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Abstract Analysis and modeling of aging human faces have been extensively
studied in the past decade for applications in computer vision such as age estimation,
age progression and face recognition across aging. Most of this research work is
based on facial appearance and facial features such as face shape, geometry, location
of landmarks and patch-based texture features. Despite the recent availability of
higher resolution, high quality facial images, we do not find much work on the
image analysis of local facial features such as wrinkles specifically. For the most
part, modeling of facial skin texture, fine lines and wrinkles has been a focus in
computer graphics research for photo-realistic rendering applications. In computer
vision, very few aging related applications focus on such facial features. Where
several survey papers can be found on facial aging analysis in computer vision,
this chapter focuses specifically on the analysis of facial wrinkles in the context
of several applications. Facial wrinkles can be categorized as subtle discontinuities
or cracks in surrounding inhomogeneous skin texture and pose challenges to being
detected/localized in images. First, we review commonly used image features to
capture the intensity gradients caused by facial wrinkles and then present research in
modeling and analysis of facial wrinkles as aging texture or curvilinear objects for
different applications. The reviewed applications include localization or detection
of wrinkles in facial images, incorporation of wrinkles for more realistic age
progression, analysis for age estimation and inpainting/removal of wrinkles for
facial retouching.
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1 Introduction

Facial skin wrinkles are not only important features in terms of facial aging but can
also provide cues to a person’s lifestyle. For example, facial wrinkles can indicate
the history of a person’s expressions (smiling, frowning, etc.) [15], or whether the
person has been a smoker [29], or has had sun-exposure [35]. Some of the factors
influencing facial winkles are a person’s lifestyle, overall health, skin care routines,
genetic inheritance, ethnicity and gender. Hence, computer-based analysis of facial
wrinkles has great potential to exploit this underlying information for relevant
applications.

Face analysis is one of the main research problems in computer vision and facial
features such as shape, geometry, eyes, nose, mouth, are analyzed in one way or
another for different applications. However, research has been lacking in image-
based analysis of facial wrinkles specifically. For example, a review of two good
survey papers on facial aging analysis [14, 34] points to the absence of wrinkle
analysis in facial aging research. As our review suggests, this can most probably be
attributed to the following reasons:

Image quality: Lack of publicly available benchmark aging datasets with high
resolution/high quality images clearly depicting facial wrinkles.

Age period: Lack of proper age period covered in aging datasets; most of these
datasets do not have sufficient number of sample images of subjects with age 40
and more.

Challenges in wrinkle localization: Even in case of availability of high quality
images of aged skin, facial wrinkles are difficult facial features to localize and
hence are not commonly incorporated as curvilinear objects in image analysis
algorithms.

Physically, skin wrinkles are 3D features on skin surface along with other
features such as pores, moles, scars, dark spots and freckles. Most of these features
are visible in 2D images due to their color or the particular image intensities they
create. Image processing techniques interpret such image components as edges,
contours, boundaries, texture, color space, etc. to infer information. The challenge
arises when skin wrinkles cannot be categorized strictly as one of these categories.
For example, despite causing image intensity gradients, wrinkles are not continuous
as typical edges or contours. Wrinkles cannot be categorized as texture because
they do not depict repetitive image patterns which is the defining characteristics
of image textures. Wrinkles cannot be categorized as boundaries between two
different textures as well as they appear in skin. The closest description of how
wrinkles appear in a skin image can be as irregularities, discontinuities, cracks or
sudden changes in the surrounding/background skin texture. A parallel can be drawn
between the skin texture discontinuities caused by wrinkles in images and the cracks
present in industrial objects like roads, steel slabs, rail tracks, etc. However, only
in this case, more often than not, the background skin texture is not as smooth or
homogeneous as that of a steel slab or road surface. The granular/rough/irregular
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Fig. 1 A block diagram of the two approaches commonly employed to analyze facial aging

3D surface of skin appears as nonuniform or inhomogeneous image texture making
it more difficult to localize wrinkles in surrounding skin texture. Although, a
framework based on 3D analysis of skin surface would be better suited to draw
conclusions based on facial wrinkles, such setups are not readily available to be
used frequently.

In this chapter, we focus on research conducted on the analysis of facial wrinkles
for applications in computer vision and leave out those in computer graphics. This
research can be loosely categorized as following one of the two approaches. In the
first and relatively more popular approach, wrinkles are considered as so-called
‘aging skin texture’ and analyzed as image texture or intensity features. In the
second approach, wrinkles are analyzed as curvilinear objects, localized automat-
ically or hand-drawn. Figure 1 depicts a block diagram of the two approaches.
Each approach starts with an analysis of input image to obtain image features
which can be simple image intensity values or image features obtained after some
sort of filtering. Then, in texture-based approaches, image features are analyzed
directly as illustrated by path ‘B’ in the diagram. In approaches based on wrinkles
as curvilinear objects, an intermediate step is included in path ‘A’ for the extraction
of curvilinear objects or localization of wrinkles before any other analysis. In
Sect. 3 we will review work following the first approach, incorporating wrinkles
as image texture, and in Sect. 4 we will review work following the second approach,
incorporating wrinkles as curvilinear objects. However, first of all, we will mention
early work on image-based analysis of facial wrinkles. Then, in Sect. 2, we will
review briefly image filtering techniques applied to highlight intensity gradients
caused by wrinkles. Table 1 presents a summary of the work reviewed in this
chapter, the corresponding analysis approaches and applications.

