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Abstract Facial expressions reliably reflect an individual’s internal emotional state
and form an important part of effective social interaction and communication. In
clinical psychiatry, facial affect is routinely assessed, and any identified deviations
from normal affective range and reactivity may signal the presence of a potential
psychiatric disorder. An example is melancholic depression or ‘melancholia’ where
facial immobility and non-reactivity are viewed as sensitive diagnostic indicators
of the illness. However, affect in depressive disorders such as melancholia, and
indeed psychiatric conditions more broadly, is largely assessed by clinicians,
without biological or computational quantification. While such clinical assessment
provides useful qualitative descriptors of illness features, the inherent subjectivity
of this approach raises concerns regarding diagnostic reliability, and may hin-
der communication between clinicians. Methodological advances and algorithm
development in the field of affective computing have the potential to overcome
such limitations through objective characterization of facial features. Among these
methods are implicit face analysis techniques, which are based on local spatio-
temporal descriptors such as the space-time interest points and Bag-of-Words
framework, and explicit face analysis techniques based on deformable model fitting
methods such as Constrained Local Models and Active Appearance Models. In this
chapter we overview these approaches and discuss their application toward detection
and diagnosis of depressive disorders, in particular their capacity to delineate
melancholia from the residual non-melancholic conditions.
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1 Introduction

Clinical psychiatry has long utilized so-called mental state signs to assist in the
diagnosis of mental disorders. In assessing the presence of a psychiatric disorder,
particular attention is given to appearance, behavior, speech, thought, perception,
insight into illness and, of key relevance to this chapter, mood and facial affect
[1]. The latter contributes to delineating depressive illnesses such as melancholia
from non-melancholic depression, and is typically assessed by clinicians (e.g., psy-
chiatrists). However, such clinical observation is, by virtue of its non-standardized
nature, subjective and thus may not reliably capture the presence or absence
of specific disorders. As more objective means of quantifying facial affect and
emotion emerge, driven largely by advances in affective computing, the diagnosis
of disorders characterized by specific affective signs—such as melancholia—will
be made more valid. Prior to examining the potential utility of these emerging
technologies in depressive illness, we broadly overview conceptual models of
emotion and depression classification, with an emphasis on the relevance of affect
in such disorders.

2 Emotion and Affect

The subjective affective experience of an individual, variably referred to as one’s
‘passions’, ‘emotions’, ‘feelings’, or ‘moods’ have, to this day, largely eluded
definition. Over a century ago, James [2] suggested that emotions evoke a certain
“phenomenal quality”; referring to the notion that emotions are “sensation-like
mental states” [3], and were in effect seen as ‘intuitions’ in response to emotion-
eliciting events. Others (e.g., [4]) challenged James’s notion that emotions were
reflex-like in nature (e.g., fear in response to a bear in the woods), and instead
positioned emotion as an appraisal-based process (e.g., feeling happy or sad towards
an object). Throughout the 1960s, appraisal theories of emotion dominated [5], but
even to this day there continues to be an ongoing philosophical debate over what
constitutes an emotional state [6]. The fundamental biological and psychological
processes underlying the above theories of emotion generation and/or appraisal
are referred to as the ‘evolutionary core’ [3]—that is, a set of discrete emotion
mechanisms aligned to one’s “basic” emotions.

There have been several dominant theories in the field of psychology that
offer insight into such basic emotions. Beginning with McDougall [7], emotion
was defined as a small set of adaptive processes, so-called emotional instincts,
and included the behaviorally well-defined emotions of flight, repulsion, curiosity,
pugnacity, self-abasement, self-assertion, and the parental instinct [8]. Most modern
variants of discrete emotion theory correspond at least partially to McDougall’s
model. For instance, Tomkins [9–11], who is credited with the development of
“affect theory”, considered there to be nine independent affects: two positive
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(enjoyment/joy and interest/excitement), one neutral (surprise/startle), and six
negative affects (anger/rage, disgust, dissmell [similar to distaste], distress/anguish,
fear/terror, and shame/humiliation). Likewise, Izard [12] considered fear, anger,
shame, contempt, disgust, guilt, distress, interest, surprise, and joy to be primary
emotions, and with various combinations of these giving rise to tertiary emotions
(e.g., such as affection). While the basic emotions were initially believed to be
largely subjective states of mind, Ekman [13] postulates that seven basic emotions
correspond near-universally to observable facial expressions, namely anger, disgust,
fear, happiness, sadness, surprise, and contempt. Such categorical definitions of
emotion have received substantial empirical support, but there is also a question
as to whether affect can be conceptualized dimensionally [14]; that is that emotions
exist along interrelated continuums of, for example, arousal and valence [15].

