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Abstract In this chapter we focus on the eye landmarking and eye components
identification in the framework of emerging psychology-related eye tracking appli-
cations. Traditional eye landmarking separates the identification of eye centers
and of eye corners and margins, while here we discuss their joint use for face
expression analysis in unconstrained environments and precise estimation of non-
visual gaze directions, as suggested by the Eye Accessing Cues (EAC) of the
Neuro-Linguistic Programming (NLP). Such a system involves a combination
of low-level feature extraction, heuristic pre-processing and trained classifiers.
The approach is extensively tested across several classical image databases and
compared with state of the art traditional methods.

1 Introduction

The exceptional developments in computer vision from the last decade make the
automatic analysis of human behavior a goal that seems achievable. An important
part of this process is the automatic face and face elements identification and
interpretation and a lot of research has been particulary dedicated to eye detection.
Eye data and the details of eye movements have numerous applications in face
detection, biometric identification, and particularly in human-computer interaction
tasks.

One also used to say that eyes are the gate to the soul and witness for various
internal cognitive or emotional processes; this observation opened lately a plethora
of less-traditional areas of research involving eye detection and tracking. Among
these new investigated directions, we note the detection of deception as part of
hostile intention perception [2], the estimation of pain intensity via facial expression
analysis [3, 4], interpersonal coordination of mother–infant [5], assistance in mar-
keting [6], etc. Recently, literature also reported attempts to interpret more complex
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Fig. 1 The seven classes of
Eye Accessing Cues [1]:
When eyes are not used for
visual tasks, their position can
indicate how people are
thinking (using visual,
auditory or kinesthetic terms)
and the mental activity they
are doing (remembering,
imagining, or having an
internal dialogue). Image
inspired from [1]

situations, such as dyadic social interactions for the diagnosis and treatment of
developmental and behavioral disorders [7] and to experiment within new areas of
psychology, as pointed in the recent review by Cohn and De La Torre [8]. The review
of Friesen et al. [9] evaluates the social impact of gaze direction and concludes that
many opportunities arise upon the understanding of the perceived direction of gaze.

Such an opportunity is offered by the Neuro-Linguistic Programming (NLP)
theory, which presents unexplored opportunities for understanding the human
patterns of thinking and behavior. One such model is the Eye-Accessing Cue (EAC)
from the NLP theory that uses the positions of the iris inside the eye as an indicator
of the internal thinking mechanisms of a person. The direction of gaze, under
the NLP paradigm, can be used to determine the internal representational system
employed by a person (see Fig. 1), who, when given a query, may think in visual,
auditory or kinesthetic terms, and the mental activity of that person, of remembering,
imagining, or having an internal dialogue.

In this chapter we direct the reader’s attention to a system [10] that exploits an
usual digital video camera (for instance a webcam—as its price makes it widely
accessible) to infer eye features and landmarks positions in order to identify the
direction of gaze for recognition of the Eye Accessing Cues, which are a potential
mean to unravel one’s background psychological process.

2 Eye Based Communications in Emergent Applications

The origins of the idea that involuntary eye movements point to inner mechanisms
goes back until the nineteenth century [11]. In a review about the perception of
interlocutor’s gaze, Friesen et al. [9] concluded that “people’s eyes convey a wealth
of information about their direction of attention and their emotional and mental
states”. They further note that “eyes and their highly expressive surrounding region
can communicate complex mental states such as emotions, beliefs, and desires”
and “observing another person’s behavior allows the observer to decode and make
inferences about a whole range of mental states such as intentions, beliefs, and
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emotions”. Furthermore, the gaze based social mechanisms are specifically decoded
by a part of the cortex, namely the posterior superior temporal sulcus region, that
has been found [12] to responds to the inferred intentionality of social cues.

The underlying expression or the mental process of a person may be enquired
by other means than face analysis, such as gaze direction. Liversedge and Findlay
[13] showed that saccades parameters are correlated with the underlying cognitive
process, namely the duration of fixations and the choice of saccade target empha-
size continuities between biological and cognitive descriptions. The connection
between underlying emotion, expression and gaze was discussed by Adams and
Kleck [14], who proved that, indeed, when gaze direction matches the underlying
behavioral intent (approach-avoidance) communicated by an emotional expression,
the perception of that emotion is enhanced. Following these findings, a palette of
applications based on recording the eye movements have been proposed. Typically
developing such applications involves two steps: first, the hypotheses regarding the
correlation between eye movements and some behavior pattern or social process
is formulated and validated on a series of experiments; next based on the previous
found conclusions, practical applications are proposed.

Such a distinct category is the analysis of the reading process with the aim
of understanding the learning to read process or how attention correlates with
understanding. For instance, Joseph et al. [15] investigated, by means of gaze
tracking, insights of children process to learn to read and the words frequency
impact in sentence reading. Godfroid et al. [16] used eye tracking measurements
to test hypothesis concerning words complexity, attention persistence and short/long
term memory. In the same line Rayner et al. [17] monitored subjects eye movements
while read sentences containing high- or low-predictable target words; their findings
showed word predictability (due to contextual constraint) and word length have
strong and independent influences on word skipping and fixation durations. Possible
application of the eye movement control in teaching are discussed, for instance,
in [18].

Moving further, Chun [19] showed that while reading or simply scanning an
image, the eye movement may give hints about the observers self build context. This
idea was further developed by Bulling and Zander [20] who suggested an application
that provides additional information relevant to the context; the various possibilities
of the adaptive context are retrieved from analysis of the eye movements.

Another important category is related to the use of eye movements in gaming. For
instance Meijering et al. [21] discussed the possibility and show evidence that eye
movements are correlated with the plan type used in a strategy game; more precisely
forward reasoning (where a player proceed from the initial point to finish) or back-
ward reasoning (where the path from end to start is retrieved) are distinguishable by
overlapping the eye movement with the game board. Furthermore, Krejtz et al. [22]
investigated the degree of enjoyment when visual cues influences gaming experience
and conclude that not only in such a scenario there is no additional cognitive effort
but there are many arcade game optimization possible in such a context that would
increase the pleasure of users.
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2.1 Eye Accessing Cues in Neuro-Linguistic Programming

The Neuro-Linguistic Programming was introduced in the 1970s by Brandler and
Grinder [1], as a different model for detecting, understanding and using the patterns
that appear between brain, language and body. The NLP theory jumped over
intensive and extensive academic investigation and made path very fast into the
commercial market. Rigorous investigation was expected after the initial publication
and consensus has not been reached yet in the academic world.

The Eye Accessing Cues from the NLP theory are not unanimously accepted,
with some of the most recent research on the topic calling for further testing [23].
A recent experiment by Vrânceanu et al. [24], with the scope to gain better
insight of the facts, showed that while not 100 % accurate (i.e. universal), the
correct apparition rates were higher than random chance, especially between visual,
auditory and kinesthetic ways of thinking (corresponding to a separation along the
vertical axis of the gaze direction).

2.2 Recognizing Gaze Direction: Premises

The problem of identifying one’s direction of gaze is intensively studied in computer
vision. These systems may be classified by the position of the recording device as:

1. Head mounted devices (e.g. glasses or head mounted cameras);
2. Stationary and/or remote devices.

The head mounted devices are closer to the eye and because of that they have access
to a higher resolution and better precision. But they are rather expensive (their price
spans from several thousand dollars, for a professional commercial solution, down
to a hundred dollars for the more affordable ones, compared to a few dollars for a
normal webcam). Another shortcoming of the head mounted devices that restricts
their area of usability is the fact that they are wearable. This may be a distinct
indicator that the user is subject to investigation by non-traditional means and it
has been showed [25] that voluntary control is exercisable over non-visual eye
movements. This is why a stationary webcam is preferable for investigating the eye
accessing cues.

Another way of classifying the gaze direction estimation systems may be
performed according to the illumination source domain. Here, we may note:

1. Active, infra-red (IR) based illumination;
2. Passive, visible spectrum illumination.

The commercial eye-trackers, which have higher reported precisions, rely on the
information from the IR domain. But again we note that this implies a distinct,
specialized device (because the IR source is not typically incorporated in webcams).
As in the case of wearable eye tracking, the use of specialized recording devices
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needed by active illumination sources limits the applicability of methods to data
that was recorded accordingly. Thus a system having the goal the recognizing the
Eye Accessing Cues should be based on a normal digital video camera.

As for the usability of the NLP-EAC hypothesis one can imagine many areas.
We will give just two simple examples.

The first example of how can one use the NLP-EAC hypothesis refers to online
interviews. Small and medium enterprises may look for employees at a distance and
the interview is usually online. In this case the candidate is recorded (sometimes by
his/her own device) and, given a query, discrimination between remembering type
of activities (looking left) and the constructing ones (looking right) can differentiate
experience from creativity. But it is imperative that the interviewed person is not
aware that his/hers non-verbal messages are recorded and analyzed. The method
described in this chapter requires typical recoding devices for video transmission;
thus no distinct means of recording (head mounted camera or/and active light
sources) are involved.

The second use-case deals with interactive communication for marketing and
training. If the interaction is face-to-face, the meeting may be recorded and analyzed
either real-time (with conclusions being shown to the presenter), or before the next
session (such that the trainer/seller will ensure that maximum of information reaches
his interlocutors). If the communication is online, the restrictions are similar with
online interviews: the subject must have access to a recording device which is
usually a typical webcam.

3 Databases

3.1 Iris Center Annotated Databases

To set the introductory reports on iris center localization performance, the BioID
database1 is the most popular choice. This database contains 1521 gray-scale, frontal
facial images of size 384 � 286, acquired with frontal illumination conditions in a
complex background. The database contains 16 tilted and rotated faces, people that
wear eye-glasses and, in very few cases, people that have their eyes closed (i.e.
blink) or pose various expressions. The database was released with annotations for
iris centers. Being one of the first databases that provided facial annotations, BioID
became the most used database for face landmarks localization accuracy tests, even
if it provides limited variability and reduced resemblance with real-life cases.

