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Preface

This volume contains the proceedings of the 27th International Conference on Testing
Software and Systems, ICTSS 2015. The conference was held in Sharjah and Dubai,
United Arab Emirates, during November 23–25, 2015.

The conference has a long history. In the past five years, ICTSS was held in Madrid
(Spain), Istanbul (Turkey), Aalborg (Denmark), Paris (France), and Natal (Brazil).
During the 2007–2009 period, the event was held as a joint conference of the Inter-
national Conference on Testing of Communicating Systems (TESTCOM) and FATES,
in Tallinn (Estonia), Tokyo (Japan), and Eindhoven (The Netherlands). Before that,
between 2000 and 2006, TESTCOM was held in Ottawa (Canada), Berlin (Germany),
Sophia Antipolis (France), Oxford (UK), Montreal (Canada), and New York City
(USA). During the 1997–1999 period, the conference was called the International
Workshop on Testing of Communicating Systems (IWTCS) and was held in Cheju
Island (Korea), Tomsk (Russia), and Budapest (Hungary). Between 1988 and 1996 the
conference was known as the International Workshop for Protocol Test Systems
(IWPTS). Nine workshops took place in Vancouver (Canada), Berlin (Germany),
McLean (USA), Leidschendam (The Netherlands), Montréal (Canada), Pau (France),
Tokyo (Japan), Evry (France), and Darmstadt (Germany).

We received 42 submissions, and after a careful reviewing process by the Program
Committee only 14 full and four short papers were selected for presentation at the
conference. The accepted papers together with the abstracts of the two invited pre-
sentations by Gregor von Bochmann from the University of Ottawa (Canada) and
Teruo Higashino from Osaka University (Japan) comprise the contents of the
proceedings.

We are grateful to the authors of submitted papers, the invited speakers, the addi-
tional reviewers, and the Steering and Program Committee members for their valuable
contributions and particularly to Rob Hierons, Steering Committee Chair, for his help
and guidance. We acknowledge the use of EasyChair for the conference management.
We also thank the IFIP and Springer, the American University of Sharjah, and Tomsk
State University for their support.

November 2015 Khaled El-Fakih
Gerassimos Barlas
Nina Yevtushenko
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Testing Software Systems – A Perspective

Gregor V. Bochmann

School of Electrical Engineering and Computer Science,
University of Ottawa, Canada

Abstract. The talk will begin with a review of general testing concepts, such as
white-box and black-box testing, different realizations of oracles (including a
formal behavior specification), fault models and fault coverage issues, and
testing architectures. This will set the framework for the following discussion
which has two parts: (a) a discussion of the history of the ICTSS conference and
the issues discussed during the early times since around 1985, and (b) an
overview of two ongoing research projects: (1) on testing implementations
against partial-order specifications, and (2) on reverse engineering of Rich
Internet Applications for vulnerability testing.

The first ICTSS conference was held in Vancouver (Canada) in 1988 and
was called International Workshop on Protocol Test Systems. The main question
discussed at that time was how to test a protocol implementation to ensure that it
satisfies all requirements of a given protocol specification (a form of black-box
testing). The main issues were the modeling language used for the specification,
fault models, and algorithms for obtaining test suites with given fault coverage.
At the same time, standardization committees of ISO and ITU developed
guidelines for architectures for protocol testing and a language (TTCN) for
specifying test cases. Later, the scope of ICTSS was broadened to cover the
testing of many other kinds of software systems.

In the second part of the talk, we will first discuss issues that arise in testing
systems against a behavior specification that defines a partial order for the
interactions of the implementation. Different partial-order specification lan-
guages will be considered. Then another ongoing research project on crawling
Rich Internet Applications (RIAs) is discussed. Through the testing of a given
implementation, a model of the RIA is developed (this is a kind of black-box
testing, but without a reference specification). The purpose here is to obtain a
“complete” model of the application such that each state (i.e. each page at the
user interface) of the application can be subsequently checked for security
vulnerabilities or accessibility requirements. Since the state space of these
applications is usually huge, we propose (a) different algorithms for obtaining
the most important information relatively fast, (b) concurrent exploration by
multiple crawlers, and (c) some methods for avoiding the exploration of
“equivalent” and “redundant” states.



Formal Modeling and Testing for Designing
Future IoT Based Systems

Teruo Higashino

Graduate School of Information Science and Technology,
Osaka University, Japan

Abstract. Recently, sensing technology and IoT (Internet of Things) have much
attention for designing and developing affluent and smart social systems. In this
talk, we focus on the design and development of future IoT based systems such
as ITS (Self-driving vehicles and collision avoidance), smart grid (power con-
trol), crowd sensing systems from human beings with mobile devices, and so on.
We discuss about considerations for developing resilient IoT based systems such
as (i) mobility influence, (ii) real-time data processing, (iii) treatment of a huge
amount of geospatial data, and so on, and provide frameworks for their formal
modeling and testing.

The reliability and performance of most ITS and crowd sensing systems are
strongly affected from vehicular and human mobility. In the first part of this talk,
we summarize recent Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) wireless communication mechanisms and crowd sensing systems, and
discuss about their mobility influence. Then, we introduce frameworks for their
formal modeling and testing in order to improve their reliability.

In urban areas, since multiple wireless communication devices often coexist,
they interfere each other. In such cases, geospatial monitoring and passive
testing are useful in order to observe that a set of desirable properties called
“invariants” holds. In the second part of this talk, we summarize recent research
about geospatial monitoring and passive testing, and show how their formal
modeling and testing frameworks can be used.

In the third part of this talk, we focus on real-time data processing and
treatment of geospatial data. In smart grid systems, real-time feedbacks are
essential for stable power supply. In crowd sensing systems, a huge amount of
geospatial sensing data need to be treated. General cloud servers might not be
able to be used for storing such a huge amount of data and providing real-time
feedbacks. We introduce recent research about edge computing (fog comput-
ing), and provide frameworks for their formal modeling and testing.
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Checking Experiments for Finite State
Machines with Symbolic Inputs

Alexandre Petrenko1(&) and Adenilso Simao2

1 CRIM, Centre de Recherche Informatique de Montréal, 405 Ogilvy Avenue,
Suite 101, Montréal, Québec H3N 1M3, Canada

petrenko@crim.ca
2 Instituto de Ciencias Matematicas e de Computacao,

Universidade de Sao Paulo, Sao Carlos, Sao Paulo, Brazil
adenilso@icmc.usp.br

Abstract. There exists a significant body of work in the theory of checking
experiments devoted to test generation from FSM which guarantees complete
fault coverage for a given fault model. Practical applications require neverthe-
less methods for fault-model driven test generation from Extended FSMs
(EFSM). Traditional approaches for EFSM focus on model coverage, which
provides no characterization of faults that can be detected by the generated tests.
Only few approaches use fault models, and we are not aware of any result in the
theory of checking experiments for extended FSMs. In this paper, we lift the
theory of checking experiments to EFSMs, which are Mealy machines with
predicates defined over input variables treated as symbolic inputs. Considering
this kind of EFSM, we propose a test generation method that produces a
symbolic checking experiment, adapting the well-known HSI method. We then
present conditions under which arbitrary instances of a symbolic checking
experiment can be used for testing black-box implementations, while guaran-
teeing complete fault coverage.

Keywords: Finite state machines � Extended finite state machines � Symbolic
automata � Conformance testing � Checking experiments � Fault model based
test generation

1 Introduction

Research in Model Based Testing (MBT) is currently advancing rapidly trying to match
the growing demand from industry for more effective and better scalable test devel-
opment technologies. Since the cost for leaving undetected faults in software grows with
its complexity, code and model coverage by tests is often considered insufficient and the
guaranteed fault detection becomes the ultimate goal. Accordingly, research in MBT has
been addressing fault modeling and fault model driven test generation problems, see,
e.g., [2, 38]. Fault models usually refer to test models which formalize reference
specifications and/or requirements. State-oriented test models seem to be most popular
models among test engineers. Finite state machines (FSM) and input output transition
systems (IOTS) are state-oriented models; test generation methods have tradition-
ally been developed separately for these models, even though, as has already been

© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-25945-1_1



demonstrated, many ideas, especially for fault model based test generation, developed
for testing from FSM can successfully be used for testing from IOTS [31].

There exists a significant body of work devoted to the development of methods for
test generation from a given FSM to guarantee the complete fault coverage, once a fault
model is defined. The pioneering work of Moore [21] and Hennie [13] led to the
development of the theory of checking experiments, where faults are modeled by a
universe of FSMs with a given number of states, see, e.g., [4, 6, 10, 33]. Checking
experiments have already been lifted to FSMs more general than the classical (com-
pletely specified and deterministic) Mealy machine, such as partially defined and
nondeterministic state machines, see, e.g., [27]. However, practical applications require
more extensions to the classical FSM model. These are commonly known as the
Extended Finite State Machine (EFSM) models. Various flavors of EFSMs are used in
Harel’s statecharts [12], SysML/UML [9], Simulink/Stateflow [32], SDL [11] and other
modelling languages. Extensions are often suggested without a formal semantics; this
creates a big hurdle for fault-model based test generation. Whenever the semantics of a
particular specification language is defined by the tool which supports it, fault models
become specific to the tool provider and may not be adequate for implementations
coming from other suppliers. General testing approaches usually rely on formally
defined extensions of Mealy machine, see, e.g., [26, 36].

Most of the existing work on test generation from EFSM concentrates on the model
coverage, see, e.g., [3, 14, 18, 28], which provides no characterization of faults that can
be detected by the generated tests. There are some techniques for test generation from
EFSM which use certain fault models [26, 36] and limited state/configuration identi-
fication sequences [5, 19, 26]. The work of [16] uses checking experiment methods, but
requires first to determine input/output equivalence classes from a given specification
EFSM and choose concrete inputs. To the best of our knowledge, there is no result in
lifting the theory of checking experiments to extended FSMs. This observation is one
of the main motivations of this work.

Another motivation comes from research on symbolic automata and transducers,
which is driven by several practical problems. The work of [34] mentions applications
ranging from modern regex analysis to advanced web security analysis where the
so-called sanitizers, string transformation routines are extensively used as the first line
of defense against cross site scripting attacks. A large class of sanitizers can be
described and analyzed by using symbolic finite state transducers. Symbolic finite
automata are introduced as an extension of classical finite state automata that allows
transitions to be labeled with predicates. Automata with predicates instead of concrete
symbols are also used in [37] and discussed in [23] in the context of natural language
processing. The work on learning symbolic automata [20] has also to be mentioned
here, since the automata learning shares certain aspects with the testing problem in the
following sense. If a black box passes a checking experiment, then under well-defined
conditions it is recognized as some automaton. Hence it is important to investigate
checking experiments for symbolic automata.

The community focusing on testing from IOTS has also considered extensions to
symbolic representation of transition systems which avoid enumerations of its com-
ponents, see, e.g. [8, 29], but these approaches are not fault model driven, they use one
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or another test purpose. More references on symbolic approaches in testing could be
found, e.g., in [1, 17].

In this paper, we attempt to lift the theory of checking experiments to a special type
of EFSM, which extends the deterministic Mealy machine with predicates defined over
input variables, considered as its symbolic inputs. We propose a test generation method
that produces a symbolic checking experiment, adapting the well-known HSI method
[39]. We then investigate under which conditions instances of a symbolic checking
experiment can be used for testing black-box implementations, guaranteeing the full
fault coverage.

The paper is organized as follows. In Sect. 2, we define the model of FSM with
symbolic inputs. In Sect. 3, we study the relations between SIFSMs. Symbolic and
concrete checking experiments are introduced in Sect. 4, where we also investigate
fault detection capability of concrete tests obtained from symbolic checking experi-
ments. Section 5 summarizes our contributions and presents future work.

2 Definitions and Notations

2.1 Preliminaries

We define an (input) alphabet as a set of guards over variables of well-defined types.
Let G denote the universe of guards that are predicates over variables in a fixed set
V for which a decision theory, e.g., an SMT solver, exists, excluding the predicates that
are always false. G* will denote the universe of input sequences.

Let DV denote the set of all the valuations v of the input variables in the set V, called
concrete inputs. A set of concrete inputs is called a symbolic input; both, concrete and
symbolic, inputs are represented by guards in G. Henceforth, we use set-theoretical
operations on symbolic inputs. In particular, we write v 2 g, when concrete input
v satisfies g. We define some relations between input sequences in G*.

Definition 1. Given two input sequences α, β 2 G* of the same length k, α = g1…gk,
β = g’1…g’k, we let α \ β = g1 \ g’1…gk \ g’k denote the sequence of intersections of
inputs in sequences α and β; α and β are compatible, if for all i = 1, …, k, gi \ g’i ≠ ∅.
We say that α is a reduction of β, denoted α � β, if α = α \ β. If α is a sequence of
concrete inputs as well as a reduction of β then it is called an instance of β; given a
finite set of input sequences E � G*, a set of concrete input sequences I is called an
instance of the set E, if I contains at least one instance for each input sequence in E.

2.2 Symbolic Input FSM

We define a model, called a symbolic input finite state machine (SIFSM), which
operates in discrete time as a synchronous machine reading values of input variables
and setting up the values of output variables. Output variables are assumed to have a
finite number of valuations and form a finite output alphabet. On the other hand, there
may exist an infinite set of input valuations. SIFSM uses guards on transitions which
are executed one at a time.

Checking Experiments for Finite State Machines 5



Definition 2. A symbolic input finite state machine S (or machine, for short) is a
7-tuple (S, s0, V, O, F, δ, λ), where

• S is a finite set of states with the initial state s0,
• V is a finite set of input variables over which guards in G are defined,
• O is a finite set of outputs,
• F � S × G is a finite specification domain,
• δ : F → S is a transition function, and
• λ : F → O is an output function.

Examples of SIFSM are given in Fig. 1. Examples of realistic systems which can be
specified as SIFSM could be found in [15, 28]. In the first work, the Ceiling speed
monitoring following the public ETCS system specification [7] is modelled, it has two
input and two output variables. In the second work, an HVAC controller specified in
Simulink/Stateflow is considered, it has nine input variables, Boolean and naturals, the
most complex transition guard comprises 13 terms.

The semantics of SIFSM is defined by a Mealy state machine with a possibly
infinite input set, where the state and output sets remain finite.

Given (s, g) 2 F, we say that input g is defined in state s 2 S. Then, G
(s) = {g 2 G | (s, g) 2 F} contains all inputs defined at s. The machine S is deter-
ministic, if for any (s, g), (s, g’) 2 F, it holds that g \ g’ =∅. State s of the machine S is
input-complete, if for each input valuation v, at least one of its guards evaluates to True,
i.e., {v 2 g | g 2 G(s)} = DV. The machine S is input-complete, if each state is
input-complete. The machine S is normalized, if for all (s, g), (s, g’) 2 F, δ(s, g) = δ(s,
g’) implies that λ(s, g) ≠ λ(s, g’); in other words, the machine has at most one transition
with a given output for each ordered pair of states. Any machine that is not normalized
can always be converted into a normalized one by merging transitions with the same

1 2
(x≤a)/0 (x≤a)/0

(x≤a)/0

(x>a)/1 

(x>a)/1 (x>a)/1 (x>a)/1 

(x>a)/1 

(x>a)/1 
T/1

3

(x≤a)/1

4

SIFSM SIFSM 

13 24 23
(x≤a)/1 (x≤a)/⊥ ∇

Fig. 1. SIFSMs S, P, and the distinguishing machine S ⊕ P.
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start and end states as well as the same output and forming the disjunction of their
guards. This is a unique compact form of a SIFSM. We will consider only normalized
deterministic input-complete specification machines.

An input sequence α 2 G*, α = g1…gk, is defined in state s 2 S, if each input in α is
defined in a corresponding state, i.e., if there exist states s1, …, sk, sk+1, where s1 = s,
such that (si, gi) 2 F and δ(si, gi) = si+1 for each 1 ≤ i ≤ k. Let ΨS(s) denote the set of
input sequences defined in state s, and ΨS denote sequences defined in the initial state
of S. Moreover, ΩS(s) denotes the set ΨS(s) closed under the reduction relation, called
the set of input sequences admissible in state s, i.e., ΩS(s) = {α 2 G* | β 2 ΨS(s),
α � β}, and ΩS denotes sequences admissible in the initial state of S. Notice that for an
input-complete machine S any concrete input sequence is admissible in every state, i.e.,
DV* = ΩS(s), for each s 2 S. We lift the transition and output functions from inputs to
admissible input sequences, including the empty sequence ε, as usual: for s 2 S, δ(s,
ε) = s and λ(s, ε) = ε; and for input sequence α 2 ΩS(s) and input g 2 ΩS(δ(s, α)), δ(s,
αg) = δ(δ(s, α), g’) and λ(s, αg) = λ(s, α)λ(δ(s, α), g’), if g’ 2 GS((δ(s, α)) and g � g’.

Considering the input alphabet G, we further extend the transition and output
functions to the set of all possible input sequences in G*. The extended transition
function describes the set of all possible states which a deterministic machine from a
given state can reach in response to input sequence and the extended output reaction
function gives the set of all possible corresponding output sequences; these sets are
singletons if the input sequence is admissible for the starting state. We define the
function Δ : S × G* → 2S as follows. Given s 2 S and α 2 G*, we let Δ(s, α) be {δ(s,
β) | β � α, β 2 ΩS(s)}. Obviously, for any α 2 ΩS(s), Δ(s, α) = {δ(s, α)}. Similarly, we
define the function Λ : S × G* → 2O*. For s 2 S and α 2 G*, we define Λ(s, α) = {λ(s,
β) | β � α, β 2 ΩS(s)}. We call the functions Δ and Λ the extended transition and output
functions. For any α2ΩS(s),Λ(s, α) = {λ(s, α)}. Given a set of symbolic input sequences
Φ � G*, the SIFSM S is said to be a Φ-converter if for each α 2 Φ, |Λ(s0, α)| = 1.

Given input sequence α, we use pref(α) to denote the set of all prefixes of α.
Similar, pref(A) denotes the set of prefixes of sequences in A. The set A is prefix-closed
if pref(A) = A.

3 Relations Between SIFSMs

In this section, we extend the classical equivalence and distinguishability relations to
SIFSMs and introduce new types of distinguishability which have no counterparts in
the classical deterministic Mealy machine. We define a designated symbolic machine
which can be used to check the distinguishability of symbolic input finite state
machines.

In this paper, we focus our attention on deterministic systems, in which different
output sequences produced by two states in response to the same symbolic input
sequence indicate that the two states can be distinguished by the input sequence.

Definition 3. Given states s, s’ 2 S of S, states s, s’ 2 S are distinguishable, denoted
s ≄ s’, if there exist compatible input sequences α 2 ΨS(s) and β 2 ΨS(s’), such that λ(s,
(α \ β)) ≠ λ(s’, (α \ β)); the sequence α \ β is called a separating sequence for
distinguishable states s and s’.
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Since the machine is deterministic, its reacts to a given admissible input sequence as
it does to any of its reduction. We have therefore the following corollary.

Corollary 1. Any instance of a separating sequence is a separating sequence.
The importance of this property of separating sequences becomes evident in the

context of testing, as we discussed later.
Given a prefix-closed set of input sequences E � G*, we let s ≄E s’ to denote the

fact that the set E contains a separating sequence. If E contains no separating sequence
then states s and s’ are said to be E-equivalent, denoted s ≃ E s’, and if E = G*, then the
states are equivalent, denoted s ≃ s’. The machine is reduced if it has no equivalent
states. We further assume that the specification machine S is reduced.

As usual, we define equivalence and distinguishability of machines as the corre-
sponding relation between their initial states.

To decide distinguishability we define a designated machine, where, instead of
composing transitions caused by the same input as in the case of FSMs [27], we
compose transitions with compatible inputs. The machine has the common behavior of
the given machines, as the classical automata product (even lifted to symbolic automata
[34]), but in addition it signals when they disagree on output and enters a sink state.

Definition 4. Given two SIFSMs S = (S, s0, V, O, FS, δS, λS) and P = (P, p0, V, O, FP,
δP, λP) over the same set of input variables V, a SIFSM C = (C [ {∇}, c0, V, O [ {⊥},
FC, δC, λC), where ∇ is a designated sink state, ⊥ is a designated output, is the
distinguishing machine for S and P denoted S ⊕ P, if

• c0 = (s0, p0)
• FC � C × G such that for (s, p) 2 C, g \ g’ 2 GC(s, p), if g 2 GS(s), g’ 2 GP(p), and

g \ g’ ≠ ∅
• For (s, p) 2 S × P and g \ g’ 2 GC(s, p), δC((s, p), g \ g’) = (δS(s, g), δP(p, g’)) and

λC((s, p), g \ g’) = λS(δ(s, g)), (δS(s, g), δP(p, g’)) 2 S × P if λS(s, g) = λP(p, g’)
otherwise, i.e., if λS(s, g) ≠ λP(p, g’), then δC((s, p), g \ g’) = ∇, and λC((s, p),
g \ g’) = ⊥.

We further assume that the distinguishing machine is normalized by merging, if
needed, transitions with the designated output ⊥ from the same state. By the definition,
any input sequence reaching the sink state of the distinguishing machine is a separating
sequence for the given machines; the distinguishing machine could be used to decide
the equivalence of two distinct machines as well as states in the same machine. To
illustrate the above we consider the SIFSMs in Fig. 1, where x is an input variable, a is
a constant, 0, 1 and 2 are outputs and T stands for True.

The machines S and P are distinguishable, as the distinguishing machine S ⊕ P
shows. The shortest separating sequence is (x ≤ a)(x ≤ a)(x ≤ a). Indeed, in response to
it S produces 011, while P produces 010.

In this example, we have that the separating sequence is admissible in both
machines, as required; however, it is defined only in one of them, namely, (x ≤ a)
(x ≤ a)(x ≤ a) 2 ΨP, though (x ≤ a)(x ≤ a)(x ≤ a) 62 ΨS. This sequence is a reduction of
the symbolic sequence (x ≤ a)(T)(T) defined in the machine S. Considering the relations
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between separating and defined sequences we further refine the distinguishability
relation.

Definition 5. Given distinguishable states s, s’ 2 S of S, s’ is strongly-distinguishable
from s if there exists a separating sequence defined in state s, i.e., α 2 ΨS(s); if state s’
is not strongly-distinguishable from state s, then s’ is said to be weakly-distinguishable
from state s.

For two arbitrary states, they could be equivalent, one can be
strongly-distinguishable from another, both can be strongly-distinguishable from each
other, or both can be weakly-distinguishable from each other. In the last case, they are
just distinguishable. Notice that the strongly-distinguishability relationship is not
symmetric.

In our example, the machine S is strongly-distinguishable from P, because the
separating sequence (x ≤ a)(x ≤ a)(x ≤ a) is defined in P. The machine P, in turn, is
weakly-distinguishable from S, since all the separating sequences in the distinguishing
machine are not defined in S.

As follows from Corollary 1, if the machines are distinguishable, they are distin-
guished by any instance of a separating sequence; this is also the case when one
machine is strongly-distinguishable from another machine and by the definition the
separating sequence is defined in the latter. However, an arbitrary instance of such a
sequence may not distinguish a machine that is weakly-distinguishable from another.
This difference becomes crucial in conformance testing, when one machine represents a
specification and another an implementation under test (IUT). To test the latter, only
concrete input sequences would be used, when the IUT is treated as a black box. In the
example, assuming that the machine P is the specification and S is the IUT, any
instance of the separating sequence (x ≤ a)(x ≤ a)(x ≤ a) can be used to detect
non-conformance of the IUT S, as it is not equivalent to P, moreover, S is
strongly-distinguishable from P. On the other hand, if the machines swap their roles
then since P is weakly-distinguishable from S, then non-conformance of the IUT P
cannot be detected by an arbitrary instance of the separating sequence (x ≤ a)(x ≤ a)
(x ≤ a).

We formulate a condition under which a SIFSM is either equivalent to or
strongly-distinguishable from another SIFSM. It is based on the property of one
machine being a converter for all symbolic input sequences defined in another machine.
Intuitively, the condition |Λ(m0, α)| = 1 corresponds to the case when the two machines
are equivalent as well as to the case when they produce different output sequences in
response to α.

Theorem 1. Given a (specification) machine S and an (implementation) machine M, if
M is a ΨS-converter then M is either equivalent to or strongly-distinguishable from S.

Proof. Assume that M is a ΨS-converter, i.e., |Λ(m0, α)| = 1 for each α 2 ΨS. As S is
deterministic, we have that |Λ(s0, α)| = 1 for each α 2 ΨS. Assume also that M is not
strongly-distinguishable from S. Thus, for each α 2 ΨS, Λ(m0, α) � Λ(s0, α). It implies
that for each α 2 ΨS, Λ(m0, α) = Λ(s0, α), since |Λ(m0, α)| = |Λ(s0, α)| = 1. Hence, there
is no separating sequence for S and M, i.e., they are equivalent. ♦
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Clearly, the sufficient condition is not a necessary one. Consider the machine P in
Fig. 1 as an IUT and assume that both transitions from state 4 have the output 0. The
modified machine is strongly-distinguishable from S, but it has |Λ(m0,(x ≤ a)(T))| = 2.

4 Symbolic and Concrete Checking Experiments

In this section, we define symbolic checking experiments following a usual framework
for defining complete test suite for a given machine, conformance relation, and fault
domain [25]. In this case, we are dealing with specification and implementation
SIFSMs in a fault domain containing only normalized deterministic input-complete
machines; the conformance relation is the machine equivalence. Complete test suite is
considered as checking experiment, which could be symbolic or concrete. In the
context of symbolic execution and constraint solving, symbolic experiments are of
interest for white box testing, while concrete ones for back box testing, where all test
data should be concrete. Another specific feature of testing from SIFSM is that a
non-equivalent implementation machine in a fault domain can either be weakly- or
strongly-distinguishable, which as we show later has a significant impact on fault
detection capability of concrete checking experiments.

Let J(V, m) be the universe of SIFSMs over the input variables V with at most
m states. A subset of J(V, m) is called a fault domain for a specification machine S = (S,
s0, V, O, F, δ, λ); it includes SIFSMs which model all possible implementations of S.
A set of input sequences E � ΩS is a checking experiment for S in a fault domain
Σ � J(V, m) iff S ≃ E M implies S ≃ M, for each M 2 Σ.

We now define main ingredients of symbolic checking experiments, following the
classical approach of state identification.

A symbolic state cover C for the machine S is a set which contains the empty
sequence and for each state s 2 S a single defined input sequence α 2 ΨS, such that
δ(s0, α) = s. A symbolic transition cover T for the machine S is a set {αg | α 2 C, g 2 G
(δ(s0, α))}, where C is a symbolic state cover.

Given state s 2 S of the reduced machine S, a finite set E � ΩS(s) is a state
identifier for s, denoted Id(s), if s ≄E s’ for each s’ ≠ s. State identifiers in a set H = {Id
(s) | s 2 S} are harmonized if for each pair of distinguishable states s and s’, there exists
a separating sequence α 2 pref(Id(s)) \ pref(Id(s’)). A straightforward way of con-
structing HSIs is to determine a distinguishing machine for each pair of states and
include the found sequence in the identifiers of the states in the pair.

Given a symbolic state cover C, a symbolic transition cover T and a set of har-
monized state identifiers H = {Id(s) | s 2 S}, a symbolic HSI experiment is
{αγ | α 2 (C [ T), γ 2 Id(δ(s0, α))}.

As an example, we construct a symbolic checking experiment for S in Fig. 1. The
state cover is {ε, (x ≤ a)}, the transition cover is {(x > a), (x ≤ a), (x ≤ a)(T)}. The
symbolic input (x ≤ a) separates states, so Id(1) = Id(2) = (x ≤ a). Then the HSI
experiment becomes {(x > a)(x ≤ a), (x ≤ a)(x ≤ a), (x ≤ a)(T)(x ≤ a)}, which could be
simplified to {(x > a)(x ≤ a), (x ≤ a)(T)(x ≤ a)}.

Recall that we assume that a specification SIFSM S = (S, s0, V, O, F, δ, λ) is
reduced, normalized, deterministic, and input-complete.
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Theorem 2. Let S be a specification SIFSM, an HSI experiment is a checking
experiment for S in the fault domain J(V, n).

Before proving Theorem 2, we demonstrate some auxiliary results.

Lemma 3. Let S = (S, s0, V, O, F, δS, λS) be a specification SIFSM, E be an HSI
experiment for S and M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault domain
J(V, n). If M ≃ E S then M has n states.

Proof. Let s and s’ be two states of S. There exist α, α‘ 2 C, such that δS(s0, α) = s and
δS(s0, α’) = s’. There also exists γ 2 pref(Id(s)) \ pref(Id(s’)), such that αγ, α‘γ 2 E and
Λ(s, γ) ≠ Λ(s’, γ); thus, Λ(Δ(s0, α), γ) ≠ Λ(Δ(s0, α‘), γ). As S ≃ E M, we have that Λ(s0,
αγ) = Λ(m0, αγ) and Λ(s0, α‘γ) = Λ(m0, α‘γ). Hence, Λ(Δ(s0, α), γ) = Λ(Δ(m0, α), γ) and
Λ(Δ(s0, α‘), γ) = Λ(Δ(m0, α‘), γ). Thus, Λ(Δ(m0, α), γ) ≠ Λ(Δ(m0, α‘), γ) and, therefore,
Δ(m0, α) ≠ Δ(m0, α‘). We conclude that for each pair of states of S, there exists at least
a pair of states of M which are distinct. Therefore, M has at least n states. As M 2 J(V,
n), M has at most n states. Thus, M has n states. ♦

Lemma 4. Let S = (S, s0, V, O, FS, δS, λS) be a specification SIFSM, E be an HSI
experiment for S and M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault domain
J(V, n). If M ≃ E S then there exists a bijection f : S ↔ M, such that for each
α 2 (C [ T), f(Δ(s0, α)) = Δ(m0, α).

Proof. C contains n symbolic input sequences, one for each state of S. By Lemma 3,
M has n states. Thus, we can define a bijection f : S ↔ M, such that for each α 2 C, f
(Δ(s0, α)) = Δ(m0, α). It thus remains to show that for each β 2 T, we also have that f
(Δ(s0, β)) = Δ(m0, β). Let β 2 T and s = Δ(s0, β). There exists α 2 C, such that s = Δ(s0,
α). We have that f(s) = Δ(m0, α). Let α‘ 2 C, such that s’ = Δ(s0, α‘) ≠ s. Thus, f
(s’) = Δ(m0, α‘). There also exists γ 2 pref(Id(s)) \ pref(Id(s’)), such that βγ,
α‘γ 2 E and Λ(s, γ) ≠ Λ(s’, γ); thus, Λ(Δ(s0, β), γ) ≠ Λ(Δ(s0, α‘), γ). As S ≃ E M, we
have that Λ(s0, βγ) = Λ(m0, βγ) and Λ(s0, α‘γ) = Λ(m0, α‘γ). Hence, Λ(Δ(s0, β),
γ) = Λ(Δ(m0, β), γ) and Λ(Δ(s0, α‘), γ) = Λ(Δ(m0, α‘), γ). Thus, Λ(Δ(m0, β),
γ) ≠ Λ(Δ(m0, α‘), γ) and, therefore, Δ(m0, β) ≠ Δ(m0, α‘) = f(s’) and Δ(m0, β) ≠ f(s’). It
follows that f(s) = Δ(m0, β) and, thus, f(Δ(s0, β)) = Δ(m0, β). ♦

Corollary 2. If M ≃ E S then for any α, β 2 ΨS, if Δ(s0, α) = Δ(s0, β) then Δ(m0,
α) = Δ(m0, β).

Proof. Let M ≃ E S and α, β 2 ΨS, Δ(s0, α) = Δ(s0, β). First, we prove by induction on
the prefixes of α that there exists a sequence φ 2 C, such that Δ(s0, α) = Δ(s0, φ) and
Δ(m0, α) = Δ(m0, φ).

For the base case, we have α = ε. As ε 2 C, the property holds for φ = α = ε, since
obviously Δ(s0, α) = Δ(s0, φ) and Δ(m0, α) = Δ(m0, φ).

For the inductive case, assume that α = α’g and there exists φ‘ 2 C, with Δ(s0,
α’) = Δ(s0, φ‘) and Δ(m0, α’) = Δ(m0, φ‘). We have that φ‘g 2 T. As C is a state cover
for S, there exists φ 2 C, such that Δ(s0, φ‘g) = Δ(s0, φ); hence Δ(s0, α) = Δ(s0, φ).
Thus, due to the properties for the bijection f, it follows that f(Δ(s0, φ‘g)) = Δ(m0, φ‘g)
and f(Δ(s0, φ)) = Δ(m0, φ). It then follows that Δ(m0, α) = Δ(m0, φ‘g) = f(Δ(s0, φ‘g)) = f
(Δ(s0, φ)) = Δ(m0, φ), hence Δ(m0, α) = Δ(m0, φ), concluding the induction proof.
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In the same vein, we can prove that there exists a sequence φ‘ 2 C, such that Δ(s0,
β) = Δ(s0, φ‘) and Δ(m0, β) = Δ(m0, φ‘). As Δ(s0, α) = Δ(s0, β) and C contains only one
sequence that reaches each state, we have that φ = φ‘. Thus, Δ(m0, β) = Δ(m0,
φ) = Δ(m0, φ‘) = Δ(m0, α), i.e., Δ(m0, β) = Δ(m0, α). ♦

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let M = (M, m0, V, O, FM, δM, λM) be a SIFSM from the fault
domain J(V, n), such that M ≃ E S. We prove by contradiction that M ≃ S. Assume that
M ≄ S. Let β be the shortest symbolic input sequence such that M ≃ {β} S and there
exists g 2 G* such that βg is a separating sequence, i.e., M ≄{βg} S. Thus, Λ(Δ(m0, β),
g) ≠ Λ(Δ(s0, β), g).

Since E is an HSI experiment {αγ | α 2 (C [ T), γ 2 Id(δS(s0, α))}, it contains a
sequence φ 2 C, such that Δ(s0, φ) = Δ(s0, β). Then Δ(m0, φ) = Δ(m0, β), according to
Corollary 2. Since Λ(Δ(m0, β), g) ≠ Λ(Δ(s0, β), g), it also holds that Λ(Δ(m0, φ),
g) ≠ Λ(Δ(s0, φ), g). The HSI experiment contains a transition cover of S then there
exists a symbolic input g’, such that (Δ(s0, φ), g’) 2 FS, g � g’, and φg’ 2 E. M ≃ E S
implies that M ≃ {φg’} S. We have that Δ(m0, φ) = Δ(m0, β), then Λ(Δ(m0, β),
g’) = Λ(Δ(s0, β), g’). This contradicts the assumption that Λ(Δ(m0, β), g) ≠ Λ(Δ(s0, β),
g), as g � g’.♦

For simplicity, we have considered symbolic experiments for the fault domain J(V,
n). Nevertheless, based on the previous results, e.g., [30, 33], the case of a wider fault
domain J(V, m), where m > n can also be considered.

Symbolic experiments could be used in the context of white-box testing when
symbolic execution of code/model of an implementation SIFSM is possible; however,
they cannot be executed against an implementation SIFSM considered as a black box.
We further assume that only instances of symbolic experiments can be executed against
any implementation SIFSM in a given fault domain.

Consider first the case, when an SIFSM S has a finite number of concrete inputs, in
other words, it is a compact representation of a Mealy FSM S’ over the finite input set
DV. Then the set of all possible instances of a symbolic checking experiment is finite
and is in fact a concrete checking experiment for the SIFSM S. The latter is also a
classical checking experiment for the FSM S’.

Theorem 3. Given a specification machine S with a finite input set DV, let E be a
symbolic checking experiment for S in J(V, n). Let also E’ be the set of all possible
instances of E and S’ be the FSM obtained by unfolding S. Then, E’ is a concrete
checking experiment for S and S’ in J(V, n).

