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Abstract In 2007, Labeled Faces in the Wild was released in an effort to spur
research in face recognition, specifically for the problem of face verification with
unconstrained images. Since that time, more than 50 papers have been published
that improve upon this benchmark in some respect. A remarkably wide variety of
innovative methods have been developed to overcome the challenges presented in
this database. As performance on some aspects of the benchmark approaches 100 %
accuracy, it seems appropriate to review this progress, derive what general principles
we can from these works, and identify key future challenges in face recognition. In
this survey, we review the contributions to LFW for which the authors have provided
results to the curators (results found on the LFW results web page). We also review
the cross cutting topic of alignment and how it is used in various methods. We end
with a brief discussion of recent databases designed to challenge the next generation
of face recognition algorithms.

1 Introduction

Face recognition is a core problem and popular research topic in computer vision
for several reasons. First, it is easy and natural to formulate well-posed problems,
since individuals come with their own label, their name. Second, despite its well-
posed nature, it is a striking example of fine-grained classification—the variation of
two images within a class (images of a single person) can often exceed the variation
between images of different classes (images of two different people). Yet human
observers have a remarkably easy time ignoring nuisance variables such as pose and
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expression and focusing on the features that matter for identification. Finally, face
recognition is of tremendous societal importance. In addition to the basic ability to
identify, the ability of people to assess the emotional state, the focus of attention,
and the intent of others are critical capabilities for successful social interactions. For
all these reasons, face recognition has become an area of intense focus for the vision
community.

This chapter reviews research progress on a specific face database, Labeled Faces
in the Wild (LFW), that was introduced to stimulate research in face recognition for
images taken in common, everyday settings. In the remainder of the introduction,
we review some basic face recognition terminology, provide the historical setting in
which this database was introduced, and enumerate some of the specific motivations
for introducing the database. In Sect. 2, we discuss the papers for which the curators
have been provided with results. We group these papers by the protocols for which
they have reported results. In Sect. 3, we discuss alignment as a cross-cutting issue
that affects almost all of the methods included in this survey. We conclude by
discussing future directions of face recognition research, including new databases
and new paradigms designed to push face recognition to the next level.

1.1 Verification and Identification

In this chapter, we will refer to two widely used paradigms of face recognition:
identification and verification. In identification, information about a specific set of
individuals to be recognized (the gallery) is gathered. At test time, a new image
or group of images is presented (the probe). The task of the system is to decide
which of the gallery identities, if any, is represented by the probe. If the system
is guaranteed that the probe is indeed one of the gallery identities, this is known
as closed set identification. Otherwise, it is open set identification, and the system
is expected to identify when an image does not belong to the gallery.

In contrast, the problem of verification is to analyze two face images and decide
whether they represent the same person or two different people. It is usually assumed
that neither of the photos shows a person from any previous training set.

Many of the early face recognition databases and protocols focused on the prob-
lem of identification. As discussed below, the difficulty of the identification problem
was so great that researchers were motivated to simplify the problem by controlling
the number of image parameters that were allowed to vary simultaneously. One
of the salient aspects of LFW is that it focused on the problem of verification
exclusively, although it was certainly not the first to do so.1 While the use of the
images in LFW originally grew out of a motivation to study learning from one

1Other well-known benchmarks had previously used verification. See, for example, this bench-
mark [80].
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example and fine-grained recognition, a side effect was to render the problem of
face recognition in real-world settings significantly easier—easier enough to attract
the attention of a wide range of researchers.

1.2 Background

In the early days of face recognition by computer, the problem was so daunting that
it was logical to consider a divide-and-conquer approach. What is the best way to
handle recognition in the presence of lighting variation? Pose variation? Occlusions?
Expression variation? Databases were built to consider each of these issues using
carefully controlled images and experiments.2 One of the most comprehensive
efforts in this direction is the CMU Multi-PIE3 database, which systematically
varies multiple parameters over an enormous database of more than 750;000

images [38].
Studying individual sources of variation in images has led to some intriguing

insights. For example, in their efforts to characterize the structure of the space
of images of an object under different lighting conditions, Belhumeur and Krieg-
man [15] showed that the space of faces under different lighting conditions (with
other factors such as expression and pose held constant) forms a convex cone. They
propose doing lighting invariant recognition by examining the distance of an image
to the convex cones defined for each individual.

Despite the development of methods that could successfully recognize faces in
databases with well-controlled variation, there was still a gap in the early 2000s
between the performance of face recognition on these controlled databases and
results on real face recognition tasks, for at least two reasons:

• Even with two methods, call them A and B, that can successfully model two
types of variation separately, it is not always clear how to combine these methods
to produce a method that can address both sources of variation. For example, a
method that can handle significant occlusions may rely on the precise registration
of two face images for the parts that are not occluded. This might render the
method ineffective for faces that exhibit both occlusions and pose changes. As
another example, the method cited above to handle lighting variations [15] relies
on all of the other parameters of variation being fixed.

• There is a significant difference between handling controlled variations of a
parameter, and handling random or arbitrary values of a parameter. For example,
a method that can address five specific poses may not generalize well to arbitrary
poses. Many previously existing databases studied fixed variations of parameters
such as pose, lighting, and decorations. While useful, this does not guarantee the

2For a list of databases that were compiled before LFW, see the original LFW technical report [49].
3The abbreviation PIE stands for Pose, Illumination, and Expression.
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handling of more general cases of these parameters. Furthermore, there are too
many sources of variation to effectively cover the set of possible observations in
a controlled database. Some databases, such as the ones used in the 2005 Face
Recognition Grand Challenge [77], used certain “uncontrolled settings” such
as an office, a hallway, or outdoor environments. However, the fact that these
databases were built manually (rather than mining previously existing photos)
naturally limited the number of settings that could be included. Hence, while
the settings were uncontrolled in that they were not carefully specified, they
were drawn from a small fixed set of empirical settings that were available to
the database curators. Algorithms tuned for such evaluations are not required to
deal with a large amount of previously unseen variability.

In 2006, while results on some databases were saturating, there was still poor
performance on problems with real-world variation.

1.3 Variations on Traditional Supervised Learning
and the Relationship to Face Recognition

In parallel to the work in the early 2000s on face identification, there was a growing
interest in the machine learning community in variations of the standard supervised
learning problem with large training sets. These variations included:

• learning from small training sets [35, 68],
• transfer learning—that is, sharing parameters from certain classes or distributions

to other classes or distributions that may have less training data available
[76], and

• semi-supervised learning, in which some training examples have no associated
labels (e.g. [73]).

Several researchers chose face verification as a domain in which to study these
new issues [21, 30, 36]. In particular, since face verification is about deciding
whether two face images match (without any previous examples of those identities),
it can be viewed as an instance of learning from a single training example. That is,
letting the two images presented be I and J, I can be viewed as a single training
example for the identity of a particular person. Then the problem can be framed as
a binary classification problem in which the goal is to decide whether image J is in
the same class as image I or not.

In addition, face verification is an ideal domain for the investigation of transfer
learning, since learning the forms of variation for one person is important informa-
tion that can be transferred to the understanding of how images of another person
vary.
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One interesting paper in this vein was the work of Chopra et al. from CVPR
2005 [30]. In this paper, a convolutional neural network (CNN) was used to learn
a metric between face images. The authors specifically discuss the structure of the
face recognition problem as a problem with a large number of classes and small
numbers of training examples per class. In this work, the authors reported results on
the relatively difficult AR database [66]. This paper was a harbinger of the recent
highly successful application of CNNs to face verification.

1.3.1 Faces in the Wild and Labeled Faces in the Wild

Continuing the work on fine-grained recognition and recognition from a small
number of examples, Ferencz et al. [36, 57] developed a method in 2005 for deciding
whether two images represented the same object. They presented this work on
data sets of cars and faces, and hence were also addressing the face verification
problem. To make the problem challenging for faces, they used a set of news photos
collected as part of the Berkeley “Faces in the Wild” project [18, 19] started by
Tamara Berg and David Forsyth. These were news photos taken from typical news
articles, representing people in a wide variety of settings, poses, expressions, and
lighting. These photos proved to be very popular for research, but they were not
suited to be a face recognition benchmark since (a) the images were only noisily
labeled (more than 10 % were labeled incorrectly), and (b) there were large numbers
of duplicates. Eventually, there was enough demand that the data were relabeled
by hand, duplicates were removed, and protocols for use were written. The data
were released as “Labeled Faces in the Wild” in conjunction with the original LFW
technical report [49].

There were several goals behind the introduction of LFW. These included

• stimulating research on face recognition in unconstrained images;
• providing an easy-to-use database, with low barriers to entry, easy browsing, and

multiple parallel versions to lower pre-processing burdens;
• providing consistent and precise protocols for the use of the database to

encourage fair and meaningful comparisons;
• curating results to allow easy comparison, and easy replication of results in new

research papers.

In the following section, we take a detailed look at many of the papers that
have been published using LFW. We do not review all of the papers. Rather we
review papers for which the authors have provided results to the curators, and which
are documented on the LFW results web page.4 We now turn to describing results
published on the LFW benchmark.

4http://vis-www.cs.umass.edu/lfw/results.html.

http://vis-www.cs.umass.edu/lfw/results.html
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2 Algorithms and Methods

In this section, we discuss the progression of results on LFW from the time of its
release until the present. LFW comes with specific sets of image pairs that can be
used in training. These pairs are labeled as “same” or “different” depending upon
whether the images are of the same person. The specification of exactly how these
training pairs are used is described by various protocols.

2.1 The LFW Protocols

Originally, there were two distinct protocols described for LFW, the image-
restricted and the unrestricted protocols. The unrestricted protocol allows the
creation of additional training pairs by combining other pairs in certain ways.
(For details, see the original LFW technical report [49].)

As many researchers started using additional training data from outside LFW to
improve performance, new protocols were developed to maintain fair comparisons
among methods. These protocols were described in a second technical report [47].

The current six protocols are:

1. Unsupervised.
2. Image-restricted with no outside data.
3. Unrestricted with no outside data.
4. Image-restricted with label-free outside data.
5. Unrestricted with label-free outside data.
6. Unrestricted with labeled outside data.

In order to make comparisons more meaningful, we discuss the various protocols in
three groups.

In particular, we start with the two protocols allowing no outside data. We then
discuss protocols that allow outside data not related to identity, and then outside data
with identity labels. We do not address the unsupervised protocol in this review.

2.1.1 Why Study Restricted Data Protocols?

Before starting on this task, it is worth asking the following question: Why might
one wish to study methods that do not use outside data when their performance
is clearly inferior to those that do use additional data? There are several possible
answers to this question.

Utility of methods for other tasks. One reason to consider methods which use
limited training data is that they can be used in other settings in which training data
are limited. That is, it may be the case that in recognition problems other than face
recognition, there may not be available the hundreds of thousands or millions of
images that are available to train face recognizers. Thus, a method that uses less
training data is more transportable to other domains.
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Statistical efficiency versus asymptotic optimality. It has been known since
the mid-seventies [87] that many methods, such as K-nearest neighbors (K-NN),
continue to increase in accuracy with increasing training data until they reach
optimal performance (also known as the Bayes error rate). In other words, if one
only cares about accuracy with unlimited training data and unlimited computation
time, there is no method better than K-NN.

Thus, we know not only that many methods will continue to improve as more
training data is added, but that many methods, including some of the simplest
methods, will achieve optimal performance. This makes the question of statistical
efficiency a primary one. The question is not whether we can achieve optimal
accuracy (the Bayes error rate), but rather, how fast (in terms of training set size) we
get there. Of course, a closely related question is which method performs best with
a fixed training set size.

At the same time, using equivalent data sets for training removes the question
that plagues papers trained on huge, proprietary data sets: how much of their
performance is due to algorithmic innovation, and how much is simply due to the
specifics of the training data?

Despite our interest in fixed training set protocols, at the same time, the practical
issues of how to collect large data sets, and find methods that can benefit from them
the most, make it interesting to push performance as high as possible with no ceiling
on the data set size. The protocols of LFW consider all of these questions.

Human learning and statistical efficiency. Closely related to the previous point
is to note that humans solve many problems with very limited training data. While
some argue that there is no particular need to mimic the way that humans solve
problems, it is certainly interesting to try to discover the principles which allow
them to learn from small numbers of examples. It seems likely that these principles
will improve our ability to design efficient learning algorithms.