As many methods use the entire eye area as learned template, robustness to face
expression should be envisaged, as it induces eye shape changes. In this sense the
most appropriate choice would be the Cohn-Kanade database2 [26]. This database

1http://www.bioid.com/downloads/software/bioid-face-database.html.
2http://www.pitt.edu/~emotion/ck-spread.htm.

http://www.bioid.com/downloads/software/bioid-face-database.html
http://www.pitt.edu/~emotion/ck-spread.htm


402 L. Florea et al.

was developed for the study of emotions, contains frontal illuminated portraits and it
is challenging through the fact that eyes are in various poses (near-closed, half-open,
wide-open).

Further, one should systematically evaluate the robustness of the iris localization
methods with respect to lighting and pose changes. Appropriate tests may be
conducted onto the Extended Yale Face Database B (B+)3 [27]. The Extended Yale
B database contains 16,128 gray-scale images of 28 subjects, each seen under 576
viewing conditions (9 poses � 64 illuminations). The size of each image is 640�480.

The BioID, Cohn-Kanade and Extended YaleB databases include specific vari-
ations as they are acquired under controlled lighting conditions with frontal faces
only. In contrast, there are databases like the Labelled Face Parts in the Wild (LFPW)
[28] and the Labelled Faces in the Wild4 (LFW) [29], which are randomly gathered
from the Internet and contain large variations in the imaging conditions. While
LFPW is annotated with facial point locations, only a subset of about 1500 images
is made available and contains high resolution and rather qualitative images. In
opposition, the LFW database contains more than 12,000 facial images, having the
resolution 250 � 250 pixels, with 5700 individuals that have been collected “in the
wild” and vary in pose, lighting conditions, resolution, quality, expression, gender,
race, occlusion and make-up. The face landmarks5 and iris centers are publicly
available.

3.2 Iris Center and Eye Landmarks Annotated Databases

To evaluate the performance of the eye landmarking algorithm, four annotated
databases are at hand, with publicly available ground-truth: EyeChimera, HPEG,
ULM and PUT.

To study the specifics of the EAC detection problem, the Eye Chimera Database6

[24, 30] was developed so that it contains all the seven cues. In generating the
database, 40 subjects were asked to move their eyes according to a predefined
pattern and their movements were recorded. The movements between consecutive
EACs were identified, the first and last frame of each move were selected and
labelled with the corresponding EAC tag and eye points were manually marked.
In total, the database comprises 1170 frontal face images, grouped according to
the seven directions of gaze, with a set of five points marked for each eye: the iris
center and four points delimiting the bounding box. Additionally, for more extensive

3vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
4The database is available at http://vis-www.cs.umass.edu/lfw/.
5At http://blog.gimiatlicho.webfactional.com/?page_id=38.
6http://imag.pub.ro/common/staff/cflorea/EyeChimeraReleaseAgreement.pdf.

vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vis-www.cs.umass.edu/lfw/
http://blog.gimiatlicho.webfactional.com/?page_id=38
http://imag.pub.ro/common/staff/cflorea/EyeChimeraReleaseAgreement.pdf
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testing, the still Eye Chimera database was extended with all the consecutive frames
that are part of each basic eye movement; this part was named Eye Chimera
Sequences.

The HPEG database7 [31] is given as videos and we have extracted frames with
relevant gaze variation, resulting in 233 images (640�480 resolution) of 10 persons,
who’s eye gaze varies from left to right (no vertical gaze direction is available). The
head position includes yaw variations from �30ı to C30ı. The dataset contains two
sessions, one in a close-up arrangement while the other with people placed more
distantly from the camera. The database comes with annotation related to the head
angle, but without landmark positions; these were added in [30] and are available
online.

The ULM head and gaze database8 [32] contains images (1600 � 1200 pixels) of
20 persons. Variations include gaze direction (left to right), and head pose on both
yaw and pitch. The database contains annotation for six eye landmarks: inner eye
limits, outer eye limits and pupil centers. Because not all the characters have the
images marked and in tests the images with yaw or pitch angles higher in absolute
value than 30ı, are excluded; only 335 images have been kept and were used in the
current study.

The PUT database9 [33], is built in a similar manner with ULM. However the
marking set is more complete as it contains all ten landmarks envisaged for the eye
regions. Overall, it contains slightly more than 1000 annotated images.

4 System Overview

Approaches to the mentioned problem [10, 30, 34, 35] assume a scenario where
the image acquisition is done with a single camera with fixed, near-frontal position,
under free natural lighting.

The discussed algorithms rely solely on gray-scale images and a coarse-to-fine
approach is used for localization, succeeded by gaze direction recognition. The
possible schematic of such a system may be followed in Fig. 2.

First, the face bounding box is retrieved; the preferred method is derived from the
Viola-Jones algorithm [36]. Given the face bounding box, the image is re-scaled at
a fixed size. Next a rough estimation of the iris center should be retrieved. While in
some works the iris center is treated as one of the landmarks, yet many of the current
solutions make use of the physical particularities of the iris–pupil structure and are
specifically optimized for iris center. The rough iris center, even it may be improved

7http://emotion-research.net/toolbox/toolboxdatabase.2010-02-03.4835728381.
8http://www.uni-ulm.de/in/neuroinformatik/mitarbeiter/g-layher/image-databases.html.
9https://biometrics.cie.put.poznan.pl.

http://emotion-research.net/toolbox/toolboxdatabase.2010-02-03.4835728381
http://www.uni-ulm.de/in/neuroinformatik/mitarbeiter/g-layher/image-databases.html
https://biometrics.cie.put.poznan.pl
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Fig. 2 The system for
recognizing the gaze direction

and does vary with respect to gaze direction, is considerable more precise than the
face square, thus it acts as a better initialization reference for the position of other
landmarks.

The subsequent major step of the procedure refers to the localization of the eye
socket landmarks. The prerequisite here are some potential areas deduced using
anthropometric criteria and the initial iris position. The process of localization, due
to take place in a rather uncommon condition set (gaze variation), usually contains
a two step procedure; the initial rough positioning is followed by a refinement step
in which case the eye socket landmarks make use of shape constraints.

Once the eye region is determined it is separated and further analyzed for
recognizing the gaze direction. While in previous similar solutions this step is
referred as gaze (eye) tracking, for the application set envisaged here the outcome
is a categorical set of directions (e.g. three or seven directions), thus it seems more
appropriate to name it gaze direction recognition.

4.1 Face Detection and Localization

The first step of the system is locating the face bounding box. While many method
have been proposed, by far, the most popular is still the boosted cascade of Haar
features introduced by Viola and Jones [36]. Currently there exist many public
implementations, the OpenCV version being one of the most used.

A recent reevaluation by Mathias et al. [37] showed that, if trained properly, the
Vanilla Deformable Part Models [38] reaches top performance. Additional choices



Extended Eye Landmarks Detection for Emerging Applications 405

for face detection problem may be found on the Face Detection Data Set and
Benchmark web page10 and more recently on the Fine-grained Evaluation on Face
detection in the Wild.11

5 Iris Center Localization

The problem of iris center localization was well investigated in literature, within a
long history, as showed in the review by Song et al. [39]. Methods for eye center
(or iris or pupil) localization in passive, remote imaging may approach the problem
either as a particular case of pattern recognition application, [40, 41] or by using
the physical particularities of the eye, like the high contrast with respect to the
neighboring skin [42] or the circular shape of the iris [43]. More recent methods
combine the two approaches.

As a general observation, we note that while older solutions [42, 44], tried
to estimate also the face position, since the appearance of the Viola-Jones face
detection solution [36], eye center search is limited to a subarea within the upper
face square. Taking into account the recent advances on the face detection problem,
one may truthfully assume that reconsideration of older eye methods may lead to
better results than initially stated.

5.1 State of the Art Solutions

In this chapter we will point the attention of the reader to a very fast and robust
iris center localization method based on zero-crossing encoded image projection.
A list of other methods used for iris centers localization may be retrieved from the
review by Song et al. [39] and from the summary presented in Table 1 and following
paragraphs.

5.1.1 Projections Based Iris Localization Methods

The same image projections as in the work of Kanade [45] are used to extract
information for eye localization in a plethora of methods [46–48]. Feng and Yuen
[46] started with a snake based head localization followed by anthropometric
reduction (relying on the measurements of Verjak and Stephancic [49]) to the

10http://vis-www.cs.umass.edu/fddb/results.html.
11http://www.cbsr.ia.ac.cn/faceevaluation.

http://vis-www.cs.umass.edu/fddb/results.html
http://www.cbsr.ia.ac.cn/faceevaluation
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Table 1 Iris center localization methods in remote imaging

Method Face detection Features Machine learning Public code

Jesorsky et al.
[44]

No Edges MLP No

Feng and
Yuen [46]

No VPF No No

Zhou and
Geng [47]

No GPF No No

Turkan et al.
[48]

Yes EPF SVM No

Cristinacce
et al [50]

Yes Image pixels PRFR Yes (AAM)

Campadelli
et al. [51]

Yes Haar wavelets No No

Hamouz et al.
[40]

No Gabor filters SVM No

Niu et al. [52] Yes Haar wavelets AdaBoost No

Kim et al. [53] Yes Image pixels AdaBoost No

Asteriadis
et al. [41]

Yes DVF minDist No

Valenti and
Gevers [43]

Yes Isophote Yes Yes

Asadifard [54] Yes Gradient No No

Ding and
Martinez [55]

Yes Pixels AdaBoost/DA Yes

Timm and
Barth [56]

Yes Image pixels No Yes

Kawulok and
Szymanek
[57]

Yes Edges SVM Yes

Florea et al.
[58]

Yes Image pixels MLP Yes

so-called eye-images and introduce the variance projections for localization. The
key points of the eye model are the projections particular values, while the
conditions are manually crafted.