Proof. As E is a symbolic checking experiment for S in J(V, n), for each M in J(V, n),
E contains a separating sequence α distinguishing S and M. Thus, there exists an
instance of α which distinguishes S and M and E’ contains this instance; hence E’
distinguishes S and any SIFSM in J(V, n) which is distinguished by E. As E is a
symbolic checking experiment for S in J(V, n), it follows that E’ is a checking
experiment for S in J(V, n). As S’ is equivalent to S, we have that E’ is also a checking
experiment for S’ in J(V, n). ♦
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The theorem suggests that checking experiments for SIFSMs with a finite set of
concrete inputs can be constructed directly from a given specification machine without
first unfolding it into a classical Mealy machine and using one of the existing methods
for checking experiment generation. It might also be computationally simpler to first
determine all the ingredients of a checking experiment in the symbolic form and then
generate all the concrete instances of symbolic sequences one by one.

Next we consider the case when the input variables do not yield a finite set of
concrete inputs and we investigate faults detectable by concrete experiments. Since we
can execute only a finite number of concrete input sequences, it is interesting to know
in which cases the set of single instances of each sequence in a symbolic checking
experiment remains a checking experiment for a given fault domain. In the following,
we identify several such cases.

Let E be a symbolic checking experiment for S in J(V, n) and let Σ be a subset of
J(V, n). We say that E is safely-instantiable for Σ if any instance of E is a concrete
checking experiment for S in Σ. We will use J(V, n, ΨS) to denote the subset of J(V,
n), which consists of ΨS-converters.

Theorem 4. Let E be a symbolic checking experiment for S in J(V, n). Then, E is
safely-instantiable for J(V, n, ΨS).

Proof. Let M 2 J(V, n, ΨS); thus, for each α 2 ΨS, |Λ(m0, α)| = 1. According to
Theorem 1, the machine M is either equivalent to or strongly-distinguishable from S.
Let C be an instance of E. Assume that M is not equivalent to S; thus, M is
strongly-distinguishable from S. As E is a symbolic checking experiment for S in J(V,
n) and J(V, n, ΨS) � J(V, n), there exists a symbolic separating sequence α 2 E, such
that M ≄{α} S; by Corollary 1, any instance of the sequence α is also a separating
sequence. Thus, the result follows. ♦

Theorem 4 says that any concrete experiment derived from a symbolic checking
experiment is also a checking experiment for the machine S in the fault domain J(V, n,
ΨS). In other words, a complete concrete test suite can be obtained from a symbolic
checking experiment. The question arises as to which structural faults in the imple-
mentation machines preserve their property of being ΨS-converters. Addressing this
question, we follow the same approach for describing faults as in the classical deter-
ministic Mealy machines, see, e.g., [2, 24]. Implementation faults are usually modeled
by mutants of a given machine. Elements of transitions, namely, output and end state,
are subjects for mutations, which yield output faults, transfer faults and transition faults
combining the first two types of faults.

It is not difficult to see that all possible mutants of the specification SIFSM S with
output faults are ΨS-converters, i.e., they are in the fault domain J(V, n, ΨS).

As to transition faults, they should not violate the property of ΨS-converters,
namely, a mutant with transition faults should react to any symbolic input sequence
defined the specification with a single output sequence. It turns out that mutants with
transition faults remain to be ΨS-converters under the following conditions.

Assume that the specification SIFSM S has a fixed set of guards in each and every
state, i.e., G(s) = G(s’) = GS for all states s, s’ 2 S. Let GM denote the set of guards of
an implementation SIFSM M with the same property.
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Theorem 5. Given a specification SIFSM S with the set of guards GS then {M 2 J(V,
n) | GM = GS} � J(V, n, ΨS).

Proof. Let M 2 J(V, n), such that GM = GS. Indeed, GM = GS implies ΨM = ΨS. As
J(V, n) includes only deterministic machines, we have that |Λ(m0, α)| = 1 for each
α 2 ΨM; therefore |Λ(m0, α)| = 1 for each α 2 ΨS. Thus, M 2 J(V, n, ΨS). ♦

We identify another sufficient condition considering the case when the set of
defined input sequences of each implementation machine in a fault domain is a superset
of that of the specification machine. Intuitively, an implementation machine is assumed
to preserve in each state guards of the specification or merge some of them.

Theorem 6. Given a specification SIFSM S, it holds that {M 2 J(V, n) | 8α 2 ΨS,
8g 2 GS(δ(s0, α)), 9 g’ 2 GM(δ(m0, α)), g � g’} � J(V, n, ΨS).

Proof. Let M 2 J(V, n), such that for each α 2 ΨS and each g 2 GS(δ(s0, α)), there
exists g’ 2 GM(δ(m0, α)) such that g � g’. We prove by induction that for each α 2 ΨS,
|Λ(m0, α)| = 1.

For the basis step, we have that Λ(m0, ε) = {ε}, i.e., |Λ(m0, ε)| = 1. For the induction
step, assume that α = βg 2 ΨS and |Λ(m0, β)| = 1. Let also g 2 GS(δ(s0, β)),
g’ 2 GM(δ(m0, β)), such that g � g’. We can see that |Λ(δ(m0, β), g’)| = 1; thus |Λ(δ(m0,
β), g)| = 1. Consequently, |Λ(m0, βg)| = 1, i.e., |Λ(m0, α)| = 1; therefore, |Λ(m0, α)| = 1
for each α 2 ΨS. Thus, M 2 J(V, n, ΨS). ♦

This theorem addresses a specific fault model of symbolic implementation
machines representing the mutation by merging transitions along with their guards
which is not possible in classical FSM, since an implementation FSM should have all
the inputs of a specification FSM. In case of SIFSMs, implementation machines have
all the input variables of a specification machine, but not necessarily its guards.

Consider SIFSMs in Fig. 1. The machine S can be considered a mutant of the
specification machine P, where transitions with guards (x ≤ a) and (x > a) are merged
into a transition with the guard T. On the other hand, when the machine S serves as a
specification and the machine P is an implementation this mutant has a specific fault of
splitting a guard used in the specification SIFSM. To detect such a fault, one has use to
use at least two instances of a symbolic input sequence from the checking experiment.
Since P is treated as a black box testing, and the way a guard is split is unknown, two
concrete tests suffice if they properly “guess” it.

5 Conclusions

We investigated possibilities for lifting the checking experiments theory developed for
the classical (Mealy) finite state machine model to its extension, where input alphabet is
finite, but consists of predicates defined over input variables with large or even infinite
domains. We call it FSM with symbolic inputs, SIFSM. On one hand, this model can
be considered as a special type of Extended FSMs (EFSMs) [26], without context
variables and operations on variables; on another hand, as symbolic automaton or

14 A. Petrenko and A. Simao



symbolic transducer [23, 35]. The recent grow of interest towards symbolic models
could be explained by advances in constraint solving technology, as SMT solvers
become efficient [22].

We lifted the machine equivalence and distinguishability relations to SIFSM and
identified new distinguishability relations which have no counterparts in classical
deterministic Mealy machines. Then, we defined symbolic checking experiments for
deterministic SIFSMs and demonstrated that they could be obtained by mimicking,
e.g., a classical HSI method for constructing checking experiments of FSMs (other
types of state identification facilities, such as W and Wp, might also be used). Since
symbolic experiments could be used for white-box testing, but not for black-box
testing, which requires concrete test values, we focused on investigating fault domains
for which any concrete instance of a symbolic checking experiment remains a checking
experiment.

As expected, in the most general setting, an arbitrary instance of a symbolic
checking experiment may not be a checking experiment in the same fault domain.
Nevertheless, we found some sufficient conditions for the specification and imple-
mentation machines under which any instance of a symbolic checking experiment is
also a checking experiment in well-defined fault domains. Under these conditions,
non-trivial faults modeled by the identified fault domains are detectable by concrete
tests obtained from abstract (symbolic) tests in a symbolic checking experiment. These
faults include transition merging, which is only relevant to implementations of SIFSM
and not to classical Mealy machines.

The novelty of the results comes from the fact that while FSM checking experi-
ments are known for about 60 years, EFSMs for about 30 years, there are no published
results on checking experiments for EFSM which cannot be unfolded into FSM. To the
best of our knowledge, it is the first attempt to advance the checking experiment theory
to FSMs with a symbolic extension.

While the problem of handling more general EFSMs remains open, we believe that
the presented results open a new line of research in checking experiments for symbolic
state machines and transition systems.

Our current work concerns, on one hand, relaxing the sufficient conditions of
safe-instantiability, and on the other hand, extending the SIFSM model with operations
on output variables, thus lifting the checking experiments theory to a wider class of
extended finite state machines. We also plan to investigate other fault models for which
symbolic checking experiments could be used as efficiently as for the faults satisfying
the formulated sufficient conditions.
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Canan Güniçen1, Guy-Vincent Jourdan2, and Hüsnü Yenigün1(B)
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Abstract. A new method for constructing a checking sequence for
finite state machine based testing is introduced. Unlike previous meth-
ods, which are based on state recognition using a single state identi-
fication sequence, our approach makes use of multiple state identifica-
tion sequences. Using multiple state identification sequences provides an
opportunity to construct shorter checking sequences, choosing greedily
the state identification sequence that best suits our goal at different
points during the construction of the checking sequence. We present the
results of an experimental study showing that our approach produces
shorter checking sequences than the previously published methods.

1 Introduction

Testing is an important part of the system development but it is expensive and
error prone when performed manually. Therefore, there has been a significant
interest in automating testing from formal specifications. Finite State Machines
(FSM) are such a formal model used for specification. Deriving test sequences
from FSM models, has been an attractive topic for various application domains
such as sequential circuits [9], lexical analysis [1], software design [5], commu-
nication protocols [3,6,19,22,24,25], object-oriented systems [2], and web ser-
vices [13,30]. Such techniques have also been shown to be effective in important
industrial projects [11].

In order to determine whether an implementation N has the same behaviour
as the specification M , a test sequence is derived from M and applied to N .
Although, in general, observing the expected behaviour from N under a test
sequence does not mean that N is a correct implementation of M , it is possible
to construct a test sequence with such a guarantee under some conditions on
M and N . A test sequence with such a full fault coverage is called a checking
sequence (CS) [5,23].

There are many techniques that automatically generate a CS. In principle,
a CS consists of three types of components: initialization, state identification, and
transition verification. As the transition verification components are also based
on identifying the starting and ending states of the transitions, a CS incorporates
many applications of input sequences to identify the states of the underlying
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 19–34, 2015.
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FSM. For the state identification, we focus on the use of Distinguishing Sequences
(DS) and in particular Adaptive Distinguishing Sequences (ADS) in this paper.
An (A)DS does not necessarily exist for an FSM, however when it exists, it
allows constructing a CS of polynomial length. Therefore many researchers have
considered (A)DS based CS construction methods.

There exists a line of work to reduce the length of CS as it determines the
duration and hence the cost of testing, In these works, the goal is to generate a
shorter CS, by putting the pieces that need to exist in a CS together in a better
way [4,10,15,16,26,28,29]. All of these papers focus mainly on generating as
good a CS as possible for a given (A)DS, without elaborating on the choice of
that (A)DS.

As a different perspective, the use of shorter ADSs is also suggested to reduce
the length of a CS [27]. However an ADS provides a state identification sequence
which may be short for a state but long for another state. It is thus natural to
consider using several ADSs in the construction of a CS, is order to have access
to a short state identification sequences for each of the states. This is the topic
of this paper, in which we demonstrate that under some conditions, it is possible
to use several ADSs when constructing a CS, and we experimentally show that
this usually results in shorter CS than the most efficient method known so far,
especially for larger FSMs. To the best of our knowledge, the only other paper
in which using several DSs was considered was [17]. However, in that paper the
goal was to overcome some problems linked to distributed, multi port systems
and not to create shorter CSs. Dorofeeva et al. also consider using multiple state
identification sequences [8], but the CS construction method used in [8] is not
an ADS based approach and requires the assumption that a reliable reset exists
in the implementation.

In this paper, after introducing our notation and giving preliminary defini-
tions in Sect. 2, we explain the motivation behind and the additional issues that
need to be addressed when using multiple ADSs in CS construction in Sect. 3.
A sufficient condition for a sequence to be a CS when a set of ADSs is used
is given in Sect. 4. In Sect. 5, we first explain how we modify an existing CS
generation method to use the new sufficient condition, and then present an
experimental study that we performed to assess the potential improvement that
can be obtained in the length of CS when multiple ADSs are used.

2 Preliminaries

A deterministic finite state machine (FSM) is specified by a tuple M =
(S, s1,X, Y, δ, λ), where S is a finite set of states, s1 is the initial state, X is a
finite set of input symbols, and Y is a finite set of output symbols. δ : S×X → S
is a transition function, and λ : S × X → Y is an output function. Throughout
the paper, we use the constants n, p, and q to refer to the cardinalities |S|, |X|,
and |Y |, respectively.

For a state s ∈ S, an input (symbol) x ∈ X, and an output (symbol) y ∈ Y ,
having δ(s, x) = s′ and λ(s, x) = y corresponds to a transition from the state s



Using Multiple Adaptive Distinguishing Sequences 21

to the state s′ under the input x and producing the output y. We denote this
transition by using the notation (s, s′;x/y), where s is called the starting state,
x is called the input, s′ is called the ending state, and y is called the output of
the transition.

An FSM M is completely specified if the functions δ and λ are defined for
each s ∈ S and for each input symbol x ∈ X. Otherwise M is called partially
specified. In this paper, we consider only completely specified FSMs.

An FSM can be depicted as a directed graph as shown in Fig. 1. Here, S =
{s1, s2, s3}, X = {a, b, c}, and Y = {0, 1}. Each transition (si, sj ;x/y) of the
FSM is shown as an edge from si to sj labeled by x/y. An FSM M is called
strongly connected if the underlying directed graph is strongly connected.

s1

s2 s3

a/0

b/1 c/1
a/1

c/1
b/0

a/1b/1

c/0

Fig. 1. The FSM M0

The functions δ and λ are extended to input sequences as explained below,
where ε denotes the empty sequence. For a state s ∈ S, an input sequence α ∈
X�, and an input symbol x ∈ X, δ̄(s, ε) = s, λ̄(s, ε) = ε, δ̄(s, xα) = δ̄(δ(s, x), α),
and λ̄(s, xα) = λ(s, x)λ̄(δ(s, x), α). Throughout the paper, we will keep using the
symbols δ and λ for δ̄ and λ̄, respectively. We also use the notation (si, sj ;α/β)
to denote a (compound) transition from a state si to a state sj with an input
sequence α and an output sequence β. Note that, even though there might be
more than one input symbol in α, we still call (si, sj ;α/β) a transition.

Two states si and sj of M are said to be equivalent if, for every input sequence
α ∈ X�, λ(si, α) = λ(sj , α). If for an input sequence α, λ(si, α) �= λ(sj , α), then
α is said to distinguish si and sj . For example, the input sequence a distinguishes
states s1 and s2 of M0 given in Fig. 1.

Two FSMs M and M ′ are said to be equivalent if the initial states of M and
M ′ are equivalent. An FSM M is said to be minimal if there is no FSM with
fewer states than M that is equivalent to M . For an FSM M , it is possible to
compute a minimal equivalent FSM in O(pn lg n) time [18].

In this paper, we consider only deterministic, completely specified, minimal,
and strongly connected finite state machines.

An Adaptive Distinguishing Sequence (ADS) of an FSM M is a decision tree.
An ADS A for an FSM with n states, is a rooted decision tree with n leaves,
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where the leaves are labeled by distinct states of M , internal nodes are labeled
with input symbols, the edges emanating from a node are labeled with distinct
output symbols. The concatenation of the labels of the internal nodes on a path
from the root to the leaf labeled by a state si is denoted by Ai. Note that Ai

is an input sequence and it is called the State Distinguishing Sequence (SDS) of
si in A. Let Y i be the concatenation of the output labels on the edges along
the same root to leaf path. In this case, we also have λ(si, A

i) = Y i. Since the
output symbols on the edges originating from the same node are distinct, for
any other state sj , we have λ(si, A

i) �= λ(sj , A
i). An ADS does not necessarily

exist for an FSM, however the existence of an ADS can be decided in O(pn lg n)
time, and if one exists, and ADS can be constructed in O(pn2) time [20].

The fault model considered in FSM based testing in the literature is in general
given as follows. Let Φ(M) be the set of all FSMs with the set of input symbols X,
with the set of output symbols Y , and with at most n states. An implementation
N of an FSM M is assumed to belong to the set of FSMs Φ(M). A checking
sequence (CS) for M is an input sequence that can distinguish M from any faulty
N ∈ Φ(M), that is from any N which is not isomorphic to M .

3 An Illustration of the Approach

In this section, we illustrate the use of multiple ADSs for CS generation. We first
provide an example to explain the advantage that using more than one ADS
could provide. We then show by a counter example that one cannot simply use
several ADSs while building a CS, and that some additional steps are required.

s1 s2 s3 s4b/1
a/0 a/0

b/0

a/0

b/0
a/1

b/0

t1/2, t2/2, . . . , tk/2

t1/2, t2/2, . . . , tk/2 t1/2, t2/2, . . . , tk/2

t1/2, t2/2, . . . , tk/2

Fig. 2. The FSM M1

3.1 A Motivational Example

The FSM M1 depicted in Fig. 2 has two inputs a and b that produce sometimes 0,
sometimes 1 as output (solide edges in the picture), as well as a series of k inputs
t1, t2, . . . , tk that always produce 2 as output (dotted edges in the picture). M1

has several ADS trees, for example Aa such that A1
a = A2

a = aaa, A3
a = aa and

A4
a = a, and Ab such that A1

b = b, A2
b = bb, and A3

b = A4
b = bbb.

Although there are a number of different checking sequence construction
methods published in the literature, all of them will require applying at least



Using Multiple Adaptive Distinguishing Sequences 23

once the SDS of the end-state of each transition after going over that transition.
In our example, it means that the SDS of s1 will have to be applied at least
2k +2 times and the SDS of s4 will also have to be applied at least 2k +2 times.
If one chooses to use a single ADS during the construction, say Aa (resp. Ab),
the number of inputs required for the SDS of s1 is 3 (resp. 1) and the number
of inputs required for the SDS of s4 is 1 (resp. 3). It means that no matter
which ADS is chosen, about half the time (and at least 2k +2 times) the longest
possible SDS will have to be applied.

If, in contrast, we can use both Aa and Ab when building the checking
sequence, then we could use the shortest possible SDS each time, namely A1

b = b
for the transitions ending on s1 and A4

a = a for the transitions ending on s4,
which would result in a significant decrease in the size of the generated DS, espe-
cially if k is large. We note that there are also other possible benefits coming
from this choice, including more opportunities for overlap as well as additional
choices for the ending state reached after application of the SDS in order to
reduce subsequent transfer sequences. As we will see, there are however addi-
tional constraints that must be satisfied when using multiple ADSs.

s1

s2 s3

a/1 b/1

s/4

t/4

a/2

b/2

a/3

b/3

Fig. 3. The FSM M2 with two ADS
trees: a and b.

s1

s2 s3

a/1 b/1

s/4

t/4

a/2

b/3

a/3

b/2

Fig. 4. This FSM is not isomorphic to
the M2 but produces the same output
response to aasaaabbtbbb

3.2 Challenges When Using Multiple ADSs

In addition to the obvious problem that using multiple ADS trees requires each
of these trees to be applied to every state of the FSM, another issue is what we
call Cross Verification. In order to explain the problem, let us suppose that Ai

j

and Ai
k are two SDSs for a state si, and they are applied to the implementation

at nodes n and n′, and the expected outputs are observed. When one considers
the application of Ai

j and Ai
k independently, both n and n′ are recognized as the

state si. However, we cannot directly infer from the application of Ai
j and Ai

k that
n and n′ are actually the same implementation states. A faulty implementation
may have two different states, and we might be applying Ai

j and Ai
k at those

states. Therefore, one needs to make sure that n and n′ are actually the same
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implementation states as well. This requires some additional information to be
extracted based on the observations from the implementation.

To explain the need for cross verification, suppose that we are given the FSM
M2 in Fig. 3. We can split M2 into two subgraphs as shown in Figs. 5 and 6,
such that each subgraph has all the states of the original FSM and a subset of
the edges. The union of the subgraph is the original graph. Then we generate
checking sequences for each subgraph, using a different ADS tree each time.
We use two simple ADS trees a and b for subgraphs shown in Figs. 5 and 6,
respectively. Then, we generate the checking sequences for each graph as CS1 =
aasaaa and CS2 = bbtbbb. Since both sequences start and end in state s1, we can
simply concatenate them to attempt to create a checking sequence for original
FSM M1, e.g. CS3 = aasaaabbtbbb. Unfortunately, the resulting sequence is not a
checking sequence: the FSM shown in Fig. 4 produces the same output sequence
as the response to CS3 with the FSM of Fig. 3, although it is not isomorphic to
the FSM shown in Fig. 3.

s1

s2 s3

a/1

s/4

a/2

a/3

Fig. 5. A subgraph of the FSM M2:
aasaaa is a CS

s1

s2 s3

b/1

t/4

b/2

b/3

Fig. 6. Another subgraph of the FSM
M2: bbtbbb is a CS

The problem is that although each subgraph is independently correctly veri-
fied by its own checking sequence, the states that are identified in each subgraph
do not correspond to each other (in some sense, states s2 and s3 are swapped
between the two subgraphs in this example). What we need to do, in addition
to the above, is to force the fact that the node recognized by each application of
the ADS in different subgraphs correspond to one another. One simple solution
is to create a spanning tree on top of the original graph, and add the recognition
of the spanning tree in each of the subgraphs. This way, we know that the nodes
in different subgraphs correspond to the same implementation states as well. For
example, if we add the spanning tree shown in Fig. 7, the checking sequence for
subgraph in Fig. 5 doesn’t change since the tree is included in it, while the check-
ing sequence for the second subgraph in Fig. 6 becomes CS2 = bbtbbbsbab, and
the combined checking sequence is aasaaabbtbbbsbab, which does not produce
the expected output sequence on the FSM of Fig. 4.

In our algorithm, we overcome this problem by differentiating between the
concepts of “d-recognition” and “d-recognition by an ADS Aj”. We declare a
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s3 s1 s2
a/3 s/4

Fig. 7. Spanning tree of the FSM M2

node d-recognized if it is d-recognized by Aj for all j’s. This requirement forces
an observation of the application of each ADS Aj on the same implementation
state. Such a set of observations provides information that the states recognized
by different ADSs are the same implementation states. Therefore, we cross verify
the node by all ADSs.

4 A Sufficient Condition for Checking Sequences Using
Multiple ADS

For an input sequence ω = x1x2 . . . xk, let us consider the application of ω to
an implementation FSM N = (Q, q1,X, Y, δN , λN ). The sequence α is designed
as a test sequence to be applied at the state q1 of N that corresponds to the
initial state s1 of M . N is initially assumed to be at this particular state1.
However, since we do not know if N is really at this particular state, let us
refer to this unknown state of N as node n1. When x1x2 . . . xk is applied at
n1, N will go through a sequence of states that we refer here by the node
sequence n2n3 . . . nk+1. Based on this sequence of nodes, we define the path
Pω as (n1, n2;x1/y1)(n2, n3;x2/y2) . . . (nk, nk+1;xk/yk), which is the sequence
of transitions of N executed by the application of ω. Note that ni’s are the
unknown states of N that are traversed and yi’s are the outputs produced by
N during the application of ω. If y1y2 . . . yk �= λ(s1, ω), N is obviously a faulty
implementation. Therefore, from now on we assume that y1y2 . . . yk = λ(s1, ω),
and under this assumption we provide below a sufficient condition for ω to be
checking sequence for M .

For the definitions below, let ω be an input sequence, R be an equivalence
relation on the set of nodes of Pω, and A = {A1, A2, . . . , Ak} be a set of ADSs.

Note that each node ni is a state in N . Based on the observations that we have
in Pω, under some conditions, it is possible to infer that two different nodes ni

and nj are actually the same state in N . We use the following equivalence relation
on the nodes of Pω to denote the set of nodes that are the same implementation
state.

Definition 1. An equivalence relation R on the nodes of Pω is said to be an
i–equivalence if for any two nodes n1, n2 in Pω, (n1, n2) ∈ R implies n1 and n2

are the same (implementation) state in N .

Pω itself, when viewed as a linear sequence of application of input sym-
bols in ω, presents explicit observations on N . For example, having a subpath
1 A homing sequence or a synchronizing sequence, possibly followed by a transfer

sequence is used to (supposedly) bring N to this particular state.
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(ni, nj ;α/β) in Pω, we have an explicit observation of the application of the
input sequence α at node ni. We call this compound transition (ni, nj ;α/β) in
N an observation. Based on the additional information of the equivalence of the
nodes in Pω, it is actually possible to infer some new observations that are not
explicitly displayed in Pω.

Definition 2. An observation (n, n′;α/β) is an R–induced observation in Pω

i. if (n, n′;α/β) is a subpath in Pω, or
ii. if there exist two R–induced observations (n, n1;α1/β1) and (n2, n

′;α2/β2) in
Pω such that (n1, n2) ∈ R and α/β = α1α2/β1β2.

An input/output sequence α/β is said to be R–observed in Pω at n if there exists
n′ such that (n, n′;α/β) is an R–induced observation in Pω.

Note that R–observing an input/output sequence α/β at a node n is not nec-
essarily an explicit observation in N . In other words, we do not necessarily have
an explicit application of the input sequence α at the state of N represented by
the node n in Pω. However, when R is an i–equivalence relation, it is guaranteed
that if we were to apply α at the state of N represented by the node n, we would
have observed β. This claim is formalized below.

Lemma 1. Let R be an i-equivalence relation, n be a node in Pω, and α/β be
an input/output sequence R–observed at n. Let s be the implementation state
corresponding to n and λN be the output function of the implementation N .
Then λN (s, α) = β.

Proof. The proof is immediate by induction on the length of α, since in Defin-
ition 2 the nodes n1 and n2 are necessarily the same state in N (when R is an
i–equivalence relation), and α1 and α2 are shorter than α. ��
An ADS Ai of the specification M is understood to be an ADS for the imple-
mentation N as well, when we have the observations for the applications of all
SDSs Aj

i (sj ∈ S) of Ai on N . However, these observations do not have to be
explicit observations, we can also use inferred observations.

Definition 3. An ADS Ai is an R–valid ADS in Pω if for all sj ∈ S there exists
a node n in Pω such that Aj

i/λ(sj , A
j
i ) is R–observed in Pω at n.

When an ADS Ai of M is understood to be an ADS of N as well, we can
use the observations of the applications of SDSs of Ai to recognize the states of
N as states in M . Definition 4 below is a generalization of d–recognition and
t–recognition in the literature (see e.g. [28]) by considering that different ADSs
can be used for such recognitions.

Definition 4. For a node n of Pω and an ADS Ai, n is R–Ai–recognized as
state sj if Ai is an R–valid ADS in Pω, and

i. Aj
i/λ(sj , A

j
i ) is R–observed at n, or
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ii. there exist nodes n′, n′′, n′′′ of Pω, an ADS A� ∈ A, a state sr ∈ S, and an
input/output sequence α/β such that n′ and n′′ are R–A�–recognized as sr,
n′′′ is R–Ai–recognized as sj, and (n′, n;α/β) and (n′′, n′′′;α) are R–induced
observations in Pω.

One issue that needs to be addressed when we have multiple ADSs is the
following. Suppose that a node n is R–Ai–recognized as state sj in Pω. Let n′

be another node in Pω which is R–Ak–recognized as state sj as well, but by
using another ADS Ak. We cannot directly deduce that n and n′ are the same
implementation states. Stated in a different way, if a node n is R–Ai–recognized
as state sj in Pω for some ADS Ai ∈ A, it is not necessarily R–Ak–recognized as
state sj in Pω directly for another ADS Ak ∈ A. We need to have an observation
of the application of Aj

k at n as well. Therefore, we have the following definition
to make sure that a node is actually recognized as the same state sj by all the
ADSs in A.

Definition 5. A node n of Pω is R–A–recognized as state sj if for all Ai ∈ A,
n is R–Ai–recognized as state sj.

Now we can generalize the notion of “transition verification” to the case of
multiple ADSs.

Definition 6. A transition (s, s′;x/y) of M is R–A–verified in Pω, if there
exists a subpath (n, n′;x/y) in Pω such that n is R–A–recognized as state s and
n′ is R–A–recognized as state s′.

Note that, the identity relation I on the nodes in Pω is obviously an i–
equivalence relation. When one uses the identity relation I as the relation R,
and A is a singleton set, then any induced observation in Pω must actually be
a subpath of Pω. Also under this restriction, Definition 4 is equivalent to the
usual state recognitions definitions (i.e. d–recognition and t–recognition given
e.g. in [14]) in the literature. Therefore the following holds for this restricted
case:

Theorem 1 (Adapted from Theorem 2 in [14]). When A is a singleton
set, an input sequence ω is a checking sequence if all transitions of M are I–A–
verified in Pω.

Generalizing Theorem 1 to the case where A is not singleton is easy.

Theorem 2. Let A be a set of ADSs, and ω be an input sequence. If all tran-
sitions of M are I–A–verified in Pω, then ω is a checking sequence.

Proof. For each transition (s, s′;x/y), by Definition 6, there exists subpath
(n, n′;x/y) such that n and n′ are I–A–recognized as s and s′, respectively. Based
on Definition 5, n and n′ are I–Ai–recognized as s and s′, by all Ai ∈ A. Let us
consider a particular ADS A1 ∈ A. The nodes n and n′ are I–{A1}–recognized,
and hence the transition (s, s′;x/y) is I–{A1}–verified. Using Theorem 1, ω is a
checking sequence. ��
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Finally we generalize the sufficiency condition to use an arbitrary i–equivalence
relation R as follows.

Theorem 3. Let A be a set of ADSs, and ω be an input sequence, and R be an
i–equivalence relation. If all transitions of M are R–A–verified in Pω, then ω is
a checking sequence.

Proof. For each transition (s, s′;x/y), by Definition 6, there exists subpath
(n, n′;x/y) such that n and n′ are R–A–recognized as s and s′, respectively.
Lemma 1 implies that n and n′ are also I–A–recognized as s and s′. By Theo-
rem 2, ω is a checking sequence. ��
Theorem 3 provides a sufficient condition for a sequence to be a checking
sequence. It can be used to verify if an input sequence ω is a checking sequence,
provided that we are given an i–equivalence relation R. Lemma 2 explains how
one can obtain such a relation by starting from the trivial i–equivalence relation
I, the identity relation.

Lemma 2. Let R be an i–equivalence relation, n1 and n2 be two nodes in Pω

such that (n1, n2) �∈ R, and Ai ∈ A be an ADS such that both n1 and n2 are
R–Ai–recognized as sj. Consider the equivalence relation R′ obtained from R by
merging the equivalence classes of n1 and n2 in R. Then R′ is an i–equivalence
relation.

Proof. Recall that Definition 4 implies that if n1 and n2 are R–Ai–recognized as
sj , then Ai is R–valid, meaning there are n different responses R–observed for
the application of Ai. If s1 and s2 are the implementation states corresponding to
the nodes n1 and n2, due to the fact that R is an i–equivalence relation Lemma 1
tells us that λN (s1, A

j
i ) = λN (s2, A

j
i ). This is only possible when s1 and s2 are

the same implementation states. ��
Starting from the finest i–equivalence relation I, one can use Lemma 2 repeat-
edly to obtain coarser i–equivalence relations. By using a coarser i–equivalence
relation R, more R induced observations will be obtained. These new inferred
observations provide an opportunity to identify new i-equivalent nodes in Pω,
hence to obtain an even coarser i–equivalence relation.

5 Experimental Study

In this section, we present an experimental study that we performed to assess
the potential improvement on the length of the checking sequences that one can
obtain by using multiple ADSs for checking sequence construction.
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5.1 Checking Sequence Generation

In order to construct a checking sequence, we use a modified version of the algo-
rithm given in [26]. The method given in [26] starts from an empty sequence
ω = ε, and ω is iteratively extended until it becomes a checking sequence by the
sufficiency condition provided by Theorem 1. We can note here that Theorem 3
is a general sufficiency condition. Although other checking sequence construc-
tion methods can be adapted to use Theorem 3, we consider the method given
in [26], since it is the most recent and a successful checking sequence construction
method reported in the literature.

We modify the method to use the sufficiency condition provided by
Theorem 3. Although Lemma 2 requires R–valid ADSs to be used when extend-
ing R, we found that delaying the extension of R until R–valid ADSs are obtained
is not efficient in terms of the length of the checking sequences obtained. Instead,
we construct a sequence first by using Lemma 2 without requiring R–valid ADSs.
Then, in a second phase, we extend the sequence further to force the validity of
all the ADSs that have been used in the first phase.

Consider the linear path Pω and an i-equivalence relation R. We keep track
of a graph Gω where each equivalence class in R on the nodes of Pω is repre-
sented by a node in Gω. An edge (ni, ni+1;x/y) in Pω is represented by an edge
([ni], [ni+1];x/y) in Gω, where [ni] and [ni+1] are the nodes in Gω corresponding
to the equivalence classes of ni and ni+1 in R. By merging the equivalence classes
of R into a single node in Gω, R–induced observations are directly represented
by paths in Gω.

Similarly to the method in [26], while extending ω in each iteration, we
prefer a shortest input sequence α to be appended to ω that can (i) recognize a
state by some ADS, or (ii) perform a transition verification, or (iii) transfer to
another state at which we can perform a state recognition/transition verification.
The details of the method can be found in [12]. Here we simply emphasize that
while deciding how to extend ω, we have more alternative to chose from than
the method given in [26]. First, we are using multiple ADSs and hence we need
to have more state recognitions (possibly by using different SDSs). Second, if we
note nc the last node in Pω, in [26] an extension of ω by an input sequence α
is considered if there exists a node n in Pω such that (n, nc;α′/β′) is a subpath
in (actually a suffix of) Pω, and αα′ is an SDS for the state corresponding to
node n. There is a linear view used for backtracking (in order to search for
overlapping opportunities) which is performed on Pω. However in our case, due
to the merging of equivalence classes of the nodes of Pω into a single node in
Gω, when searching for overlapping opportunities, we backtrack from [nc] in Gω,
hence we do not have a single suffix, but a tree of suffixes to chose from.

5.2 Selecting a Subset of ADSs

In Sects. 4 and 5.1 we explained how we generate a checking sequence when a set
A of ADSs is given. While constructing a checking sequence, having more ADSs
in A increases the alternatives for shorter state recognitions, hence presents an
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opportunity to reduce the length of the checking sequence. However, having more
ADSs in A also has an increasing effect on the length of the checking sequence,
due to the need for the cross verification and the need to validate each ADS.
Therefore, in the experiments we perform, we select a subset A� of the a given
set A of ADSs to minimize the length of the checking sequence. The selection
process is based on a greedy heuristic and it is independent on how the set A
is constructed. Therefore, we first explain our heuristic approach to select A� in
this section. The construction of the set A of ADSs is explained in Sect. 5.3.

Let CS(M,A) be the checking sequence constructed by using the method
explained in this paper, for an FSM M using a set A of ADSs. From a given
set of ADSs A = {A1, A2, . . . , Ak}, we start by generating a checking sequence
CS(M,A′) for each A′ ⊆ A such that |A′| = 2. The subset A′ giving the shortest
checking sequence CS(M,A′) is considered as the initial subset A�. We then
iteratively attempt to improve the length of the checking sequence by adding
an ADS A ∈ (A \ A�) into A�. If there exists an ADS A ∈ (A \ A�) such that
CS(M,A� ∪ {A}) is shorter than CS(M,A�), we chose the ADS A ∈ (A \ A�)
such that CS(M,A� ∪ {A}) is the shortest, and update A� as A� = A� ∪ {A}.
The iterations terminate when we cannot add any ADS into A�.