It has been suggested that discrete (i.e., categorical) emotion theory provides
a more accurate index of the current, momentary experience of emotion, while
dimensional perspectives may be most relevant to temporal emotional experience,
such as mood states [16]. Rather than being mutually exclusive, however, it is
likely that both viewpoints are pertinent to affective states such as depression. The
work of Ekman in particular [17], which highlights the importance of emotional
expressions, is especially relevant for quantifying affect. Indeed, ‘affect display’
refers to the externally displayed (i.e., observable) affect of an individual, through
facial, vocal or gestural means. When affect is in line with the subjective mood
state of an individual, it is termed ‘congruent affect’, but when subjective states
and affect is misaligned it is referred to as ‘incongruent affect’. As will become
apparent throughout this chapter, affect in depression is typically congruent with
the individual’s self-reported, subjective mood state; for instance, subjective low
mood or sadness is often identifiable in the depressed patient through observation
of a flat and/or non-reactive affect.

2.1 What Precisely Is an Affective Disorder?

Historical descriptions of disordered affective states date back over 2000 years.
Hippocrates described the existence of “melancholia” as a disease-like state arising
from an excess of black bile (this being one of four ‘humors’, or bodily fluids,
that were thought to directly influence health and temperament). Current day
formulations of melancholia position it as the prototypical depressive disease,
principally of biological and genetic origin [18], which presents with characteristic
clinical features such as psychomotor slowing (i.e., physical slowing, concentration
impairment), anergia, anhedonia, diurnal mood variation (mood worse in the
morning), early morning wakening, and appetite and weight loss. Despite evidence
for the existence of melancholia as a distinct condition, it was largely abandoned
in psychiatric circles in 1980 with the introduction of the Diagnostic and Statistical
Manual of Mental Disorders (DSM), which popularized ‘symptom-centric’ models
of affective illness. Its third edition (DSM-III) [19] brought three psychiatric
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disorders under the diagnostic umbrella of the ‘affective disorders’, including
major depression (subsuming melancholia), bipolar disorder (depression and/or
hypomania or mania) and dysthymia (chronic low mood, defined as having fewer
symptoms than major depression). Under the DSM framework, symptom reports
by patients guide diagnostic decisions, which in isolation are thought to contribute
to misdiagnosis, thus impacting on appropriate management [18]. Hence, while the
affective disorders began with melancholia as observable illness states, they are now
characterized by the severity of symptoms. It is argued that this has contributed
to an era of insipidity in depression research, and is of limited clinical import.
Here, we argue that there is scope for departure away from dimensional accounts
of depression (e.g., major depression), back to more refined categorical depressive
subtypes (e.g., melancholic vs. non-melancholic conditions).

3 The Case for Objectively Informed Classification
of Depression Subtypes

The classification of depression has long been contentious, with numerous typolo-
gies being proposed since the beginning of the twentieth century. So-called ‘simple
typologies’ conceptualized depression as comprising anywhere between one and
five categories. The father of modern psychiatry, Emil Kraepelin, distinguished
between dementia praecox (now schizophrenia) and manic-depressive insanity [20].
All major affective disturbances, namely mania and depression, were thought by
Kraepelin to be part of the same illness (manic-depressive insanity). In 1926,
British psychiatrist Edward Mapother at the Maudsley Hospital in London claimed
[21] that there was only one form of depression, and did not distinguish between
depressive subtypes—and hence saw depression as varying along a continuum. The
influential theories of Kraepelin and Mapother laid the foundations for a move
toward unitary models of depression. Sir Aubrey Lewis, an eminent psychiatrist
at the same institute as Mapother, also viewed all depressions as essentially the
same (and hence proposed a single category, “depressive illness”), but conceded that
there are likely differences between individuals regarding its causation: specifically
depressions that are more hereditary versus those caused by environmental factors
[22].