Earlier Work As mentioned earlier, modeling of facial wrinkles and finer skin
texture has been done commonly in computer graphics to obtain more realistic
appearances of skin features. Specifically significant efforts have been reported
on photo-realistic and real-time rendering of skin texture and wrinkles on 3D
animated objects. This work typically follows the main approach of generating
a pattern of skin texture/wrinkles based on some learned model and then render
the resulting texture on 3D objects. Hence, most of the earlier work focused on
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Fig. 2 Eight basic wrinkle masks corresponding to different gender, shape of the face and smiling
history (reproduced from [6])

developing generic skin models for 3D rendering. The research work focusing
on other applications include work by Kwon and da Vitoria Lobo [21, 22] on
localization of wrinkles for age determination (described in detail in Sect. 4.2).
Magnenat-Thalmann et al. [25] and Wu et al. [43] presented a computational model
for studying the mechanical properties of skin with aging manifested as wrinkles.
The model was intended to analyze different characteristics of wrinkles such as
location, number, density, cross-sectional shape, and amplitude, as a consequence
of skin deformation caused by muscle actions. Boissieux et al. [6] presented 8 basic
wrinkle masks (Fig. 2) for aging faces corresponding to different gender, shape
of the face and smiling history after analyzing skincare industry data. Figure 2
illustrates the eight patterns included in their work.

Cula et al. [11] presented a novel skin imaging method called bidirectional
imaging based on quantitatively controlled image acquisition settings. The pro-
posed imaging setup was shown to capture significantly more properties of skin
appearance than standard imaging. The observed structure of skin surface and its
appearance were modeled as a bidirectional function of the angles of incident
light, illumination and observation. The enhanced observations about skin structure
were shown to improve results for dermatological applications. Figure 3 depicts the
variations in the appearance of a skin patch due to different illumination angles.

2 Image Features for Aging Skin Texture

In this section, we review image filtering techniques commonly applied to highlight
intensity gradients caused by wrinkles as well as image features based on aging
appearance and texture. Most of the applications reviewed in the later sections make
use of one or more of these features.
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Fig. 3 A skin patch imaged using different illumination angles (reproduced from [11])

Laplacian of Gaussian The Laplacian is a 2-D isotropic measure of the second
spatial derivative of an image. The Laplacian of an image highlights regions of
rapid intensity change and is therefore often used for edge detection (e.g. zero
crossing edge detectors). Since image operators approximating a second derivative
measurement are very sensitive to noise, the Laplacian is often applied to an image
that has first been smoothed with something approximating a Gaussian smoothing
filter in order to reduce its sensitivity to noise, and hence, when combined, the
two variants can be described together as Laplacian of Gaussian operator. The
operator normally takes a single gray level image as input and produces another
gray level image as output. Because of the associativity of the convolution operation,
the Gaussian smoothing filter can be convolved with the Laplacian filter first, and
then convolved with the image to achieve the required result. The 2D LoG function
centered on zero and with Gaussian standard deviation � has the form:

LoG.x; yI �/ D � 1

��4

�
1 � x2 C y2

2�2

�
exp.�x2 C y2

2�2
/: (1)

Hessian Filter The Hessian filter is a square matrix of second-order derivative and
is capable of capturing local structure in images. The eigenvalues of the Hessian
matrix evaluated at each image point quantify the rate of change of the gradient
field in various directions. A small eigenvalue indicates a low rate of change in the
field in the corresponding eigen-direction, and vice versa. The Hessian matrix H of
the input image I, consisting of 2nd order partial derivatives at scale � , is given as:

H D
"

@2I
@x2

@2I
@x@y

@2I
@y@x

@2I
@y2

#
D
�

Ha Hb

Hb Hc

�
: (2)

In order to extract the eigen-direction in which a local structure of the image is
decomposed, eigenvalues �1; �2 of the Hessian matrix are defined as:

�1.x; y W �/ D 1

2

�
Ha C Hc C

q
.Ha � Hc/2 C H2

b

�
; (3)
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�2.x; y W �/ D 1

2

�
Ha C Hc �

q
.Ha � Hc/2 C H2

b

�
:

Different Hessian filters vary in ways the eigenvalues are analyzed to test a
hypothesis about image structure. For example, to determine if a pixel corresponded
to a facial wrinkle or not Ng et al. [27] (described in Sect. 4) defined the following
similarity measures R and S to test the hypotheses:

R.x; y W �/ D .
�1

�2

/2; (4)

S.x; y W �/ D �2
1 C �2

2:

Steerable Filter Bank Freeman and Adelson proposed a steerable filter [12, 17] to
detect local orientation of edges. For any arbitrary orientation, a steerable filter can
be generated from a linear combination of basis filters where the basis filter set for
a pixel p is given by:

G.p/ D
�

@2g.p/

@x2
C @2g.p/

@x@y
C @2g.p/

@y2

�
; (5)

where g.p/ denotes Gaussian function of R2, the most used example of steerable
filters. Let the interpolating function of orientation � be given as:

k.�/ D �
cos2.�/ � sin 2� sin2 �

�T
: (6)

Then the steerable filter associated with the orientation � can be obtained as
g� .p/ D kTG.p/ and can be used to extract image structure in that orientation using
convolution.

Gabor Filter Bank Gabor operator is a popular local feature-based descriptor due
to its robustness against variation in pose or illumination. The real Gabor filter kernel
oriented in a 2D image plane at angle ˛ is given by:

Gab.x; y/ D 1

2��x�y
exp

"
�1

2

 
x
0

�2
x

C y
0

�2
y

!#
cos.2� fx0/; (7)

where

�
x0
y0
�

D
�

cos ˛ sin ˛

� sin ˛ cos ˛

� �
x
y

�
: (8)

Let fGabk.x; y/; k D 0; � � � ; K � 1g denote the set of real Gabor filters oriented at
angles ˛k D � �

2
C �k

K where K is the total number of equally spaced filters over
the angular range

���
2

; �
2

�
. Then Gabor features can be obtained by convolving this

Gabor filter bank with the given image.
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Local Binary Pattern (LBP) Ojala et al. [28] introduced the Local Binary Patterns
(LBPs) to represent local gray-level structures. LBPs have been used widely as
powerful texture descriptors. The LBP operator takes a local neighborhood around
each pixel, thresholds the pixels of the neighborhood at the value of the central pixel
and uses the resulting binary-valued integer number as a local image descriptor.
It was originally defined for 3-pixel neighborhoods, giving 8-bit integer LBP
codes based on the eight pixels around the central one. Considering a circular
neighborhood denoted by .P; R/ where P represents the number of sampling points
and R is the radius of the neighborhood, the LBP operator takes the following form:

f.P;R/.pc/ D
P�1X
iD0

s.pi � pc/2
i; (9)

where s.x/ D
�

1 if x � 0

0 otherwise

�
; (10)

and pi is one of the neighboring pixels around the center pixel pc on a circle or square
of radius R. Several extensions of the original operator have been proposed. For
example including LBPs for the neighborhoods of different sizes makes it feasible
to deal with textures at different scales. Another extension called ‘uniform patterns’
has been proposed to obtain rotationally invariant features from the original LBP
binary codes (see [28] for details). The uniformity of an LBP pattern is determined
from the total number of bitwise transitions from 0 to 1 or vice versa in the LBP bit
pattern when the bit pattern is considered circular. A local binary pattern is called
uniform if it has at most 2 bitwise transitions. The uniform LBP patterns are used to
characterize patches that contain primitive structural information such as edges and
corners. Each uniform pattern, which is also a binary pattern, has a corresponding
integer value. The uniform patterns and the corresponding integer values are used
to compute LBP histograms where each uniform pattern is represented by a unique
bin in the histogram and all the non-uniform patterns are represented by a single bin
only. For example, the 58 possible uniform patterns in a neighborhood of 8 sampling
points make a histogram of 59 bins where 59th bin represents the non-uniform
patterns. It is common practice to divide an image in sub-images and then use the
normalized LBP histograms gathered from each sub-image as image features.

An extension of LBPs, called Local Ternary Patterns (LTP) [41], has also
been used in analyzing aging skin textures. LBPs tend to be sensitive to noise,
because of the selection of the threshold value to be the same as that of the central
pixel, especially in near uniform image regions. LTPs were proposed to introduce
robustness to noise in LBPs by introducing a threshold value r other than that of the
central pixel. Since many facial regions are relatively uniform, LTPs were shown to
produce better results as compared to LBP. An LTP operator is defined as follows:

f LTP
.P;R/.pc/ D

P�1X
iD0

s.pi; pc/2
i; (11)
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where sLTP.x; pc/ D
2
4 1 if x � pc C r

0 if jx � pcj < r
�1 if x � pc � r

3
5 :

Each ternary pattern is split into positive and negative parts. These two parts are
then processed as two separate channels of LBP codes. Each channel is used to
calculate LBP histograms from LBP codes and the resulting LBP histograms from
two channels are used as image features.

Active Appearance Model (AAM) The Active Appearance Model (AAM) was
proposed in [8] to describe a statistical generative model of face shape and
texture/intensity. It is a popular facial descriptor which makes use of Principle
Component Analysis (PCA) in a multi-factored way for dimension reduction while
maintaining important structure and texture elements of face images. To build an
AAM model, a training set of annotated images is required where facial landmark
points have been marked on each image. AAMs model shape and appearance
separately. The shape model is learnt from the coordinates of the landmark points
in annotated training images. Let NT and NL denote the total number of training
images and the number of landmark points in each training facial image. Let
p D Œx1; y1; x2; y2; : : : :; xNL ; yNL �T be a vector of length 2NL � 1 denoting the planar
coordinates of all landmarks. The shape model is constructed by first aligning the set
of NT training shapes using Generalized Procrustes Analysis and then applying PCA
on the aligned shapes to find an orthonormal basis of NT eigenvectors, Es 2 R2NL�NT

and the mean shape p. Then the training images are warped onto the mean shape in
order to obtain the appearance model. Let NA denote the number of pixels that reside
inside the mean shape p. For the appearance model, let l.x/; x 2 p be a vector of
length NA � 1 denoting the intensity/appearance values of the NA pixels inside the
shape model. The appearance model is trained in a similar way to the shape model
to obtain NT eigenvectors, Ea 2 RNA�NT and the mean appearance l.

Once the shape and appearance AAM models have been learnt from the training
images, any new instance .p�; l�/ can be synthesized or represented as a linear
combination of the eigenvectors weighted by the model parameters as follows:

p� D p C Esa; (12)

l� D l C Eab;

where a and b are the shape and appearance parameters respectively.

3 Applications Incorporating Wrinkles as Texture

Most computer vision applications involving facial aging incorporate wrinkles as
aging texture where the specific appearance of the texture is incorporated as image
texture features of choice. In this section, we present a review of the research work
incorporating aging skin texture as image texture features.
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3.1 Synthesis of Facial Aging and Expressions

Synthesis of aged facial images from younger facial images of an individual has
several real world applications e.g. looking for lost children or wanted fugitives,
developing face recognition systems robust to age related variations, facial retouch-
ing in entertainment and recently in healthcare to assess the long term effects of
an individual’s lifestyle. Facial aging causes changes in both the geometry of facial
muscles and skin texture. The synthesis of facial aging is a challenging problem
because it is difficult to synthesize facial changes in geometry and texture which
are specific to an individual. Furthermore, the availability of only a limited number
of prior images at different ages, mostly low-resolution, for an individual poses
additional challenge.

In the absence of long term (i.e. across 3–4 decades) face aging sequences, Suo
et al. [38, 40] made two assumptions. First, similarities exist among short term
aging patterns in the same time span, especially for individuals of the same ethnic
group and gender. Second, the long term aging pattern is a smooth Markov process
composed of a series of short term aging patterns. In their proposed method, AAM
features were used to capture and generate facial aging. Guided by face muscle
clustering, a face image was divided into 13 sub-regions. An extended version of
AAM model was then used to include a global active shape model and a shape-
free texture model for each sub-region. Thus the shape-free texture component of
the AAM model described changes in skin texture due to wrinkling (Fig. 4). The
principle components of the extended AAM model were also analyzed to extract
age-related components from non-age-related components.

