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Abstract In this chapter we consider the problem of automatic facial expression
analysis. Our take on this is that the field has reached a point where it needs to move
away from considering experiments and applications under in-the-lab conditions,
and move towards so-called in-the-wild scenarios. We assume throughout this
chapter that the aim is to develop technology that can be deployed in practical appli-
cations under unconstrained conditions. While some first efforts in this direction
have been reported very recently, it is still unclear what the right path to achieving
accurate, informative, robust, and real-time facial expression analysis will be. To
illuminate the journey ahead, we first provide in Sect. 1 an overview of the existing
theories and specific problem formulations considered within the computer vision
community. Then we describe in Sect. 2 the standard algorithmic pipeline which is
common to most facial expression analysis algorithms. We include suggestions as
to which of the current algorithms and approaches are most suited to the scenario
considered. In Sect. 3 we describe our view of the remaining challenges, and the
current opportunities within the field. This chapter is thus not intended as a review of
different approaches, but rather a selection of what we believe are the most suitable
state-of-the-art algorithms, and a selection of exemplars chosen to characterise a
specific approach. We review in Sect. 4 some of the exciting opportunities for the
application of automatic facial expression analysis to everyday practical problems
and current commercial applications being exploited. Section 5 ends the chapter by
summarising the major conclusions drawn.

1 Facial Expression Theory: Three Models

How humans perceive and interpret facial expressions, be it in terms of mental
models of emotions and affective states [102], social signals [141], or indicators
of health [131], has been widely studied from the perspective of human psychology.
These studies have given rise to several theories of how to encode, represent and
interpret facial expressions. When the Computer Vision community first tried to
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define the problem of the machine analysis of facial expressions, it was only natural
to resort to the psychology theories and adopt some of their theories, conventions
and coding systems.

In the absence of a unique comprehensive and widely accepted theory multiple
Computer Vision approaches to modelling expressive facial behaviour emerged. We
describe the following three (non-exhaustive) problem definitions: recognition of
prototypical facial expressions, analysis of facial muscle actions, and dimensional
affect recognition. Social Signal Processing, which aims to interpret facial displays
as social cues [141], and Behaviomedics, which aims to detect medical conditions
based on abnormal expressive behaviour [131], can be framed as higher level
behaviour interpretation approaches, which can make predictions based on one or
more of the three definitions listed above.

One important clarification is the distinction between facial expressions and
emotions/affect. The former refers to the signal used to convey a message, in this
case the facial movements and appearance changes associated to the expression.
The latter relates instead to the message, i.e., to what the subject wants to convey
through the facial expression [24]. For example, a smile (the physical stretching of
the lip corners) is a signal, while the message can be e.g. happiness, embarrassment
or amusement, depending on context [2]. Some authors prefer to use the term facial
display to refer to the signal, but the term facial expression is more commonly used
and we suffice here with clarifying the distinction between single and message.

Categorical Approach Darwin was the first to theorise that humans have a univer-
sal, evolutionary developed and thus in-born way of expressing and understanding a
set of so-called basic or prototypical emotions [30]. Further proof of this early work
was presented by Ekman [40], who extended the set of basic emotions to six: anger,
disgust, fear, happiness, sadness and surprise. Recently, contempt has been added
as a seventh basic emotion [81]. As a consequence, for these expressions there is a
direct link between the signal (which is what can be observed and is therefore the
subject of computer vision), and the message. It is because of this very attractive
property that this is still the most common perspective to facial expression analysis
in Computer Vision.

There are however some other very important shortcomings to the categorical
approach, which are becoming more prominent with the advancement of the state
of the art. The most relevant of those is the fact that humans make use of a
much wider range of facial expressions for everyday communication than the six
basic expressions, with some expressions even conveying combinations of the six
basic emotions [38]. It is often said that there are approximately 7000 different
expressions that people frequently use in everyday life. Furthermore, some of the
expressions can have multiple interpretations depending on the context in which
they are shown. For example, smiles are often displayed while a person feels
embarrassed or is in pain instead of happy. It is thus reasonable to separate the
analysis of the signal and, subsequently, analysing the message associated.

Facial Action Coding System (FACS) [42] FACS is a taxonomy of human facial
expressions, and is the most commonly used system to objectively describe the



Advances, Challenges, and Opportunities in Automatic Facial Expression Recognition 65

Fig. 1 Two expressive images and the list of active AU (together with their physical meaning) that
objectively describe the facial expression

facial expression signal by human observers. FACS was originally developed by
Ekman and Friesen [41], while a revised version was presented in [42]. It currently
specifies 32 atomic facial muscle actions, named Action Units (AU), and 14 other
additional Action Descriptors (ADs) (e.g. bite). FACS has five different intensity
levels (not counting neutral), and provides the basis for encoding the temporal
segments onset, apex and offset.1 Being designed for human observers, AUs are
described in terms of visible appearance changes. They therefore appear to be a
prime candidate for Computer Vision-based detection. Two example images with
their associated AU annotations are show in Fig. 1.

Any facial action can be unequivocally encoded in terms of FACS, no message
interpretation is required. This allows a two-stage approach to expression analysis,
where an expression is first automatically detected in terms of FACS AUs, and
interpretation of the meaning of the message being delayed to a second analysis
stage. The Computer Vision community has defined a set of problems related to the
automatic analysis of AU, such as AU detection [135], AU intensity estimation [63],
and the automatic detection of the AU temporal segments [58].

While the system is defined using objective parameters and inter-rater reliability
is relatively high, annotation is taxing and very time consuming, and in addition
annotators require expert training to be able to produce consistent annotations.
Furthermore, the annotation of AU intensities is particularly challenging given the
small variation between consecutive levels. Commonly inter-rater reliability for AU
intensity coding is lower than that for AU occurrence coding [137].

1While FACS does not explicitly define temporal phases, there’s a large amount of consensus on
how to code them. See e.g. [132].
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Dimensional Approach While the Categorical approach is only concerned with
a small and discrete set of emotions, it is obvious that the complexity of the
emotions and affect exhibited by humans has a much wider range and subtleties.
The dimensional approach represents affect continuously and multi-dimensionally
[48]. The circumplex of affect [105] is the most common dimensional approach
model. It represent the affective state of a subject through two continuous-valued
variables indicating arousal (ranging from relaxed to aroused) and valence (from
pleasant to unpleasant). It is conjectured that each basic emotion corresponds to
specific (ranges of) values within the circumplex of affect, while other emotions
can be equally mapped into this representation. Dimensions other than valence
and arousal can also be considered, augmenting the representational power of
the model. Some of the extra dimension most commonly used include power,
dominance and expectation. Computer Vision approaches within this problem
definition aim at automatically estimating a continuous value for each of the
dimensions considered, most commonly on a frame-by-frame basis. The predictions
are thus both continuous in time and in value [92].

2 The Standard Algorithmic Pipeline

In the following we will describe the standard algorithmic pipeline for facial
expression recognition. While the target of inference depends on the adopted
facial expression theory, the considerations regarding the algorithmic pipeline are
typically common to each of them, with only the inference layer being specific
for the problem of choice. We divide the algorithmic process into three major
components: pre-processing (which includes face alignment and face registration),
feature extraction, and machine learning. We briefly summarise the major aims and
challenges of each of these steps, and we include suggestions of best practice and
recommend existing state-of-the-art algorithms that constitute good choices when
attempting to build an automatic facial expression recognition system.

Pre-Processing The pre-processing step aims to align and normalise the visual
information contained in the face, so that the features extracted capture as much
semantic meaning as possible. Features are typically computed at image locations
defined in terms of the face bounding box or the face shape (i.e. with respect
to facial landmark locations). The alignment step thus consists of registering the
coordinate systems in which features are computed, so that they have the same
semantic meaning between images. This step is aimed fundamentally at eliminating
irrelevant variability in the input signal coming from misalignment, alleviating the
effects of head pose variation and identity. The whole process is depicted in Fig. 2.

Face Detection Any face analysis process starts with the detection of the face. The
vast majority of the standard datasets contain mostly near-frontal head poses, have
good image quality and resolution, and present very few partial occlusions (e.g. no
sunglasses, hand gestures covering the mouth, etc). It is thus unsurprising that the
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Fig. 2 A standard pre-processing algorithmic pipeline: given an input image, face detection
is performed, and facial landmark detection follows. The face shape is used to compute a
transformation bringing the face image to an upright position and resize it to a pre-defined scale

Viola and Jones (V&J) face detection algorithm [142] has been deemed sufficiently
robust and accurate for most works.

However, moving to in-the-wild imagery requires the use of better face detection
algorithms. For example, practical applications cannot guarantee frontal view of
the face, and the V&J algorithm simply fails in such cases. Furthermore, the
precision of the face detection is an important factor determining the quality of
the subsequent facial landmarking step, in particular when tackling challenging
scenarios. Some face detection algorithms resulting in state-of-the-art performance
include [95, 154], who applied the Deformable Parts Model [44] framework for
face detection, and Mathias et al. [80], who use a variant of the V&J model based
on the use of multi-channel images. An interesting resource is the Face Detection
Database benchmark [53], which offers a comparison under pre-defined conditions
and metrics of many of the top-performing face detection algorithms. While the
dataset used typically contains images with lower quality than those necessary for
facial expression analysis, it is still a good resource, as it typically contains up-to-
date benchmarking results for state-of-the-art face detection models.

