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Abstract Exploiting the relevant speech information that is embedded in facial
images has been a significant research topic in recent years, because it has provided
complementary information to acoustic signals for a wide range of automatic speech
recognition (ASR) tasks. Visual information is particularly important in many real
applications where acoustic signals are corrupted by environmental noises. This
chapter reviews the most recent advances in feature extraction and representation
for Visual Speech Recognition (VSR). In comparison with other surveys published
in the past decade, this chapter presents a more up-to-date survey and highlights
the strengths of two newly developed approaches (i.e., graph-based learning and
deep learning) for VSR. In particular, we summarise the methods of using these two
techniques to overcome one of the most challenging difficulties in this area-that is,
how to automatically learn good visual feature representations from facial images to
replace the widely used handcrafted features. This chapter concludes by discussing
potential visual feature representation solutions that may overcome the remaining
challenges in this domain.

1 Introduction

Given that speech is widely acknowledged to be one of the most effective means of
communication between humans, researchers in the automatic speech recognition
(ASR) community have made great efforts to provide users with a natural way to
communicate using intelligent devices. This is particularly important for disabled
people, who may be incapable of using a keyboard, mouse or joystick. As a result of
the great achievements made by the ASR community in recent years in terms of the
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Fig. 1 Possible application scenarios of VSR. In an acoustically noisy environment, using an
intelligent handset to capture and extract visual features is an effective solution for ASR

application of novel techniques such as deep learning [26], people generally believe
that we are getting closer to talking naturally and freely to our computers[12].

Although a number of ASR systems have been commercialised and have entered
our daily lives (e.g., Apples Siri and Microsofts Cortana), several limitations still
exist in this area. One major limitation is that ASR systems are still prone to envi-
ronmental noises, thereby limiting their applications. Given ASR’s vulnerability,
research in the area of Visual Speech Recognition (VSR) has emerged to provide
an alternative solution to improve speech recognition performance. Further, VSR
systems have a wider range of applications compared to their acoustic-only speech
recognition counterparts. For example, as shown in Fig. 1, in many practical applica-
tions where speech recognition systems are exposed to noisy environments, acoustic
signals are almost unusable for speech recognition. Conversely, with the availability
of front and rear cameras on most intelligent mobile devices, users can easily
record facial movements to perform VSR. In extremely noisy environments, visual
information basically becomes the only source that ASR systems can use for speech
recognition.

Moreover, inspired by bimodal human speech production and perception even
in clean and moderate noise conditions, where good-quality acoustic signals are
available for speech recognition visual information can provide complementary
information for ASR [54, 55]. Therefore, research on VSR is of particular impor-
tance, because once an adequate VSR result is obtained, speech recognition
performance can be boosted through the fusion of audio and visual modalities.

Despite the wide range of applications of VSR systems, there are two main
limitations related to this area: the development of appropriate dynamic audio-visual
fusion and the development of appropriate visual feature representations. Regarding
dynamic audio-visual fusion, although several high-quality works on this topic have
been published recently [15, 49, 61, 64], a similar fusion framework was used in
most of the cases. More specifically, in these works, the quality of both the audio and
visual signals was evaluated using different criteria, such as signal-to-noise ratio,
dispersion and entropy. Weights were dynamically assigned to the audio and visual
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streams according to the quality of the audio and visual signals. However, compared
with the audio-visual fusion method, visual feature representation techniques are
more controversial. The goal of visual feature representation is to embed spatio-
temporal visual information into a compact visual feature vector. This is the most
fundamental problem for VSR, because it directly affects the final recognition
performance. Hence, in this survey, we mainly focus on the most recent advances
in the area of visual feature representation, and we discuss potential solutions and
future research directions.

Regarding audio feature representation, Mel-Frequency Cepstral Coefficients
(MFCCs) are generally acknowledged to be the most widely used acoustic features
for speech recognition. However, unlike audio feature extraction, there is no
universally accepted visual feature extraction technique that can achieve promising
results for different speakers and different speech tasks, as three fundamental issues
remain unresolved [79]: (1) how to extract visual features with constant quality from
videos with different head and pose positions; (2) how to remove speech-irrelevant
information from the visual data; (3) how to encode temporal information into
the visual features. This chapter will summarise recent research that has examined
solutions to these issues, and it will provide an insight into the relationships between
these methods.