With a large number of short term face aging sequences from publicly available
face aging databases, such as FG-NET and MORPH, Suo et al. used their defined
AAM model features to learn short term aging patterns from real aging sequences.
A sequence of overlapping short term aging patterns in latter age span was inferred

Fig. 4 Representation of aging texture in [40]; (a1, a2) depict the shape-free texture in the region
around eye and the corresponding synthesized images and (b1, b2) depict the same for the forehead
region (reproduced from [40]).
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Fig. 5 Inherent variation in different instances of synthesized aged images for the same age (top
reproduced from [40], bottom reproduced from [39])

from the overlapping short term aging patterns in current age span. The short term
aging patterns for the later age were then concatenated into a smooth long term
aging pattern. The diversity of aging among individuals was simulated by sampling
different subsequent short term patterns probabilistically. For example, Fig. 5 shows
inherent variations in terms of the aging of a given face using their method based
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Fig. 6 Simulation of age synthesis in [38]; the left most column shows the input images, and the
following three columns are synthesized images at latter ages (reproduced from [38])

on AAM and on And-Or graphs (described later). It can be observed that the
appearance of a synthesized aged face varies with increase in age. Figure 6 shows
examples of age synthesis for four subjects using their AAM features.

In a different approach to aging synthesis Suo et al. [37, 39] presented a
hierarchical And-Or graph based generative model to synthesize aging. Each age
group was represented by a specific And-Or graph and a face image in this age
group was considered to be a transverse of that And-Or graph, called parse graph.
The And-Or graph for each age group consisted of And-nodes, Or-nodes and Leaf
nodes. The And nodes represented different parts of face in three levels—coarse to
fine—where wrinkles and skin marks were incorporated at the third, finer level. Or
nodes represented the alternatives learned from a training dataset to represent the
diversity of face appearance at each age group. By selecting alternatives at the Or-
nodes, a hierarchical parse graph was obtained for a face instance whose face image
could then be synthesized from this parse graph in a generative manner. Based on
the And-Or graph representation, the dynamics of face aging process were modeled
as a first-order Markov chain on parse graphs which was used to learn aging patterns
from annotated faces of adjacent age groups.

To incorporate wrinkles in synthesized images, parameters of curves were
learned in 6 wrinkle zones from the training dataset. Wrinkle curves were then
stochastically generated in two steps to be rendered on synthesized face images:
generation of curve shapes from a probabilistic model and calculation of curve
intensity profiles from the learned dictionary. After warping the intensity profiles to
the shape of wrinkle curves, Poisson image editing was used to synthesize realistic
wrinkles on a face image. Figure 7 shows a series of generated wrinkle curves over
four age groups on top and an example of generating the wrinkles image from the
wrinkle curves on the bottom.

Patterson et al. [31] presented a framework for aging synthesis based on a
face-model including landmarks for shape, and AAMs for both shape and texture.
They learned age-related AAM parameters from a training set annotated with
landmarks using support-vector regression (SVR). The learned AAM parameters
were used to generate feasible random faces along with their age estimated by
SVR. In the final step, these simulated faces were used to generate a table of
‘representative age parameters’ which then manipulated the AAM parameters in the
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Fig. 7 Generation of wrinkle curves for different age patterns and synthesis of a wrinkle pattern
over aged image (reproduced from [39])

Fig. 8 The top row shows original images of an individual. The bottom row shows synthetic aged
images where each image is synthesized at approximately the same age as that in the image above
(reproduced from [31])

feature space. The manipulated AAM parameters thus obtained were used to age-
progress or regress a given face image. Figure 8 shows synthesized aged images vs.
original images for a subject using their AAM-SVR face model.

Ramanathan and Chellappa [33] proposed a shape variation model and a texture
variation model towards modeling of facial aging in adults. Attributing facial shape
variations during adulthood to the changing elastic properties of the underlying
facial muscles, the shape variation model was formulated by means of physical mod-
els that characterized the functionalities of different facial muscles. Facial feature
drifts were modeled as linear combinations of the drifts observed on individual facial
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Fig. 9 Facial shape variations induced for the cases of weight-gain/loss in [33]. Further, the
effects of gradient transformations in inducing textural variations using Poisson image editing are
illustrated as well (reproduced from [33])

muscles. The aging texture variation model was designed specifically to characterize
facial wrinkles in predesignated facial regions such as the forehead, nasolabial
region, etc. To synthesize aging texture, they proposed a texture variation model by
means of image gradient transformation functions. The transformation functions for
a specific age gap and wrinkle severity class (subtle/moderate/strong) were learnt
from the training set. Given a test image, the transformed image according to an
age group and wrinkles severity was then obtained by solving the Poisson equation
of image reconstruction from gradient fields. Figure 9 illustrates the process of
transforming facial appearances with increase in age in their work.

Fu and Zheng introduced a novel framework for appearance-based photorealistic
facial modeling called Merging Face (M-Face) [13]. They introduced ‘merging
ratio images’ which were defined to be as the seamless blending of individual
expression ratio images, aging ratio images, and illumination ratio images. Thus
the aging skin texture was also represented as a ratio image. Derived from the
average face, the caricatured shape was obtained by accentuating an average face
by exaggerating individual distinctiveness of the subject while the texture ratio
image was rendered during the caricaturing. This way, the expression morphing,
chronological aging or rejuvenating, and illumination variance could be merged
seamlessly in a photorealistic way on desired view-rotated faces yielded by view
morphing. Figure 10 shows an example image and the corresponding rendered
images for different facial attributes in their work.

As regards with aging in M-Face framework, the ‘age space’ including both
shape and aging ratio images (ARI), was assumed to be a low-dimensional manifold
of the image space where the origin of the manifold represented the shape and
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Fig. 10 An example image with photorealistically rendered images for different attributes (repro-
duced from [13])

texture of the average face of a young face set. Each point in the manifold denoted
a specific image with distinctive shape and ARI features. Facial attributes of a given
image lay on this manifold, at some point P. Points at a farther distance from the
origin than that of the original image represented aging and those closer to the origin
represented rejuvenating. Different aged and rejuvenated faces were rendered by
using features belonging to the points on this manifold by processing along the line
from the origin to the point P (Fig. 11).