Facial Landmarking While face detection is the only mandatory step enabling fea-
ture extraction, it is advisable to also perform facial landmarking. The localisation
of fine-grained inner-facial structures, such as the corner of the eyes and the tip of
the nose, allows for a much better registration of the face. It also allows for the
direct extraction of geometric features, as well as more powerful local features (see
the feature extraction section below).

The appearance of discriminative regression-based facial landmarking
approaches [19, 79] has transformed the practical performance of face alignment,
avoiding the need for semi-automatic approaches. For 2D imagery, the most
prominent facial landmark detector nowadays is the Supervised Descent Method
(SDM) [151]. Its success is due to a very high accuracy on images taken
from realistic scenarios, an extremely simple implementation and a very low
computational cost. The authors provide a publicly available implementation as
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Fig. 3 Facial landmarks
automatically detected by the
author’s implementation of
[151]. The green dots
represent landmarks that are
stable through flexible face
motions such as expressions,
while blue dots are landmarks
that can be displaced in the
presence of expressions

part of the publicly available IntraFace software.2 This includes a pre-trained model
offering excellent performance. Figure 3 depicts the set of 49 landmarks detected
by the software as provided by the authors.3 It is however possible to further
fine-tune the detection results, for example by applying a generative model to the
output of the SDM, e.g. [130]. Generative models for facial landmarking tend
to be less robust but can be more precise than discriminative ones. While these
methodologies are precise for a classical “webcam scenario”, where the subject
is typically looking towards the camera and keeping a roughly frontal pose, more
unconstrained scenarios can result in poor performance. It is then necessary to
resort to more robust methods [78, 129, 152]. A complementary resource is that
of [161], which is designed to achieve a globally optimal of the face fitting loss
function. While the fitting is not as precise as other methods, its robustness can
serve as an excellent starting point to some of the algorithms mentioned before in
more complicated situations.

It is very common to apply a facial landmark detection algorithm to every frame
in a sequence independently. However, the use of a tracking algorithm can result in
further performance improvement and robustness to several factors such as partial
occlusions. A few works have addressed the problem of facial landmark tracking.
For example, the implementation of the SDM [151] also provides tracking-specific
models. These models differ from the detection models in that the initial shape is
assumed to be much more accurate. This is due to the use of the previous landmark
location to initialise the search rather than using the initialisation provided by the

2http://www.humansensing.cs.cmu.edu/intraface/.
3It is interesting to note that different methods define the set of landmarks to be detected differently.
The widely most common nowadays are the 49 landmarks depicted in Fig. 3, The 66 landmarks
that result from adding 17 landmarks laid on the face contour, and the set of 68 landmarks that
result from adding 2 extra landmarks on the inner lip mouth corners.

http://www.humansensing.cs.cmu.edu/intraface/
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face detector bounding box. This method however still disregards important aspects
that can be exploited by tracking algorithms: the appearance consistency and the
temporal consistency. Appearance consistency was incorporated to this model by
Asthana et al. [5], who presented an incremental version of the SDM algorithm.
Thus, the models used for inference are adapted in an online manner to the specific
characteristics of the test sequence at hand. This results in more stable and precise
tracking, in particular for long sequences. However, none of these works impose
temporal smoothness on the estimated landmark locations. The consequence is
detection jitter, that can hinder the use of geometric features (see below).

Although some works tackle 3D-specific landmark localisation, it is less clear
which works can be regarded as the state-of-the-art. Notable examples include
efforts making use of regression forest [29]. In this work, the features are relative
depth differences between two specific locations. It is however possible to directly
extend one of the works for 2D appearance to this case by re-training the appearance
models. The appearance model will in this case be trained on the 3D appearance
projected on the image plane. An example of a direct adaptation of a 2D facial
landmarking method to the 3D case is that of [8] (source code is publicly available),
in which the authors adapt the Constrained Local Models method of [108]. Some
methods do however apply some feature descriptors that are specific to 3D imagery,
such as [97] (only 8 landmarks are detected, although profile faces are considered
too), or [20].

Registration Once the facial landmarks have been localised, they can be used
to register the faces. For 2D imagery, this involves computing a transformation
aligning the detected facial landmarks with a predefined reference shape. The face
appearance can then be registered using the transformation computed to register the
face shape [61]. Face appearance registration is only necessary when features are
used that intent to encode this appearance. A Procrustes transformation is the most
widely used registration transform. It involves translation, in-plane rotation, and
isotropic scaling parameters (totalling 4 parameters). The difference with respect
to an affine transformation is the isotropic scaling (shearing), which reduces the
degrees of freedom from 6 to 4. Using a subset of the landmarks, specifically the
stable points under expressions (see Fig. 3), to compute the registration transforma-
tion can yield some benefit when computing holistic representations (see the text
regarding feature extraction bellow).

One of the alternative registration strategies worth mentioning is frontalisa-
tion. While this approach has not been properly validated for facial expression
recognition, it is an important topic of research within the wider face analysis
community. We can distinguish two cases: the frontalisation of the face shape, and
the frontalisation of the face appearance. The former task is a significantly easier.
One approach to this was proposed by Rudovic and Pantic [104] who used coupled
Gaussian Process regression to learn the projection of points in a mesh from non-
frontal to frontal view. It is worth noticing that fitting a 3D shape model to a set of 2D
landmarks is possible [108]. This is done by finding the 3D shape parameters so that
the average point-to-point Euclidean distance between the original 2D landmarks
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and the projection of the 3D shape is minimised. This is an interesting approach as
the 3D shape can then be rotated into a frontal view without distorting expressive
information. The 3D face shape is however just an estimation, and therefore even
with highly precise 2D landmark detection the computed appearance transformation
is likely to corrupt the visual data and result in poor performance. The precision lost
and impact caused by this in practice is not yet clear.

Frontalising the face appearance is a very challenging problem. It has very
recently received attention [49], partially due to its applicability to face recognition.
How to frontalise the face appearance without distorting the expressive information
is a very complex problem, and the best way to do so is not yet clear. Some
early works in this direction have opted for transforming the face to a frontal
neutral face by using a piecewise affine transformation of the face. While this
transformation eliminates the configural information from the face, some of the
appearance information relating to the wrinkles and bulges produced by facial
muscle activations is still kept [4]. This is however an obviously sub-optimal way of
frontalisation when it comes to facial expression recognition due to the elimination
of important information from the face appearance.

These considerations are not equally relevant for 3D imagery, as head pose
rotation is handled in a natural way. Registration in this case is thus reduced to
translation, scaling, and dealing with self-occluded parts of the face.

Feature Extraction The choice of face representation is regarded as one of the
key aspects of facial expression analysis, and many of the existing works focus on
improving this step. The main challenge is that nuisance factors such as subject
identity, head pose variation, illumination conditions, or even alignment errors
have a larger impact on the appearance than expressive behaviour [109]. Thus, the
challenge of feature extraction is to produce features robust to the nuisance factors
and yet preserving the expressive information.

It is possible to divide the different feature extraction approaches into geometric,
appearance, motion and hybrid features. Geometric features encode information
based only on the facial shape locations [132], appearance features encode pixel
intensity information instead [61], and motion features are constructed based on
a dense registration of appearances between (consecutive) frames [66]. Hybrid
features combine at least two of these types of features. We however will not dwell
on motion features in this chapter due to their practical shortcomings. When using
3D imagery, it is possible to construct 3D-specific features by incorporating depth
information, such as for example the curvature of the face surface at a given point.

Appearance Features We distinguish the following aspects characterising the
feature extraction approach: the feature type used to represent an image region, and
the representation strategy, which defines the face regions used to represent it. That
is to say, the feature types are how appearance is encoded, while the representation
strategy defines what is encoded.

When referring to the representation strategy, it is common to distinguish
between holistic and part-based representations. Holistic representations use global
face coordinates to extract the features, while part-based representations apply
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Fig. 4 Different representation strategies for facial expression recognition

the feature descriptor to patches defined in terms of the facial landmark or facial
component locations. Examples of these strategies are shown in Fig. 4. Both these
strategies have different properties: part-based methods offer a very good registra-
tion. Since the patches represented are defined in terms of the facial landmarks,
the features represent the same part of the face for every example. It is also easier
to construct features robust to head pose rotations and illumination variations:
head pose rotations can be approximated locally by affine transformations, and
illumination variations are approximately locally homogeneous. As a drawback,
they have some in-built robustness to the displacement of facial landmarks, which
is typical of expressive behaviour. Furthermore, they might not capture the full face
appearance (the cheeks for example do not contain landmarks). Holistic representa-
tions instead represent the full face and is sensitive to landmark displacements and
represent the full face appearance, but lack some of the positive properties of local
representations.