This chapter is organised as follows. Section 2 introduces handcrafted visual
feature extraction methods, which are still the most widely used techniques for
visual feature representation, and they are sometimes used in pre-processing steps
for automatic feature learning. Sections 3 and 4 respectively describe graph-based
feature learning and deep learning-based feature learning methods. Finally, Sect. 5
provides insights into potential solutions for the remaining challenges and possible
future research directions in this area.

2 Hand Crafted Feature Extraction

Before introducing visual feature learning techniques, this section describes some
of the handcrafted visual features that still play a dominant role in VSR. In addition,
handcrafted feature extraction methods can be used in the pre-processing steps
of many visual feature learning frameworks. In terms of the type of information
embedded in the features, visual features can be categorised into two classes:
appearance-based and geometric-based features [7].

For appearance-based visual features, the entire ROIs (e.g., mouth, lower face or
even the face area) are considered informative regions in terms of VSR. However,
it is infeasible to use all the pixels of ROIs because the dimensions of the features
are too large for the classifiers to process. Hence, appropriate transformations of
the ROIs are used to map the images to a much lower-dimensional feature space.
More specifically, given the original image I in the feature space RD (where D is the
feature dimension), appearance-based feature extraction methods seek to transform
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matrix P to map I to a lower feature space R
d (d << D), such that the transformed

feature vector contains the most speech-relevant information with a much smaller
feature dimension.

The Discrete Cosine Transform (DCT) [54, 55] is among the most commonly
used appearance-based visual feature extraction methods. It can be formulated as:

Y.i; j/ D
NX

jD1

NX

iD1

I.i; j/ cos
��.2j C 1/j

2N

�
cos

��.2i C 1/i

2N

�
; (1)

for i; j D 1; 2; : : : ; N, where N is the width and height of the mouth ROI, the value
of N is a power of two and I.i; j/ is the grey-level intensity value of the ROI. To
avoid the curse of dimensionality, low-frequency coefficients are selected and used
as the static components of the visual feature. To encode the temporal information,
the first and second derivatives of the DCT coefficients are used along with the static
coefficients of the DCT (Y.i; j/) as the dynamic components of the visual feature.
Other appearance-based techniques can also be used to extract appearance-based
visual features [55], such as Principle Component Analysis (PCA) [13], Hadamard
and Haar transform [60] and Discrete Wavelet Transform (DWT) [53].

In addition to the methods described above, other appearance-based visual
feature extraction methods have been proposed. More specifically, instead of
seeking a global transformation that can be used on the entire ROI, other methods
use a feature descriptor to describe a small region centred at each pixel in the ROI,
and to count the descriptors response occurrence in the ROI. Typical methods in
this category include Local Binary Pattern (LBP) [45] and Histogram of Oriented
Gradients (HOG) [9]. However, these methods are incapable of extracting temporal
dynamic information from the ROIs. Hence, a number of variants have been
proposed. For example, Zhao et al. [74] proposed a local spatio-temporal visual
feature descriptor for automatic lipreading. This visual feature descriptor can be
viewed as an extension of the basic LBP [45]. More specifically, to encode the
temporal information into the visual feature vector, Zhao et al. [74] extracted LBP
features from Three Orthogonal Planes (LBP-TOP), which contain the spatial axes
of the images (X and Y) and the time axis (T), as shown in Fig. 2. Although the LBP-
TOP feature contains rich visual speech-relevant information, the dimensionality
of the original LBP-TOP feature is too large to be used directly for VSR. Hence,
in [74], AdaBoost was used to select the most informative components from the
original LBP-TOP feature for VSR.

Numerous works [2, 77, 78] have used LBP-TOP for VSR, and variations of
the original LBP-TOP feature have also been proposed. Pei et al. [51] used Active
Appearance Models (AAM) to track keypoints on the lips. For each small patch
centred around the keypoints of the lips, LBP-TOP and HOG were used to extract
the texture features. In addition to the texture features, the difference between the
patch positions in the adjacent frames was used as a shape feature. Given that rich
speech-relevant information is embedded in LBP-TOP features, a number of feature
reduction techniques have been introduced to extract a more compact visual feature
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Fig. 2 Lip spatio-temporal feature extraction using LBP-TOP feature extraction. (a) Lip block
volumes; (b) lip images from three orthogonal planes; (c) LBP features from three orthogonal
planes; (d) concatenated features for one block volume with appearance and motion

from the original LBP-TOP feature. In addition to the LBP-TOP feature, a number
of other appearance-based feature descriptors have been used to extract temporal
dynamic information, such as LPQ-TOP [30], LBP-HF [76], and LGBP-TOP [1].