The “separatists” opposed the unitary view of depression from the mid-twentieth
century, arguing that depression could be classified into different types [23]. Such
categorical views principally saw the diagnosis and classification of depression
according to a “binary” model—differentiating those of ‘constitutional origin’ (i.e.,
caused from within the individual) versus those that were reactions to environ-
mental stressors. There have been several examples in the literature that support
the existence of different depressive subtypes, which is typically achieved by
identifying differences between groups on some metric (e.g., clinical or self-report
ratings of an illness variable). Kiloh and Garside [24] quantified the independence



The Utility of Facial Analysis Algorithms in Detecting Melancholia 363

of neurotic and endogenous (synonymous with melancholic) depressives through
analysis of reported symptoms and clinical variables. Features such as psychomotor
retardation and concentration difficulties correlated with the diagnosis of endoge-
nous depression, whereas ‘reactivity of depression’ (by which it is assumed to
mean reactivity of affect), irritability and variability of illness were correlated with
neurotic depression. Similarly, a ‘point of rarity’ was identified between endogenous
and neurotic depressives in a series of papers from the Newcastle school [25, 26].
Here, clinical ratings of depressive symptoms and signs, along with personality and
anxiety, were shown to differentiate endogenous and neurotic depressive subgroups.
Again, psychomotor change was more prevalent in the endogenous group than the
neurotic group. Despite strong support for the notion that endogenous depression
is a categorically distinct entity (one either has it or does not), and that neurotic
depression consisted of symptoms varying dimensionally [23], it was abandoned
under the DSM system in favor of a dimensional approach to diagnosis.

‘Melancholia’ was retained in DSM-III (and subsequent iterations of DSM),
albeit in much-diluted form, as a ‘specifier’ diagnosis [19]. The retaining of a melan-
cholic specifier allows for diagnosis of major depression with melancholic features,
but has been criticized for its focus on symptom expression (a severity framework),
while also explicitly disregarding differing aetiological contributions [18]. In the
DSM, melancholia is diagnosed by the presence of additional symptoms of anhedo-
nia (reduced interest or reactivity to previously pleasurable events) and psychomotor
slowing, amongst others, which are present in almost all individuals with clinically
significant depression [27]. Observable (not just reported) psychomotor disturbance
has been proposed as a specific diagnostic marker of melancholia, which aligns
with some of the earliest definitions of the disorder, from classical antiquity, where
“symptoms : : : were not part of the concept” ([6] p. 298). We therefore developed a
clinician-rated scale (the CORE) to measure psychomotor disturbances in depressed
patients [28]. The tool allows rating of 18 clinical signs (observable features)
across the domains of non-interactiveness (including features such as emotional
non-reactivity and inattentiveness), retardation (including slowed motor movements
and facial immobility), and agitation (including facial apprehension and motor
agitation). Clinically diagnosed melancholia (still arguably the “gold standard” in
diagnosing the condition) was associated with “substantial” CORE scores. In these
studies a score of >8 defined “substantial” psychomotor disturbances [27], with
such scores being representative of those with melancholia but not those with non-
melancholic depression. Despite the high sensitivity in detecting melancholia, such
systems—much like clinical diagnosis—require extensive training and exposure to
appropriate clinical populations (i.e., in services where those with melancholia are
likely to present) to be of any benefit. Several investigators, including our own
research team, have thus sought to clarify biological correlates of melancholia in
the hope that any identified perturbations will eventually assist in its diagnosis.