Zhou and Geng [47] described convex combinations between integral image
projections and variance projections that are named generalized projection functions
(GPF). These are filtered and analyzed for determining the center of the eye. The
analysis is also manually crafted and requires identification of minima and maxima
on the computed projection functions. Yet in specific conditions, such as intense
expression or side illumination, the eye center does not correspond to a minima or a
maxima in the projection functions.

Turkan et al. [48] introduced the edge projections and used them to roughly
determine the eye position. Given the eye region, a feature is computed by
concatenation of the horizontal and vertical edge image projections. Subsequently,
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a SVM-based identification of the region with the highest probability is used for
marking the eye. Florea et al. [58] also employed a projection based description
of the eye region coupled with machine learning; yet this method aims for higher
precision and robustness, so multiple projection types are used and simple but
efficient dimensionality reduction techniques are employed for speeding up the
process.

5.1.2 Pattern Recognition Based Methods

There are many other approaches to the problem of eye localization. Jesorsky
et al. [44] proposed a face matching method based on the Hausdorff distance
followed by a MLP eye finder. Wu and Zhou [42] even reversed the order of the
typical procedure: they used eye contrast specific measures to validate possible face
candidates.

Cristinacce et al [50] relied on the Pairwise Reinforcement of Feature Responses
algorithm for feature localization. Campadelli et al. [51] used SVM on optimally
selected Haar wavelet coefficients.

Hamouz et al. [40] refined with SVM the Gabor filtered faces, for locating ten
points of interest; yet the overall approach is different from the face feature fiducial
points approach. Niu et al. [52] used an iteratively bootstrapped boosted cascade
of classifiers based on Haar wavelets. Kim et al. [53] use multi scale Gabor jets to
construct an Eye Model Bunch. Asteriadis et al. [41] used the distance to the closest
edge to describe the eye area. Valenti and Gevers [43, 59] used isophote’s properties
to gain invariance and follow with subsequent filtering with Mean Shift (MS) or
nearest neighbor on SIFT feature representation for higher accuracy. Asadifard [54]
relied on thresholding the cumulative histogram for segmenting the eyes. Ding
and Martinez [55] trained a set of classifiers (with a SVM of with discriminant
analysis—DA) to detect multiple face landmarks, including explicitly the pupil
center, by using a sliding window approach and test in all possible locations and
inter-connect them to estimate the overall shape. Timm and Barth [56] relied their
eye localizer on gradient techniques and search for circular shapes. Kawulok and
Szymanek [57] fit a multilevel ellipsoid regressed from Hough accumulator planes
over the face and the eyes and optimize the localization using SVM.

5.2 Robust Eye Centers Localization with Zero-Crossing
Encoded Image Projections

Recently, Florea et al. [58] proposed a framework for the eye centers localization by
the joint use of encoding of normalized image projections and a Multi Layer Per-
ceptron (MLP) classifier. This encoding consists in identifying the zero-crossings
and extracting the relevant parameters from the resulting modes.
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5.2.1 Integral and Edge Image Projections

The integral projections, also named integral projection functions (IPF) or amplitude
projections, are tools that have been previously used in face analysis. They appeared
as “amplitude projections” [60] or as “integral projections” [45] for face recognition.
For a gray-level image sub-window I.i; j/ with i D im : : : iM and j D jn : : : jN , the
projection on the horizontal axis is the average gray-level along the columns (1),
while the vertical axis projection is the average gray-level along the rows (2):

PH.j/ D 1

iM � im C 1

iMX

iDim

I.i; j/; 8j D jn; : : : ; jN (1)

PV.i/ D 1

jN � jn C 1

jNX

jDjn

I.i; j/; 8i D im; : : : ; iM (2)

To increase the robustness to side illumination, edge projection functions (EPF)
could be used to complement the integral ones. To determine them, the classical
horizontal and vertical Sobel contour operators are applied, resulting in SH and SV ,
which are combined in the S.i; j/ image used to extract edges:

S.i; j/ D S2
H.i; j/ C S2

V.i; j/ (3)

The edge projections are computed on the corresponding image rectangle I.i; j/
by replacing I with S in Eqs. (1) and (2).

5.2.2 Fast Computation of Projections

While sums over rectangular image sub-windows may be easily computed using the
concept of summed area tables [61] or integral image [36], a fast computation of the
integral image projections may be achieved using the prefix sums [62] on rows and
respectively on columns. A prefix-sum is a cumulative array, where each element is
the sum of all elements to the left of it, inclusive, in the original array. They are the
1D equivalent of the integral image, but they definitely precede it.

For the fast computation of image projections, two tables are required: one will
hold prefix sums on rows (a table which, for keeping the analogy with the integral
image, will be named horizontal 1D integral image) and respectively one vertical
1D integral image that will contain the prefix sums on columns. It should be noted
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that computation on each row/column is performed separately. Thus, if the image
has M � N pixels, the 1D horizontal integral image, on the column j, I j

H , is:

I j
H.i/ D

iX

kD1

I.k; j/ ; 8i D 1; : : : M (4)

Thus, the horizontal integral projection corresponding to the rectangle i D
ŒimI iM� � ŒjnI jN � is:

PH.j/ D 1

iM � im C 1

�
I j

H.iM/ � I j
H.im � 1/

�
(5)

Using the oriented integral images, the determination of the integral projections
functions on all sub-windows of size K �L in an image of M �N pixels requires one
pass through the image and 2�M�N additions, 2�.M�K/�.N�L/ subtractions and
two circular buffers of .K C1/�.N C1/ locations, while the classical determination
requires 2 � K � L � .M � K/ � .N � L/ additions. Hence, the time to extract the
projections associated with a sub-window, where many sub-windows are considered
in an image, is greatly reduced.

The edge projections require the computation of the oriented integral images over
the Sobel edge image, S.i; j/ which needs to be found on the areas of interest.

5.2.3 Encoding and ZEP Feature

To reduce the complexity (and computation time), the projections are compressed
using a zero-crossing based encoding technique. After ensuring that the projections
values are in a symmetrical range with respect to zero, one will describe, indepen-
dently, each interval between two consecutive zero-crossings. Such an interval is
called an epoch and for its description three parameters are considered (as presented
in Fig. 3):

• Duration—the number of samples in the epoch;
• Amplitude—the maximal signed deviation of the signal with respect to 0;
• Shape—the number of local extremes in the epoch.

The proposed encoding is similar with the TESPAR (Time-Encoded Signal
Processing and Recognition) technique [63] that is used in the representation
and recognition of 1D, band-limited, speech signals. Depending on the problem
specifics, additional parameters of the epochs may be considered (e.g. the difference
between the highest and the lowest mode from the given epoch). Further extensions
are at hand if an epoch is considered to be the approximation of a probability
density function and the extracted parameters are the statistical moments of the said
distribution. In such a case the shape parameter corresponds to the number of modes
of the distribution.
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Fig. 3 Example of 1D signal (vertical projection of an eye crop) and the associated encod-
ing. There are three epochs, each encoded with three parameters. The associated code is:
Œ37; C1; 2I 57; �0:808; 2I 18; 0:308; 1�

The reason for choosing this specific encoding is twofold. First, the determination
of the zero-crossings and the computation of the parameters can be performed in a
single pass through the target 1D signal, and, secondly, the epochs have specific
meaning when describing the eye region.

Given an image sub-window, the ZEP feature is determined by the concatenation
of four encoded projections as described in the following:

1. Compute both the integral and the edge projection functions (PH , PV , EH , EV );
2. Independently normalize each projection within a symmetrical interval. For

instance, each of the projections is normalized to the Œ�1I 1� interval. This will
normalize the amplitude of the projection;

3. Encode each projection as described; allocate for each projection a maximum
number of epochs;

4. Normalize all other (i.e. duration and shape) encoding parameters;
5. Form the final Zero-crossing based Encoded image Projections (ZEP) feature by

concatenation of the encoded projections. Given an image rectangle, the ZEP
feature consists of the epochs from all the four projections: (PH , PV , EH , EV ).

Image projections are simplified representations of the original image, each of
them carrying specific information; the encoding simplifies even more the image
representation. The normalization of the image projections, and thus of the epochs
amplitudes, ensures independence of the ZEP feature with respect to uniform
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Fig. 4 Horizontal image projection function from a typical eye patch: (a) eye crop, (b) the integral
projection on the eye crop and the physical features marked. The vertical lines mark the zero
crossing that are typically found on all eye examples

variation of the illumination. The normalization with respect to the number of
elements in the image sub-window leads to partial scale invariance: horizontal
projections are invariant to stretching on the vertical direction and vice versa. The
scale invariance property of the ZEP feature is achieved by completely normalizing
the encoded durations to a specific range (e.g. the encoded horizontal projection
becomes invariant to horizontal stretching after duration normalization).

In [47] it was noted that image projections in the eye region have a specific
sequence of relative minima and maxima assigned with to skin (relative minimum),
sclera (relative maximum), iris (relative minimum), etc.

Considering a rectangle from the eye region including the eyebrow (as showed
in Fig. 4a), the associated integral projections have specific epochs, as showed
in Fig. 4b. The particular succession of positive and negative modes is precisely
encoded by the this technique. On the horizontal integral projection there will be a
large (one-mode) epoch that is assigned to skin, followed by an epoch for sclera, a
triple mode, negative, epoch corresponding to the eye center and another positive
epoch for the sclera and skin. On the vertical integral projection, one expects a
positive epoch above the eyebrow, followed by a negative epoch on the eyebrow, a
positive epoch between the eyebrow and eye, a negative epoch (with three modes)
on the eye and a positive epoch below the eye.

The ZEP feature, due to invariance properties already discussed, achieves
consistent performance under various stresses and is able to discriminate among
eyes (patches centered on pupil) and non-eyes (patches centered on locations at a
distance from the pupil center).
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Fig. 5 The work flow of the rough iris center localization algorithm

5.2.4 Rough Iris Center Localization

The block schematic of the initial rough eye center localization algorithm is
summarized in Fig. 5. The main problem when employing projections for iris
localization is their susceptibility to lateral illumination. In such a case, to avoid
loosing accuracy, Florea et al. [58] proposed a preemptive detection of the lateral
illumination case by observing that for a near-frontal placed light source the
distribution of intensity should be symmetrical with respect to the nose area. This is
a simple example of the face relighting problem and further details may be retrieved
from [64].

