Lighting Estimation and Adjustment
for Facial Images

Xiaoyue Jiang, Xiaoyi Feng, Jun Wu, and Jinye Peng

Abstract For robust face detection and recognition, the problem of lighting
variation is considered as one of the greatest challenges. Lighting estimation and
adjustment is a useful way to remove the influence of illumination for images.
Due to the different prior knowledge provided by a single image and image
sequences, algorithms dealing with lighting problems are always different for these
two conditions. In this chapter we will present a lighting estimation algorithm for
a single facial image and a lighting adjustment algorithm for image sequences.
To estimate the lighting condition of a single facial image, a statistical model
is proposed to reconstruct the lighting subspace where only one image of each
subject is required. For lighting adjustment of image sequences, an entropy-based
optimization algorithm is proposed to minimize the difference between consequent
images. The effectiveness of those proposed algorithms are illustrated on face
recognition, detection and tracking tasks.

1 Introduction

Face detection, recognition and tracking are difficult due to variations caused
by pose, expression, occlusion and lighting (or illumination), which make the
distribution of face object highly nonlinear. Lighting is regarded as one of the
most critical factors for robust face recognition. Current attempt to handle lighting
variation is either to find the invariant features and representations or to model
the variation. The gradient based algorithm [1, 2] attempted to find illumination
invariant features. While the other kind of algorithms tried to extract the reflectance
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information from the observations in different lighting conditions, including the
algorithms based on Quotient Images [3—8] and the algorithms based on Retinex
theory [9-12]. But these methods cannot extract sufficient features for accurate
recognition.

Early work on modeling lighting variation [13, 14] showed that a 3D linear
subspace can represent the variation of a Lambertian object under a fixed pose
when there is no shadow. With the same Lambertian assumption, Belhumeur and
Kriegman [15] showed that images illuminated by an arbitrary number of point light
sources formed a convex polyhedral cone, i.e. the illumination cone. In theory, the
dimensionality of the cone is finite. They also pointed out that the illumination cone
can be approximated by a few properly chosen images. Good recognition results of
the illumination cone in [16] demonstrated its representation for lighting variation.

Recent research is mainly focused on the application of low-dimensional sub-
space to lighting variation modeling. With the assumption of Lambertian surface
and non-concavity, Zhou et al. [17] found a set of basis images from training images
based on photometric methods, while Ramamoorith and Hanrahan [18] and Basri
and Jacobs [19] independently introduced the spherical harmonic (SH) subspace to
approximate the illumination cone. Chen et al. [20] decomposed the original image
into lighting and reflectance maps and build up lighting subspace from lighting
maps. Sparse representation-based algorithm also showed its effectiveness in
dealing with illumination problem [21-24], while the lack of training images always
limited its application. In order to construct the lighting subspace, a lot of algorithms
also applied the 3D model of faces to handling lighting variations [25-30]. However,
recovering the 3D information from images is still an open problem in computer
vision.

Lee et al. [31] built up a subspace that is nearest to the SH subspace and has the
largest intersection with the illumination cone, called the nine points of light (9PL)
subspace. It has a universal configuration for different subjects, i.e. the subspace
is spanned by images under the same lighting conditions for different subjects. In
addition, the basis images of 9PL subspace can be duplicated in real environments,
while those of the SH subspace cannot because its the basis images contain negative
values. Therefore the 9PL subspace can overcome the inherent limitation of SH
subspace. Since the human face is neither completely Lambertain nor entirely
convex, SH subspace can hardly represent the specularities or cast shadows (not
to mention inter-reflection). The basis images of 9PL subspace are taken from real
environment, they already contain all the complicated reflections of the objects.
Therefore the 9PL subspace can give a more detailed and accurate description of
lighting variation.

In practice, the requirement of these nine real images cannot always be fulfilled.
Usually there are fewer gallery images (e.g. one gallery image) per subject, which
can be taken under arbitrary lighting conditions. In this chapter, we propose a
statistical model for recovering the 9 basis images of the 9PL subspace from only
one gallery image. Based on the estimation of lighting coefficient for a facial image,
its basis images can be constructed with the prior knowledge about the distribution
of the basis images. An overview of the proposed basis construction algorithm
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Fig. 1 Flowchart of constructing basis images for lighting subspace

is shown in Fig. 1. Zhang and Samaras [25] presented a statistical method for
recovering the basis images of SH subspace instead. In their training procedure,
geometric and albedo information is still required for synthesizing the harmonic
images. In contrast, the proposed method requires only some real images that can
be easily obtained in real environment. Since the recovered basis images of the
9PL subspace contain all the reflections caused by the shape of faces, such as cast
shadows, specularities, and inter-reflections, better recognition results are obtained,
even under extreme lighting conditions. Compared with other algorithms based on
3D model [25, 28, 29], the proposed algorithm is entirely a 2D algorithm, which
has much lower computational complexity. For more details of the algorithm is
presented in paper [32].

Lighting variations will also bring challenges for the processing of image
sequences. Even though there are a lot of algorithms to deal with lighting problem
for images, there are a few investigations for image sequences particularly. In
fact most lighting algorithms are too complicated for image sequences, and do
not consider the special characteristic of sequences. Also, the scene can be more
complex in real applications. Thus it is impossible to build lighting models for
different kind of subjects and adjust the lighting condition for each of them
independently. However, the lighting adjustment can be applied to the whole scene
according to an optimal lighting condition. In this chapter, we also propose a two-
step entropy-based lighting adjustment algorithm for image sequences. An overview
of the adjustment algorithm is shown in Fig. 2. Paper [33] presents more details
about the lighting adjustment algorithm.
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Fig. 2 Flowchart of lighting adjustment algorithm for image sequences

In the lighting adjustment algorithm, the difference between successive frames
is used as a cost function for optimizing a lighting model of an image sequence.
For each image frame, to ensure convergence, the proposed lighting adjustment
algorithm works in two steps. First initial values of the lighting model parameters
are estimated using the entropy of the current image as measure. These values are
then used as initial guesses for a constrained least squares optimization problem,
considering two successive frames. It is worth pointing out that the proposed
algorithm did not only try to do shadow removal, which is only one aspect of lighting
problem because there is no shadow but highlight or un-uniform lighting distribution
in an image sometimes. Also, we adjusted the global lighting conditions to be more
uniform and enhance the local features of the image as well.

