 Performance Assessment
	3.3 Classifiers

	4 Software Attributes and Measuring Utility
	4.1 Metrics Used as Features

	5 Adjusting Design Class Labels
	5.1 Robust Location and Dispersion Measures

	6 Experiment Design
	6.1 Software System
	6.2 Quality Assessment by Architect

	7 Results and Discussion
	8 Conclusion
	Acknowledgment
	References

	7 Toward Accurate Software Effort Prediction Using Multiple Classifier Systems
	Abstract
	1 Introduction
	2 Classifiers
	2.1 Logistic Discrimination
	2.2 k-Nearest Neighbour
	2.3 Artificial Neural Network
	2.4 Decision Trees
	2.5 Naïve Bayes Classifer

	3 Multiple Classifier System Architectures
	3.1 Static Parallel
	3.2 Multi-stage
	3.3 Dynamic Classifer Selection
	3.4 Classifier Ensemble

	4 Experimental Design
	5 Experimental Results
	6 Conclusion
	Acknowledgments
	References

	8 Complex Fuzzy Logic Reasoning-Based Methodologies for Quantitative Software Requirements Specifications
	Abstract
	1 Introduction
	2 Uncertainty and the Software Development Process
	3 Requirements Specification via Quality Function Deployment
	4 Literature Review
	5 Complex Fuzzy Systems
	5.1 Complex Fuzzy Class
	5.2 Degree of Membership of Order {\varvec N}
	5.3 Generalized Complex Fuzzy Logic
	5.4 Complex Fuzzy Propositions and Connectives Examples
	5.5 Complex Fuzzy Inference Example

	6 Conclusions
	References

	9 Possibilistic Assessment of Process-Related Disclosure Risks on the Cloud
	1 Introduction
	2 Related Work
	3 Elements of Possibility Theory
	3.1 Possibility Distributions
	3.2 Possibility and Necessity
	3.3 Possibility Propagation in Risk Assessment
	3.3.1 Input Variables and Their Relationships
	3.3.2 Reliability Propagation
	3.3.3 Risk Assessment

	4 Process Model
	4.1 Process Model Assumptions
	4.2 Garbling Outsourcing Scheme

	5 Methodology for Disclosure-Risk Assessment in Cloud Processes
	5.1 The Threat Space
	5.2 Possibilistic Model of Information Disclosure
	5.2.1 The Shapley Value

	5.3 Impact Assessment by Value of Information Analysis
	5.3.1 Value of Information Analysis
	5.3.2 Possibilistic Value of Information

	5.4 The Overall Methodology

	6 A Cloud-Based Case Study
	6.1 The Cloud Process Model
	6.2 Possibilistic Assessment of Likelihood and Impact
	6.3 Sample Assessments
	6.4 Mitigating Disclosure Risk

	7 Conclusions
	Acknowledgements
	References