2.1.2 Order of Discussion

Within each protocol, we primarily discuss algorithms in the order with which we
received the results. Note that this order does not always correspond to the official
publication order.5 We make every effort to remark on the first authors to use a
particular technique, and also to refer to prior work in other areas or on other
databases that may have used similar techniques previously. We apologize for any
oversights in advance. Note that some methods, especially some of the commercial

5Some authors have sent results to the curators before papers have been accepted at peer-reviewed
venues. In these cases, as described on the LFW web pages, we highlight the result in our results
table in red, indicating that it has not yet been published at a peer-reviewed venue. In most cases,
the status of such results are updated once the work has been accepted at a peer-reviewed venue.
However, we maintain the original order in which we received the results.
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ones, do not give much detail about their implementations. Rather than devoting
an entire section to methods for which we have little detail, we summarize them in
Sect. 2.5. We now start with protocols incorporating labeled outside data.

2.2 Unrestricted with Labeled Outside Data

This protocol allows the use of same and different training pairs from outside of
LFW. The only restriction is that such data sets should not include pictures of
people whose identities appear in the test sets. The use of such outside data sets
has dramatically improved performance in several cases.

2.2.1 Attribute and Simile Classifiers for Face Verification, 2009 [53]

Kumar et al. [53] present two main ideas in this paper. The first is to explore
the use of describable attributes for face verification. For attribute classifiers 65
describable visual traits such as gender, age, race, and hair color are used. At
least 1000 positive and 1000 negative pairs of each attribute were used for training
each attribute classifier. The paper gives the accuracy of each individual attribute
classifier. Note that the attribute classifier does not use labeled outside data, and thus,
when not used in conjunction with the simile classifier, qualifies for the unlabeled
outside data protocols.

The second idea develops what they call simile classifiers, in which various
classifiers are trained to rate face parts as “similar” or “not similar” to the face parts
of certain reference individuals. To train these “simile” classifiers, multiple images
of the same individuals (from outside of the LFW training data) are used, and thus
this method uses outside labeled data.

The original paper [53] gives an accuracy of 85.29 ˙ 1.23 % for the hybrid
system, and a follow-up journal paper [54] gives slightly higher results of
85.54 ˙ 0.35 %. These numbers should be adjusted downward slightly to 84.52
and 84.78 % since there was an error in how their accuracies were computed.6

This paper was also notable in that it gave results for human recognition on
LFW (99.2 %). While humans had an unfair advantage on LFW since many of the
LFW images were celebrities, and hence humans have seen prior images of many
test subjects, which is not allowed under any of the protocols, these results have
nevertheless been widely cited as a target for research. The authors also noted that

6The authors reported that their classifier failed to complete, due to a failed preprocessing step, in
53 out of 6000 cases. According to the footnote in their journal paper, they scored about 85 % of
these cases as correct. However, according to the protocol, if an answer is not given, the test sample
must be considered incorrect.
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humans could do remarkably well using only close crops of the face (97.53 %), and
even using only “inverse crops”, including none of the face, but portions of the hair,
body, and background of the image (94.27 %).

2.2.2 Face Recognition with Learning-Based Descriptor, 2010 [26]

Cao et al. [26] develop a visual dictionary based on unsupervised clustering. They
explore K-means, principal components analysis (PCA) trees [37] and random
projection trees [37] to build the dictionary. While this was a relatively early
use of learned descriptors, they were not learned discriminatively, i.e. to optimize
performance.

One of the other main innovative aspects of this paper was building verification
classifiers for various combinations of poses such as frontal-frontal, or rightfacing-
leftfacing, to optimize feature weights conditioned on the specific combination of
poses. This was done by finding the nearest pose to training and test examples using
the Multi-PIE data set [38]. Because the Multi-PIE data set uses multiple images
of the same subject, this paper is put in the category with outside labeled data.
However, it seems plausible that this method could be used on a subset of multi-PIE
that did not have images of the same person, as long there was a full range of labeled
poses. Such a method, if pursued would qualify these techniques for the category
image-restricted with label-free outside data.

The highest accuracy reported for their method was 84.45 ˙ 0.46 %.

2.2.3 An Associate-Predict Model for Face Recognition, 2011 [110]

This paper was one of the first systems to use a large additional amount of outside
labeled data, and was, perhaps not coincidentally, the first system to achieve over
90 % on the LFW benchmark.

The main idea in this paper (similar to some older work [13]) was to associate
a face with one person in a standard reference set, and use this reference person to
predict the appearance of the original face in new poses and lighting conditions.

Building on the previous work by one of the co-authors [26], this paper also
uses different strategies depending upon the relative poses of the presented face
pair. If the poses of the two faces are deemed sufficiently similar, then the faces
are compared directly. Otherwise, the associate-predict method is used to try to map
between the poses. The best accuracy of this system on the unrestricted with labeled
outside data was 90.57 ˙ 0.56 %.
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2.2.4 Leveraging Billions of Faces to Overcome Performance Barriers
in Unconstrained Face Recognition, 2011 [95]

This proprietary method from Face.com uses 3D face frontalization and illumina-
tion handling along with a strong recognition pipeline and achieves 91.30 ˙ 0.30 %
accuracy on LFW. They report having amassed a huge database of almost 31 billion
faces from over a billion persons.

They further discuss the contribution of effective 3D face alignment (or frontal-
ization) to the task of face verification, as this is able to effectively take care of
out-of-plane rotation, which 2D based alignment methods are not able to do. The
3D model is then used to render all images into a frontal view. Some details are
given about the recognition engine—it uses non-parametric discriminative models
by leveraging their large labeled data set as exemplars.

2.2.5 Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face
Verification, 2012 [16]

This work presented two significant innovations. The first was to do a new type
of non-affine warping of faces to improve correspondences while preserving as
much information as possible about identity. While previous work had addressed the
problem of non-linear pose-normalization (see, for example, the work by Asthana
et al. [10, 11]), it had not been successfully used in the context of LFW.

In particular, as the authors note, simply warping two faces to maximize simi-
larity may reduce the ability to perform verification by eliminating discriminative
information between the two individuals. Instead, a warping should be done to
maximize similarity while maintaining identity information. The authors achieve
this identity-preserving warping by adjusting the warping algorithm so that parts
with informative deviations in geometry (such as a wide nose) are preserved
better (see the paper for additional details). This technique makes about a 2 %
(91.20–93.10 %) improvement in performance relative to more standard alignment
techniques.

This paper was also one of the first evaluated on LFW to use the approximate
symmetry of the face to its advantage. Since using the above warping procedure
tends to distort the side of the face further from the camera, the authors reflect the
face, if necessary, such that the side closer to the camera is always on the right
side of the photo. This results in the right side of the picture typically being more
faithful to the appearance of the person. As a result, the learning algorithm which is
subsequently applied to the flipped faces can learn to rely more on the more faithful
side of the face. It should be noted, however, that the algorithm pays a price when the
person’s face is asymmetric to begin with, since it may need to match the left side
of a person’s face to their own right side. Still this use of facial symmetry improves
the final results.

The second major innovation was the introduction of so-called Tom-vs-Pete
classifiers as a new type of learned feature. These features were developed by using
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external labeled training sets (also labeled with part locations) to develop binary
classifiers for pairs of identities, such as two individuals named Tom and Pete. For
each of the

�n
2

�
pairs of identities in the external training set, k separate classifiers

are built, each using SIFT features from a different region of the face. Thus, the
total number of Tom-vs-Pete classifiers is k � �n

2

�
. A subset of these were chosen by

maximizing discriminability.
The highest accuracy of their system was 93.10 ˙ 1.35 %. However, they

increased accuracy (and reduced the standard error) a bit further by adding attribute
features based upon their previous work, to 93.30 ˙ 1.28 %.

2.2.6 Bayesian Face Revisited: A Joint Formulation, 2012 [28]

One of the most important aspects of face recognition in general, viewed as a
classification problem, is that all of the classes (represented by individual identities)
are highly similar. At the same time, within each class is a significant amount
of variability due to pose, expression, and so on. To understand whether two
images represent the same person, it can be argued that one should model both the
distribution of identities, and also the distribution of variations within each identity.

This basic idea was originally proposed by Moghaddam et al. in their well-
known paper “Bayesian face recognition” [69]. In that paper, the authors defined
a difference between two images, estimated the distribution of these differences
conditioned on whether the images were drawn from the same identity or not,
and then evaluated the posterior probability that this difference was due to the two
images coming from different identities.

Chen et al. [28] point out a potential shortcoming of the probabilistic method
applied to image differences. They note that by forming the image difference,
information available to distinguish between two classes (in this case the “same”
versus “different” classes of the verification paradigm) may be thrown out. In
particular, if x and y are two image vectors of length N, then the pair of images,
considered as a concatenation of the two vectors, contains 2N components. Forming
the difference image is a linear operator corresponding to a projection of the
image pair back to N dimensions, hence removing some of the information that
may be useful in deciding whether the pair is “same” or “different”. This is
illustrated in Fig. 1. To address this problem, Chen et al. focus on modeling the joint
distribution of image pairs (of dimension 2N) rather than the difference distribution
(of dimension N). This is an elegant formulation that has had a significant impact
on many of the follow-up papers on LFW.

Another appealing aspect of this paper is the analysis that shows the relationship
between the joint Bayesian method and the reference-based methods, such as the
simile classifier [53], the multiple one-shots method [96], and the associate-predict
method [110]. The authors show that their method can be viewed as equivalent to a
reference method in the case that there are an infinite number of references, and that
the distributions of identities and within class variance are Gaussian.
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Fig. 1 When the information from two images is projected to a lower dimension by forming the
difference, discriminative information may be lost. The joint Bayesian approach [28] strives to
avoid this projection, thus preserving some of the discriminative information

The accuracy of this method while using outside data for training (unrestricted
with labeled outside data) was 92.42 ˙ 1.08 %.

2.2.7 Blessing of Dimensionality: High-Dimensional Feature
and Its Efficient Compression for Face Verification, 2013 [29]

This paper argues that high-dimensional descriptors are essential for high perfor-
mance, and also describes a method for compression termed as rotated sparse
regression. They construct the high-dimensional feature using local binary patterns
(LBP), histograms of oriented gradients (HOG) and others, extracted at 27 facial
landmarks and at five scales on 2D aligned images. They use principal components
analysis (PCA) to first reduce this to 400 dimensions and use a supervised method
such as linear discriminant analysis (LDA) or a joint Bayesian model [28] to find
a discriminative projection. In a second step, they use L1-regularized regression to
learn a sparse projection that directly maps the original high-dimensional feature
into the lower-dimensional representation learned in the previous stage.

They report accuracies of 93.18 ˙ 1.07 % under the unrestricted with label-free
outside data protocol and 95.17 ˙ 1.13 % using their WDRef (99,773 images of
2995 subjects) data set for training following the unrestricted with labeled outside
data protocol.
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2.2.8 A Practical Transfer Learning Algorithm for Face Verification,
2013 [25]

This paper applies transfer learning to extend the high performing joint Bayesian
method [28] for face verification. In addition to the data likelihood of the target
domain, they add the KL-divergence between the source and target domains as
a regularizer to the objective function. The optimization is done via closed-form
updates in an expectation-maximization framework. The source domain is the non-
public WDRef data set used in their previous versions [28, 29] and the target is set
to be LFW. They use the high-dimensional LBP features from [29], reducing its size
from over 10,000 dimensions to 2000 by PCA.

They report 96.33 ˙ 1.08 % accuracy on LFW in the unrestricted with labeled
outside data protocol, which improves over the results from using joint Bayesian
without the transfer learning on high dimensional LBP features [29].

