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Abstract In this chapter, we propose an ensemble of face detectors for maximizing
the number of true positives found by the system. Unfortunately, combining
different face detectors increases both the number of true positives and false
positives. To overcome this difficulty, several methods for reducing false positives
are tested and proposed. The different filtering steps are based on the characteristics
of the depth map related to the subwindows of the whole image that contain the
candidate faces. The most simple and easiest criteria to use, for instance, is to filter
the candidate face region by considering its size in metric units.

The experimental section demonstrates that the proposed set of filtering steps
greatly reduces the number of false positives without decreasing the detection
rate. The proposed approach has been validated on a dataset of 549 images (each
including both 2D and depth data) representing 614 upright frontal faces. The
images were acquired both outdoors and indoors, with both first and second
generation Kinect sensors. This was done in order to simulate a real application
scenario. Moreover, for further validation and comparison with the state-of-the-art,
our ensemble of face detectors is tested on the widely used BioID dataset where it
obtains 100 % detection rate with an acceptable number of false positives.

A MATLAB version of the filtering steps and the dataset used in this paper will
be freely available from http://www.dei.unipd.it/node/2357.

1 Introduction

The goal of face detection is to determine the location of faces in an image. It
is one of the most studied problems in computer vision, due partly to the large
number of applications requiring the detection and recognition of human beings
and the availability of low-cost hardware. Face detection has also attracted a lot of
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attention in the research community because it is a very hard problem, certainly
more challenging than face localization in which a single face is assumed to
be located inside an image [1]. Although human faces have generally the same
appearance, several personal variations (like gender, race, individual distinctions,
and facial expression) and environment conditions (like pose, illumination, and
complex background) can dramatically alter the appearance of human faces. A
robust face detection system must overcome all these variations and be able to
perform detection in almost any lighting condition. Moreover, it must manage to
do all this in real-time.

Over the past 25 years, many different face detection techniques have been
proposed [2], motivated by the increasing number of real world applications
requiring recognition of human beings. Indeed, face detection is a crucial first step
for several applications ranging from surveillance and security systems to human–
computer interface interaction, face tagging, behavioral analysis, as well as many
other applications [3].

The majority of existing techniques address face detection from a monocular
image or a video-centric perspective. Most algorithms are designed to detect faces
using one or more camera images, without additional sensor information or context.
The problem is often formulated as a two-class pattern recognition problem aimed at
classifying each subwindow of the input image as either containing or not containing
a face [4].

The most famous approach for frontal 2D detection is the Viola–Jones algorithm
[5], which introduced the idea of performing an exhaustive search of an image using
Haar-like rectangle features and then of using Adaboost and Cascade algorithm for
classification. The importance of this detector, which provides high speed, can be
measured by the number of approaches it has inspired, such as [6–9]. Amongst them,
SURF cascades, a framework recently introduced by Intel labs [10] that adopts
multi-dimensional SURF features instead of single dimensional Haar features to
describe local patches, is one of the top performers. Another recent work [11] that
compared many commercial face detectors (Google Picasa, Face.com acquired by
Facebook, Intel Olaworks, and the Chinese start-up FaceCC) showed that a simple
vanilla deformable part model (a general purpose object detection approach which
combines the estimation of latent variables for alignment and clustering at training
time and the use of multiple components and deformable parts to handle intra-class
variance) was able to outperform all the other methods in face detection.

The Viola–Jones algorithm and its variants are capable of detecting faces in
images in real-time, but these algorithms are definitely affected by changeable
factors such as pose, illumination, facial expression, glasses, makeup, and factors
related to age. In order to overcome problems related to these factors, 3D face
detection methods have been proposed. These new methods take advantage of
the fact that the 3D structure of the human face provides highly discriminatory
information and is more insensitive to environmental conditions.

The recent introduction of several consumer depth cameras has made 3D acqui-
sition available to the mass market. Among the various consumer depth cameras,
Microsoft Kinect is the first and the most successful device. It is a depth sensing
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device that couples the 2D RGB image with a depth map (RGB-D) computed using
the structured light principle which can be used to determine the depth of every
object in the scene. A second generation of the sensor exploiting the Time-of-
flight principle has been recently introduced. The depth information is not enough
precise to differentiate among different individuals, but can be useful to improve the
robustness of a face detector.