Although both DCT and LBP-TOP are widely used for VSR, they are quite
different because they represent visual information from different perspectives.
More specifically, as shown in (1), each component (Y.i; j/) of the DCT feature
is a representation of the entire mouth region at a particular frequency. Hence, DCT
is a global feature representation method. Conversely, the LBP-TOP feature uses a
descriptor to represent the local information in a small neighbourhood; therefore,
the LBP-TOP is a local feature representation method. Hence, the development of a
method that can combine both global and local information using a compact feature
vector would be expected to boost visual speech accuracy. Although Zhao et al. [75]
showed that combining different types of visual features (LBP-TOP and EdgeMap
[17]) can improve recognition accuracy, finding an effective way to combine DCT
and LBP-TOP features is still an undeveloped area.

Although the dimensionality of the appearance-based visual features is much
smaller compared to the number of pixels in the ROI, it still makes the system
succumb to the curse of dimensionality. Hence, a feature dimension reduction
process is essential as a prior step to VSR. Among the feature reduction methods,
LDA and PCA are the most widely used [54, 55]. In addition, Gurban et al. [20]
presented a Mutual Information Feature Selector (MIFS)-based scheme to select an
informative visual feature component subset and thus reduce the dimensionality of
the visual feature vector. Unlike feature reduction schemes such as PCA and LDA,
MIFS analyses each feature component in the visual feature vector and selects the
most informative components using the greedy algorithm. In addition, Gurban et al.
[20] proposed that penalizing features for their redundancy is essential to yield a
more informative visual feature vector.
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Geometric visual features explicitly model the shape of the mouth and are poten-
tially more powerful than appearance-based features. However, they are sensi-
tive to lighting conditions and image quality. Geometric-based features include
Deformable Template (DT), Active Shape Model (ASM), Active Appearance Model
(AAM) and Active Contour Model (ACM). DT [36] is a method that uses a
parametric lip template to partition an input image into a lip region and a non-lip
region. However, this approach is degraded when the shape of the lip is irregular or
the mouth is opened wide [31]. The ASM [42] uses a set of landmarks to describe
the lip model. The AAM approach [38] can be viewed as an extension of ASM that
incorporates grey-level information into the model. However, as the landmarks need
to be manually labelled during training, it is very laborious and time-consuming to
train the ASM and AAM for lip extraction.

In terms of ACM-based lip extraction, there are two main categories, namely
edge-based and region-based. With respect to the edge-based extraction approach,
the image gradients are calculated to locate the lip potential boundary [11].
Unfortunately, given that the intensity contrast between the lip and the face region
is usually not large enough, the edge-based ACM is likely to achieve incorrect
extraction results. Moreover, this method has been confirmed to be prone to image
noise, and it is highly dependent on the initial parameters of the ACM [31]. In terms
of region-based techniques, the foreground is segmented from the background by
finding the optimum intensity energy in the images. Compared to its edge-based
counterpart, this method has been shown to be robust with respect to the initial curve
selection and the influence of noise [31]. In contrast, because of the appearance of
the teeth and tongue, intensity values inside the lips are usually different. In this
situation, a Global region-based ACM (GACM) can fail because all of the pixels
inside the lips are taken into consideration. However, with a Localised region-based
ACM (LACM), only the pixels around the objects contour are taken into account.
This method can therefore successfully avoid the influence of the appearance of the
teeth and the tongue [8].

However, provided that the LACM is used solely for lip extraction and the initial
contour is far away from the actual lip contour, the curvature may converge to a
local minima without finding the correct lip boundary. Therefore, the initial contour
needs to be specified near the lip boundary as a priori. The common method for
specifying the initial contour is to detect several lip corners [10, 35] and to construct
an ellipse surrounding the lip. Unfortunately, this approach is either sensitive to
the image noise and illuminations or needs a complex training process. In order to
effectively solve this problem, Sui et al. [69] presented a new extraction framework
that synthesises the advantages of both the global and localised region-based ACMs.