This chapter is organized as follows. In Sect. 2, we briefly summarize the meth-
ods of low-dimensional linear approximation of the illumination cone, including
the SH subspace and the 9PL subspace. The training of our statistical model and
the application of the model for recovering basis images from only one gallery
image are described in Sects.3 and 4 respectively. Section 5 is dedicated to the
experimental results. Then perception based lighting model is introduced in Sect. 6.
In Sect.7 we give an overview of the proposed lighting adjustment algorithm for
image sequence. Section 8 discusses qualitative and quantitative results of the
lighting adjustment in the case of facial features detection and tracking. Finally,
conclusions are drawn in Sect. 9.

2 Approximation of the Illumination Cone

Belhumeur and Kriegman [15] proved that the set of n-pixel images of a convex
object that had a Lambertian surface illuminated by an arbitrary number of point
light sources at infinity formed a convex polyhedral cone, called the illumination
cone € in %". Each point in the cone is an image of the object under a particular
lighting condition, and the entire cone is the set of images of the object under all
possible lighting conditions. Any images in the illumination cone % (including the
boundary) can be determined as a convex combination of extreme rays (images)
given by

I;j = max(B5;;, 0) (1)
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where §; = l;[ X l;j and B € 73, Every row of B, I;[, is a three element row vector
determined by the product of the albedo with the inward pointing unit normal vector
of a point on the surface. There are at most g(¢ — 1) extreme rays for g < n distinct
surface normal vectors. Therefore the cone can be constructed with finite extreme
rays and the dimensionality of the lighting subspace is finite. However, building
the full illumination cone is tedious, and the low dimensional approximation of the
illumination cone is applied in practice.

From the view of signal processing, the reflection equation can be considered as
the rotational convolution of incident lighting with the albedo of the surface [18].
The spherical harmonic functions Y,,(0, ¢) are a set of orthogonal basis functions
defined in the unit sphere, given as follows,

Yin(0, ¢) = NiwP)'(cos 0) exp™® 2)

where N;, = 1/%81_:?)!!’ (0, @) is the spherical coordinate (0 is the elevation
angle, which is the angle between the polar axis and the z-axis with range 0 < 8 <
180°, and ¢ is the azimuth angle with the range —180° < ¢ < 180°). P/" is the
associated Legendre function, and the two indices meet the conditions / > 0 and
I > m > —I. Then functions in the sphere, such as the reflection equation, can
be expanded by the spherical harmonic functions, which are basis functions on the
sphere. Images can be represented as a linear combination of spherical harmonic
functions. The first three order (I < 3) basis can account for 99 % energy of the
function. Therefore the first three order basis functions (altogether 9) can span a
subspace for representing the variability of lighting. This subspace is called the
spherical harmonic (SH) subspace.

Good recognition results reported in [19] indicates that the SH subspace J¢ is
a good approximation to the illumination cone . Given the geometric information
of a face, its spherical harmonic functions can be calculated with Eq. (2). These
spherical harmonic functions are synthesized images, also called harmonic images.
Except the first harmonic image, all the others have negative values, which cannot
be obtained in reality. To avoid the requirement of geometric information, Lee
et al. [31] found a set of real images which can also serve as a low dimensional
approximation to illumination cone based on linear algebra theory.

Since the SH subspace .77 is good for face recognition, it is reasonable to assume
that a subspace Z close to ¢ would be likewise good for recognition. & should
also intersect with the illumination cone % as much as possible. Hence a linear
subspace & which is meant to provide a basis for good face recognition will also be
a low dimensional linear approximation to the illumination cone &. Thus subspace
should satisfy the following two conditions [31]:

1. The distance between % and .7 should be minimized.
2. The unit volume (vol(% N X)) of € N % should be maximized (the unit volume
is defined as the volume of the intersection of ¥ N % with the unit ball).
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Note that ¥’ N Z is always a subcone of €’; therefore maximizing its unit volume
is equivalent to maximize the solid angle subtended by the subcone ¢ N Z. If
{I, I, , I} }are the basis images of Z. The cone Z, C Z is defined by I,

M
R =l € R.1=" adi. oy > 0} 3)

k=1

is always a subset of 4 N Z. In practice the subcone " N &% is taken as %, and the
subtended angle of %, is maximized. # is computed as a sequence of nested linear
subspace Zy C %, C -+ C X#; C --- € Ry = X, with Z(k > 0) alinear subspace
of dimension i and %, = @. First, EC denotes the set of (normalized) extreme rays
in the illumination cone %’; and ECy denotes the set obtained by deleting k extreme
rays from EC, where ECy = EC. With %;_, and EC—1, the sets ECy and Ry can be
defined iteratively as follows:

I, = arg max distl, #i1) 4)
k 1€EC—1 dist(I, 7€)

where I denotes the element in ECy_;. %, is defined as the space spanned by %
and Iy. EC, = ECy_, \7;(. The algorithm stops when Z9 = Z is reached. The result
of Eq. (4) is a set of nine extreme rays that span &% and there are nine directions
corresponding to these nine extreme rays. For different subjects, the nine lighting
directions are qualitatively very similar. By averaging Eq. (4) of different subjects
and maximizing this function as follows:

N
I = arg max Z

I€EC,—
p=1

dist(I’, ;)

dist(IP, 7P) )

where /7 denotes the image of subject p taken under a single light source. H? is
the SH subspace of subject p. Z;_, denotes the linear subspace spanned by images
(r,... ,if} of subject p. The universal configuration of nine light source direction
is obtained. They are (0, 0), (68, —90), (74, 108), (80, 52), (85, —42), (85,—137),
(85, 146), (85,—4), (51, 67). The directions are expressed in spherical coordinates
as pairs of (¢, 0), Fig. 3a illustrates the nine basis images of a person from the Yale
face database B [16].