2.2.9 Hybrid Deep Learning for Face Verification, 2013 [91]

This method [91] uses an elaborate hybrid network of convolutional neural networks
(CNNs) and a Classification-RBM (restricted Boltzmann machine), trained directly
for verification. A pair of 2D aligned face images are input to the network. At
the lower part, there are 12 groups of CNNs, which take in images each covering
a particular part of the face, some in colour and some in grayscale. Each group
contains five CNNs that are trained using different bootstrap samples of the training
data. A single CNN consists of four convolutional layers and a max-pooling layer.
Similar to [48], they use local convolutions in the mid- and high-level layers of the
CNNs. There can be eight possible “input modes” or combinations of horizontally
flipping the input pair of images and each of these pairs are fed separately to the
networks. The output from all these networks is in layer L0, having 8 � 5 � 12

neurons. The next two layers average the outputs, first among the eight input modes
and then the five networks in a group. The final layer is a classification RBM
(models the joint distribution of class labels, binary input vectors and binary hidden
units) with two outputs that indicate same or different class for the pairs, which
is discriminatively trained by minimizing the negative log probability of the target
class given the input, using gradient descent. The CNNs and the RBM are trained
separately; then the whole model is jointly fine-tuned using back-propagation.
Model averaging is done by training the RBM with five different random sets of
training data and averaging the predictions. They create a new training data set,
“CelebFaces”, consisting of 87,628 images of 5436 celebrities collected from the
web. They report 91.75 ˙ 0.48 % accuracy on the LFW in the unrestricted with
label-free outside data protocol and 92.52 ˙ 0.38 % following the unrestricted with
labeled outside data protocol.
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2.2.10 POOF: Part-Based One-vs-One Features for Fine-Grained
Categorization, Face Verification, and Attribute Estimation,
2013 [17]

When annotations of parts are provided, this method learns highly discriminative
features between two classes based on the appearance at a particular landmark
or part that has been provided. They formulate face verification as a fine-grained
classification task, for which this descriptor is designed to be well suited.

For training a single “POOF” or Part-Based One-vs-One Feature, it is provided a
pair of classes to distinguish and two part locations—one for alignment and the other
for feature extraction. All the images of the two classes are aligned with respect
to the two locations using similarity transforms with 64 pixels horizontal distance
between them. A crop of 64 � 128 at the mid-point of the two locations is taken
and grids of 8 � 8 and 16 � 16 are placed on it. Gradient direction histograms and
color histograms are used as base features for each cell and concatenated. A linear
support vector machine (SVM) is trained on these to separate the two classes. These
SVM weights are used to find the most discriminative cell locations and a mask is
obtained by thresholding these values. Starting from a given part location as a seed,
its connected component is found in the thresholded mask. Base features from cells
in this connected component are concatenated and another linear SVM is used to
separate the two classes. The score from this SVM is the score of that part-based
feature.

They learn a random subset of 10,000 POOFs using the database in [16],
getting two 10,000-dimensional vectors for each LFW pair. They use both absolute
difference (jf .A/ � f .B/j) and product (f .A/:f .B/) of these vectors to train a same-
versus-different classifier on the LFW training set. They report 93.13 ˙ 0.40 %
accuracy on LFW following the unrestricted with labeled outside data protocol.

2.2.11 Learning Discriminant Face Descriptor for Face Recognition,
2014 [58]

This approach learned a “Discriminative Face Descriptor” (DFD) based upon
improving the LBP feature (which are essentially differences in value of a particular
pixel to its neighbours). They use the Fisher criterion for maximizing between class
and minimizing within class scatter matrices to learn discriminative filters to extract
features at the pixel level as well as find optimal weights for the contribution of
neighbouring pixels in computing the descriptor. K-means clustering is used to
find the most dominant clusters among these discriminant descriptors (typically of
length 20). They reported best performance using K = 1024 or 2048.

They used the LFW-a images and cropped the images to 150 � 130. They further
used a spatial grid to encode separate parts of the face separately into their DFD
representation and also apply PCA whitening. The descriptors themselves were
learned using the FERET data set (unrestricted with labeled outside data), however



Labeled Faces in the Wild: A Survey 205

the authors note that the distribution of images in FERET is quite different from that
of LFW—performance on LFW is an indicator of the generalizable power of their
descriptor. They report an LFW accuracy of 84.02 ˙ 0.44 %.

2.2.12 Face++, 2014

We discuss two papers from the Face++/Megvii Inc. group here, both involving
supervised deep learning on large labeled data sets. These, along with Facebook’s
DeepFace [97] and DeepID [92], exploited massive amounts of labeled outside
data to train deep convolutional neural networks (CNNs) and reach very high
performance on LFW.

In the first paper from the Face++ group, a new structure, which they term the
pyramid CNN [34] is used. It conducts supervised training of a deep neural network
one layer at a time, thus greatly reducing computation. A four-level Siamese
network trained for verification was used. The network was applied on four face
landmarks and the outputs were concatenated. They report an accuracy of 97.3 %
on the LFW unrestricted with labeled outside data protocol.

The Megvii Face Recognition System [113] was trained on a data set of five
million labeled faces of around 20,000 identities. A ten-layer network was trained
for identification on this data set. The second-to-last layer, followed by PCA, was
used as the face representation. Face verification was done using the L2 norm score,
achieving 99.50 ˙ 0.36 % accuracy. With the massive training data set size, they
argue that the advantages of using more sophisticated architectures and methods
become less significant. They investigate the long tail effect of web-collected data
(lots of persons with very few image samples) and find that after the first 10,000
most frequent individuals, including more persons with very few images into the
training set does not help. They also show in a secondary experiment that high
performance on LFW does not translate to equally high performance in a real-world
security certification setting.

2.2.13 DeepFace: Closing the Gap to Human-Level Performance
in Face Verification, 2014 [97]

This paper from Facebook [97] has two main novelties—a method for 3D face
frontalization7 and a deep neural net trained for classification. The neural network
featured 120 million parameters, and was trained on 4000 identities having four
million images (the non-public SFC data set). This paper was one of the first papers
to achieve very high accuracies on LFW using CNNs. However, as mentioned above,

7See Sect. 3 for a discussion of previous work on 3D frontalization.
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Fig. 2 The architecture of the DeepFace convolutional neural network [97]. This type of archi-
tecture, which has been widely used in other object recognition problems, has become a dominant
presence in the face recognition literature

other papers that used deep networks for face recognition predated this by several
years [48, 70]. Figure 2 shows the basic architecture of the DeepFace CNN, which is
typical of deep architectures used on other non-face benchmarks such as ImageNet.

3-D frontalized RGB faces of size 152 � 152 are taken as input, followed by
32 11 � 11 convolution filters (C1), a max-pooling layer (2 � 2 size with stride
of two pixels, M2) and another convolutional layer with 16 9 � 9 filters (C3). The
next three layers (L4–6) are locally connected layers [48], followed by two fully
connected layers (F7–8). The 4096-dimensional F7 layer output is used as the face
descriptor. ReLU activation units are used as the non-linearity in the network and
dropout regularization is applied to F7 layer. L2-normalization is applied to the
descriptor. Training the network for 15 epochs took three days. The weighted �2

distance is used as the verification metric. Three different input image types (3D
aligned RGB, grayscale with gradient magnitude and orientation and 2-D aligned
RGB) are used, and their scores are combined using a kernel support vector machine
(SVM). Using the restricted protocol, this reaches 97.15 % accuracy. Under the
unrestricted protocol, they train a Siamese network (initially using their own SFC
data set, followed by two epochs on LFW pairs), reaching 97.25 % after combining
the Siamese network with the above ensemble. Finally, adding four randomly-
seeded DeepFace networks to the ensemble a final accuracy of 97.35 ˙ 0.25 % is
reached on LFW following the unrestricted with labeled outside data protocol.

2.2.14 Recover Canonical-View Faces in the Wild with Deep Neural
Networks, 2014 [114]

In this paper, the authors train a convolutional neural network to recover the
canonical view of a face by training it on 2D images without any use of 3D
information. They develop a formulation using symmetry and matrix-rank terms
to automatically select the frontal face image for each person at training time. Then
the deep network is used to learn the regression from face images in arbitrary view
to the canonical (frontal) view.
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After this canonical pose recovery is performed, they detect five landmarks from
the aligned face and train a separate network for each patch at each landmark along
with one network for the entire face. These small networks (two convolutional
and two pooling layers) are connected at the fully connected layer and trained on
the CelebFaces data set [91] with the cross-entropy loss to predict identity labels.
Following this, a PCA reduction is done, and an SVM is used for the verification
task, resulting in an accuracy of 96.45 ˙ 0.25 % under the unrestricted with labeled
outside data protocol.

2.2.15 Deep Learning Face Representation from Predicting 10,000
Classes, 2014 [92]

In this approach, called “DeepID” [92], the authors trained a network to recognize
10,000 face identities from the “CelebFaces” data set [91] (87,628 face images
of 5436 celebrities, non-overlapping with LFW identities). The CNNs had four
convolutional layers (with 20, 40, 60 and 80 feature maps), followed by max-
pooling, a 160-dimensional fully-connected layer (DeepID-layer) and a softmax
layer for the identities. The higher convolutional layers had locally shared weights.
The fully-connected layer was connected to both the third and fourth convolutional
layers in order to see multi-scale features, referred to as a “skipping” layer. Faces
were globally aligned based on five landmarks. The input to a network was one
out of 60 patches, which were square or rectangular and could be both colour or
grayscale. Sixty CNNs were trained on flipped patches, yielding a 160 � 2 � 60

dimensional descriptor of a single face. PCA reduction to 150 dimensions was
done before learning the joint Bayesian model, reaching an accuracy of 96.05 %.
Expanding the data set (CelebFaces+ [88]) and using the joint Bayesian model for
verification gives them a final accuracy of 97.45 ˙ 0.26 % under the unrestricted
with labeled outside data protocol.

2.2.16 Surpassing Human-Level Face Verification Performance on LFW
with GaussianFace, 2014 [65]

This method uses multi-task learning and the discriminative Gaussian process latent
variable model (DGP-LVM) [55, 100] to be one of the top performers on LFW.
The DGP-LVM [100] maps a high-dimensional data representation to a lower-
dimensional latent space using a discriminative prior on the latent variables while
maximizing the likelihood of the latent variables in the Gaussian process (GP)
framework for classification. GPs themselves have been observed to be able to
make accurate predictions given small amounts of data [55] and are also robust to
situations when the training and test data distributions are not identical. The authors
were motivated to use DGP-LVM over the more usual GPs for classifications as the
former, by virtue of its discriminative prior, is a more powerful predictor.
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The DGP-LVM is reformulated using a kernelized linear discriminant analysis
to learn the discriminative prior on latent variables and multiple source domains
are used to train for the target domain task of verification on LFW. They detail
two uses of their Gaussian Face model—as a binary classifier and as a feature
extractor. For the feature extraction, they use clustering based on GPs [51] on the
joint vectors of two faces. They compute first and second order statistics for input
joint feature vectors and their latent representations and concatenate them to form
the final feature. These GP-extracted features are used in the GP-classifier in their
final model.

Using 200,000 training pairs, the “GaussianFace” model reached 98:52˙0:66 %
accuracy on LFW under the unrestricted with labeled outside data protocol,
surpassing the recorded human performance on close-cropped faces (97.53 %).

2.2.17 Deep Learning Face Representation by Joint
Identification-Verification, 2014 [88]

Building on the previous model, DeepID [92], “DeepID2” [88] used both an iden-
tification signal (cross-entropy loss) and a verification signal (L2 norm verification
loss between DeepID2 pairs) in the objective function for training the network,
and expanded the CelebFaces data set to “CelebFaces+”, which has 202,599 face
images of 10,177 celebrities from the web. 400 aligned face crops were taken
to train a network for each patch and a greedy selection algorithm was used to
select the best 25 of these. A final 4000 (25 � 160) dimensional face representation
was obtained, followed by PCA reduction to 180-dimensions and joint Bayesian
verification, achieving 98.97 % accuracy.

The network had four convolutional layers and max-pooling layers were used
after the first three convolutional layers. The third convolutional layer was locally
connected, sharing weights in 2 � 2 local regions. As mentioned before, the loss
function was a combined loss from identification and verification signals. The
rationale behind this was to encourage features that can discriminate identity, and
also reduce intra-personal variations by using the verification signal. They show
that using either of the losses alone to train the network is sub-optimal and the
appropriate loss function is a weighted combination of the two.

A total of seven networks are trained using different sets of selected patches
for training. The joint Bayesian scores are combined using an SVM, achieving
99.15 ˙ 0.13 % accuracy under the unrestricted with labeled outside data protocol.