Although the geometric feature can explicitly model the shape of the lips, it is
difficult to derive an accurate model that can describe the dynamic movement of the
mouth. Hence, appearance-based features remain the most widely used features in
the VSR community.
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3 Graph Based Visual Feature Representations

In most cases, the dimensions of the visual features that are extracted using
handcrafted feature extraction methods are usually too large for the classifiers.
Graph-based learning methods that non-linearly map the original visual features
to a more compact and discriminatory feature space have also been used in recent
years.

Initially, graph-based methods were commonly used in human activity recog-
nition [52]. Given that both human activity and speech recognition deal with the
analysis of spatial and temporal information, graph-based feature learning can
therefore also be used for VSR. The idea behind graph-based learning is that visual
features can be represented as the elements of a unified feature space, and the
temporal evolution of lip movements can be viewed as the trajectory connecting
these elements in the feature space. Hence, after the extracted feature sequences
from the videos have been correctly mapped to the corresponding trajectories,
the speech can be correctly recognised. In addition, it is generally believed
that the dimension of the underlying structure of the visual speech information
should be significantly smaller than the dimension of the corresponding observed
videos. Based on the above assumptions, numerous papers have proposed different
frameworks to parameterise the original high-dimensional visual features to the
trajectories to extract lower-dimensional features. An illustration of the concept
behind graph-based feature representation methods is shown in Fig. 3.

Fig. 3 The idea behind graph-based feature representation methods is to project the original high-
dimensional spatio-temporal visual features to a trajectory in a lower-dimensional feature space,
thereby reducing the feature dimension to boost the performance of speech recognition. Each point
(p.wT /) of the projected trajectory represents a frame in the corresponding video. This figure
appeared in [78]. In this work, each image xi of the T-frame video is assumed to be generated
by the latent speaker variable h and the latent utterance variable wi
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Zhou et al. [77] proposed a path graph based method to map the image sequence
of a given utterance to a low-dimensional curve. Their experimental results showed
that the recognition rate of this method is 20 % higher than the recognition rate
reported in [74] on the OuluVS data corpus. Based on this work, the visual feature
sequence of a speakers mouth when talking is further assumed to be generated from
a speaker-dependent Latent Speaker Variable (LSV) and a sequence of speaker-
independent Latent Utterance Variables (LUV). Hence, Zhou et al. [78] presented
a Latent Variable Model (LVM) that separately represents the video by LSV and
LUV, and the LUV is further used for VSR. Given an image sequence of length T ,
X D fxtgT

tD1, the LVM of an image xt which is generated from the inter-speaker
variations h (LSV) and dynamic changes of the mouth wt, can be formulated by (2):

xt D � C Fh C Gwt C �t; (2)

where � is the global mean, F is a factor matrix whose columns span the inter-
speaker space, G is the bias matrix that describes the uttering variations and �t is
the noise term. The model described in (2) is a compact representation of high-
dimensional visual features. Compared with the 885-dimensional raw LBP-TOP
feature, the six-dimensional LUV feature is very compact and can yield better
accuracy than other features, such as PCA [4], DCT [18], AF[57] and AAM [38].

Pei et al. [51] presented a method based on the concept of unsupervised random
forest manifold alignment. In this work, both appearance and geometric visual
features were extracted from the lip videos, and the affinity of the patch trajectories
in the lip videos was estimated by a density random forest. A multidimensional
scaling algorithm was then used to embed the original data into a low-dimensional
feature space. Their experimental results showed that this method was capable
of handling large datasets and low-resolution videos effectively. Moreover, the
exploitation of depth information for VSR was also discussed in this paper.

Unlike the unsupervised manifold alignment approach proposed by Pei et al.
[51], Bakry and Elgammal [2] presented a supervised visual feature learning
framework where each video was first mapped to a manifold by the manifold
parametrisation [14], and then kernel partial least squares was used in the manifold
parameterisation space to yield a latent low-dimensional manifold parameterisation
space.