3 Statistical Model of Basis Images

According to the universal configuration of lighting directions, we can apply nine
images taken under controlled environment to spanning the 9PL linear subspace.
However, even these nine images may not be available in some situations. Thus, we
propose a statistical method for estimating the basis images from one gallery image.
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Fig. 3 The basis images of 9PL subspace. (a) images taken under certain lighting conditions can
serve as the basis images of the object. (b) The mean images of the basis images estimated from
the bootstrap data set

To build the statistical model, we must find the probability density function (PDF)
of basis images and the PDF of the error term. Due to the limited amount of the
training data, we use the bootstrap method to estimate the statistics of basis images.
The recovering step is to estimate the corresponding basis images from one single
image of a novel subject under arbitrary lighting conditions. For a given image, we
first estimate its lighting coefficient. Then according to the maximum a posteriori
(MAP) estimation, we obtain an estimation of the basis images. Finally, we apply
the recovered subspace to face recognition. The probe image is identified as the face
whose lighting subspace is closest in distance to the image.

Given nine basis images, we can construct images under arbitrary lighting
conditions as follows,

I = Bs + e(s) (6)

where I C ! is the image vector. B C %%* is the matrix of nine basis images,
every column of which is the vector of the basis image. s C 0¢*! is the vector of
lighting coefficients which denotes the lighting conditions of the image. Error term
e(s) C RN s related to the pixels’ position and lighting conditions.

For a novel image, we estimate its basis images through the maximum a posterior
(MAP) estimation. That is

Buap = arg max P(B|I) @)

According to the Bayes rule

Piein = "N ®
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where P() is the evidence factor which guarantees that posterior probabilities would
sum to one. Then Eq. (7) can become

Byap = arg mlglx(P(I|B)P(B)) ©)]

In order to recover the set of basis images from an image with Eq. (9), one should
know the PDF of the basis images, i.e. P(B), and the PDF of the likelihood,
i.e. P(I|B). Assuming the error term of Eq. (6) is normally distributed with mean
e(x,s) and variance o2 (x, s), we can deduce that the PDF of the likelihood P(I|B),
is also Gaussian with mean Bs + p.(s) and variance 02 (s) according to Eq. (6).

We assume that the PDF of the basis images B are Gaussians of unknown means
wp and covariances Cp as in [25, 34]. The probability P(B) can be estimated from
the basis images of the training set. In our experiments, the basis images of 20
different subjects from the extended Yale face database B [16] are introduced to the
bootstrap set. Note that, the basis images of every subject are real images which were
taken under certain lighting conditions. The lighting conditions are determined by
the universal configurations of the 9PL subspace. The sample mean pz and sample
covariance matrix Cgare computed. Figure 3b shows the mean basis images, i.e. tp.

The error term e(s) = I — Bs models the divergence between the real image
and the estimated image which is reconstructed by the low dimensional subspace.
The error term is related to the lighting coefficients. Hence, we need to know the
lighting coefficients of the training images before estimating the error term. For
a training image, its lighting coefficient can be estimated by solving the linear
equation / = Bs. For every subject in the extended Yale face database B, there
are 64 images under different lighting conditions. We use the images of the same 20
subjects whose basis images are used for training the mean value of basis, i.e. g, for
computing the statistics of the error. Under a certain lighting condition, we estimate
the lighting coefficients of every subject’s image, i.e. s} (the lighting coefficients of
the p™ subject’s image under the lighting condition s. The mean value of different
subjects’ lighting coefficients can be the estimated coefficients (§;) for that lighting

condition, i.e. §; = Zgzl si /N. Then, under a certain lighting condition, the error

th

term the of the p™ subject’s image is

ey(Sx) = I — BySi (10)
where 17 is the training image of the p™ subject under lighting condition s; and B,, is

the basis images of the p subject. Following the above assumption, we can estimate
the mean p.(S;) and variance o2 (Sy) of the error term.
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4 Estimating the Basis Images

As described in the previous section, the basis images of a novel image can be
recovered by using the MAP estimation. But before applying the statistical model
to estimating the basis images, one needs to first estimate the lighting coefficient s
of the image. Then, the error term under those lighting conditions can be estimated.

4.1 Estimating Lighting Coefficients

Lighting influences greatly the appearance of an image. Under similar illumination,
images of different subjects will appear almost the same. The difference between the
images of the same subject under different illuminations is always larger than that
between the images of different subjects under the same illumination [35]. Therefore
we can estimate the lighting coefficients of a novel image with an interpolation
method. The kernel regression is a smooth interpolation method [36]. It is applied
to estimating the lighting coefficients. For every training image, we have their
corresponding lighting coefficients. For a novel image I, its lighting coefficient
is given by

224=1 Wiy
s = k=1 M0 (11)
D k=1 Wk
[D(,, )
wy = exp(————— 12
k p( 2oy ) (12)
where D(1,,,I¥) = ||[I, — I}||» is the L, norm of the image distance. op determines

the weight of test image /7 in the interpolation. M is the number of images that have
similar lighting condition. In the training set, every subject has 64 different images
and there are altogether 20 different subjects. Thus, for a novel image, there will be
M = 20 images with similar illumination. In our experiment, we assign the farthest
distance of these 20 images from the probe image to op- s, is the lighting coefficient

of image I3,

4.2 Estimating the Error Term

The error term denotes the difference between the reconstructed image and the real
image. This divergence is caused by the fact that the 9PL subspace is the low-
dimensional approximation to the lighting subspace, and it only accounts for the
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low frequency parts of the lighting variance. Given the statistics of the error term
under known illumination, i.e. . (S¢), 62(Sx), those under a new lighting condition
can be estimated, also via the kernel regression method [34].