2.2.18 Deeply Learned Face Representations are Sparse, Selective
and Robust, 2014 [93]

Following on with the DeepID “family” of models, “DeepID2+” [93] increased
the number of feature maps to 128 in the four convolutional layers, the DeepID
size to 512 dimensions and expanded their training set to around 290,000 face
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images from 12,000 identities by merging the CelebFaces+ [88] and WDRef [29]
data sets. Another interesting novelty of this method was the use of a loss function
at multiple layers of the network, instead of the standard supervisory signal (loss
function) in the top layer. They branched out 512-dimensional fully-connected
layers at each of the four convolutional layers (after the max-pooling step) and added
the loss function (a joint identification-verification loss) after the fully-connected
layer for additional supervision at the early layers. They show that removal of the
added supervision lowers their performance, as well as some interesting analysis
on the sparsity of the neural activations. They report that only about half the
neurons get activated for an image, and each neuron activates for about half the
images. Moreover they found a difference of less than 1 % when using a binary
representation by thresholding, which led them to state that the fact that a neuron is
activated or not is more important than the actual value of that activation.

This report an accuracy of 99.47 ˙ 0.12 % (unrestricted with labeled outside
data) using the joint Bayesian model trained on 2000 people in their training
set and combining the features from 25 networks trained on the same patches as
DeepID2 [88].

2.2.19 DeepID3: Face Recognition with Very Deep Neural Networks,
2015 [89]

“DeepID3” uses a deeper network (10–15 feature extraction layers) with Inception
layers [94] and stacked convolution layers (successive convolutional layers without
any pooling layer in between) on a similar overall pipeline to DeepID2+ [93].
Similar to DeepID2+, they include unshared weights in later convolutional layers,
max-pooling in early layers and the addition of joint identification-verification loss
functions to branched-out fully connected layers from each pooling layer in the
network.

They train two networks, one using the stacked convolution and the other using
the recently-proposed Inception layer used in the GoogLeNet architecture, which
was a top-performer in the ImageNet challenge in 2015 [94]. The two networks
reduce the error rate of DeepID2+ by 0.81 % and 0.26 %, respectively.

The features from both the networks on 25 patches is combined into a vector
of about 30,000 dimensions. It is PCA reduced to 300 dimensions, followed by
learning a joint Bayesian model. It achieved 99.53 ˙ 0.10 % verification accuracy
on LFW (unrestricted with labeled outside data).

2.2.20 FaceNet: A Unified Embedding for Face Recognition
and Clustering, 2015 [82]

This model from Google, called the FaceNet [82], uses 128-dimensional represen-
tations from very deep networks, trained on a 260-million image data set using a
triplet loss at the final layer—the loss separates a positive pair from a negative pair
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by a margin. An online hard negative exemplar mining strategy within each mini-
batch is used in training the network. This loss directly optimizes for the verification
task and so a simple L2 distance between the face descriptors is sufficient.

They use two variants of networks. In NN1, they add 1�1�d convolutional layers
between the standard Zeiler&Fergus CNN [112] resulting in 22 layers. In NN2,
they use the recently proposed Inception modules from GoogLeNet [94] which is
more efficient and has 20 times lesser parameters. The L2-distance threshold for
verification is estimated from the LFW training data. They report results, following
the unrestricted with labeled outside data protocol, on central crops of LFW
(98.87 ˙ 0.15 %) and when using a proprietary face detector (99.6 ˙ 0.09 %) using
the NN1 model, which is the highest score on LFW in the unrestricted with labeled
outside data protocol. The scores from using the NN2 model were reported to be
statistically in the same range.

2.2.21 Tencent-BestImage, 2015 [8]

This commercial system followed the unrestricted with labeled outside data pro-
tocol and built their system combining an alignment system, a deep convolutional
neural network with 12 convolution layers, and the joint Bayesian method for ver-
ification. The whole system was trained on their data set—“BestImage Celebrities
Face” (BCF), which contains about 20,000 individuals and one million face images
and is identity-disjoint with respect to LFW. They divided the BCF data into two
subsets for training and validation. The network was trained on the BCF training
set with 20 face patches. The features from each patch were concatenated, followed
by PCA and the joint Bayesian model learned on BCF validation set. They report
an accuracy of 99.65 ˙ 0.25 % on LFW under the unrestricted with labeled outside
data protocol.

2.3 Label-Free Outside Data Protocols

In this section, we discuss two of the LFW protocols together— image-restricted
with label-free outside data and unrestricted with label-free outside data. While
these results are curated separately for fairness on the LFW page, conceptually they
are highly similar, and are not worth discussing separately.

These protocols allow the use of outside data such as additional faces, landmark
annotations, part labels, and pose labels, as long as this additional information does
not contain any information that would allow making pairs of images labeled “same”
or “different”. For example, a set of images of a single person (even if the person
were not labeled) or a video of a person would not be allowed under these protocols,
since any pair of images from the set or from the video would allow the formation
of a “same” pair.
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Still, large amounts of information can be used by these methods to understand
the general structure of the space of faces, to build supervised alignment methods,
to build attribute classifiers, and so on. Thus, these methods would be expected to
have a significant advantage over the “no outside data” protocols.

2.3.1 Face Recognition Using Boosted Local Features, 2003 [50]

One of the earliest methods applied to LFW was developed at Mitsubishi Electric
Research Labs (MERL) by Michael Jones and Paul Viola [50]. This work built on
the authors’ earlier work in boosting for face detection [101], adapting it to learn
a similarity measure between face images using a modified AdaBoost algorithm.
They use filters that act on a pair of images as features, which are a set of linear
functions that are a superset of the “rectangle” filters used in their face detection
system. A threshold on the absolute difference of the scalar values returned by a
filter applied on a pair of faces can be used to determine valid or invalid variation of
a particular property or aspect of a face (the validity being with respect to whether
the faces belong to the same identity).

The technical report was released before LFW, and so does not describe appli-
cation to the database, but the group submitted results on LFW after publication,
achieving 70:52 ˙ 0:60 %.

2.3.2 LFW Results Using a Combined Nowak Plus MERL Recognizer,
2008 [46]

This early system combined the method of Nowak and Jurie [74] with an unpub-
lished method [46] from Mitsubishi Electric Research Laboratory (MERL), and thus
technically counts as a method whose full details are not published. However, some
details are given in a workshop paper [46].

The MERL system initially detects a face using a Viola-Jones frontal face
detector, followed by alignment based on nine facial landmarks (also detected using
a Viola-Jones detector). After alignment, some simple lightning normalization is
done. The score of the MERL face recognition system [50] is then averaged with the
score from the best-performing system of that time (2007), by Nowak and Jurie [74].

The accuracy of this system was 76.18 ˙ 0.58 %.

2.3.3 Is That You? Metric Learning Approaches for Face Identification,
2009 [39]

This paper presents two methods to learn robust distance measures for face
verification, the logistic discriminant-based metric learning (LDML) and marginal-
ized K-nearest neighbors (MkNN) classifier. The LDML learns a Mahalanobis
distance between two images to make the distances between positive pairs smaller
than the distances between negative pairs and obtain a probability that a pair is
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positive in a standard linear logistic discriminant model. The MkNN classifies
an image pair belongs to the same class with the marginal probability that both
of them are assigned to the same class using a K-nearest neighbor classifier. In
the experiments, they represent the images as stacked multi-scale local descriptors
extracted at nine facial landmarks. The facial landmarks detector is trained with
outside data. Without using the identify labels for the LFW training data, the
LDML achieves 79:27 ˙ 0:6 % under the image-restricted with label-free outside
data protocol. They obtain this accuracy by fusing the scores from eight local
features including LBP, TPLBP, FPLBP, SIFT and their element-wise square root
variants with a linear combination. This multiple feature fusion method is shown to
be effective in a number of literatures. Under the unrestricted with label-free outside
data protocol, they show that the performance of LDML is significantly improved
with more training pairs formed using the identity labels. And they obtain their best
performance 87:50 ˙ 0:4 % accuracy by linearly combining the 24 scores with the
three methods LDML, large margin nearest neighbor (LMNN) [102] and MkNN
over the eight local features.

2.3.4 Multiple One-Shots for Utilizing Class Label Information, 2009 [96]

The authors extend the one-shot similarity (OSS) introduced in [104] which we
will describe under the image-restricted, no outside data protocol. In brief, the OSS
for an image pair is obtained by training a binary classifier with one image in the
pair as the positive sample and a set of pre-defined negative samples to classify
the other image in the pair. This paper extends the OSS to be multiple one-shots
similarity vector by producing OSS scores with different negative sample sets. Each
set reflecting either a different subject or a different pose. In their face verification
system, the faces are firstly aligned with a commercial face alignment system. The
aligned faces are published as the “aligned” LFW data set or LFW-a data set. The
face descriptors are then constructed by stacking local descriptors extracted densely
over the face images. The information theoretic metric learning (ITML) method
is adopted to obtain a Mahalanobis matrix to transform the face descriptors and a
linear SVM classifies a pair of faces to be matched or not based on the multiple
OSS scores. They achieve their best result 89:50 ˙ 0:51 % accuracy by combining
16 multiple OSS scores including eight descriptors (SIFT, LBP, TPLBP, FPLBP
and their square root variants) under two settings of the multiple OSS scores (the
subject-based negative sample sets and pose-based negative sample sets).

2.3.5 Attribute and Simile Classifiers for Face Verification, 2009 [53]

We discussed the attribute and simile classifiers for face verification [53] under
the unrestricted with labeled outside data protocol. The authors’ result with the
attribute classifier qualifies for the unrestricted with label-free outside data protocol.
They reported their result with the attribute classifier on LFW as 85:25 ˙ 0:60 %
accuracy in their follow-up journal paper [54].
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2.3.6 Similarity Scores Based on Background Samples, 2010 [105]

In this paper, Wolf et al. [105] extend the one-shot similarity (OSS) introduced
in [104] to the two-shot similarity (TSS). The TSS score is obtained by training
a classifier to classify the two face images in a pair against a background face set.
Although the TSS score by itself is not discriminative for face verification, they
show that the performance is improved by combining the TSS scores with OSS
scores and other similarity scores. They extend the OSS and TSS framework to use
linear discriminant analysis instead of an SVM as the online trained classifier. In
addition to OSS and TSS, they propose to represent each image in the pair with
its rank vector obtained by retrieving similar images from the background face set.
The correlation between the two rank vectors provides another dimensionality of the
similarity measure of the face pair. In their experiments, they use the LFW-a data
set to handle alignment. Combining the similarities introduced above with eight
variants of local descriptors, they obtain an accuracy of 86:83 ˙ 0:34 % under the
image-restricted with label-free outside data protocol.

2.3.7 Rectified Linear Units Improve Restricted Boltzmann Machines,
2010 [70]

Restricted Boltzmann machines (RBMs) are often formulated as having binary-
valued units for the hidden layer and Gaussian units for the real-valued input
layer. Nair and Hinton [70] modify the hidden units to be “noisy rectified linear
units” (NReLUs), where the value of a hidden unit is given by the rectified output
of the activation and some added noise, i.e. max.0; x C N.0; V//, where x is the
activation of the hidden unit given an input, and N.0; V/ is the Gaussian noise.
RBMs with 4000 NReLU units in the hidden layer are first pre-trained generatively,
then discriminatively trained as a feed-forward fully-connected network using
back-propagation (in the latter case the Gaussian noise term is dropped in the
rectification).

In order to model face pairs, they use a “Siamese” network architecture, where
the same network is applied to both faces and the cosine distance is the symmetric
function that combines the two outputs of the network. They show that that NReLUs
are translation equivariant and scale equivariant(the network outputs change in
the same way as the input), and combined with the scale invariance of cosine
distance the model is analytically invariant to the rescaling of its inputs. It is not
translation invariant. LFW images are center-cropped to 144 � 144, aligned based
on the eye location and sub-sampled to 32 � 32 3-channel images. Image intensities
are normalized to be zero-mean and unit-variance. They report an accuracy of
80.73 ˙ 1.34 % (image-restricted with label-free outside data). It should be noted
that because the authors use manual correction of alignment errors, this paper does
not conform to the LFW protocols, and thus need not be used as a comparison
against fully automatic methods.
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2.3.8 Face Recognition with Learning-based Descriptor, 2010 [26]

This paper was discussed under the unrestricted with labeled outside data protocol.
With the holistic face as the only component, the method qualifies for the image-
restricted with label-free outside data protocol, under which the authors obtain an
accuracy of 81.22 ˙ 0.35 %.