5.3 Generating a Set of ADSs

The motivation of using multiple ADSs to construct a checking sequence is that,
while recognizing a state si within a checking sequence, one can use an ADS Aj

such that the SDS Ai
j is shorter. Therefore, it makes sense to have an ADS Ai

in A where the SDS Ai
i for the state si is as short as possible.

For an FSM with n states, we start by generating an ADS Ai for each state
si. Therefore, we initially have at most (as some of ADSs may turn out to be
the same) n ADSs in A, and we rely on the heuristic given in Sect. 5.2 to select
a subset A�. While generating the ADS Ai for the state si, we aim for the
minimization of the length of the SDS Ai

i.
Minimizing the length of the SDS of a state is introduced as MinSDS problem

and it is proven to be NP–hard in [27]. Therefore a minimal length SDS Ai
i is

generated by considering an Answer Set Programming [21] formulation of the
MinSDS problem as explained in [12]. Given an SDS Ai

i, we construct an ADS
Ai such that the SDS of state si in Ai is Ai

i. The details of this process can
also be seen in [12], but the main idea is the following. Ai

i is a path in the ADS
Ai that will be constructed. Let α be a prefix of Ai

i, S′ be the set of states
not distinguished from each other by α, distinguished from si by α, but not
distinguished from si by any proper prefix of α. One can then use the standard
ADS construction algorithm given in [20] to construct an ADS for the states
reached from S′ by α. These ADSs are used to form an ADS Ai from SDS Ai

i.

5.4 Random FSM Generation

The FSMs used in the experiments are generated using the random FSM gener-
ation tool reported in [7]. For the experiments, 10 sets of FSMs are used. Each
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Table 1. Average percentage improve-
ment in the length of checking
sequences

n p = 5 p = 9 p = 13

10 5,39 7,82 10,37

20 4,5 8,1 9,54

30 4,91 8,38 10,17

40 5,16 8,16 9,96

50 5,15 7,26 9,44

60 6,43 7,1 8,34

70 6,23 7,46 7,78

80 6,61 7,49 8,08

90 6,32 6,94 7,52

100 5,98 6,52 6,98

Table 2. Number of FSMs where
|C(M,A�)| < |C1|

n p = 5 p = 9 p = 13

10 61 69 78

20 61 78 82

30 66 84 92

40 74 83 93

50 78 83 93

60 95 87 94

70 95 96 97

80 100 100 100

90 100 100 100

100 100 100 100

set of FSMs contains 100 FSMs having a number of states n ∈ {10, 20, . . . , 100},
hence a total of 1,000 FSMs are used in the experiments. Each FSM has 5 input
symbols and 5 output symbols. Under this settings, a random FSM M is gen-
erated by randomly assigning δ(s, x) and λ(s, x) for each state s and for each
input symbol x. If after this random assignment of the next states and outputs
for the transition, M is a strongly connected FSM with an ADS (in which case
M is minimal as well), then it is included in the set of FSMs to be used.

5.5 Experimental Results

For an FSM M , let A be the set of ADSs computed as explained in Sect. 5.3. We
first find the shortest checking sequence that can be generated by using a single
ADS among the set A of ADSs. For this purpose, we compute CS(M, {A}) for
each A ∈ A, and find the minimum length checking sequence. Let C1 be this
minimum length checking sequence when a single ADS is used. For the same FSM
M , we also compute the set A� of ADSs as explained in Sect. 5.2, and compute
the checking sequence C� = CS(M,A�). The percentage improvement in the
length of the checking sequence for M by using multiple ADSs is then computed
as 100 × (|C1| − |C�|)/|C1|. Note that, this improvement can be negative, when
using two or more ADSs does not give a shorter checking sequence than C1.

For each n ∈ {10, 20, . . . , 100}, there are 100 randomly generated FSMs with
n states and with p = 5 input symbols as explained in Sect. 5.4. We present the
average percentage improvement over 100 FSMs in Table 1. The number of FSMs
in which we have a positive improvement in the length of checking sequence by
using multiple ADSs is given in Table 2.

If we consider a fixed number of states for an FSM, it is expected to have a
better improvement in the length of checking sequences by using multiple ADSs
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when there are more transitions. This is because, having the same number of
states keeps the cost of cross verification constant but the savings due to the
use of shorter SDSs in the transition verifications increases. In order to test
this hypothesis, for each FSM M that we randomly generate, we construct an
FSM M ′ (resp. M ′′) by adding 4 (resp. 8) more inputs onto M . The next state
and the output symbols for the transitions of the additional input symbols are
randomly assigned. Note however that M ′ and M ′′ still use the same set A of
ADSs constructed for M . We present the experimental results for the set of
FSMs with p = 9 inputs and p = 13 inputs in Tables 1 and 2 as well.

We would like to emphasize that C1 is not a CS constructed by using a
random ADS in A, but it is constructed by using the ADS that is the best among
all the ADSs in A. Therefore the improvement figures in Table 1 are obtained
against a very good ADS. We also see that, by keeping the number of states
constant and increasing the number of transitions, the improvement obtained
by using multiple ADSs increase as well, as hypothesized by the motivation of
this work. Note that when |C1| < |C(M,A�)|, one can obviously use C1 instead of
C(M,A�). This approach would make the average improvement figures in Table 1
a little bit higher, since we will never have a negative improvement in this case.
However the experimental results given here does not take this opportunity, and
always insist on using two or more ADSs.

As the number of states increases, the percentage of FSMs in which there is
an improvement in the length of the checking sequence increases, but the average
improvement in the length of the checking sequence decreases. Our investigations
show that, with increasing number of states, our approach starts using more
ADSs in A�, which pushes the cost of cross verification to higher values. For p =
5, our method used an average of 3 ADSs in A� for n = 10, whereas this average is
9 ADSs for n = 100. As explained in Sect. 5.1, our CS generation method consists
of two phases, where in the second phase the sequence is basically extended to
cross verify ADSs. We observe that the average length of extension in phase
2 is only 3 % of the overall length of the checking sequence for n = 10. This
percentage contribution increases with the number of states and reaches to 47 %
for n = 100.

6 Concluding Remarks

We presented a sufficient condition that can be used for constructing a CS using
multiple ADSs. We also presented a modification of an existing CS construc-
tion method to adopt the new sufficient condition. We performed experiments
to assess the potential reduction in the length of a CS that can be obtained
by using multiple ADS. The experiments indicate that as the number of states
increases, using multiple ADSs almost certainly decreases the length of the check-
ing sequence, but the average improvement decreases. The investigations point
to the fact that the cost of cross verification increases with the number of states.

One approach to keep the cost of cross verification limited might be to con-
struct ADSs that has the same SDS for the states. If two ADSs Ai and Aj have
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the same SDS for a state sk, then by applying this SDS at a node n, one would
recognize n as sk both by Ai and Aj , cross verifying Ai and Aj at node n imme-
diately. This requires a more careful design of the set A of ADSs to be used in
our method. Another potential improvement can come from the way the subset
A� is selected. Currently, our greedy approach for selecting A� terminates when
it is not possible to extend A� by adding another ADS from A, but it does not
actually mean that one cannot reduce the size of the checking sequence by using
another subset of A with a larger cardinality than A�.

As a final remark, we want to point out the fact that our improvement figures
in Table 1 are obtained by comparing CS(M,A�) with C1 = CS(M, {A}), where
A is the “best” ADS in A. Note that, while constructing C1, there is no need for
the cross verification since there is only one ADS, but the “induced observation”
idea of Definition 2 is still being used. It might be interesting to compare the
length of C1 by a checking sequence which is constructed by using the method
given in [26] based on the same ADS A.
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Abstract. An Input Output Symbolic Transition System (IOSTS) spec-
ifies all expected sequences of input and output messages of a reactive
system. Symbolic execution over this IOSTS then allows to generate a
set of test cases that can exercise the various possible behaviors of the
system it represents. In this paper, we extend the IOSTS framework with
explicit program calls, possibly equipped with contracts specifying what
the program is supposed to do. This approach bridges the gap between
a model-based approach in which user-defined programs are abstracted
away and a code-based approach in which small pieces of code are sep-
arately considered regardless of the way they are combined. First, we
extend symbolic execution techniques for IOSTS with programs, in order
to re-use classical test case generation algorithms. Second, we explore
how constraints coming from IOSTS symbolic execution can be used to
infer contracts for programs used in the IOSTS.

Keywords: Input output symbolic transition systems · Program con-
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1 Introduction

Symbolic transition systems, such as Input Output Symbolic Transition Systems
(IOSTS) [11] are a classical reference modeling framework for model-based test-
ing of reactive systems. They provide a convenient abstraction of the behaviors
of such systems by modeling system state evolution using variable assignments.
The symbolic execution tree of an IOSTS characterizes the different classes of
numeric executions. Each path defines a sequence of symbolic inputs and out-
puts, and a path condition which is a formula constraining the values exchanged
(inputs or outputs) with the environment of the system. It is possible to use
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such paths as reference symbolic behaviors to be tested (i.e. as test purposes).
In [11], we have proposed a framework to analyze IOSTS both to extract such
test purposes and to solve the oracle problem thanks to a fully on-line algorithm.
However, this kind of framework is limited by the symbolic treatment of func-
tions. Indeed, IOSTS variables are assigned by terms built on functions. In order
to be able to reason on the symbolic values assigned to variables, the symbolic
execution engine is equipped with constraint solving techniques able to analyze
those functions. As long as one deals with basic arithmetic or boolean functions,
it is generally tractable, but as soon as one deals with user-defined or ad-hoc
functions, solving techniques may fail to scale, or even, due to undecidability
results, such techniques may not exist. Analyzing such functions (later referred
as “programs”) may require both to deal with sophisticated data structures and
to explore their (arbitrarily complex) control graph.

In this paper we propose an approach to overcome this limitation by abstract-
ing program behaviors by means of contracts [18]. A contract for a program con-
sists in a collection of couples, also called behaviors, formed of a pre-condition
that specifies constraints that the caller must enforce at the call site, and a
post-condition which is a property guaranteed at the program return. We enrich
the basic IOSTS framework to deal with program calls equipped with contracts.
We show how to extend symbolic execution mechanisms to reason about IOSTS
equipped with program calls by analyzing those calls through their contracts.
Thus, we avoid analyzing the actual behavior of the program and replace it by
abstract constraints on its formal parameters. Our framework allows computing
symbolic paths that can be used as test purposes. It may happen that guards and
contracts are incompatible so that some symbolic paths are infeasible (i.e. they
have no associated trace). In practice it means that there exists no program that
can both satisfy its associated contracts and compute values allowing to follow
the whole symbolic path. We show how to use symbolic techniques to check that
a given set of symbolic paths is consistent with respect to program calls.

Moreover, since guards occurring on transitions of an IOSTS interact with
contracts associated to programs, we present an approach to extract new con-
tracts for each of the program exercised. Such contracts reflect constraints on the
program that make the path feasible. As such, they represent new contracts that
can be used at the unitary level, to evaluate the correctness of actual program
used to implement the system under test.

The remaining of the paper is organized as follows. In Sect. 2, we give basic
definitions about many-typed first order logic. Section 3 presents programs and
their contracts. In Sect. 4, we introduce IOSTS with programs. Section 5 defines
symbolic execution of an IOSTS with programs and the associated feasibility
condition. Finally, usage of symbolic execution for testing purposes, including
contract inference for unitary testing is introduced in Sect. 6.

2 Preliminaries

For two sets A and B, BA denotes the set of mappings f : A → B from A to B
and idA is the identity mapping on A. For a mapping f : A → B, f [ai �→ bi]i∈1..n
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is the mapping associating bi to ai for all i in 1..n and f(a) to a not belonging
to {ai | i ∈ 1..n}. By convention, [ai �→ bi]i∈1..n stands for idA[ai �→ bi]i∈1..n.
For two mappings f : A1 → B and g : A2 → B with A1 ∩ A2 = ∅, f ∪ g :
A1 ∪ A2 → B is the mapping defined by: ∀a ∈ A1, (f ∪ g)(a) = f(a) and
∀a ∈ A2, (f ∪g)(a) = g(a). A∗ (resp. A+) denotes the set of words on A provided
with the concatenation operator ’.’ and the empty word ε (resp. deprived of the
empty word ε). For an ordered list l = (a1, . . . , an) of n elements of A, {{l}}
denotes the set {a1, . . . , an} of elements occurring in l.

We use classical multi-typed first order logic to handle data. A data signature
is a pair (S, F ) where S is a set of so-called types and F is a set of functions
provided with a profile s1...sn−1 → sn with each si ∈ S. For V =

∐
s∈S Vs a set

of variables typed in S, the set TF (V ) =
∐

s∈S TF (V )s of so-called functional
terms over V is defined as usual over (S, F ). Moreover, each set Vs contains an
identified subset, denoted V fro

s , whose elements are called frozen variables and
we denote V fro =

∐
s∈S V fro

s the subset of V of all frozen variables. The set
SenF (V ) of formulas is built over Boolean constants 	 and ⊥, equalities t = t′

for t and t′ terms in TF (V ) of same type and usual Boolean connectives (∧, ∨, ¬,
. . . ). Substitutions over V are applications σ : V → TF (V ) that preserve types
and are such that all elements of V fro are frozen for σ (i.e. ∀v ∈ V fro, σ(v) = v).
Thus, as frozen variables cannot be substituted, they may be considered as new
special constants. Substitutions can be canonically extended to TF (V ). For a
term t in TF (V ), for a formula ϕ in SenF (V ), Occ(t) and Occ(ϕ) will denote
the set of variables occurring in respectively t and ϕ.

A F -model is a set of typed variables M =
∐

s∈S Ms provided with a func-
tion f : Ms1 × · · · × Msn−1 → Msn

for each f : s1 · · · sn−1 → sn in F . An
interpretation is an application ν : MV that preserves types and can be canon-
ically extended to TF (V ). The satisfaction of a formula ϕ in SenF (V ) by an
interpretation ν ∈ MV , denoted M |=ν ϕ, is defined as usual by considering the
meaning of the equality predicate, Boolean constants and connectives. A formula
ϕ in SenF (V ) is valid if and only if for all interpretations ν : V → M , M |=ν ϕ.
In the sequel, data signature (S, F ) and F -model M are supposed given.

3 Programs and Contracts

Programs. User-defined functions, called programs, are identifiers provided with
an interface specifying their formal parameters used to store input and output
data. We only consider here programs with no side effect and one output variable.

Definition 1 (Program). Let X =
∐

s∈S Xs be a set of typed variables. A
program over X is an identifier p provided with:

– a list InOut(p) = (x1, · · · , xn+1) ∈ Xn+1, called the interface of p, with n ≥ 1
and ∀i �= j, xi �= xj. In(p) (resp. Out(p)) denotes the list (x1 · · · xn) (resp.
(xn+1)) of input (resp. output) formal parameters of p.

– and a mapping Sem : M{{In(p)}} → M{{InOut(p)}}, called the semantics of p,
verifying the so-called semantic condition:
∀ν ∈ M{{In(p)}}, ∀xj ∈ {{In(p)}}, Sem(ν)(xj) = ν(xj).
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Depending on the values associated to In(p) through the interpretation ν,
Sem associates a value to the formal parameter xn+1 in Out(p). The semantic
condition ensures that a program call has no effect on its input formal para-
meters. By extrapolation, given a list l = (x1, · · · , xn+1), In(l) and Out(l) will
resp. denote (x1, · · · , xn) and (xn+1).

A signature Σ is a tuple (S, F,X, P ) where (S, F ) is a data signature and P
is a set of programs defined over the set of typed variables X.

Let V =
∐

s∈S V be a set of typed variables. The set TΣ(V ) =
∐

s∈S TΣ(V )s

of typed terms over V contains:

– all functional terms of TF (V )
– all elements p(t1, · · · , tn) with p ∈ P of interface (x1, · · · , xn+1), ∀1 ≤ i ≤

n, xi ∈ Xsi
, and ti ∈ TF (V )si

. If xn+1 ∈ Vs, p(t1, · · · , tn) ∈ TΣ(V )s.

Any interpretation ν : V → M can be canonically extended on TΣ(V ) as follows:
for any program p in P defined by its interface (x1 · · · xn+1) and its semantics
Semp, let us consider μp

ν : {{In(p)}} → M an interpretation such that ∀1 ≤ i ≤
n, μp

ν(xi) = ν(ti), we have ν(p(t1, · · · , tn)) = Semp(μp
ν)(xn+1).

Contracts. Contracts specify what programs are expected to compute, as opposed
to how they compute their result. They have been introduced in the pioneering
work of Floyd [10] and Hoare [12], and form a key ingredient of the Eiffel pro-
gramming language [18]. In short, a contract describes what a program requires
from its caller (the pre-condition) and what it guarantees when it returns (the
post-condition). We use here a slightly refined notion where a contract can be
split in a set of behaviors [2,5]. In this setting, pre-condition of a behavior indi-
cates a possible case in which the program may be executed. As before, when a
behavior is active, its post-condition must hold at the end of the execution.

Most of the times, pre and post conditions of a program are simply formulas in
resp. SenF ({{In(p)}}) and SenF ({{InOut(p)}}). However, contracts can involve
other variables representing the global state of the system. The latter will be
frozen variables whose associated values are conditioned by axioms and cannot
be modified. These variables will be useful for inferring contracts from symbolic
execution tree, as shown in Sect. 6.2.

Definition 2 (Program Contract). Let l = (x1, . . . , xn+1) be a list of vari-
ables with ∀i ≤ n + 1, xi ∈ X. Let W be a subset of frozen variables verifying
X ∩ W = ∅. A program contract for l and W is a set:

{(Pre1, Post1), . . . , (Prek, Postk)}

such that ∀ i ≤ k, Prei ∈ SenF ({{In(l)}} ∪ W ) and Posti ∈ SenF ({{l}} ∪ W ).
A program contract is said to be:

– disjoint if for all i, j ≤ k with i �= j, the formula ¬(Prei ∧ Prej) is valid.
– complete if the formula

∨
i≤k Prei is valid.
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Disjointness requires that at most one behavior of the contract is applicable for
any considered input data, i.e. the pre-conditions are mutually exclusive. For
simplicity purpose, we only consider disjoint contracts in this paper. Complete-
ness indicates that for any input at least one behavior is applicable. In practice,
programs are often partially defined over their input domain. We thus allow
incomplete contracts, rejecting input data outside the scope of preconditions.

Example 1. Let us consider a program Price of interface (x1, x2) where x1 is
of type Drink, an enumerated type with two values {0, 1} and x2 is of type
Integer. x1 is the input parameter indicating the selected beverage and x2 is the
output parameter corresponding to its price. An example of contract for Price
is Cr = {(Pre1, Post1), (Pre2, Post2)} (both disjoint and complete), with:

– Pre1 : x1 = 0, Post1 : x2 ≥ 100 ∧ x2 ≤ 200
– Pre2 : x1 = 1, Post2 : x2 ≥ 200 ∧ x2 ≤ 300

Definition 3 (Contract Satisfaction). Let l = (x1, · · · , xn+1) be an inter-
face, W a set of frozen variables provided with Ax ⊆ SenF (W ) and C a contract
for l and W . Let us consider an interpretation ν ∈ MW such that M |=ν Ax
and a mapping Sem : M{{In(l)}} → M{{l}} satisfying the semantic condition.

Sem satisfies C up to ν, denoted Sem |=ν C, if and only if:

∀(Pre, Post) ∈ C,∀μ ∈ M{{In(l)}},M |=ν∪μ Pre ⇒ M |=ν∪Sem(μ) Post

Semν(C) = {Sem : M{{In(l)}} → M{{l}} | Sem |=ν C} denotes the set of
semantics satisfying C up to ν.

For each interface l, we consider the trivial contract C∅,l = {}, simply denoted
C∅, defined on l that does not restrict behaviors of programs, that is p ∈ Sem(C∅)
for all programs p of interface l. Similarly, we consider the contract C	,l =
{(	,	)}, simply denoted C	, defined on l that requires that the program is
defined for every well-typed input data tuple.

Given a signature Σ = (S, F,X, P ), a set of frozen variables W with its set
of axioms Ax ⊆ SenF (W ), and an interpretation ν ∈ MW verifying M |=ν

Ax, we consider families C = (Cp)p∈P of contracts indexed by P , in particular
C∅ = (C∅)p∈P and C	 = (C	)p∈P . Modν(C) is the set of all families Sem =
(Semp)p∈P such that ∀p ∈ P, Semp |=ν Cp. Sem is then called a P -model.

4 IOSTS

Input Output Symbolic Transition Systems (IOSTS) represent behaviors of reac-
tive systems as sequences of emissions or receptions of values through commu-
nication channels conditioned by guards expressed on some attribute values. An
IOSTS-signature Γ is a couple (A,Ch), where A =

∐
s∈S As is a set of types

variables, called attribute variables, such that for all s in S, As ∩ Xs = ∅ and
where Ch is a set of communication channel names.
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An IOSTS communicates with its environment through communication
actions. The set of symbolic actions over Γ , denoted Act(Γ ), is I(Γ )∪O(Γ )∪{τ}
where: I(Γ ) = {c?x|x ∈ A, c ∈ Ch} is the set of inputs, O(Γ ) = {c!t|t ∈
TΣ(A), c ∈ Ch} is the set of outputs and τ is an internal action.

Values of attribute variables can be modified in two ways: by receiving a
value from the environment or by assigning a value from some internal process.

Definition 4 (IOSTS). An IOSTS (Q, q0, T r) over Σ and Γ = (A,Ch) is
a triple where Q is a set of states, q0 ∈ Q is the initial state and Tr ⊆
Q × SenF (A) × Act(Γ ) × TΣ(A)A × Q is a set of transitions tr of the form
(q, ψ, act, ρ, q′) where:

– q and q′ are resp. the source (source(tr)) and target state (target(tr)) of tr,
– ψ ∈ SenF (A) is a guard
– act ∈ Act(Γ ) is a communication action;
– ρ ∈ TΣ(A)A is a substitution associating a term to attribute variables;

Remark 1. We can always consider an IOSTS in which guards only contain con-
junctions. If not, for a transition tr of guard ψ, it suffices to use a disjunctive
normal form

∨n
i=1 ψi equivalent to ψ and to split the transition into n transitions

having the same source, target and communication action as tr and ψi as guard.

Example 2 (Drink vending machine). We consider a very simple drink vending
machine. Its behavior is specified by the IOSTS in Fig. 1. An initialization step
(q → q0) sets the amount to zero. Then, in q0, the machine waits for an amount
(x) of coins introduced by the user, and updates the amount m. The user then
chooses his/her beverage (0 or 1 for “Tea” or “Coffee”). The choice is stored in
variable B. In the transition q2 → q3, the program Price computes the price of
the chosen drink. Two cases are possible here. If the introduced amount is lower
than the price (m < p), then a message “Add” appears on the screen and the
machine returns to q0. Otherwise (m ≥ p), the drink is delivered, the amount
is reinitialized to zero and the machine goes back to q0. Note that transitions
outgoing from q3 constrain the value (p) computed by Price (p ≥ 150∧p ≤ 200).

For a transition tr = (q, ψ, act, ρ, q′) ∈ Tr and a P -model Sem, the semantics
of tr, denoted as Run(tr, Sem) ⊆ MA × ActM (Γ ) × MA, is defined as the set of
triple (νi, actM , νf ) verifying:

– if act is of the form c!t (resp. τ), then M |=νi
ψ, νf = νi ◦ρ and actM = c!νi(t)

(resp. actM = τ)
– if act is of the form c?x, then M |=νi

ψ, there exists νa such that νa(z) = νi(z)
for every z �= x, νf = νa ◦ ρ and actM = c?νa(x),

Note that the definition of semantics of transitions is very classical and does
not explicitly refers to Sem. In fact, semantics of programs are taken into account
when defining νf from the extensions of νi or νa to TΣ(A) as defined in Sect. 3.

For a run r = (νi, actM , νf ), we note source(r), act(r) and target(r) resp.
for νi, actM and νf . νi and νf are the interpretation of attribute variables resp.
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q q0 q1 q2 q3
coins?x

m → m + x
p → Price(B)

m → 0

drink?B

m < p ∧ p ≥ 150 ∧ p ≤ 200
screen!”Add”

m ≥ p ∧ p ≥ 150 ∧ p ≤ 200
drink!B
m → 0

Signature:
S = {Integer, Boolean, Drink}, F = {+, <, >=}
P = {Price}, X = {x1, x2}
A = {x, m, B, p}, Ch = {coins, drink, screen}

Fig. 1. IOSTS of the drink vending machine.

before and after executing the transition. Let us observe that, given a transition
tr and an interpretation νi, the set Run(tr, Sem) does not necessarily contain a
run of the form (νi, actM , νf ) due to the fact that νi may not satisfy ψ.

The set of paths of an IOSTS G = (Q, q0, T r), denoted Path(G), are all
finite sequences tr1. · · · .trn of transitions with source(tr1) = q0 and ∀i, 1 ≤ i <
n, target(tri) = source(tri+1). The set of runs of a path pa = tr1. · · · .trn in
Path(G), denoted as Run(pa,Sem), are sequences r1. · · · .rn such that ∀i ≤ n,
ri ∈ Run(tri,Sem) and ∀i < n, target(ri) = source(ri+1). Similarly, the set of
traces Traces(pa,Sem) of pa is the set of sequences act(r1). · · · .act(rn) for all
r1. · · · .rn ∈ Run(pa,Sem), act(r) being equal to ε if act(r) = τ .

In general, it is not guaranteed that there exists at least a run for a given
path pa, as it depends on the semantics associated to programs involved in pa.

Definition 5 (Path Feasibility Condition). Let G = (Q, q0, T r) be an
IOSTS over Γ = (A,Ch) and pa a path of G. pa is a feasible path if and
only if:

∃ Sem ∈ Mod(C∅), T races(pa,Sem) �= ∅
Let W be a set of frozen variables provided with Ax ⊆ SenF (W ) and ν ∈ MW

an interpretation satisfying M |=ν Ax. Let us consider C = (Cp)p∈P a family of
contracts indexed by P . pa is a feasible path up to (ν,C) if and only if:

∃Sem ∈ Modν(C), T races(pa,Sem) �= ∅

5 Symbolic Execution and Path Feasibility Condition

Symbolic execution consists in executing an IOSTS for symbolic values (taken
from a dedicated set of frozen variables Fr =

∐
s∈S Frs) rather than numerical

ones, and computing constraints on those values for all possible IOSTS execu-
tions. The main novelties with respect to [11] are twofold: substitutions occurring



42 I. Boudhiba et al.

in transitions may include program calls and a renaming mechanism ensures that
a given frozen variable can not appear in two distinct paths.

To store information concerning an execution, we use structures called sym-
bolic states. A symbolic state is a tuple of the form (q, π, λ, κ) where q ∈ Q,
π ∈ SenF (Fr), λ : A → TF (Fr) is an application preserving types and
κ ⊂ P × TF (Fr)∗ × Fr. For a symbolic state η = (q, π, λ, κ), q (or q(η)) denotes
the state reached after an execution leading to η, π (or π(η)) is a constraint on
variables in Fr called path condition that should be satisfied for the execution to
reach η, λ (or λ(η)) denotes terms over variables in Fr that are assigned to vari-
ables of A and κ (or κ(η)) denotes the set of tuples of the form (p, (t1, · · · , tn), x)
indicating that a program call has been performed for the program p with the
arguments (t1, · · · , tn) and that its result is stored in the variable x in Fr.

In our approach we do not have the code of programs. Instead, we reason
on their contracts. Since the input formal parameters associated to a call are
represented symbolically by functional terms t1, · · · , tn, different pre-conditions
may hold depending on the way those terms will be interpreted. At the symbolic
execution level, we thus consider a sub-case for each of those pre-conditions. More
precisely, the symbolic execution of a transition tr from a given symbolic state
η will consist in a set of symbolic transitions, one for each possible combination
of pre-conditions for all program calls occurring in tr. We now introduce some
notations aiming at tracing program calls: for a substitution ρ : A → TΣ(A) and
for p ∈ P , Res(p, ρ) is the set of variables y ∈ A such that ρ(y) is of the form
p(t1, · · · , tn) and for such an y, Arg(y, ρ) is then (t1, · · · , tn) and Prog(y, ρ) = p.
We also denote Res(ρ) for

⋃
p∈P Res(p, ρ).

Definition 6 (Symbolic Execution of Transitions). Let G = (Q, q0, T r) be
an IOSTS over Σ and Γ = (A,Ch), tr = (q, ψ, act, ρ, q′) ∈ Tr be a transition
and η = (q, π, λ, κ) be a symbolic state over G.

If act is of the form c?x, λi = λ[x �→ f ], f fresh in Fr. Otherwise, λi = λ.
λ′ is the substitution such that for all y ∈ Res(ρ), λ′(y) is a fresh variable of

Fr and for all y ∈ A \ Res(ρ), λ′(y) = λi ◦ ρ(y).
The symbolic execution SE(tr, η) of tr from η is the set defined as follows:

– if Res(ρ) = ∅ then SE(tr, η) = {(η, λi(act), η′)} with η′ = (q′, π ∧ λ(ψ), λ′, κ).
– if Res(ρ) �= ∅, we consider all mappings Beh : Res(ρ) → ⋃

p∈P Cp such
that for y ∈ Res(p, ρ), Beh(y) = (Prey, Posty) ∈ Cp. For y ∈ Res(p, ρ)
with InOut(p) = (x1, · · · , xn, xn+1) and Arg(y, ρ) = (t1, · · · , tn), we have
(η, λi(act), η′) ∈ SE(tr, η) with

• η′ the symbolic state (q′, π ∧ λ(ψ) ∧ ∧
y∈Res(ρ) Δ(y), λ′, κ′)

• Δ(y) = (Prey ∧ Posty)[x1 �→ λi(t1) · · · xn �→ λi(tn), xn+1 �→ λ′(x)]
• κ′ the set κ ∪ ⋃

y∈Res(ρ){(Prog(y, ρ), (λi(t1), · · · , λi(tn)), λ′(y))}
Elements of SE(tr, η) are called symbolic transitions. We denote Fr(η′) the set
of all fresh variables of Fr occurring in its definition.

Example 3. In order to illustrate Definition 6, let us consider a transition tr
of the form (q, ψ, c?x, ρ, q′) with ρ = [y �→ p1(t1, t2), z �→ t′1 + t′2] with p1 a
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program and t1, t2, t
′
1, t

′
2 functional terms. Let us observe that Res(p1, ρ) = {y},

Arg(y, p1) = (t1, t2), Prog(y, ρ) = p1 and Res(ρ) = {y}.
Let η = (q, π, λ, κ) be a symbolic state. Let us suppose that the program p1 is

provided with an interface (x1, x2, x3) and with a behavior (Pre1, Post1). Then
SE(tr, η) contains the symbolic transition (η, c?f1, η′) with f1 a fresh variable
of Fr and η′ the symbolic state defined as:

( q′, π ∧ λ(ψ) ∧ (Pre1 ∧ Post1)[x1 �→ λ[x �→ f1](t1), x2 �→ λ[x �→ f1](t2), x3 �→ f2]
[x �→ f1, y �→ f2, z �→ λ[x �→ f1](t

′
1 + t′

2)],
κ ∪ {(p1, (λ[x �→ f1](t1), λ[x �→ f1](t2)), f2})

Fr(η′) is then {f1, f2}.

Definition 7 (IOSTS Symbolic Execution). Given an IOSTS G, the sym-
bolic execution SE(G) = (Init, ST ) of G is minimally defined by:

– Init = (q0, Ax, λ0) with ∀x ∈ A, λ0(x) ∈ Fr and ∀x �= y ∈ A, λ0(x) �= λ0(y),
– for tr ∈ Tr and η symbolic state with source(tr) = q(η), SE(tr, η) ⊆ ST .
– for any distinct SE(tr1, η1) SE(tr2, η2) that are defined, Fr(SE(tr1, η1)) ∩

Fr(SE(tr2, η2)) = ∅.
Definition 8 (Paths and Distinguished Paths). The set Paths(SE(G)) of
paths of SE(G) is the set of all sequences tr1 · · · trn with ∀i ∈ 1..n, tri ∈ ST such
that source(tr1) = Init and for any j < n, q(target(trj)) = q(source(trj+1)).

For a non-empty sequence δ = tr1 · · · trn, we note End(δ) = target(trn) and
Fr(δ) = ∪i∈1..nFr(target(tri)). By convention, End(ε) = Init and Fr(ε) = ∅.

Given a finite subset Δ of Paths(SE(G)), DPaths(Δ) is a set of paths δ∗

such that there exists an unique path δ in Δ such that δ and δ∗ are isomorphic
up to a renaming of variables of Fr and such that for two distinct paths δ∗

1 and
δ∗
2 in DPaths(Δ), Fr(δ∗

1) ∩ Fr(δ∗
2) = ∅.

We say that DPaths(Δ) is a set of distinguished paths issued from SE(G).

Generally speaking, a set Δ of Paths(SE(G)) represents a tree whose tran-
sitions issued from the root Init can be shared by several paths of Δ while
DPaths(Δ) consists in applying a variable renaming mechanism in order to
duplicate shared transitions to completely separate paths. Distinguished paths
can still share common variables, namely those in W .

Example 4. The drink vending machine of Fig. 1 has two possible paths from
q to q0 with exactly one cycle on q0. They share a transition with a call to
program Price defined by its contract Cr as seen in Example 1. We thus get 4
distinguished paths shown in Fig. 2. Associated path conditions are the following:

pc1 : B1 = 0 ∧ p1 ≥ 100 ∧ p1 ≤ 200 ∧ v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200
pc2 : B2 = 0 ∧ p2 ≥ 100 ∧ p2 ≤ 200 ∧ v2 ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
pc3 : B3 = 1 ∧ p3 ≥ 200 ∧ p3 ≤ 300 ∧ v3 < p3 ∧ p3 ≥ 150 ∧ p3 ≤ 200
pc4 : B4 = 1 ∧ p4 ≥ 200 ∧ p4 ≤ 300 ∧ v4 ≥ p4 ∧ p4 ≥ 150 ∧ p4 ≤ 200
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Fig. 2. Symbolic paths.

A path condition is a formula over the frozen variables built by accumulating
constraints from the guards of the IOSTS transitions and from constraints of
called programs contracts. The path is infeasible if its path condition is not
satisfiable. In addition, this feasibility depends on the fact that if a program
is called twice with the same arguments, it returns the same value (semantic
condition of Definition 1). Since this is not enforced by the path condition alone,
we consider another set of constraints accounting for this condition:

Definition 9 (Feasibility of a Set of Paths). Let G be an IOSTS over Γ =
(A,Ch) and let Δ∗ be a set of distinguished paths issued from SE(G).

For any program p of interface (x1, · · · , xn, xn+1), for (p, (t1, · · · , tn), f) and
(p, (t′1, · · · , t′n), f ′) two distinct elements of ∪δ∗∈Δ∗ κ(End(δ∗)) we introduce the
deterministic program condition relating to these two program calls as the for-
mula φ{f,f ′} defined by

∧n
i=1 ti = t′i ⇒ f = f ′.

The deterministic program condition related to Δ∗ is then Φp =
∧

φ{f,f ′},
for all f and f ′ appearing as return variable of a call of p in Δ∗.

Finally, the feasibility condition of Δ∗ is
∧

δ∗∈Δ∗
π(End(δ∗)) ∧

∧

p∈P

Φp

If this feasibility condition holds, it is possible to implement the programs
occurring in the IOSTS so that all paths of Δ∗ will complete successfully. Note
that the contracts of the programs are taken into account in the path condition,
and have thus an impact on the paths that are feasible or not.