It is well known that different people speak at different rates, even when they are
uttering the same word. The varying rates of speech result in random parameterisa-
tions of the same trajectory, which leads to a failure in speech recognition. Hence,
a temporal alignment is essential for VSR to remove any temporal variabilities
caused by different speech rates. Su et al. [65] applied a statistical framework
(introduced in [66]) and proposed a rate-invariant manifold alignment method for
VSR. In this method, each trajectory ˛ of the video sequence in the trajectory set M
is represented by a Transported Square-Root Vector Field (TSRVF) to a reference
point c:
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h˛.t/ D P̨ .t/˛.t/!cpj P̨ .t/j ; (3)

where h˛.t/ is the TSRVF of trajectory ˛ at time t, P̨ .t/ it the velocity vector of ˛.t/,
and j � j is defined as the Riemannian metric on the Riemannian manifold. Given the
TSRVFs of two smooth trajectories ˛1 and ˛2, these two trajectories can be aligned
according to:

�� D arg min
�2�

sZ 1

0

jh˛1.t/ � h˛2.�.t//
p

P�.t/j2dt; (4)

where � is the set of all diffeomorphisms of Œ0; 1� W � D f� W Œ0; 1� ! Œ0; 1�j�.0/ D
0; �.1/ D 1; � is a diffeomorphismg. The minimization over � in (4) can be
solved using dynamic programming. After the trajectories have been registered,
the mean of the multiple trajectories can be used as a template for visual speech
classification. Although the method introduced in [65] did not produce superior
performance over other recent graph-based methods [2, 51, 77, 78], and although
only speech-dependent recognition was reported, this work provided a general
mathematical speech-rate-invariant framework for the registration of trajectories and
for comparison.

Despite graph-based methods have shown promising recognition performance
compared to conventional feature reduction methods [79] such as LDA and PCA,
it should be noted that none of the above graph-based methods were tested on
continuous speech recognition. Even though Zhou et al. [78] reported that their
method achieved promising results on classifying visemes, which are generic
images that can be used to describe a particular sound, it is still unclear whether
their graph-based method can be used for continuous speech recognition.

4 Visual Feature Learning Using Deep Learning

Section 3 introduced various graph-based methods that can map high-dimensional
visual features to non-linear feature spaces. However, the use of graph-based meth-
ods for VSR requires prior extraction of the visual features, and the classification
performance largely depends on the quality of the extracted visual features. In
this section, we introduce deep feature learning-based methods, which can directly
learn visual features from videos. These techniques offer the potential to replace
handcrafted features with deep learned features for the VSR task.

Deep learning techniques were first proposed by Hinton et al. [25], who used
the greedy, unsupervised, layer-wise pre-training scheme to train a Restricted
Boltzmann Machine (RBM) to model each layer of a Deep Belief Network (DBN),
which effectively solved the difficulty of training multiple hidden-layer neural
networks. Later works showed that a similar pre-training scheme could also be
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a

b

Fig. 4 Two RBM-based deep models. Blue circles represent input units and red units represent
hidden units. (a): An RBM. (b): A Stacked RBM-based Auto-Encoder

used by stacked auto-encoders [3] and Convolutional Neural Networks (CNN) [56].
These techniques achieved great success in various classification tasks, such as
acoustic speech recognition and image set classification [21, 22].

After deep learning techniques had been successfully applied to a single modality
for the task of feature learning, Ngiam et al. [41] used it for a bimodal (i.e., audio
and video) task. This was the first deep learning work in the domain of VSR and
Audio-Visual Speech Recognition (AVSR). Since then, a number of other methods
have been proposed that employed deep learning techniques to learn visual features
for visual speech classification. Deep learning techniques used for VSR and AVSR
can be categorised into three types: RBM-based deep models, stacked denoising
auto-encoder-based methods and CNN-based methods.

The RBM is a particular type of Markov random field with hidden variables h
and visible variables v (Fig. 4a). The connections Wij between the visible and hidden
variables are symmetrical, but there are no connections within the hidden and visible
variables. The model defines the probability distribution P.v; h/ over v and h via an
energy function, which can be formulated by (5). The log-likelihood of P.v; h/ can
be maximised by minimising the energy function in (5):

E.v; hI �/ D �
mX

iD1

nX

jD1

Wijvihj �
mX

iD1

bivi �
nX

jD1

ajhj; (5)
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where aj and bi are the biases of the hidden units and visible unit respectively, m and
n are the numbers of hidden units and visible units, and � includes the parameters
of the model. As the computation of the gradient of the log-likelihood is intractable,
the parameters of the model have usually been learned using contrastive divergence
[24]. With the proper configurations of the RBM, the visual feature is fed to the first
layer of the RBM, the posteriors of the hidden variables (given the visible variables)
are obtained using p.hjjv/ D sigmoid.bj C WT

j v/, and p.hjjv/ can be used as the
new training data for the successive layers of the RBM-based deep networks. This
process is repeated until the subsequent layers are all pre-trained.