Because each pixel in Kinect’s depth map indicates the distance of that pixel
from the sensor, this information can be used both to differentiate among different
individuals at different distances and to reduce the sensitivities of the face detector
to illumination, occlusions, changes in facial expression, and pose. Several recent
approaches have used depth maps or other 3D information for face detection and
several have been tested on the first benchmark datasets collected by Kinetic devices
for 3D face recognition [12] and detection [13]. Most exiting 3D approaches use
depth images combined with gray-level images to improve detection rates. In [14]
Haar wavelets on 2D images are first used to detect the human face, and then face
position is refined by structured light analysis. In [15] depth-comparison features
are defined as pixel pairs in depth images to quickly and accurately classify body
joints and parts from single depth images. In [16] a similar method for robust and
accurate face detection based on square regions comparison is coupled with Viola
Jones face detector. In [1, 17] depth information is used to reduce the number of
false positive and improve the percentage of correct detection. In [18] biologically
inspired integrated representation of texture and stereo disparity information are
used to reduce the number of locations to be evaluated during the face search. In
[19] the additional information obtained by the depth map improves face recognition
rates. This latter method involves texture descriptors extracted both from color
and depth information and classification based on random forest. Recently, 3D
information is used by DeepFace [20] to perform a 3D model-based alignment that
is coupled with large capacity feedforward models for effectively obtaining a high
detection rate.

An improved face detection approach based on information of the 2D image and
the depth obtained by Microsoft Kinect 1 and Kinect 2 is proposed in this paper.

The proposed method in this chapter is based on an ensemble of face detectors.
One advantage of using an ensemble to detect faces is that it maximizes the number
of true positives; a major disadvantage, however, is that it increases both the number
of false positives and the computation time. The main aim of this work, an update of
our previous paper [1], is to propose a set of filtering step for reducing the number
of false positives while preserving the true positive rate. To achieve this goal, the
following approaches:

• SIZE: the size of the candidate face region is calculated according to the depth
data, removing faces that are the too small or too large.

• STD: images of flat objects (e.g. candidate face found in a wall) or uneven objects
(e.g. candidate face found in the leaves of a tree) are removed using the depth map
and a segmentation approach based on the depth map.
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• SEG: a segmentation step based on the depth map is used to segment a candidate
image into homogenous regions; images whose main region is smaller than a
threshold (with respect to the candidate image dimension) are then filtered out.

• ELL: using the segmented depth-image, an ellipse fitting approach is employed
to evaluate whether the larger region can be modeled as an ellipse. The fitting
cost is evaluated to decide whether or not to remove the candidate face.

• EYE: an eye detection step is used to find eyes in the candidate image and reject
regions having a very low eye detection score.

• SEC: a neighborhood of the candidate face region is considered in the depth map.
Neighbor pixels whose depth value is close to the face mean depth are assigned
to a number of radial sectors. The lower sectors should contain a higher number
of pixels.

The proposed approach has been validated on a dataset composed by 549 samples
(containing 614 upright frontal faces) that include both 2D and depth images.
The experimental results prove that the proposed filtering steps greatly reduce
the number of false positives without decreasing the detection rate. For a further
validation, the ensemble of face detectors is also tested on the widely used BioID
dataset [21], where it obtains 100 % detection rate with an acceptable number
of false positives. We want to stress that our approach outperforms the approach
proposed in [22], which works better than such powerful commercial face detectors
as Google Picasa, Face.com—Facebook, Intel Olaworks, and the Chinese start-up
FaceCC.

The arrangement of this chapter is as follows. In Sect. 2 the whole detection
approach is described, starting from the base detectors and moving on to explain all
the filtering steps. In Sect. 3 the experiments on the above mentioned benchmark
datasets are presented, including a description of the self-collected datasets, the
definition of the testing protocol, and a discussion of the experimental results.
Finally, in Sect. 4 the chapter is concluded and some future research directions are
presented. The MATLAB code developed for this chapter and the datasets will be
freely available.