The conceptual steps of the actual eye localization procedure are: preprocessing,
machine learning and postprocessing.

A simple preprocessing is applied for each eye candidate region to accelerate the
localization process. Wu and Zhou [42] noted that the pupil center is significantly
darker than the surrounding; thus the pixels that are too bright with respect to the
eye region (and are not plausible to be pupil centers) are discarded. The “too bright”
characteristic is encoded as gray-levels higher than a percentage from the maximum
value of the eye region. In the lateral illumination case, this threshold is higher due
to the deep shadows that can be found on the skin area surrounding the eye.

In the area of interest, using a sliding window, all plausible locations are
investigated by ZEP+MLP. To further accelerate the algorithm only some of the
values should be further considered [58]. The potential positions are recorded in a
separate image which is further post-processed for eye center extraction. Further
attention needs to be given to the confusion between eye and eyebrows; a possible
procedure is a pre-segmentation and to locate the iris one will look only to the lower
darker region [10].

For the frontal illumination case, in the case of training with L2 distance as
objective, one expects a symmetrical shape around the true eye center. Thus the final
eye location is taken as the weighted center of mass of the previously selected eye
regions. For the lateral illumination, the binary trained MLP is supposed to localize
the area surrounding the eye center and the final eye center is the geometrical center
of the rectangle circumscribed to the selected region. In both cases, the specific way
of selecting the final eye center is able to deal with holes (caused by reflections or
glasses) in the eye region.

The training of the machine learning system should be performed with crops of
eyes and non-eyes. The positive examples are to be taken near the eye ground truth
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while the patches corresponding to the negative examples should also overlap with
the true eye but to a lesser degree. This choice forces the machine learning to give
importance in precise discrimination of patches centered on the iris and patches
centered elsewhere.

5.2.5 Iris Center Refinement

If challenged by the gaze direction variation, the rough method does not perform
very well and further refinement is necessary [30].

To improve the performance of some initial iris center localization method one
may consider a small, centered region of interest (ROI) (e.g. of size deye

5
� deye

5
, where

deye is the inter-ocular distance) around the reported eye center. The improvement
of the iris centers, as well as the detection of the eye socket limits require position
and intensity priors and template matching. These are identical with eye landmarks
localization procedure and will be discussed in the next paragraphs.

5.3 Evaluation of the Iris Center Localization Methods

5.3.1 Evaluation on the BioID, Cohn-Kanade, Yale B+ and LFW
Databases

The iris centers localization performance is typically evaluated according to the
stringent localization criterion [44]. The eyes are considered to be correctly
determined if the specific localization error �, defined in Eq. (6) is smaller than
a predefined value.

� D maxf"L; "Rg
Deye

(6)

In the equation above, "L is the Euclidean distance between the ground truth left
eye center and determined left eye center, "R is the corresponding value for the right
eye, while Deye is the distance between the ground truth eyes centers. Typical error
thresholds are � D 0:05 corresponding to eyes centers found inside the true pupils,
� D 0:1 corresponding to eyes centers found inside the true irises, and � D 0:25

corresponding to eyes centers found inside the true sclera. This criterion identifies
the worst case scenario.

To give an initial overview of the problem in state of the art, we report in Table 2
the results of multiple methods performance on the BioID database.

Considering as most important criterion the accuracy at � < 0:05, it should be
noted that Timm and Barth [56] and Valenti and Gevers [59] provide the highest
accuracy. Yet, the best performance achieved by a variation of the method described
in [59], namely Val.&Gev.+SIFT contains a tenfold testing scheme, thus using nine
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Table 2 Comparison with
state of the art (listed in
chronological appearance) in
terms of localization accuracy
on the BioID database

Method Accuracy

� < 0:05 � < 0:1 � < 0:25

Florea et al. [58] 70:46 91:94 98:89

Jesorsky et al. [44] 40.0 79.00 91.80

Wu and Zhou [42] 10.0� 54.00� 93.00�

Zhou and Geng [47] 47.7 74.5 97.9

Cristinacce et al. [50] 55.00� 96.00 98.00

Campadalli et al. [51] 62.00 85.20 96.10

Hamouz et al. [40] 59.00 77.00 93.00

Turkan et al. [48] 19.0� 73.68 99.46

Kroon et al. [65] 65.0 87.0 98.8

Asteriadis et al. [41] 62.0� 89.42 96.0

Asadifard et al. [54] 47.0 86.0 96.0

Timm and Barth [56] 82.50 93.40 98.00

Val.&Gev. [59]+MS 81.89 87.05 98.00

Val.&Gev. [59]+SIFT� 86.09 91.67 97.87

The correct localization presents results reported by
authors; values marked with “*” were inferred from authors
plot. While Zhou [47] reports only the value for " < 0:25,
the rest is reported by Ciesla and Koziol [66]. The method
marked with � relied on a tenfold training/testing scheme,
thus, at a step, using nine parts of the BioID database for
training

parts of the BioID database for training. Furthermore, taking into account that BioID
database was used for more that 10 years and provides limited variation, it has been
concluded [28, 67] that other tests are also required to validate a method.

Valenti and Gevers [59] provide results on other datasets and made public the
associated code for their baseline system (Val.&Gev.+MS), which is not database
dependent. Timm and Barth [56] do not provide results on any other database except
BioID or source code, yet there is publicly available12 code developed with author
involvement. Thus, in continuation, we will compare the method from [58] against
these two on other datasets. Additionally, we include the comparison against the
eye detector developed by Ding and Martinez [55] which has also been trained and
tested on other databases, thus is not BioID dependent.

As mentioned in the introduction, the purpose of this chapter is to investigate
emergent application with potential on behavior inference. Thus we will report
eye localization performance with respect to facial expressions, as real-life cases
with fully opened eyes looking straight are rare. We tested the performance of
various methods on the Cohn-Kanade database [26]. This database was developed
for the study of emotions, contains frontal illuminated portraits and it is challenging

12http://thume.ca/projects/2012/11/04/simple-accurate-eye-center-tracking-in-opencv/.

http://thume.ca/projects/2012/11/04/simple-accurate-eye-center-tracking-in-opencv/
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Table 3 Percentage of correct eye localization on the Cohn-
Kanade database

Accuracy

Method Type � < 0:05 � < 0:1 � < 0:25

Florea et al. [58] Neutral 76.0 99.0 100

Apex 71.9 95.7 100

Total 73.9 97.3 100

Valenti and Gevers

[59]

Neutral 46.0 95.7 99.6

Apex 35.1 92.4 98.8

Total 40.6 94.0 99.2

Timm and Barth

[56]

Neutral 66.0 95.4 99.0

Apex 61.4 85.1 93.4

Total 63.7 90.2 96.2

Ding and Martinez

[55]

Neutral 14.3 75.9 100

Apex 11.8 72.8 100

Total 13.1 74.4 100

We report results of the methods form [55, 56, 58, 59] on the neutral
poses, expression apex and overall. We marked with italics the best
achieved performance for each accuracy criterion and respectively
for each image type

Table 4 Comparative results
on the Extended YaleB
database. We marked with
bold letters the best
performance for each
accuracy category

Method � < 0:05 � < 0:1 � < 0:25

Florea et al. [58] 39.9 67.3 97.3

Valenti and Gevers [59] 37.8 66.6 98.5
Timm and Barth [56] 20.1 34.5 51.5

Ding and Martinez [55] 19.7 47.8 58.6

through the fact that eyes are in various poses (near-closed, half-open, wide-open).
We tested only on the neutral pose and on the expression apex image from each
example.

We note that solutions that try to fit a circular or a symmetrical shape over the iris,
like the ones from [59] or [56], and thus, performs well on open eyes, do encounter
significant problems when facing eyes in expressions (as it is shown in Table 3).
Taking into account the achieved results, which are comparable on neutral pose and
expression apex images, it is to be seen which method performs very well under
such complex conditions. Results indicate that [58] achieved higher accuracy when
compared with rest of the method tested.

A systematic evaluation of the robustness of iris center localization algorithms
with respect to lighting and pose changes may be done using the Extended Yale Face
Database B (B+) [27]. Here, by a small margin the best performance is obtained
by the method from [58], followed closely by the one from [59]. The methods
proposed by Timm and Barth [56] and respectively Ding and Martinez [55] have
greater susceptibility to errors due to uneven illumination (Table 4).
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Fig. 6 Results achieved on the LFW database: (a) average error and (b) maximum error as
imposed by the stringent criterion—Eq. (6). With dashed blue line is the average error for human
evaluation

The difficulty of localizing features on the LFW database is certified by the
performance of human evaluation error as reported in [67]. While the ground truth
is taken as the average of human markings for each point normalized to inter-ocular
distance, human evaluation error is considered as the averaged displacement of the
one marker. Regarding the achieved results, the ZEP based method [58] provides
the most accurate results, as one can see in Fig. 6. The improvement is by almost
50 % at � < 0:05 compared with [59] and from [56] and with more over [55].

5.3.2 Evaluation on Databases with Gaze Variability

The main purpose of this chapter is to discuss the potential application of computer
vision methods for the communication by gaze induced methods; thus we will eval-
uate the performance of various methods on databases illustrating gaze variability.
In Table 5, for comparison purposes, we report the performance the method from
[58] and of its refinement from [30]. Additional we report the results achieved with
the method of Sun et al. [68]. This localizes face landmarks; yet from their searched
set, of interest for the current problem are only the iris centers; thus we report their
performance specifically to the iris center section.