2.3.9 Cosine Similarity Metric Learning for Face Verification, 2011 [72]

This paper proposes cosine similarity metric learning (CSML) to learn a transforma-
tion matrix to project faces into a subspace in which cosine similarity performs well
for verification. They define the objective function to maximize the margin between
the cosine similarity scores of positive pairs and cosine similarity scores of negative
pairs while regularizing the learned matrix by a predefined transformation matrix.
They empirically demonstrate that this straightforward idea works well on LFW
and that by combining scores from six different feature descriptors their method
achieves an accuracy of 88:00 ˙ 0:38 % under the image-restricted with label-free
outside data protocol. Subsequent communication with the authors revealed an error
in the use of the protocol. Had the protocol been followed properly, our experiments
suggest that the results would be about three percent lower, i.e., about 85 %. Still,
this method has played an important role in subsequent research as a popular choice
for the comparison of feature vectors.

2.3.10 Beyond Simple Features: A Large-Scale Feature Search Approach
to Unconstrained Face Recognition, 2011 [31]

This method [31] uses the biologically-inspired V1-like features that are designed
to approximate the initial stage of the visual cortex of primates. It is essentially a
cascade of linear and non-linear functions. These are stacked into two and three
layer architectures, HT-L2 and HT-L3 respectively. These models take in 100 � 100

and 200 � 200 grayscale images as inputs. A linear SVM is trained on a variety of
vector comparison functions between two face descriptors. Model selection is done
on 5915 HT-L2 and 6917 HT-L3 models before the best five were selected. Multiple
kernels were used to combine data augmentations (rescaled crops of 250 � 250,
150 � 150 and 125 � 75), blend the top five models within each “HT class”, and
also blend models across HT classes. The HT-L3 gives an accuracy of 87.8 % while
combining all of the models gives a final accuracy of 88.13 ˙ 0.58 % following the
image-restricted with label-free outside data protocol.
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2.3.11 Face Verification Using the LARK Representation, 2011 [84]

This work extends previous work [83] in which two images are represented as two
local feature sets and the matrix cosine similarity (MCS) is used to separate faces
from backgrounds. All kinds of visual variations are addressed implicitly in the
MCS which is the weighted sum of the cosine similarities of the local features. In
this work, the authors present the locally adaptive regression kernel (LARK) local
descriptor for face verification. LARK is defined as the self-similarity between a
center pixel and its surroundings. In particular, the distance between two pixels is
the geodesic distance. They consider an image as a 3D space which includes the
2D coordinates and the gray-scale value at each pixel. The geodesic distance is
then the shortest path on the image surface. PCA is then adopted to reduce the
dimensionality of the local features. They further apply an element-wise logistic
function to generate a binary-like representation to remove the dominance of large
relative weights to increase the discriminative power of the local features. They
conduct experiments on LFW under both the unsupervised protocol and the image
restricted protocol.

In the unsupervised setting, they compute LARKs of size 7 � 7 from each
face image. They evaluate various combinations of different local descriptors and
similarity measures and report that the LBP with Chi-square distance achieves
the best 69:54 % accuracy among the baseline methods. Their method achieves
72:23 % accuracy. Under the image-restricted with label-free outside data protocol,
they adopt the OSS with LDA for face verification and achieve an accuracy of
85.10 ˙ 0.59 % by fusing scores from 14 combinations of local descriptors (SIFT,
LBP, TPLBP and pcaLARK) and similarity measures (OSS, OSS with logistic
function, MCS and MCS with logistic function).

2.3.12 Probabilistic Models for Inference About Identity, 2012 [62]

This paper presents a probabilistic face recognition method. Instead of representing
each face as a feature vector and measuring the distances between faces in the
feature space, they propose to construct a model in which identity is a hidden
variable in a generative description of the image data. Other variations in pose,
illumination and etc., is described as noise. The face recognition is then framed
as a model comparison task.

More concretely, they present a probabilistic latent discriminant analysis (PLDA)
model to describe the data generation. In PLDA, the data generation depends on
the latent identity variable and an intra-class variation variable. This design helps
factorize the identity subspace and within-individual subspace. The model is learned
by expectation-maximization (EM) and the face verification is conducted by looking
at the likelihood ratio of an image pair generated by a similar pair model over a
dissimilar pair model. The PLDA model is further extended to be a mixture of
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PLDA models to describe the potential non-linearity of the face manifold. Extensive
experiments are conducted to evaluate the PLDA and its variants in face analysis.
Their face verification result on LFW is 90:07 ˙ 0:51 % under the unrestricted with
label-free outside data protocol.

2.3.13 Large Scale Strongly Supervised Ensemble Metric Learning,
with Applications to Face Verification and Retrieval, 2012 [43]

High-dimensional overcomplete representations of data are usually informative but
can be computationally expensive. This paper proposes a two-step metric learning
method to enforce sparsity and to avoid features with little discriminability and
improve computational efficiency. The two-step design is motivated by the fact
that straightforwardly applying the group lasso with row-wise and column-wise L1

regularization is very expensive in high-dimensional feature spaces. In the first step,
they iteratively select � groups of features. In each iteration, the feature group which
gives the largest partial derivative of the loss function is chosen and the Mahalanobis
matrix of a weak metric for the selected feature group is learned and assembled into
a sparse block diagonal matrix A�. With an eigenvalue decomposition, they obtain a
transformation matrix to reduce the feature dimensionality. After that, in the second
step, another Mahalanobis matrix is learned to exploit the correlations between the
selected feature groups in the lower-dimensional subspace. They adopt the projected
gradient descent method to iteratively learn the Mahalanobis matrix.

In their experiments, they use the LFW-a data set and center crop the face images
to 110 � 150. By concatenating two types of features (covariance matrix descriptors
and soft local binary pattern histograms) after the first step, they achieve 92:58 ˙
1:36 % accuracy under the image-restricted with label-free outside data protocol.

2.3.14 Distance Metric Learning with Eigenvalue Optimization,
2012 [111]

In this paper, the authors present an eigenvalue optimization framework for learning
a Mahalanobis metric. They learn the metric by maximizing the minimal squared
distances between dissimilar pairs while maintaining an upper bound for the sum of
squared distances between similar pairs. They further show that this is equivalent to
an eigenvalue optimization problem. Similarly, the previous metric learning method
LMNN can also be formulated as a general eigenvalue decomposition problem.

They further develop an efficient algorithm to solve this optimization problem,
which will only involve the computation of the largest eigenvector of a matrix. In
the experiments, they show that the proposed method is more efficient than other
metric learning methods such as LMNN and ITML. On LFW, they evaluate this
method with both the LFW funneled data set and the LFW-a data set. They use
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SIFT features computed at the fiducial points for faces on the funneled LFW data
set and achieve 81:27 ˙ 2:30 % accuracy. On the “aligned” LFW data set, they
evaluate three types of features including concatenated raw intensity values, LBP
and TPLBP. Combining the scores from the four different features with a linear
SVM, they achieve 85:65 ˙ 0:56 % accuracy under the image-restricted with label-
free outside data protocol.

2.3.15 Learning Hierarchical Representations for Face Verification
with Convolutional Deep Belief Networks, 2012 [48]

In this work [48], a local convolutional deep belief network is used to generatively
model the distribution of faces. Then, a discriminatively learned metric (ITML) is
used for the verification task. The shared weights of convolutional filters (10 � 10 in
size) in the CRBM (convolutional RBM) makes it possible to use high-resolution
images as input. Probabilistic max-pooling is used in the CRBM to have local
translation invariance and still allow top-down and bottom-up inference in the
model.

The authors argue that in images like faces, that exhibit clear spatial structure,
the weights of a hidden unit being shared across the locations in the whole image is
not desirable. On the other hand, using a layer with fully-connected weights may
not be computationally tractable without either subsampling the input image or
first applying several pooling layers. In order to exploit this structure, the image is
divided into overlapping regions and the weight-sharing in the CRBM is restricted
to be local. Contrastive divergence is used to train the local CRBM. Two layers of
these CRBMs are stacked to form a deep belief network (DBN). The local CRBM is
used in the second layer of their network. In addition to using raw pixels, the uniform
LBP descriptor is also used as input to the DBN. The two features are combined at
the score level by using a linear SVM. The LFW-a face images are used as input,
with three croppings at sizes 150�150; 125�75; 100�100, resized to the same size
before input to the DBN. The deep learned features give competitive performance
(86.88 ˙ 0.62 %) to hand-crafted features (87.18 ˙ 0.49 %), while combining the
two gives the highest of 87.77 ˙ 0.62 % (image-restricted with label-free outside
data).

2.3.16 Bayesian Face Revisited: A Joint Formulation, 2012 [28]

We discussed this paper under the unrestricted with labeled outside data protocol.
The authors also present their result under the unrestricted with label-free outside
data protocol. Combining scores of four descriptors (SIFT, LBP, TPLBP and
FPLBP), they achieve an accuracy of 90:90 ˙ 1:48 % on LFW.



218 E. Learned-Miller et al.

Face alignment Dense SIFT extraction GMM

[ Fisher Vector ]

Discriminative
dimension reduction

+ +
+

++

+
+++

+

-
-- -

-
- -

-

--

+ + + + - - - -

Compact 
representation[ ]

Fig. 3 The Fisher vector face encoding work-flow [85]

2.3.17 Blessing of Dimensionality: High-dimensional Feature
and Its Efficient Compression for Face Verification, 2013 [29]

We discussed this paper under the unrestricted with labeled outside data protocol.
Without using the WDRef data set for training, they report an accuracy of 93:18 ˙
1:07 % under the unrestricted with label-free outside data protocol.

2.3.18 Fisher Vector Faces in the Wild, 2013 [85]

In this paper, Simonyan et al. [85] adopt the Fisher vector (FV) for face verification.
The FV encoding had been shown to be effective for general object recognition.
This paper demonstrates that this encoding is also effective for face recognition. To
address the potential high computational expense due to the high dimensionality of
the Fisher vectors, the authors propose a discriminative dimensionality reduction to
project the vectors into a low dimensional subspace with a linear projection.

To encode a face image with FV, it is first processed into a set of densely extracted
local features. In this paper, the dense local feature of an image patch is the PCA-
SIFT descriptor augmented by the normalized image patch location in the image.
They train a Gaussian mixture model (GMM) with diagonal covariance over all
the training features. As shown in Fig. 3, to encode a face image with FV, the
face image is first aligned with respect to the fiducial points. The Fisher vector
is then the stacked, average first and second order differences of the image features
over each GMM component center. To construct a compact and discriminative face
representation, the authors propose to adopt a large-margin dimensionality reduction
step after the Fisher vector encoding.

In their experiments, they report their best result as 93:03 ˙ 1:05 % accuracy on
LFW under the unrestricted with label-free outside data protocol.

2.3.19 Fusing Robust Face Region Descriptors via Multiple Metric
Learning for Face Recognition in the Wild, 2013 [32]

In this paper, the authors present a region-based face representation. They divide
each face image into spatial blocks and sample image patches from a fixed grid



Labeled Faces in the Wild: A Survey 219

of positions. The patches are then represented by nonnegative sparse codes and
sum pooled to construct the representation for the block. PCA whitening is then
applied to reduce its dimensionality. After processing each image into a sequence of
block representations, the distance between two images are the fusion of pairwise
block-to-block distances. They further propose a metric learning method to jointly
learn the sequence of Mahalanobis matrices for discriminative block-wise distances.
Their best result on LFW is 89:35 ˙ 0:50 % (image-restricted with label-free outside
data) fusing 8 distances from two different scales of face images and four different
spatial partitions of blocks.

2.3.20 Towards Pose Robust Face Recognition, 2013 [108]

This paper presents a pose adaptive framework to handle pose variations in face
recognition. Given an image with landmarks, they present a fitting algorithm to fit
a 3D shape of the given face. The 3D shape is used to project the pre-defined 3D
feature points to the 2D image to reliably locate facial feature points. They then
extract descriptors around the feature points with Gabor filtering and concatenate
local descriptors to represent the face. In their method, an additional technique
to address self-occlusion is to use descriptors from the less-occluded half face
for matching. In their experiments, they show that this pose adaptive framework
can handle pose variations well in unconstrained face recognition. They obtain
87:77 ˙ 0:51 % accuracy on LFW (image-restricted with label-free outside data).