2 The Proposed Approach

The proposed method is based on an ensemble of several well-known face detectors.
As a first step we perform face detection on the color images using a low acceptance
threshold in order to have high recall. This results in low precision since many false
positive occur in the search. As a second step the depth map is aligned to the color
image, and both are used to filter out false positives by means of several criteria
designed to remove non-face images from the final list. In order to better handle non-
upright faces, the input color images are also rotated f20ı, �20ıg before detection.
In the experiments the use of rotated images for adding poses is denoted by a *.
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We perform experiments on the fusion of four face detectors:

• ViolaJones(VJ) [5], which is probably the most diffused face detector due to its
simplicity and very fast classification time. VJ uses simple image descriptors,
based on Haar wavelets extracted in a low computational time from the integral
image. Classification is performed using an ensemble of AdaBoost classifiers
for selecting a small number of relevant descriptors, along with a cascade
combination of weak learners for classification. This approach requires a long
training time but it is very fast for testing. The precision of VJ strictly relies on
the threshold ¢ used to classify a face an input subwindow.

• SN [23] is a face detector1 based on local descriptors and Successive Mean
Quantization Transform (SMQT) features that is applied to a Split up sparse
Network of Winnows (SN) classifier. The face detector extracts SMQT features
by a moving a patch of 32 � 32 pixels that is repeatedly downscaled and resized
in order to find faces of different sizes. SMQT is a transform for automatic
enhancement of gray-level images that reveals the structure of the data and
removes properties such as gain and bias. As a result SMQT features overcome
most of the illumination and noise problems. The detection task is performed by
a Split up sparse Network of Winnows as the classifier, which is a sparse network
of linear units over a feature space that can be used to create lookup-tables. SN
precision in face detection can be adjusted by a sensitivity parameter ¢ that can
be tuned to obtain low to high sensitivity values. In the original implementation
¢min D 1 and ¢max D 10.

• FL [22] is a method that combines an approach for face detection that is a
modification of the standard Viola–Jones detection framework with a module for
the localization of salient facial landmark points. The basic idea of this approach
is to scan the image with a cascade of binary classifiers (a multi-scale sequence
of regression tree-based estimators) at all reasonable positions and scales. An
image region is classified as containing a face if it successfully passes all the
classifiers. Then a similar ensemble is used to infer the position of each facial
landmark point within a given face region. Each binary classifier consists of
an ensemble of decision trees with pixel intensity comparisons as binary tests
in their internal nodes. The learning process consists of a greedy regression
tree construction procedure and a boosting algorithm. The reported results show
performance improvement with respect to several recent commercial approaches.

• RF [24] is a face detector based on face fitting, which is the problem of modeling
a face shape by inferring a set of parameters that control a facial deformable
model. The method, named Discriminative Response Map Fitting (DRMF), is
a novel discriminative regression approach for the Constrained Local Models
(CLMs) framework which shows impressive performance in the generic face

1http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
objectId D 13701&objectType D FILE.

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId
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Fig. 1 Outline of our complete system

fitting scenario. RF precision can be adjusted by a sensitivity parameter ¢ , which
can be tuned to obtain a lower or a higher sensitivity value.

In Fig. 1 a schema of our complete system is outlined. In the first step one or more
face detectors (the final configuration is a result of the experimental section) are
employed for an “imprecise” detection using a low acceptance threshold, then in the
second step all the candidate face regions are filtered out according to several criteria
(detailed below in the following subsections) that take advantage of the presence of
the depth map.

The second step exploits the information contained in the depth data to improve
face detection. First calibration between color and depth data is computed according
to the method proposed in [25]: the positions of the depth samples in the 3D
space are first computed using the intrinsic parameters of the depth camera and
then reprojected in the 2D space using both the color camera intrinsic parameters
and the extrinsic ones between the two cameras. Then a color and a depth value
are associated with each sample (to speed-up the approach, this operation can be
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Fig. 2 Architecture of the proposed segmentation scheme

performed only for the regions containing a candidate face). Finally, filtering is
applied in order to remove false positives from the set of candidate faces. In the
next subsections, the depth map alignment and segmentation approach and all the
filtering rules used in this work are detailed. In Fig. 4 some candidate images
properly filtered out by the different filtering rules are shown.

2.1 Depth Map Alignment and Segmentation

The color image and the depth map are jointly segmented using the approach shown
in Fig. 2. The employed approach associates to each sample a multi-dimensional
vector and then clusters the set of vectors associated to the image using the Mean
Shift algorithm [26] following an approach similar to [27].

As shown in Fig. 2 the procedure has two main stages: first a six-dimensional
representation of the points in the scene is built from the geometry and color data
and then second the obtained point set is segmented using Mean Shift clustering.