Example 5. In the context of the drink vending machine, we now want to
check the feasibility condition of the distinguished paths associated to the paths
described in Example 4 according to two distinct contracts for Price, denoted
resp. Cw and Cr (in Example 1). Both Cw and Cr include two behaviors resulting
in 4 distinguished paths. Path conditions are given in Table 1.

– With the contract Cw, no distinguished path is feasible because of contradic-
tions between guards of the IOSTS transitions and post-conditions of Cw.
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– With the contract Cr, all distinguished paths are feasible. Price can return
anything between 150 and 200 for an argument equal to 0 and must return
200 for an argument equal to 1.

Table 1. Feasibility according to different contracts

6 Testing

6.1 Model-Based Testing of IOSTS with Program Calls
and Contracts

In a previous work [11], we have proposed an online testing algorithm to test
Systems Under Test (SUT ) with respect to a basic IOSTS (without program
calls). The algorithm is based on the ioco conformance relation [21] and on the
use of test purposes (TP ) to select some behaviors to be tested. A TP is a finite
sub-tree of the symbolic execution structure (SES) derived from the IOSTS of
reference so that any execution trace constructed by interacting with SUT and
leading to a leaf of TP will be considered as covering TP . The testing process is
implemented as a simultaneous traversal of both SES and TP . Verdicts depend
on whether the observed execution trace does or does not belong to TP and
SES: WeakPASS when the execution trace covers TP and belongs to at least
one path of SES which does not end at a leaf of TP , PASS when the execution
trace covers TP and does not belong to another path of SES, INCONC (for
inconclusive) when the execution trace belongs to SES but does not cover TP ,
FAIL when the execution trace does not cover TP and goes outside SES.
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In Sect. 5, we have associated to any IOSTS with contracts a symbolic tree
structure in order to be able to use it both as the SES input of the algorithm
given in [11] and as a carrier to extract a finite sub-tree to play the role of TP .
We can use the work described in [11] with the following slight modifications:

– Unlike [11], we allow unobservable τ transitions. Under the assumption that
there does not exist a cycle of τ transitions, we can replace any sequence
of consecutive τ transitions by a transition carrying the input/output action
just located at the end of the τ sequence. Furthermore, in [11], quiescence
conditions are expressed by enriching the reference IOSTS with transitions
carrying the special label δ denoting the intended absence of reaction. Because
the presence of τ transitions makes such a direct enrichment tricky, it becomes
more appropriate to perform this enrichment at the level of the τ -reduced
symbolic execution itself. Once the operations of τ -reduction and δ-enrichment
are applied to the symbolic execution of the IOSTS with contracts, we can
then apply the algorithm of [11] for free.

– In [11], path conditions for paths that are part of test purposes are satisfiable
by construction. In our setting, we have to take into account the notion of
feasibility, i.e., the existence or not of programs that meet their associated
contracts and that are compatible with considered paths. Indeed, if the con-
sidered set of distinguished paths constituting the test purpose is unfeasible,
then the application of algorithm is meaningless. In other words, the feasibility
of the targeted set of paths plays the role of a testing hypothesis.

6.2 Contracts Inference

As we have seen in Sect. 5, the feasibility condition checks whether a given pro-
gram contract preserves the feasibility of a symbolic path or not. In this section,
we focus on the inference of contracts based on path conditions. Such contracts
can then be used to define unit tests for the programs. More precisely, we start
with an IOSTS G calling programs without associated contract. We then show
that we can infer contracts such that feasible paths of G are guaranteed to verify
the feasibility condition of the IOSTS augmented with contracts. The generated
contract for a program p contains one behavior per call to p in SE(G). For that,
we use the parts of the final condition of the path on which the call occurs that
are related to the return variable and to the arguments.

Given a formula F , we define inductively the set RelF (X) of variables related
to a set X of variables, as the smallest set satisfying the following conditions

– X ⊂ RelF (X)
– Occ(t1 = t2) ∩ Relt1=t2(X) �= ∅ ⇒ Occ(t1 = t2) ⊂ Relt1=t2(X)
– RelF1(X) ∪ RelF2(X) = RelF1∧F2(X) = RelF1∨F2(X)
– RelF (X) = Rel¬F (X)

Similarly, for a formula F and a set of variables X, CleanX(F ) is defined as
follows. As noted in Remark 1, we can assume that the path condition only has
conjunctions, and is in negation-normal form.
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– CleanX(	) = 	 and CleanX(⊥) = ⊥
– CleanX(t1 = t2) = t1 = t2 if Occ(t1 = t2) ∩ X �= ∅
– CleanX(t1 = t2) = 	 if Occ(t1 = t2) ∩ X = ∅
– CleanX(¬t1 = t2) = ¬t1 = t2 if Occ(t1 = t2) ∩ X �= ∅
– CleanX(¬t1 = t2) = 	 if Occ(t1 = t2) ∩ X = ∅
– CleanX(F1 ∧ F2) = CleanX(F1) ∧ CleanX(F2)

Remark 2. If F is satisfiable, then CleanX(F ) is also satisfiable, as we only
remove atomic propositions from the conjunction.

Definition 10 (Contract Inference). Let G be an IOSTS , Δ∗ a set of
distinguished paths from SE(G). We note κ(Δ∗) = ∪δ∗∈Δ∗κ(End(δ∗)).

For any f such that (p, (t1, · · · , tn), f) ∈ κ(Δ∗), with In(p) = (x1, ..., xn)
and Out(p) = xn+1, we define a behavior (Pref , Postf ) for p, as well as a set
of frozen variables Gf and axioms Axf .

We pose φ = π(End(δ∗)) the final condition for the path containing the call
and Y = Occ(t1, · · · , tn) ∪ {f} the variables occurring in the call. Then

– Gf is Relφ(Y )
– Axf is CleanRelφ(Y )(φ)
– Pref is

∧n
i=1 xi = ti

– Postf is xn+1 = f

Finally, the inferred contracts for Δ∗ are defined as follows.

– G is
⋃

(p,(t1,··· ,tn),f)∈κ(Δ∗) Gf

– Ax is
∧

(p,(t1,··· ,tn),f)∈κ(Δ∗) Axf

– ∀p ∈ P,Cp = ((Pref , Postf ))(p,(t1,··· ,tn),f)∈κ(Δ∗)

Example 6. Let us consider here a symbolic path δ∗ of our drink vending
machine’s specification (Fig. 3) that calls twice the program Price of interface
(x1, x2). The first call leads to the appearance of a message “Add” on the screen
and the second call permits the drink delivery, such that:

π(End(δ∗)) : v1 < p1 ∧p1 ≥ 150∧p1 ≤ 200∧ (v1 +v2) ≥ p2 ∧p2 ≥ 150∧p2 ≤ 200

From the path condition φ = π(End(δ∗)), two behaviors will be generated
according to Definition 10. For p1 the result of the first call (Price, (B1), p1) we
have:
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Fig. 3. Symbolic path.
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Y : {B1, p1}
Gp1 : {B1, p1, v1, p2, v2}
Axp1 : v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (v1 + v2) ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
Prep1 : x1 = B1

Postp1 : x2 = p1

For p2 the result of the second call (Price, (B2), p2) we have:

Y : {B2, p2}
Gp2 : {B2, p2, v1, p1, v2}
Axp2 : v1 < p1 ∧ p1 ≥ 150 ∧ p1 ≤ 200 ∧ (v1 + v2) ≥ p2 ∧ p2 ≥ 150 ∧ p2 ≤ 200
Prep2 : x1 = B2

Postp2 : x2 = p2

Finally, the inferred contract for our program Price in δ∗ is defined by:
G = Gp1 ∪ Gp2 , Ax = Axp1 ∧ Axp2 and C = ((Prep1 , Postp1), (Prep2 , Postp2))

We can now define the IOSTS G
′ with the same signature and transitions

than G and equipped with the inferred contracts for the programs in P . Then,
for every path δ∗ in Δ∗ that is feasible, there exist paths δ∗ in G

′ similar to δ∗

except that the path conditions π are augmented with axioms and behaviors.
For each (p, (t1, ..., tn), f) ∈ κ(End(δ∗)), Axf is satisfiable by Remark 2 and the
behavior (Pref , Postf ) becomes trivially true: one of the behaviors of p makes
the corresponding transition feasible. Since this is true for any call in δ∗, there
exists thus a path in δ∗ that is feasible. This leads to the following theorem.

Theorem 1 (Feasibility Preservation). Let G be an IOSTS, Δ∗ a set of
feasible distinguished symbolic paths of G. G′ is the IOSTS obtained by adding
to G the inferred contracts of Definition 10. For any path δ∗ in Δ∗, there exists a
symbolic path δ∗′ for G

′ having the same transitions as δ∗ and which is feasible.

7 Related Work

In the context of reactive systems verification, IOSTS and symbolic execution
have been used in many works [1,11,14] for different purposes. They use IOSTS
with atomic actions and substitutions whereas, in our case, we enrich IOSTS
with programs specified by contracts. Our purpose is to define an integration
framework and analyze in one hand the impact of programs contracts on a
whole system and in the other hand elicit accurate contracts for our programs.

Our work is quite close to [13], that augments a SOA’s BPEL business model
with pre- and post-condition contracts defining essential component traits, and
derive a suite of feasible test cases, taking into account contracts that are pro-
vided for some of the opaque components of their system. On the other hand,
they do not infer contracts from the constraints expressed directly in the BPEL
model as is done in Sect. 6.2.

The use of symbolic execution and path feasibility analysis are studied in
[3,22] but this is limited to the analysis of programs themselves and does not
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take in consideration as we do the impact of the program calls on the feasibility
of the system as a whole. Similarly, symbolic execution techniques over the code
have been used to infer program annotations. More specifically, such approaches
concentrate on generating invariants. This is for instance the case in the KeY
verification framework [20], for the DySy tool [7], or for the iDiscovery tool [24].
Those invariants are meant to help the formal verification of the code against its
specification, while we are aiming at generating a specification that the programs
must meet in order to be usable in the context of the system under test.

The problem of inferring contracts for programs has been studied differently
in other works that do not rely on symbolic execution. In particular, [6] derives
pre-conditions from assertions already present in the code using abstract inter-
pretation. [23] uses dynamic analysis to augment simple programmer-written
contracts with candidate post-conditions that describes precisely what the code
is doing, building upon techniques developed initially in the Daikon tool [9] for
proposing likely invariants. This kind of inference is dual to ours, in the sense
that we infer contracts in a top-down approach, in order to express what con-
ditions individual components should fulfill inside a broader system, while the
works mentioned above are bottom-up, encapsulating the behavior of actual code
in contracts in order to check whether callers can use this particular implemen-
tation. The same can be said of works that aim at generating transition systems
modeling the behavior of programs, either as message sequence charts as in [16],
or as scenarios expressed under the form of live sequence charts, as in [17].

8 Conclusion

In this work, we extended the IOSTS framework with programs which are spec-
ified with contracts and we adapted symbolic execution techniques to deal with
them. This gives rise to two main results. First, we study how contracts impact
path conditions and describe the feasibility condition of the entire symbolic exe-
cution tree. Second, we show that path conditions can be used to infer contracts
for programs in order to specify what these programs should do in the context of
the system under test. Such contracts can then be used for unitary testing pur-
poses, while feasibility preservation theorem gives some guarantees that program
calls will not get in the way during integration testing.

The contribution of this paper is mainly theoretical, only illustrated by a toy
example by lack of space. In [4], we provide a more realistic example involving
a program call for giving the money change by considering three possible values
for coins and the state of the coin reserve of the vending machine.

Implementation of the technique presented in this paper is currently under
development in the Diversity [8] symbolic execution tool and the Frama-C [15]
C code analysis framework using the ACSL specification language [2] as target
for contract inference.

This work is in its early stages, nevertheless it provides a promising frame-
work to explore integration testing for systems whose user scenarios are described
using some IOSTS extensions (e.g. UML Sequence Diagrams [19]) and whose
unitary bricks are program calls.
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Abstract. We introduce a generalization of the t-way test case gen-
eration problem, where parameter t is replaced by a set Φ of Boolean
conditions on attribute values. We then present two reductions of this
problem to graphs; first, to graph colouring, where we link the mini-
mal number of tests to the chromatic number of some graph; second, to
hypergraph vertex covering. This latter formalization allows us to han-
dle problems with constraints of two kinds: those that must be true for
every generated test case, and those that must be true for at least one
test case. Experimental results show that the proposed solution produces
test suites of slightly smaller sizes than a range of existing tools, while
being more general: to the best of our knowledge, our work is the first
to allow existential constraints over test cases.

1 Introduction

In recent years, combinatorial testing has gathered increasing interest as a test-
ing technique that can exercise interactions between parameters in an efficient
way. Various testing tools, such as PICT [9], have been developed to produce
a series of test cases that cover all interactions of t parameters through a test
suite containing as few tests as possible. Various approaches attempt to expand
the problem by providing constraints on what values each parameter can take;
for example, one may require that when a = 0, then b �= 0, thereby limiting
the number of valid test cases that are available. A variety of tools support con-
straints of such kind, which must be fulfilled by every test case returned by the
tool.

However, the problem of generating test cases where a set of conditions has
to be fulfilled at least once by some test has seldom been studied. In this paper,
we introduce the concept of Φ-way covering, a generalization of classical t-way
test case generation where each Boolean condition in an arbitrary set must be
validated by at least one test case. Section 2 formally defines Φ-way covering, and
shows a number of testing scenarios where existential (rather than universal)
constraints are required, and which cannot be handled by current combinatorial
test generators.

c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 55–70, 2015.
DOI: 10.1007/978-3-319-25945-1 4
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In Sect. 3, we show how Φ-way test case generation can be reduced to finding
a colouring of some graph, and link the minimal number of tests to its chro-
matic number. However, this reduction is shown to work only when the result-
ing graph satisfies a property called maximal satisfiability. Therefore, in Sect. 4,
we construct a second reduction, this time to the problem of hypergraph ver-
tex covering, which drops the maximal satisfiability requirement and works for
arbitrary conditions. Moreover, this second construction also allows us to handle
universal constraints that are supported by existing combinatorial testing tools
and algorithms.

We have implemented a test-generation tool that uses our graph-based
approaches to produce a set of test cases for parameters with arbitrary domains.
Experimental results, presented in Sect. 5, show that a straightforward appli-
cation of existing graph heuristics, without any further optimization, already
produces test suites whose size is comparable to the output of existing tools,
and in particular shares the same asymptotic complexity, both in terms of the
number of attributes and the number of values. Moreover, this is obtained while
our proposed solutions solve a more general problem than existing tools, as they
allow both universal and (most importantly) existential conditions on test cases.

2 Φ-way Covering

In this section, we introduce the problem of Φ-way test covering and describe a
number of testing scenarios where such form of test covering naturally arises.

2.1 Formalization

Let D0,D1, . . . Dn−1 be domains (sets of possible values) for n different parame-
ters p0, . . . , pn−1. Let Φ = {ϕ0, . . . , ϕm−1} be a set of m Boolean formulæ whose
ground terms are of the form pi = d, for pi one of the parameters and d ∈ Di.
A Φ-way covering is a set Σ ∈ 2D0×···×Dn−1 , such that for every ϕi ∈ Φ, there
exists an assignment of values σ ∈ Σ that makes ϕi evaluate to true (which we
shall note σ |= ϕi).

One can see how this problem is a generalization of classical t-way test case
generation. Given parameters p0, . . . , pn−1 with domains D0,D1, . . . Dn−1, we
can construct Φ as the smallest set such that for every set of t parameters
p1, . . . , pt and values d1, . . . , dt in their respective domains, the formula p1 =
d1 ∧ · · · ∧ pt = dt is in Φ. Since the resulting Φ-way covering ensures that every
formula in Φ is true, it follows that every combination of values for t parameters is
present in the set. As an example, Table 1 gives the set of constraints representing
the 2-way covering of the set of parameters a, b and c, each having two possible
values.

However, we can show that Φ-way covering is a strict generalization of t-
way test case generation, as finding one solution to the problem is in the same
complexity class as finding the best solution for a t-way test case generation
problem [11].
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Table 1. The set of Boolean constraints representing the 2-way coverage of three
2-valued parameters named a, b, c.

{a = 0 ∧ b = 0, a = 0 ∧ b = 1, a = 1 ∧ b = 0, a = 1 ∧ b = 1,

a = 0 ∧ c = 0, a = 0 ∧ c = 1, a = 1 ∧ c = 0, a = 1 ∧ c = 1,

b = 0 ∧ c = 0, b = 0 ∧ c = 1, b = 1 ∧ c = 0, b = 1 ∧ c = 1}

Theorem 1. Finding a solution to the Φ-way Covering problem is NP-complete.

Proof. Given a set Σ, verifying that each ϕi ∈ Φ is satisfied at least once amounts
to evaluating it with every σ ∈ Σ, which is done in polynomial time; hence the
problem is in NP. Solving Φ-way covering when Φ consists of a single Boolean
expression ϕ is nothing but solving the satisfiability problem (SAT) for ϕ; hence
the problem is NP-hard.

2.2 A Case for Φ-way Covering

While t-way test case generation has proved useful in many scenarios, it was
shown how in some situations, constraints must be added to the original t-
way requirement to correctly handle the problem at hand. Current tools and
algorithms have focused up to now on universal constraints, which must hold
true on every test case of the test suite. For example, in some situations, a
combination of values for two parameters might be mutually exclusive: one can
imagine a function which can send its output either to stdout or to a file; it does
not make sense, in such a case, to set the output parameter to stdout, and to
have a non-empty value for parameter filename. This constraint must apply to
every test case produced by an algorithm.

However, the question of existential constraints, as is the case in the Φ-way
covering presented above, has been studied much less often. Yet, in the following,
we show three test case scenarios where such constraints are required —that is,
the same functionality cannot be obtained, or expressed differently, using only
universal constraints.

Example 1: Completing an Existing Test Suite. As a first example, sup-
pose we have an existing test suite, which does not cover all t-combinations
of values. One would like to extend that test suite, keeping existing test
cases but adding the minimum number of new tests so that 100 % coverage
of all t-combinations is achieved.1 Imagine for example parameters a, b and
c, each with domain {0, 1}, and a test suite T composed of only two tests:
{(a = 0, b = 0, c = 0), (a = 0, b = 0, c = 1)}.

To find an extension to that test suite, it suffices to first generate the set Φ of
conditions corresponding to t-way coverage as described above (for example, for

1 Note how this is different from finding the minimum number of tests from scratch,
as the existing test cases may not be part of an optimal solution, yet must be kept.
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t = 2, we obtain the set in Table 1). We then create one existential condition for
each test in T ; in the present case, this would lead to the addition of conditions
a = 0 ∧ b = 0 ∧ c = 0 and a = 0 ∧ b = 0 ∧ c = 1 to Φ. We then solve the Φ-way
covering problem. By construction, any minimal solution for this problem is the
smallest way to obtain t-way covering while preserving the existing tests. With
a graph theory approach, completing a test suite is faster than producing one
from scratch because the generated graph is smaller.

Example 2: Equivalence Classes. In some cases, the original requirement
of t-way coverage might prove needlessly strict. Φ-way coverage allows one to
relax these conditions, while still looking for an optimal test suite. Consider
for example parameters a, b and c with domains {0, . . . , 9}, {0, 1} and {0, 1},
respectively. Suppose that some values of a are equivalent in its relationship with
b; for example, all values of a < 5 behave in the same way when b = 0. In other
words, when b = 0 and c has some arbitrary values, all values of a < 5 exercise
the same functionality, and do not need to be tested separately.

It is not possible to express such a fact using standard t-way test covering
algorithms, which will produce an overly strong (and large) test suite, as they
will try to cover all combinations of values for a, b, and c. Moreover, it is not
possible either to recover from this issue by writing universal constraints, unless
one forces the selection of one value for a when b = 0, which in turn might
prevent the resulting test suite from being optimal. Finally, one can imagine
more complex dependencies on parameter values where imposing fixed values to
parameters in an optimal way amounts to nothing but hard-coding the solution
by hand inside the constraints.

On the other hand, this situation is nicely handled in Φ-way covering. When
generating the set Φ of constraints for t-way covering, it suffices to replace all
conditions a = x ∧ b = 0 ∧ c = x′ (where xi < 5 and some fixed value x′) by the
single condition a < 5 ∧ b = 0 ∧ c = x′, and then to solve the resulting Φ-way
problem.

The reader shall remark that the same thing can be achieved by replacing
the values 0 to 4 in the domain of a by a symbolic value meaning “a < 5”, and
to solve the corresponding t-way problem. Indeed, all combinations of values
of parameters a and c are still considered distinct; these combinations will be
missed if values 0 to 4 are amalgamated into a single symbol.

Example 3: MC/DC Testing. The modified condition/decision coverage [6]
(MC/DC) is a code coverage criterion for test cases which, among other things,
requires that each condition in a decision takes on every possible outcome, and
that each condition in a decision is shown to independently affect the outcome
of the decision.

The question of performing both t-way testing and MC/DC testing in a single
test suite has only been recently studied [13]. Current approaches have measured
the amount of MC/DC coverage provided by a t-way test suite, without providing
any specific adaptation of existing algorithms for MC/DC coverage (and vice
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versa). Therefore, any good MC/DC coverage obtained by a t-way test suite is,
for the moment, unintentional.

However, this can be handled with Φ-way covering. One first generates the
set Φ of conditions required for t-way coverage, as was described earlier. To
obtain MC/DC coverage, one simply adds to Φ the conditions corresponding to
MC/DC. By construction, any solution to the resulting problem will make sure
that each of the t-way conditions is met by at least one test case, and that each of
the MC/DC conditions will also be met by at least one test case. Note that this
may result in more test cases than for any problem taken separately; however,
any minimal solution of the combined problem is guaranteed to be optimal.

3 Reduction to Graph Colouring

Assuming a few restrictions on the set of conditions Φ, we shall now show how
the problem of generating Φ-way test cases can be reduced to a well-known graph
problem.

3.1 Construction

Given a set of Boolean formulas Φ, the conjunctive closure of Φ is the smallest
set Φ′ ⊇ Φ such that if ϕ,ϕ′ ∈ Φ′, then ϕ ∧ ϕ′ ∈ Φ′.2 A set Φ is said to be
maximally satisfiable if every formula in its conjunctive closure is satisfiable.

We shall now devise a construction that reduces the problem of Φ-way cov-
ering to the problem of graph colouring. Let G = 〈V,E〉 be a graph such that
V = Φ, and E is such that there is an edge between two vertices ϕ,ϕ′ if and
only if ϕ ∧ ϕ′ is unsatisfiable. Let C be a set of vertex “colours” and κ : V → C
a function assigning a colour to every vertex of the graph. For k = |C|, the
function κ is called a k-colouring if it is surjective and moreover, any two adja-
cent vertices are not assigned the same colour. We will define Vc ⊆ V as the
set of vertices that are assigned colour c by κ (and by extension, the set of all
Boolean expressions assigned to these vertices). Figure 1 shows an example of
such a colouring, for the set of constraints given in Table 1.

Theorem 2. Let Φ be a set of formulæ, G be the graph constructed from Φ as
described above and κ be a k-colouring of G. If Vc is maximally satisfiable for
every c ∈ C, then there exists a Φ-way covering Σ such that |Σ| = k.

Proof. Define Φc as the conjunction of all expressions in Vc. One can construct a
test case from Vc by choosing any satisfying assignment of variables of Φc. Such
an assignment exists, since Vc is maximally satisfiable. Let Σ be the set of all
test cases constructed in such a way, for every colour c ∈ C. Since every vertex
is given a colour, taken together, the test cases in Σ satisfy every condition of Φ
at least once, and hence constitute a Φ-way covering.

2 Although Φ′ is potentially infinite, it can be restricted to a finite subset by avoiding
constructing expressions of the form ϕ ∧ ϕ, which are equivalent to ϕ.
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a=0 b=0

a=1 b=0

a=1 b=1

a=1 c=0a=1 c=1

a=0 b=1

b=1 c=0 b=1 c=1b=0 c=0

b=0 c=1

a=0 c=0

a=0 c=1

Fig. 1. The graph constructed from the constraints given in Table 1, and a possible
5-colouring.

This result shows that a minimal Φ-way coverage can be computed by con-
verting the problem into the classical graph colouring problem, provided that
the resulting colouring produces maximally satisfiable sets of vertices. This is
not always true in the general case; Fig. 2 shows a graph whose colouring is not
maximally satisfiable. One can see that for every pair of vertices, it is possible
to find values for a and b that satisfy both conditions; this is why no vertex is
connected to any other. Hence it is possible to assign the same colour to every
vertex; however, one can see that the conjunction of the condition of all three
nodes is a contradiction —in other words, it is not possible to form a test case
out of it.

a=0 b=0 a=1 b=1

Fig. 2. A graph whose colouring is not maximally satisfiable.

However, we can show that a colouring is always maximally satisfiable if we
impose restrictions on Φ.

Theorem 3. Let Φ be a set of Boolean formulæ {ϕ1, . . . , ϕn}, where each ϕi is
a conjunction of atomic propositions of the form pj = d. If ϕi ∧ ϕj is satisfiable
for any pair of formulæ ϕi, ϕj ∈ Φ, then Φ is maximally satisfiable.

Proof. Suppose the contrary. Then there exists a set S ⊆ 2[1,n] of indices such
that

∧
i∈S ϕi is unsatisfiable. Since every ϕi is a conjunction of parameter-value

equalities, this entails that there exist two assertions pj = d and pj = d′ such
that d �= d′. Let k, k′ ∈ [1, n] such that the first assertion occurs in ϕk and
the second occurs in ϕk′ . Then ϕk ∧ ϕk′ is unsatisfiable, which contradicts the
hypothesis.
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3.2 Complexity Results

This result has a couple of important consequences. First, we can show that any
classical t-way covering problem generates a graph that satisfies the hypotheses
of Theorem 3.

Corollary 1. Let G = 〈V,E〉 be a graph generated from a t-way problem
instance and let κ : V → C be a colouring of G as defined above. For any
colour c ∈ C, Vc is maximally satisfiable.

Proof. Since every vertex in Vc is a conjunction of expressions of the form pj = d,
the result follows from Theorem 3.

Hence finding a set of k test cases, if it exists, can be solved by converting
the problem to k-colouring. Second, and perhaps most importantly, the previous
construction provides us with a means of calculating the exact lower bound to
the number of tests required to achieve t-way coverage. This bound is nothing
but the chromatic number of the graph. Moreover, it is possible to compute this
optimal size without even generating the solution, by constructing the chromatic
polynomial of the graph; the chromatic number (and hence the smallest number
of tests cases required) is the smallest integer that is not a root of this polynomial.

The current best known algorithm can find a k-colouring in time O(2n · n),
where n represents the number of constraints. Given the chromatic number can
be known directly through the method described above, this gives us the same
complexity for generating a minimal set of test cases. In the absence of the known
value, one can fall back on simple dichotomic search, as the desired value k lies
between 1 and C(t, n) × |D|t, the total number of combinations for values of t
parameters.

3.3 Heuristics for Graph Colouring

One main advantage of reducing the test case generation problem to an existing
mathematical problem is that one can then tap directly into a number of opti-
mizations specific to that problem, rather than trying to solve it from scratch.
This is precisely the case for graph colouring, which has been the subject of
extensive study for decades. In particular, a number of methods for computing
an approximate solution, called heuristics, can be used to produce a test suite
whose size can be bounded in terms of the size of the optimal solution.

The most well known heuristic for graph colouring is DSATUR from Brélaz
[2]. This heuristic is partially built on the observation that more often than not,
vertices with a bigger degree generally end up with a colour of their own instead
of being assigned an existing colour. The algorithm starts out by selecting the
biggest degree vertex, colouring it, and then it colours the neighborhood of that
vertex using the DSAT (Degree Saturation) measure. When the DSAT of two
vertices is the same, the degree is used for tie-breaker. The DSAT of all vertices
is updated at every colouring of a vertex. The DSAT of a vertex is an integer
representing how many adjacent colours are in the neighborhood.
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The DSATUR heuristic is unfortunately not great for combinatorial testing
because in the generated graph files, every graph node has the same degree.
Therefore, the heuristic cannot really work like it is supposed to.

The depth-first search (DFS) greedy heuristic is perhaps the most simple
heuristic of all. The graph is simply explored in a typical depth-first-search fash-
ion and the colours are assigned turn by turn. The quality of the solution depends
exclusively on the sequence of the vertices. In fact, the DFS algorithm can be
modified into an exact backtracking algorithm. For instance, if the backtracking
algorithm is called with the task of finding a 13-colour permutation and the
current colour count is 14, it does not make any sense to keep colouring the
graph. The algorithm needs to backtrack and change it’s permutation until it
can colour the whole graph with the proper number of colours. This backtrack-
ing algorithm is almost impossible to use in practice for combinatorial testing
because the graphs are too big.

Since trying every path leads to the exact solution, sampling the paths by
using randomness is also a good way to go and leads to better solutions than
greedy algorithms. The random DFS heuristic works in this way. For each vertex
exploration, the neighborhood will be explored in a random way a number of
times. When the k random explorations fail, the algorithm falls back to regular
neighborhood exploration, until it can return or go to the next vertex. This is
done because of course, true random exploration could slow the algorithm to a
stall.

Since adding randomness to the DFS exploration scheme turns out to be
very cheap and not increasing the time complexity, this heuristic is usually ran
hundreds of times and the best result is used.

4 Reduction to Hypergraph Vertex Cover

As we have seen in the previous section, the graph colouring approach can only
be applied when the set of assertions resulting from the initial constraints is
maximally satisfiable. Yet, there exist situations where this additional hypothesis
does not hold. In this section, we present an alternate method that attempts to
alleviate this problem.

This method is a reduction of the Φ-way covering problem to finding a vertex
covering of some hypergraph. As a reminder, a hypergraph is a tuple G = 〈V,E〉,
where V is a set of vertices and E ⊆ 22

V

is a set of edges. A hypergraph gener-
alizes a classical graph by having edges that may link more than two vertices. A
vertex covering of some hypergraph G = 〈V,E〉 is a set of vertices V ′ ⊆ V , such
that for every edge e = {v0, v1, . . . , vk} ∈ E, we have that e ∩ V ′ �= ∅. Hence
every hyperedge of the graph is adjacent to at least one vertex in V ′.

4.1 Construction

Given parameters p0, . . . , pn−1 with domains D0,D1, . . . Dn−1, let Φ be a set of
Boolean constraints whose ground terms are parameter-value equalities. Define
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V = D0 × D1 × · · · × Dn−1 as the set of all possible combinations of values
for each parameter. The set of hyperedges E is then constructed such that e =
{v0, v1, . . . , vk} ∈ E if and only if there exists some ϕ ∈ Φ, such that vi ∈ e if
and only if vi |= ϕ. In other words, each condition ϕ ∈ Φ is associated to exactly
one hyperedge, linking all vertices giving values for parameters that make that
condition evaluate to true.

Fig. 3. The hypergraph constructed from the constraints Φ = {a = 0, b = 0, a �= 0∨b �=
0}. Numbers are used to label segments belonging to the same hyperedge.

Figure 3 gives an example of such a construction, for the simple set of con-
ditions Φ = {a = 0, b = 0, a �= 0 ∨ b �= 0}, assuming that parameters a and b
have the same domain D = {0, 1}. One can see that the hyperedge labelled “1”
links all vertices with values satisfying the first condition (a = 0); similarly, the
hyperedge labelled “2” links all vertices with values satisfying the second con-
dition (b = 0). Finally, the hyperedge labelled “3” links all vertices with values
satisfying the last condition (a �= 0 ∨ b �= 0); this last edge links three vertices.

We shall now demonstrate how one can extract a Φ-way covering out of a
vertex cover.

Theorem 4. Let p0, . . . , pn−1 be parameters with domains D0,D1, . . . Dn−1,
and Φ be a set of Boolean constraints whose ground terms are parameter-value
equalities. Let G = 〈V,E〉 be the hypergraph constructed from a set of conditions
Φ as described above, and let V ′ be a vertex covering for G. There exists a set
Σ ⊆ D0 ×D1 × · · ·×Dn−1 that is a Φ-way covering; moreover, this set is of size
|V ′|.
Proof. It suffices to show that Σ = V ′ is the set we are looking for. By construc-
tion, every hyperedge of G is adjacent to some v ∈ V ′. By construction, this
entails that for every ϕ ∈ Φ, there exists a combination of parameter values v
such that v |= ϕ, hence V ′ is a Φ-way covering.

In Fig. 3, vertices forming a possible covering of size 2 have been identified
in yellow. One can see how every hyperedge is indeed adjacent to some yellow
vertex. Moreover, it is easy to see that no covering of size 1 could achieve the
same result. Hence, finding the the minimal Φ-way covering amounts to finding
the minimal vertex covering of the hypergraph G constructed from Φ.
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Universal Constraints. Contrary to the graph colouring reduction described
in Sect. 3, the reduction to hypergraph vertex cover works for arbitrary exis-
tential conditions, thus dropping the requirement for maximal satisfiability that
was necessary in the former. Moreover, universal conditions (which must be true
for every test case) can also be taken into account in a very straightforward way.
Given a set Φ′ of such constraints, it suffices to remove from V any vertex for
which one of the constraints in Φ′ evaluates to false. Since each vertex completely
defines the values of all parameters, such an evaluation is always possible, and
the fate of every vertex can always be determined. The computation of a vertex
cover can then proceed on the pruned graph.

By construction, all vertices in the graph that remains fulfill all the conditions
in Φ′. In addition, the vertex cover guarantees that each hyperedge (i.e. each
existential condition) is covered at least once. Hence this construction allows us
to handle both arbitrary universal and arbitrary existential conditions at the
same time.

4.2 Complexity Results

We have already shown that finding a vertex covering of a given size k is NP-
complete. However, finding the minimal value such that a covering exists is a
much harder problem in the general case. Providing the latest complexity results
for this problem is out of the scope of this paper, as abundant literature on the
subject can easily be found. It is known, for example, that if d is the maximal
cardinality of hyperedges and n is the size of the hypergraph, there exists an
algorithm that finds a covering of size k in time dknO(1) [4].

Upper bounds have also been demonstrated for approximation algorithms.
For example, one can construct a maximal matching by greedily adding edges
and then let the vertex cover contain all endpoints of each edge in the matching.
It can be shown that this algorithm produces a vertex covering at most d times
larger than the optimal solution. For d = 2, a slightly lower factor of 2 − o(1)
has been demonstrated [5,7].

Hypergraph colouring is equivalent to another problem called hitting set.
Given a set of sets of elements E = {e1, . . . en}, a hitting set is a subset V that
intersects with every ei ∈ E. When E is the set of hyperedges of G, a hitting set
is precisely a set of vertices covering every edge of the hypergraph.

These results can be transferred directly to Φ-way and t-way covering. Given
uniform domains of size |D| for each parameter, classical t-way covering for a
set of n parameters generates a hypergraph with |D|n vertices whose edges are
of uniform cardinality k = |D|n−t. Applying a result from Khot and Regev [8]
which assumes the so-called unique games conjecture, this entails that finding
the minimal number of tests is hard to approximate within any constant factor
better than k.
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5 Experimental Results

We implemented both approaches into an open source and mixed-language com-
binatorial test case generator, which is publicly available.3 First, a PHP script
takes as input a file in the PICT format, giving the name of each parameter
and its possible values. Since our tool also handles universal and existential
constraints, we extended the PICT format to allow the expression of these con-
ditions. They either begin by the reserved word Once or Always, and can express
any Boolean combination of elementary condition on the file’s declared parame-
ters. Figure 4 shows a sample input file.

Fig. 4. An extended PICT input file for our test case generator.