Each feature type has different properties and levels of robustness against the
different nuisance factors. This also defines the representation strategy they are
most suitable for. For example, LBP features [94] are common, and most often used
with a holistic representation [114]. This is due to their robustness to illumination
changes and to poor registrations. They also tend to encode local information rather
than the face structure. However, since they are histogram-based, they are used in
combination with a strategy called tiling. Tiling divides the full face bounding box in
a grid manner. Then, features are extracted on each sub-patch, and all the resulting
feature vectors are concatenated into a single one [60]. Instead, local features are
commonly used with HOG features [28]. This is due to HOG features being very
robust to affine transformations (as those related to head pose rotation in part-
based representations) and to uniform illumination changes. Instead, if they were
applied holistically, local fine-grained information would be shadowed by coarser
face structure information. Instead, Gabor features can be applied both in a holistic
and local representations, although only the Gabor magnitude is used to increase
the robustness to misalignment. This is due to the capability of Gabor features
to capture local structures and, specifically, bulges and wrinkles typical of facial
muscle activations. Historically, Gabor wavelets were one of the first features used
for facial expression recognition [76]. Their very large feature dimensionality and
the challenge posed by finding the right parametrisation of the Gabor features are
the major drawbacks.
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Geometric Features They encode relations between the face shape locations, by
for example computing the location of a landmark respect to the mean (neutral)
face, the distance between two landmarks, or the angle formed by the segments
joining three landmarks [132]. These features are very attractive due to their intuitive
interpretation. They are easy to implement, and run very fast (once the landmarks
are detected). Geometric features are invariant to illumination conditions, and non-
frontal head poses can be dealt with by registering the shapes to a frontal head pose.
They can easily be applied to 3D too [123]. In fact, geometric features might be
even more interesting in the 3D case since distances on 3D are more meaningful
than distances on the image plane.

Learned Features Another way of dividing types of features is into the categories
hand-crafted and learned. In this ontology, all the features mentioned above are
termed ‘hand-crafted’, as they are the result of mathematical descriptors designed
with certain properties in mind, for example the illumination invariance of LBP or
the scale-invariance of SIFT. While many of these have proven to be very effective,
they are basically the result of expert knowledge of the domain. Another approach
to creating features is to learn them from data. This has become very popular with
the advent of Deep Learning, in particular Deep Convolutional Neural Networks
and (stacked) auto-encoders.

The beauty of learned features is that they can be learned in an unsupervised
manner. All that is needed is a very large amount of relevant data. For example,
auto-encoders are Artificial Neural Networks that take an image as input, have one
hidden-layer with fewer neurons than input nodes, and the output layer is again the
same dimensionality as the input layer. The learning task is then to reconstruct the
input image at the input, where feature learning happens by the fact that the lower
number of hidden neurons effectively forces a dimensionality reduction. Because
this is an unsupervised approach, one does not need a large dataset of annotated
facial expressions, one merely needs a very large set of images with faces. The
latter is very easy to obtain by making use of the Internet.

3D Features The appearance of 3D imagery has resulted in the proposition of a
wide range of feature descriptors. Some of them are extensions to 3D of an existing
2D feature type, such as the adaptation of LBP features to 3D [106]. Instead, some
3D features are specific of this modality [77], and can encode aspects like the
curvature of the surface [113]. 3D features are invariant to illumination conditions
and to head pose variations, making them very interesting in practise. Since 3D
feature design is a relatively recent and understudied problem compared to 2D
features, this is an interesting area of research with new features being proposed
on a regular basis. It is thus only natural that there is not currently a standard and
widely accepted 3D feature descriptor for facial expression recognition.

Machine Learning While the previous steps of the algorithmic pipeline are shared
among different affect sub-problems, the Machine Learning techniques used are
generally specific for each problem. Inference (i.e. prediction) of expressions can
be targeted at frame-level labelling or sequence-level labelling. To be specific,
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frame-level inference assigns a separate label prediction to every frame, whereas
sequence-level prediction assigns one (possibly multi-dimensional) label to a
number of frames that make up the sequence.

Sequence labelling was often considered in early works and datasets due to
its simplicity. It is however a restrictive scenario, as it requires a mechanism for
segmenting the input data into segments. Almost every work, past and present,
assumes the availability of pre-segmented sequences, which is generally unrealistic
in practical scenarios. However, provided such a segmentation is available, it is then
possible to directly apply sequence-based classifiers such as HMM [23], or to clas-
sify the sequence based on the majority vote of a frame-level classifier [133]. Other
techniques such as multiple-instance labelling have been proposed as well [125].

Frame-level inference can be performed with a number of methodologies. For
example, Support Vector Machines, Boosting/Ensemble Learning techniques or
logistic regression are all reasonable choices for classification problems. It is
interesting to note that facial expression recognition can rely on a multi-class
classifier [70, 114] (only one out of the k classes is assigned) or on multiple
binary classifiers [60] (multiple classes can be active simultaneously). Regression
techniques, such as valence and arousal prediction or AU intensity estimation,
are better tackled with regression techniques such as Support Vector or Relevance
Vector Regression.

The performances attained by different ML techniques in regards to frame-level
predictions are comparable, so in practice is little gain to be attained by trying differ-
ent frame-based classifiers in terms of classification accuracy. However, considering
output correlations is a much more attractive aspect. Again, the correlations to be
consider can vary depending on the problem considered. All frame-level approaches
have strong correlations on the temporal dimension, so it is possible to exploit the
fact that the labelling of consecutive frames has to be consistent and smooth. For
example, a positive label in-between negative labels can be frequent if no temporal
information is used. However, this labelling pattern is impossible in practice, as
an expressive event cannot span only one frame. When co-occurrence of multiple
labels for a single frame is possible, then the correlations (such as co-occurrences)
between the different labels at a specific temporal point can also be exploited. This
is both the case for the automatic analysis of AU [107, 126] and for the analysis of
continuous affect dimensions [92].

Another interesting aspect, often ignored, is that of feature fusion. Feature
fusion happens when more than one combination of feature type and representation
strategy are considered. The underlying idea is that instead of studying which is the
best-performing feature, they should be considered instead as complementary. The
problem is then defined as finding the best combination of different feature types
and representations [112]. This interpretation can even be extended to the problem
of finding the optimal fusion strategy of 2D and 3D information [127]. While feature
fusion can be attained by simply concatenating the features together, feature fusion
can also be seen as a learning problem [54].
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Finally, other standard aspect of ML refers to the use of unsupervised (e.g.
PCA) or supervised feature selection. While this is advisable in general due to
the typically large dimensionality of feature vector representing the face, these are
however standard techniques. We will thus not discuss them further in this chapter.

3 Challenges

Below we will address what the authors consider to be the most pressing chal-
lenges in automatic facial expression recognition. This includes obtaining task-
representative data, issues around obtaining ground truth, dealing with occlusions,
and modelling dynamics, among others.

Long-Term Challenges The first major long-term challenge of facial expression
recognition is attaining fast and reliable in-the-wild performance. Nowadays works
are designed and tested using imagery recorded under controlled lab conditions, a
bias caused by the dependence on available standard datasets containing this kind of
imagery. In-the-lab imagery displays subjects who maintain a frontal or near-frontal
head pose, images are acquired under controlled illumination conditions (typically
frontal with respect to the subject to avoid cast shadows), self occlusions are not
considered (e.g. subjects are instructed not to cover their face or data with self-
occlusions is removed), and the image quality is typically high.

Expressive behaviour is often elicited using video clip stimuli, or involve
human-computer interaction tasks. Both scenarios reduce the complexity of the
data significantly. Instead, in-the-wild conditions do not constrain any of these
characteristics. There is an obvious association between in-the-wild data and the
sought-after automatic face analysis technologies in real-world applications given
that most real-world applications cannot constrain the data acquisition conditions.

The second main challenge concerns the integration of the analysis of human
facial expression analysis in a high-level framework modelling human behaviour.
Human behaviour is currently analysed from different perspectives, of which facial
expressive behaviour is just one aspect. If we are to understand humans, then we
should aim for a joint view on human behaviour. For example, cues from audio and
verbal content should be included, and facial expressions and head-pose should be
jointly analysed, rather than separately as is currently the case. Besides obtaining a
big picture, i.e., having a fully multi-modal view of communicative intent, taking
multiple cues into account can naturally help disambiguate the message as well
as improve performance of each of the specific sub-problems, including that of
automatic facial expression analysis.