Each sample in the acquired depth map correspond to a 3D point of the scene
pi; i D 1; : : : ;N. After the joint calibration of the depth and color cameras, it is
possible to reproject the depth samples over the corresponding pixels in the color
image and to associate to each point the spatial coordinates x, y, and z of pi and its R,
G, and B color components. Notice that these two representations lie in completely
different spaces and cannot be directly compared.

In order to obtain multi-dimensional vectors suited for the clustering algorithm,
the various components need to be comparable. All color values are converted to
the CIELAB perceptually uniform space. This provides a perceptual significance to
the Euclidean distance between the color vectors that will be used in the clustering
algorithm. We can denote the color information of each scene point in the CIELAB
space with the 3-D vector:

pc
i D

2
4

L .pi/

a .pi/

b .pi/

3
5 ; i D 1; : : : ;N
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The geometry is instead simply represented by the 3-D coordinates of each point,
i.e., by:

pg
i D

2
4

x .pi/

y .pi/

z .pi/

3
5 ; i D 1; : : : ;N

As previously noted the scene segmentation algorithm should be insensitive to
the relative scaling of the point-cloud geometry and should bring geometry and
color distances into a consistent framework. Therefore, all components of pg

i are
normalized with respect to the average of the standard deviations of the point
coordinates in the three dimensions¢g D �

¢x C ¢y C ¢z
�
=3, thus obtaining the

vector:

2
4

x .pi/

y .pi/

z .pi/

3
5 D 3

¢x C ¢y C ¢z

2
4

x .pi/

y .pi/

z .pi/

3
5 D 1

¢g

2
4

x .pi/

y .pi/

z .pi/

3
5

In order to balance the relevance of color and geometry in the merging process,
the color information vectors are also normalized by the average of the standard
deviations of the L, a, and b components. The final color representation, therefore,
is:

2
4

L .pi/

a .pi/

b .pi/

3
5 D 3

¢L C ¢a C ¢b

2
4

L .pi/

a .pi/

b .pi/

3
5 D 1

¢c

2
4

L .pi/

a .pi/

b .pi/

3
5

From the above normalized geometry and color information vectors, each point
is finally represented as

pf
i D

2
66666664

L .pi/

a .pi/

b .pi/

œx .pi/

œy .pi/

œz .pi/

3
77777775

The parameter œ controls the contribution of color and geometry to the final
segmentation. High values of œ increase the relevance of geometry, while low values
of œ increase the relevance of color information. Notice that at the two extrema the
algorithm can be reduced to a color-based segmentation (œ D 0) or to a geometry

(depth) only segmentation (œ ! 1
�

. A complete discussion on the effect of this

parameter and a method to automatically tune it to the optimal value is presented in
[27].
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Fig. 3 Color image, depth map, and segmentation map

The computed vectors pf
i are then clustered in order to segment the acquired

scene. Mean shift clustering [26] has been used since it obtains an excellent trade-
off between the segmentation accuracy and the computation and memory resources.
A final refinement stage is also applied in order to remove regions smaller than
a predefined threshold typically due to noise. In Fig. 3 an example of segmented
image is reported.

2.2 Image Size Filter

The image size filter (SIZE) rejects candidate images according to their size. The
size of a candidate face region is extracted from the depth map. Assuming that the
face detection algorithm returns the 2D position and dimension in pixels (w2D, h2D)
of a candidate face region, its 3D physical dimension in mm (w3D, h3D) can be
estimated as:

w3D D w2D
d
fx

h3D D h2D
d
fy

where fx and fy are the Kinect camera focal lengths computed by the calibration
algorithm in [25] and d is the average depth of the samples within the face candidate
bounding box. Note how dis defined as the median of the depth samples; this is done
in order to reduce the impact of noisy samples in the average computation.

The candidate regions out of a fixed range [0.075, 0.35] centimeters are rejected.

2.3 Flatness\Unevenness Filter

Another source of significant information that can be obtained from the depth map is
the flatness\unevenness of the candidate face regions. For this filter a segmentation
procedure is applied. Then from each face candidate region the standard deviation of
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the pixels of the depth map that belong to the larger segment is calculated. Regions
having a standard deviation (STD) out of a fixed range [0.01, 2] are removed.

This method is slightly different to the one proposed in our previous work
[1] (called STDı in the experimental section), where the flatness\unevenness was
calculated using the whole candidate window.