Zﬁ:jzl Wkﬂe(gk)

(8) = (13)
pel 22/1:1 Wk
M 2=
2(g) = D=1 Wk (S¢) (14)
[D(S’ gk)]2
Wi = CXP(_W) 15)

where D(s, S;) = ||s — 82||2 is the L, norm of the lighting coefficient distance. Like
oy, 05, determines the weight of the error term related to the lighting coefficients
Si. Also, we assign the farthest lighting coefficient distance of these 20 images from
the probe image to o, .

4.3 Recovering the Basis Images

Given the estimated lighting coefficients s and the corresponding error term .(s),
02(s), we can recover the basis images via the MAP estimation. If we apply the log
probability, omit the constant term, and drop s for compactness, Eq. (9) can become

1 I—Bs—p,

1
arg max (—5( )= 5(B—up)Cy' (B~ MB)T) (16)

O,
To solve Eq. (16), we estimate the derivatives,

2
— U= Bs—p)s" +2(B— pup)Cy' =0 (17)

e

Then we rewrite Eq. (17) as a linear equation,

AB=1b (18)

T — . . . .
where A = %5 + Cyzland b = 10‘2“’ s+ Cy' wp.The solution of the linear equation is

B = A™'b. Using the Woodbury’s identity [37], we can obtain an explicit solution

Byap =A7'b
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CBSSTCB I — . —1
=(Cpr— s+ C
( 5 02 + s"Cps o2 +Cp M

(IS — e
02 +sTCps

) CsS + s (19)

From Eq. (19), the estimated basis image is composed of the term of character-

istics, (Z’j_‘:—s{c’;CBs), and the term of mean, up. In the term of characteristics,
(I — s — i) is the difference between the probe image and the images recon-

structed via the mean basis images.

4.4 Recognition

The most direct way to perform recognition is to measure the distance between
probe images and the subspace spanned by the recovered basis images. Every
column of B is one basis image. However, the basis images are not orthonormal
vectors. Thus we perform the QR decomposition on B to obtain a set of orthonormal
basis, i.e. the matrix Q. Then the projection of probe image I to the subspace spanned
by Bis QQT1, and the distance between the probe image I and the subspace spanned
by B can be computed as |QQ71—I||,. In the recognition procedure, the probe image
is identified as the subspace with minimum distance from it.

5 Experiments on Lighting Estimation

The statistical model is trained by images from the extended Yale face database
B [16]. With the trained statistical model, we can reconstruct the lighting subspace
from only one gallery image, which should be insensitive to lighting variation. Thus,
recognition can be achieved across illumination conditions.

5.1 Recovered Basis Images

To recover the basis images from a single image, the lighting coefficients of the
image should be estimated first. Then we estimate the error terms of the image.
Finally, the basis images of the image can be obtained with Eq. (19).

Although the images of the same object are under different lighting conditions,
the recovered basis images should be similar. The probe images are from the Yale
face database B. There are 10 subjects and 45 probe images per subject. According
to the lighting conditions of the probe images, they can be grouped into 4 subsets as
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Table 1 The subsets of Yale
face database B

subset]l |subset2 | subset3 |subset4
Illumination 0-12 13-25 |26-50 | 50-77
Number of images | 70 120 120 140

Fig. 4 Recovered basis images. (a)—(d) are images in subset 1-4 of Yale face database B
respectively. (e)—(h) are recovered basis images from image (a)—(d) respectively

in [16]. The details can be found in Table 1. From subsetl to subset4, the lighting
conditions become extreme. For every subject, we recover its basis images from
only one of its probe images each time. Then we can obtain 45 sets of basis images
for every subject. Figure 4 shows the basis images recovered from an image of
each subset. 0p,4 (the mean standard deviation of the 45 sets of basis images of 10
subjects) is 7.76 intensity levels per pixel, while ;4. (the mean standard deviation
of the original 45 probe images of 10 subjects) is 44.12 intensity levels per pixel.
From the results, we can see that the recovered basis images are insensitive to the
variability of lighting. Thus we can recover the basis images of a subject from its
images under arbitrary lighting conditions.

5.2 Recognition

Recognition is performed on the Yale face database B [16] first. We take the frontal
images (pose 0) as the probe set, which is composed of 450 images (10 subjects, 45
images per subject). For every subject, one image is used for recovering its lighting
subspace and the 44 remaining images are used for recognition. The comparison of
our algorithm with the reported results is shown in Table 2.