Data Any learning problem is primarily determined by the data available. The
dependence of performance on the quality and quantity of data can hardly be
overestimated. An inferior method trained with more abundant or higher quality
data will most often result in better performance than a superior method trained
with lower-quality or less abundant data. This is particularly dramatic in the case of
facial expression recognition.
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Fig. 5 Examples of non-prototypical facial expressions. Left: Happy, surprised and happily
surprised with their associated AU as defined by Du et al.[38]. Right: facial expression of pain
with AU annotations [74]

The first main factor is the wide range of facial expressions humans are able to
display and interpret. For example, it has been shown that humans exhibit up to
7000 AU combinations in everyday life [110]. Due to the way AUs are defined,
this means that each of these combinations results in a distinctly different visual
input (although many of these combinations could result in the same high-level
interpretation). While facial expression problems within the categorical approach
consider only around six facial expressions, these categories cover only a small
portion of our expressive behaviour. Examples of the many other non-prototypical
expressions include the automatic analysis of facial expressions of pain [74], or the
work of Du et al. [38], where it was argued that some facial expressions are the
result of combining more than one basic emotion. For example a facial expression
can convey both happiness and surprise simultaneously, resulting in what the authors
call compound facial expressions (see Fig. 5).

The second main aspect that highlights the needs of more data is the large impact
on the face appearance of factors of variation other than facial expressive behaviour.
These include subject identity, illumination conditions, head pose variations, errors
in the face registration, or factors such as the camera resolution, lens distortion, and
acquisition noise. All of these factors can be considered nuisance factors, and result
in an increase of the intra-class variability. Learning using standard ML models in
the presence of such high intra-class variance results in the requirement of large
and varied sets of data. In such cases training data needs to be abundant and varied
enough to cover all of the different factors of variation. While this was already a
challenging aspect of facial expression analysis for in-the-lab conditions, the aim
towards in-the-wild facial expression analysis magnifies these considerations and
thus scales the need for data, or alternatively the need for methods that can reduce
the intra-class variability such as illumination independent descriptors.

In summary, facial expressions result in an extremely wide range of visual
signals. Their expressive richness is much more varied than that considered within
the classical options provided by the eight classes (including contempt and neutral)
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allowed within the Ekmanian categorical theory. If this large variability is to be
considered, a categorical approach would imply recording task-specific datasets.
This quickly becomes inefficient as the number of classes considered grows. One
alternative that scales well in the number of facial expression classes considered
is to learn models for facial AU analysis. Since they are a low-dimensional set of
atomic units encoding the physical properties of facial expressions, the same AU
models can be applied to the analysis of any other expression, from the compound
expressions of [38] to expressions of pain (see for example Fig. 5). For example,
the abundant data recorded for the analysis of prototypical facial expressions
(augmented with AU labels) could be used to analyse facial expressions of pain.
While this is an attractive prospect, this approach also has two caveats: Firstly, the
cost of manual annotation of AU labels is much higher than the labelling of facial
expressions in a categorical manner. Secondly, the signal to be detected is typically
more subtle, thus magnifying the challenges posed by the nuisance factors.

It is however clear that the field is veering away from prototypical expressions,
and the construction of publicly-available datasets capturing a growing range of
real-world variability would be of great help. It is still unclear whether a categorical
approach or the creation of datasets with AU annotations is the best way forward.
Either way, because of the inability to handle unseen categories (categorical
approaches), or because of the large intra-class vs. inter-class variation (AU
analysis), the conclusion is that large amounts of well-annotated data of increased
variability and complexity is probably still the most beneficial contribution to
automatic facial expression analysis.

In particular, few datasets currently consider a naturalistic scenario. Some of
the rare examples include Affectiva-MIT facial expressions in the wild [84], which
contains a large dataset of subjects watching eliciting material in front of a computer
screen. This database is annotated in terms of facial action units. Another in-the-
wild dataset is that used for the Acted Facial Expressions in the Wild challenge
[36], which contains clips from films labelled in terms of the six basic facial
expressions. Other datasets not focusing on prototypical expressions include pain
estimation-related datasets such as the UNBC-McMaster shoulder pain dataset [75]
and the EmoPain dataset [6], the compound facial expressions of emotions database
[38], the MAHNOB-Laughter dataset [99], the AVEC 2013 audio-visual depression
corpus [136], and the SEMAINE corpus of dyadic interactions [88], which has been
partially AU annotated for the FERA 2015 challenge [137].

Semi-Automatic Annotation Due to the above considerations, it seems clear that a
purely manual annotation of a sufficiently large amount of data for facial expression
recognition is extremely challenging or even impossible. A reasonable approach to
this task is to use a tool capable of providing an approximate but fully automatic
labelling, which would then be refined by the expert annotator [36]. One important
aspect of this approach is the capability of identifying the limitations of current
software, and thus avoiding annotating “redundant” information, i.e., information
already successfully encoded by the ML model.
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It is however surprising that despite the large amount of effort put in both manual
annotation and on the construction of tools facilitating annotation (e.g. [17, 64]),
these two areas have been treated as isolated steps, with the annotation effort
simply preceding the learning stage. Annotation tools for facial expressions are not
necessarily targeted to the creation of ML models. In fact, one of the justifications
of the research on the automatic modelling of facial expressions is their potential
use to ease the annotation burden on researchers studying human behaviour from a
psychology or sociology perspective. Given the extreme technical challenge posed
by the creation of a functional fully automatic annotation tool, it is only reasonable
that a middle ground solution (i.e., a semi-automatic labelling tool) is created first.
Such a tool would thus be beneficial in two senses: it could assist researchers of
other fields by easing the annotation process required for their studies, and could
have an important impact on the amount and quality of the annotated data at the
disposal of researchers studying the creation of automatic facial expression analysis
models.

Label Subjectivity The subjective criterion of the manual annotator often plays
an important role on which labels are assigned to a specific data point. When
these subjective effects are large, then the number of manual annotators required to
obtain a consistent labelling grows, and with that the resources required to perform
the manual annotation grow accordingly. Measures of inter-rater reliability can be
used to assess how subjective a specific annotation task is [115]. Important factors
affecting the inter-rater reliability include both the expertise of the manual annotator
for that specific annotation task, and the nature of the annotation task.

Manual annotation for the categorical theory results in very high inter-rater reli-
ability, in particular if the problem is restricted to the six prototypical expressions.
Considering more classes can result in more challenging annotation processes. It
is then possible to consider two annotation scenarios, that of free labelling (where
any label the annotator can think of is allowed) or that of forced-choice annotation,
where the annotator are given a set of options to which they are restricted. While
free-choice annotation is sometimes used in psychology and sociology, it is in
general not considered in computer vision problems.

The manual annotation of facial AUs is far more challenging than for those
relying on the categorical theory. Since the aim is to annotate the data into classes
with which humans are less familiar with, expert training is required, which is
time consuming and expensive, and makes finding human annotators a hard task.
Annotation is very laborious, and this can result in errors on the side of the annotator.
Furthermore, some AU sub-problems, such as AU intensity estimation, are very
challenging even for expert annotators since the differences between the different
intensity levels are very subtle. It is thus common that AU annotations are not
carried out by only one manual annotator, but rather several annotators. It is however
noteworthy that, despite this increased difficulty on the annotation process, facial
AU are defined in terms of objective factors, which is a great advantage when
annotators are properly trained. Furthermore, the constraint that annotators must be
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FACS certified improves the quality of the annotators. These two reasons alleviate
to a large degree the problems introduced by the challenging task, and generally
only minor discrepancies are observed in AU labelling.

Annotating continuous affect dimensions poses an even greater challenge than
for any other facial expression analysis approach. Annotators are asked to code what
they think the person they observe is feeling, and ratings are thus inherently subjec-
tive. The low inter-rater reliability of dimensional affect annotation is probably the
most pressing problem of computational models that aim to automatically predict a
dimensional affect approach. Unlike facial AUs, there is no manual to follow and no
objective instructions of how to annotate continuous dimensions exist. No training
program is available, and thus it is unclear how to improve the level of expertise
of a novel annotator. This problem is accentuated by the subjective nature of the
task at hand. Categorical approaches focusing on the six basic emotions have the
advantage of a simple labelling space and a theory linking the emotional state to the
(observable) facial expression display. Facial AU are designed for objectivity and
omit making reference to the emotional state of a subject. None of these two aspects
are true for the continuous affect dimensions: the link between facial expressions
and emotional state is inherently ambiguous and subject to interpretation.

Another challenging aspect is the trend to seek continuous annotation also in the
temporal sense. That is to say, the task of the annotator is to assign a continuous-
valued label for every moment in time within the sequence. Temporally continuous
annotation of affective dimensions is currently hindered by two major drawbacks:
the need to provide a (subjective) label to each frame even when no signal is
observed, and the current annotation strategy employed.

The first drawback is a reflection of the practical differences between psychology
and computer science. It makes sense from a psychology point of view to ask a
manual annotator to provide his (subjective) opinion of the state of a subject in a
temporally continuous manner, as we as humans are able to (approximately) infer
the emotional state of a subject based on a set of sparse signs spread throughout
the video. For example, nodding while listening indicates agreement throughout,
but even under strong agreement nodding events are sparse with respect to time.
Instead, current ML methods are tasked with inference based on the signal (i.e.,
the observable facial expression) at a specific time frame. The label might however
not correspond to the signal: expressions are not always there, while instead the
subject’s emotional state does not cease to exist. Another problem is the reaction
time of annotators, which varies both between raters and within a single rater, for
example when an annotator grows tired or becomes distracted. All these issues result
in the need to either modify the labelling strategy, or re-think the way we apply ML
to this problem.