In Ngiam et al.’s work [41], the deep auto-encoder, which consisted of multiple
layers of sparsity RBMs [34], was used to learn a shared representation of the
audio and visual modalities for speech recognition. The authors discussed two
learning architectures in their paper. The first model investigated was cross-
modality learning, where the model learned to reconstruct both the audio and video
modalities, while only the video was used as an input during the training and testing
stage. The second model was used for the training of the multimodal deep auto-
encoder with both audio and video data. However, two-thirds of the used data had
zero values in one of the input modalities (e.g., video), and the original values were
used in the other input modality (e.g., audio). Experimental results in [41] showed an
improvement over previous handcrafted visual features [20, 38, 74]. However, their
bimodal deep auto-encoder did not outperform their video-only deep auto-encoder,
because the bimodal auto-encoder might not have been optimal when only the visual
input was provided.

Given the inefficiency of the bimodal auto-encoders proposed in [41], Srivastava
et al. [62] used a Deep Boltzmann Machine (DBM), which was first proposed in
[59], for AVSR. Like the deep learning models introduced above, the DBM is also
a method from the Boltzmann machine family of models, and it has the potential
to learn the complex and non-linear representations of the data. Moreover, it can
also exploit information from a large amount of unlabelled data for pre-training
purposes. The major difference between the DBM and other RBM-based models
is shown in Fig. 5. Unlike other RBM-based models, which only employ a top-
down approximation inference procedure, the DBM incorporates a bottom-up pass
with a top-down feedback. Given that the approximation inference procedure of
the DBM has two directions, the DBM model is an undirected model (Fig. 5b),
while other RBM-based models are directed (Figs. 4b and 5a). Because of the
undirected characteristics of the DBM models, the DBM is more capable of
handling uncertainty in the data, and it is more robust to ambiguous inputs [59].

Before applying the DBM model to AVSR, Srivastava et al. [63] first applied the
DBM on image and text classification, which is also a multimodal learning task.
In their work, the image and text data were trained separately using two single-
stream DBMs, and the outputs of these two single-stream DBMs were then merged
to train joint representations of the image and text data. As the image and text data
are highly correlated, it is difficult for the model proposed in [41] to learn these
correlations and produce multimodal representations. In fact, as the approximation
inference procedure is directed, the responsibility of the multimodal modelling falls
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a b

c

Fig. 5 Different deep models. The blue and orange circles represent input units, the red units
represent hidden units, and the green circles represent representation units. (a): A DBN. (b): A
DBM. (c): A multimodal DBM. When we compare (a) with (b), one can note that the DBN model
is a directed model, while the DBM model is undirected
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entirely on the joint layer [63]. In contrast, the model introduced in [63] solved this
challenge effectively because the DBM can approximate the learning model both
from the top-up pass and the bottom-down feedback, which makes the multimodal
modelling responsibility spread out over the entire network [63].

Moreover, as shown in Fig. 5a, the top two layers of the DBN consist of an
RBM (which is an undirected model), while the remaining lower layers form
a directed generative model. Hence, the directed DBN model is not capable of
modelling the missing inputs. Conversely, as the DBM is an undirected generative
model and employs a two-way approximate inference procedure, it can be used to
generate a missing modality by clamping the observed modality at the inputs and
running the standard Gibbs sampler. In [63], the DBM was shown to be capable of
generating missing text tags from the corresponding images. Srivastava et al. [62]
then used this model for the task of AVSR. Experimental results on the CUAVE
[50] and AVLetters [38] datasets showed that the multimodal DBM can effectively
combine features across modalities and achieve slightly better results than the video
deep auto-encoder proposed in [41]. Although this work demonstrated that the
DBM could combine features effectively for speech recognition across audio and
visual modalities, the inference of audio from the visual feature was not discussed.
However, it provides a method that may be able to solve the problem proposed in
[41]-that is, how to generate the missing audio from the video.