Our algorithm reconstructed the 9PL subspace for every subject. The recovered
basis images also contained complicated reflections on faces, such as cast shadows,
specularities, and inter-reflection. Therefore the recovered 9PL subspace can give
a more detailed and accurate description for images under different lighting
conditions. As a result, we can get good recognition results on images with different
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Table 2 The recognition error rate of different recognition algo-
rithms on Yale face database B

Algorithms subset]l & 2 | subset3 | subset4
Correlation [16] 0.0 23.3 73.6
Eigenfaces [16] 0.0 25.8 75.7
LTV [9] 0.2 214 24.5
S&L(LOG-DCT) [5] 0.0 14.0 15.7
S&L(NPL-QI) [5] 0.0 32 13
Linear subspace [16] 0.0 0.0 15.0
Cones-attached [16] 0.0 0.0 8.6
Cones-cast [16] 0.0 0.0 0.0
harmonic images-cast [16] 0.0 0.0 2.7
3D based SH model [25] 0.0 0.3 3.1
SH model extreme [25] 7.75 7.5 6.8
BIM (30 bases) [28] 0.0 0.0 0.7
Wang et al. [29] 0.0 0.0 0.1
9PL-real [31] 0.0 0.0 0.0
Intrinsic lighting subspace [20] | 0.0 0.0 5.71
Our algorithm 0.0 0.0 0.72

lighting conditions. Also, the reported results of ‘cone-cast’, harmonic images-cast’
and ‘OPL-real’ showed that better results can be obtained when cast shadows were
considered. Although paper [28,29] also use one image to adjust lighting conditions,
they need to recover the 3D model of the face first. Our algorithm is a completely
2D-based approach. Computationally, it is much less expensive compared with those
3D based methods. The basis images of a subject can be directly computed with
Eq. (19) while the recognition results are comparable to those from the 3D-based
methods. Compared with the results of Quotient-based methods [35, 9], the results of
lighting-subspace-based methods [20, 25, 28, 29, 31] are much better. That is due
to the loss of appearance information in Quotient-based methods. Actually, these
information contained a lot of low-frequency information which is important for
recognition.

5.3 Multiple Lighting Sources

An image taken under multiple lighting sources can be considered as images taken
under a single lighting source being superimposed. Through interpolation, the
lighting coefficients of images taken under single lighting are linearly combined
to approximate those of the image taken under multiple-lighting. Here we also
apply the statistical model trained on the extended Yale Database B to basis images
estimation. Similarly the lighting coefficients of images are estimated through
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Fig. 5 Recovered basis images. (a) and (b) are images in PIE database, (e) and (f) are estimated
basis images from image (a) and (b), respectively. (¢) and (d) are images in AR database, (g) and
(h) are estimated basis images from image (c) and (d), respectively

Table 3 Recognition rate on Face database PIE AR
different datab =
ifferent databases Tpasis 11.01 | 11.34
Gonace 285 3859

Recognition rate (%) | 98.21 | 97.75

interpolation. Then the error term can be estimated according to the lighting
coefficients. Finally, the basis images are recovered.

In the PIE face database [38], there are 23 images per subject taken under
multiple lighting sources, and altogether 69 subjects. We recover 23 sets of the
basis images from the 23 images of every subject respectively. With these estimated
basis images, we perform recognition on the 1587 images (23 images per person)
23 times. We also estimate basis for images in the AR database [39]. We select
randomly 4 images under different illumination per subject (image 1, 5, 6, 7) and
recover the respective basis images from those images. Recognition is performed
on 504 images (126 subjects and 4 images per subject) 4 times. Samples of the
recovered basis images from images in the PIE and ARdatabases are shown in Fig. 5.
The average recognition rates, the mean standard deviation of the recovered basis
images (Opasis) and the mean standard deviation of the gallery images (Oimqges) are
presented in Table 3. The results show that the statistical model trained by images
taken under single lighting source can also be generalized to images taken under
multiple lighting sources. The recognition results on PIE dataset is also compared
with some lighting pre-processing methods reported in paper [40], as shown in
Table 4. From the results, we can see that the proposed algorithm performed
better than those reflectance estimation methods [9—12]. That is due to the accurate
description of appearance in different lighting conditions with estimated basis
images.
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Table 4 Comparison with other lighting preprocessing methods on the dataset

of PIE
Algorithm LTV [9] |TT[10] LDCT[11] |LN[12] |Our algorithm
Recognition rate | 8§9.1 94.4 92.1 97.1 98.21

6 Perception-Based Lighting Model

The Human Vision System (HVS) can adapt very well under enormously changed
lighting conditions. People can see well at daytime and also at night. That is due
to the accurate adaptation ability of the HVS. However, image capturing devices
seldom have this adaptation ability. For an image taken under extreme lighting
conditions, such as the images shown in first row of Fig.7b, a proper lighting
adjustment algorithm should not only adjust the brightness of the images, but also
enhance the features of the image, especially for the dark regions. To reach this goal,
we propose to reduce the light variations by an adaptive adjustment of the image.
Here, we employ a model of photoreceptor adaptation in Human Vision System [41]
in which three parameters (c, f, m) control the lighting adjustment. The adjusted
image Y is modeled as a function of these lighting parameters and the input image
X as:

X

Y(a,m,f;X) = m‘/mm

(20)

where o, referred to as semi-saturation constant, X, the adaptation level, and V4,
determines the maximum range of the output value (we use V,,,,, = 255 to have grey
image output in the range of [0, 255]). The semi-saturation constant ¢ describes the
image intensity and its contrast through the parameters f and m, respectively [41]:

O(Xa) = (fXa)m (21)

Adaptation Level I, If we choose the average intensity of the image as the
adaptation level I,, the adjustment is global. It does not perform any specific
processing to the darker or brighter region and some details in those regions may
be lost. To compensate the details, the local conditions of every point should be
considered. We can use the bi-linear interpolation to combine the global adaptation
I8Pl and local adaptation I'°°(x, y) as,

Ia(x, y) — Ol]é“wl(x, y) + (1 _ a)lglobal 22)
Ill;)all(x’ y) = K(I(_x, y)) (23)

I8P — ean(I) (24)
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Fig. 6 (a) Adaptation level v.s. & parameter, (b) lighting adjustment v.s. m and f parameters

Different kernel K(e) can be applied to extract the local information. Gauss
kernel is the most commonly used one. The interpolation of the global and local
information will adjust the details. In Fig. 6a, with the increasing of the parameter
a, the details become notable gradually. When & = 1, i.e.l, = I'°°“, all the details
are expressed out including the noise.