The script returns a file in the Graphviz format (DOT) representing either
the graph for which a colouring needs to be found, or the hypergraph for which
a covering must be computed. Then, a C++ implementation of both graph
algorithms reads this file and applies the corresponding heuristics, and outputs
the resulting colouring or vertex cover, which can then be directly reinterpreted
as a set of test cases, as explained earlier.

To assess the interest of the approach, we designed a benchmark pitting
our implementation against four other tools: QICT [9], AllPairs4, Jenny5 and
TCases6. These where the only tools listed on the Pairwise Testing website7 that
were both free and usable from the command-line. They vary in their support of
features outside standard t-way covering, as is illustrated in Fig. 5. AllPairs and
QICT only work for 2-way covering without constraints. Jenny supports t > 2,
and allows the user to specify forbidden tuples, a restricted form of universal
constraints, while TCases supports arbitrary universal constraints. Finally, our
graph colouring approach handles existential constraints, while the hypergraph
vertex cover handles both universal and existential constraints.

The task of exhaustively comparing our proposed implementation with a
large sample of existing tools is clearly out of the scope of this paper, espe-
cially given that most of these tools are comparable only for the simplest case
3 https://bitbucket.org/sylvainhalle/gcases.
4 http://www.mcdowella.demon.co.uk/allPairs.html.
5 http://burtleburtle.net/bob/math/jenny.html.
6 https://code.google.com/p/tcases/.
7 www.pairwise.org/tools.asp.

https://bitbucket.org/sylvainhalle/gcases
http://www.mcdowella.demon.co.uk/allPairs.html
http://burtleburtle.net/bob/math/jenny.html
https://code.google.com/p/tcases/
www.pairwise.org/tools.asp
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Fig. 5. Support of various features by the testing tools included in our study.

(t = 2 with no constraints). Nevertheless, we carried four sets of experiments,
and measured the size of the resulting test suites for all tools that could solve
the problem.

Simplest Case: t = 2. In the first set of experiments, we considered only pairwise
testing with no constraints, and computed the impact on the size of the test
suite by varying the values of |D| (the size of the domain) and n (the number of
parameters). The results are plotted in Fig. 6b for increasing values of |D|, and
in Fig. 6a for increasing values of n. One can see that graph colouring performs
comparably to QICT, AllPairs and Jenny, with TCases producing slightly larger
test suites. The hypergraph vertex covering provides the best results with respect
to n, but shows a steeper increase than other tools with respect to |D|.

Fig. 6. Test suite size output by various tools, for a varying number of parameters
when t = 2.

Beyond Pairwise: t > 2. The same trend continues when the strength of the test
suite is extended beyond pairwise testing. This time, AllPairs and QICT are no
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longer able to solve these problems, and only Jenny, TCases and our two graph
solutions remain. As Fig. 7a and b show, our tool produces test suites that are
again of size smaller than TCases’, and identical to Jenny’s.

Fig. 7. Test suite size output by various tools, for a varying number of parameters
when t > 2.

Universal Constraints. We complexify the tests even further by introducing
universal constraints. This time, only TCases and our hypergraph vertex covering
can handle such a problem. We experimented both approaches with t = 2, and
with the universal constraint ¬(p3 = 1∧p4 = 1). The results are given in Table 2.
As one can see, the graph-based approach provides smaller test suites of a factor
of roughly 2× with respect to TCases’s algorithm.

Table 2. Test suite size output by various tools, for a varying number of parameters
when t = 2.

n Hypergraph TCases

5 60 158

6 60 203

7 118 254

Existential Constraints. In this last category, only the hypergraph approach
subsists. We experimented it with t = 2, and with the existential constraint
¬(p3 = 1 ∧ p4 = 1). The results are given in Table 3.

6 Related Work

As far as we could check, the problem of generating t-way test cases has never
been generalized to account for a set of arbitrary Boolean conditions that must
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Table 3. Test suite size output by the hypergraph approach, for a varying number of
parameters when t = 2.

n Hypergraph

5 65

6 66

7 110

each apply in at least one test. Given some condition ϕ, Φ-way covering requires
that there exists at least one test in T that satisfies ϕ, i.e. ∃t ∈ T : t |= ϕ. On
the contrary, tools like TCases, PICT, Jenny and VPTag8 to write conditions
that must be true for some attribute to be allowed to take a given value, using
some form of if-then construct or by specifying forbidden value combinations.
A constraint ψ in these tools must be true for all test cases, i.e. ∀t ∈ T : t |= ψ.

This is in fact the exact logical dual of Φ-way covering. It follows easily that
it is impossible to find ϕ and ψ that make both expressions equivalent for any
arbitrary set T . As we have seen, the introduction of Φ-way coverage allows us
to express and solve some problem instances that current approaches cannot.

The use of graph colouring for t-way test case generation was first suggested
by Cheng et al. [3]. However, there are several differences between this related
approach and the one suggested here. First, while the approach allows one to pick
sets of parameters for which coverage is required, it is assumed that all combina-
tions of their values must be present in the resulting solution. Our construction
is more flexible and allows us to express arbitrary tuples of values of irregular
length (e.g. a = 0 ∧ b = 0, a = 1). Moreover, graph colouring is used by Cheng
et al. only to pick a subset of parameters on which an initial t-way must then
be generated by some other means; that solution is then “blown up” to include
coverings for the remaining parameters; as a consequence, the minimality of the
resulting covering is not ensured.

Recently, an optimization of the IPOG algorithm’s vertical growth phase was
suggested [12]. This optimization relies on a “conflict graph”, whose colouring
allows the algorithm to identify the next best missing tuples to add to the test
suite. However, to the best of our knowledge, the present paper is the first time
the smallest covering array is expressed directly in terms of the minimal colouring
of some graph.

The use of hypergraphs for test case generation appears to be even less com-
mon. They have been used to reason about orthogonal arrays [10], although not
directly to compute an optimal set of test cases.

7 Conclusion

We have shown how Φ-way covering, a generalization of t-way test case genera-
tion, can be reduced to the classical graph colouring problem, thereby providing
8 http://sourceforge.net/projects/vptag/. VPTag is limited to the case where t = 2,

while our approach generalizes to other values of t.

http://sourceforge.net/projects/vptag/
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(in theory) a way to compute the minimal number of test cases required by any
problem instance. This result applies, provided an additional hypothesis on the
shape of possible solutions —a hypothesis fulfilled by any classical t-way cover-
ing problem. Moreover, in our second modelling, which relies on a translation
to the hypergraph vertex covering problem, the Φ-way covering offers the possi-
bility to express conditions in a fashion that goes outside the expressiveness of
existing solutions based on dependencies, allowing both universal and existential
constraints of arbitrary nature on test cases. Experimental results have shown
that, compared to a set of existing test generation tools, both our approaches
generate test suites of comparable size, while being strictly more general in terms
of expressiveness.

These promising experimental results warrant future work on the approach.
First, additional graph colouring and vertex covering heuristics could be imple-
mented and evaluated experimentally. Second, improvements on the efficiency of
the generation of the graph from a given problem instance are currently being
worked on. Finally, a third graph-based reduction, merging the two approaches
presented in this paper, is also planned. It is hoped that, in the longer term, the
use of our graph-based algorithms shall provide a drop-in replacement for the
existing methods used in current tools and systems.
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Abstract. In grammar-based testing, context-free grammars may be
used to generate relevant test inputs for language processors, or meta
programs, such as programming language compilers, refactoring tools,
and implementations of software quality metrics. This technique can be
used to test these meta programs, but the amount of sentences, and
syntax trees thereof, which needs to be generated to obtain reasonable
coverage of the input language is exponential.

Pattern matching is a programming language feature used often when
writing meta programs. Pattern matching helps because it automates the
frequently occurring task of detecting shapes in, and extracting informa-
tion from syntax trees. However, meta programs which contain many
patterns are difficult to test using only randomly generated sentences
from grammar rules. The reason is that statistically it is uncommon to
directly generate sentences which accidentally match the patterns in the
code.

To solve this problem, in this paper we extract information from the
patterns in the code of meta programs to guide the sentence generation
process. We introduce a new coverage criterion, called Pattern Cover-
age, which focuses on providing a test strategy to reduce the amount of
test necessary cases, while covering the relevant parts of the meta pro-
gram. An initial experimental evaluation is presented and the result is
compared with traditional grammar-based testing.

Keywords: Software test · Meta program · Pattern matching ·
Grammar-based testing

1 Introduction

Meta programs are tools which read sentences of software languages, such as
programming languages, and produce any kind of output [9]. Examples of meta
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programs are compilers, interpreters, refactoring tools, static analysis tools, and
source code metrics tools. The amount and diversity of such tools are growing as
processing power and large memory become available to the machines on which
software is being developed, but verifying such tools is quite a challenge. Even
simple metric tools are known to contain many bugs [24].

Meta programs for real programming languages are complex and hard to
prove or test because the languages are big (more than 400 context-free grammar
rules is quite normal) and their semantics is often unclear. Apart from some
notable exceptions [23], proofs of correctness of meta programs are not to be
expected. Therefore we wish to quickly find common errors in meta programs
by exercising their code based on test generation.

Grammar-based testing is a preferred approach for testing meta pro-
grams [5,20]. The input syntax of most meta programs can be modeled precisely
using context-free grammars (CFG). From such CFG specifications we can define
sets of input sentences which satisfy different coverage criteria of the input lan-
guage. However, the amount of sentences necessary to cover an entire language
is intractable. For Java, for example, if we consider only sentences generated by
derivation tree up to height 7 the amount of sentences that can be generated is
around 46.26 × 109. If we increase this value to 10, the amount goes to around
9.43 × 1043. But, even if we can run a Java processor on such corpus of inputs
in reasonable time, chances are the corpus will still not lead to good coverage
of the code of the processor itself as some constructs will only appear deeper in
the grammar.

The reason for the bad coverage is that a context-free grammar describes
all possible inputs for a meta program, but it does not specify precisely which
part of the language is used by the given meta program or how different parts
of the language are distributed over the meta program. A random distribution
over an input grammar will therefore typically not generate an effective test
set for a given meta program. The grammars of real programming languages
have hundreds of (recursive) rules, generating a super-exponential amount of
syntactically correct inputs. Due to the size of such grammars, statistically it is
hard to generate exactly the right combination to cover a meta program with
a limited (feasible) set of test cases. To further aggravate this problem, some
important semantic information, which is dealt with in the meta program, is
often missing from context-free grammar descriptions.

Pattern matching is an interesting feature which is often used during the
development of meta programs. With it, it is simpler to describe specific sit-
uations over the input language, simplifying the implementation of this kind
of programs. Many meta programming languages (specialized languages for the
development of meta programs) and libraries are based on expressive forms of
pattern matching (Haskell [15], Scala [28], TOM [3], ASF+SDF [6], Maude [8],
StrategoXT [7], ELAN [4] and Rascal [18,19]).

The challenge we address is: given a grammar which describes syntactically
correct inputs, to generate a minimal amount of inputs which will cover the meta
program. Our contribution is the notion of pattern coverage which links grammar
coverage to conditional coverage in meta programs which use pattern matching.
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We propose the use of patterns as reference for the definition of test data and
a pattern-based coverage criterion which defines a set of test data requirements
from a set of language patterns. These patterns may be extracted from different
sources: from language or meta program specifications, from the patterns used in
the code of the meta program, or even from a non pattern-based meta program
from which some mining of patterns has been carried out.

The main contributions of this paper are then:

– the definition of the Pattern Coverage criterion;
– an initial algorithm for generating sentences for Pattern Coverage;
– an empirical evaluation of the relation between Pattern Coverage and existing

notions of grammar coverage.

We conduced the evaluation using two meta programs that implement the
Cyclomatic Complexity algorithm [25] for Java and Pico [12] languages. To eval-
uate and compare the pattern coverage criterion we used the mutation tech-
nique [11] to evaluate the generated test sets. As result of pattern coverage use
we could observe a reduction on the test set size and the preservation of the
quality level for the pattern coverage test set.

The remainder of this article is organized as follows. Section 2 presents the
basic theoretical foundation used to the work presentation. Section 3 define
the pattern coverage criterion and present the test data generation algorithm.
The Sect. 4 present the evaluation process and the results obtained during the
process. Related work is discussed in Sect. 5, followed by concluding remarks in
Sect. 6.

2 Background

In this section we briefly introduce and discuss the theoretical background on
which this paper is based. First, in Sect. 2.1, some grammar-based testing con-
cepts are introduced and discussed. Then, we define pattern matching, the mech-
anism used to simplify the structure of meta programs and that our proposal
uses to make meta program testing more efficient.

2.1 Grammar-Based Testing

There are many different criteria for software testing in the literature. They
may be classified in different (often orthogonal) ways, depending on: the stage
of the software development in which they are to be applied (e.g., unit, system
or regression testing), the reference artifact used for test design (e.g., white and
black box testing), the kind of abstraction used to extract requirements from
the reference artifact (e.g., graphs, logical expressions or grammars).

As pointed out in [1], the most important classification when it comes to
define or chose a criterion is the used abstraction. As our focus here are meta pro-
grams, and the classical way of dealing with criteria-based test design for meta
programs is through grammar-based coverage criteria, where tests are derived
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from grammar descriptions of the software or of some software artifact. As these
criteria are defined in terms of grammar components, in the following, we present
the definition of the most commonly used type of grammar (Context-Free Gram-
mar (CFG)) where those components are introduced.

Definition 1 (Context-Free Grammar). A Context-Free Grammar G is a
4-tuple (N,S, T, P ) such that:

1. N is a finite set of nonterminals;
2. T is a finite set of terminals;
3. P is a finite subset of N × (T ∪ N)∗ called production rules
4. S ∈ N is a start symbol.

Every grammar G defines a language (set of sentences), which is noted L(G).
The sentences of the language are the sequences of terminals of G which can be
derived from the initial symbol S by sequences of production rule applications
(derivations)1.

The grammar-based test design process starts with the application of the
chosen criterion to the grammar to define a set of test requirements. These test
requirements specify properties that need to be satisfied by the set of test cases
(test set), and a test requirement is said to be satisfied if at least one of the test
cases of the test set satisfies the specified property.

The typical grammar-based test criteria are defined in terms of terminals,
production rules or language sentences or derivations.

Definition 2 (Grammar-based Coverage Criteria). For a grammar G =
(N,S, T, P ),

– Terminal Coverage (TSC): for each terminal symbol t ∈ T there exists exactly
one test requirement: t occurs in the sentence, or, simply, t. So, TSC = {t ∈
T} is the set of test requirements to cover this criterion;

– Production Coverage (PDC): for each production rule ρ ∈ P there exists
exactly one test requirement: ρ is used in the derivation of the sentence, or,
simply, ρ. So, PDC = {ρ ∈ P} is the set of test requirements to cover this
criterion;

– Derivation Coverage (DC): for a grammar G, each derivation represented by
s ∈ L(G) one test requirement. So, the set DC = {s ∈ L(G)} represents all
test requirements to cover this criterion.

While Terminal Coverage and Production Coverage usually require a small
amount of test cases (test sentences) to be attained, Derivation Coverage is
obviously impossible to achieve in most cases. A variant is often used [21,27],
then, which is to limit the length of the considered strings or derivations to some
fixed limit and define as requirements the subset of L(G) up to length n.

1 In the absence of grammar ambiguity, there is a one-to-one correspondence between
sentences and derivation. We assume here non ambiguous grammars to simplify
presentation.
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There are some tools that use those coverage criteria to generate test cases,
for example the YouGen [14], XTextGen [13] and LGen [27] tools. These tools
basically receive a context-free grammar as input and some additional restric-
tions and generate a set of test cases (language sentences). These restrictions
are necessary to limit the size of the resulting set, since, in general, the language
associated to the input grammar is infinite.

2.2 Pattern Matching Mechanism

Pattern matching is a programming language feature. It is common to implement
meta programs using pattern matching because it facilitates the description of
interesting cases over the object language and dubs as a de-structuring variable
binding mechanism.

Formally, the pattern matching problem is, given two terms s and l, determine
if there is a substitution σ, such that σ(l) = s [2]. The substitution itself, if it
exists, represents the binding of variables which can be used by the program
after the match.

Table 1 depicts a number of pattern types as used in the Rascal language [18].
Each line shows a value on the right and a pattern on the left of the match :=
operator.

A most basic form of pattern, the congruence pattern, is an arbitrarily nested
expression using only constructors and open variables. On table item 2, a pattern
is used as a condition to the if statement. The congruence match succeeds
because the value builds and add term, which the pattern matches literally.
Then the children of the add term, var("x") and var("y") can be matched to
the unconditional variables l and r respectively. The l and r variables may now
be used in the program as normal variables, for example by printing them.

A more advanced pattern is the deep match on table item 3. It can be arbi-
trarily combined with any other match operator; in this case a typed variable.
The current pattern will recursively traverse the matched value and succeed if
a value of type str is found anywhere or fail otherwise. Such a pattern is non-
unitary in the sense that it could match a single value in many ways (twice in

Table 1. Example of some pattern-based instructions in Rascal.

N. Instruction Description

1 int x := 3; Typed pattern, the x variable is
bound to value 3.

2 if (add(l, r) := add(var("x"), var("y")))
println(l + "," r);

Constructor pattern, the identifier
add is the constructor and the
variables l and r are bound to
values var("x") and var("b"),
respectively.

3 for (/str x := add(var("x"), var("y")))
println(x);

Deep matching pattern, the match-
ing can happen on any level of the
term.
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this example). Using the for loop the programmer can iterate over all possible
bindings of x, namely "x" and "y".

3 Testing Meta Programs Using Pattern Coverage

Our proposal to deal with the original problem is to use the pattern information
related to a meta program and with it generate a test set that will be used in the
test process. This strategy may be applied on white-box testing, if the patterns
are derived from the program, or black-box testing, if they are extracted from
some more abstract model or specification of the meta program.

During this section, we will use a meta program (presented on Listing 1.1)
as example to illustrate the concepts introduced on the section. This example
is a typical implementation for the Cyclomatic Complexity (CC) [25] algorithm.
The implementation of CC is coded in Rascal and was used by Landman [22] to
calculate and analyze the correlation between the CC and source lines of code
on a large corpus of Java code. For the purpose of the current paper this code
is assumed to be correct. The visit statement generates a recursive traversal
and each case represents a pattern to detect in the traversed tree, and after
the colon (:) an action to perform when it matches (increasing a counter). Most
of the cases define simple patterns which identify a particular node type, but
two are more interesting, filtering only infix expressions with either && or || as
operators. The same code was used into our evaluation process and it will be
detailed on Sect. 4.

Our first step to address the test of meta programs is to define a coverage
criterion that formalizes the requirements for a set of test cases. On Sect. 3.1
we introduce this criterion. After that, we introduce on Sect. 3.2 a prototype of
algorithm to generate a test set that contains test cases to satisfy those require-
ments.

Listing 1.1. .]Example of a pattern-based meta program written in Rascal [22].

1 int calcCC(Statement impl) {

2 int result = 1;

3 visit (impl) {

4 case \if(_,_) : result += 1;

5 case \if(_,_,_) : result += 1;

6 case \case(_) : result += 1;

7 case \do(_,_) : result += 1;

8 case \while(_,_) : result += 1;

9 case \for(_,_,_) : result += 1;

10 case \for(_,_,_,_) : result += 1;

11 case \foreach(_,_,_) : result += 1;

12 case \catch(_,_): result += 1;

13 case \conditional(_,_,_): result += 1;

14 case \infix(_,"&&",_) : result += 1;

15 case \infix(_,"||",_) : result += 1;

16 }

17 return result; }



Reducing the Cost of Grammar-Based Testing Using Pattern Coverage 77

3.1 A Pattern-Based Coverage Criterion

Our proposal is, given some pattern information corresponding to a meta pro-
gram, to generate test cases exercising these patterns, i.e., to generate sentences
that match them. To systematize this strategy, we define a new coverage criterion:

Definition 3 (Pattern Coverage). For a pattern-based meta program m, and
Pm, the set with all instances of patterns of m, the test requirement set TR con-
tains each element of the pattern set Pm. Satisfaction of each of these require-
ments is attained by any subject which matches the corresponding pattern.

To illustrate the pattern coverage definition, we can apply the definition to the
CC implementation on Listing 1.1. For the given code the pattern set produced
by collecting patterns is Pm = {Statement impl, \if(_,_), \if(_,_,_), . . . ,
infix(_,"||",_)} Since in Rascal functions are dispatched by patterns, the for-
mal parameter Statement impl is also considered a pattern, namely matching
only abstract syntax trees of type Statement. The set TR = Pm, and to cover TR
the test data must include the set of java statements that match the correspond-
ing patterns. For example, the pattern \if(_,_) would be covered by a program
including the statement “if (true) {}”, and an input which covers also the pat-
terns for the Boolean operators would be “if (true && false || true) { }”.

3.2 A Simple Algorithm to Generate Pattern Covering Test Sets

We propose an effective algorithm to generate test cases from grammars which
cover a selected set of patterns extracted from the meta program under test. In
this algorithm, we assume one constructor in a pattern corresponds to one labeled
production rule of a context-free grammar. This initial algorithm guarantees full
pattern coverage but not minimality of the set of test inputs. We shall see in the
evaluation that the expected amount of tests generated is already so small that
optimization in this direction is not necessarily an interesting avenue.

Given the set of pattern requirements corresponding to the meta program
under test, the algorithm takes the following steps, for each pattern instance on
the set:

1. Identify the open variables and their type (nonterminal);
2. Create a term for each identified variable for the given type using standard

grammar-based test input generation;
3. Substitute the variable by the generated term in the pattern;
4. From the start symbol of the input grammar generate a sentence in the lan-

guage including the previously generated term;
5. Add the result sentence to the test set.

On the first step, the algorithm identifies the open variables inside the term
and generate terms to bind with them (step 2). Next step is apply a substitution
of variable by the generated term (step 3). With this, we have a term that
matches the original patterns, but it is only part of a full input program. So,
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we generate a sentence using the input grammar (step 4). It is created from the
start symbol and needs to reach the same nonterminal associated with the partial
term that was generated on the last step. This step could be easily automated by
adapting the traditional grammar-based testing algorithms. Finally, the resulting
sentence is added to the test set (step 5).

Listing 1.2. Example of a Java sentence produced by the generation algorithm.

1 public class id0 {

2 static {

3 if (true)

4 return ;

5 }

6 }

To illustrate the algorithm execution, we use the implementation of CC on
Listing 1.1 as example. The test requirement \if(_,_) is a pattern of type con-
structor and it has two open variables named as . According to step 1 in the
algorithm these two variable are detected and their nonterminal symbols are
identified. The next step is to create a subterm for each of them: the first is a
Java Boolean expression and the second a Java statement. For example these
terms could be true and return ;. On step 3 the variables are substituted
by these terms and the result is a new subterm, in our example, if (true)
return ;. The last step to produce the test data is to generate a sentence from
the grammar start symbol including the previous subterm as an instance of
its corresponding nonterminal. The Listing 1.2 shows a possible resulting Java
sentence generated by this algorithm for the test requirement \if(_,_).

In this paper we propose the use of patterns as reference for the definition of
test data and a pattern-based coverage criterion which defines a set of test data
requirements from a set of language patterns. These patterns may be extracted
from different sources: from language or meta program specifications, from the
patterns used in the code of the meta program, or even from a non pattern-based
meta program from which some mining of patterns has been carried out.

The algorithm presented here was used in the evaluation process described
in Sect. 4.

4 Evaluation

To evaluate our claim of effectiveness, we compare our new method of generating
test inputs for meta programs to the state-of-art grammar-based testing methods
in this section. Our evaluation is scoped to Rascal meta programs, which we
assume to be representative for all meta programs which strongly depend on
pattern matching.

The evaluations questions are:

RQ1 : How efficient and effective are standard grammar-based testing techniques
efficient for testing of Rascal meta programs?

RQ2 : Is pattern-based testing more efficient and more effective than grammar-
based testing for testing Rascal meta programs?
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4.1 Evaluation Method

We use two variables to measure the efficiency and effectiveness of this criterion:
test set size for cover a given coverage criterion and mutation score, respectively.

The mutation score is a measure of effectiveness based on the concept of muta-
tion testing [1,11]. Mutation testing provides a repeatable process for measuring
the effectiveness of test cases and identifying disparities in (random) test sets.
It involves the use of original software under test to create a variation of it
that contains an artificial fault. Each fault inserted in original software produces
a mutant and the specific fault injected is called mutation operator. After the
application of a mutation operator the mutant is executed using the test set
under evaluation, if the test indeed fails for one of the generated test cases the
mutant is killed and the test set is good enough to detect that mutant operator.
Otherwise, if all all tests set run without any failure, the mutant is alive and the
random test case generation is deemed ineffective. For this last case there are
two possibilities: the test set is indeed not good enough to trigger the mutant or
the mutant is accidentally semantically equivalent to the original program. At
the end, the percent of mutants killed by the test set is called mutation score.

The mutation process used in the evaluation is implemented in Rascal for Ras-
cal. The set of mutation operators (Table 2) introduces bugs randomly, simulating
programmers forgetting cases, making errors in patterns and making errors in the
code that is triggered after a pattern is matched. Rascal is a pattern-oriented lan-
guage, where patterns govern both data (binding) and control flow (conditionals)
dependency. Patterns occur in the conditions of all structured control-flow state-
ments and the parameters of functions (dynamic dispatch). Common Rascal pro-
gramming errors are forgetting to update a pattern when a language has changed,
accidentally overlapping patterns for which the code is then never or always exe-
cuted, and writing overly restrictive patterns accidentally. The mutation operators
are designed to highlight code which is executed conditionally under a pattern, in
order to make observable whether and how quickly the test set can trigger code
which depends on (possibly buggy) patterns.

Table 2. Table of Rascal mutation operators.

Operator code Description

OP0 Remove pattern rewrite

OP1 Remove pattern with action

OP2 Remove if conditionals. Simple if

OP3 Remove if conditionals. Remove if code block

OP4 Remove if conditionals. Remove else code block

OP5 Remove while conditionals

OP6 Remove for conditionals
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Fig. 1. An overview of evaluation process.

To evaluate the efficiency, we measure the number of test cases necessary to kill
100 % of the mutants.

The Comparison Process. To provide an answer to the second question, we then
run the same process using a test set that covers the pattern coverage criterion.
The result of this second experiment is then compared with to the previous
experiment. The comparison process is shown in Fig. 1. The circles represent the
process and the rectangles represent data. The process starts with the generation
of a set of test data based on the language’s context-free grammar using the
algorithm in Sect. 3.2. An initial test data set is used with the software under
test (Listing 1.1) to generate the expected results for this set of input. Since
we use mutation testing to evaluate the test set effectivity we may use the not
mutated version as the oracle. Given this generated test set and the generated
oracle, the mutation process is started and each mutant is tested. This test
process logs the two metrics (mutation score and number of test cases).

Selected Languages and Program Under Test. We use Java and Pico as the object
languages for our experiment and a typical algorithm for computing the Cyclo-
matic Complexity (CC) [25] of a program for both languages (see Listing 1.1).
CC is a basic but non-trivial algorithm, so this evaluation should be seen as
an initial experiment and proof-of-concept. Lincke et al. [24] showed how even
relatively basic and often used software metric implementations are inconsistent
with each other, and thus broken, underlying the relevance of a feasible method
for testing them thoroughly.

For the Java language, we used the Java Specification Language [17] and
the ANTLR Java Grammar2 specification as references. Since Java is a big lan-
guage and therefore our initial demonstration and evaluation first focuses on a
smaller language with a mini grammar: Pico [12]. The Pico language is a small
educational programming language with a Rascal implementation3. This initial
evaluation would also detect bugs in either our implementations or our evalua-
tion methods. After this we continue with our evaluation on the Java language.
Table 3 lists the sizes of the Pico and Java grammars we used.
2 https://github.com/antlr/examples-v3/blob/master/java/java/Java.g.
3 http://tutor.rascal-mpl.org/Recipes/Languages/Pico/Pico.html.

https://github.com/antlr/examples-v3/blob/master/java/java/Java.g
http://tutor.rascal-mpl.org/Recipes/Languages/Pico/Pico.html
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Table 3. Grammar statistics for Java and Pico used in the evaluation.

Structure Size

Pico Java

Production rules 18 272

Terminals 23 98

Nonterminals 9 142

To generate production coverage test data we used the LGen tool [27]. For
both languages we generated the test data and after that ran the software under
test, the cyclomatic complexity algorithms, to create the expected result and
produce the complete test set.

4.2 Results for Pico Cyclomatic Complexity

For the Pico language the results obtained by the evaluation method is presented
in Table 4. Using the production coverage test set we reach 100 % of mutation
score. It means that all mutations generated by mutation process have been
killed by the test set. The pattern coverage test set we also killed all mutants,
but in this case with a lower number of test cases. This results provides an initial
evaluation about the pattern coverage’s efficiency but without enough confidence
on it because its small scale and low complexity of the Pico language.

Table 4. Results obtained by the evaluation using the Pico language.

Coverage criterion Test set size Mutation score

Production coverage 10 100 %

Pattern coverage 2 100 %

4.3 Results for Java Cyclomatic Complexity

The results obtained from Java case are shown in Table 5. In this case, we observe
a reduction over on the number of test cases using the pattern coverage criterion.
This is related to the amount of patterns used on program 1.1. Furthermore, the
mutation score for this coverage criterion shows an increase in relation to the
production coverage criterion.

4.4 Discussion and Threats to Validity

Even given the small size and complexity, from the Pico experiment we learn
that pattern coverage may reduce the amount of required test cases dramatically
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Table 5. Results obtained by the evaluation using the Java language.

Coverage criterion Test set size Mutation score

Production coverage 85 8.33 %

Pattern coverage 12 83.33 %

without sacrificing test quality. This small demonstration can not be generalized
to other languages or meta programs, but it motivates to continue investigating
and served as an integration test for our experimental setup.

The Java language results show that the approach will scale to full pro-
gramming languages. We observe that indeed the number of test cases drops
significantly without loss of test quality.

The main threat to validity of the above observations is the size and complex-
ity of the meta program under test, which is not representative of the broader set
of meta programs we wish to target. These initial results are promising neverthe-
less. We expect future investigation on larger meta programs to produce more
specific patterns (which does not incur an overhead since pattern extraction is
linear in the size of the meta program). More specific patterns will likely lead to
larger but not more test cases. We hypothesize that pattern-based testing will
still outperform exhaustive grammar-based testing in the number of test cases,
while we need to find out experimentally what the mutation scores will show.
The mutation score is influenced by the internal complexity of the meta program
which may use other kinds of predicates and queries next to pattern matching to
guide control flow. More complex meta programs will also require us to extend
the set of mutation operators to generate representative mutations. Our future
target is a group of type analysis and type inference tools for Rascal, Java and
PHP which we wish to test exhaustively.

We believe that future work to extend pattern-based testing to other applica-
tion domains based on schemata and patterns may be fruitful (XML processing,
DOM manipulation and model driven engineering)

5 Related Work

Grammar-based testing has been used in compiler testing for many years [5,20].
Compilers are a specific kind of meta programs and could be tested using similar
techniques. The YouGen tool [14] generates test data based on grammar defin-
itions, controlling depth of derivation trees based on annotations. The major
difference is about the algorithm based on enumeration and filtering of the
derivation trees. This also reduces the number of test data generated, but the
filtering is guided only using information from the grammar. Our approach also
uses information from the program under test.

In the same direction, the XTextGen [13] generates test-data based from
grammars. This tool has a different approach to generate the data. It uses Cantor
pairing and mandatory multiplicity control. The generation process is split into
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two phases. First, an enumeration process and then a semantics-directed post-
processing over the result a set of transformation. With XTextGen it should
be possible, in principle, to simulate pattern-based testing as we propose in the
current paper. An appropriate encoding would have to be developed to do so,
which would amount to an alternative implementation of our sentence generation
algorithm.

Jagannath et al. [16] propose several ways of reducing the cost of bounded
exhaustive testing (the generalization of grammar-based testing) by test priori-
tization and by merging smaller inputs into fewer bigger inputs. Our approach
also reduces the cost of exhaustive testing, by selecting the right test inputs to
run, but in a completely different way.

SafeRefactor [10] also uses bounded exhaustive search for generating test pro-
grams (in AST format and for the purpose of refactoring tools). A key ingredient
is programmable specialization of the generated ASTs to better fit the specific
meta program under test. This framework, which was elaborated on later for
scalability [26,30], could be extended with our approach to automatically feed-
back patterns back into the AST generators.

With concolic testing [29] a similar effect of selecting the right test cases
could be achieved as our approach can. Concolic testing is based on symboli-
cally simulating a program for a given test input and using a SMT solver or
theorem prover to generate the next input which will cover a different execution
path than the previous test input did. One would need to add a theory for gram-
mar and pattern matching to the solver and a simulation engine for the meta
language for this approach to work. Our approach is different and much more
lightweight, neither requiring a hard-to-obtain efficient solver nor a symbolic
execution engine, just a pattern extraction tool and a grammar-based sentence
generator.

6 Conclusions and Future Work

In this paper, we presented a new coverage criterion for test case design, pat-
tern coverage) and its preliminary evaluation of effectiveness in the context of
pattern-based meta programs. The evaluation considered the amount of test
cases and mutation score, taking as reference traditional grammar-based testing.
We conclude that our experiments indicate a significant reduction in necessary
test cases to achieve coverage, while improving the quality of the tests in terms
of mutation score. Further evaluation with a richer set of meta programs and
mutation operators is planned in the next steps of the research.

This work is part of a more general research direction in which we are investi-
gating lightweight techniques to more effectively test meta programs: extracting
constraints from the source code of the programs under test (or their specifica-
tions) to direct a sentence generator.
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Abstract. Developing product lines is usually more efficient than devel-
oping single products because of the reuse of single components. Testing,
however, has to consider complete, integrated systems. To prevent testing
every product on system level, the whole product line should be analyzed
with the aim of selecting distinguishing product behavior and a minimum
of system products to test. In this paper, we present a model-based test
design approach for testing the selected behavior of products, but also
their deselected behavior. A major challenge of this approach is that
the deselected behavior of a product is often not part of its behavioral
model. Thus, we use the variability model to transform the behavioral
model so that showing the exclusion of the deselected behavior is also
covered by tests. We present the approach, a corresponding prototypical
implementation, and our experiences using a set of examples.

1 Introduction

Configurability is a key selling point of many systems. For instance, every pos-
sible variant of a German car is sold only once or twice on average. Corre-
spondingly, it is infeasible to design every variant from scratch. Instead, system
components are reused to a maximum extent. The reuse and variability of system
components can be described in a variability model like, e.g., a feature model
with features linked to system components. Although this process leads to a
significant gain in development efficiency, system test efficiency is not impacted,
because the whole integrated system has to be tested.

Quality assurance is one of the most important aspects in systems engineer-
ing. Low quality usually results in high costs for defect rectification. Testing is
an important quality assurance technique. In many cases, however, it is con-
sidered to be very expensive. Automated test execution helps in reducing test
execution time and costs. It faces, however, the issue of high costs for test design
adaptation. The automation of test design is a solution to such issues.

Existing approaches are focused on covering the selected behavior of a prod-
uct, i.e., they check if everything that should be in the product is really imple-
mented. In this paper, we focus on covering the deselected behavior by checking
if everything that should not be in the product variant is really not imple-
mented. Common approaches cannot be used for this, because they are focused
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 86–101, 2015.
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on cutting away all deselected behavior for a variant, and thus the model for the
variant does not contain deselected behavior, anymore. To overcome this issue,
we introduce model transformations that create new model elements describing
the non-existence of deselected behavior.