Throughout the late 1970s and early 1980s there were many investigations into
disturbances of hypothalamic-pituitary-adrenal (HPA) axis function in depressive
illness [29]. The HPA axis plays a central role in regulating homeostasis of
many physical systems, including the metabolic, reproductive, immune, and central
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nervous systems [30]. Insights into the function of this system in depression has
been achieved by challenging patients with the synthetic corticosteroid, dexam-
ethasone (DEX), and then observing fluctuations in plasma cortisol—referred to
as the DEX suppression test or DST. It was seen as a watershed for psychiatry
when Carroll and colleagues [31] reported that 48 % of those with primary
depression were DEX ‘non-suppressors’, compared to only 2 % of other psychiatric
patients. Carroll et al. [32] subsequently demonstrated that the DST had utility
in detecting melancholic depression, with sensitivity of 67 % and specificity
of 96 %. This measure hence appeared to be highly informative in depressive
subtyping (i.e., nearly all non-melancholic patients were correctly classified as
not having melancholia). Despite such promising early findings, the DST lost
favor as a diagnostic tool in the mid-1980s after the DSM-III was introduced—
given it lacked sensitivity in later studies using broader diagnostic criteria [33].
Since then, disruptions across other cognitive and biological systems have been
identified with specificity to the melancholic phenotype, and include working
memory impairments and disturbances in sleep architecture [34]. Our team also
recently identified a neurobiological signature for melancholia [35]—which was not
observed in non-melancholic depression—involving disrupted integration of brain
regions supporting interoception and attention.

While such research has been of key importance in understanding the underlying
causes of melancholia, their use as diagnostic tools will continue to be limited
given their invasiveness, relatively high cost, and difficulty of access (e.g., in rural
areas). Facial imaging has the potential to overcome these barriers and become
an important tool in the diagnosis of melancholia. In the following sections we
overview methodological advances in facial imaging research, and highlight the
utility of the methods in contributing to an objectively-informed diagnostic tool for
depressive disorders.

4 Methodological Considerations for Quantifying Facial
Affect in Depression

Significant advances have been made for inferring affect using facial imaging over
the past two decades [36–40]. In this section we discuss the general methodological
approaches of affect recognition based on facial analysis. A typical facial analysis
system has the following main components: face and fiducial points (facial parts
location) detection, feature extraction, and classification. Figure 1 depicts the main
components of such a system. Once the image has been captured, face detection
algorithms, such as the popular Viola-Jones (VJ) detector [41], are used to locate
the face. Next, fiducial points are inferred using parametric models such as the
widely used Active Appearance Models (AAM) [42]. Once the location of facial
parts such as the eyes and mouth are known, facial features are computed. Features
can be extracted either on a holistic level or on individual parts of the face. The
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Fig. 1 A typical FAR system

individual features computed in the latter case are concatenated to construct the
final feature vector. Further, dimensionality reduction methods such as Principal
Component Analysis (PCA) can be applied to the feature vector. This provides a
compact and less noisy feature representation capable of higher discrimination (e.g.,
between features). The classifier then categorizes a given face into differing affective
states (such as depressed/non-depressed, various emotion types, and continuous
valence/arousal labels etc). The components of a facial affect recognition (FAR)
system are discussed in detail in the following sections.

4.1 Face and Fiducial Points Detection

One of the most widely used face detectors is the classic VJ face detector [41].
It is based on a cascade-boosting framework [43] in which haar-like features are
extracted using an integral image. The use of an integral image leads to near
real-time execution of the face detection method. The cascade classifier scans
an image using a sub-window at different scales and localizes the regions that
are labeled as faces by the classifier. The Adaboost algorithm is also applied for
selecting discriminative haar-features during the training phase of the classifier. The
cascade classifier consists of various weak classifiers, which together act as a strong
classifier. The use of weak classifiers early on allows fast rejection of patches that
do not resemble faces. The open source computer vision library, OpenCV, contains
an implementation of the VJ object detector. For multi-view face detection, multiple
models are learned for different head poses [44]. These select features using forward
feature selection before training the cascade classifier.

There are several other facial detection methods, including energy-based models
which infer the face location and head pose simultaneously [45], and vector
boosting-based methods where a tree representation is proposed for dividing the face
space into smaller subspaces [46]. The power of non-rigid deformable models stems
from the low-dimensional representation of the shape and texture of a face they
provide. One of the earliest deformable model methods is the Active Contour Model
[47]. The Active Shape Model (ASM) algorithm [48] models the shape of an object
and has been used extensively in face tracking. During the training process, the
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landmark points of all input samples are aligned into a common co-ordinate frame
using Procrustes analysis. Following this, the model is computed by applying PCA
over the shapes. The shape of the model can be controlled/changed via parameters
of deformation. Then, fitting of the model can be performed on a new image using
an iterative method, which calculates the best match for the model boundary and
hence decides the new location for the model points.