Despite these promising results, it should be noted that all of the aforementioned
deep learning-based VSR methods have the objective of learning a more informative
spatio-temporal descriptor that extracts speech-relevant information directly from
the video. However, in order to use deep learning techniques for real-world VSR
applications, sequential inference-based approaches, which are widely used by the
acoustic speech recognition community, need to be developed.

In terms of acoustic continuous speech recognition, Mohamed et al. [40]
developed acoustic phone recognition using a DBN. In this work, MFCCs were
used as an input to the DBN. The DBN was pre-trained layer by layer, followed by
a fine-tuning process that used 183 target class labels (i.e., three states for each of
the 61 phonemes). The output of the DBN represents the probability distribution
over possible classes. The probability distribution yielded by the DBN was fed
to a Viterbi decoder to generate the final phone recognition results. Inspired by
this method, Huang and Kingsbury [27] presented a similar framework for AVSR.
Compared with the Hidden Markov Model/Gaussian Mixture Model (HMM/GMM)
framework, the DBN achieved a 7 % relative improvement on the audio-visual
continuously spoken digit recognition task. This work also presented a mid-level
feature fusion method that concatenated the hidden representations from the audio
and visual DBN, and the LDA was then used to reduce the dimensionality of the
original concatenated hidden representations. At the last stage, the LDA projected
representations were used as inputs to train a HMM/GMM model, and achieved a
21 % relative gain over the baseline system. However, using the DBN for visual-
only speech recognition did not produce any improvements over the standard
HMM/GMM model in [27].
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In addition to the RBM-based deep learning techniques introduced above,
Vincent et al. [71] proposed a Stacked Denoising Auto-encoder (SDA) based on
a new scheme to pre-train a multi-layer neural network. Instead of training the
RBM to initialise the hidden units, the hidden units are learned by reconstructing
input data from artificial corruption. Paleček [47] explored the possibility of using
the auto-encoder to learn useful feature representations for the VSR task. The
learned features were further processed by a hierarchical LDA to capture the speech
dynamics before feeding them into the HMM for classification. The auto-encoder-
learned features produced a 4–8 % improvement in accuracy over the standard DCT
feature in the case of isolated word recognition. However, only the single-layer
auto-encoder was discussed in their paper [47], suggesting that the superiority of
the stacked auto-encoder was not fully analysed. In addition to the conventional
SDA, deep bottleneck feature extraction methods based on SDA [16, 58, 73] were
extensively used in acoustic speech recognition. Inspired by the deep bottleneck
audio features for continuous speech recognition, Sui et al. [70] developed a deep
bottleneck feature learning scheme for VSR. This technique was successfully used
with the connected word VSR, and it demonstrated superior performance over
handcrafted features such as DCT and LBP-TOP [70].

Although RBM-based deep networks and SDA-based methods achieved an
impressive performance for various tasks, these techniques did not take the topolog-
ical structure of the input data into account (e.g., the 2D layout of images and the 3D
structure of videos). However, topological information is very important for visual-
driven tasks, because a large amount of speech-relevant information is embedded in
the topological structure of the video data. Hence, developing a method to explore
the topological structure of the input should help to boost VSR performance. The
CNN model proposed by Lecun et al. [32] can exploit the spatial correlation that is
presented in input images. This model has achieved great success in visual-driven
tasks in recent years [33]. Noda et al. [43, 44] developed a lipreading system based
on a CNN to recognise isolated Japanese words. In their paper, the CNN was trained
using mouth images as input to recognise the phonemes. The parameters of the fully
trained CNN were used as features for the HMM/GMM models. The experimental
results showed that their proposed CNN-learned features significantly outperformed
those acquired by PCA.

A number of deep learning-based methods have achieved promising results in
the case of acoustic speech recognition. However, their use in the task of VSR has
not yet been explored. For example, deep recurrent neural networks [19] have been
recently proposed for acoustic speech recognition. It would be interesting to explore
their applications to VSR in future research.