Parameter f and m The other two parameters f and m control the intensity and
contrast, respectively. Parameter f is the multiplier in the adaptation function, i.e.
to every point’s adaptation level /,(x, y), f magnifies them with the same scale. The
brightness of the whole image will be enhanced or suppressed accordingly.

The alternation of brightness can be shown only when changes on f is large
enough. In [41], the parameter f is suggested to be rewritten in the following form

f=exp(=f) (25)

With a comparative smaller changing range of f’, f can alter the brightness of the
image.

Parameter m is an exponent in the adaptation function. Different from the
parameter f, m magnifies every I,(x, y) with a different scale based on its adaptation
value. Therefore, parameter m can emphasize the difference between every point,
i.e. the contrast. In Fig. 6b, the parameter « is fixed. With the increment of m, the
contrast of the image is enhanced in every row. And in every column, the brightness
of the image is enhanced with the increase of f.
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7 Image Sequence Lighting Adjustment

In capturing an image sequence the influence of the scene lighting may not be
neglected. Often the variations of the lighting conditions cannot be avoided while
recording, and therefore lighting adjustment methods must be used before further
processing. In this paper, we propose a tow-steps lighting adjustment approach.
First, the initial optimal parameters, o, fP, m{ of each frame X;;k = 1,---N
are calculated using entropy as an objective function. These values are then used
as initial guesses for a constrained least squares optimization problem for further
refinement of those parameter. In this step, the objective function is the difference
between the adjusted previous frame Y;—; and the current frame X;. The two steps
are detailed in the following sections, and experimental results are presented in
Sect. 8.

7.1 Single Image Enhancement

It is well known that an image with large entropy value indicates that the distribution
of its intensity values is more uniform, i.e. each intensity value has almost the same
probability to appear in the image. Hence, the image cannot be locally too bright or
too dark. Entropy H(x), defined as:

255

H(X) = = p(i)loga(p(i) (26)

i=0

where p(i) is the probability of the intensity values i in the whole image, can be
employed to evaluate image lighting quality. When all the intensity values have the
same probability in the image, the entropy can reach its maximum value 8. However,
not all the images can reach the entropy H(X) = 8 when they are in their best
situation. The optimal entropy value, H,, is image content dependent. In this paper,
we set H, = 7 as the expected optimal entropy for all the images. Therefore the
objective function for the lighting adjustment of every single image is

Ji(a,m,f) = argmin  |[H(Y(o,m,f;X)) — H,| (27
a€[0.1];me[0.3.1)
Felexp(—8).exp(8)]

The lighting parameter « controls the adaptation level of the images, as in
Eq. (23). It can adjust the image much more than the other two parameters (f, m).
Therefore an alternate optimization strategy is used [42]. First, the parameter « is
optimized with fixed m and f. Then the parameter m and f are optimized with fixed
«. These two optimizations are repeated until convergence. To initialize, we estimate
& with fixed m and f which are selected according to the luminance situation of
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Fig. 7 Lighting adjustment results of frame 1-4 in L1 and L2. (a) and (b) are results of L1 and
L2: from top to bottom are original images, entropy-based optimization, and 2-step optimization
results, respectively

the image. The contrast-control parameter m can be determined by the key k of
the image [41], as

m =03+ 0.7k"* (28)

The key of the image evaluates the luminance range of the image and is defined as

Ly — L,
o= e v (29)
Lmax - Lmin

where Ly, Lyin, Linax are the log average, log minimum and log maximum of the
luminance respectively. For color images, we use the luminance image computed
as L = 0.21251, + 0.71541, + 0.07211;, where I,, 1, I, are the red, green, blue
channels. The brightness-control parameter f is set to 1. Then the simplex search
algorithm [43] is applied for determining the optimal &. Fixing the value & in
Ji, the simplex search algorithm is then used to search for optimal /m and f‘ . The
alternate optimization will stop when the objective function J; is smaller than a
given threshold.

This approach can adjust an image to have suitable brightness and contrast. Also,
it can enhance the local gradient features of the image due to the adjustment of the
parameter . However, entropy does not relate to intensity directly. Different images
can have the same entropy value while their brightness is different. For example, the
images in the second row of Fig.7a, b, being the lighting adjusted results of the
images of the first row, have the same entropy values, but their lighting conditions
are not similar. Consequently, for a sequence of images, we still need to adjust the
brightness and contrast of successive frames to be similar and therefore enhance
their features.
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7.2 Lighting Adjustment of Successive Images

In video sequences, the difference between successive frames is due to object
and/or camera motions and lighting changes. Whereas the former differences are
exploited in object tracking and camera motion estimation, the latter, i.e. lighting
differences, are such that the required brightness constancy assumption for tracking
gets violated. In this paper, we show that for tracking of slow movement in a
sequence captured by a fixed camera, the lighting problem can be reduced by
applying a lighting adjustment method. Indeed, the lighting of the overall sequence
could be made more uniform (in a sequential manner) by considering the changes
between successive frames. We propose to use the difference between successive
frames as an objective function to estimate the optimal lighting parameters of the
current frame X;, provided that the previous frame X; | has been adjusted, i.e.
given Y;_i:

] 2
Blmf)= agmin 33 (V@ mfiX@y)) - Y)  (G0)
acfo.1;me03.1) T

f€lexp(—8).exp(8)]

With Eq. (20), the difference e(at, m,f) = Y(a,m,f;X;) — Y;—| between frames
can be written as (for simplicity we drop the pixel index (x, y)):
X Xj-1

e= - — . 31
)(j - (f)Xaj)mj )(j—l - (fj—lXuj—])mj_]

When searching for the optimal parameters for the objective function J,, the
derivatives over different parameters need to calculate.