Following a similar approach based on ratio images, Liu et al. [23] presented a
framework to map subtle changes in illumination and appearance corresponding
to facial creases and wrinkles in the context of facial expressions instead of
facial aging. Their work was an attempt to complement traditional expression
mapping techniques which focused mostly on the analysis of facial feature motions
and ignored details in illumination changes due to expression wrinkles/creases.
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Fig. 11 (a) Age space for aging and rejuvenating. The origin is the average face of a young
face set. (b) Rejuvenation of an adult male face. (c) Original face image. (d) Aging of the face
(reproduced from [13])

In a generative framework, they proposed ‘expression ratio images (ERI)’ which
captured illumination changes of a person’s expressions as we describe next. Under
the Lambertian model, ERI is defined in terms of the changes in the illumination
of skin surface due to the skin folds. For any point P on a surface, let n denote its
normal and assume m point light sources. Let li; 1 � i � m denote the light direction
from point P to the ith light source, and Ii its intensity. Assuming a diffuse surface
let � be its reflectance coefficient at P. Under the Lambertian model, the intensity at
P is:

IP D �

mX
iD1

lin � Ii: (13)

With the deformation of skin due to wrinkles, the surface normals and light intensity
change. Consequently, new intensity value at P is calculated as:

I0
P D �

mX
iD1

lin0 � I0
i : (14)

The ratio image, ERI, is defined to be the ratio of the two images:

ERI D I0
P

IP
: (15)

The ERIs obtained in this way, corresponding to one person’s expression, were
mapped to another person’s face image along with geometric warping to generate
similar, and sometimes more ‘expressive’, expressions. Figure 12 depicts an exam-
ple of synthesis of more expressive faces using this method.
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Fig. 12 An expression used to map to other subjects’ facial images. (a) Neutral face. (b) Result
from ERI and geometric warping. (c) The ERI used in (b) and obtained from another person’s face
(wrinkles due to expressions are prominent—reproduced from [23])

3.2 Age Estimation

Shape changes are prominent in facial aging during younger years, while wrinkles
and other textural pattern variations are more prominent during older years. Hence,
age estimation methods try to learn patterns in both shape and textural variations
using appropriate image features for specific age intervals and then infer the age of
a test face image using the learned classifiers. Some of the popular image features to
learn age-related changes have been Gabor features, AAM features, LBP features,
LTP features or a combination of them.

Luu et al. [24] proposed an age estimation technique combining holistic and local
features where AAM features were used as holistic features and local features were
extracted using LTP features. These combined features from training set were then
used to train age classifiers based on PCA and Support Vector Machines (SVM).
The classifiers were then used to classify faces into one of two age groups—pre-
adult (youth) and adult.

Chen et al. [7] conducted thorough experiments on facial age estimation using
39 possible combination of four feature normalization methods, two simple feature
fusion methods, two feature selection methods, and three face representation meth-
ods as Gabor, AAM and LBP features. LBP encoded the local texture appearance
while the Gabor features encoded facial shape and appearance information over
a range of coarser scales. They systematically compared single feature types vs.
all possible fusion combinations of AAM and LBP, AAM and Gabor, and, LBP
and Gabor. Feature fusion was performed using feature selection schemes such as
Least Angle Regression (LAR) and sequential selection. They concluded that Gabor
feature outperformed LBP and even AAM as single feature type. Furthermore,
feature fusion based on local feature of Gabor or LBP with global feature AAM
achieved better accuracy than each type of features independently.
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3.3 Facial Retouching/Inpainting

Facial retouching is widely used in media and entertainment industry and consists of
changing facial features such as removing imperfections, enhancing skin fairness,
skin tanning, applying make-up, etc. A few attempts that detect and manipulate
facial wrinkles and other marks for such retouching application are described here.

In their work Mukaida and Ando emphasized the importance of wrinkles and
spots for understanding and synthesizing facial images with different ages [26].
A method based on local analysis of shape properties and pixel distributions was
proposed for extracting wrinkles and spots. It was also demonstrated that extracted
wrinkles and spots could be manipulated in facial images for visual perception of
aging. The morphological processing of the luminance channel was used to divide
resulting binary images in regions of wrinkles and dark spots. The extracted regions
were then used to increase/decrease the luminance of the source facial image thus
giving an impression of aging/rejuvenating. Figure 13 shows an example of facial
image and the extracted binary template. The template is then used to manipulate
the original facial image to give a perception of aging/rejuvenating.

Batool and Chellappa [3] presented an approach for facial retouching application
based on the semi-supervised detection and inpainting of facial wrinkles and
imperfections due to moles, brown spots, acne and scars. In their work, the
detection of wrinkles/imperfections allowed those skin features to be processed
differently than the surrounding skin without much user interaction. Hence, the
algorithm resulted in better visual results of skin imperfection removal than
contemporary algorithms. For detection, Gabor filter responses along with tex-
ture orientation field were used as image features. A bimodal Gaussian mixture
model (GMM) represented distributions of Gabor features of normal skin vs. skin
imperfections. Then a Markov random field model (MRF) was used to incorporate
spatial relationships among neighboring pixels for their GMM distributions and
texture orientations. An Expectation-Maximization (EM) algorithm was used to

Fig. 13 Manipulation of facial skin marks. (a) Original image. (b) Binary image. (c) Strengthen-
ing. (d) Weakening (reproduced from [26])
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Fig. 14 (Left) Wrinkle removal. (a) Original image. (b) Wrinkled areas detected by GMM-MRF.
(c) Inpainted image with wrinkles removed. (d) Patches from regular grid fitted on the gap which
were included in texture synthesis. (Right) (a) Original image. (b) Wrinkled areas detected by
GMM-MRF. (c) Inpainted image with wrinkles removed; note that wrinkle ‘A’ has been removed
since it was included in the gap whereas a part of wrinkle ‘B’ is not removed. (d) Stitching of skin
patches to fill the gap (reproduced from [3])