The paper is structured as follows. In Sect. 2, we present the preliminar-
ies. Section 3 describes our approach. The implementation and experiments are
described in Sect. 4. Section 5 contains an analysis of the related work. In Sect. 6,
we conclude and discuss our approach including threats to validity.

2 Preliminaries

This section contains the preliminaries of this paper. It describes automated test
design, model-based product line (PL) engineering, and the combination of both.

2.1 Automated Test Design

Testing is a common approach to quality assurance. The idea is to systematically
compare the observed system behavior with the expected one. There are various
approaches and tools to automate the test execution. The biggest issue of this
approach are changes. A change of requirements or customer wishes results in
high effort for test design adaptation. In the worst case, test design adaptation
costs outweigh the costs saved by automated test execution. In order to solve
this issue, test design also needs to be automated. An often used approach for
this is model-based testing [5,24]. We apply state machines of the Unified Mod-
eling Language (UML) as the basis for automated test design [28]. UML state
machines are used to express state-based system behavior. There are several
corresponding test generators [9,20,27].

2.2 Model-Based Product-Line Engineering

A demand for high configurability at low costs drives engineering disciplines to
increase the number of product features while keeping systems engineering costs
at a reasonable level. Reusing system components helps in reducing engineering
costs. A PL is a set of related products that share a common core of assets
(commonalities), but can be distinguished (variabilities) [21]. Consequently, PL
engineering is a technique to fulfill the wish for high configurability at low costs.

PL engineering can be supported by models like, e.g., feature models that
enable facilitating the explicit design of global system variation points [15]. As
a consequence, system variation points are not spread across one or multiple
domain models or code fragments anymore, but instead linked to one core of
variability description.

A feature model is a tree with root feature and linked feature children (see
Fig. 1). A parent feature can have the following relations to its child features:
(a) Mandatory : child feature is required, (b) Optional : child feature is optional,
(c) Or : at least one of the child features must be selected, and (d) Alterna-
tive: exactly one of the child features must be selected. Furthermore, cross-tree
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Fig. 1. A feature model for the ticket machine example.

constraints between two features A and B are possible: (f) A requires B: the
selection of A implies the selection of B, and (g) A excludes B: both features A
and B must not be selected for the same product.

As Czarnecki et al. presented in [11], feature models can be transformed
into propositional formulas defined over a set of Boolean variables, where each
variable corresponds to a feature. This allows for checking every combination of
features according to its validity, i.e., if it represents a valid variant of the feature
model. For instance, the boolean formula for the Ticket Machine in Fig. 1 is:

FM = TM ∧ (¬Bills ∨ Payment) ∧ (¬Change ∨ Payment)
∧ (¬ReducedFare ∨ Payment) ∧ (¬Payment ∨ TM)
∧ (¬D ∨ TM) ∧ (¬E ∨ TM) ∧ (¬F ∨ TM)
∧ (¬G ∨ F ) ∧ (¬H ∨ F ) ∧ (¬E ∨ G)
∧ (¬TicketMachine ∨ Payment) ∧ (¬TicketMachine ∨ F )
∧ (¬D ∨ E) ∧ ((G ∧ ¬H) ∨ (¬G ∧ H))

Any assignment that satisfies the formula is a valid configuration. The following
formula is a valid configuration for the feature model presented in Fig. 1.

P ={TicketMachine, Payment,¬Bills,¬Change,

¬ReducedFare,D,E, F,G,¬H}

2.3 Automated Test Design for Product Lines

A feature model contains the system’s variation points. Its elements, however,
are only symbols [10]. Semantics is provided by mapping features to artifacts
with semantics such as system models or source code. Such a mapping can be
defined using a mapping models that contain relations from features to artifacts
with semantics.

In our case, the system model is designed as a so called 150 % model contain-
ing every element that is used in at least one potential product configuration
and, thus, describing all possible variants [13]. Hence our PL model comprises
a 150 % system model that is a UML state machine, a feature model explicitly
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Fig. 2. Excerpt of the product line
model for the TicketMachine.

Fig. 3. Product-centered and product line-
centered test design.

expressing the PL’s variation points, and a feature mapping model that connects
both. The current version of our work maps features to states and transitions.
Each mapping has a Boolean flag that indicates whether the mapped model ele-
ments are part of the product when the feature is selected (Mapping: TRUE ) or
unselected (Mapping: FALSE ).

In Fig. 2, we depict an excerpt of the PL model for our Ticket Machine
example with feature model and UML state machine. In this excerpt, the system
waits for coins or bills to be inserted until the costs for the selected tickets are
covered. The dotted arrow maps the feature Bills to the transition t6 in the state
machine: If the Ticket Machine’s configuration includes the feature Bills, then
the mapped transition t6 must be present in the corresponding product. If the
feature is not selected, this transition is not part of the corresponding product
and hence leaving the customer’s only payment option to be coins as denoted in
transition t5.

Based on this, we defined two approaches to automated test design for
PLs [16] as depicted in Fig. 3: (i) product-centered (PC) and (ii) product line-
centered (PLC). The product-centered approach consists of selecting a represen-
tative set of products (test models) and afterwards generating test cases from
each of these models. This approach is focused on satisfying a defined coverage
on each test model, which also leads to an overlap of the resulting test cases.
In contrast, the PLC approach directly applys the PL model for designing tests.
The second approach is focused on the behavior defined at the PL level and
does not focus on covering single products. Instead, there is still variability in
the choice of the concrete products for which the test cases will be executed.

3 Testing Boundaries of Products

A product is configured to include a subset of the specified behavior of a PL
model, the rest is excluded. Model-based testing (MBT) is focused on creating
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test cases based on models. Typically, MBT designs tests for performig posi-
tive testing by means of checking the included behavior for conformance. The
information about parts being explicitly excluded, however, is valuable too. A
test designer can make use of this information by creating tests that actively try
to invoke excluded behavior. We think of this as an attempt of breaching the
boundaries of a product under test (PUT), where the boundary is predefined
by the PUT’s configuration. A boundary is overcome if an excluded behavior is
invoked and executed as specified in the PL model.

3.1 Boundary Transitions

Inside the PUT’s boundaries is the PL’s core and all included features declared
by the configuration. Outside its boundaries lie the excluded features. Figure 4
depicts an excerpt of a ticket machine product, in which the feature Bills is
deactivated. Here, the state “Payment” and the transitions t4, t5, t7 lie within
the boundaries of the product. Transition t6 as shown in the excerpt of Fig. 2 is
not part of this product. We overcome this boundary, if we make the product
process a bill in this state as defined in the PL model in Fig. 2. More formally
speaking, we define a product’s boundary by boundary transitions over UML
State Machines. We define a boundary transition bt, where S be the set of states
and T be the set of transitions in a PL model and t(s, s′) be a transition from
state s to s′ as:

bt(s, s′) ∈ T |s, s′ ∈ S ∧ s ∈ productmodel

∧ bt �∈ productmodel

Hence, a boundary transition is not part of the particular product. We call a
product to have an open boundary, if behavior from an excluded feature can be
invoked at some point of the PUT’s execution.

In general, it is possible to detect open boundaries by stimulating the PUT
with unexpected events in every state. This resembles sneak-path-analysis and
is costly [14]. Here, we propose a method to reduce test effort by stimulating the
PUT with unexpected events only if its active state has at least one boundary
transition. In particular, we stimulate the PUT with only those events that could
possibly trigger one of its boundary transitions.

Fig. 4. Product of ticket machine
excerpt without feature Bills.

Fig. 5. Same product with addi-
tional complementary transition.
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3.2 Turning Open Boundaries into Test Goals

We chose transition-based coverage criteria for selecting test goals. Our approach
comprises introducing a transition for each boundary transition to which we
refer to as complementary transition. The intention of this is to create transitions
specifying that the PUT should stay in its current state and with events that are
not expected to trigger product behavior. Hence, for every boundary transition,
we add a complementary transition with its source state as target and source.
For the presented ticket machine product without feature Bills, Fig. 5 shows the
same excerpt of the product as in Fig. 4, but with the additional complementary
transition t20, which complements boundary transition t6 of this product. The
complementary transition must have no effect, since in the state “Payment” no
reaction is expected for any product that does not include feature Bills. However,
we should not add a complementary transition, if there is an explicitly specified
behavior for processing the signal event when feature Bills is excluded as in state
“Selection”.

So far, we defined boundary transitions for a given product and outlined
how to add complementary transitions. For PLC test design we must raise these
concepts to the PL level, in order to set complementary transitions as test goals.
Particularly, we define a transformation for adding complementary transitions to
the PL model whenever there is a boundary transition of any product available.
This enables PLC test design methods to consider complementary transition as
test goals during test design. Also, PC test design methods can benefit from
this approach, since the complementary transitions persist during the derivation
process.

In Fig. 6, we depict the desired outcome of the transformation: we added
a complementary transition t20 to state Payment for transition t6, which is a
boundary transition for any product not including the feature Bills. Hence, the
complementary transition is mapped to feature Bills with the mapping’s flag set
to false, denoting the transition is only to be included when the feature Bills
is deselected. We present the pseudo code to achieve the result shown in Fig. 6
in Algorithm 1. Let SM(S, T ) be a state machine, where S is the set of states
and T the set of transitions. For each transition t ∈ T we define:

• source(t) as the source state of t,
• target(t) as the target state of t,
• triggers(t) as the triggers of t,
• triggers ∗(t) as the triggers from all transitions leaving target(t), if triggers(t)

is empty, and triggers(t) otherwise. Since this is a recursive definition,
triggers ∗(t) must stop once all t ∈ T are traversed.

• features(e) as the set of feature selections mapped to an UML element e ∈ SM .
A feature selection states whether a feature must be selected or deselected to
include e.

• concurrentGuards(t) as a conjunction of guard conditions. The conditions
are collected from transitions that can be concurrently enabled with t.

First a set of transitions for storing complementary transitions during this pro-
cedure is initialized. Then for all transitions of the state machine the following



92 S. Weißleder et al.

Fig. 6. PL model example: ticket machine with complementary transition.

actions are performed: the algorithm checks in lines 4–7 if current transition b is
a boundary transition for some product. This is achieved by checking whether b
has different feature mapping selections than its source state. The selections from
b, which are not shared by its source state are stored in difference. When differ-
ence is not empty, b is a boundary transition and creation of a complementary
transition begins. Otherwise, the for-loop continues with the next b.

From line 8 to 12, the complementary transition c is added to C and is initial-
ized with source(b) as target and source state, and triggers ∗(b) as triggers. The
complementary transition’s guard is built from the original boundary transition’s
guard and, to prevent non-deterministic behavior, conjoined with the negated
guard conditions of concurrently enabled transitions. Lastly in this if-block, c is
mapped to the negated difference of feature selections unified with the selections
of b’s source state, so c is included in every product when b’s source state is, but
b is not. Line 14 concludes the procedure by adding the set of complementary
transitions C to the state machine’s set of transitions T .

The outcome of this procedure when applied to the ticket machine’s PL
model is depicted in Fig. 7. We denote the mappings from the feature model by
feature formulas in the transition’s guards analog to Featured Transition System
(FTS) introduced by Classen [8]. We use the following acronyms: B for Bills, C
for Change, and R for ReducedFare. The complementary transitions added by
our transformation procedure are denoted by dotted arcs (transitions t19–t22).
Beginning from the initial state, we find the first state with at least one boundary
transition to be “Selection”. The boundary transition here is t3, which is enabled
when the feature ReducedFare is part of a product. Hence, t19 is added to the
state machine for serving as an additional test goal to any product not including
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Algorithm 1. Adds Complementary Transitions to a Region
1: procedure addComplementaryTransitions
2: C ← ∅
3: for all b ∈ T do
4: incoming ← ⋃ features(s ∈ S|s = source(b))
5: difference ← features(b) − incoming
6: if difference �= ∅ then
7: C ← C ∪ c
8: source(c) ← source(b)
9: target(c) ← source(b)

10: guard(c) ← guard(b) ∧ ¬(concurrentGuards(b))
11: triggers(c) ← triggers ∗(b)
12: features(c) ← incoming ∧ ¬ difference
13: T ← T ∪ C

ReducedFare. To achieve all-transition coverage, a test case must include sending
the signal event “reducedTicket” when the feature ReducedFare is disabled while
the state machine is supposed stay in state “Selection”. Analog to this, transition
t20 is added for boundary transition t6 in state “Payment”.

In state “TicketIssue” are three boundary transitions t9, t12, and t13. Tran-
sition t9 has no trigger, hence its target state must be checked for outgoing
transitions with triggers. The transformation’s check for further transitions in
t9’s target state delivers t9 to t13. Since t9 is currently under investigation it
will not be checked for triggers again. Transitions t10 and t11 are untriggered
and thus their target state must be evaluated for further triggers. Since their
target state is also “TicketIssue”, for which this check is currently performed,
there are no further checks at this point. For each of the triggered transitions t12
and t13 one self-loop must be created. Each of them includes the copied trigger,
negated feature constrained for the currently investigated feature ReducedFare
and its guard constraint, the copied feature mapping (C) from the transition at
the target state, and its negated guard constraint:

t12 : change
[¬R ∧ tRed > 0 ∧ C

∧¬(
tDay == 0 ∧ tShort == 0 ∧ tRed == 0

)]
/

t13 : noChange
[¬R ∧ tRed > 0 ∧ ¬C

∧¬(
tDay == 0 ∧ tShort == 0 ∧ tRed == 0

)]
/

We combine both transitions to create t21 with both triggers and reduced guards,
where constraint C and ¬C cancel each other out. Unfortunately, t21 is unreach-
able, since the condition tRed > 0 never holds for any product that does not
include t3. Transitions t22 and t23 are added accordingly. Finally, no further
boundary transitions exists and therefore the procedure ends here.
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Fig. 7. PL model example: TicketMachine model with added feature formulas and
complementary transitions.

4 Examples and Evaluation

In this section, we present the evaluation of the product line’s test suites, with
and without the presented model transformations. We assess all tests by means
of fault detection capability. First, we introduce the used approach of measuring
the fault detection capability of the test suite. Afterwards, we describe the used
examples, the test setup, and the results.

4.1 Mutation System for PLs

Mutation analysis (also mutation testing) [12] is a fault-based testing technique
with the intended purpose to assess the quality of tests by introducing faults
into a system and measuring the success rate of fault detection.

The process of mutation analysis inserts defects into software by creating
multiple versions of the original software, where each created version contains one
deviation. Afterwards, existing test cases are used to execute the faulty versions
(mutants) with the goal to distinguish the faulty ones (to kill a mutant) from
the original software. The ratio of killed mutants to generated mutants is called
mutation score. The main goal of the test designer is to maximize the mutation
score. A mutation score of 100 % is seldom possible, because some deviations may
lead to an unchanged system behavior, i.e. semantically equivalent mutants.

We think that mutation systems for PLs need novel mutation operators and
mutation processes. The reason for this is the separation of concerns in model-
based PL engineering, where variability and domain engineering are split into
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Fig. 8. Product example: state machine model of a ticket machine without Bills,
Change, and ReducedFare.

different phases and models. Hence of new modeling languages used in PL engi-
neering, more kinds of errors can be made on the model-level than in non-variable
systems engineering. In our case, new errors occur in feature mapping models.
Of course, the here defined operators are only useful, if system engineering was
facilitated by feature models and feature mappings with negative variability.
Otherwise, the here described errors are unlikely and hence not applicable.

Mutation processes for PLs differ from conventional mutation processes, since
a mutated PL model is not executable per se. Thus, testing cannot be performed
until a decision is made towards a set of products for testing. This decision
depends on the PL test suite itself, since each test is applicable to just a subset
of products. In Fig. 9, we depict a mutation process for assessing PL test suites,
which addresses this issue. Independently from each other, we gain (a) a set of PL
model mutants by applying mutation operators to the PL model and identify (b)
a set of configurations describing the applicable products for testing. We apply
every configuration from (b) to every mutant in (a), which returns a new set
of product model mutants. Any mutant structurally equivalent to the original
product model is removed and does not participate in the scoring. The model
mutants are then derived to product mutants and finally, tests are executed.
Our mutation scores are based on the PL model mutants, hence we established
bidirectional traceability from any PL model mutant to all its associated product
mutants and back again. If a product mutant is killed by a test, we backtrack its
original PL model mutant and flag it as killed. The final mutation score is then
calculated from the set of killed and the overall number of PL model mutants.
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Fig. 9. Mutation process for PLs

We provide the following mutation operators for the mapping model:

• Delete Mapping (DMP): Deletes a mapping from the mapping model. This
enables all referenced elements that have no other mappings.

• Delete Mapped Element (DME): Deletes an UML element from a mapping.
This enables all referenced elements that have no other mappings.

• Insert Mapped Element (IME): Adds a new UML element to the mapping.
This element will only be available in products including the mapped feature.

• Change Feature Value (CFV): Flips the feature value of a mapping so that
the UML element is included when it has been excluded before and vice versa.

• Swap Feature (SWF): Substitutes a feature from a mapping by another feature
from the mapping model.

For our experiment, we perform mutation analysis with all of these operators.

4.2 Examples

We assessed the quality for three test suites, where each test suite belongs to
a different case study. These case studies represent three kinds of systems: an
e-commerce shop (eShop), which makes contains many signals, but only few
guards, the Ticket Machine (TM) that uses less signals and in contrast more
guards, and lastly, an alarm system (AS), which is offers most product variations.

In the eShop example, a customer can browse the catalog of items, or if
provided, use the search function. Once the customer puts items into the cart,
he can checkout and may choose from up to three different payment options,
depending on the eShop’s configuration. The transactions are secured by either
a standard or high security server. A constraint ensures that credit card payment
is only offered if the eShop also implements a high security server.

The TM example is adopted from Cichos et al. [7]. The functionality is as
follows: a customer may select tickets, pay for them, receive the tickets, and
collect change. The feature model has a root feature with three optional sub-
features attached to it. Depending on the selected features, the machine offers
reduced tickets, accepts not only coins but also bills, and/or will dispense change.
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The AS example is adopted from Cichos et al. [6]. The alarm may be set
off manually or automatically by a vibration detector. Both features are part
of an or-group and, thus, at least one of the two features must be present in
every product. In the event of an alarm, a siren or a warning light will indicate
the security breach. When the vibration does not stop after a predefined period
of time, the system optionally escalates the alarm by calling police authorities
and/or sending photos of evidence. Additionally to its alarming functionality, the
PL of the AS provides a feature for taking a photo of any operator that configures
the system for security measures. We adopted the AS model by removing manual
timers that were implemented as guard conditions.

4.3 Setup

We design two test suites for each example. For the first test suite we use the
original models, for the second we apply our transformations first and then run
the test design process. The design of each test suite is facilitated by model-based
testing techniques. In particular, we used a product line-centered test design
process as defined in [16], where tests are designed based on the PL model.

We apply transition coverage for test selection. A test generator then auto-
matically designed the tests. From the tests, SPLTestbench selected products
for testing and derived them from the mutated PL models into product model
mutants. Since our examples lack implementations, we decided to generate code
from the product model mutants and run the tests on them.

4.4 Results

In Table 1, we show the test assessment results of test suites, that were designed
with the original models. In each row, we show the mutation results for all
examples in the form of killed mutants/all mutants. As supposed, mutations with
behavior that is not described by the test model (DME, DMP) are not detected.
For the other two mutation types which alter specified behavior (IME, CFV), we
receive mixed results in the range of 40 % to 100 %. In contrast, Table 2 depicts
the assessment results for the test suites that were created from our transformed

Table 1. Mutation scores for regular
tests

Op TM eShop AS p.Op

DMP 1/5 0/4 0/8 1/17
DME 1/8 0/14 0/21 1/43
IME 2/5 1/4 2/8 5/17
CFV 5/5 4/4 6/8 15/17
SWV 3/5 2/4 3/8 8/17

per Ex. 12/28 7/30 11/53

Table 2. Mutation scores for tests with
transformations

Op TM eShop AS p.Op

DMP 3/5 4/4 5/8 12/17
DME 3/8 4/14 8/21 15/43
IME 3/5 4/4 2/8 9/17
CFV 5/5 4/4 7/8 16/17
SWV 4/5 4/4 4/8 12/17

per Ex. 18/28 20/30 26/53
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models. Again in each row, we show the mutation results for all examples in
the form of killed mutants/all mutants. We observe increased scores for every
mutation operator on any of our examples.

In the last row of each table, we show the overall results for each example.
Furthermore, in the last column we present the accumulated scores of every
mutation operator over all examples.

5 Related Work

In recent years model-based testing (MBT) emerged as an efficient test design
paradim that yields a number of improvements compared to conventional test
design such as higher test coverage or earlier defect detection. There are several
surveys on the effectiveness of MBT in general [5,25,29] and MBT of software
product lines [18]. In contrast to this, we combine the application of model-based
software product line testing with a product line-specific sneak path analysis. To
our knowledge, this combination has not been covered before.

In earlier work [16], we present two approaches for product line test design
automation. However, the current paper is focused on testing whether unselected
features are actually excluded from the product variant. Our approach reuses the
concept of Simulated Satisfaction of coverage criteria by transforming the test
model instead of improving the applied test generation tools [26]. Hence, the
herein presented approach is independent of the test design method, as long as
it relies on models.

There are many studies on fault detection effectiveness of model-based test
generation using mutation analysis [1,2,19,22,23]. In order to further assess our
approach we extended our SPLTestBench by a mutation framework and defined
mutation operators for feature models, feature mappings, and the test model.

An early evaluation of the mutation scores suggests that our generated test
suites satisfying all-transitions coverage are capable of detecting many seeded
faults except unspecified behavior, so-called sneak paths [3]. In safety-critical
systems, an unintentional sneak path may have catastrophic consequences. Sneak
path testing aims at verifying the absence of sneak paths and at showing that the
software under test handles them in a correct way. Several studies showed that
sneak path testing improves the fault detection capabilities [4,14,17]. However,
the effort spent for sneak path testing is considerably high. Here, we present a
novel, more efficient approach for detecting unspecified behavior in product line
engineering: We define boundary transitions that stimulate the product under
test with only those events that could possibly trigger a transition that would
invoke excluded behavior. To our knowledge, this approach has not been applied
in the context of software product line engineering before.

6 Conclusions, Discussion and Future Work

Conclusions: In this paper, we combined model-based test design for software
product lines with boundary transition analysis. We extended our previous work
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on product-line centered model-based test design with model transformations
that increase the fault detection capabilities of the generated test suites.

We were able to significantly increase the mutation score in each of our
three examples using the proposed model transformation and for each of the
proposed mutation operators. The scores increased for the eShop by 43 %, for the
TicketMachine by 24 % and for the AlarmSystem by 29 %. As for the operators
the numbers increased by 63 % for the DMP operator, by 33 % for the DME
operator, by 24 % for the IME operator, and by 6 % for the CFV operator (which
were already very high), and for the SWV operator by 23 %.

Discussions: Our results support the recommendation of Binder [3] and the
conclusions drawn by Mouchawrab et al. [17] and Holt et al. [14]: Testing sneak
paths (in our case as boundaries of product line variants) is an essential compo-
nent of state-based testing and drastically increases fault detection capabilities.
Furthermore the results indicate that sneak path testing is a necessary step
in state-based testing due to the same observations made by Holt et al. [14]:
(1) The proportion of sneak paths in the collected fault data was high (61,5 %),
and (2) the presence of sneak paths is undetectable by conformance testing.

We were able to increase the amount of killed mutants by a significant amount
through our model transformations but were not able to kill all mutants. Espe-
cially the mutation score for the DME operator is still below 50 % of killed
mutants. This is partly the result of unreachable behavior, e.g. in the case when
an UML element (e.g. a transition) that was mapped to a feature (and thus is
now permanently enabled) has preceding elements mapped to the same feature.
In that case the element is always enabled but only reachable if its preceding
elements are present, which is only true if its the feature is present. A fundamen-
tal question here is if this indicates an issue of the test design or an unrealistic
mutation operator, and further if the design of novel mutation operators was
necessary at all.

This leads to the consideration of the threats to validity. The first point was
already mentioned: The introduced mutation operators are new and depend on
a model-based product line engineering. Further analysis with well-known muta-
tion operators need to be done. This leads to the validity of our examples. We
are aware that the used examples are rather small. A big case study with realis-
tic background would be necessary to underline the advantages of our approach
and also the assumed conditions like, e.g., the application of feature models.

Future Work: In our future, we plan to apply our approach to a real case study.
We also want to review the defined mutation operators and compare the effects
when applying well-known mutation operators.

Acknowledgments. This work is partially supported by grants from Deutsche
Forschungsgemeinschaft, Graduiertenkolleg METRIK (GRK 1324).
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product lines testing. In: Zander, J., Schieferdecker, I., Mosterman, P.J. (eds.)
Model-Based Testing for Embedded Systems. Computational Analysis, Synthesis,
and Design of Dynamic Systems, pp. 339–384. CRC Press, Boca Raton (2011)

19. Paradkar, A.: Case studies on fault detection effectiveness of model based test gen-
eration techniques. In: Proceedings of the 1st International Workshop on Advances
in Model-based Testing, A-MOST 2005, pp. 1–7 (2005)

20. Peleska, J.: RT-Tester Model-Based Test Case and Test Data Generator: User
Manual: Version 9.0–1.0.0 (2013)
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Abstract. The importance and impact of testing are becoming crucial
and strategic for the deployment and use of software and systems. Several
techniques have been defined all along the protocol testing process, that
allow validating multiple facets of a protocol implementation in particu-
lar its conformance to the standardized requirements. Among these test-
ing techniques, the ones denoted as passive are currently often applied.
Indeed, there are non intrusive and based on network observations. In
this paper, we intend to help and guide the protocol testers regarding
their testing choices by considering the functional protocol properties to
check, and the analysis of testing verdicts obtained by applying passive
testing tools. We propose a compared analysis of the application of two
efficient passive testing methodologies through the study of the Session
Initiation Protocol. The results analysis demonstrates that depending on
the properties to test, the way to model them, the way of testing (on-
line/off-line), the available testing time resources, tradeoffs are needed.
Thus, this analysis aims at guiding the testers when tackling the passive
testing of communication protocols.

Keywords: Formal methods · Passive testing · Monitoring · SIP

1 Introduction

While todays communications are essential and a huge set of services is available
online, computer networks continue to grow and novel communication protocols
are continuously being defined and developed. De facto, protocol standards are
required to allow different systems to interwork. Though these standards can be
formally verified [31], the developers may produce some errors leading to faulty
implementations. That is the reason why their implementations must be tested.
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Testing is mainly known as the process of checking that a system possesses a set
of desired properties and behaviour. Its importance and impact are becoming
crucial and strategic for the future deployment and use of software and systems.
This can be noticed through the numerous works on testing areas provided by
the research communities of course [30] but also by the industry [11] and the
standardization institutes [12].

Several techniques have been defined all along the protocol testing process.
The main approaches are based on formal models in order, first, to automate
the different test phases but also to ease the development and improvement of
network protocols. Applying formal techniques allow to validate multiple facets
of a protocol implementation such as their reliability, scalability, security, and
in particular its conformance to the standardized requirements [1]. These tech-
niques are mainly split in two categories: Active and Passive techniques. While
the active ones require a stimulation of the Implementation Under Test (IUT)
and an important testing architecture, the passive ones tackled in this work are
based on the observation of input and output events of an implementation under
test at run-time. Basically, passive testing techniques are applied whenever the
state of an IUT cannot be controlled by means of test sequences either because
access to the interfaces of the system is unavailable or a reset of the IUT is
undesired. The term “passive” means that the tests do not disturb the natural
run-time of a protocol as the implementation under test is not stimulated. The
trace, i.e. the record of the event observation, is then compared to the expected
behaviour of the IUT allowing to check its conformance.

When testing the implementation of a network protocol, its behaviour is
defined either by a formal model or by a set of expected functional properties. In
this current work, we consider formal properties to design the expected behaviour
of an implementation under test. However, based on the IUT functionalities,
the architecture, the system in which it will be integrated, a tester is faced
towards the testing methodology to follow, the way to extract relevant protocol
properties, how to express them, which tool to apply, etc. Depending on the
properties to check, the languages to model them, their expressiveness and the
network monitored, the met difficulties could be diverse and the test verdicts
different as well. In this paper, we therefore intend to help and guide the protocol
testers regarding their testing choices by considering the functional properties to
check, and the analysis of testing verdicts obtained by applying testing tools. We
propose a compared analysis of the application of two efficient passive testing
methodologies by taking into account not only the control parts of the protocol
messages but also the data parts. Further, the two chosen techniques proceed
differently: on-line versus off-line. The studied comparison is performed through
the study of an IP Multimedia Subsystem (IMS) based protocol (the Session
Initiation Protocol - SIP). Some traces and formal properties are used as inputs
of two open source tools. The results analysis aims at guiding the testers when
tackling the passive testing of communication protocols.

Our main contributions are the following:
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– The study of two different passive testing approaches on a common network
protocol. Based on the same traces sets and functional properties extracted
from the SIP standard, the techniques/tools are applied on a real IMS test
bed.

– A study of the expressiveness of the languages used to model the functional
properties. This allows notably to help the testers when designing certain
kinds of properties.

– The analysis and understanding of both sets of obtained test verdicts. Depend-
ing on some contexts, it allows to raise false negatives and to reduce incon-
clusive verdicts.

– To help guiding the protocol testers while choosing some passive testing tech-
niques for a specific system under test.

The remainder of the paper is organized as follows. Both passive testing
approaches: Datamon and Prop-tester are described in the Sect. 2. We herein
also define the main concepts of protocol messages and traces. In Sect. 3, the
experiments are performed on a real IMS platform from which traces are collected
and formal SIP properties checked on these execution traces. The results analysis
are provided in Section refDiscussion and discussions allowing to guide the testers
are given. Section 5 depicts the related works on the passive testing area and we
conclude in Sect. 6 with future works mentioned.

2 Basics

In this section, we introduce the general definition of messages and traces in
communication protocols. Then, the syntax and semantics of Datamon and Prop-
tester are briefly described with the expression equivalence of both tools.

2.1 Message and Trace

A message in a communication protocol is, using the most general possible view,
a collection of data fields belonging to multiple domains. Data fields in messages
are usually either atomic or compound, i.e. they are composed of multiple ele-
ments (e.g. a URI sip: name@domain.org). Due to this, we also divide the types
of possible domains in atomic, defined as sets of numeric or string values1, or
compound, as follows.

Definition 1. A compound value v of length k > 0, is defined by the set of pairs
{(li, vi) | li ∈ L∧vi ∈ Di∪{ε}, i = 1 . . . k}, where L = {l1, . . . , lk} is a predefined
set of labels and Di are data domains, not necessarily disjoint.

In a compound value, in each element (l, v), the label l represents the func-
tionality of the piece of data contained in v. The length of each compound
value is fixed, but undefined values can be allowed by using ε (null value). A
1 Other values may also be considered atomic, but we focus here, without loss of

generality, to numeric and strings only.
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compound domain is then the set of all values with the same set of labels and
domains defined as 〈L,D1, . . . , Dk〉. Notice that, Di being domains, they can also
be either atomic or compound, allowing for recursive structures to be defined.
Finally, given a network protocol P , a compound domain Mp can generally be
defined, where the set of labels and element domains derive from the message
format defined in the protocol specification. A message of a protocol P is any
element m ∈ Mp.

A trace is a sequence of messages of the same domain (i.e. using the same
protocol) containing the interactions of an entity of a network, called the point
of observation (P.O), with one or more peers during an indeterminate period of
time (the life of the P.O).

Definition 2. Given the domain of messages Mp for a protocol P . A trace is a
sequence Γ = m1,m2, . . . of potentially infinite length, where mi ∈ Mp.

Definition 3. Given a trace Γ = m1,m2, . . ., a trace segment is any finite sub-
sequence of Γ , that is, any sequence of messages ρ = mi,mi+1, . . . ,mj−1,mj(j >
i), where ρ is completely contained in Γ (same messages in the same order). The
order relations {<,>} are defined in a trace, where for m,m′ ∈ ρ,m < m′ ⇔
pos(m) < pos(m′) and m > m′ ⇔ pos(m) > pos(m′) and pos(m) = i, the
position of m in the trace (i ∈ {1, . . . , len(ρ)}).

2.2 Datamon

A syntax based on Horn clauses is used to express properties. The syntax is
closely related to that of the query language Datalog, described in [2], for deduc-
tive databases, however, extended to allow for message variables and temporal
relations. Both syntax and semantics are described in the current section.

Syntax. Formulas in this logic can be defined with the introduction of terms
and atoms, as defined below.

Definition 4. A term is either a constant, a variable or a selector variable. In
BNF: t ::= c | x | x.l.l . . . l where c is a constant in some domain (e.g. a message
in a trace), x is a variable, l represents a label, and x.l.l . . . l is called a selector
variable, and represents a reference to an element inside a compound value, as
defined in Definition 1.

Definition 5. An atom is defined as A ::= p

k
︷ ︸︸ ︷
(t, . . . , t) | t = t | t �= t where t is a

term and p(t, . . . , t) is a predicate of label p and arity k. The symbols = and �=
represent the binary relations “equals to” and “not equals to”, respectively.

In this logic, relations between terms and atoms are stated by the definition
of clauses. A clause is an expression of the form A0 ← A1 ∧ . . . ∧ An, where
A0, called the head of the clause, has the form A0 = p(t∗1, . . . , t

∗
k), where t∗i is a

restriction on terms for the head of the clause (t∗ = c | x). A1 ∧ . . .∧An is called
the body of the clause, where Ai are atoms.
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A formula is defined by the following BNF:

φ ::= A1 ∧ . . . ∧ An | φ → φ | ∀xφ | ∀y>xφ
| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, . . . , An are atoms, n ≥ 1 and x, y are variables. Some more details
regarding the syntax are provided in the following:

– The → operator indicates causality in a formula, and should be read as “if-
then” relation.

– The ∀ and ∃ quantifiers, are equivalent to its counterparts in predicate logic.
However, as it will be seen on the semantics, here they only apply to messages
in the trace. Then, for a trace ρ,∀x is equivalent to ∀(x ∈ ρ) and ∀y<x is
equivalent to ∀(y ∈ ρ; y < x) with the ‘<’ indicating the order relation. These
type of quantifiers are called trace temporal quantifiers.

Semantics. The semantics used in our work is related to the traditional Apt-
Van Emdem-Kowalsky semantics for logic programs [10], from which an extended
version has been provided in order to deal with messages and trace temporal
quantifiers.

Based on the above described operators and quantifiers, we provide an inter-
pretation of the formulas to evaluate them to � (‘Pass’), ⊥ (‘Fail ’) or ‘?’ (‘Incon-
clusive’). We formalize properties by using the syntax above described and the
truth values {�, ⊥, ?} are provided to the interpretation of the obtained formu-
las on real protocol execution traces. Due to the space limitation, we will not go
into details of the semantics. However, the interesting reader can refer to [17] in
which all the algorithms are defined.

2.3 Prop-tester

Prop-tester was presented in [27] to verify SOAP messages exchanged between
Web services. It is an online passive testing tool relying on XML Query processor.
In this section we introduce briefly some of its notions and adapt them to be
able to verify SIP messages. Let us start with definition of a message.

Definition 6. Given a finite set of names O, of labels L, and of atomic data
values D, a message m takes the form: o(l1 = v1, . . . , ln = vn), where o ∈
O represents the name of the message. The composite data of the message is
represented by a set {l1 = v1, . . . , ln = vn}, rewritten as (l̄ = v̄) for short, in
which each field of this data structure is pointed by a label li ∈ L and its value
is vi ∈ D.