2.4 Segmentation Based Filtering

From the segmented version of the depth image, it is possible to evaluate some
characteristics of the candidate face based on its dimension with respect to its
bounding box and its shape (which should be elliptical). According to these
considerations, we define two simple filtering rules. The first evaluates the relative
dimension of the larger region with respect to the whole candidate image (SEG). We
have rejected the candidate regions where the area of the larger region is less than
40 % of the whole area.

The second considers the fitting score of an ellipse fitting approach2 to evaluate
whether the larger region can be modeled as an ellipse (ELL). The candidate regions
with a cost higher than 100 are rejected.

2.5 Eye Based Filtering

The presence of two eyes is another good indicator of a face. In this work two
efficient eye detectors are applied to candidate face regions [28]. The score of the
eye detector is used to filter out regions having a very low probability of containing
two eyes (EYE).

The first approach is a variant of the PS model proposed in [28]. PS is
a computationally efficient framework for representing a face in terms of an
undirected graph G D (V, E), where the vertices V correspond to its parts (i.e.,
two eyes, one nose, and one mouth) and the edge set E characterizes the local
pairwise spatial relationship between the different parts. The PS approach proposed
in [28] enhances the traditional PS model to handle the complicated appearance and
structural changes of eyes under uncontrolled conditions.

The latter approach is proposed in [29] where the color information is used to
build an eye map for emphasizing the iris area. Then, a radial symmetry transform
is applied both to the eye map and the original image. Finally, the cumulative result
of the transforms indicates the positions of the eye.

2http://it.mathworks.com/matlabcentral/fileexchange/3215-fit-ellipse.

http://it.mathworks.com/matlabcentral/fileexchange/3215-fit-ellipse
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Fig. 4 Some samples of images filtered out by the different filtering rules

Fig. 5 Partitioning of a
neighborhood of the
candidate face region into 8
sectors (gray area). Lower
sectors 4, 5 are depicted in
dark gray

Only the face candidates where a pair of eyes is found with a score higher than
a prefixed threshold (1 for the first approach and 750 for the latter) are retained
(Fig. 4).

2.6 Filtering Based on the Analysis of the Depth Values

Excluding some critical cases like people lying on the floor, it is reasonable to
assume the person body is present in the lower volume right under the face, while
the remaining surrounding volume is likely to be empty. We exploit this observation
in order to reject candidate faces whose neighborhood shows a different pattern from
the expected one.

In particular, we enlarge the rectangular region associated to the candidate face
in order to analyze a neighborhood of the face in the depth map, i.e., all the pixels
which belong to the extended region but are not part of the smaller face box. The
region is then partitioned into a number of radial sectors centered to the center of the
candidate face. We used eight sectors in our experiments, see Fig. 5. For each sector
Siwe count the number of pixels ni whose depth value dp is close to the average
depth value of the face d; i:e; :
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ni D ˇ̌˚
p W ˇ̌

dp � d
ˇ̌
< td ^ p 2 Si

� ˇ̌

where we used td D 50cm: Finally, the number of pixels per sector is averaged
on the two lower sectors (S4 and S5) and on the remaining ones, obtaining the two
values nu and nl respectively. The ratio between nl and nu is then computed:

nl

nu
D

1
2
.n4 C n5/

1
6
.n1 C n2 C n3 C n6 C n7 C n8/

If the ratio drops below a certain threshold tr, then the candidate face is removed.
We set tr D 0:8 in our experiments.

This approach is named SEC in the experimental section.

3 Experimental Results

For our experiments we use four datasets of faces acquired in an unconstrained setup
(“in the wild”) for purposes other than face detection. For preliminary experiments
and parameter tuning, we used a separate set of images appositely collected for this
aim. The images will be publicly available as a part of the Padua FaceDec dataset.
All four datasets contain upright frontal images possibly with a limited degree of
rotation, and all are composed of color images and their corresponding depth map:

• Microsoft hand gesture [30] is a dataset collected for gesture recognition
composed of images of ten different people performing gestures; most of the
images in the datasets are quite similar to each other, and each image contains
only one face. Only a subset of the whole dataset (42 images) has been selected
for our experiments and manually labeled with the face position.

• Padua Hand gesture [31] is a dataset similar to the previous one that was collected
for gesture recognition purposes and composed of images from ten different
people; each image contains only one face. A subset of 59 images has been
manually labeled and selected for our experiments.