The highest accuracy is achieved by the deep convolution network based system
[68], with very high results especially for medium accuracy (" D 0:1). Yet, multi-
stage method from [30] clearly outperforms it for high accuracy (" D 0:05), which
is critical in achieving high EAC recognition rate.
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Table 5 Iris center localization accuracy measured as percentage of the inter-ocular distance
(stringent criterion [44])

Database

Eye Chimera HPEG ULM

Method " D 0:05 (%) " D 0:1 (%) " D 0:05 (%) " D 0:1 (%) " D 0:05 (%) " D 0:1 (%)

Florea et al.
[58]

42.7 68.9 53.5 78.8 32.5 74.1

Timm and
Barth [56]

33.6 67.8 46.9 82.0 61.2 85.2

Valenti and
Gevers [59]

16.1 50.5 24.6 55.7 50.1 77.0

Sun et al.
[68]

59.9 91.2 54.2 90.3 60.8 93.2

Florea et al.
[30]

65.3 78.7 71.1 83.2 76.6 92.7

Fig. 7 The five eye
landmarks searched

6 Eye Landmarking

In order to locate properly the position of the eye for further processing while
determining the direction of gaze, one needs to identify the eye landmarks. The
typical set of eye landmarks is showed in Fig. 7. While there have been developed
methods focusing only on the eye, most of the state of the art methods are general
face landmarking methods. An overview of some of the most relevant such methods
may be followed in Table 6.

Facial landmarking originates in the classical holistic approaches of Active Shape
Models (ASMs) [69], Active Appearance Models (AAMs) [70] and Elastic Graph
Matching [71]. Active Shape Models describe an eigenspace of the geometrical
shape having as vertices the landmarks, while the AAM complement the informa-
tion with pixel values from shape interior.

Building on the ASMs/AAMs versatility, a multitude of extensions appeared. For
instance in [72], a 2D profile model and a denser point set are used. In [73], higher
independence between the facial components is encouraged while the actual fitting
step is further optimized by a Viterbi optimization process.

In the later period, the ASM underlying holistic fitting switched to independent
models built on top of local part detectors, to form the so-called Constrained Local
Models (CLMs) [74], or to a combination of local shape models and PCA-based
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global shapes, as in [75]. The CLM model was extended with full voting from a
random forest in [76] or by probabilistic interpretation for optimization of the shape
parameters in [77].

Another direction assumes independent point localizer followed by aggregation
of location. This is a rich class of methods, including some of the most recent and
accurate solutions. Thus Valstar et al. [78] complemented the SVM regressed feature
point location with conditional MRF to keep the estimates globally consistent.
Belhumeur et al. [28] proposed a Bayesian model combining the outputs of the local
detectors (formed by SVM classifier trained over SIFT features) with a consensus
of non-parametric global models for part locations; Zhu and Ramanan [79] relied
on a connected set of local templates described with HOG. Dantone et al. [67]
constructed multiple random forrest that use image patches as input conditioned
by the head pose to estimate in real time a set of face landmarks. Yu et al. [80] used
3D deformable shape models to iteratively fit over 2D data and identify without
respect to pose the facial landmarks positions.

Martinez et al. [81] trained SVM regressors with selected Local Binary Patterns
to formulate initial predictions that are further iteratively aggregated for improving
accuracy. In [68], the relation between fiducial points is encoded directly in the
localization system, which is based on deep convolutional networks. Florea et al.
[30] used a multi stage method for precisely fitting the landmarks in the eye are. In
the next subsection we will detail this method as it is focussed on the eyes.

6.1 Multi-level Eye Landmark Localization

6.1.1 Position and Intensity Priors

During training, a bounding box is computed on the range of each feature location
within the region found by the face detector, as in the classical CLM [74]. For
each candidate landmark, its position prior ic constructed as a probability map
spanning its region of interest (ROI), such that each position is given the likelihood
of being close to the ROI center. This is in fact the two-dimensional histogram of
the positions.

The position prior is further denoted as p1.i; j/ and an example for the left eye
outer corner position prior map is shown in Fig. 8a.

While for eye center localization it is common to investigate only the darkest
pixels [82], this idea may be extended to all landmarks with appropriate conditions
(such as considering that the inner eye corner is darker than most of its neighboring
pixels while the upper limit of the eye is brighter than most of its neighboring
pixels). Thus, for each candidate landmark, its intensity prior is constructed as a
probability map spanning its region of interest, such that each position is given the
probability of occurrence of its corresponding graylevel within the ROI. This prior
is denoted as p2.i; j/ and is exemplified in Fig. 8b for the case of the outer corner of
the left eye.
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Table 6 Face landmarks localization methods in remote imaging

Method Face detection Features Learning Public code

Cootes et al.
[69]—ASM

No Edges Yes Yes

Cootes et al.
[70]—AAM

No Edges and pixels Yes Yes

Leung et al.
[71]—EGM

No VPF No No

Cristinacce et al.
[74]—CLM

Yes Edge Yes Yes

Tresadern et al. [75] Yes Edge+pixels MRF No (AAM)

Saragih et al.
[77]—PAAM

Yes Edge+pixels Yes Yes

Milborrow and
Nichols [72]—STASM

Yes Edges Yes Yes

Valstar et al.
[78]—Borman

Yes Image pixels SVR+MRF Yes

Zhu and Ramanan [79] Yes pHoG Bagged trees Yes

Belhumeur et al. [28] Yes SIFT SVM No

Dantone et al. [67] Yes Pixels RF No

Martinez et al.
[81]—Lear

Yes Gradient SVR Yes

Sun et al. [68] Yes Pixels CNN Yes

Yu et al. [80] Yes HoG EM Yes

Florea et al. [30] Yes IPF+EPF MLP Yes

The learning column signals that method parameters are regressed on a training
database; we nominate when a specific machine learning system is employed

6.1.2 Template Matching

It is typical in the landmark localization [28, 30, 67] that the bulk of the search
to be performed by a template matching procedure. In such a case, the problem
is to determine for each pixel, within a reasonable neighborhood of an initial
landmark, the probability of that pixel being the true landmark. A typical procedure
implies considering consecutive sub-windows in the search area. Each sub-window
is centered in the investigated location and it is represented in a descriptor space;
a machine learning system is then trained to determine how likely is for the sub-
window to be centered on the true position of the landmark.

Similar with the iris center localization procedure, given a rectangular sub-
windows centered in the truth landmark position and a Multi-Layer Perceptron
(MLP) is trained with the integral and edge projections within that image sub-
window. The definition of the IPF and EPF were presented in Sect. 5.

To ensure a better robustness to illumination variation, each of the projections
should be independently normalized to the Œ�128; 127� range. Each sub-window, for
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Fig. 8 (a) Position prior map p1 for left eye outer corner, gathered from all training images;
(b) Intensity prior map p2 for left eye outer corner; (c) Likelihood Map determined by the MLP
given the actual data, p3 for a specific example of left eye outer corner. Image taken from [30].
Copyright of the authors

each landmark, is thus described by a feature vector formed by the concatenation
of the four projections: horizontal/vertical, integral/edge. Thus, the length of the
features is 2 � W C 2 � H D 120.

A MLP is separately trained for each landmark (with feature vectors from the
sub-windows as input) to output the Euclidian distance between the center of the
input sub-window and the true landmark position (thus performing regression).
Thus, given an original image and a landmark to localize, the complement of the
output of the MLP, c.i; j/ is the landmark likelihood map p3.i; j/, with p3.i; j/ D
1 � c.i; j/. A MLP with one hidden layer with 30 neurons is good choice [30].
A typical p3 map is showed in Fig. 8c for the location of the outer left eye corner.

Alternatively, Vranceanu et al. [10] feed the concatenated image projection into
a logistic regressor to determine only one dimension of the landmarks in order to
obtain the bounding box of the eye.

6.1.3 Initial Landmarks Estimates

To fuse the information from intensity and position priors with template matching
data, the final probability map is:

p123.i; j/ D ˛ � p1.i; j/ C ˇ � p2.i; j/ C � � p3.i; j/ (7)

where ˛, ˇ and � weight the confidence in each type of map; their values are to
be deduced on the training database independently for each landmark, for each
eye. Florea et al. [30] suggested the following empirical values ˛ D ˇ D 0:25,
� D 0:5. The weighted center of mass of the p123 probability map for each landmark
represents an accurate initial estimate of that landmark.
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6.1.4 Shape Constraints

Even if gaze varies across the tested cases, the relative position of the eye remains
stable enough, thus the eye socket shape may be further constrained. To achieve this,
either the Constrained Local Model [74] or the Global Models Locally Constrained
[30] are at hand. The second solution, instead of gathering local constrains and
maximizing the global output, for each landmark (locally), iteratively uses the global
shape to construct a local constraint. As eye landmarks are investigated in terms
of gaze variation, the iris center position has very large variations, thus it is not
included in the shape. For each face there will be two shapes, one for each eye,
refined independently; a shape contains only four points, namely the limits of the
eye socket.

Distinct shapes for the left and the right eye are envisaged. In ASM [69], given s
sets of points fxig, after alignment (centering all shapes in origin and aligning them
by a specific rule), one may compute the mean shape x, and the projection matrix
on a PCA-reduced space P. Any of the input shapes is given as:

x � x C Pb (8)

The P matrix is made by the first t eigenvectors of the covariance matrix of all the
shapes fxig in the training database. Thus, the transformation vector is found as:

b D PT .x � x/ (9)

Given a large number of shapes fxig, one may compute a histogram for the
transformation vector, b. More precisely, for each shape, fxig in the database, using
Eq. (9), one will obtain a t-dimensional transformation vector bi.

Since the dimensionality reduction is performed by means of decorrelation (i.e.
PCA), and the histogram is Gaussian-like, the histogram of b may be approximated
with t-dimensional independent Gaussian distributions with 0-mean and † D
diag.�i/ covariance matrix, where �i is the shapes eigenvalue on the dimension
i, in the original shape space.

Given an initial shape x0 and keeping all the landmarks fixed with the exception
of the current one (which is to be improved), if one assumes that this landmark is
at .i; j/ location, a new value, b0 will be obtained. Given the original histogram of
b, the newly obtained value, b0, is back-propagated into a probability value, which
will be named ps.i; j/jx0.