The second drawback relates to the specific annotation strategy followed. Stan-
dard manual annotation strategies are inapplicable in this case, as frame-by-frame
precise labelling would be too time consuming. Furthermore, manual annotators
need the dynamic information provided by the video to provide a good judgement
of the emotional state of a subject. As a solution to these problems, continuous
affect annotations are typically carried out online (as the annotator watches a video
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in real time) by using a joystick [26]. The manual annotator shifts the joystick up
and down to indicate the label value, and the annotation program records the exact
position of the joystick at the time each frame of the sequence is displayed on a
screen. While this solves the aforementioned problems, it introduces other important
challenges. Firstly, human reactions are not immediate. Secondly, judgement is
poorer than if the annotator was provided with the possibility to play the video
back and forth. Thus, the inter-rater reliability is typically very low, needing up
to 50 manual annotators to get sufficiently consistent labels [87]. Furthermore, the
labels will be shifted in time because of the reaction delay, and each annotator has
a different reaction time. While some efforts have been made towards sorting these
limitations (e.g. [93]), practical drawbacks of this annotation strategy are still very
high.

A final consideration regarding labelling consistency refers to how the labelling
strategy is defined on new problems. A very good exemplar of this is that of
automatic pain intensity estimation. The work by Lucey et al. [75] was the first large
and systematic dataset containing pain estimation annotations within the computer
science community. The authors opted for creating the ground truth labels for the
pain intensity based on manually annotated facial AUs. Since AUs can be annotated
in an objective manner, encoding the intensity of pain expressions as a function
of the AU intensities is a reasonable option. Alternatively, Aung et al. [6] opted for
using the same joystick-based annotation tool used for continuous affect annotation.
This better reflects the extra judgement humans are able to produce: following the
AU-based pain annotation strategy, a smile would be encoded as a painful event,
while instead humans are able to immediately understand that in many situations
this is not the case. Which annotation strategy is the best for new problems such as
automatic pain estimation is largely an open (and fundamental) research problem.

Avoiding Dataset Biases Researchers typically validate their algorithms on stan-
dard publicly available benchmark datasets for the problem at hand. This means that
there is a risk that the main aim of research becomes maximising performance on
specific datasets, which are very likely to contain biases. While exploiting specific
biases can boost performance on a specific dataset, this practice is unacceptable
if the aim is to solve the general problem. This is a classic problem of overfitting
versus generalisation. Facial expressions are no different in this sense. Many works
have exploited unrealistic assumptions resulting from dataset biases.

The most common bias when dealing with categorical approaches is the assump-
tion of pre-segmented sequences. This is still an interesting scenario worth explor-
ing, both because the technologies developed could potentially be extended to
the general (unsegmented) scenario, and because some practical applications can
actually constrain the scenario to the pre-segmented case (e.g., when analysing the
reaction of a user to an ad). It is however important to bear in mind that this is a
specific scenario with an intrinsic bias that does not generalise. Other biases are
more damaging, as the bias exploited cannot be assumed in any practical setting.
One such bias is the assumption that sequences start on a neutral frame, or at
least that a frame displaying a neutral face of every subject is available (e.g., [13]).
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These assumptions are good examples of the care that a reader should take to judge
these methods. The assumption of a neutral frame at the start of the sequence cannot
be extended beyond the scope of datasets where this bias is present. Instead, the
assumption of the availability of a neutral frame could be extended to the automatic
estimation/identification of neutral frames within the sequence [10]. This however
will result in a lower performance due to errors in the automatic estimation.

Other specific biases that can be exploited are the absence of complex lighting
conditions, as many datasets are recorded under controlled illumination conditions.
If care is not taken, the field can end up putting efforts in attaining an “algorithmic
local maximum”. Such a warning was for example included in the work on [21],
as they presented a study with a quantitative performance evaluation for different
feature representations which included raw pixel intensities. Using raw pixel
intensities directly and without the employment of illumination invariant features
will only work in such artificial datasets.

Finding a Better Representation As previously mentioned, a major challenge
regarding facial expression recognition is how to handle modes of face appearance
variation other than facial expressions. While some ML methods can be employed
to deal with this issue, using adequate features has a dramatic effect in terms of
performance. It thus comes as no surprise that many of the recent works on facial
expression recognition have focused on employing a variety of features, or even
proposing new face representations [61, 109].

Many works have focused on studying the relative merit of individual feature
types within an arbitrarily-defined set of features. There has not been any wide-
spread agreement on which features perform best, with different studies yielding
different relative feature rankings [21, 133]. This is likely due to several reasons:
no work has performed a really exhaustive characterisation of performance in terms
of the features used, and the feature configurations used have been at times sub-
optimal. One such a study, performed rigorously and as exhaustively as possible,
would be beneficial to understand what are the strong and weak aspects of each
of the possible feature representations. Other factors include the specific dataset
used for evaluation, and problem tackled. For example, facial AU datasets include
annotations for different subsets of AUs, which means that average performances
are hard to compare.

It is likely that combining multiple feature types is the best way to proceed.
The most common ways to fuse features are to perform the so-called feature-level
fusion and decision-level fusion [98]. Feature-level fusion simply concatenates all
features into a single vector, while decision-level fusion instead trains a separate
model for each of the feature vectors, and then learns how to combine them
into a final solution, typically by computing a weighted average of the feature-
specific predictions [62]. Multiple Kernel Learning (MKL) for combining multiple
features has lately been regarded as a better way of fusing features [112], as the
multiple kernels can model the different underlying data distributions. Performance
using MKL is often superior to performances attained using feature-level because
badly-performing features do not degrade the overall performance. Similarly, it
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typically offers superior performance to decision-level fusion because of its ability
to feed information of the final fusion scores back into the individual models. This
framework has however been relatively under-explored and focuses mostly on the
fusion of geometric and (one single type of) appearance features. Further exploring
this potential seems like a reasonable way forward.

Another promising line of research is the use of dynamic appearance descriptors,
such as those belonging to the TOP family of features [1, 60, 159]. The use of
spatio-temporal appearance information is consistent with the nature of the task,
as after all the problem is essentially identifying and analysing actions, which
are inherently events with a temporal nature. Dynamic appearance features are
constructed by extracting 2D features from each of the three orthogonal planes
(TOP) and concatenating them into a single vector. By extracting 2D features from
three orthogonal planes, the dimensionality of the final vector is kept to a reasonably
low level (typically three times that of static features) compared to full-fledged
volume-based descriptors (which have an exponential increase in the number of
features when moving from 2D to 3D). In this spirit, TOP extensions have been
made of the LBP features [159], LPQ features [57], or the successful LGBP features
[1]. It is however possible to define spatio-temporal appearance in different ways,
either following a more classical feature extraction strategy [155] or a bag-of-words
type of representation [124].

Some research has also started analysing expressive behaviour at the level of
events rather than on a frame-by-frame basis. This means that the aim of inference is
to find the start and end frames of a specific event, and thus the frame-level labelling
is obtained as a by-product of this inference strategy. This problem definition is
usually referred to facial AU analysis, as it is the only problem which systematically
considers a test scenario with unsegmented events. How to effectively exploit this
paradigm is however unclear right now. There has been some prior work that uses
bag-of-words representations to this end. It is then possible to combine the bag-of-
words representation with the structured output framework described by Blaschko
and Lampert [15] for the case of facial expression analysis [22, 116]. However
bag-of-words representations are somewhat poor in terms of the information they
encode. An alternative approach was proposed in [37], where frame-level inference
and event-level inference were combined. It is interesting to bear in mind that event-
level representations are interesting when dealing with unsegmented data, which is
often not the case when studying categorical problems. However, lessons learnt on
classifying categorical data are likely to be transferable to an unsegmented scenario
by following an event-based approach.

All of the existing feature performance considerations will need to be confirmed
or revised for in-the-wild imagery. Most of the studies have been carried out for
in-the-lab data, and asking whether the acquired knowledge will extend to this more
general case is thus a valid question. For example, the relative merits of features
robust to head pose variation and to different illumination conditions (e.g., local
HOG features) are likely to gain in importance.
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One important aspect that might gain relevance under in-the-wild imagery is the
use of mid-level representations. The use of mid-level representations for human
action recognition, a problem typically boasting larger variability than for human
faces, has proven very effective in the past. This approach has been spearheaded
within the action recognition literature by models such as poselets [16]. The same
idea has been extended to other problems, among them facial expressions [72].
This is however a first attempt at this kind of mid-level representations for facial
expressions. The increasing variability of in-the-wild imagery might result in a surge
of such approaches.