Fig. 15 Results of wrinkle detection and removal for a subject. (a) Original image. (b) Detected
wrinkled areas. (c) Image after wrinkle removal (reproduced from [3])

classify skin vs. skin wrinkles/imperfections. Once detected automatically, wrin-
kles/imperfections were removed completely instead of being blended or blurred.
For inpainting, they proposed extensions to current exemplar-based constrained
texture synthesis algorithms to inpaint irregularly shaped gaps left by the removal
of detected wrinkles/imperfections. Figures 14, 15 and 16 show some results of
detection and removal of wrinkles and other imperfections using their algorithms.
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Fig. 16 Results of detection and removal of skin imperfections including wound scars, acne,
brown spots and moles. (a) Original images. (b) Detected imperfections. (c) Images after inpainting
(reproduced from [3])

4 Applications Incorporating Wrinkles
as Curvilinear Objects

In this section, we present applications incorporating facial wrinkles as curvilinear
objects instead of image texture features. Curvilinear objects are detected or hand-
drawn in images and then analyzed for the specific application. In this section, we
first describe work aimed at accurate localization of wrinkles in images.

4.1 Detection/Localization of Facial Wrinkles

Localization techniques can be grouped in two categories: stochastic and deter-
ministic modeling techniques where Markov point process has been the main
stochastic model of choice. Deterministic techniques include modeling of wrinkles
as deformable curves (snakelets) and image morphology.

Localization Using Stochastic Modeling Batool and Chellappa [1, 2] were the
first to propose a generative stochastic model for wrinkles using Marked Point
Processes (MPP). In their proposed model wrinkles were considered as stochastic
spatial arrangements of sequences of line segments, and detected in an image by
proper placement of line segments. Under Bayesian framework, a prior probability
model dictated more probable geometric properties and spatial interactions of line
segments. A data likelihood term, based on intensity gradients caused by wrinkles
and highlighted by Laplacian of Gaussian (LoG) filter responses, indicated more



Modeling of Facial Wrinkles for Applications in Computer Vision 319

Fig. 17 Localization of wrinkles in three FG-NET images using MPP model in [1]. (Top) Ground
Truth. (Bottom) Localization results (reproduced from [1])

Fig. 18 Localization of wrinkles as line segments for eight images of two subjects (reproduced
from [2])

probable locations for the line segments. Wrinkles were localized by sampling
MPP posterior probability using the Reversible Jump Markov Chain Monte Carlo
(RJMCMC) algorithm. They proposed two MPP models in their work, [1, 2], where
the latter MPP model produced better localization results by introducing different
movements in RJMCMC algorithm and data likelihood term. They also presented an
evaluation setup to quantitatively measure the performance of the proposed model
in terms of detection and false alarm rates in [2]. They demonstrated localization
results on a variety of images obtained from the Internet. Figures 17 and 18 show
examples of wrinkle localization from the two MPP models in [1, 2] respectively.
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Fig. 19 Localization of wrinkles using Jeong et al.’s MPP model [17] vs. Batool and Chellappa’s
MPP model [1] (reproduced from [17]). (a) Input. (b) Manually labelled. (c) Batool and
Chellappa’s MPP model. (d) Jeong et al.’s MPP model

The Laplacian of Gaussian filter used by Batool and Chellappa [1, 2] could not
measure directional information and the solution strongly depended on the initial
condition determined by the placement of first few line segments. To address these
shortcomings, Jeong et al. [17] proposed a different MPP model. To incorporate
directional information, they employed steerable filters at several orientations and
used second derivative of Gaussian functions as the basis filter to extract linear
structures caused by facial wrinkles. As compared to the RJMCMC algorithm
used by Batool and Chellappa [1, 2], their RJMCMC algorithm included two
extensions: affine movements of line segments in addition to birth and deletion as
well as ‘delayed’ rejection/deletion of line segments. Figure 19 shows comparison
of localization results using MPP models of Jeong et al. [17] and Batool and
Chellappa [1]. However, they reported results on fewer test images as compared
to those in [1, 2].

Several parameters are required in an MPP model to interpret the spatial
distribution of curvilinear objects i.e. modeling parameters for the geometric shape
of objects and hyper-parameters to weigh data likelihood and prior energy terms.
To bypass the computationally demanding estimation of such large number of
parameters, in further work, Jeong et al. presented a generic MPP framework to
localize curvilinear objects including wrinkles in images [18]. They introduced a
novel optimization technique consisting of two steps to bypass the selection of
hyper-parameters. In the first step, an RJMCMC sampler with delayed rejection [17]
was employed to collect several line configurations with different hyper-parameter
values. In the second step, the consensus among line detection results was max-
imized by combining the whole set of line candidates to reconstruct the most
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Fig. 20 Localization of a DNA strand using different hyperparameter values in [18]. (a) Original
image. (b) Gradient magnitude. (c) Mathematical morphology operator, path opening. (d)–(f)
Line configurations associated with different hyperparameter vectors. (g) Final composition result
(reproduced from [18])

Initial state 100 iterations 1,000 iterations 10,000 iterations

Fig. 21 Localization of wrinkles using different initial conditions; every image row represents a
different initial condition (reproduced from [18])

plausible curvilinear structures. Figure 20 shows an example of combining linear
structures using different hyper-parameter values for a DNA image. Figure 21
shows localization results for a wrinkle image using different initial conditions
in RJMCMC algorithm. Thus their optimization scheme made the RJMCMC
algorithm almost independent of the initial conditions.

Localization Using Deterministic Modeling The MPP model, despite its promis-
ing localization results, requires a large number of iterations in the RJMCMC
algorithm to reach global minimum resulting in considerable computation time.
To avoid such long computation times for larger images, Batool and Chellappa [4]
proposed a deterministic approach based on image morphology for fast localization
of facial wrinkles. They used image features based on Gabor filter bank to
highlight subtle curvilinear discontinuities in skin texture caused by wrinkles. Image
morphology was used to incorporate geometric constraints to localize curvilinear
shapes at image sites of large Gabor filter responses. In this work, they reported
experiments on much larger set of high resolution images. The localization results
showed that not only the proposed deterministic algorithm was significantly faster
than MPP modeling but also provided visually better results.
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Fig. 22 A few examples of images with detection rate greater than 70 %. (Left) Original. (Middle)
Hand-drawn. (Right) Automatically localized (reproduced from [4])

Fig. 23 Comparison of localization results using MPP modeling (top row) and deterministic
algorithm proposed by Batool and Chellappa (bottom row) (reproduced from [4])

Figure 22 includes some examples of localization with high detection rate using
their deterministic algorithm and Fig. 23 presents comparison of localization results
between their proposed MPP modeling [2] and deterministic algorithm [4].