If the two images concerned are the same, the difference between these images
is minimum, at the same time, the difference between the inverse of images will
also reach to its minimum value. Therefore, we calculate the difference between the
inverse of adjusted images to simplify the computation of derivatives, as

ij - (f}Xaj)mj _ ij*l - (fjilevaj'—])mj_l
X Xj—1
. (]S'Xaj)mj _ (fj.'—lXaj—l)mj_l

X; Xj-1

e =

(32)

Let ?j71 = (fi-1X4_,)"™~"/Xj—1 and apply log to both side of Eq.(32), we can
simplify the difference between frames further as

X, )"
é:log—(}3 ;)

)

—log ¥y

= m;logf; + mjlog X,, —log X; — log f/j_l (33)



54 X. Jiang et al.

Then the objective function J, can be rewritten as

n . N 2
Jo(aj, mj, fj)= arg min ZZ (mj log fi+mj log X4, —log Xj— log Yj,1) (34)
«a€[0,1];mel0.3,1) y
J€lexp(=8).exp(8)]

This formulation allows easily estimating the partial derivatives, and we apply the
interior-point algorithm [44] to solve the optimization problem J5, with initial values
of the lighting parameters ajp, ]5.0 and mjo obtained by minimizing Eq. (27).

8 Experiments on Lighting Adjustment

The proposed lighting adjustment algorithms of the previous section have been
tested on the PIE facial database [38], from which we selected images under
different lighting conditions to compose 3 test sequences, here referred to as L1,
L2 and L3. We intend to take these sequences as typical examples to demonstrate
the performance of the algorithm in slight lighting variations (L1), overall dark
sequences (L.2) and suddenly changing light variations (L3). To show the benefits of
the proposed image sequence lighting adjustment approach, we compare it to state-
of-art lighting adjustment methods for single images, namely, the quotient image
(QD) algorithm [4], and the well known histogram equalization (HE) approach.

The lighting conditions of the test sequences can be described as follows.
Sequence L1 and L2 are composed of 19 frames taken from the same person. The
first row of Fig.7 shows the first 4 frames of L1 and L2. The images in L1 are
taken with ambient lighting and 19 different point light sources. The positions of
these light points, are 10, 07, 08, 09, 13, 14, 12, 11, 06, 05, 18, 19, 20, 21, and
22, respectively. The images in L2 are taken under the same light point source but
without ambient lighting, so they appear to be more dark. Sequence L3 is composed
of 39 images which come from L1 and L2 alternately. Thus the lighting condition
of the images in L3 is ambient lighting on and off alternately. The first row of Fig. 9
shows the frames 9-14 of L3.

To evaluate the lighting quality of the adjusted images, the key value (Eq. (29))
and entropy are depicted in Fig.8. The key value of an image evaluates the
luminance range of the image. The entropy, being the mean entropy of the 3 color
channels, relates to the distribution of the intensity values in each channel.

The key value of all adjusted frames and the original sequence of L3 are shown
in Fig.8d. The key value zigzags due to the alternate brightness of the original
sequence L3. For a sequence with reduced lighting variation the key value should
stay constant throughout the sequence. Therefore, we show the variance of the key
value in Fig. 8b. For all the 3 test sequences, the variance of the key value of the
results of the proposed 2-step optimization algorithm is smaller than that of the other
algorithms except HE algorithm. However, HE algorithm costs the entropy value of
images, whose results are even worse than the original images (Fig. 8a). The reason
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Fig. 8 Entropy and image key curves. (a) and (b) are the mean entropy and the variance of key of
all the frames in the original sequences and adjusted results of the sequences, respectively. (¢) and
(d) are the entropy value and key value of every frame in L3 and different adjusted results of L3,
respectively

is that HE algorithm can make the intensity distribution uniform only by skipping
values in the intensity range [0,255] of the adjusted images, thereby leaving many
gaps in the histogram of the adjusted images. The entropy value of the QI results
are the smallest because of the loss of the low frequency information in the images.
The proposed algorithm is the largest in the mean of entropy, Fig. 8a, and we can
also see from Fig. 9a that these resemble most the intensity value distribution of the
original images. Our goal is indeed not to change the image appearance dramatically
(as compared to QI) but only to obtain a good lighting quality. Therefore, it is quite
normal that we couldn’t improve L1 sequence so much, which is already captured
at a reasonable lighting quality with the ambient light. However, we were still able
to adjust its brightness to be more uniform while keeping its high image quality,
as shown in Fig. 7a. On the other hand, our 2-step algorithm enhanced the image
lighting quality significantly for the sequences L2 and L3 containing images taken
under extreme lighting conditions.
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Fig. 9 Lighting adjustment results of frame 9-14 in sequence L3. (a) From top to bottom are the
original images, entropy-based optimization, 2-step optimization, histogram equalization (HE),
and quotient image (QI) results, respectively. (b) The edge of corresponding images in (a)

Next, we examine the effect of the lighting adjustment methods on the object’s
edges of Fig.9b to determine if the methods are appropriate as pre-processing
for feature detection methods. Considering the edges in the adjusted images, our
proposed algorithm enhances the feature of images. This is especially the case for
those images taken in a dark environment. Also, highlight are compensated and
the influence of shadows on the edges are reduced. The HE algorithm was able to
enhance the contrast of the image but at the same time it enhanced noise as well. As
we already mentioned, the QI algorithm removed most low frequency information
of the image thereby included some important features of the image.