An unavoidable question given the massive success of deep learning techniques
in a wide variety of computer vision problems is whether they can also provide a
significant boost of the state of the art for facial expression recognition. Surprisingly,
there are extremely few works tackling facial expression recognition from a deep
learning perspective, and even less published at high impact conferences. One
example to highlight is that of [73], where Deep Belief Networks were used.
However, the very popular Convolutional Neural Networks has so far yielded
performances below state of the art [47]. Given the popularity of deep learning
techniques, this is very likely due to the so-called positive publishing bias, for which
negative results are unlikely to be published, rather than lack of attempts from the
research community. Whether this is due to the inherent mismatch between deep
learning and the problem at hand, or due to the specific forms of deep learning
techniques used remains to be seen. After all, current techniques have been typically
developed for general object recognition rather than for fine-grained categorisation.
The development of some deep learning feature extractor, much in the spirit of the
popular AlexNet [68], that could be used for effective facial expression recognition,
would be a massive addition to the field.

A final consideration concerns the typically large dimensionality of face rep-
resentations, and how this can be reduced. While it is possible to directly apply
variance-based dimensionality reduction techniques such as PCA, it is likely
that some facial expression information will be eliminated from the data. Face
appearance changes less due to facial expressions than because of differences in
identity, head pose or even illumination. It is thus reasonable to hypothesise that
expressive behaviour will partially be encoded in low-energy PCA dimensions. An
alternative approach in the literature has consisted in the encoding of only part of
the face appearance, justified by the spatially localised nature of facial expressions.
For example, it is possible to enforce L1 sparsity constraints on the regions of the
face used [160], or to learn part-based models in combination with a decision-level
fusion [59]. Exploiting the spatially localised nature of expressions and integrating
this knowledge within the inference methods is a line of research with high potential.
This is much more the case when dealing with AUs, as they present a particularly
strong spatial localisation.

Occlusions The first challenge towards dealing with occlusions is face alignment.
Current methods for face alignment, such as [151], show some in-built robustness to
partial occlusions due to the use of HOG features for face appearance modelling, and
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the use of the full face appearance to perform inference. Furthermore, some works
have proposed extensions specifically targeted to dealing with partial occlusions
[18, 156], including both the robustness to partial occlusions and the identification
of which landmarks are occluded.

The next natural step, and one widely missing in the literature, is how to
incorporate this knowledge within the facial expression recognition step. Learning
with partial occlusions could be seen as a special case of learning with corrupted
features. Some works have proposed learning algorithms robust to these cases
(e.g., [56, 139]), but these have not been applied to facial expression recognition
problems. In any case, it seems suboptimal not to exploit the information regarding
which features or face parts are occluded, which could be automatically estimated
from the face alignment step. How to integrate this information into these kind of
algorithms, or envisioning some other new way of tackling learning under partial
occlusions, is an important and understudied challenge within facial expression
recognition literature.

Dynamics Facial expressions are actions by nature. While this has been exploited
in terms of enforcing temporal consistency of the labelling, and through the use of
spatio-temporal features, the dynamics of facial expressions on a global sense are
not yet fully understood nor exploited. In fact, it is unclear even how to attempt
to model dynamics. It is possible to distinguish between intra-class and inter-class
dynamics, as well as distinguishing between short and long term dynamics. Another
useful distinction is between pairwise dynamic relations and higher-order dynamic
relations.

Intra-class or intrinsic dynamics encode the temporal relations within a single
labelling problem, while inter-class or extrinsic dynamics refer to the temporal
relations between different or even heterogeneous problems. Intra-class dynamics
encode for example the fact that the frame-level labelling for that specific AU should
be temporally smooth. If a frame is labelled as neutral between positive frames, it
is most likely a false negative. Similar mechanisms can be used for any temporally-
structured output problem, in our case any facial AU or dimensional affect problem.
Examples of these mechanisms are the use of HMM (in practise the frame-level
relation between the frame data and the frame label is often encoded using a
discriminative method with a confidence output [133]), and discriminative graphs
such as a CRF [138]. These methods typically capture short-term dynamics, i.e.,
they relate one frame to the next (see below for a more detailed explanation). How
to encode intra-class dynamics with temporal range of more than approximately 5 s
is still unclear.

Inter-class or extrinsic dynamics instead capture temporal correlations of
co-occurrences between different classes. Some examples include the use of
Dynamic Bayesian Networks used in [126] for AU detection, while [92] used
structured output regression for the combined estimation of Valence and Arousal.
However, all of these cases use temporal correlations among labels relating to
the same problem. It is possible to use heterogeneous problems that temporally
correlate to the problem at hand. One such mechanism was for example used
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for combining multi-model information for interaction modelling [89], exploiting
temporal correlations across modalities. It is possible to see the relevance of this
problem when considering a scenario of dynamic interaction rather than a single-
subject scenario. In dyadic interactions the facial expressions of the two interactants
naturally interact in a sequence of cause and effect relations. This approach would
capture effects such as mirroring or synchrony [14, 121].

As mentioned before, models such as HMM or linear chain CRF enforce
temporal consistency of the labelling locally, only capturing correlations between
consecutive frames. Finding longer term correlations is very challenging, to a large
degree due to the inherent limitations of the most widely-known ML approaches.
Some models have been proposed that are capable of capturing and using pairwise
long-term potentials efficiently. For example, the Long-Short Term Memory NN
(LSTM-NN) is a type of recurrent neural network that is capable of capturing both
long and short term dependencies [147]. This model has been widely exploited in
the audio community, and some works exist on audio-visual works using LSTM-
NN. For example, [43] studies vocal outburst from an AV point of view, while
[149] actually target multimodal emotion recognition using LSTM-NN. Other ML
methods, such as the recently proposed Continuous Conditional Neural Fields [9],
could be exploited within the context of expression recognition problems to explore
the potential of harnessing long-term temporal correlations.

The aforementioned methods still rely on capturing pairwise correlations. That
is to say, they only consider connections between two time stamps, rather than
considering correlations among larger groups of variables. Capturing higher-order
potentials is a different and yet again understudied aspect of the modelling of the
dynamics. The inability of the most common ML tools for harnessing higher-order
potentials is again to blame here. However, recent advances in ML (e.g., [67]) are
beginning to open the door to using new sources of information resulting from
analysing more than pairwise potentials. In fact, some very initial attempts have
been proposed by e.g. Wang et al. [144], although in these works the higher-order
correlations captured are still only at a frame level. Exploring the possible designs
of higher-order potentials (i.e., defining exactly what should be captured and how to
computationally model them) is a very interesting future challenge.

From Momentary to Higher-Level While the understanding of dynamics is
paradigmatic, it is actually a specific instance of a general situation. The overwhelm-
ing majority of research to this date has focused on a momentary analysis of the
facial expressions. This disregards information related to higher-level understanding
of the scene, such as the context, the interaction type, the personality of the subjects,
etc. If all of this information is to be harnessed into a single model, then advanced
ML capable of incorporating higher-order potentials should be used.

Facial expression recognition can understood within the context of Social Signal
Processing (SSP) applications. It is then part of a multi-modal problem that
integrates heterogeneous cues into some higher-level understanding of the scene
[140, 141]. An ideal system would integrate audio analysis (including sentiment
analysis, speaker identification, etc), other different forms of video analysis (human
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body pose estimation, action recognition, head pose, head nods detection, etc),
and even tools for natural language processing. In this context, considering facial
expression recognition as an isolated problem is not fully satisfactory. Integrating
learning and inference into the same system, and using feedback from other
components of the system, would be a more natural way of tackling the individual
problems.

Computational Efficiency It is becoming clear that algorithms capable of running
on devices with low computational capabilities, most notably mobile phones, will
have high-impact opportunities (see Sect. 4 below). A notable example of this trend
is the IntraFace software,4 which allows for face analysis on a mobile platform.
This includes running a face alignment algorithm (that of [151]) in real time. The
use of geometric features allows for inexpensive facial expression recognition, but
their modelling capability is limited. Producing algorithms capable of analysing the
face appearance using the computational resources provided by a generic mobile
platform is both a challenge and a very interesting research direction with very
important practical implications.

4 Opportunities

In this section we review different exciting opportunities, exploring the potential
of applying current and imminent state-of-the-art algorithms for facial expression
technology to practical problems. The state of maturity reached by the field
means that long-heralded opportunities are suddenly becoming possible at sufficient
reliability levels, while new opportunities are now being envisaged as creatives and
industrial forces are taking interest in the facial expression recognition technology.
Together, there is an exciting market for these technologies to develop. In here we
group the opportunities into “umbrella” criteria: medical conditions, HCI and virtual
agents, data analytics, biometrics, and implicit labelling.

Behaviomedics Medical applications of automatic facial expression analysis meth-
ods have received increasing attention due to the potential societal impact of such
an endeavour. This interest is seen both in the academic and funding sides, a
trend reflected in the number of current research papers, and on the number of
projects targeting these problems. An interesting observation regarding the latter
is the priorities set on the EU Horizon 2020 funding programme, where Societal
challenges is one of the three core themes or “pillars”, and Health, demographic
change and well-being is defined as one of only seven specific calls within the
societal challenges pillar.