For the localization of wrinkles, Ng et al. assumed facial wrinkles to be ridge-
like features instead of edges [27]. They introduced a measure of ridge-likeliness
obtained on the basis of all eigenvalues of the Hessian matrix (Sect. 2). The
eigenvalues of the Hessian matrix were analyzed at different scales to locate ridge-
like features in images. A few post-processing steps followed by a curve fitting
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Fig. 24 Automatic detection of coarse wrinkles. (a) Original image. (b), (c) and (d) are the wrinkle
detection by two other methods and Ng et al.’s method respectively. Red: ground truth, green: true
positive, blue: false positive (reproduced from [27])

step were then used to place wrinkle curves at image sites of ridge-like features.
Figure 24 presents an example of wrinkle localization. Although, their localization
results were compared with earlier methods, no comparison results were reported
with those of MPP modeling [1, 2].

4.2 Age Estimation Using Localized Wrinkles

One of the initial efforts related to age estimation from digital images of face and
those also using detection of facial wrinkles as curvilinear features was reported by
Kwon and da Vitoria Lobo [21, 22]. They used 47 high resolution facial images
for classification into one of three age groups: babies, young adults or senior
adults. Their approach was based on geometric ratios of so-called primary face
features (eyes, nose, mouth, chin, virtual-top of the head and the sides of the
face) based on cranio-facial development theory and wrinkle analysis. In secondary
feature analysis, a wrinkle geography map was used to guide the detection and
measurement of wrinkles. A wrinkle index was defined based on detected wrinkles
which was sufficient to distinguish seniors/aged adults from young adults and
babies. A combination rule for the face ratios and the wrinkle index allowed the
categorization of a face into one of the above-mentioned three classes.

In their 2-step wrinkle detection algorithm, first snakelets were dropped in
random orientations in the input image in user-provided regions of potential
wrinkles around eyes and forehead. The snakelets were directed according to the
directional derivatives of image intensity taken orthogonal to the snakelet curves.
The snakelets that had found shallow image intensity valleys were eliminated based
on the assumption that only the deep intensity valleys corresponded to narrow
and deep wrinkles. In the second step, a spatial analysis of the orientations of
the stabilized snakelets determined wrinkle snakelets from non-wrinkle snakelets.
Figure 25a1, b1 shows the stabilized snakelets on an aged adult face and young adult
face respectively. It can be seen in Fig. 25a2, b2 that a large number of stabilized
snakelets correspond to wrinkles in an aged face. Figure 26 shows two examples of
final results of detection of wrinkles from initial random snakelets.
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Fig. 25 (a1, b1) Stabilized snakelets. (a2, b2) Snakelets passing the spatial orientation test and
corresponding to wrinkles (reproduced from [22])

Fig. 26 Examples of detection of wrinkles using snakelets. (Top) Initial randomly distributed
snakelets. (Bottom) Snakelets representing detected wrinkles (reproduced from [22])

4.3 Localized Wrinkles as Soft Biometrics

Recently, due to the availability of high resolution images, a new area of research
in face recognition has focused on analysis of facial marks such as scars, freckles,
moles, facial shape, skin color, etc. as biometric traits. For example, facial freckles,
moles and scars were used in conjunction with a commercial face recognition
system for face recognition under occlusion and pose variation in [16, 30]. Another
interesting application presented in [20, 32] was the recognition between identical
twins using proximity analysis of manually annotated facial marks along with
other typical facial features. Where the uniqueness of the location of facial marks
is obvious, the same uniqueness of wrinkles is not that obvious. Batool and
Chellappa [5] investigated the use of a group of hand-drawn or automatically
detected wrinkle curves as soft biometrics. First, they presented an algorithm to fit
curves to automatically detected wrinkles which were localized as line segments
using MPP modeling in their previous work. Figure 27 includes an example of
curves fitted to the detected line segments using their algorithm.

Then they used the hand-drawn and automatically detected wrinkle curves on
subjects’ foreheads as curve patterns. Identification of subjects was then done based
on how closely wrinkle curve patterns of those subjects matched. The matching of
curve patterns was achieved in three steps. First, possible correspondences were
determined between curves from two different patterns using a simple bipartite
graph matching algorithm. Second, several metrics were introduced to quantify
the similarity between two curve patterns. The metrics were based on the Hausdorff
distance and the determined curve-to-curve correspondences. Third, the nearest
neighborhood algorithm was used to rate curve patterns in the gallery in terms of
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Fig. 27 Fitting of curves to detected wrinkles as line segments using MPP modeling (reproduced
from [5])

similarity to that of the probe pattern using their defined metrics. The recognition
rate in their experiments was reported to exceed 65 % at rank 1 and 90 % at rank 4
using matching of curve patterns only.

4.4 Applications in Skin Research

Cula et al. [9, 10] proposed digital imaging as a non-invasive, less expensive tool for
the assessment of the degree of facial wrinkling to establish an objective baseline
and for the assessment of benefits to facial appearance due to various dermatological
treatments. They used finely tuned oriented Gabor filters at specific frequencies and
adaptive thresholding for localization of wrinkles in forehead images acquired in
controlled settings. They introduced a wrinkle measure, referred to as wrinkle index,
as the product of both wrinkle depth and wrinkle length to score the severity of
wrinkling. The wrinkle index was calculated from Gabor responses and the length
of localized wrinkles. The calculated wrinkle indices were then validated using
100 clinically graded facial images. Figure 28 shows examples of localization of
wrinkles with different severity in images acquired in controlled setting along with
a plot of clinical vs. computer generated scores given in their work.