2.3.21 Similarity Metric Learning for Face Recognition, 2013 [23]

This paper presents a framework to learn a similarity metric for unconstrained
face recognition. The learned metric is expected to be robust to the large intra-
personal variation and discriminative in order to differentiate similar image pairs
from dissimilar image pairs. The robustness is introduced by projecting the face
representations into the intra-personal subspace, which is spanned by the top
eigenvectors of the intra-personal covariance matrix after the whitening process.
After mapping the images to the intra-personal subspace, the discrimination is
incorporated in learning the similarity metric. The similarity metric is defined as the
difference of the image pair similarity against the distance measure, parameterized
by two matrices respectively. The matrices are learned by minimizing the hinge loss
and regularizing the two matrices to identity matrices. In their experiments, they
use LBP and TBLBP descriptors on the LFW-a data set and SIFT descriptors on
the LFW funneled data set computed at nine facial key points. Under the image-
restricted with label-free outside data protocol, combining six scores from the three
descriptors and their square roots variants they achieve 89:73 ˙ 0:38 % accuracy.
Under the unrestricted with label-free outside data protocol, they generate more
training pairs with the identity labels and improve the accuracy to 90:75 ˙ 0:64 %.
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2.3.22 Fast High Dimensional Vector Multiplication Face Recognition,
2013 [12]

In this method, the authors propose the over-complete LBP (OCLBP) descriptor,
which is the concatenation of LBP descriptors extracted with different block and
radius sizes. The OCLBP based face descriptor is then processed by Whiten-PCA
and LDA. They further introduce a non-linear dimensionality reduction technique
Diffusion Maps (DM) with the proposed framework. Extensive experiments are
conducted with different local features and dimensionality reduction methods
combinations. They report 91:10 ˙ 0:59 % accuracy under the image-restricted
with label-free outside data protocol and 92:05 ˙ 0:45 % under the unrestricted
with label-free outside data protocol.

2.3.23 Discriminative Deep Metric Learning for Face Verification
in the Wild, 2014 [41]

In this method, referred to as DDML, a verification loss between pairs of faces is
directly incorporated into a deep neural network, resulting in a non-linear distance
metric that can be trained end-to-end using the back-propagation algorithm. The
rationale for the verification loss is that the squared Euclidean distance between
positive pairs is smaller than that between negative pairs, formulated as a large
margin metric learning problem. The network is initialized randomly with three
layers and tan h as the nonlinear activation function. They use 80 � 150 crops of
the LFW-a (aligned) data set and extract Dense SIFT (45 SIFT descriptors from
16 � 16 non-overlapping patches, resulting in a 5760-dimensional vector), LBP
features (10 � 10 non-overlapping blocks to get a 7080-dimensional vector) and
Sparse SIFT (SIFT computed on nine fixed landmarks at three scales on the funneled
LFW images, resulting in a 3456-dimensional vector). These features are projected
down to 500 dimensions using PCA Whitening. Multiple features are fused at the
score level by averaging. Their final accuracy is 90.68 ˙ 1.41 % (image-restricted
with label-free outside data).

2.3.24 Large Margin Multi-Metric Learning for Face and Kinship
Verification in the Wild, 2014 [42]

In this paper, a large margin multi-metric learning (LM3L) method is proposed to
exploit discriminative information from multiple features of the same face image.
Extracting multiple features from the face images, the distance between two face
images is the weighted sum of Mahalanobis distances in each image feature. LM3L
jointly learn the distance metrics in different features and the weights of the features
by optimizing each distance metric to be discriminative while minimizing the
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difference of distances in different features of the same image pair. They evaluate the
method on the LFW-a data set with SIFT, LBP and Sparse SIFT features. With all
the features, they achieve an accuracy of 89:57 ˙ 1:53 % under the image-restricted
with label-free outside data protocol.

2.3.25 Effective Face Frontalization in Unconstrained Images, 2014 [40]

To show the importance of 3D frontalization to the task of face verification, in this
paper Hassner et al. [40] evaluate their alignment technique using an earlier face
recognition method [104], so that the impact of 3D alignment is not subsumed by
the representation power of a more powerful model like the deep network.

Prior work in 3D frontalization of faces [97] would try to reconstruct the 3D
surface of a face and then use this 3D model to general views, usually of a
canonical pose. This paper explores the alternative of using a single 3D reference
surface, without trying to modify the 3D head model to fit every query face’s
appearance. Although the exact head shape of a query face would be containing
discriminative information regarding identity, the final 3D shape fitted to the query
face would be an approximation largely dependent upon the accuracy of facial
landmark localization. Solving the simpler problem by using an unmodified 3D
shape model is shown to give qualitatively equivalent frontalization results, and
performance improvement over 2D keypoint alignment methods is demonstrated
on face verification and gender estimation tasks.

The frontalized faces of LFW, termed “LFW3D”, provided a 3 % boost over the
LFW-a aligned images. By combining multiple feature descriptors and models by
stacking linear SVM scores, they reach an accuracy of 91.65 ˙ 1.04 % on the image-
restricted with label-free outside data protocol of LFW.

2.3.26 Multi-Scale Multi-Descriptor Local Binary Features
and Exponential Discriminant Analysis for Robust Face
Authentication, 2014 [75]

In this paper, the authors represent an face image as the concatenation of region
based descriptors which are stacked histograms of local descriptors over multiple
scales. They further utilize the exponential discriminant analysis (EDA) to address
the small-sample-size problem in LDA to learn a discriminative subspace for the
face image feature. And they adopt the within class covariance normalization to
project the feature after EDA into a subspace, in which the directions contribute to
large intra-class distances have lower weights. They obtain their best result 93:03 ˙
0:82 % on LFW (image-restricted with label-free outside data) by fusing scores
from three different local features.
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2.4 No Outside Data Protocols

The most restrictive LFW protocols are the “no outside data” protocols, including
image restricted with no outside data and unrestricted with no outside data. We
present these results together as well.

2.4.1 Face Recognition Using Eigenfaces, 1991 [99]

Turk and Pentland [99] introduce the eigenpicture method by Sirovich and
Kirby [86] to face recognition. The eigenfaces approach they developed is a
very important face recognition method in early years. The eigenfaces are the
eigenvectors spanning the PCA subspace of a set of training faces. To recognize the
unseen face, it is projected to a low-dimensional subspace with the eigenfaces and
compared to the average face of each person.

As an early work on face recognition, it is mainly for recognizing frontal
faces. Because it assumes faces are well aligned, the PCA subspace keeps mostly
variations related to the identity which spans a good “face space”. And after
projecting faces into the “face space”, the representations are all low-dimensional
weight vectors. As a result, they can build a near-real-time face recognition system
with this eigenface approach for both face detection and recognition. This is an
impressive progress considering the limited computational power in early years.

The eigenface approach is designed for well-aligned frontal faces. For the real-
world faces in LFW, it achieves 60:02 ˙ 0:79 % verification accuracy in the image-
restricted with no outside data protocol.

2.4.2 Learning Visual Similarity Measures for Comparing Never Seen
Objects, 2007 [74]

Nowak and Jurie [74] present a method to recognize general objects. Without having
the class labels in training stage, they present a method to learn to differentiate if
two images are for the same object from training image pairs with only “same” and
“different” labels. This is a typical setting for the image-restricted with no outside
data protocol on LFW.

In the proposed method, they first extract corresponded image patches from
the image pair. Then the differences between the corresponded image patches are
quantized with an ensemble of randomized binary trees to obtain a vectorized
representation for the image pair. A binary linear SVM is applied to the vectorized
representation to predict whether the image pair is the “same” or “different”.

This method achieves 72:45˙0:40 % accuracy on the original LFW data set and
73:93 ˙ 0:49 % with the funneled LFW data set.
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2.4.3 Unsupervised Joint Alignment of Complex Images, 2007 [45]

This is the method that generated the funneled LFW data set. In this paper, Huang
et al. [45] present a method to align images unsupervisedly in the image-restricted
with no outside data setting of LFW. It is observed that the face recognition
accuracy is improved when the recognition method is applied after an alignment
stage. The method extends the congealing-style [56] method to handle real-world
images. Compared with other domain specific alignment algorithms, congealing
does not require manual labeling of specific parts of the object in the training stage.
In congealing, a distribution field is defined as the sequence of feature values at a
pixel location across a sequence of images. The congealing process is to iteratively
minimize the entropy of the distribution field by applying affine transformations to
the images. In this work, they use soft quantized SIFT features in congealing.

It shows that with the images aligned by this proposed method, the verification
accuracy is improved. For example, the method by Nowak and Jurie [74] achieves
72:45 ˙ 0:40 % accuracy on the original LFW data set but is improved to 73:93 ˙
0:49 % after aligning images with the proposed method.

2.4.4 Descriptor Based Methods in the Wild, 2008 [104]

In this paper, Wolf et al. [104] evaluate the descriptor-based methods on LFW with
LBP descriptor, Gabor filter and two variants of LBP descriptor named Three-Patch
LBP (TPLBP) and Four-Patch LBP (FPLBP). The TPLBP and FPLBP are produced
by comparing the values of three or four patches to produce a bit value in the code
assigned to each pixel. For each descriptor, they use both the Euclidean distance
and Hellinger distance to evaluate the similarity of a face pair. Then they train a
linear SVM to fuse the eight kinds of prediction scores and achieve an improved
performance after fusion.

Besides the evaluation of these descriptor-based methods, they also adopt the
one-shot learning for face verification. In this method, a binary classifier is learned
online using one face in the given face pair as positive example with a set of negative
examples. The binary classifier then evaluates the other face image to obtain the one-
shot similarity (OSS). The same process is applied for each face in the pair to obtain
an average similarity score of the face pair. They evaluate this method on LFW with
the four descriptors and their element-wise square root variants. Combining the 8
scores also improve the accuracy.

Their best result on LFW is 78:47 ˙ 0:51 % by fusing all 16 scores with a linear
SVM, under the image-restricted with no outside data protocol.
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2.4.5 Multi-Region Probabilistic Histograms for Robust and Scalable
Identity Inference, 2009 [81]

Sanderson and Lovell [81] present a region-based face representation. They divide
each face into several fixed regions. 2D DCT (Discrete Cosine Transform) features
are extract densely from each region. Then a soft quantized histogram is constructed
for each region with a Gaussian mixture model as the visual dictionary. The distance
between two faces are defined as the average L1 distances of the corresponded region
histograms.

They also propose a two-step method in constructing the soft histogram for
acceleration. The Gaussian components are clustered into K clusters. The K
Gaussian components nearest to the cluster center are evaluated first in the histogram
construction to obtain K likelihoods Then the Gaussian components are evaluated
cluster by cluster in the descending order with respect to the likelihoods until the
total number of evaluated Gaussian components exceeds the threshold.

The above distance between two faces is normalized by dividing the average
pairwise distance of the two faces and a set of cohort faces. They observe this
distance normalization method is effective that it brings additional 2:57 % average
accuracy. This work achieves 72:95 ˙ 0:55 % accuracy on LFW (image-restricted
with no outside data ).

2.4.6 How Far Can You Get with a Modern Face Recognition Test Set
Using Only Simple Features? 2009 [78]

Pinto et al. [78] present that it is possible to achieve a good recognition performance
on LFW by combining several low-level simple features. They extract 48 variants
of V1-like features by varying parameters such as the size of Gabor filters and
spatial frequencies. To combine the effectiveness of different features, they adopt
the multiple kernel learning (MKL) to jointly learn a weighted linear combination
of the 48 kernels and the parameters of the kernel SVM for classification. Their best
result on LFW is 79:35 ˙ 0:55 % following the image-restricted with no outside
data protocol.

2.4.7 Probabilistic Elastic Matching for Pose Variant Face Verification,
2013 [60]

Li et al. [60] present an elastic matching method to handle the pose variations
in face verification, reporting results under the image-restricted with no outside
data protocol of LFW. Without relying on a sophisticated face alignment system,
they resort to identify the corresponded regions to compare with in matching
two faces. As long as the selected corresponded regions are from a semantically
consistent face part, the matching could be invariant to pose variations. In their
method, a set of face part models as a Gaussian mixture model (GMM) is
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Fig. 4 The training and testing work-flow of the probabilistic elastic matching [60]

learned over all training features. The feature is densely extracted local descriptor
augmented by the spatial locations of the image patch in the image. Incorporating
the spatial information at the feature-level make each Gaussian component of the
GMM capture the joint spatial-appearance distribution of certain face structure.
With this GMM, a face can be represented as a sequence of features each of which
induces the highest probability on a Gaussian component of the GMM.