Thus, for each location in the searched area and for each of the landmarks,
ps.i; j/jx the probability to have the landmark at position .i; j/ given the remainder
of the shape x to its initial position is computed. Practical choices are t D 2 and the
alignment of the shapes such that to have a horizontal outer-inner axis [30].

Taking into account that at any step, for each landmark, an estimate of the
shape is available by computing the weighted center of mass from Eq. (7) and
observing that some landmarks (e.g. eye outer corners) are more reliable than others
(upper and lower boundaries), by keeping all points fixed with the exception of the
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least reliable, the likelihood of various positions for the current landmark is built.
The order of the landmarks is with respect to their reliability. Then, the procedure is
repeated iteratively for each landmark Nit times (typically Nit D 3).

The final landmark position is taken as the weighted center of mass of the convex
combination, pF.i; j/, between the initial stages and the shape fitting likelihood:

pF.i; j/ D ı � p123.i; j/ C .1 � ı/ � pS.i; j/jx; (10)

where ı= 0.75 was experimentally chosen.

6.2 Evaluation

6.2.1 Evaluation Procedure

For multiple landmarks the proximity measure [74] me is the common measure. It
is computed as:

me D 1

t � Deye

tX

iD1

"i (11)

In Eq. (11), "i are the point to point errors for each individual landmark location
and t is the number of feature points searched (ten points in the current considered
case, thus the measure being further referred as me10). Again, the interest is in
obtaining a higher accuracy for low threshold values.

6.2.2 Eye Landmarks Localization

For this specific task, we compare the performance of the methods from [30, 78–81].
The accuracies are shown in Figs. 9 and 10. We note that the method from [81] does
not locate the iris centers, thus in this case we take into account only eight landmarks
and all methods are trained outside the tested databases.

The results show that mostly the best performance is achieved by Florea et al.
[30]. The largest difference is on the Eye-Chimera database, where other methods,
that are general face landmarking methods, significantly under-perform due to the
significant variation of gaze on both horizontal and vertical directions.

7 Gaze Direction Recognition

In computer vision, extensive research was done in the field of detecting the
direction of gaze [83, 84], by means of so-called eye trackers. Usually, eye tracking
technology relies on measuring reflections of the infrared/near-infrared light on the
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Fig. 9 Eye landmarks localization performance on the Eye-Chimera database of several methods:
Valstar et al. [78], Zhu-Ramanan [79], Martinez et al. [81], Yu et al. [80] and Florea at al. [30] on
the Eye-Chimera, HPEG and ULM databases
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Fig. 10 Eye landmarks localization performance of several methods: Valstar et al. [78], Zhu-
Ramanan [79], Martinez et al. [81], Yu et al. [80] and Florea at al. [30] on the HPEG (a) and
ULM (b) databases

eye: the first Purkinje image (P1) is the reflection from the outer surface of the
cornea, while the fourth (P4) is the reflection from the inner surface of the lens;
these two images form a vector that is used to compute the angular orientation of
the eye, in the so-called “dual Purkinje” method [84]. An example of such an eye
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tracking systems is, for instance, found in the work of Yoo and Chung [85] that
relies on two cameras and four infrared sources to achieve high accuracy.

A method relying on a head mounted device with visible spectrum illumination
is found in the work of Pires et al. [86] who extracted the iris contour followed by
a Hough transform to detect the iris center and, respectively, by the localization of
the eye corners contours; the head-mounted device, permits high resolution for the
eye image thus extending the range of a wearable eye-tracking for sport. Due to
reasons detailed in the previous subsection, we will avoid both the IR-based and,
respectively, the head mounted category of solutions.

The alternative is to develop non-intrusive, low-cost techniques that directly
measure the gaze direction, such as the approaches used in [34, 82, 87–89]. Wang
et al. [82] selected recursive nonparametric discriminant features from a topographic
image feature pool to train an Adaboost that locates the eye direction. Hansen and
Pece [87] modelled the eye contour as an ellipse and use Expectation-Maximization
to locally fit the actual contour. Cadavid et al. [88] trained a Support Vector
Machine with spectrally projected eye region images to identify the direction of
gaze. Heyman et al. [89] used correlation-based methods (more precisely the so-
called Canonical Correlation Analysis) to match the new eye data with marked data
and to find the direction of gaze. Wolf et al. [34] applied the eye landmark localizer
provided by Everingham and Zisserman [90] to initialize the fit of the eye double
parabola model. We note that all these methods first localize eye landmarks and
subsequently analyze the identified eye regions.

Florea et al. [30] used the eye landmarks and the interior of the eye shape to
directly estimate the gaze into seven possible directions. The same set of directions,
which matches the NLP identified direction, was also searched by the methods form
[10, 35]. Radlak et al. [35] employed Hybrid Image Projections functions as defined
by Zhou and Geng [47] followed by either a SVM or a random forest. Vranceanu
et al. [10] complemented the projection based information with the geometrical
location of four segments extracted from the eye region.

Also in the direction of gaze recognition in terms of EAC-NLP we note the work
of Diamantopoulos [91] which used a head mounted device. Taking into account that
Laeng and Teodorescu [25] showed that, even for non-visual tasks, voluntary control
affects eye movement, we may conclude that they explore the theme only from
a computer vision perspective, without direct practical applications. Furthermore,
the head mounted device has the un-realistic advantage of being closer to the eye
and, thus, of having access to higher resolution and more precisely located eye
image patches. For images with high resolution, the method implied by Pires et al.
[86] (iris contour detection followed by Hough transform for circles) works very
well. However, for the lower resolution images, which are associated with remote
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Fig. 11 Separation (segmentation) of the eye components using K-Means

acquisition devices, the contours in the eye region are no longer sharp and the
accumulation in the Hough transform, very often, points to wrong locations (eye
socket or brow).

Once the eye bounding box has been delimited by means of the eye landmarks,
the specific EAC is retrievable by analyzing the positions of different eye compo-
nents. The natural choice is to analyze the position of the iris inside the eye bounding
box. Yet as eye localizers are imperfect [10], especially when challenged by gaze
variation, to improve the accuracy, a separation of the components of the eye within
the bounding box and use their relative position as indicators of the EAC, improves
the landmark achievable performance.

7.1 Separating the Eye Components

7.1.1 Segmentation

The segmentation is a well known problem and many solutions have been proposed
through the years. For the specific problem of the eye components separation
for gaze direction estimation, it should be required that the segmentation of the
eye components allows a good EAC recognition in a reasonable amount of time.
According to the tests performed by Vranceanu et al. [10], the best compromise is
achievable using a K-Means segmentation (Fig. 11).

7.1.2 Post-processing and Classification

The eye area, given by the detected landmarks is normalized to a standard size and
position. The coordinates of each of the resulting eye components’ centers of mass
in the normalized bounding box and the average luminance are used as features
describing the eye. To improve the region separation resulted from segmentation, the
integral projections functions (IPF) complements the bounding box in a variation
of the Appearance Models. Therefore, for a more general description inside the
bounding box, the vertical and horizontal integral and edge projections are added
as features for the classifier, next to the segmented regions center of mass and
landmarks.
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Table 7 Influence of the number of regions on
the EAC recognition rate, RR (%), when simple
K-Means segmentation is used (without addi-
tional projection information). We have marked
with bold letters the best results for each EAC
case

Regions no. C = 2 C = 3 C = 4

RR (%) (7 EAC classes) 50:73 62:08 64:56
RR (%) (3 EAC classes) 62:77 77:28 82:32

In order to recognize the seven EAC classes, the feature vector is composed by:

• 3 � C elements (which correspond to the centers of mass coordinates and the
average luminance for each of the C regions);

• the concatenated horizontal and vertical integral and edge projections;
• landmarks

Various classification methods are considered and, as the number of features is
small, the Logistic Classification [92] was found [10] to give good results.

7.2 Results

While computing the EAC recognition rate, two scenarios are evaluated: the seven-
case and the three-case. The complete seven EACs set contains all the situations
described by the NLP theory and presented in Fig. 1. Additionally, as the vertical
direction of gaze is harder to identify [84], one may consider only three cases
assigned to: looking forward (center), looking left and looking right; in terms of
EACs, here, the focus is on the type of mental activity, while the representational
systems are merged together. This particular test is relevant for the interview
scenario, where, when given a query, if the subject remembers the solution, it
indicates experience in the field, while if he/she constructs the answers, it points
to creativity.

7.2.1 Segmentation Influence

Eye region segmentation is an important step for the accurate recognition of the
EAC and a critical aspect is the number of classes, C, in which the input data should
be divided. As can be seen in Table 7 a larger number of regions increases the EAC
recognition rate; therefore, the eye space should be in fact divided in four regions
corresponding to all the eye components present in the bounding box: the iris and
the sclera, the eyelashes and the surrounding skin area.
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Table 8 Individual
recognition rate for each EAC
case on the still Eye Chimera
database

VD VR VC AR AC ID K

88.62 74.66 80.00 71.83 61.43 71.76 80.43

The acronyms for the EACs are presented in Fig. 1

Fig. 12 Automatic
recognition examples: correct
(green arrow) and false (red
arrow). Image taken from
[10]. Copyright by Springer

7.2.2 EAC Recognition

The final solution that gives the best results for EAC recognition consists of
using iris-oriented K-Means segmentation together with projection information and
landmarks. Vrancenu et al. [10] showed that the extra use of the integral projections
in the feature vector leads to an improvement of approx. C5 % in the recognition
rate.

Furthermore, the recognition rates for each individual EAC are presented in
Table 8. It can be seen that a higher confusion rate appears vertically, between
eyes looking to the same side. In a NLP interpretation, this corresponds to a
better separability between the internal activities and a poorer separability between
representational systems. Visual examples of correct and false recognitions are
shown in Fig. 12 and it should be noted that even for a human observer it is difficult,
in some cases, to correctly classify the direction of gaze.