4.2 Active Appearance Models

The Active Appearance Models (AAM) are an extension of the ASM. However,
they not only model the shape but also consider the grey-level appearance. During
the training process the grey-level appearance is modeled by warping each training
sample image using a triangulation algorithm that aligns it to the mean shape.
The grey-level information is then sampled and PCA is applied to the samples.
Hence, this model can then be fitted to a new image using an optimization
algorithm that uses the difference between intensities of the learnt model and
the reference image. There are a number of AAM fitting algorithms that can
be broadly classified into two classes: generative and discriminative fitting. In
generative fitting (Fixed Jacobian [42], Project Out Inverse Compositional [49],
Simultaneous Inverse Compositional [50]), minimization/maximization of some
measure of fitness between the model’s texture and warped image region is applied
to the image. In discriminative fitting (Iterative Error Bound Minimization [51],
Haar-like Feature Based Iterative Discriminative Method [52]) a relationship is
learned between the features and the parameters, by using the features extracted
from parameter settings, which are perturbed from their optimal setting in each
image. The disadvantage of AAM is their limited generalizability to unobserved
subjects. AAM’s can be classified as subject-dependent or subject-independent.
Subject-dependent AAM is best suited to scenarios when the train and test images
have the same subjects. Subject-independent modeling is for situations where the
subjects in the train and test set are different. In one of the earliest works in
automatic depression analysis, McIntyre et al. [53] and Cohn et al. [54] used subject-
dependent AAM for facial part detection. In such studies, the facial points were used
as feature descriptors for learning a classifier.

Constrained Local Models (CLM) [55] are an extension of the AAM algorithms.
The texture is divided into blocks. This helps in generalization and better subject-
independent performance. Subject-dependent AAM methods perform better than
subject-independent CLM [56]. However, the current state-of-art descriptors com-
pensate for small errors introduced by subject-independent CLM [56]. Another
limitation of both AAM and CLM is their requirement of large volumes of labeled
data representing different scenarios, such as illumination, pose and expression
during training. However, despite the advantages, labeling fiducial points is a
manually laborious and erroneous task.
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4.3 Pictorial Structure

In the Pictorial Structure (PS) framework [57], an object is represented as a graph
with n vertices V Dfv1, : : : ,vng for the parts and a set of edges E, where each (vi,
vj) 2 E pair encodes the spatial relationship between parts i and j. For a given
image I, PS learns two models. The first one learns the evidence of each part
as an appearance model, where each part is parameterized by its location (x, y),
orientation � , scale s, and foreshortening. All of these parameters (together referred
to as D) are learned from exemplars and produce a likelihood model for I. The
second model learns the kinematic constraints between each pair of parts in a
prior configuration model. L is the parts configuration. Given the two models, the
posterior distribution over the whole set of part locations is:

p
�

L
ˇ̌
ˇI; D / ˛ p. I

ˇ̌
ˇL; D

�
(1)

where p(IjL, D) measures the likelihood of representing I in a particular con-
figuration and p(LjD) is the kinematic prior configuration. A major problem of
this framework is the low contribution of the occluded parts, resulting in either
erroneous or missed detection of these parts, leading to inaccurate pose estimation.
Everingham and colleagues [58] proposed a PS based fiducial point detector, which
is initialized using the VJ face detector. Recently, Zhu and Ramanan [59] proposed
an extension to the PS framework by adding mixtures representing different face
poses. This latter study performed face and fiducial point detection and head pose
inference in the one framework. The face detector performs better than the VJ face
detector. The disadvantage of the PS based method as used by Everingham et al.
[58] is that it requires initialization from a face detector like VJ. However, Zhu and
Ramanan [59] overcome this limitation by using multiple pose as mixture detectors.