5 Discussion

This chapter provides an overview of some handcrafted, graph-based and deep
learning-based visual features that have recently been proposed. To compare the
VSR performance achieved by the different visual feature representations, we
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Table 1 Summary of the recently proposed multi-speaker and speaker-independent visual-
only speech recognition performance on popular and publicly available visual speech corpora

Data corpus Feature category Feature extraction methods Classifier Accuracy (%)
AVLetters

Hand crafted

ASM [38] HMM 26.91

Optical Flow SVM 32.31

AAM [38] HMM 41.9

MSA [38] HMM 44.6

DCT SVM 53.46

LBP-TOP [74] SVM 58.85

Graph-based Bakry and Elgammal [2] SVM 65.64

Deep learning
Ngiam et al. [41] SVM 64.4

Srivastava et al. [62] SVM 64.7
OuluVS Hand crafted LBP-TOP [74] SVM 62.4

Graph-based

Ong and Bowden [46] SVM 65.6

Zhou et al. [77] SVM 81.3

Bakry and Elgammal [2] SVM 84.84

Zhou et al. [78] SVM 85.6

Pei et al. [51] SVM 89.7
CUAVE Hand crafted DCT [20] HMM 64

AAM [48] HMM 75.7

Lucey and Sridharan [37] HMM 77.08

Visemic AAM [49] HMM 83

Deep learning
Ngiam et al. [41] SVM 66.7

Srivastava et al. [62] SVM 69.0

list the performance of these methods for three popular publicly available visual
speech corpora in Table 1. The table shows that graph-based and deep learning-
based methods generally perform better than handcrafted feature-based approaches.
Although some geometric-based handcrafted features [37, 48, 49] achieved more
accurate results compared to the graph-based and deep learning-based methods, it is
required that the landmarks on the facial area are laboriously labelled beforehand.
On this basis, the VSR research community generally recognises that graph-based
and deep learning-based methods should be the focus of future research.

Most graph-based and deep learning-based methods have been developed in an
attempt to pose lipreading as a classification problem. However, in order to employ
VSR for connected and continuous speech applications, the VSR problem should
be tackled in a similar way to a speaker-independent acoustic speech recognition
task [29]. In terms of continuous speech recognition, instead of extracting holistic
visual features from the videos, visual information needs to be represented in a
frame-wise manner-that is, the spatio-temporal visual features should be extracted
frame by frame, and the temporal dynamic information needs to be captured by
the classifiers (e.g., HMM). Given that acoustic modelling for speech recognition
using deep learning techniques has been extensively investigated by the speech
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community, and given that some of these systems have already been commercialised
in recent years [26], it is worth investigating whether these methods can be used
for VSR.

Another challenge in the area of VSR is that a large-scale and comprehensive
data corpus needs to be available. Although there are a large number of data corpora
available for VSR research, all of the existing ones cannot satisfy the ultimate
goal, which is to build a practical lipreading system that can be used in real-life
applications. That is, in order to treat the VSR problem in a way that is similar to
continuous speech recognition, which needs to capture the temporal dynamics of
the data (e.g., by using HMMs), a large-scale audio-visual data corpus needs to be
established, as this will provide visual speech in the same context as audio speech.
Currently, popular benchmark corpora such as AVLetters [38], CUAVE [50] and
OuluVS [74] are not fully useful because they are limited in both speaker number
and speech content. In addition, some large-scale data corpora such as AVTIMIT
[23], IBMSR [37], IBMIH [28] are not publicly accessible. Although the publicly
available XM2VTSDB [39] has 200 speakers, the speech is limited to simple
sequences of isolated word and digit utterances. A large-scale and comprehensive
data corpus called AusTalk was recently created [5, 6, 67, 72]. AusTalk is a large
3D audio-visual database of spoken Australian English recorded at 15 different
locations in all states and territories of Australia. The contemporary voices of one
thousand Australian English speakers of all ages have been recorded in order to
capture the variability in their accent, linguistic characteristics and speech patterns.
To satisfy a variety of speech-driven tasks, several types of data have been recorded,
including isolated words, digit sequences and sentences. Given that the AusTalk
data corpus is a relatively new dataset, only a few works have used this data corpus
to date [68–70]. A comprehensive review on the availability of data corpora can also
be found in [79].

This chapter reviewed the recent advances in the area of visual speech feature
representation. One can conclude from this survey that graph-based and deep
learning-based feature representations are generally considered state-of-the-art.
Instead of directly using handcrafted visual features for the VSR task, handcrafted
visual feature extraction methods are widely used during the pre-processing phase
before the extraction of visual features that are finally used for graph-based
and deep learning techniques. Despite the exciting recent achievements by the
VSR community, several challenges still need to be addressed before a system
is developed that can fulfil the specifications of real-life applications. We have
summarised the major challenges and proposed possible solutions in this chapter.
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