• Padua FaceDec [1], is a dataset collected and labeled for the purpose of face
detection. It contains 132 images acquired both outdoors and indoors with the
Kinect sensor at the University campus in Padua. Some images contain more
than one face and some contain no faces. The images capture one or more
people performing various daily activities (e.g., working, studying, walking, and
chatting) in an unconstrained setup. Images have been acquired different hours
of the day in order to account for varying lighting conditions, and some faces are
partially occluded by objects and other people. For these reasons, this dataset is
more challenging than previous datasets.

• Padua FaceDec2, is a new dataset acquired for the purpose of this chapter by
a second generation Kinect sensor. For each scene a 512 � 424 depth map and a
1920 � 1080 color image have been acquired. The dataset includes 316 images of
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Table 1 Datasets characteristics

Dataset No. images Color resolution Depth resolution No. faces Difficulty

Microsoft hand
gesture

42 640 � 480 640 � 480 42 Low

Padua hand
gesture

59 1280 � 1024 640 � 480 59 Low

Padua FaceDec 132 1280 � 1024 640 � 480 150 High
Padua
FaceDec2

316 1920 � 1080 512 � 424 363 High

MERGED 549 – – 614 High

both indoor and outdoor scenes with people in various positions and challenging
situations, e.g., with the head tilted with respect to the camera or very close to
other objects. Some images contain more than one face and some contain no
faces. Note that, even if the second generation Kinect, differently from the first
version, is able to work outdoor, the outdoor depth data is noise, thus making the
recognition problem more challenging. The depth data has been retro-projected
over the color frame and interpolated to the same resolution thus obtaining two
aligned depth and color fields.

A summary of the datasets characteristics is reported in Table 1.
The four datasets have been merged to form a single larger dataset consisting

of 549 images containing 614 faces (only upright frontal faces with a maximum
rotation of ˙30ı have been considered). The parameter optimization of the face
detectors has been performed manually and, despite the different origin and
characteristics of the images included in the final set, the selected parameter
optimizations have been fixed for all the images. The MERGED dataset is not an
easy dataset to classify, as illustrated in Fig. 6, which presents some samples the
face detectors could not accurately detect (even when executed with a very low
recognition threshold). The collected dataset contains images with various lighting
conditions, see Fig. 7.

Moreover, for comparing the face detectors and the proposed ensemble with
other approaches proposed in the literature, we perform comparisons on the well-
known BioID dataset, the foremost benchmark for upright frontal face detection.
It is composed by 1521 images of 23 different people acquired during several
identification sessions. The amount of rotation in the facial images is small. All
the images are gray-scale and do not have a depth map. As a result, most of the
filters proposed in this work are not applicable to the BioID dataset. Nonetheless,
this dataset provides a means of comparing the approach proposed in this chapter
with other state-of-the-art methods and is one way of showing the effectiveness of
our ensembles.

The performance of the proposed approach is evaluated according the following
well-known performance indicators:
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Fig. 6 Some samples where faces are not correctly detected

• Detection rate (DR): the detection rate, also known as recall and sensitivity, is
the fraction of relevant instances that are retrieved, i.e. the ratio between the
number of faces correctly detected and the total number of faces (manually
labelled) in the dataset. Let dl (dr) be the Euclidean distance between the
manually extracted Cl (Cr) and the detected C’l (C’r) left (right) eye position,3

the relative error of detection is defined as ED D max(dl, dr)/dlr where the
normalization factor dlr is the Euclidean distance of the expected eye centers
used to make the measure independent of the scale of the face in the image and
of image size.

• False positives (FP): it is the number of candidate faces not containing a face.

3The face detectors FL and RF give the positions of the eye centers as the output, while for VJ and
SN the detected eye position is assumed to be a fixed position inside the face bounding box.
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Fig. 7 Some samples with various lighting conditions

• False negatives (FN): it is the number of faces not retrieved, i.e. the candidate
faces erroneously excluded by the system. This value is correlated to the
detection rate, since it can be obtained as (1-Detection Rate) � Nıfaces.
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Table 2 Performance of the four face detectors and some ensem-
bles (last five rows) on the MERGED dataset (* denotes the use of
adding poses)