We define a candidate event (CE) e/φ as a set of messages e that satisfy some
predicate φ that represents either functional conditions or non-functional condi-
tions, e.g., conditions of QoS. The predicate can be omitted if it is true. As the
SIP response messages do not contain operation names but status code numbers,
we then extend our definitions with empty operation name and any operation
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name by ε and ∼ respectively. For example, the INVITE(requestURI = x)/(x =
“sip:ua2@CA.cym.com”) represents any INVITE message whose requestURI is
“http://sip:ua2@CA.cym.com”, while the ∼ (method = x)/(x �= “ACK”) repre-
sents the any message except ACK, and the ε(statusCode = x)/(x ≥ 200 ∧ x <
300) represents any 2xx response.

Definition 7. A property is described by the form:

P ::= Context
d−−→ Consequence (positive)

P ::= Context
d−−→ ¬Consequence (negative)

where d > 0 is an integer, Context is a sequence of CEs, and Consequence is a
set of CEs.

This definition allows to express that if the Context is satisfied then the
Consequence should or should not (depending on the formula type P or ¬P)
be validated after at most d messages. The Context is satisfied when all of its
CEs are satisfied while the Consequence is satisfied when there exists at least
one CE which is satisfied and, the Consequence is not satisfied when all of its
CEs are not satisfied.

Semantics of a Prop-tester property are given by its evaluation on a trace
segment. A verdict is emitted if and only if the context of property is satisfied. If
there is no non-functional conditions, the verdict is either Pass or Inconclusive
depending on the consequence is satisfied or not respectively. The Fail verdict is
emitted only if the consequence is not satisfied and there exists a message which
violates a non-functional condition of the consequence.

The evaluation of a property on an arbitrary (potential infinite) trace Γ is
relied on its evaluation on a segment of Γ as above. In a property, a later CE
may depend on a former one, consequently, the verification of a message may
require the presence of its precedence. Since we can forward only read data in a
continuous stream mode, we need to create buffer which contains some segment
of messages stream, what we call a window. A created window contains firstly
messages validating the context of the property and the d next messages in Γ .
Once a window is created, the verification process on the window can start in
parallel with the other created windows.

3 Experiments

3.1 Description of the Tools

For the experiments, traces were obtained from SIPp [13]. SIPp is an Open
Source implementation of a test system conforming to the IMS, and it is also
a test tool and traffic generator for the SIP protocol, provided by the Hewlett-
Packard company. It includes a few basic user agent scenarios (UAC and UAS)
and establishes and releases multiple calls with the INVITE and BYE meth-
ods. It can also read custom XML scenario files describing from very simple
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to complex call flows (e.g. subscription including SUBSCRIBE and NOTIFY
events). It also supports IPv6, TLS, SIP authentication, conditional scenarios,
UDP retransmissions, error robustness, call specific variable, etc. SIPp can be
used to test many real SIP equipments like SIP proxies, B2BUAs and SIP media
servers. The traces obtained from SIPp contain all communications between the
client and the SIP core. Based on these traces and properties extracted from
the SIP RFC, tests were performed using our above mentioned methodologies
and tools. And all the experiments have been performed on one laptop (2.5 GHz
Intel Core i5 with 4 GB RAM).

Fig. 1. Testing framework of Datamon

Datamon. The testing framework of Datamon2 is implemented by using Java.
It is composed of three main modules: (1) Filtering and conversion of collected
traces; (2) Evaluation of tests; and (3) Evaluation of formulas. Figure 1 shows the
way the modules interact and the inputs and outputs from each one. The trace
processing module takes the raw traces collected from the network exchange, and
it converts the messages from the input format. In our particular implementation,
the input trace format is PDML, an XML format that can be obtained from
Wireshark traces. The purpose of the module is to convert each packet in the
raw trace into a data structure (a compound value) conforming to the definition
of a message. This module also performs filtering of the trace in order to only
take into account messages of the studied protocol.

The test evaluation module receives input of a passive test, as well as a trace
from the trace processing module, and produces a verdict from the satisfaction
results of the test and conditional formulas. The formula evaluation module
receives a trace and a formula, along with the clause definitions and returns a
set of satisfaction results for the query in the trace, as well as the messages and
variable bindings obtained in the process.

2 The implementation and the files used for the experiments can be found at http://
www-public.it-sudparis.eu/∼maag/Datamon/web/Datamon.html.

http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
http://www-public.it-sudparis.eu/~maag/Datamon/web/Datamon.html
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Prop-tester. The architecture of Prop-tester3 is depicted on Fig. 2. The prop-
erty to be tested is translated into an XQuery such that it returns false iff the
property is violated, and true iff the property is validated. A parser4 is con-
structed to parse the log file captured by SIPp tool in pcap format. It extracts
necessary information, then writes these information into an opened pipeline
between the tester and the parser, where it will be verified by an XQuery proces-
sor. The properties to be tested in XQuery form will be executed by MXQuery
processor on the XML pipeline supplying by the parser. A verdict is emitted as
soon as it is found.

Fig. 2. Testing framework of Prop-tester

3.2 Architecture of SIP

The IMS (IP Multimedia Subsystem) is a standardized framework for delivering
IP multimedia services to users in mobility. It was originally intended to deliver
Internet services over GPRS connectivity. This vision was extended by 3GPP,
3GPP2 and TISPAN standardization bodies to support more access networks,
such as Wireless LAN, CDMA2000 and fixed access network. The IMS aims at
facilitating the access to voice or multimedia services in an access independent
way to develop the fixed-mobile convergence. Further, the IMS makes now part
of the LTE core network for the voice and visio over LTE.

The core of IMS network consists on the Call Session Control Functions
(CSCF) that redirect requests depending on the type of service, the Home
Subscriber Server (HSS), a database for the provisioning of users, and the Appli-
cation Server (AS) where the different services run and interoperate. Most com-
munications with the core network and between the services are done using the
Session Initiation Protocol [28]. Figure 3 shows the core functions of the IMS
framework and the inherent protocols.

The Session Initiation Protocol (SIP) is an application-layer protocol that
relies on request and response messages for communication, and it is an essential
part for communication within the IMS framework. Messages contain a header
which provides session, service and routing information, as well as a body part
(optional) to complement or extend the header information. Several RFCs have
been defined to extend the protocol. These extensions are used by services of the
IMS such as the Presence service [3] and the Push to-talk Over Cellular (PoC)
service [4].
3 The tool is freely available at https://github.com/nhnghia/prop-tester.
4 https://github.com/nhnghia/pcap2xml.

https://github.com/nhnghia/prop-tester
https://github.com/nhnghia/pcap2xml
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Fig. 3. Core functions of IMS framework

3.3 Properties

In the experiments, a set of properties are tested through Datamon and Prop-
tester, in order to analyse their functionality and performance under different
conditions.

Property 1. Initially, a simple conformance property “For every request there
must be a response” is tested.

Table 1. For every request there must be a response

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 153 0 2 1.652 153 0 2 1.103

2 1000 297 0 0 1.518 297 0 0 1.487

3 2000 575 0 0 3.071 575 0 0 2.246

4 4000 1189 0 1 7.506 1189 0 1 3.190

5 8000 2376 0 1 11.365 2376 0 1 5.480

6 16000 4796 0 1 25.942 4796 0 1 10.106

7 32000 9593 0 0 43.105 9593 0 0 18.728

8 64000 19252 0 1 88.578 19252 0 1 37.128

9 128000 38468 0 1 182.305 38468 0 1 70.390

As Table 1 shows, Datamon and Prop-tester obtain the same number of ‘Pass’
and non-pass verdicts. Since a finite segment of an infinite execution is being
tested in our experiments, it is not possible to declare a ‘Fail ’ verdict in Data-
mon and Prop-tester, for the indeterminacy that testers do not know if it may
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become a ‘Pass’ in the future. As a result, they treat the non-pass verdicts as
‘Inconclusive’ verdicts. In this simple property, there is no essential difference
between the results returned by Datamon and Prop-tester.

Property 2. Therefore, a more complex conformance property “For successfully
established sessions, every INVITE request should be responded with a 200
response” is tested for delving deeper into the differentiation between the tools.

The results shown in Table 2 illustrate that a difference between mechanisms
can result on evaluation times. Although both tools still obtain the same number
of ‘Pass’ and non-pass verdicts, it can be observed that Prop-tester takes much
less evaluation time than Datamon, especially when handling numerous mes-
sages. As introduced in previous sections, Prop-tester introduces a predefined
distance value d into its evaluation process for instantly concluding verdicts.
With the help of this value, Prop-tester will omit comparisons with messages
beyond this distance.

Table 2. For successfully established sessions, every INVITE request should be
responded with a 200 response

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 0 11 1.700 57 0 11 1.058

2 1000 119 0 22 4.038 119 0 22 1.385

3 2000 248 0 53 13.505 248 0 53 2.114

4 4000 459 0 123 46.358 459 0 123 2.782

5 8000 926 0 233 180.388 926 0 233 5.019

6 16000 1842 0 440 658.148 1842 0 440 8.476

7 32000 3667 0 905 2559.239 3667 0 905 14.542

8 64000 7230 0 1911 7510.563 7230 0 1911 28.735

9 128000 14511 0 3767 28187.956 14511 0 3767 56.579

Conversely, Datamon has to compare all the following messages till the end
of a trace, in order to confirm the non-existence of a target message. However,
the mechanism used in Prop-tester raises a question: How will Prop-tester react
if target messages appear after the predefined distance d?

Property 3. Before answering to the question, a related property relevant to
time “For each INVITE request, the response should be received within 16s” is
tested for verifying the extensibility of both monitoring tools.

Time relevant properties can be seen as performance requirements which are
different from the conformance requirements tested above, having the ability to
test performance requirements is a crucial step for monitoring tools to extend its
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Table 3. For each INVITE request, the response should be received within 16s

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 11 0 1.098 57 11 0 1.043

2 1000 119 22 0 3.192 119 22 0 1.383

3 2000 248 53 0 9.841 248 53 0 1.870

4 4000 459 123 0 35.214 459 123 0 2.765

5 8000 926 233 0 131.578 926 233 0 4.533

6 16000 1842 140 0 486.181 1842 440 0 8.069

7 32000 3667 905 0 1728.003 3667 905 0 14.512

8 64000 7230 1911 0 7286.181 7230 1911 0 28.321

9 128000 14511 3767 0 30804.213 14511 3767 0 56.817

functionality. Not surprisingly, as Table 3 shows, both tools can test this perfor-
mance property and they obtain the same results. Nevertheless, non-pass verdicts
are concluded as ‘Fail ’ verdicts which is different from testing the previous con-
formance requirements. Because when testing such performance requirements
with timing constraint, there is no indeterminacy in the trace. Definite verdicts
(‘Pass’ or ‘Fail ’) should be emitted, rather than indefinite ones (‘Inconclusive’).
That is notably the reason why the reader will notice that the results are here
similar to the ones obtained with Property 2 in the way that all ‘Inconclusive’
verdicts of Property 2 are now ‘Fail ’. Besides, Prop-tester still takes the lead in
evaluation time.

Property 4. Back to figuring out the answer raised in Property 2, a more com-
plicated property “Every 2xx response for INVITE request must be responded
with an ACK” is tested.

Different from previous properties, obvious discrepancies between the verdicts
returned from Datamon and Prop-tester can be observed from Table 4. Take a
closer look at trace 6, all the ‘Inconclusive’ verdicts reported from Prop-tester are
caused by missing ‘ACK’ responses. In fact, these ‘ACK’ responses do exist in
the trace, but appear after the predefined d in Prop-tester. Consequently Prop-
tester treats these ‘missing’ ‘ACK’ responses as ‘Inconclusive’ verdicts could be
considered as false negatives. The false negatives also occur in trace 7, 8 and 9
due to the same reason.

These phenomena answer to the question raised in Property 2: the mechanism
used in Prop-tester would lead to inconclusive verdicts if the predefined distance
d is set improperly. In contrast, owing to its rigorous mechanism for obtaining
verdicts, Datamon does not have such problems but its evaluation times are still
far behind Prop-tester.
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Table 4. Every 2xx response for INVITE request must be responded with an ACK

Trace #Messages Datamon Prop-tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 500 57 0 0 1.241 57 0 0 24.805

2 1000 119 0 0 3.884 119 0 0 50.570

3 2000 248 0 0 12.102 248 0 0 103.088

4 4000 459 0 0 45.365 459 0 0 199.890

5 8000 926 0 0 181.758 926 0 0 400.920

6 16000 1842 0 0 658.033 1831 0 11 796.477

7 32000 3666 0 1 2631.765 3588 0 79 1617.233

8 64000 7217 0 13 7501.719 6931 0 299 3204.401

9 128000 14493 0 18 28616.957 13868 0 643 6216.099

Property 5. Furthermore, a sophisticated conformance property “No session
can be initiated without a previous registration” is tested for exploring the func-
tionality of both tools in depth.

Table 5. No session can be initiated without a previous registration

Trace #Messages Datamon

#Pass #Fail #Inc Time(s)

1 500 56 0 1 10.318

2 1000 114 0 5 41.272

3 2000 243 0 5 165.090

4 4000 457 0 2 660.361

5 8000 912 0 14 2531.445

6 16000 1840 0 2 10565.782

7 32000 3659 0 8 40439.623

8 64000 7225 0 5 160578.492

9 128000 14506 0 5 593073.968

Besides different mechanisms, the diverse logic used for formalizing proper-
ties in both tools affect testing results likewise. As shown in Table 5, Datamon
appears its potentiality on formalizing and testing sophisticated properties which
Prop-tester can not handle. Although the evaluation times seem a bit high, it has
to be noticed that the low performance of evaluation is due to memory limita-
tion of the computer we used. If a more powerful server is applied, the evaluation
times will be apparently reduced to satisfying numbers.
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4 Discussions and Testers’ Guidance

In this section, we will first point out the drawbacks and advantages of each app-
roach according to different evaluation criteria. Then, we will give some advices
to the tester to guide him depending on his testing objectives.

Fig. 4. Different cases, ReqA, ResB represent for a request and its response respectively.

– The two approaches are property-based passive testing techniques. The prop-
erties are checked on the real execution traces. The Datamon tool is based
on definition of Horn clauses which are closely related to the query Data-
log language. Such formulas are made of atoms and terms. Formulas with
quantifiers and data can be defined. Prop-tester is based on if then clause
where the quantifiers are implicit and data can also be expressed. The main
difference relies on the distance used by Prop-tester. Prop-tester is clearly an
on-line testing tool and it is why such a distance is needed to buffer the traces.
Regarding expressiveness issue, such a distance can be a drawback. Indeed,
if the distance is not explicitly stated in the requirements, the distance is an
artefact used by the testing method. In this case, if the trace does not satisfy
the property because of the distance, an inconclusive verdict is emitted. On
the contrary, if the distance is a constraint of the requirement, a fail verdict
should be emitted. Concerning the property 4 that needs to verify a triple of
SIP messages with a partial order between them (m1 ≤ m2 ≤ m3), Prop-
tester is not able to express it. For that purpose, a combinatorial numbers of
properties has to be written, in this case 50 properties. Moreover, Prop-tester,
as an online tool, is not able to express the property 5 which is a complex
property that relates to a behaviour occurred in the past of the trace.
Except this difference, we demonstrate that the properties expressed by both
tools are LTL+FO equivalent because the part of the formula related to the
distance is always true. The properties equivalence is not shown in this paper
for lack of room. Interested readers can refer to the technical report [8].

– One interesting feature of the Prop-tester tool is that negative property can
be written. We can specify what should never occur in the system. For that
purpose, prop-tester negates positive property.
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– Both approaches have different complexity. In Datamon, the algorithm uses
a recursive procedure to evaluate formulas, coupled with a modification of
SLD (Selective Linear Definite-clause) resolution algorithm [5] for evaluation
of Horn clauses. In the work, it is shown that the worst-case time complexity
for a formula with k quantifiers is O(nk) to analyse the full trace, where
n is the number of messages in the trace. Although the complexity seems
high, this corresponds to the time to analyse the complete trace, and not for
obtaining individual solutions, which depends on the type of quantifiers used.
For instance for a property ∀xp(x), individual results are obtained in O(1),
and for a property ∀x∃yq(x, y), results are obtained in the worst case in O(n).
Finally, it can also be shown that a formula with a ‘→’ operator, where Q are
quantifiers

Q . . .Q
︸ ︷︷ ︸

k

(Q . . .Q
︸ ︷︷ ︸

l

(A1 ∧ . . . ∧ Ap) → Q . . .Q
︸ ︷︷ ︸

m

(A′
1 ∧ . . . ∧ A′

q))

has a worst-case time complexity of O(nk+max(l,m)), which has advantages
with respect to using formulas without the ‘→’ operator. For instance, evalu-
ation of the formula ∀x(∃yp(x, y) → ∃zq(z)) has a complexity of O(n2), while
the formula ∀x∃y∃z(p(x, y) ∧ q(z)) has a complexity of O(n3) in the worst
case [17].
For Prop-tester, the complexity to verify of a property 〈e1, . . . , ek〉 d−−→
{e′

1, . . . , e
′
m} on a trace containing n messages is as follows. Prop-tester for-

wards only read data in a continuous stream mode. The verification is done
on a buffer which contains some fragments of message streams, what we call
a window. The window size is k+d. There are n−k windows. The complexity
is O((n − k) ∗ (k + d)). Since k and d are constant and usually highly smaller
than n, the complexity would be O(n). In the worst case where one wants
buffer the entire trace, i.e., d ≥ n − k, the complexity is O(n2).
The better complexity of Prop-tester is demonstrated in the experiments
that have been conducted. Prop-tester is very performant in time to evaluate
the properties.

– The Datamon tool has been designed to perform off-line analysis. Indeed,
execution traces are recorded and afterwards analysed while Prop-tester is
mainly efficient to perform on-line analysis during the real execution of the
system. To perform on-line testing, the tool needs to have good performance
and as consequence to give rapid answer for the verification process. The
efficiency of Prop-tester is dependent on the efficiency of the XQuery engine
that it relies on.

– Concerning the conformance verdicts emitted by both tools, there exist some
differences in their accuracy. To exhibit this point, we illustrate it with Fig. 4.
For the case 1, the distance d of the Prop-tester tool has no impact on the
verdict as d is greater than the distance p between the request and its response.
As for case 2, it proves the deduction we had in the experiments. When the
distance d is shorter than p, Prop-tester emits ‘Inconclusive’ verdicts.
For the cases 3 to 5, when timing constraints are expressed by the properties,
both tools can emit different verdicts depending on the time requirement t and
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the size of the trace n, as illustrated in Table 6. In case 3, it is almost the same
case as case 1. The distance d does not influence on the verdict if d is greater
than the distance p and the time requirement t, both tools return a ‘Fail ’
verdict when the timing constraint is violated. However, in case 4, when the
distance d is shorter than t and p, Prop-tester will emit ‘Inconclusive’ verdicts
while Datamon still can detect the response and emit definite verdicts. For
case 5, let us assume that the response resB is present in the trace but will
appear after the captured trace. For Datamon, if resB appears after n, it will
issue a ‘Fail ’ verdict even if the timing constraint is not violated. Contrarily,
with Prop-tester a ‘Fail ’ verdict can be emitted if the time is elapsed during
the d distance otherwise it will emit an ‘Inconclusive’ verdict.

Table 6. Verdicts of tools under different cases, case 1 and 2 are tested through
property 1, case 3 to 5 are tested through property 3.

Case Datamon Prop-Tester

#Pass #Fail #Inc Time(s) #Pass #Fail #Inc Time(s)

1 1 0 0 1.382 1 0 0 2.509

2 1 0 0 1.750 0 0 1 2.562

3 0 1 0 1.022 0 1 0 2.665

4 1 0 0 0.939 0 0 1 2.485

5 0 1 0 0.939 0 0 1 2.485

We have mentioned the advantages and drawbacks of each approach and
their related tools. What is important to point out is for what purpose each
tool has been designed. Datamon is clearly well suited for off-line analysis of a
system while Prop-tester is very efficient for on-line analysis. Regarding this main
feature, the drawbacks and advantages are closely related. As already pointed
out above, the expressiveness is better for Datamon. Indeed, the off-line analysis
allows to express complex properties and even properties that express constraints
on the past of the trace. Obviously, for an on-line analysis which analyses the
stream in a forward manner and with the form of if then clause of Prop-tester
such properties cannot be expressed. Moreover, always due to the form of its
properties, properties expressing relations with several variables (more than two)
cannot be expressed by Prop-tester. Furthermore, Prop-tester needs for its on-
line analysis to determine a d distance. Such a distance can be seen as a constraint
of the requirements and in this case, the verdicts will be impacted. Otherwise,
it must not have an impact on the verdict as it represents an implementation
constraint needed by the approach to limit the stream to be analysed. A very
important strength of Prop-tester relies on its performance which is of very
important interest to test complex system in a continuous way.

Both tools are complementary. Indeed, for a rapid analysis of the running
system, the main behaviours of a system can be tested as the expressiveness is not
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always an issue for some tested systems. It can help to fix rapidly an erroneous
system by providing rapid feedback of discrepancy between the system and what
it is expected to do. Meanwhile, Datamon can be used as a background tool to
carefully analyse recorded system traces and by having more complex properties
that can be checked.

To conclude, Prop-tester can be used as an off-line tool and in this case,
the d distance is no longer used in the expression of the property and as a
consequence some limitations can be overcome. The form of the properties can
also be modified in order to increase the expressiveness. Concerning Datamon,
this tool is clearly not designed to be an on-line tool.

5 Related Work

Formal testing methods have been used for years to prove correctness of imple-
mentations by combining test cases evaluation with proofs of critical properties.
In [14,17] the authors present a description of the state of the art and the-
ory behind these techniques. Within this domain, and in particular for network
protocols, passive testing techniques have to be used to test already deployed
platforms or when direct access to the interfaces is not available. Some examples
of these techniques using Finite State Machine derivations have been used in the
past which are described in [21,25]. Most of these techniques consider only con-
trol portions, in [15,20,29], data portion testing is approached by evaluation of
traces by use of EEFSM (Event-based Extended Finite State Machine), SEFSM
(Simplified Extended Finite State Machine) and IOTS (Input-Output Transition
Systems) models. They focus on testing correctness in the specification states
and internal variable values. Our approach, although inspired by it, is different
in the sense that we test critical properties directly on the trace without any
generation or specification of state models of the tested protocol or functional
properties. A study of the application of invariants to an IMS service was also
presented by us in [17,18].

In [26], the authors defined a methodology for the definition and testing
of time extended invariants, where data is also a fundamental principle in the
definition of formulas and a packet (similar to a message in our work) is the
base container data. In this approach, the satisfaction of the packets to certain
events is evaluated, and properties are expressed as e1

When,n,t−−−−−−→ e2, where e1
and e2 are events defined as a set of constraints on the data fields of packets, n
is the number of packets where the event e2 should be expected to occur after
finding e1 in the trace, and t is the amount of time where event e2 should be
found on the trace after (or before) event e1. This work served as an inspiration
for both approaches described in the current document, however we improved
it by allowing the definition of formulas that test data relations and causality
between multiple messages/packets.

Although closer to runtime monitoring, the authors of [7] propose a frame-
work for defining and testing security properties on Web Services using the
Nomad [9] language, based on previous works by the authors of [22]. As a work
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on web services, data passed to the operations of the service is taken into account
for the definition of properties, and multiple events in the trace can be com-
pared, allowing to define, for instance, properties such as “Operation op can
only be called between operations login and logout”. Nevertheless, in web ser-
vices, operations are atomic, that is, the invocation of each operation can be
clearly followed in the trace, which is not the case with network protocols where
operations depend on many messages and sometimes on the data associated with
the messages.

Further, other recent works like [23] present distributed passive testing frame-
works aiming at simplifying and automating service testing. And, techniques
based on “geometric approaches” [19] have been used in continuous distributed
monitoring for analyzing the behaviors of communication protocols.

Besides, some researchers presented a tool for exploring online communica-
tion and analyzing clarification of requirements over the time in [16]. It supports
managers and developers to identify risky requirements. Another interesting tool
is PTTAC [6] which automatizes a formal framework to perform passive testing
for systems where there is an asynchronous communications channel between the
tester and the system. We should also cite the recent extension of PASTE [24]
that performs passive testing of communication systems with temporal con-
straints associated to performance and delays. Though these tools are interest-
ing, they need specific state models or do not allow to analyze data payloads.

6 Conclusion and Perspectives

In this paper, we described two passive testing approaches to test efficiently,
in a non intrusive way, the main properties of a communicating protocol, the
Session Initiation Protocol. The approaches and their associated freely available
tools, Datamon and Prop-tester, allow to test real execution traces provided by
SIPp. Both approaches are based on formal definition of desired properties to be
tested. The performances and accuracy of verdicts for both tools are dependent
on the expressiveness of properties and also on the techniques used, i.e. off- or
on-line techniques. The approaches can be used by a tester in a complementary
way. In one hand, Prop-tester can be used to have rapid testing answer on some
properties to be tested and it can be launched in a continuous way to analyse the
execution traces. On the other hand, Datamon, as a back-end tool, can be used
to test more intensively the protocol with the definition of complex properties
on the recorded traces.

As an immediate perspective line, we expect to integrate more smoothly both
techniques in order to provide to testers more accurate verdicts, by reducing the
number of inconclusive verdicts. Moreover, both tools can take advantage of each
other and then improve for one its expressiveness and for the other its perfor-
mances. Such improvements can be reached by learning from each technique.
Prop-tester has been used for its first time in the testing of such communicating
protocol. We expect to promote the use of such tools to other real-life protocols.
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Abstract. Companies and other organizations use spreadsheets regu-
larly as basis for evaluation or decision-making. Hence, spreadsheets have
a huge economical and societal impact and fault detection, localization,
and correction in the domain of spreadsheet development and mainte-
nance becomes more and more important. In this paper, we focus on
supporting fault localization and correction given the spreadsheet and
information about the expected cell values, which are in contradiction
with the computed values. In particular, we present a constraint approach
that computes potential root causes for observed behavioral deviations
and also provide possible fixes. In our approach we compute possible fixes
using spreadsheet mutation operators applied to the cells’ equations. As
the number of fixes can be large, we automatically generate distinguish-
ing test cases to eliminate those fixes that are invalid corrections. In
addition, we discuss the first results of an empirical evaluation based
on a publicly available spreadsheet corpus. The approach generates on
average 3.1 distinguishing test cases and reports 3.2 mutants as possible
fixes.

Keywords: Fault localization · Spreadsheet debugging · Distinguishing
test-cases · Spreadsheet mutations

1 Introduction

Spreadsheets are a flexible end-users programming environment. “End-user” pro-
grammers vastly outnumber professional ones: the US Bureau of Labor and
Statistics estimates that more than 55 million people used spreadsheets and
databases at work on a daily basis by 2012 [14]. 95 % of all U.S. companies use
spreadsheets for financial reporting [19], and 50 % of all spreadsheets are the
basis for decisions.

Numerous studies have shown that existing spreadsheets contain redundan-
cies and errors at an alarmingly high rate, e.g., [6]. This high error rate can
be explained with the lack of fundamental support for testing, debugging, and
structured programming in the spreadsheet world. Errors in spreadsheets may
entail a serious economical impact, causing yearly losses worth around 10 billion
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 124–140, 2015.
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Fig. 1. The Cardiogenic shock estimator spreadsheet

dollars [18]1. This paper improves the state-of-the-art in spreadsheet debugging
by proposing an approach for correcting faults in spreadsheets.

In this paper, we make use of the running example illustrated in Fig. 1. This
spreadsheet is used by physicians to estimate cardiogenic shock2. Cells B2 to
B5 are those cells that need an input from the user. Cell B8 shows the result
of the computation from which physicians derive their conclusions. Cell B6 is
faulty. It computes B2/B3 instead of B2-B3. As a consequence, the value of cell
B8 is outside the bounds even when the patient’s input values are okay. If the
physician notices that the computed value is outside the bounds, he might want
to debug the spreadsheet.

In this paper, we use constraint-based techniques for spreadsheet debug-
ging [3,13]. These techniques take as input a faulty spreadsheet and a test
case3 that reveals the fault in order to compute a set of diagnosis candidates
(cells). The spreadsheet and the test case are converted into a constraint sat-
isfaction problem (CSP). A constraint or SMT (satisfiability modulo theories)
solver is used to obtain the set of diagnosis candidates. A major limitation of
these approaches is that they yield many diagnosis candidates. To avoid this
problem, we propose to integrate testing for restricting the number of diagno-
sis candidates. In particular, we propose to compute possible corrections of the
program (using mutation techniques) and from these distinguishing test cases.
A test case is a distinguishing test case if and only if there is at least one output
variable where the computed value of two mutated versions of a spreadsheet dif-
fer on the same input. We have two main contributions: (1) We propose Mussco
(Mutation Supported Spreadsheet COrrection), an approach to fault localization
in spreadsheets that relies on constraint-based reasoning to provide suggestions
for possible fixes by applying spreadsheet mutation operators. Since the number
of such mutants can be large, our approach automatically generates distinguish-
1 http://www.eusprig.org/horror-stories.htm.
2 A cardiogenic shock is when the heart has been damaged so much that it is unable

to supply enough blood to the organs.
3 A test case specifies values for the input cells as well as the expected values for the

output cells.

http://www.eusprig.org/horror-stories.htm
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ing test cases to eliminate mutants that are invalid corrections. (2) We carried
out an empirical evaluation using the publicly available Integer Spreadsheet Cor-
pus. Results show that on average 3.1 distinguishing test cases are generated and
3.2 mutants are reported as possible fixes. On average, generating mutants and
distinguishing test cases requires 47.9 seconds, rendering the approach applicable
as a real-time application.

2 Basic Definitions

In this paper, we rely on the spreadsheet language L defined by Hofer et al. [11].
We refer the interested reader to that paper for more information about the
syntax and semantics of the underlying spreadsheet language. For the sake of
completeness, we state the most important concepts and definitions in the fol-
lowing paragraphs.

Every spreadsheet is a matrix of cells that are uniquely identifiable using their
corresponding column and row number. The function ϕ maps the cell names
from a set CELLS to their corresponding position (x, y) in the matrix where x
represents the column and y the row number. The functions ϕx and ϕy return
the column and row number of a cell respectively. Each cell c ∈ CELLS has a
corresponding value ν(c) and an expression �(c). The value of a cell can be either
undefined ε, an error ⊥, or any number, Boolean or string value. The expression
of a cell �(c) can either be empty or an expression written in the language L.
The value of a cell c is determined by its expression. If no expression is explicitly
declared for a cell, the function � returns ε while the function ν returns 0.

An area c1:c2 ⊆ CELLS is a set consisting of all cells that are within the
area spanned by the cells c1, c2, i.e.:

c1:c2 ≡def

{

c ∈ CELLS

∣
∣
∣
∣
ϕx(c1) ≤ ϕx(c) ≤ ϕx(c2)∧
ϕy(c1) ≤ ϕy(c) ≤ ϕy(c2)

}

For our debugging approach, we require information about cells that occur
in an expression, i.e. the referenced cells. The function ρ : L �→ 2CELLS returns
the set of referenced cells.

Definition 1 (Spreadsheet). A countable set of cells Π ⊆ CELLS is a spread-
sheet if all cells in Π have a non-empty corresponding expression or are refer-
enced in an expression, i.e., ∀c ∈ Π : (�(c) �= ε)∨ (∃c′ ∈ Π : c ∈ ρ(�(c′))).

This definition restricts spreadsheets to be finite. For our approach, we only
consider loop-free spreadsheets, i.e., spreadsheets that do not contain cycles
within the computation. Therefore, we introduce the notation of data depen-
dence between cells, and the data dependence graph.

Definition 2 (Direct dependence). Let c1, c2 be cells of a spreadsheet Π. The
cell c2 directly depends on cell c1 if and only if c1 is used in c2’s corresponding
expression, i.e., dd(c1, c2) ↔ (c1 ∈ ρ(�(c2))).
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Definition 3 (Data dependence graph). The data dependence graph (DDG)
of a spreadsheet Π is a tuple (V,A) with V being a set of vertices comprising
exactly one vertex nc for each cell c ∈ Π, and A being a set of arcs (nc1 , nc2) for
all nc1 , nc2 where there is a direct dependence between the corresponding cells c1
and c2 respectively, i.e. A =

⋃
(nc1 , nc2)where nc1 , nc2 ∈ V ∧ dd(c1, c2).

From this definition, we are able to define general dependence between cells.
Two cells of a spreadsheet are dependent if and only if there exists a path
between the corresponding vertices in the DDG. A spreadsheet Π is feasible if
and only if its DDG is acyclic. From here on, we assume that all spreadsheets
we consider for debugging are feasible. Hence, we use the terms spreadsheet and
feasible spreadsheet synonymously. For debugging, we have to define test cases
for distinguishing faulty spreadsheets from correct spreadsheets.

Definition 4 (Input, output). Given a feasible spreadsheet Π and its DDG
(V,A), then the input cells of Π (or short: inputs) comprise all cells that have
no incoming edges in the corresponding vertex of Π’s DDG. The output cells of
Π (or short: outputs) comprise all cells where the corresponding vertex of the
DDG has no outgoing vertex.

inputs(Π) = {c ∈ Π|�(nc′ , nc) ∈ A}
outputs(Π) = {c ∈ Π|�(nc, nc′) ∈ A}

All formula cells of a spreadsheet that serve neither as input nor as output
are called intermediate cells. With the definition of inputs and outputs, we can
now define test cases.

Definition 5 (Test case). A test case T for a spreadsheet Π is a tuple (I,O)
where I is a set of pairs (c, v) specifying the values for all c ∈ inputs(Π) and O
is a set of pairs (c, e) specifying the expected values for some output cells. T is
a failing test case for spreadsheet Π if there exists at least one cell c where the
expected value e differs from the computed value ν(c) when using I on Π.

We say that a test case is a passing test case if all computed values are
equivalent to the expected values.

Definition 6 (Spreadsheet debugging problem). A spreadsheet Π and a
failing test case T form a spreadsheet debugging problem.

Example 1. The test case T with I = {(B2, 120), (B3, 60), (B4, 72), (B5, 2)} and
O = {(B8, 2160)} is a failing test case for the Cardiogenic shock estimator spread-
sheet. This test case together with the spreadsheet forms a debugging problem.

A solution of a spreadsheet debugging problem (Π,T ) is a set of cells that
explain the faulty behavior. In particular, we say that an explanation ΠE is
itself a spreadsheet comprising the same cells as Π but different cell expressions
that make the test case T a passing test case for ΠE .

Example 2. A spreadsheet Π1 where the expression of cell B6 is changed to B2
- B3 is obviously an explanation that makes the test case T a passing one.
However, a spreadsheet Π2 where we change the expression of B7 to 30 * B6 *
B4 is an explanation as well.
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3 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a tuple (V,D,C) where V is a set of
variables with a corresponding domain from D, and C is a set of constraints [8].
Each constraint has a set of variables and specifies the relation between the
variables. Abreu et al. [3] have shown how to state the spreadsheet debugging
problem as a CSP. To be self-contained, we briefly explain the conversion in
Algorithm Convert (Fig. 2). Details about the conversion can be found in the
work of Abreu et al. [3]. Formula cells are concatenated with a variable represent-
ing the health state of that formula: A cell c is faulty, i.e. c does not behave as
expected, or the constraints representing the formula must be satisfied (Line 3).
The expressions of the formula cells are converted using the Algorithm ConvExp
which works as follows: Constants are represented by themselves. Cell references
are mapped to the corresponding variables. In case of compound expressions, the
conversions of the single expressions and the constraint representing the com-
pound expression are added to the constraint system. The values of the input
cells and the expected values indicated in the test case are added to the con-
straint system (Line 6).

Example 3. The constraint representation of our example from Fig. 1 is: B2 ==
120, B3 == 60, B4 == 72, B5 == 2, abB6 ∨ B6 = B2/B3, abB7 ∨B7 = B6∗B4,
abB8 ∨B8 = B7/B5, B8 == 2160.