Selecting the appropriate face and fiducial point detector is problem driven.
For example, in the case of affect analysis, it is desirable that the system should
generalize over subjects. Joshi et al. [60] used the PS framework of Everingham
and colleagues [58] for fiducial points detection. Even though the Mixture of
Pictorial Structures (MoPS) framework performs better than the PS method, our
own research group [60] prefer the use of PS. We argue that the inference time for
MoPS is substantially longer than that obtained in the Everingham et al. [58] study,
which matters when analyzing long duration depression video clips. Furthermore,
such work can utilize spatio-temporal descriptors (Local Binary Pattern in Three
Orthogonal Planes (LBP-TOP) [61]) that compensate for algorithm error. On the
other hand, applications such as facial performance transfer [62] require accurate
fiducial points. Asthana and colleagues [62] use subject dependent AAM models as
they are more accurate as compared to CLM and subject-independent AAM.
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4.4 Facial Descriptors

Once the face and facial parts location is identified and aligned, feature descriptors
are computed for extracting information for learning classifiers. FAR techniques can
be segregated on the basis of the type of descriptors used, broadly classified as either
geometric- or appearance-based features. Geometric features [63–65] correspond to
facial points and to the location of different facial parts. Appearance features gener-
ally correspond to face texture information [61, 66, 67]. Furthermore, facial feature
descriptors can be divided on the basis of temporal information (i.e., spatio-temporal
descriptors [61] and frame-based descriptors [67]). A popular method for modeling
geometric features is based on Facial Animation Parameters (FAP), defined in the
MPEG-4 video-coding standard. Lavagetto and Pockaj [68] present a method for
synthesizing facial animations using FAP and Facial Definition Parameters (FDP).
Similarly, Sebe and colleagues [69] use the Piecewise Beizier Volume Deformation
(PBVD) tracker for tracking facial parts. The motion information between two
consecutive frames is measured using template matching.

Various classifiers can also be compared, allowing insight to be gained as to their
utility in depression classification. Asthana et al. [70] compute geometric features by
fitting AAM models on input faces. They compared various AAM fitting techniques
and experimented on a Cohn-Kanabe (CKC) database. One of the limitations of this
work is that it required manual initialization of facial parts. Dhall and colleagues
[63] propose the use of the geometric descriptor algorithm, “Emotion Image” (EI).
This feature constructs a visual map based on an undirected map derived from a
facial points detector. EIs of two faces (images) is compared using the Structural
Similarity Index Metric (SSIM) of Wang et al. [71], allowing computation of
their similarity, and is applied to the problem of expression based album creation.
The discriminative ability of EI is dependent on fiducial point detection quality,
which may introduce some errors when the fiducial points detection is not very
accurate. Valstar and Pantic [72] showed that the performance of geometric features
is similar to that of the appearance features. However, the limitation of geometric
features comes from their dependence on accurate facial parts location information.
Facial parts detection is relatively accurate on lab-controlled scenario data; however,
it is still an open problem for images in real-world conditions. If there is an
error in the facial parts detection, the error generally propagates in the geometric
feature representation. Chew et al. [56] argue that appearance descriptors are able
to compensate error produced by facial parts detectors to some extent. Popular
appearance descriptors are described below.

4.4.1 Local Binary Patterns (LBP)

The LBP family of descriptors has been extensively used in computer vision for
texture and face analysis [59, 73, 74]. The LBP descriptor assigns binary labels to
pixels by thresholding the neighborhood pixels with the central value. Therefore,
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for a center pixel p of an image I and its neighboring pixels Ni, a decimal value d is
assigned to it:

d D
kX

iD1

2

i�1

I .p; Ni/

where I .p; Ni/ D
n

1 if c<Ni
0 otherwise

(2)

4.4.2 Local Binary Pattern-Three Orthogonal Planes (LBP-TOP)

Local Binary Pattern-Three Orthogonal Planes (LBP-TOP) [61] is a popular
descriptor in computer vision. It considers patterns in three orthogonal planes: XY,
XT and YT, and concatenates the pattern co-occurrences in these three directions.
The local binary pattern (LBP-TOP) descriptor assigns binary labels to pixels by
thresholding the neighborhood pixels with the central value. Therefore, for a center
Op of an orthogonal plane O and its neighboring pixels Ni, a decimal value d is
assigned to it:

d D
XY;XT;YTX

O

X
p

kX
iD1

2i�1I
�
Op; Ni

�
(3)