As said, one intuitive way to recognize the EAC is to use the coordinates of eye
fiducial points. Thus, we consider as relevant several foremost such methods. First,
the BoRMaN algorithm [78] can be employed for detecting the eye bounding box
and a good iris center localization can be obtained using the maximum isophote
algorithm presented in [43]. The eye landmarking method proposed in [30] also
provides the required points for such an analysis. Finally, using the landmarking
technique proposed in [79], out of a larger number of detected fiducial points, the
points delimiting the eye and the iris center can be selected for the EAC analysis.

Comparative results are presented in Table 9. As one can see the best results
are retrieved by the methods from [10]. There, the refined bounding box (or more
precisely its height) is necessary to differentiate between looking down and looking
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Table 9 Recognition rate (%) on the still Eye Chimera database for
the three EAC cases scenario (when the focus is on the type of mental
activity) and for the seven EAC cases scenario (the complete EAC set)

RR (%)

Bounding box method Iris detection method 7 classes 3 classes

Manual Manual 73.98 94.52

Manual Valenti [43] 32.30 36.40

BoRMaN [78] Valenti [43] 32.00 33.12

Zhu [79] Zhu [79] 39.21 45.57

Zhu [79] Sun [68] 47.25 68.15

Florea [30] Florea [30] 48.64 78.57

Radlak [35] Kawulok [57] 49.47 77.00

Vranceanu [10] Vranceanu [10] 77.54 89.92

Table 10 EAC recognition rates (%) of various solutions, when information
from both eyes is used

Method RR (%) [43] + [78] [79] [10] (1 eye) [10] (2 eyes)

Still Eye

Chimera

7 classes 39.83 43.29 77.54 83.08

3 classes 55.73 63.01 89.92 95.21

elsewhere, while the iris position inside it, actually defines the direction of gaze. The
pre-processing step removes the eye-lashes as it interferes with the iris separation
from the rest of the eye components. The integral projections functions added in
the post-processing step supplement the information used by the classifier for the
EACs recognition. Due to these facts, when all seven EAC classes are considered,
the algorithm from [10] surpasses the upper limit of a point-based analysis, which
is obtained when only the five manual markings are used.

Both Eyes Information In order to further improve the detection rate, information
from both eyes can be concatenated in the feature vectors. Vranceanu et al. [10]
showed (also in Table 10) that this leads to an improvement of approx. C6 % in the
detection rate, in both the three cases scenario as well as for the complete EAC set.

Other Databases For a thorough evaluation, we report results on other databases,
where the eye cues are partially represented. Since these databases are not designed
for an EAC-NLP application, each poses different challenges and are somewhat
incomplete from the EAC point of view. The HPEG database does contain all seven
EACs, but in a small number, the UUlm database contains only three of the eye cues:
Visual Defocus (VD—looking straight), Auditory Remember (AR—looking center-
right) and Auditory Constructed (AC—looking center-left). The PUT database
contains all seven cues but disproportionably represented. Furthermore, all three
databases have a considerable head pose variation.

Comparative results can be seen in Table 11. Although the results vary consider-
ably across databases, the eye components based method [10] offers the best results
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Table 11 EAC recognition rate (%) computed on ULM, HPEG and PUT
databases

Method RR (%) [43] + [78] [79] [10] (1 eye) [10] (2 eyes)

HPEG
7 classes 18.52 31.82 43.71 50.00

3 classes 29.34 49.15 68.54 75.17

ULM
7 classes 40.63 29.37 23.57 29.29

3 classes 41.28 44.39 70.35 80.89

PUT
7 classes 11.01 31.11 55.68 62.18

3 classes 13.18 44.11 63.76 71.43

in all scenarios. While testing on the ULM database, we looked also for seven cases,
and any output different from the correct one is marked as an error; to make the test
more relevant to the work, we ignored that, for this specific test, only three possible
outputs could exist.

8 Discussion and Conclusions

The purpose of this research was to discuss some potential alternatives for an
automatic solutions that recognize the direction of gaze in images that contain
a frontal face. Such a solution would facilitate advances in areas such as non-
conventional teaching, gaming industry and, at last but not at least, for the Eye
Accessing Cues.

Eye Accessing Cues are a hypothesis from the Neuro-Lingvistic-theory and they
have been only partially validated; more precisely, it has been found that correlation
greater than random chance is possible. These results, which are in line with most
prior art on the topic, in fact, motivates large scale intensive tests to find the truth
behind. If validated, the direction of gaze may be used for better understanding of
the mental patterns of a person. We nominated two applications: on-line interviews
and interactive presentation.

From a computer vision point of view, while several efficient approaches were
investigated, the best results for the recognition of the direction of gaze were
reported by Vranceanu et al. [10]. There, consecutively, the face square, iris center,
face landmarks and eye components are extracted.

The results on specifically built Eye Chimera database show that the method from
Vranceanu et al. [10] surpasses in accuracy some of the most efficient state of the
art methods for detecting landmarks and implicitly eye points. It was also shown
that it surpasses the pure eye landmarking techniques proving that a region-based
solution provides better accuracy than a point-only based approach. These findings
were confirmed on other databases too.

Finally, using the video (sequence) part of the Eye-Chimera database, it was
proven that, when dealing with sequences, the recognition rate can be increased
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by considering the temporal redundancy and the correlation between consecutive
frames. This observation, together with the low computational cost, offers potential
for an implementation where eye cues are detected, tracked and interpreted for mass
applications.

The current maximum reported performance reached 77.54 % accuracy on the
Eye-Chimera database, which is assumed to be the most relevant for the EAC-NLP
theme. This means that in average 1 out of 4 cases is mis-labelled. Thus, if the goal is
to validate the hypothesis behind the EAC-NLP than the existing solution is reliable
only for automatic initialization of the annotations followed by manual verification.
Yet even for this case automatic solution brings speed-ups up to 10�. If the EAC-
NLP hypothesis are validated, than the described application may work in real cases
as an estimator, with the observation that it needs to be applied independently in
consecutive cases, and the overall conclusion needs to be manually validated.

Some additional issues remain for further investigation and development. First,
the hypothesis of the Eye Accessing Cues needs to be fully confirmed and most
likely bounded. Secondly the EACs are related to non-visual tasks and, therefore,
separation between visual and non-visual tasks is required. In normal conditions,
the difference between voluntary eye movements (as for seeing something) and
involuntary ones (as part of non-verbal communication) is retrievable by the
analysis of duration and amplitude [83] as non-visual movements are shorter and
with smaller amplitude. However, in both visual memory related task [25] as
in the NLP theory, the actual difference between visual and non-visual tasks is
achieved by integrating additional information about the person specific activities.
More precisely, the Eye Accessing Cues are expected to appear following specific
predicates (such as immediately after a question marked by “How?” or “Why?”).
Thus, for a complete autonomous solution, the labels required for segmenting
the video in visual and non-visual tasks should be inferred from an analysis of
the audio channel, that should complement the visual data. To the moment, a
completely functional system would be the one where the trainer/interviewer marks
the beginning and the end of the non-visual period, as he is aware of the nature of
communication.

Concluding, the gaze direction estimation from passive remotely acquired image
is an interesting area with many un-explored development directions.
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33. A. Kasinśki, A. Florek, A. Schmidt, The PUT face database. Image Process. Commun. 13,
59–64 (2008)

34. L. Wolf, Z. Freund, S. Avidan, An eye for an eye: a single camera gaze-replacement method,
in Proceedings of Computer Vision and Pattern Recognition (2010), pp. 817–824

35. K. Radlak, M. Kawulok, B. Smolka, N. Radlak, Gaze direction estimation from static images,
in Proceedings of IEEE Multimedia Signal Processing (2014), pp. 1–4

36. P. Viola, M. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)
37. M. Mathias, R. Benenson, M. Pedersoli, L.V. Gool, Face detection without bells and

whistles, in Proceedings of the European Conference on Computer Vision, vol. 8692 (2014),
pp. 720–735

38. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object detection with discrimina-
tively trained part-based models. Pattern Recogn. Lett. 19, 899–906 (2010)

39. F. Song, X. Tan, S. Chen, Z. Zhoub, A literature survey on robust and efficient eye localization
in real-life scenarios. Br. J. Gen. Pract. 46, 3157–3173 (2013)

40. M. Hamouz, J. Kittlerand, J.K. Kamarainen, P. Paalanen, H. Kalviainen, J. Matas, Feature-
based affine-invariant localization of faces. IEEE Trans. Pattern Anal. Mach. Intell. 27,
643–660 (2005)

41. S. Asteriadis, N. Nikolaidis, I. Pitas, Facial feature detection using distance vector fields.
Pattern Recogn. 42, 1388–1398 (2009)

42. J. Wu, Z.H. Zhou, Efficient face candidates selector for face detection. Pattern Recogn. 36,
1175–1186 (2003)

43. R. Valenti, T. Gevers, Accurate eye center location and tracking using isophote curvature, in
Proceedings of Computer Vision and Pattern Recognition (2008), pp. 1–8

44. O. Jesorsky, K. Kirchberg, R. Frischholz, Robust face detection using the Hausdorff distance,
in Proceedings of International Conference on Audio- and Video-Based Biometric Person
Authentication (2001), pp. 90–95

45. T. Kanade, Picture processing by computer complex and recognition of human faces. Technical
Report, Kyoto University, Department of Information Science, 1973

46. G.C. Feng, P.C. Yuen, Variance projection function and its application to eye detection for
human face recognition. Pattern Recogn. Lett. 19, 899–906 (1998)

47. Z. Zhou, Projection functions for eye detection. Pattern Recogn. 37, 1049–1056 (2004)
48. M. Turkan, M. Pardas, A.E. Cetin, Edge projections for eye localization. Opt. Eng. 47, 047–054

(2008)
49. M. Verjak, M. Stephancic, An anthropological model for automatic recognition of the male

human face. Ann. Hum. Biol. 21, 363–380 (1994)
50. D. Cristinacce, T. Cootes, I. Scott, A multi-stage approach to facial feature detection, in