Jiang et al. [19] also proposed an image based method named ‘SWIRL’ based
on different geometric characteristics of localized wrinkles to score the severity
of wrinkles. However, they used a proprietary software tool to localize wrinkles
in images which were taken in controlled lighting settings. The goal was to
quantitatively assess the effectiveness of dermatological/cosmetic products and
procedures on wrinkles. In their controlled illumination settings, the so-called raking
light optical profilometry, lighting was cast at a scant angle to the face of the subject
casting wrinkles as dark shadows. The resulting high-resolution digital images were
analyzed for the length, width, area, and relative depth of automatically localized
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Fig. 28 (Left) Localization of wrinkles with varying severity. (Right) Plot of clinical scores vs.
computer generated scores for 100 images (reproduced from [10])

Fig. 29 Localization of wrinkles in different facial regions using a proprietary software used
in [19] (reproduced from [19])

wrinkles. The parameters were shown to be correlated well with clinical grading
scores. Furthermore, the proposed assessment method was also sensitive enough
to detect improvement in facial wrinkles after 8 weeks of product application.
Figure 29 shows few images from different facial regions with localized wrinkles
using a proprietary software tool used in their work.

4.5 Facial Expression Analysis

The conventional methods on the analysis of facial expression are usually based on
Facial Action Coding System (FACS) in which a facial expression is specified in
terms of Action Units (AU). Each AU is based on the actions of a single muscle
or a cluster of muscles. On the other hand little investigation has been conducted
on wrinkle texture analysis for facial expression recognition. In this section we
present research work in expression analysis which incorporates facial wrinkles.
Facial wrinkles deepen, change or appear due to expressions and can be an important
clue to recognizing expressions. Hence, the following approaches treat changes in
facial wrinkles due to expressions as transient or temporary facial features.
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Transient feature detection; (a) horizontal wrinkles
between eyes; (b) horizontal wrinkles on the forehead

(a) (b)

the example results of nasolabial fold detection

Fig. 30 Examples of detection of transient wrinkles during expressions in different facial regions
in [45]

Zang and Ji [45] presented a 3-layer probabilistic Bayesian Network (BN) to
classify expressions from videos in terms of probability. The BN model consisted
of three primary layers: classification layer, facial AU layer and sensory infor-
mation layer. Transient features e.g. wrinkles and folds were part of the sensory
information and were modeled in the sensory information layer containing other
visual information variables, such as brows, lips, lip corners, eyelids, cheeks, chin
and mouth. The static BN model for static images was then extended to dynamic
BN to express temporal dependencies in image sequences by interconnecting time
slices of static BNs using Hidden Markov modeling. In their work the presence of
furrows and wrinkles was determined by edge feature analysis in the areas where
transient features appear i.e. forehead, on the nose bed/between eyes and around
mouth (nasolabial area). Figure 30 shows examples of transient feature detection in
three regions. The contraction and extension of facial muscles due to expressions
result in wrinkles/folds in particular shapes detected by edge detectors. The shape
of wrinkles was approximated by fitting quadratic forms passing through a set of
detected edge points in a least-square sense. The coefficients in the quadratic forms
then signified the curvature of the folds and indicated presence of particular facial
AUs.

Tian et al. [42] proposed a system to analyze facial expressions incorporating
facial wrinkles/furrows in addition to commonly studied facial features of mouth,
eyes and brows. Facial wrinkles/furrows appearing or deepening during a facial
expression were termed as ‘transient’ features and were detected in pre-defined
three regions of a face namely around eyes, nasal root/bed or around mouth. The
Canny edge detector was used to analyze frames of a video to determine if wrinkles
appeared or deepened in later frames of a video. The presence/absence of wrinkles
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Fig. 31 (a) Three pre-defined areas of interest for detection of transient features (wrin-
kles/furrows). (b) Detection of orientation of expressive wrinkles. (c) Example of detection of
wrinkles around eyes (reproduced from [42])

in three facial regions of interest as well as the orientations of the detected wrinkles
were incorporated as an indication to the presence of specific AUs in their expression
analysis system. Figure 31 shows three examples of the detection of the orientation
of wrinkles around mouth for a certain expression.

Yin et al. [44] explored changing facial wrinkle textures exclusively in videos for
recognizing facial expressions. They assumed that facial texture consisted of static
and active parts where the active part of texture was changed with an expression
due to muscle movements. Hence they presented a method based on the extraction
of active part of texture and its analysis for expression recognition where the
wrinkle textures were analyzed in four regions of face as shown in Fig. 32a. In their
method the correlation between wrinkles texture in the neutral expression and the
active expression was determined using Gaussian blurring. The two textures were
correlated several times as they gradually lost detail due to blurring. The rate-of-
change of correlation values reflected the dissimilarity of the two textures in four
facial regions of interest and was used as a clue to the determination of six universal
expressions.
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Fig. 32 Example of wrinkle textures extracted from two expressions (smile and surprise).
(a) Facial regions of interest. (b, c) Example of textures extracted from smile and surprise
expressions. (d) Normalized textures (reproduced from [44])

5 Summary and Future Work

In this chapter, we presented a review of the research in computer vision focusing
on the analysis of facial wrinkles as image texture or curvilinear objects with
several applications. Facial wrinkles are important features in terms of facial
aging/expressions and can be a cue to several aspects of a person’s identity and
lifestyle. Image-based analysis of facial wrinkles can improve existing algorithms
on facial analysis as well as pave way to new applications. For example, patterns
of personalized aging can be deduced from the spatio-temporal analysis of changes
in facial wrinkles. A person’s smoking habits, facial expression and sun exposure
history can be inferred from the severity of wrinkling. The specific patterns of
wrinkles appearing on different facial regions can be added to facial soft biometrics
or to the analysis of facial expressions. Furthermore, analysis of subtle changes
in facial wrinkles can quantify the effects of different dermatological treatments.
However, the first step in any of these applications would be the accurate and fast
localization of facial wrinkles in high resolution images.
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