In the experiments, they center crop the face images to 150 � 150 and densely
extract local descriptors. Given an image, they concatenate the selected sequence
of features to be its face representation. An image pair is then represented as the
element-wise difference of the two face representations. A SVM is trained from
matched and mismatched face pairs for face verification. In their following-up
work, they name the GMM the Probabilistic Elastic Part (PEP) model and the face
representation is named PEP-representation. The work-flow is illustrated in Fig. 4.
The best result reported in the paper is 84:08 ˙ 1:20 % on the funneled LFW fusing
the prediction scores obtained with the SIFT and LBP features with a linear SVM.

2.4.8 Efficient Processing of MRFs for Unconstrained-Pose Face
Recognition, 2013 [9]

Arashloo and Kittler [9] present a method to handle the pose variations via
dense pixel matching across face images with MRFs. They propose to reduce
the processing time of inference in MRF-based image matching by parallelizing
the computation on GPU cores. The major contribution of this paper is how it
parallelizes the computation on GPU cores. After adopting the dual decomposition
for the MRF optimization, the original problem is decomposed into a set of
subproblems. To efficiently solve the subproblems, they further propose several
techniques such as incremental subgradient updates and multi-resolution analysis.
After obtaining the image matching, multi-scale LBP descriptors are extracted from
matched image regions. They stack the descriptors, apply PCA and use the cosine
similarity score for face verification. Their best result on LFW is 79:08 ˙ 0:14 %
under the image-restricted with no outside data protocol.
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2.4.9 Fisher Vector Faces in the Wild, 2013 [85]

We discussed this paper under the unrestricted with label-free outside data protocol.
They also report their result under the restricted protocol, in which they obtain
87:47 ˙ 1:49 % accuracy on LFW.

2.4.10 Eigen-PEP for Video Face Recognition, 2014 [61]

Li et al. [61] develop the Eigen-PEP method upon their early work [60]. With the
probabilistic elastic matching, a face image or a face track can be represented as a
set of face parts. Since the faces are implicitly aligned in a part-based representation,
the similar idea from the eigenfaces [99] is adopted here to build a low-dimensional
face representation. They use the joint Bayesian classifier [28] for verification.
They construct a two-frame face track for each image by adding the mirrored face
and achieve 88:97 ˙ 1:32 % accuracy on the funneled LFW in this paper (image-
restricted with no outside data).

2.4.11 Class-Specific Kernel Fusion of Multiple Descriptors for Face
Verification Using Multiscale Binarised Statistical Image Features,
2014 [79]

In this paper, Arashloo et al. [79] address the pose variations via dense pixel
matching with their prior work [9]. They then extract three kinds of descriptors,
the multi-scale binarized statistical image feature, the multi-scale LBP and the
multi-scale local phase quantization feature from the matched image regions. The
image representations are embedded into a discriminative subspace with a class-
specific kernel discriminant analysis approach. Their best result on the funneled
LFW data set is 95:89 ˙ 1:94 % achieved by combining the results of the three
image representations (image-restricted with no outside data).

2.4.12 Hierarchical-PEP Model for Real-World Face Recognition,
2015 [59]

In this paper, Li and Hua [59] present a Hierarchical-PEP model to hierarchically
apply the probabilistic elastic part (PEP) model combined with a PCANet [27]
to achieve an improved face verification accuracy. They point out that the parts
selected after the elastic matching could still present significant visual appearance
variations due to the pose variations of the faces. Applying the PEP model to the
parts could further introduce pose-invariance in the part representations. After that,
the dimensionality of the part representation is discriminatively reduced by a net of
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PCA and Linear Discriminant Embedding (LDE). They achieve 91:10 ˙ 1:47 %
accuracy in this paper on the funneled LFW data set under the image-restricted with
no outside data protocol.

2.5 Other Methods

Here we include those methods for which details are too brief to merit a separate
section. These are usually proprietary methods from commercial systems where
in-depth detail is not available.

2.5.1 Colour & Imaging Technology (TCIT), 2014 [4]

TCIT calculates the average position of the facial area and judges the identical
person or other person by face recognition using the facial area. Face Feature
Positioning is applied to get the face data template which is used to verify different
faces. They report an accuracy of 93.33 ˙ 1.24 % (unrestricted with labeled outside
data).

2.5.2 betaface.com, 2014 [1]

They have used original LFW images, converted to grayscale, auto-aligned with
their alignment system and followed unrestricted protocol with labeled outside
data. LFW data was not used for training or fine-tuning. Their reported accuracy
is 98.08 ˙ 0.16 % (unrestricted with labeled outside data).

2.5.3 insky.so, 2015 [2]

They used original LFW images to run the test procedure, without doing any training
on the LFW images. They report 95.51 ˙ 0.13 % accuracy (unrestricted with labeled
outside data).

2.5.4 Uni-Ubi, 2015 [5]

They used original LFW images, converted to grayscale, auto-aligned with their
face detector and alignment system. LFW was not used for training or fine-tuning.
They report 99.00 ˙ 0.32 % accuracy (unrestricted with labeled outside data).
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2.5.5 VisionLabs ver. 1.0, 2013 [6]

The method makes use of metric learning and dense local image descriptors.
External data is only used implicitly for face alignment. They report 92.90 ˙ 0.31 %
accuracy for the unrestricted training setup (unrestricted with label-free outside
data), using LFW-a aligned images.

2.5.6 Aurora Computer Services Ltd: Aurora-c-2014-1, 2014 [7]

The face recognition technology is comprised of Aurora’s proprietary algorithms,
machine learning and computer vision techniques. They report results using
the unrestricted with label-free outside data training protocol, achieving
93.24 ˙ 0.44 %. The aligned and funneled sets and some external data were used
solely for alignment purposes.

3 Pose and Alignment

One of the most significant issues in face verification is how to address variations in
pose. For instance, consider the restricted case in which both faces are guaranteed
to be from the same pose, but the pose may vary. The most informative features for
comparison will likely change if presented with two profile faces versus two frontal
faces. An ideal verification system would presumably account for these differences.

Even more vexing than the above case of how to select features conditioned on
pose, however, is the more general problem of how to compare two images that
exhibit significantly different poses. Many of the errors seen in the top systems
show that these situations are among the most difficult to address (see Figs. 5 and 6).
Because pose is a cross-cutting issue that virtually every verification system must
address in some fashion, we treat it as a separate topic in this section.

LFW was designed to fit into what we call the Detection-Alignment-Recognition
pipeline. In particular, by including in LFW only images from the OpenCV
Viola-Jones face detector, the designers facilitated the building of end-to-end face
recognition systems. Given a recognizer that works well on LFW, the practitioner
can pair this with the Viola-Jones face detector to produce an end-to-end system
with more predictable performance.

A consequence of the decision to use only faces detected by this specific detector,
however, is that most LFW faces are within 20 degrees of frontal, and just a small
percentage show some greater degree of yaw angle. This makes addressing pose
in LFW a bit easier than it might be for databases with even greater pose variation,
such as the recent IJB-A database [52]. Still, the techniques used on LFW to address
pose encompass a wide range of strategies and can be expected to be incorporated
into systems designed for new and more difficult benchmarks.
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There are many approaches to addressing pose in verification problems. These
include

1. aligning the input images, either by transforming both to a canonical pose, or by
transforming one of them to the other;

2. building mappings that allow inference of what one view looks like given another
view;

3. conditioning on pose, such as building separate classifiers for each category of
pose pairs;

4. having no explicit mechanism for addressing pose, but rather providing a learning
algorithm, and enough training data, so that a model can learn to compare images
across pose.

In this section, we review some of the mechanisms that authors have used to
address pose variation in LFW, and their relative successes and drawbacks. Tables 3
and 4 enumerate all of the alignment methods used in the papers reviewed in this
survey. They are grouped by strategy of alignment (alignment type). The papers
using a specific method are given in the rightmost column of the tables.

3.1 Alignment, Transformation, and Part Localization

Probably the most common way of addressing pose changes is to attempt to
transform images to a canonical pose or position as a pre-processing step. Because
LFW images are the results of detections of the Viola-Jones face detector [101],
they are already roughly centered and scaled. However, it seems intuitive that
improving the consistency of the head position in preprocessing should improve
verification performance. Huang et al. [45] were the first authors to show that
alignment improves verification performance on LFW, for at least two different
alignment methods.

Landmark-based methods. One common way to align face images is to find
landmarks, such as the corners of the eyes and the mouth. Once the landmarks
have been detected, one can either transform the image such that the landmarks
are placed into a standard position, or simply sample patches or features at
the landmark locations. This approach has been taken by many authors. These
methods are shown in Tables 3 and 4 under the alignment type of Landmark
[1, 3–5, 8, 14, 26, 33, 46, 63, 90, 106, 107, 110].

In particular, the LFW-a alignment [106] was widely used by many verification
systems. These images were produced by aligning seven fiducial points to fixed
locations with a similarity transform. Subsequent methods explored improving
the accuracy of the landmark detectors. For instance, Sun et al. [90] performed
detection using a deep convolutional network cascade, which allowed for using
larger context and implicit geometric constraints, leading to better performance in
difficult conditions due to factors such as occlusion and extreme pose angles. Other
methods have explored fitting a larger number of landmarks (generally more than
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50) to face images, using techniques such as boosted regression in Cao et al. [24],
or through approximate second order optimization in Xiong and De la Torre [107].

As one moves from similarity transforms to more complex classes of trans-
formations for producing alignments, a natural question is whether discriminative
verification information may be lost in the alignment process. For instance, if an
individual’s face has a narrow nose, and landmarks are placed at the extremes of the
width of the nose, then positioning these landmarks into a canonical position will
remove this information.

Berg and Belhumeur [16] addressed this issue in the context of their piecewise
affine alignment using 95 landmarks. In order to preserve identity information, they
warped the image not based on the detected landmarks themselves, but rather by
the inferred landmarks of a generic face in the same pose and expression as the test
image to be aligned. This is accomplished by using a reference data set containing
120 individuals. For each individual, the image whose landmark positions most
closely match the test image is found, and these landmark positions are then
averaged across all the subjects to yield the generic face landmarks. By switching
from a global affine alignment to a piecewise alignment, they increase the accuracy
of their system from 90.47 to 91.20 %, and by additionally using their identity-
preserving generic warp, they achieve a further increase in accuracy to 93.10 %.

Note that since all of these landmark-based methods rely on the training of
landmark detectors, they require additional labeling beyond that provided by LFW,
and hence require any verification methods which use them to abandon the category
of no outside data. The unsupervised methods, discussed next, do not have this
property.

Two-dimensional unsupervised joint alignment methods (congealing). In
contrast to methods that rely on trained part localizers, other methods are unsu-
pervised and attempt to align methods using image similarity. One group of such
methods is known as congealing [44, 45, 68]. In congealing, a set of images are
jointly aligned by transforming each image to maximize a measure of similarity to
the other images. This can be viewed as maximizing the likelihood of each image
with respect to all of the others, or alternatively, as minimizing the entropy of the
full image set. Once a set of images has been aligned, it can be used to produce a
“machine” that aligns new image samples efficiently. This new machine is called
a funnel. Thus, images aligned with congealing are referred to as funneled images.
Since congealing can be done using only the training set images for a particular test
set, it relies on no additional annotations, and is compatible with the no outside data
protocols.

The LFW web site provides a two additional versions of the original LFW images
that have been aligned using congealing. The first is referred to as funneled. In this
version of the database, each image was processed with the congealing method of
Huang et al. [45]. This method was shown to improve classification rates over some
of the early landmark-based alignment methods, but was not as effective as some of
the later landmark methods, such as the one used in LFW-a.

An improved version of congealing was developed [44], and was used to produce
another version of LFW, known as the deep-funneled version. This method used
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a feature representation learned from a multi-layer Boltzmann machine to align
images under the congealing framework. This unsupervised method appears to
be comparable to most of the landmark-based methods with respect to the final
classification accuracy, and has the advantage of being unsupervised.

One other notable unsupervised method was presented by Arashloo et al. [9, 79]
in two separate papers. They start from the funneled LFW images and use a Markov
random field to further warp the images so that they are more similar.