Joshi et al. [75] proposed a LBP-TOP based framework for analyzing depression
data. The video clips were divided into temporal slices and LBP-TOP was computed
on each time slice. Temporal slicing helps in encoding spatio-temporal changes.
Further, a Bag-of-Words (BoW) representation was learnt with LBP-TOP from
each temporal slice from an interview-based video (a ‘document’). BoW-based
representations come from the domain of document processing. A BoW feature
represents a document (image/video) as an unordered set of frequencies of words.
Li and colleagues [76] were the first to use a BoW for FAR—they fused PHOG-
and BoW-based histograms constructed from a dictionary based on Scale Invariant
Feature Transform (SIFT). Even though BoW-based vectors can represent the
frequency of different stages of an expression, the temporal sequencing information
is still missing. To overcome this problem, a data-driven technique was recently
proposed to explicitly encode the temporal information using n-grams. Bettadapura
et al. [77] performed experiments on human action recognition and activity analysis
and showed that adding temporal sequencing information based on their method
increases the accuracy of the BoW-based techniques.

The facial descriptor representation modeled on computing features based on the
output of the facial parts detection module can be referred to as explicit modeling
of affect. Here, an explicit model (face model) is used to localize the facial parts. In
a different approach (implicit modeling), Joshi et al. [60] proposed the computation
of Space Time Interest Points (STIP) [78] on the upper body of a subject in the
video frame in depression. STIP are widely used in the computer vision community
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Fig. 2 The figure describes the STIP computation on a video from FEEDTUM database [42]. The
blocks represent the gradient information [41] around the generated interest points. The HOG and
HOF features represent the local spatio-temporal movements

for human action recognition. STIP are salient spatio-temporal locations in a video,
where a change has occurred. These are based on a 3D extension of the 2D Harris
interest point detector. Once an interest point is detected, Histogram of Gradients
(HOG) and Histogram of Flow (HOF) is computed around the interest point. Joshi
et al. [75] computed STIP on the upper body and compared the performance with
face area only STIP in depressed subjects. Further, a BOW is learnt on HOG and
HOF features generated around the interest points. Figure 2 describes the STIP
computation on a sample from the FEEDTUM database [79].

Note that the yellow ellipses around the eyes and mouth are the interest points
generated. The regions of interest around the interest points are scaled up, and
gradient information is shown (as demonstrated previously [80]). It is easy to notice
that the two gradient blocks around the same region of interest (i.e., right tip of
the mouth) show different gradients due to changes in facial expression. The flow
information here describes the motion change around the interest point on the right
tip point of the mouth. Hence, STIP captures local movements on a holistic level
(full-face), and information is captured implicitly without having to use any output
from a facial parts localization method.
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4.5 Objective Identification of Melancholia

Many of the above methods have recently been used to facilitate better identification
of those with depression. Williamson and colleagues [81] showed that depression
was associated with changes in the coordination and movement of facial gestures
using facial action units. When used in multivariate modeling, such facial features
were predictive of self-reported depressive symptomatology, highlighting the utility
of the approach in quantifying the depressive syndrome. There is also evidence
to suggest that facial landmark fitting (66 points to the face on each frame)
allows robust prediction of affective dimensions (i.e., valence/arousal) and global
depression state (measured through self-rated depression scores) [82]. In addition,
the predictive capacity of facial imaging in detecting depression appears to increase
with the addition of other ‘affective computing’ data modalities. Pérez-Espinosa
and colleagues [83] demonstrated that fusing affective dimensions and audiovisual
features (facial imaging) allowed for accurate construction of depression recognition
models. Whilst no studies have directly examined the performance of the methods
above in classifying different types of depression such as melancholia, we propose
that they will likely be of significant benefit in future studies. Indeed, our own
research team recently completed recruitment for a large facial imaging study
of those with melancholic depression, those with a non-melancholic depression,
and healthy controls, to determine whether the above methods could be used to
accurately classify these groups. Preliminary analyses using data from this study
have been completed [84], and analyses are now underway to determine whether
melancholia can be detected on the basis of its unique, and quantifiable, facial
features.

5 Summary and Future Trends

In this chapter we have reviewed the role of facial imaging technologies in detecting
affective states, and specifically the potential of emerging methods in classifying
depressive disorders. Methodological advances and continuing algorithm develop-
ment in the field of affective computing have the potential to offer unique insights
regards depression detection. Objective characterization of facial expressions with
specificity to melancholia will be the next step in determining the overall clinical
utility of these methods. Based on the literature to date, however, facial imaging
technologies are well positioned to contribute to the assessment and monitoring of
depressive disorders.
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