Proceedings of British Machine Vision Conference (2004), pp. 277–286
51. P. Campadelli, R. Lanzarotti, G. Lipori, Precise eye localization through a general-to-specific

model definition, in Proceedings of British Machine Vision Conference, I, 187–196 (2006)



Extended Eye Landmarks Detection for Emerging Applications 433

52. Z. Niu, S. Shan, S. Yan, X. Chen, W. Gao, 2D cascaded adaboost for eye localization, in
Proceedings of International Conference of Pattern Recognition (2006), pp. 1216–1219

53. S. Kim, S.T. Chung, S. Jung, D. Oh, J. Kim, S. Cho, World Academy of Science, Engineering
and Technology, in WASET, vol. 21 (World Academy of Science, Engineering and Technology,
2007), pp. 483–487

54. M. Asadifard, J. Shanbezadeh, Automatic adaptive center pupil detection using face detection
and CDF analysis, in Proceedings of International Multimedia Conference of Engineers and
Computer Scientist (2010), pp. 130–133

55. L. Ding, A.M. Martinez, Features versus context: an approach for precise and detailed detection
and delineation of faces and facial features. IEEE Trans. Pattern Anal. Mach. Intell. 32,
2022–2038 (2010)

56. F. Timm, E. Barth, Accurate eye centre localisation by means of gradients, in Proceedings of
International Conference on Computer Theory and Applications (2011), pp. 125–130

57. M. Kawulok, J. Szymanek, Precise multi-level face detector for advanced analysis of facial
images. IET Image Process. 6, 95–103 (2012)

58. C. Florea, L. Florea, C. Vertan, Robust eye centers localization with zero-crossing encoded
image projections. Pattern Anal. Applic. 1–17 (2015), DOI:10.1007/s10044-015-0479-x,
http://dx.doi.org/10.1007/s10044-015-0479-x

59. R. Valenti, T. Gevers, Accurate eye center location through invariant isocentric patterns. IEEE
Trans. Pattern Anal. Mach. Intell. 34, 1785–1798 (2012)

60. H.C. Becker, W.J. Nettleton, P.H. Meyers, J.W. Sweeney, C.M. Nice, Digital computer
determination of a medical diagnostic index directly from chest X-ray images. IEEE Trans.
Biomed. Eng. 11, 62–72 (1964)

61. F. Crow, Summed-area tables for texture mapping. Proc. SIGGRAPH 18, 207–212 (1984)
62. G.E. Blelloch, Prefix sums and their applications. synthesis of parallel algorithms. Technical

report, University of Massachusetts, 1990
63. R.A. King, T.C. Phipps, Shannon, TESPAR and approximation strategies. Comput. Secur. 18,

445–453 (1999)
64. X. Chen, H. Wu, X. Jin, Q. Zhao, Face illumination manipulation using a single reference

image by adaptive layer decomposition. IEEE Trans. Image Processing 22(11), 4249–4259
(2013)

65. B. Kroon, A. Hanjalic, S.M. Maas, Eye localization for face matching: is it always useful and
under what conditions, in Proceedings of International Conference on Content-Based Image
and Video Retrieval (2008), pp. 379–387

66. M. Ciesla, P. Koziol, Eye pupil location using webcam. CoRR, (2012) http://arxiv.org/abs/
1202.6517

67. M. Dantone, J. Gall, G. Fanelli, L.V. Gool, Real-time facial feature detection using conditional
regression forests, in Proceedings of Computer Vision and Pattern Recognition (2012),
pp. 2578–2585

68. Y. Sun, X. Wang, X. Tang, Deep convolutional network cascade for facial point detection, in
Proceedings of Computer Vision and Pattern Recognition (2013), pp. 3476–3483

69. T. Cootes, C. Taylor, D. Cooper, J. Graham, Active shape models - their training and
application. Comput. Vis. Image Underst. 61, 38–59 (1995)

70. T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models. IEEE Trans. Pattern Anal.
Mach. Intell. 23, 681–685 (2001)

71. T. Leung, M. Burl, P. Perona, Finding faces in cluttered scenes using random labeled
graph matching, in Proceedings of International Conference on Computer Vision (1995),
pp. 637–644

72. S. Milborrow, F. Nicolls, Locating facial features with an extended active shape model, in
Proceedings of European Conference on Computer Vision (2008), pp. 504–513

73. V. Le, J. Brandt, Z. Lin, L. Bourdev, T.S. Huang, Interactive facial feature localization, in
Proceedings of European Conference on Computer Vision (2012), pp. 679–692

74. D. Cristinacce, T. Cootes, Feature detection and tracking with constrained local models, in
Proceedings of British Machine Vision Conference (2006), pp. 929–938

10.1007/s10044-015-0479-x
http://dx.doi.org/10.1007/s10044-015-0479-x
http://arxiv.org/abs/1202.6517
http://arxiv.org/abs/1202.6517


434 L. Florea et al.

75. P. Tresadern, H. Bhaskar, S. Adeshina, C. Taylor, T. Cootes, Combining local and global shape
models for deformable object matching, in Proceedings of British Machine Vision Conference
(2009)

76. T. Cootes, M.C. Ionita, C. Lindner, P. Sauer, Robust and accurate shape model fitting using
random forest regression voting, in Proceedings of European Conference on Computer Vision
(2012)

77. J. Saragih, S. Lucey, J. Cohn, Deformable model fitting by regularized landmark mean-shift.
Int. J. Comput. Vis. 91, 200–215 (2011)

78. M. Valstar, T. Martinez, X. Binefa, M. Pantic, Facial point detection using boosted regression
and graph models, in Proceedings of Computer Vision and Pattern Recognition (2010),
pp. 2729–2736

79. X. Zhu, D. Ramanan, Face detection, pose estimation, and landmark localization in the wild,
in Proceedings of Computer Vision and Pattern Recognition (2012), pp. 2879–2886

80. X. Yu, J. Huang, S. Zhang, W. Yan, D.N. Metaxas, Pose-free facial landmark fitting via
optimized part mixtures and cascaded deformable shape model, in Proceedings of International
Conference on Computer Vision (2013), pp. 1944–1951

81. B. Martinez, M.F. Valstar, X. Binefa, M. Pantic, Local evidence aggregation for regression
based facial point detection. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1149–1163 (2013)

82. P. Wang, M.B. Green, Q. Ji, J. Wayman, Automatic eye detection and its validation, in IEEE
Workshop on FRGC, Computer Vision and Pattern Recognition (2005), p. 164

83. A. Duchowski, Eye Tracking Methodology: Theory and Practice (Springer, Berlin, 2007)
84. D. Hansen, J. Qiang, In the eye of the beholder: a survey of models for eyes and gaze. IEEE

Trans. Pattern Anal. Mach. Intell. 32, 478–500 (2010)
85. D. Yoo, M. Chung, A novel non-intrusive eye gaze estimation using cross-ratio under large

head motion. Comput. Vis. Image Underst. 98, 25–51 (2005)
86. B. Pires, M. Hwangbo, M. Devyver, T. Kanade, Visible-spectrum gaze tracking for sports, in

WACV (2013)
87. D. Hansen, A. Pece, Eye tracking in the wild. Comput. Vis. Image Underst. 98, 182–210

(2005)
88. S. Cadavid, M. Mahoor, D. Messinger, J. Cohn, Automated classification of gaze direction

using spectral regression and support vector machine, in Proceedings of Affective Computing
and Intelligent Interaction (2009), pp. 1–6

89. T. Heyman, V. Spruyt, A. Ledda, 3d face tracking and gaze estimation using a monocular
camera, in Proceedings of International Conference on Positioning and Context-Awareness
(2011), pp. 23–28

90. M. Everingham, A. Zisserman, Regression and classification approaches to eye localization in
face images, in IEEE Face and Gesture (2006), pp. 441–446

91. G. Diamantopoulos, Novel eye feature extraction and tracking for non-visual eye-movement
applications. Ph.D. thesis, University of Birmingham, 2010

92. S. le Cessie, J. van Houwelingen, Ridge estimators in logistic regression. Appl. Stat. 41,
191–201 (1992)


	Extended Eye Landmarks Detection for Emerging Applications
	1 Introduction
	2 Eye Based Communications in Emergent Applications
	2.1 Eye Accessing Cues in Neuro-Linguistic Programming
	2.2 Recognizing Gaze Direction: Premises

	3 Databases
	3.1 Iris Center Annotated Databases
	3.2 Iris Center and Eye Landmarks Annotated Databases

	4 System Overview
	4.1 Face Detection and Localization

	5 Iris Center Localization
	5.1 State of the Art Solutions
	5.1.1 Projections Based Iris Localization Methods
	5.1.2 Pattern Recognition Based Methods

	5.2 Robust Eye Centers Localization with Zero-Crossing Encoded Image Projections
	5.2.1 Integral and Edge Image Projections
	5.2.2 Fast Computation of Projections
	5.2.3 Encoding and ZEP Feature
	5.2.4 Rough Iris Center Localization
	5.2.5 Iris Center Refinement

	5.3 Evaluation of the Iris Center Localization Methods
	5.3.1 Evaluation on the BioID, Cohn-Kanade, Yale B+ and LFW Databases
	5.3.2 Evaluation on Databases with Gaze Variability


	6 Eye Landmarking
	6.1 Multi-level Eye Landmark Localization
	6.1.1 Position and Intensity Priors
	6.1.2 Template Matching
	6.1.3 Initial Landmarks Estimates
	6.1.4 Shape Constraints

	6.2 Evaluation
	6.2.1 Evaluation Procedure
	6.2.2 Eye Landmarks Localization


	7 Gaze Direction Recognition
	7.1 Separating the Eye Components
	7.1.1 Segmentation
	7.1.2 Post-processing and Classification

	7.2 Results
	7.2.1 Segmentation Influence
	7.2.2 EAC Recognition


	8 Discussion and Conclusions
	References