Frontalization and other methods using 3D information. Another idea to
handle differences in views is to attempt to transform views to a canonical frontal
pose, sometimes known as frontalization. This is clearly beyond the abilities
of methods which only perform affine or landmark-based alignment, since the
process of transforming a profile face view to a frontal view requires an implicit
understanding of the geometry of the head, occluded areas, and the way other
features, such as hair, appear from different perspectives.

Early work along these lines was done at Mitsubishi [10, 11], although this did
not result in state-of-the-art results on LFW. More recently, Taigman et al. [97]
developed a frontalization method that contributed a modest improvement to accu-
racy on LFW, although most of their gains are attributable to their CNN architecture
and the large training sets. Finally, two other methods are essentially landmark-
based, but used 3D models to fit 3D landmark coordinates to 2D images [108, 115].

3.2 Conditioning on Pose Explicitly

Rather than transforming images so that they are all approximately frontal, another
approach to dealing with pose variability is to apply strategies separately to different
types of image pairs. For example, if one classifies each input image as left-facing
(A), frontal (B), or right-facing (C), then we can define nine types of input pairs: AA,
AB, AC, BA, BB, BC, CA, CB, CC. One approach is to train separate classifiers
for each group of these images, focusing on the peculiarities of each group. By
reflecting right-facing images (C), to be left-facing (B), we can reduce the total
number of pair categories to just four: AA, AB, BA, BB, although doing this may
eliminate information about asymmetric faces. As mentioned in Sect. 2.2.2, this
approach was used by Cao et al. [26].

The associate-predict model proposed by Yin et al. [110] uses the above strategy
to separate pairs of test images into those pairs that have similar pose (AA, BB,
and CC), which the authors refer to as comparable images, and those that do not
have similar pose. For the comparable images, the authors run a straightforward
computation of an image distance. For the non-comparable images, the authors
“associate” features of a face with the features of a set of reference faces, and
“predict” the appearance of the feature from a new viewpoint by using the feature
appearance from the closest matching reference person, in the desired view.
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3.3 Learning Our Way Out of the Pose Problem

As discussed in Sect. 2, almost all of the current dominant methods use some CNN
architecture and massive training sets. One of the original motivations for using
convolutional neural networks was to introduce a certain amount of invariance
to the position of the inputs. In addition, max-pooling operators, which take the
maximum feature response over a neighborhood of filter responses, also introduce
some invariance to position.

However, the invariance introduced by CNNs and max-pooling can also eliminate
important positional information in many cases, and it may be difficult to analyze
whether the subtle geometrical information required to discriminate among faces is
preserved through these types of operations. While many deep learning approaches
have shown excellent robustness to small misalignments, all that we are aware
of continue to show modest improvements by starting with aligned images. Even
the highest performing system (FaceNet [82]) improves from 98.87 % without
explicit alignment to 99.63 % by using a trained alignment system. This seems to
suggest that a system dedicated to alignment may relieve a significant burden on
the discriminative system. Of course, given enough training data, such an advantage
may dissolve, but at this point it still seems worthwhile to produce alignments as a
separate step in the process.

4 The Future of Face Recognition

As this chapter is being written, the highest reported accuracy on LFW described
by a peer-reviewed publication stands at 99:63 ˙ 0:09 %, by Schroff et al. [82].
This method reported only 22 errors on the entire test set of 6000 image pairs.
These errors are shown in Figs. 5 and 6. Furthermore, five of these 22 errors
correspond to labeling errors in LFW, meaning that only 17 pairs represent real
errors. Accounting for the five ground-truth errors in LFW, the highest accuracy
should not go above 5995

6000
� 99:9 %, so the results for the protocol unrestricted

with labeled outside data are very close to the maximum achievable by a perfect
classifier.8 With accuracy rates this high, it is time to ask the question “What next?”
High accuracy on verification protocols does not necessarily imply high accuracy on
other common face recognition protocols such as identification. In addition, some

8For a classifier to get more than 5995 of the 6000 test examples correct according to the
benchmark, it must actually report the wrong answer on at least one of the five incorrectly labeled
examples in LFW. Of course it is always possible that a classifier could get extremely lucky and
“miss” just the right five examples that correspond to labeling errors in the database while getting
all of the other examples, corresponding to correctly labeled test data, correct. However, a method
that has a very low error rate overall, and at the same time “accidentally” reports the correct answers
for the labeled errors, is likely to be fitting to the test data in some manner.
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Fig. 5 All of the errors produced by the FaceNet verification algorithm [82] on matched pairs. The
pairs surrounded in red are labeling errors in LFW. Thus, while these were flagged as errors, the
FaceNet system actually gave the correct answer (correctly identifying these pairs as mismatches).
The remainder of the pairs (without red boxes) were identified incorrectly as mismatches. They are
in fact matches. It is interesting to note that the rightmost pair in the third row shows the actress
Nicole Kidman, but in the rightmost image of this pair, she is wearing an artificial nose, in order to
appear more like Virginia Woolf in the film The Hours [103]. Thus, this case represents an extreme
variation of an individual that would not normally be encountered in everyday life, and it is not
clear that one should train a system until this example is evaluated correctly

real-world applications of face recognition involve imaging that is significantly
more challenging than LFW. Next, we explore some aspects of face recognition
that still need to be addressed.

4.1 Verification Versus Identification

As discussed in Sect. 1, the LFW protocols are defined for the face verification
problem. Even for such realistic images, the problem of verification, for some image
pairs, can often be quite easy. It is not uncommon that two random individuals have
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Fig. 6 All of the errors produced by the FaceNet verification algorithm [82] on mismatched pairs.
These are the only pairs of mismatched images that were incorrectly reported as matched pairs
by Schroff et al. [82]

large differences in appearance. In addition, given two images of the same person
taken randomly from some distribution of “same” pairs, it is quite common that
such images are highly similar. Thus, verification is, by its nature a problem in
which many examples are easy.

For identification, on the other hand, the difficulty of identifying a person is
directly related to the number of people in the gallery. With a small gallery,
identification can be relatively easy. On the other hand, with a gallery of thousands
or millions of people, identifying a probe image can be extremely difficult. The
reason for this is simple and intuitive—the more people in a gallery, the greater the
chance that there are two individuals that are highly similar in appearance.

It is for this reason that many standard biometric benchmarks use evaluation
criteria that are independent of the gallery size, using a combination of the true
accept rate (TAR) and false accept rate (FAR) for open set recognition. The true
accept rate is defined to be the percentage of probes which, when compared to
the matching gallery identity, are identified as matches. The false accept rate is the
percentage of incorrect identities to which a probe is matched. Because it is defined
as a percentage, it is independent of the gallery size. It is common to fix the FAR
and report the TAR at this fixed FAR, as in “a TAR of 85% at a FAR of 0.1%”.

To understand the relationship between accuracies on verification and identifi-
cation, it is instructive to consider how a high-accuracy verification system might
perform in a realistic identification scenario. In particular, consider a verification
system that operates at 99.0 % accuracy. On average, for 100 matched pairs, and
100 mismatched pairs, we would expect it to make only two errors. Now consider
such a system used in a closed set identification scenario with 901 gallery subjects.
For example, this might represent a security system in a large office building.
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In a typical case of identification under these parameters, in addition to matching
the correct subject, we would expect 1 % of the 900 mismatched gallery identities to
be rated as a “match” with the probe image by the verification classifier. That is, we
would expect to have one correct identity and nine incorrect identities to be above
the match threshold of our verification system. The job of the identification system
would then be to sort these in the correct order by selecting the one true match as the
“best match” from among the ten that were above threshold. This is quite difficult
since by definition the ten selected images look like the probe identity. If we are
successful at selecting the correct match from this set of ten similar identities 50 %
of the time, which is already quite impressive, then the total identification rate is
merely 50 %.

In larger galleries, the problem of course becomes even more difficult. In a
pool of 9901 gallery subjects, achieving 50 % identification with a 99 % accurate
identification system would require finding the correct identity from among 100
examples that looked similar to the probe. This informal analysis demonstrates why
identification can be so much harder than verification. In addition, these examples
describe closed set identification. Open set identification is even more difficult, as
one must try to determine whether the probe is in the gallery at all.

4.2 New Databases and Benchmarks

In order to study the identification problem with a gallery and probe images, one
needs a data set established for this purpose. Some authors have developed protocols
from the images in LFW for this purpose, e.g. [20], sometimes by augmenting LFW
images with other image sets [64]. Other authors have augmented the images in
LFW to study image retrieval with large numbers of distractors [22]. However,
the time is ripe for new databases and benchmarks designed specifically for new
problems, especially identification problems. Several new databases aim to address
these needs.

In this section, we discuss several new face recognition databases and bench-
marks, and the new issues they allow researchers to address. We only include
discussions of publicly available databases. These include the CASIA database of
faces, the FaceScrub database, IJB-A database and benchmark from IARPA, and the
MegaFace database from the University of Washington.

4.2.1 IJB-A Database and Benchmark

The recently announced IJB-A database [52] is designed to study the problems of
open set identification, verification, and face detection. It includes both images and
videos of each subject and establishes standard protocols.

The database includes images and videos from 500 subjects in unconstrained
environments, and all media have creative commons licensing. In order to get a
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wider range of poses and other conditions than LFW, the images were identified
and localized by hand, rather than using an automatic face detector (as with LFW)
which is likely to be biased towards easier-to-detect faces.

One interesting element of the protocols provided with this database is that a
distinction is made (for identification protocols) about whether a classifier was
trained on gallery images or not. Another interesting aspect of this database is that
probes are presented as media collections rather than single images. Thus, a probe
may consist of a combination of individual images and video. Thus, this encourages
exploration of how to best use multiple probe images at the same time to increase
accuracy.

4.2.2 The FaceScrub and CASIA Data Sets

This section describes two distinct databases known as FaceScrub and CASIA.
The FaceScrub data set [71] contains 107;818 images of celebrities automatically
collected from the web, and verified using a semi-automated process. It contains
530 different individuals, with an average of approximately 200 images per person.
As such it is an important example of a deep data set, rather than a broad data set,
meaning that it has a large number of images per individual. The data set is released
under a creative commons license, and the URLs, rather than the images themselves
are released.

The CASIA-WebFace data set, or simply CASIA, consists of 494;414 images,
and is similar in spirit to the FaceScrub data set. It is described here [109].

The automatic processing of the images in these databases has two important
implications:

• First, because images that are outliers are automatically rejected, there is a limit
to the degree of variability seen in the images. For example, heavily occluded
images may be marked as outliers, even if they contain the appropriate subject.

• Second, it is difficult to know the percentage of correct labels in the database.
While the authors could presumably estimate this fairly easily, they have not
reported these numbers in either FaceScrub or CASIA.

Despite these drawbacks, these large and deep databases are two that are
currently available to researchers to train large face recognition systems with large
numbers of parameters, and because of that, they are valuable resources.

4.2.3 MegaFace

Another new database designed to study large scale face recognition is
MegaFace [67], a database of one million face images derived from the Yahoo
100 Million Flickr creative commons data set [98]. This database, which contains
one image each of one million different individuals, is designed to be used with
other databases to allow the addition of large numbers of distractors.
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In particular, the authors describe protocols that are used in conjunction with
FaceScrub, described in the previous section. All of the images in MegaFace are first
registered in a gallery, with one image each. Then, for each individual in FaceScrub,
a single image of that person is also registered in the gallery, and the remaining
images are used as test examples in an identification paradigm. That is, the goal is
to identify the single matching individual from among the 1;000;001 identities in
the gallery.

The paradigms discussed in this work are important in addressing the ability to
identify individuals in very large galleries, or in the open set recognition problem.
The authors show that several methods that perform well on the standard LFW
benchmark quickly deteriorate as distractors are added. A notable exception is the
FaceNet system [82], which shows remarkable robustness to distractors.

5 Conclusions

In this chapter, we have reviewed the progress on the Labeled Faces in the Wild
database from the time it was released until the current slew of contributions, which
are now coming close to the maximum possible performance on the database.
We analyzed the role of alignment and noted that current algorithms can perform
almost as well without any alignment after the initial face detection, although
most algorithms do get a small benefit from alignment preprocessing. Finally, we
examined new emerging databases that promise to take face recognition, including
face detection and multimedia paradigms, to the next level.
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