A wide range of medical conditions, for instance depression or anxiety, produce
distinctive alterations on the behavioural patterns observed on an individual. It is

4http://www.humansensing.cs.cmu.edu/intraface/.

http://www.humansensing.cs.cmu.edu/intraface/
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then reasonable to consider the automatic analysis of the behaviour, potentially over
long periods of time, as a potentially effective mechanism for early detection of such
conditions. This was formalised by Valstar as Behaviomedics [131]:

Behaviomedics - The application of automatic analysis and synthesis of affective and social
signals to aid objective diagnosis, monitoring, and treatment of medical conditions that alter
one’s affective and socially expressive behaviour.

Given the current range of state-of-the-art performances, what can be hoped to
achieve now is systems that aid doctors in diagnosis and monitoring, for example
current behaviomedical systems could be used to filter the cases that require the
attention of a trained clinician in an efficient manner. The advantages of such
systems are threefold. Firstly, many patients are either unaware of their condition
or do not actively seek the help of a clinician to tackle them. Widening the reach
of these services to patients that might otherwise not receive treatment is thus a
fundamental target. Secondly, the use of long-term and fine-grained monitoring in
a pervasive and passive manner can result in a much richer understanding of the
progress of the condition and the specific behavioural idiosyncrasy of the patient.
Thirdly, it would result in a more effective management of the (limited) time of the
clinicians.

The systematic analysis of behavioural cues means that this problem requires
techniques from both the Affective Computing and Social Signal Processing com-
munities. It is thus a multi-modal problem in nature which requires the integration
of the automatic analysis of, among others, facial expressive, body pose and hand
gesture, and audio information. There is in fact a long-standing tradition in the
Affective Computing field of considering medical applications, already present in
very early and foundational works within the field [33, 102]. It is however only
recently that many such problems started to be considered as feasible potential
applications of affective computing and social signal processing techniques, which
has helped to better define and systematise this family of applications [131].

Following Valstar [131], we distinguish between three groups of medical appli-
cations: mood and anxiety disorders, neuro-developmental disorders, and pain
estimation. Mood and anxiety disorders encompass a wide range of different
mental disorders. Notable examples include depressive disorders, bipolar disorders
or substance-induced disorders among others [3]. Neuro-developmental disorders
include again a wide variety of disorders such as autistic spectrum disorder,
schizophrenia, foetal alcohol spectrum disorder, Down syndrome or attention deficit
hyperactivity disorder. Finally, pain estimation is also considered. While pain is a
symptom rather than a condition in itself, it is common to use pain as an indicator in
medical settings, e.g. for clinicians controlling rehabilitation exercises or for judging
the severity of an injury, making it a very interesting practical problem that is well
suited for facial expression analysis [6, 75].

Obtaining a consistent and objective ground truth for such tasks is very challeng-
ing even for trained clinicians. The diagnosis and the evaluation of the severity of
depression are for example typically assessed based on self-report questionnaires
[7, 162]. The inherent subjectivity of this kind of measurement suggests that an
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approach based on objectively-measured behaviour tracked for extended periods
of time might add valuable information with diagnostic potential. Similarly, while
pain estimation is easy to elicit, and it is associated to some level of communicative
intent [120] (thus being conveyed through a distinct and clearly visible signal), it is
unclear how to produce an objective encoding of the expressed signal into a numeric
scale representing the pain level objectively. An attempt at producing a systematic
measuring system was made by Craig and Patrick [27] by making use of the facial
AU coding system, while other works have conducted further experiments along
these lines [158].

Most of these applications are however targeted at the analysis of the behaviour of
one single individual considered in isolation with their environment. In particular,
the analysis of the relations between individuals with the aim of detecting some
diagnosable pathological behaviour, or even for the improvement of interpersonal
relations, has been out of the scope. Such constraints are likely to be a result of
the current state of the art, which is only now starting to focus on the modelling
of (typically dyadic) interactions. It is however likely that a stage of maturity of
interaction modelling techniques will bring applications to automating interventions
such as counselling (e.g. marriage, or family counselling) and mediation. These are
however blue-sky thinking applications right now, and their viability will directly
depend on the quality of the research outcome for the next 5 years.

Data Analytics Some of the applications of automatic facial expression recog-
nition that are currently attracting wide interest from industry are related to the
analysis of a large volume of visual data. The aim is in this case to produce an easily
understandable statistical summarisation of the content. The most notable example
is the automatic analysis of marketing and publicity [85, 86]. Several start-ups are
currently focusing on the use of automatic facial expression analysis to evaluate the
effectiveness (in terms of the reaction of the viewer) of a marketing campaign. It is
for example possible to measure factors such as the level of engagement or infer the
emotions elicited during a screening sessions to a large audience, or for example to
retrieve the reactions to ads shown through the internet to individuals while using
their personal computers or mobile phones. The reactions are then summarised in a
report that can be easily analysed by marketing experts without having to resort to
hours of video visualisations and annotation.

While marketing studies are a prominent application in terms of the interest
shown by the industrial sector so far, similar studies can be carried out for a
wider range of applications. For example, [83] focused on the prediction of voting
preferences based on the reaction of the screened subjects to a political debate. The
work in [90] focused instead on predicting the ratings of a movie based on the
behaviour of the audience, while [122] targeted instead the task of automatically
measuring the level of engagement of subjects watching television. While these
applications are better tackled through a multi-modal perspective (e.g. the body pose
can play a key role), the analysis of facial expressions is a key modality.

Applications other than those aforementioned can be easily envisioned. Many
of them are similarly mutli-modal in nature and have facial expression analysis
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as a component that needs to be integrated into a multi-modal framework. One
example of these applications is the analysis of group interactions [46, 82]. Specific
applications with high-impact industrial applications would be the analysis of
dominance within a group [51], the analysis of the cohesion within a group [50], or
automatically measuring the level of engagement of individuals [148]. The creation
of such tools would for example allow the automatic and non-intrusive analysis of
the group dynamics at the workplace, potentially transforming our understanding of
group dynamics, the way working groups are configured and constructed, and the
way each individual is evaluated with regards to the final outcome achieved by the
group. Other potential (also multi-modal) applications could relate to the training of
individuals in regards to their behaviour to optimise their performance under certain
social circumstances. This could result in automatic tools for personalised training
targeting for instance the improvement of public speaking abilities [11] or for the
preparation of job interviews [12, 91].

Human-Computer Interaction HCI has traditionally been regarded as one of the
main applications of facial expression recognition. Researchers have often cited the
need for algorithms capable of endowing computers with the ability to interact in a
more natural way with humans, much closer to the way that humans interact with
each other [102, 157]. It is common to envision the future of human-computer
interaction as moving away from being centred around peripherics such as the
mouse and keyboards. Instead the interaction should move towards a more natural,
often passive and pervasive approach, where computers can automatically detect
and interpret your non-verbal cues (with facial expressions among them), and react
to them. Little of this early promise has however been materialised to date. This
might be due to the technical challenges, but also because of the lack of specific
materialisation of these high-level concepts into specific interaction patterns.

One application that has actually achieved some level of success is that of Virtual
Agents (VA) [111]. VA represent an (anthropomorphic) embodiment of the com-
puter, which enables the creation of more natural Human-Computer interactions.
VA require both the ability to analyse and synthesise facial expressions and more
generally expressive behaviour. Thus, an underlying methodological challenge is
the understanding of the “non-verbal semantic and syntactic rules”. It is to this end
possible to construct a generative model capable of capturing the decay of intensity
of expressions with time, and the complex temporal interaction between expressions
so that the virtual agent can produce realistic facial expressions [34]. It has also been
argued that the use of mirroring of behaviour is an important part of human-human
interaction, aimed at creating empathy [100]. It is thus interesting to endow VA with
the capability to read facial expressions (among other relevant behaviour) in order
to introduce similar mirroring mechanisms in the human-computer interaction.

A very related topic is that of creating expressive and socially-aware robots.
The creation of robots endowed with emotional awareness and social intelligence,
capable of communicating and behaving naturally with humans while respecting
socials, has been a long-standing aim for researchers [31, 45]. The embodiment
aspect characteristic of virtual agents is similarly present in this case, although in
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a more physical manner. The synthesis of facial expressions represents however
a strong dissimilarity. Facial expressions are in this case more complicated to
synthesise and thus the usefulness of their analysis relies on the capability of
the robot to infer human emotions [32]. The physical dimension of robots, as
opposed to the non-physical nature of virtual agents, means that the former are more
likely to be seen as personal objects and be understood from the consumer goods
perspective. Developing algorithms mimicking bonding processes could result in a
new perspective on the relation between the robots and their owners/users [69].