Face detector(¢)/ensemble CPoses DR FP FN

VJ(2) No 55.37 2528 274
RF(�1) No 47.39 4682 323
RF(�0.8) No 47.07 3249 325
RF(�0.65) No 46.42 1146 329
SN(1) No 66.61 508 205
SN(10) No 46.74 31 327
FL No 78.18 344 134
VJ(2)* Yes 65.31 6287 213
RF(�1)* Yes 49.67 19475 309
RF(�0.8)* Yes 49.67 14121 309
RF(�0.65)* Yes 49.02 5895 313
SN(1)* Yes 74.59 1635 156
SN(10)* Yes 50.16 48 306
FL* Yes 83.39 891 102
FLC RF(�0.65) No 83.06 1490 104
FLC RF(�0.65) C SN(1) No 86.16 1998 85
FLC RF(�0.65) C SN(1)* Mixed 88.44 3125 71
FL* C SN(1)* Yes 87.79 2526 75
FL* C RF(�0.65) C SN(1)* Mixed 90.39 3672 59

In this dataset (due to the low quality of several images) we
considered a face detected in an image if ED < 0.35.

The first experiment is aimed at comparing the performance of the four face
detectors and their combination by varying the sensitivity factor ¢ (when applicable)
and the detection procedure (i.e., when using or not using additional poses with
20ı/�20ı rotation).

For each detector in Table 2, the value fixed for the sensitivity threshold is shown
in parentheses. We also compare in Table 2 different ensembles of face detectors.
To reduce the number of false positives, all the output images having a distance
md � 30 pixels are merged together.

From the result in Table 2, it is clear that the adding poses is not so useful for the
RF face detector. This probably is due to the fact that RF has already been trained
on images containing rotated faces. Moreover, using added poses strongly increases
the number of false positives, as might be expected. For the ensembles, we report
only the most interesting results. As can be seen in Table 2, combining more high
performing approaches clearly boosts the detection rate performance. Unfortunately,
the ensembles based on the three face detectors have too many false negatives.

Another interesting result is that of the 3125 false positives of “FLC
RF(�0.65) C SN(1)*” 2282 are found where the depth map has valid values, the
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Table 3 Performance of the same four face detectors and ensembles used above on the BioID
dataset

Face detector(¢)/ensemble CPoses DR (ED < 0.15) DR (ED < 0.25) DR (ED < 0.35) FP

VJ(2) No 13.08 86.46 99.15 517

RF(�1) No 87.84 98.82 99.08 80

RF(�0.8) No 87.84 98.82 99.08 32

RF(�0.65) No 87.84 98.82 99.08 21

SN(1) No 71.27 96.38 97.76 12

SN(10) No 72.06 98.16 99.74 172

FL No 92.57 94.61 94.67 67

VJ(2)* Yes 13.08 86.46 99.15 1745

RF(�1)* Yes 90.53 99.15 99.41 1316

RF(�0.8)* Yes 90.53 99.15 99.41 589

RF(�0.65)* Yes 90.53 99.15 99.41 331

SN(1)* Yes 71.33 96.52 97.90 193

SN(10)* Yes 72.12 98.36 99.87 1361

FL* Yes 92.57 94.61 94.67 1210

FLC RF(�0.65) No 98.42 99.74 99.74 88

FLC RF(�0.65) C SN(10) No 99.15 99.93 99.93 100

FLC RF(�0.65) C SN(1)* Mixed 99.15 100 100 281

FL* C SN(1)* Yes 98.03 99.87 99.93 260

FL* C RF(�0.65) C SN(1)* Mixed 99.15 100 100 1424

others are found where the values of depth map is 0 (i.e., the Kinect has not been
able to compute the depth value due to occlusion, low reflectivity, too high distance
or other issues), while all the true positives are found where exists the depth map.

In Table 3 we report the performance of the same face detectors on the BioID
dataset. It is interesting to note that the creation of adding poses is not mandatory;
if the acquisition is in a constrained environment, the performance is almost the
same with or without the addition of artificial poses. Using artificial poses strongly
increases the number of false positives. It is clear that different face detectors exhibit
different behaviors as is evident by the fact that each is able to detect different
faces. As a result of this diversity, the ensemble is able to improve the best stand-
alone approaches. Another interesting result is the different behaviors exhibited by
the same face detectors on the two different datasets. For instance, RF works very
well on the BioID dataset but rather poorly on our dataset that contains several low
quality faces. Regardless, in both datasets the same ensemble outperforms the other
approaches.