The advantage of the image difference-based optimization step is illustrated for
facial feature tracking (on the sequences L1-L3). We demonstrate that the difficulty
of tracking a modified object appearance due to lighting changes can be overcome
by employing our proposed algorithm as pre-processing. In this paper, we focus on
the results of a template-based eye and mouth corner tracker. That tracker is part of
a previously developed approach to automatically locate frontal facial feature points
under large scene variations (illumination, pose and facial expressions) [45]. This
approach consisted of three steps: (1) we use a kernel-based tracker to detect and
track the facial region; (2) we constrain a detection and tracking of eye and mouth
facial features by the estimated face pose of (1) by introducing the parameterized
feature point motion model into a Lukas-Kanade tracker; (3) we detect and track 83
semantic facial points, gathered in a shape model, by constraining the shapes rigid
motion and deformation parameters by the estimated face pose of (1) and by the
eyes and mouth corner features location of (2).
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The performance of the tracking of the eyes and mouth corners (6 feature points)
on the original and adjusted image sequences LL1-L3 is displayed in Fig. 10. The
tracking error per frame is calculated as the average distance between the real
positions (manually identified) and the tracked positions of the 6 feature points in
the image. When tracking was lost, the graph is truncated. Figure 10a shows that all
adjustments of the sequence L1 allow to track until the end of that sequence. The
QI shows the smallest tracking error because it enhances the gradient features in
the image, but at the cost of obtaining visually unpleasant images (see last row of
Fig. 9a). Compared to the HE results, our two-step optimization does reach a better
tracking performance. Because the initial lighting variations in sequence L1 are not
that big, the entropy-step alone may already improve the tracking. The benefit of the
image difference-based optimization step becomes obvious via the tracking error
graphs of the dark sequence L2 in Fig. 10b. Here, the tracking errors on the 2-step
optimization are the smallest. This shows that local features are enhanced very well,
but also that taking care of correspondences between images is indeed important.
QI and HE adjustments perform worse in tracking. For QI, the reason is that it
may enhance the local features (gradients) only when the noise level is not high,
i.e. images taken in good lighting conditions such as in L1. On the alternating dark
and light sequence L3 the tracking of the original and entropy-optimized sequence
is very quickly lost, as shown in Fig. 10c. It is thus crucial to take into account
the sequence aspects in lighting adjustment. It is worth noting that the tracking
for our proposed algorithm results was lost only when a part of the image were
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Fig. 11 Shape model results. (a) results on original sequence M1 with 10 frames (there are frame
1, 3,5, 7, 10 from left to right), (b) corresponding results on adjusted sequence M1; (c) results
on original sequence M2 with 14 frames (there are frame 1, 4, 6, 9, 14 from left to right), (d)
corresponding results on adjusted sequence M2

in deep shadow (such as frame 12, 17 and 19). Although no adjustment method can
track until the end of the sequence, we see that a larger enhancement of the local
features may allow to track longer (reduced entropy). That was done by enlarging
the alpha range from [0, 0.3] to [0,0.9] in the 2-step optimization (Egs.(27) and
(30)). When comparing the errors before tracking was lost, we see that reducing
frame differences, especially with small alpha range, increases the accuracy of the
tracking. This shows that enhancing image sequence quality can also help to track.

Then we tested the constrained shape model tracking (step (3) of [45]) on a
sequence [46] adjusted by the 2-step lighting optimization. Before adjustment,
shown in Fig. 11a, ¢, some tracked features could not be well delineated due to
the illumination changes in the image sequence. The intensity and texture of the
face image were improved by our lighting adjustment and therefore all shape points
were tracked more efficiently as shown in Fig. 11b, d.

9 Conclusion

Lighting is always a crucial problem for image based pattern recognition due to the
reason that lighting is the main factor that makes the image. Therefore when lighting
changes, images of objects will also change such that difficulties arise in detecting,
recognizing and tracking them throughout images.
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To deal with the practical requirement of few training images, we built a
statistical model based on the 9PL theory. With the MAP estimation, we can recover
the basis images from one gallery image under arbitrary lighting conditions, which
could be single lighting source or multiple lighting sources. The experimental results
based on the recovered subspace are comparable to those from other algorithms
that require lots of gallery images or the geometric information of the subjects.
Even in extreme lighting conditions, the recovered subspace can still appropriately
represent lighting variation. The recovered subspace retains the main characteristics
of the 9PL subspace. Based on our statistical model, we can build the lighting
subspace of a subject from only one gallery image. It avoids the limitation of
requiring tedious training or complex training data, such as many gallery images
or the geometric information of the subject. After the model has been trained well,
the computation for recovering the basis images is quite simple and without the
need of 3D models. Besides faces, the proposed algorithm is able to be generalized
to model lighting variation for images of other objects in a fixed pose.

Currently, most of the algorithms that deal with the lighting problems are only
aimed at adjusting the lighting condition of one image. Furthermore, it is not
practical to build lighting models for each object in a complicated scene, especially
when the object is unknown beforehand. For the application of image sequences
processing, we proposed a 2-step lighting adjustment algorithm to reduce the
variations of lighting in an image sequence. First, an entropy-based algorithm is
applied to calculate initial lighting parameters of a perceptual lighting model. Then
the difference between current and previous frames is employed as an objective
function for the further optimization of those lighting parameters. Using this criteria,
successive frames are adjusted to have similar brightness and contrast. Image
lighting quality, measured by entropy and key value, but also local features are
enhanced. The proposed two-step lighting adjustment algorithm can be applied to
any image sequences besides facial sequences. We did demonstrate the effectiveness
of the proposed algorithm for subsequent image processing, such as detection and
tracking.
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