A final important application is that of driver assistance, where facial expression
analysis has in this case a direct application to improve driver’s safety. The
strong interest shown from the automotive industry has lead to a wide variety
of systems for detecting driver drowsiness. Approaches falling within Computer
Vision include the use of Near Infra-Red images [55], face analysis to detect
driver drowsiness [143], or the use of facial expression analysis as a cue to infer
when the driver is driving recklessly [52]. While there has been a long-standing
interest in this problem, the nature of the data, with frequent large illumination
variations, has driven the attention within the research community towards NIR
imagery. This kind of images can be used to perform inexpensive gaze estimation,
from which attention and drowsiness can be inferred. The recent state-of-the-art
advancements have resulted in a significant boost on the performance of automatic
facial expression recognition under varying illumination (mostly due to the in-the-
wild face alignment algorithms). These advancements might result on a surge of
commercial applications with this aim.

Throughout the years, and probably fuelled by the need to justify the importance
of the associated research lines, several other applications of facial expression
recognition have been proposed within the sphere of HCI. Examples of these are
the use of facial expressions within the computer games industry, the use of facial
expressions and emotional awareness to control the environment in a pervasive
manner (a typical scenario is a system capable of automatically adapting the music
to your mood), or the use of expressions to control computers (e.g., increase the
font size when the subject is tired). Many of these aspects are however unlikely to
result in practical systems, let aside commercial applications, given the very specific
application scenarios and their relative lack of practical interest.

Assisting Behaviour Understanding Research While categorical approaches
traditionally focus on the detection of the prototypical facial expressions, the same
approach can be applied to infer any target expression directly from the input data.
The only difference is the absence of universality of the expression, which affects the
link between facial expression (understood as a sign) and an emotion. For example,
while pain estimation can be achieved with one such approach, it is likely that
different people express pain with different facial expressions. Conversely, a smile
will likely be interpreted as pain since the sign used to denote pain often involves
letting the eyelids droop, and stretching the mouth corners [4, 103]. Instead, facial
AU approaches first extract a set of facial Action Units (signs) and then these signs
can be interpreted at a later stage. The latter approach has the disadvantage of
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adding further complexity to the problem. AU detection is more complex than facial
expression recognition. Working with AU has however a twofold advantage. Firstly,
the interpretation layer, in which the sign (the facial expression) is interpreted can
include contextual information or other cues in a seamless manner. Secondly, it is
possible to interpret the composition of the facial expression.

The interpretability of the sign that led to the detection is of particular interest
when the aim is to understand how a person can express certain cue non-verbally.
This is of interest mostly for two reasons: it facilitates the realistic synthesis of
facial expressions, and enables behavioural scientists and psychologists to conduct
studies on the way humans express themselves and how these signs are perceived by
other humans. While AU can offer powerful cues for psychologists and behavioural
scientists to conduct quantitative analysis, the annotation of AU throughout a corpus
from which to extract statistically significant conclusions is an extremely tedious,
resource-intensive and time-consuming process. As a consequence, one of the
widely extended arguments to justify research on automatic facial Action Units
analysis is the creation of automatic labelling tools for supporting the research
of behavioural and psychological scientists. Off-the-shelf software that can be
run to produce such labelling is largely absent from the literature. Some efforts
have been made publicly available, such as the Computer Expression Recognition
Toolbox (CERT) [71]. While more tools with improved reliable and ease of use
are necessary, the main drawback in this sense might be the absence of a semi-
automatic tool. Even state-of-the-art facial AU detection algorithms are not reliable
enough as to be applied as a tool without manual intervention. A semi-automatic
annotation tool would instead produce some off-the-shelf output as a starting point.
Then the user would have the option of correcting some of the prediction errors
through an easy-to-use interface or to introduce a small number of subject-specific
or scenario-specific manual annotations within the training set and produce new or
refined results. This loop between manual correction and automatic re-fitting can be
iterated for as long as necessary until the target data is annotated with acceptable
reliability according to the criterion of the users of the tool (typically psychologists
or behavioural scientists).

Implicit Tagging Given the exponential growth of the amount of multimedia
digital data both at public repositories (e.g. youtube) or private ones (e.g. facebook),
how to effectively and efficiently search through this content is an increasingly
important problem. One such mechanism is the creation of tags, which is a type of
metadata useful for retrieval based on content. It is for example nowadays customary
to tag images within facebook with the names of the people on it. However, this
manual tagging is labour intensive and in the majority of cases users are not
interested in carrying it out. One can then resort to automatic tagging. Computer
Vision tools can then be used to analyse the data through algorithms tasked with
automatically assigning relevant tags. Facial expression recognition can play a
role within this framework and be used to associate multimedia content with the
associated emotions.
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A third option has very recently become one of the areas of application of
facial expression recognition: implicit tagging [117–119]. This problem refers to
the association of tags to multimedia data based on the spontaneous reactions of
users while watching the content. This reaction is measured automatically based
on their facial expressions [145] or even based on their physiological reactions
[65]. The wide availability of built-in sensors within devices capable of multimedia
reproduction makes this an interesting and effortless way of tagging content. The
set of tags involved do not necessarily correspond to prototypical emotions, and
applications such as flagging inappropriate behaviour, to assessing the interest of
multimedia content (e.g., in a virtual class) could be envisioned as applications of
this range of techniques.

Deceit Detection Some work in the facial expression analysis literature has
focused on the detection of posed expressions. These are characterised both by
distinct appearance and, fundamentally, in terms of their dynamics [25, 132].
Training people to control their facial expressions and, in particular, to be able to
mimic spontaneous (truthful) facial expressions is possible and even common (e.g.,
actor’s training). Micro-expressions are instead involuntary and hard to control, and
they can correspond to what Ekman and Friesen described as a leakage clue of
deception [39]. The rationale here is that, during a deception episode, a subject
will try to conceal his emotions. However, small clues of this concealment can
leak out and result in small observable facial expressions. While this theory seems
promising, we should be cautious about its usefulness and prominence. Micro-
expressions correlate to some concealment, which is not equivalent to a downright
lie. That is to say, they might indicate that there is more to the story than what is
being told, but not that the part of the story told is actually true. Thus it could be
seen as a “early flag” sign so that further checks could be conducted. Similarly,
it is one of a number of physiological signals that could correlate with deception
[35, 96, 128, 146]. One of the main potential advantages of micro-expressions
respect to other physiological signals is that they are non-intrusive and non-invasive,
and that (theoretically) they can be detected using cheap hardware, such as a
standard webcam.

It is because of these considerations that the Computer Vision community has
very recently explored the automatic detection of micro-expressions. The first
datasets have been created (e.g. [153]) and some works have started performing
quantitative performance measurements [101, 150]. These results are however a
starting point, and further research and improved performances are necessary to
turn this approach into a viable practical option. Due to the very short time span
of micro-expressions, existing datasets use cameras with a high frame rate and
high spatial resolution, and there is little head pose variation. Very precise face
registration seems also necessary in practise. Given the very faint signal of the
facial expressions compared to other sources of variation (illumination, identity
or head pose), exploring which features capture the necessary information to
allow for effective learning seems like a very reasonable next step. Whether it is
possible to detect micro-expressions using off-the-shelf hardware (i.e., standard
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cameras) is another open question. It is also unknown how well we can achieve
the end application, i.e., to automatically detect deceit, based on the current level of
performance for micro-expression detection, or even based on manually-annotated
micro-expressions.

5 Conclusions

Automatic Facial Expression Recognition has reached a state of maturity where
it can now start to be reliably deployed in real-world applications. In particular
the elements of the pipeline that can be considered the pre-processing steps have
reached a point where they are highly accurate and robust to real-world variations
in the data. Face detection has reached this point some time ago already with the
advent of the Viola and Jones Face Detector [142], and has since been improved
further to a point where it can now be expected to work in most practical situations.
More recently face alignment has made major strides, propelled forward with the
introduction of regression-based facial point localisation [134]. This was followed
by the Cascade regression (e.g. SDM [151]), and finally fine-tuned to the point of
perfection by works such as Project-Out Cascaded Regression by Tzimiropoulos
[129]. One could safely argue that these components are now ready to be used
reliably in all sorts of real-world applications.

Interestingly the actual facial expression analysis component of the pipeline has
not seen the same jump towards robustness and accuracy. Certainly, the detection
of the six basic emotions, and small numbers of discrete expressions in general, can
be considered close to being solved. But as pointed out these expressions are not
frequently displayed and are thus of limited value. Most Action Units on the other
hand are still not reliably detectable, nor are the affective dimensions valence and
arousal. This is not due to a lack of good ideas in this field, but instead mainly due
to a lack of high-quality data recorded in realistic, natural conditions.

With the proliferation of multimedia content on social networks, ubiquitous
sensors carried around and used to collect ever more natural scenes, this is bound
to change. When scientists figure out how to use a sufficient amount of this data
efficiently, probably through semi-supervised, transfer, multi-task, or unsupervised
learning, so too will facial expression recognition become a readily applicable
technology.

For decades, research works in this field have started with the same dry
statements of what massive impact automatic facial expression recognition will
have on wide-ranging domains such as medicine, security, marketing, and HCI.
Excitingly, we believe that we are finally on the verge of making true on these
promises!
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