The next experiment is aimed at evaluating the filtering steps detailed in
Sect. 2. Since the first experiments proved that the best configuration (i.e., trade-
off between performance and false positives) is the ensemble composed by FLC
RF(�0.65) C SN(1)*, the filtering steps are performed on the results of this detector.
The performance after each filter or combination of filters is reported in Tables 4 and
5. The computation time reported in seconds is evaluated on a Xeon E5-1620 v2 –
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Table 4 Performance of
different filtering steps on the
MERGED dataset

Filter DR FP FN Time

SIZE 88.44 1247 71 0.000339
STD 88.44 2207 71 0.010865
SEG 88.44 2144 71 0.008088
ELL 88.44 1984 71 0.010248
EYE 88.44 1580 71 19.143445
SEC 88.11 1954 73 0.015302
STDı 87.79 2265 75 0.008280

Table 5 Performance obtained combining different filtering steps on
the MERGED dataset

Filter combination DR FP FN

SIZE 88.44 1247 71
SIZE C STD 88.44 1219 71
SIZE C STD C SEG 88.27 1193 72
SIZE C STD C SEG C ELL 88.11 1153 73
SIZE C STD C SEG C ELL C EYE 88.11 1050 73
SIZE C STD C SEG C ELL C SEC C EYE 86.97 752 80

Table 6 Performance obtained maximizing the reduction of the FP

Filter DR FP FN

SIZE 87.79 944 75
SIZE C STD 87.79 908 75
SIZE C STD C SEG 87.79 877 75
SIZE C STD C SEG C ELL 87.30 852 78
SIZE C STD C SEG C ELLC EYE 86.16 560 85
SIZE C STD C SEG C ELL C SEC C EYE 84.85 431 93

3.7 GHz – 64 GB Ram using Matlab R2014a on a candidate region of 78 � 78 pixels
without parallelizing the code (note, however, that the different filters can be run in
parallel).

It is clear that SIZE is the most useful criterion for removing the false positive
candidates found by the ensemble of face detectors. The second best approach is
the eye detector EYE. Although it works quite well, it has a high computational
time. As a result, it cannot be used in all applications. The other approaches are less
useful if taken individually; however, since they do not require a high computational
cost, they can be useful in sequence to decrease the number of false positives. In
applications where real-time detection is not mandatory (e.g. in face tagging), EYE
filtering can be used in the ensemble to further reduce the number of false positives
without decreasing the number of true positives.

As a final experiment, we report in Table 6 the performance of the different
filters and combinations of filters by partially relaxing the thresholds, which greatly
decreases the number of false positives even though some true positives are lost.
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From the results of Table 6 it is evident that the proposed approach works even
better than FL (which is known in the literature as one of the best performing face
detectors). Even though these results have been obtained on a small dataset, we
are confident that they are realistic and would perform comparatively in real-world
conditions since the images contained in MERGE are very different from each other
and include both images with a single frontal face and images acquired “in the wild”
with multiple faces.

4 Conclusion

In this work a smart false positive-reduction method for face detection is proposed.
An ensemble of state-of-the-art face detectors is combined with a set of filtering
steps calculated both from the depth map and the color image. The main goal of this
approach is to obtain accurate face detection with few false positives. This goal is
accomplished using a set of filtering steps: the size of candidate face regions; the
flatness or unevenness of the candidate face regions; the size of the larger cluster of
the depth map of the candidate face regions; ellipse fitting to evaluate whether the
region can be modeled as an ellipsis; and an eye detection step. The experimental
section demonstrates that the proposed set of filtering steps reduces the number of
false positives with little effect on the detection rate.

In conclusion, we show that the novel facial detection method proposed in this
work is capable of taking advantage of a depth map to obtain increased effectiveness
even under difficult environmental illumination conditions. Our experiments, which
were performed on a merged dataset containing images with complex backgrounds
acquired in an unconstrained setup, demonstrate the feasibility of the proposed
system.

We are aware that the dimensions of the datasets used in our experiments are
lower than most benchmark datasets containing only 2D data. It is in our intention
to continue acquiring images to build a larger dataset with depth maps. In any case,
the reported results obtained on this small dataset have statistical significance. As
a result, we can confirm that the depth map provides criteria that can result in a
significant reduction of the number of false positives.
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