Since spreadsheets must be finite, the Convert algorithm terminates. The
computational complexity of the algorithm is O(|CELLS| · L) where L is the
maximum length of an expression. For computing diagnoses, let SD be the
obtained constraint representation for a spreadsheet Π. A diagnosis Δ is a sub-
set of the cells contained in Π such that SD ∪ {¬abc|c ∈ Π \ Δ} ∪ {abc|c ∈ Δ} is
satisfiable. We use an SMT solver for computing solutions for a given CSP. The
theoretic background of using SMT solvers for CSPs is explained by Liffiton and
Sakallah [15,16].

Input: Spreadsheet Π, test case T = (I, O)
Output: A set of constraints representing Π and T .

1: CONS = ∅
2: for c ∈ (Π \ inputs(Π)) do
3: CONS = CONS ∪ {abc ∨ vc == ConvExp( (c))}
4: end for
5: for tuples (cell, value) ∈ (I ∪ O) do
6: CONS = CONS ∪ {vcell == value}
7: end for
8: return CONS

Fig. 2. Algorithm Convert(Π, T )
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4 Mutation Creation

With the previously described fault localization technique, the user only gets
the information which cells have to be changed, but not how the cells have to be
changed. We are confident that the information of how cells have to be changed
is important for the user. Therefore, we propose an approach that automatically
creates versions, i.e. mutants, of the spreadsheet that satisfy the given test case.

Weimer et al. [23] introduced genetic programming for repairing C pro-
grams. Similar to them, we make assumptions how to restrict the search space.
For example, we perform mutations on the cone for a given cell4 and Weimer
et al. make mutations on the weighted path. In addition, Weimer et al. assume
that the programmer has written the correct statement somewhere else in the
program. We assume that when a spreadsheet programmer referenced the wrong
cell, the correct cell is in the surrounding of the referenced cell. However, we dif-
fer from their genetic programming approach as we do not use crossover and
randomness for selecting mutations.

A primitive way to compute mutants is to clone the spreadsheet and change
arbitrary operators and operands in all formulas of the cells contained in one
diagnosis. If the created mutant satisfies the given test case we present the
mutant to the user. Otherwise we discard the mutant and create another mutant.
The problem with this approach is that too many mutants have to be computed
until the first mutant passes the given test case. Therefore, we propose a more
sophisticated approach which includes the mutation creation process in the CSP.
Instead of only transforming cell formulas into a value-based constraint model,
we also include the information how the cells could be mutated. We allow the
following mutation operations:

– replace constant with reference or other constant
– replace reference with constant or other reference
– replace arithmetical (relational) operator with other arithmetical (relational)

operator
– replace function with other functions of the same arity
– resize areas

We are aware that these mutation operators are not able to correct all faulty
spreadsheets. In particular, the creation of completely new formulas is up to
future work.

When creating mutants, we have to face two challenges: (1) The created
mutant must be a feasible spreadsheet. (2) Theoretically, an infinite number of
mutations can be created. To handle the first challenge, we propose the following
solution: Each cell that is represented in the CSP gets an additional Integer
variable with the domain {1, |Π|}. The constraint solver has to assign values to
these variables in such a way that each cell gets a number that is higher than the
numbers assigned to the cells this cell references. This constraint ensures that
4 A cone for a cell c is recursively defined as the union of all cones of the cells which

are referenced in c and the cell c itself.
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the created mutant is still a feasible spreadsheet. To handle the second challenge,
we reduce the search space by making following restrictions:

– Mutations are only indicated for cells that are contained in the cone of any
erroneous output cell.

– When replacing references with constants, we do not immediately compute
the concrete constant. Instead, we use the information, that there exists a
constant that could eliminate the observed misbehavior. Only if we present
a mutant to the user, we compute a concrete value for that constant. The
reason for this delayed computation is the fact that there often exist many
constants that satisfy the primary test case. During the distinguishing test
case creation process, we gain additional information, which helps to reduce
the number of constants.

– When changing references or resizing areas, we make use of the following
assumption: If the user made a mistake when indicating the reference or area,
the intended reference(s) might be in the surrounding of the originally indi-
cated reference(s). We define the surrounding of a cell c as follows:

Surround(c)≡def

{

c1 ∈ CELLS

∣
∣
∣
∣
ϕx(c) − 2 ≤ ϕx(c1) ≤ ϕx(c) + 2 ∧
ϕy(c) − 2 ≤ ϕy(c1) ≤ ϕy(c) + 2

}

.

We model into our CSP that the reference to the cell is either correct or that
it should be replaced by one of the cells in the surrounding. In case of an area,
we define the surrounding of the area as follows:

Surround(c1 : c2) ≡def

{

c3 ∈ CELLS

∣
∣
∣
∣
ϕx(c1) − 2 ≤ ϕx(c3) ≤ ϕx(c2) + 2 ∧
ϕy(c1) − 2 ≤ ϕy(c3) ≤ ϕy(c2) + 2

}

.

For areas, we allow to select/deselect any cell in the surrounding. This allows
both, the shrinking and enlargement of areas and non-continuous areas.

– We allow only one mutation per cell.

These restrictions do not allow to find suited mutants for all given faulty
spreadsheets. However, they allow the approach to be used in practice.

Example 4. The extended constraint representation for the cell B6 of our
Cardiogenic shock estimator from Fig. 1 changes from abB6 ∨ B6 = B2/B3
to: (abB6 ∧ (B6 = B2 + B3∨ B6 = B2 − B3∨B6 = B1/B3∨ B6 =
5/B3∨ . . . ))∨ B6 = B2/B3.

5 Computing Distinguishing Test Cases

Usually, there exists more than one possible correction. In practice, a large num-
ber of repair suggestions overwhelms the user. Consequently, there is a strong
need for distinguishing such explanations. One way to distinguish explanations
is to use distinguishing test cases. Nica et al. [17] define a distinguishing test
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case for two variants of a program as input values that lead to the computation
of different output values for the two variants. When translating this definition
to the spreadsheet domain, we have to search for constants that are assigned to
inputs, which lead to different output values for the different explanations. The
user (or another oracle) has to clarify which output values are correct.

Example 5. The following new input values form a distinguishing test case for the
variants Π1 and Π2 of our running example: �(B2) = 30, �(B3) = 30, �(B4) = 30,
�(B5) = 1. For these input values, Π1 computes a value 0 for cell B8, where Π2

would return 900.

Algorithm Mussco (Fig. 3) describes our overall approach. The algorithm
takes a faulty spreadsheet and a failing test case as input and determines possi-
ble solutions with increasing cardinality. Since input cells are considered correct,
the upper bound of the solutionSize is equal to the amount of non-input cells.
In Line 1, the set TS initialized with the given failing test case. The sets eqM
and udM are used to store the pairs of equivalent and undecidable mutants.
The faulty spreadsheet and the given test cases are converted into constraints
in Line 4. The function Convert slightly differs from the function described in
Fig. 2: instead of only converting an expression into its constraint representation,
also possible mutations are encapsulated in the constraint representation. The
function GetSizeConstraint(Cons, n) creates a constraint that ensures at
most n of the abnormal variables contained in Cons can be set to true (Line 5).
In Line 6, the function HasSolution checks if the solver can compute any
mutants that satisfy the given constraint system. In Line 7, the function GetMu-
tant returns a mutant that satisfies the given constraint system. This mutant is
added to the list of mutants M (Line 8) and is blocked in the constraint system
(Line 9). If M contains at least two mutants that are not equivalent or undecid-
able (Line 11), we call the test case retrieval function GetDistTestCase with
these mutants as parameters (Line 12). If this function returns UNSAT, the pair
m1,m2 is added to the set eqMut (Line 14). If the function returns UNKNOWN,
the pair m1,m2 is added to the set undesMut (Line 17). Otherwise, the func-
tion returns a new test case. The function GetExpectedOutput is used to
determine the expected output for the given test case (Line 19). This function
asks the user (or another oracle) for the expected output. The test case is added
to the set of test cases (Line 20) and to the constraint system (Line 21). The
function Filter returns the set of mutants that fail this test case (Line 22).
Those mutants are removed from the set of mutants (Line 23). After retrieving
all mutants for the given solutionSize, the remaining solutions M are presented
to the user. If the user accepts one solution, the algorithm terminates. Otherwise,
the solutionSize is incremented (Line 31).

Algorithm GetDistTestCase (Fig. 4) creates distinguishing test cases.
This algorithm takes as input a spreadsheet and two mutated versions of that
spreadsheet. The functions getInputCells and getOutputCells return the
set of input and output cells for a given spreadsheet (Lines 1 and 2). In Lines 3
and 4, the mutants m1 and m2 are converted into their constraint representa-
tions. When creating a distinguishing test case, we have to exclude the input
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Input: A spreadsheet Π, a test case T
Output: A set of possible corrections

1: solutionSize = 1; TS = {T}
2: while solutionSize ≤ (|Π| − |getInputCells(Π)|) do
3: M = {}; eqM ={}; udM ={}
4: Cons =Convert(Π, TS)
5: Cons = Cons ∪ GetSizeConstr(Cons, solutionSize)
6: while HasSolution(Cons) do
7: m = GetMutant(Cons)
8: M = M ∪ {m}
9: Cons = Cons ∪{¬m}

10: while |M | ≥ 2 ((m1, m2) ∈ M : (m1, m2) /∈ eqM ∧ (m1, m2) /∈ udM) do
11: Select m1, m2 from M where (m1, m2) /∈ eqM ∧ (m1, m2) /∈ udM
12: T = GetDistTestCase(Π, m1, m2)
13: if T = UNSAT then
14: eqM = eqM ∪ {(m1, m2)}
15: else
16: if T = UNKNOWN then
17: udM = udM ∪ {(m1, m2)}
18: else
19: T = T ∪ GetExpectedOutput(Π, T )
20: TS = TS ∪ {T }
21: Cons = Cons ∪ Convert(T )
22: M = Filter(Π, T , M)
23: M = M \ M
24: end if
25: end if
26: end while
27: end while
28: if User accepts any solution in M then
29: return M
30: end if
31: solutionSize = solutionSize + 1
32: end while
33: return no solution

Fig. 3. Algorithm Mussco(Π, T )

cells from the spreadsheet. Therefore, we only hand over the spreadsheet with-
out the input cells to the function Convert. This function slightly differs from
the Convert function from Fig. 2, because it takes two additional parameters:
(1) the particular mutant in use and (2) a constant that acts as postfix for vari-
ables. This postfix is necessary to distinguish the constraint representation of
m1 from that of m2: Each variable in the constraint system for mutant m1 (m2)
gets the postfix “ 1” (“ 2”). In Line 5, a constraint is created that ensures that
the input of m1 is equal to the input of m2. In Line 6, a constraint is created that
ensures that at least one output cell of m1 has a different value than the same
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Input: A spreadsheet Π, mutants m1, m2

Output: A distinguishing test case or UNSAT/UNKOWN

1: inputCells = GetInputCells(Π)
2: outputCells = GetOutputCells(Π)
3: Cons1 =Convert(Π \ inputCells, m1, ”1”)
4: Cons2 =Convert(Π \ inputCells, m2, ”2”)
5: inputCon = c∈inputCells c 1 = c 2
6: outputCon = c∈outputCells c 1 = c 2
7: Cons = Cons1 ∪ Cons2 ∪ inputCon ∪ outputCon
8: return GetSolution(Cons)

Fig. 4. Algorithm GetDistTestCase(Π, m1, m2)

output cell in m2. The function GetSolution calls the solver with these con-
straints (Line 8). This function either returns a distinguishing test case, UNSAT
(in case of equivalent mutants) or UNKOWN (in case of undecidability).

The worst-case time complexity of the Algorithm from Fig. 3 is exponential
in the number of cells (O

(
2|CELLS |)). In practice, only solutions up to a certain

size, i.e. single or double fault solutions, are relevant. The algorithm terminates:
The outer while-loop (Line 2) is bound to the size of the spreadsheet. The while-
loop in Line 6 is limited since there only exists a limited number of mutants
that can be created and we do not allow to report mutants twice (Line 9). The
inner-most loop (Line 10) is limited since the number of mutants in M has to
be greater or equal to two and the selected pair has not already been proven to
be equivalent or undecidable. In each iteration of this loop, either a new pair
is added to the equivalent or undecidable set (Lines 14 and 17) or the set M
shrinks (Line 23). M must shrink because the return set of the function Filter
(Line 22) contains at least on element, since the mutants m1 and m2 must
compute different output values for the given test case.

6 Empirical Evaluation

We implemented a prototype in Java that uses Z3 [7] as solver. This prototype
supports the conversion of spreadsheets with basic functionality (arithmetic and
relational operators, the functions ‘IF’, ‘SUM’, ‘AVERAGE’, ‘MIN’, and ‘MAX’)
into Z3 formula clauses.

For the evaluation, we used the publicly available Integer Spreadsheet Cor-
pus [5]. This corpus comes with 33 different spreadsheets (12 artificially created
spreadsheets and 21 real-life spreadsheets) and 229 mutants of these 33 basic
spreadsheets. We excluded some spreadsheets from our evaluation, because
Mussco was not able to generate the required mutation to correct the observed
misbehavior. There are two reasons for this: (1) The correction requires more
than one mutation within a single cell, which is currently not supported by our
approach. (2) The required mutation operator is not implemented in Mussco.
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In the following empirical evaluation, we only consider the 73 spreadsheets where
Mussco was able to compute the required mutation in order to correct the fault.

The original spreadsheets used in this empirical evaluation are listed in
Table 1. Because of space limitations, we only list the original version of the
spreadsheets, instead of each faulty version. This table indicates for each spread-
sheet the amount of input, output and formula cells. The smallest spreadsheet
contains 8 formulas and the largest contains 69 formula cells. On average, a
spreadsheet contains 31.2 formula cells. To express the complexity of the spread-
sheets, we adapt the Halstead complexity measures [9] to the spreadsheet
domain. η1 represents the number of distinct operators that are used within a
spreadsheet. η2 is the number of distinct operands (i.e. cell references, constants)
that are used within a spreadsheet. N1 indicates the total number of operators
while N2 indicates the total number of operants. From these basic metrics, we
derive the vocabulary (η = η1 + η2) and the spreadsheet length (N = N1 + N2).
The average vocabulary is 74.4 and the average spreadsheet length is 229.1. An
interesting Halstead metric is the difficulty (D = η1

2 × N2
η2

). The difficulty mea-
sure can be seen as the difficulty to understand the spreadsheet when debugging
the spreadsheet. The difficulty of the investigated spreadsheets ranges from 1.0
to 8.5. The average difficulty is 4.5.

The faulty spreadsheet variants have on average 1.14 erroneous output cells.
52 mutated spreadsheets contain single faults. 20 mutated spreadsheets contain
double faults, i.e. two cells with wrong formulas. One mutated spreadsheets
contains three faults. The evaluation was performed using a PC with an Intel
Core i7-3770K CPU and 16GB RAM. The evaluation machine runs a 64-bit
Windows 7 and the Oracle Java Virtual Machine version 1.7.0 17. We set a
time limit of 2000 seconds (i.e. approximately 33 min) per faulty spreadsheet
for generating mutants and distinguishing test cases. The evaluation results are
averaged over 100 runs.
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Fig. 5. Empirical results

In order to investigate a larger amount of spreadsheets, we decided to sim-
ulate the user interactions. Therefore, we use the original correct spreadsheets
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Table 1. Structure and complexity of the evaluated spreadsheets

Name Number of cells Halstead complexity

In Out Form. η1 η2 N1 N2 difficulty

amortization 16 1 16 5 33 31 67 5.4

arithmetics00 10 1 8 1 23 11 29 1.3

arithmetics01 9 1 11 2 23 14 34 2.4

arithmetics02 13 1 16 1 36 21 50 1.2

arithmetics03 19 1 35 1 64 45 99 1.1

arithmetics04 23 2 24 1 59 51 98 1.0

austrian league 91 10 32 3 103 96 267 4.2

bank account 45 13 27 7 76 103 187 6.4

birthdays 39 3 39 7 86 78 189 8.5

cake 101 1 69 3 155 69 238 5.2

comp shopping 37 4 36 6 64 151 288 5.7

conditionals01 9 1 11 5 25 34 65 4.8

dice rolling 31 3 21 4 40 99 190 3.8

fibonacci 25 1 46 1 68 16 87 2.7

matrix 51 1 13 3 23 17 67 5.9

oscars2012 60 2 22 3 76 24 104 6.5

prom calculator 46 1 14 2 63 14 73 5.2

shares 43 12 39 4 69 37 118 6.4

shop bedroom1 67 2 32 2 78 32 129 4.0

shop bedroom2 70 4 64 4 109 148 338 4.6

training 34 3 53 4 93 99 223 4.5

weather 70 5 41 6 131 89 231 7.8

wimbledon2012 90 1 49 4 135 280 538 3.8

Average 43.4 3.2 31.2 3.4 71.0 67.8 161.3 4.5

as oracles to determine the output values for the generated distinguishing test
cases.

Figure 5(a) shows the amount of correction suggestions that are returned
to the user. For 49 spreadsheets, only the correct mutation is returned to the
user. On average, 3.2 mutants are reported to the user. For one faulty spread-
sheet containing two faulty cells, Mussco determines 27 correction suggestions.
Moreover, applying the algorithm to a spreadsheet with three faults results in
94 correction suggestions. The evaluation shows that in case of double or triple
faults, Mussco finds a higher amount of equivalent solutions.

Figure 5(b) illustrates the number of generated distinguishing test cases.
For 27 spreadsheets, only a single distinguishing test case is required. For
26 spreadsheets, two distinguishing test cases are necessary. For one spreadsheet,
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29 distinguishing test cases have to be generated. This spreadsheet contains a
double fault. Therefore, Mussco creates many mutants which have to be killed
by the distinguishing test cases. On average, 3.1 distinguishing test cases are
required.

The average runtime is 49.1 seconds, at which the runtime is less than 10 sec-
onds for 23 of the spreadsheets. The average runtime for single faults is 25.1 sec-
onds. The average runtime for double and triple faults is 108.6 seconds. Most
of the runtime, i.e. 95.5 % is consumed by the mutation creation process. The
creation of the distinguishing test cases requires on average 1.4 % of the total
run time. The remaining 3.1 % encompasses between the time required for fil-
tering the mutants and setting up Mussco (read spreadsheet data in, convert
spreadsheet).
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Fig. 6. Comparison of two computation variants w.r.t. the number of created mutants.
Data points along the dashed line indicate that the variants generate the same number
of mutants. Data points below the dashed line indicate that Variant 1 creates more
mutants. The solid lines indicate the timeout.

We create a distinguishing test case as soon as we have two mutants available.
Another possibility is to immediately compute all possible mutants of a partic-
ular size and afterwards generate the test cases. Does the implemented method
perform better with respect to runtime? We suppose that adding more test cases
to the constraint system decreases the number of mutants that are created and
therefore decreases the total computation time. For clarifying our assumptions,
we compare the two methods with respect to the number of generated mutants
and the total computation time in the Figs. 6 and 7. Variant 1 denotes the ver-
sion where we first compute all possible mutants. Variant 2 denotes the version
described in Algorithm Mussco (Fig. 3). For six spreadsheets, Variant 1 results
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Fig. 7. Comparison of two computation variants w.r.t. the total computation time.
Data points along the dash-dot line indicate that the variants perform equal w.r.t.
runtime. Data points below the dashed line indicate that Variant 2 requires less com-
putation time than Variant 1. The solid lines indicate the timeout.

in a timeout. On average, Variant 1 creates 17.2 mutants while Variant 2 creates
5.2 mutants (when comparing only those spreadsheets without timeouts). How-
ever, when comparing the computation time (see Fig. 7), the two variants only
slightly differ (expect for the six spreadsheets yielding a timeout when using Vari-
ant 1). It turns out, that decreasing the number of computed mutants through
more test cases, increases the computation time per mutant. Nevertheless, we
favor Variant 2 over Variant 1 since the user gets earlier a first response.

7 Related Work

Our approach is based on model-based diagnosis [20], namely its application to
(semi-) automatic debugging. It uses a constraint representation and a constraint
solver, which pinpoints software failures. Jannach and Engler [13] presented a
model-based approach that uses an extended hitting-set algorithm and user-
specified or historical test cases and assertions, to calculate possible error causes
in spreadsheets.

GoalDebug [1] is a spreadsheet debugger for end-users. This approach gener-
ates a list of change suggestions for formulas that would result in a user-specified
output. GoalDebug relies upon a set of pre-defined change inference rules. Hofer
and Wotawa [12] also proposed an approach for generating repair candidates
via genetic programming. In contrast to these approaches, we encode the muta-
tion creation into a constraint satisfaction problem. In addition, we generate
distinguishing test cases to keep the number of possible fixes small.
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Ruthruff et al. [22] and Hofer et al. [10] propose to use spectrum-based fault
localization for spreadsheet debugging. In contrast to Mussco, these approaches
only identify the locations of faults instead of giving repair suggestions.

Spreadsheet testing is closely related to debugging. In the WYSIWYT sys-
tem, users indicate correct/incorrect output values by placing a correct/faulty
token in the cell [21]. The spreadsheet analysis tools of Abraham and Ewig [2]
and Ahmad et al. [4] reason about the units of cells to find inconsistencies in for-
mulas. The tools differ in the rules they employ and in the degree to which they
require users to provide additional input. Ahmad’s tool requires users to annotate
the spreadsheet cells with additional information. UCheck [2] fully automatically
performs unit analysis by exploiting techniques for automated header inference.

8 Conclusions

Our spreadsheet debugging approach Mussco maps a spreadsheet into a set of
constraints for computing potential diagnosis candidates. The approach makes
use of mutations, i.e., small changes of formulas used in the spreadsheets, to
create diagnosis candidates. These diagnosis candidates are further refined by
generating distinguishing test cases.

Beside the theoretical foundations and the algorithms we also discuss the
results obtained from an empirical evaluation where we are able to show that
distinguishing test cases improve diagnosis of spreadsheets substantially. In par-
ticular, results show that on average 3.1 distinguishing test cases are generated
and 3.2 mutants are reported as possible fixes. On average, the generation of
the mutants and distinguishing test cases requires 47.9 seconds in total, ren-
dering the approach applicable as a real-time application. In future work, we
will extend the toolset (i) by supporting more functionality of spreadsheets, and
(ii) by integrating it into a spreadsheet framework.

Acknowledgement. The work described in this paper has been funded by the
Austrian Science Fund (FWF) project DEbugging Of Spreadsheet programs (DEOS)
under contract number I2144 and the Deutsche Forschungsgemeinschaft (DFG) under
contract number JA 2095/4-1.
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Abstract. Defect prediction is a powerful tool that greatly helps focus-
ing quality assurance efforts during development. In the case of the avail-
ability of fault data from a particular context, there are different ways
of using such fault predictions in practice. Companies like Google, Bell
Labs and Cisco make use of fault prediction, whereas its use within auto-
motive industry has not yet gained a lot of attraction, although, modern
cars require a huge amount of software to operate. In this paper, we want
to contribute the adoption of fault prediction techniques for automotive
software projects. Hereby we rely on a publicly available data set com-
prising fault data from three automotive software projects. When learn-
ing a fault prediction model from the data of one particular project, we
achieve a remarkably high and nearly perfect prediction performance for
the same project. However, when applying a cross-project prediction we
obtain rather poor results. These results are rather surprising, because
of the fact that the underlying projects are as similar as two distinct
projects can possibly be within a certain application context. Therefore
we investigate the reasons behind this observation through correlation
and factor analyses techniques. We further report the obtained findings
and discuss the consequences for future applications of Cross-Project
Fault Prediction (CPFP) in the domain of automotive software.

Keywords: Project fault prediction · Cross project fault prediction ·
Automotive · Principal component analysis

1 Introduction

A modern day premium car like the 2016s Audi Q7 contains up to 90 Electronic
Control Unit (ECU)s, 11 different communication networks (Controller Area
Network (CAN), FlexRay, etc.) and a wide range of Advanced Driver Assistance
Systems (ADAS) that are all realized using software. An analysis carried out
by Broy [4] states that software consumes up to 40 % of a cars development
c© IFIP International Federation for Information Processing 2015
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budget. Software used in cars has up to 10 million Lines Of Code (LOC). Assuring
quality of software thus is a major challenge as its complexity is still rising and
the currently used testing approaches like Hardware in the Loop (HiL) tests
might not scale well. In the automotive industry software engineering follows the
W-development process [15], where testing is a core part of every development
stage. Predictions about the locations of faults would be a powerful tool to
support this process. This paper uses metrics data obtained when carrying out
projects for making fault predictions.

In this paper, we contribute to this goal of having tools for fault predic-
tion in the automotive industry. In this work, we consider both the performance
of prediction within the context of a project, i.e., fault predictions based on
earlier revisions of a project, as well as cross-project predictions, i.e., fault pre-
dictions based data from other projects. Considering cross-project predictions is
required because empirical data of a project is of course missing when starting
the project. In our empirical analysis we focus on the question of whether a strict
development process applied for safety and security relevant software modules
actually supports fault prediction performance due to restrictive policies. The
results obtained do not indicate that a strict development process has an influ-
ence on prediction performance. Hence, we also performed an in-depth analysis
of possible reasons behind it and discuss this analysis in detail in this paper.

The main contributions of this paper are, an empirical study on within-
project and CPFP for safety-critical automotive software as well as an in-depth
analysis of the obtained results.

The remainder of this paper is structured as follows. We discuss related work
in Sect. 2. Then we present our fault prediction study in Sect. 3. Afterwards,
we perform an in-depth analysis on the causes behind the obtained prediction
performance in Sect. 4. In addition we discuss threats to its validity in Sect. 5
and finally conclude the paper in Sect. 6.

2 Related Work

Altinger et al. [2] identified Matlab Simulink as the major development environ-
ment in the automotive industry, which is often combined with model-based test-
ing and unit testing. In the testing stage there is an equal distribution between
Model in the Loop (MiL), Software in the Loop (SiL) and HiL where more
than 50 % of the developers are using white or grey box testing techniques. The
applicability of Software Fault Prediction (SFP) techniques in such an automo-
tive software development was analysed by Rakesh et al. [23]. They surveyed
eight different methods and their best operation time along the life cycle as well
as their required input data and their potential to enhance software quality.
In comparison to Rakesh et al., the projects we consider in this paper follow
a different development process. Our underlying process comprises at least 4
Releases. One represents an interface freeze, where external interfaces (CAN,
Application Programming Interface (API), methods, etc.) need to be fixed and
are not allowed to be changed anymore. feature freeze, where all functions need
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to be implemented, but might not run fully. They just need to be call-able from
external functions. The last release prior to the shipment with the car to cus-
tomers is 100% Software which means that it is the last delivery. After this
point, there will be only bug fixes and parameter optimisations, but no feature
enhancements.

2.1 Industrial Fault Prediction

SFP is still a very active research field where many datasets are available and
studies have been performed. Since we focus on the industrial application of fault
prediction in the automotive industry, we only discuss related work in the context
of papers dealing with industrial applications of fault prediction methods. For
surveys and benchmarks for fault prediction in general we refer the interested
reader to, e.g., [6]. The available industrial reports are mainly from Bell labs
reporting on their obtained experiences, e.g., Bell et al. [3], Ostrand et al. [21]
and et al. [22]. There the authors report a high prediction performance of up to
80 % true positives using three different telecom software products which were
developed at AT&T. The authors claim industrial developers benefit from their
achieved performance. All reports benefit from a strict bug reporting policy. The
underlying fault prediction approach is mainly based on recent changes to files. In
contrast to this paper, we consider a machine learning based approach that relies
on metrics that can be easily obtained from the software during development.

2.2 Cross-Project Fault Prediction

To overcome the lack of historical data in the early stages of a project’s devel-
opment CPFP uses data from other projects to train fault prediction models.
Due to the heterogeneity between different projects, this is a difficult problem.
Zimmermann et al. [29] performed a cross-project study on industrial code from
Microsoft as well as popular open source software. They state that only 3.4 % of
their analysed cross-project predictions achieve more than 0.75 recall, precision
and f-measure. However, they demonstrated that whenever project factors are
included in the selection of training data during the learning of a decision tree,
the likelihood of good predictions can be improved.

Throughout the last years various approaches for improving fault predic-
tions were proposed. In this work, we apply the k-nearest neighbour approach
for data selection by Turhan et al. [26] and the normalization approaches by
Watanabe et al. [27] and Nam et al. [20]. Other approaches that could be applied
are, e.g., a data weighting technique by Ma et al. [18] or transformation of the
data according to Camargo Cruz et al. [5]. Moreover, approaches based on the
selection of appropriate projects for training, like proposed by He et al. [12] and
Herbold [14] are not considered, because we only rely on a setting comprising
two projects, where a further selection is obviously not possible.
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3 Defect Prediction Case Study

In this section, we present a case study in which we tackle the following research
question:

RQ1: Can CPFP be applied in projects using automatically generated code and
restrictive coding standards like MISRA [25] which was developed for the
same target platform?

This research question RQ1 is answered by the evaluation of two hypothe-
ses that we initially suspect to be true based on our experience obtained from
previous research:

H1: Within-project fault prediction can be applied successfully to automatically
generated code.

H2: CPFP is enabled by auto-generated code within a restrictive setting.

Our rational for H1 is that there are many examples for successful fault
predictions in a within-project setting reported in the literature (see, e.g.,
Catal et al. [6] for an overview). We expect that this is also true for the generated
code.

Our rational for H2 is that differences between metrics due to developer
characteristics, etc. can be excluded. Moreover, we expect that the rules used by
code generators lead to repetitive patterns in the generated source code. This,
in turn, should lead to patterns in the metric values, which should lead to strong
correlations between the metric values, even between projects.

Rational for H2 is that differences between the project context are one of the
conjectured greatest threats to CPFP. Zimmermann et al. [29] showed that with
a simple decision tree based on context factors the performance of predictions
can be greatly improved. In a more recent publication Zhang et al. [28] again
demonstrated the power of using context factors. The context factors of the
projects we consider are nearly identical. They were developed by the same
company, using the same development process, with source code automatically
generated with the same code generator following a strict coding standard. This
removes a lot of project-specific and developer-specific noise from the data.

3.1 Evaluation Criteria

To evaluate the performance of the fault prediction models, we use the following
metrics.

recall =
tp

tp + fn
(1)

precision =
tp

tp + fp
(2)

F -measure = 2 · recall · precision

recall + precision
(3)
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Fig. 1. Workflow during software development

In the above definition, tp, respectively tn are the number of true positive respec-
tively negative predictions, fp, respectively fn are the number of false positive
respectively negative predictions. The recall measures how many of the existing
faults are found. The precision measures how many of the found results are actu-
ally faults. The F-measure is the harmonic mean between precision and recall.
The error measures the overall rate of misclassification.

3.2 Data Description

We use the data from a publicity available dataset released by Altinger et al. [1].
The dataset contains fault data of three automotive projects for proprietary rea-
sons simply refereed as A, K, and L. The size of the projects ranges from 10.000
LOC to 36.500 LOC. Two of the three projects are safety relevant, which means
that the testing effort had been very high. A special attribute of the data is that
the software was not developed by writing source code but by creating Mat-
lab/Simulink models. The source code is then generated automatically using the
dSpace TargetLink code generator that fulfils the MISRA [25] guidelines. The
workflow during the software development cycle is visualized in Fig. 1. The revi-
sions from all development tools have been analysed and tested. Therefore, the
projects stay with the same software during their whole life cycle. As the three
projects are from the same time scale, the versions and settings are identical.

Whereas the dataset contains three projects, we only consider the A and the
K project in this paper. The reason for this is that the third project L has a
very low fault rate, with only three unique faults detected during development.
This fault rate is too low to be used in a machine learning approach for fault
prediction.

3.3 Defect Prediction Models

In this paper, we use one classification model for within-project predictions and
six classification models for cross-project predictions. With the first model, we
look at the performance of within-project predictions for baseline comparison
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reasons. For the cross-project predictions, we predict the faults in the A using
the data from K and the faults in K using the data from A. The classification
models we use are the following:

– WP: a within-project fault prediction model. Since the data is ordered by
time, we use the data from the oldest 50 % of revisions for training and the
remaining 50 % of revisions for evaluation of predictions.

– KNN: cross-project prediction with the k-nearest neighbour approach for data
selection introduced by Turhan et al. [26]. We use k = 10, which is the same
as for the original study. This means, for every entity in the target project,
we select the 10 closest entities in the training project for our training data.

– N1: cross-project prediction with min-max normalization [17] of the training
and target data separately to the interval [0,1], i.e.,

m̂i(s) =
mi(s) − mins′∈S mi(s′)

maxs′∈S mi(s′) − mins′∈S mi(s′)
.

This approach for normalization is quite common and, e.g., used by
[12–14,18,20,27].

– N2: cross-project prediction with z-score normalization [17], which transforms
the training and the target data separately such that the mean value and the
standard deviation to one, see e.g. Nam et al. [20], i.e.,

m̂i(s) =
mi(s) − mean(mi(S))

std(mi(S))
.

– N4:1 Cross-project prediction with z-score normalization of the training and
target data, both based on the mean and standard deviation of the target
data after Nam et al. [20], i.e.,

m̂i(s) =
mi(s) − mean(mi(S∗))

std(mi(S∗))
.

– N5: cross-project prediction with normalization of data according to the mean
standardization proposed by Watanabe et al. [27], i.e.,

m̂i(s) =
mi(s) · mean(mi(S∗))

mean(mi(S))
.

For the training of all classification models, we used under sampling [8] to
treat the bias towards non-fault-prone classifications due to the small number
of fault-prone entities in the data sets. As classifier, we used a Support Vector
Machine (SVM) with a Radial Basis Function (RBF) kernel [24], one of the over-
all best performing classifiers from the machine learning literature [10]. Please
note that we did not use a cross-project model without normalization. The rea-
sons for this are that we used a SVM as classifier and SVMs often perform poorly
if no scaling or normalization is used [10].
1 We use N4 instead of N3 to be consistent to the naming of Nam et al. [20].
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3.4 Prediction Performance

In the following, we report the results obtained for fault prediction. Table 1 lists
the values for recall, precision, and F-measure achieved with the prediction mod-
els. The first column contains the within-project predictions, the other columns
the results for the cross-project predictions with the various transfer learning
techniques.

Table 1. Results achieved with the various classification models on the data sets.
Abbreviations see Sect. 3.3

WP KNN N1 N2 N4 N5

Recall A 0.59 - - - - -

K → A - 0.48 0.48 0.48 0.48 0.48

K 0.89 - - - - -

A → K - 0.75 0.75 0.75 0.75 0.69

Precision A 0.16 - - - - -

K → A - 0.19 0.19 0.19 0.19 0.18

K 0.21 - - - - -

A → K - 0.20 0.17 0.17 0.17 0.24

F-measure A 0.25 - - - - -

K → A - 0.28 0.28 0.28 0.28 0.27

K 0.34 - - - - -

A → K - 0.32 0.27 0.27 0.27 0.36

For the within-project predictions, our results show a mediocre value of 0.59
for the project A and a very good recall of 0.89 for the project K. The precision
is very low in both cases with 0.16 for A and 0.21 for K. Hence, the F-measure
is low in both projects, i.e., 0.25 for A and 0.34 for K.

The cross-projects recall predictions is lower than for within-project predic-
tions on both A and K. The value of recall is almost always 0.48 for A, and 0.75
for K with the exception of the prediction of K when using N5 normalization,
where the recall is slightly worse with 0.69. In terms of precision, we observe a
mixed picture. For project A, the precision of the cross-predictions are actually
slightly better than the within-project predictions with a value of 0.19 for KNN,
N1, N2, and N4 and 0.18 for N5. However, the difference is rather small with
0.03 and 0.02, respectively. For Project K, the precision of the within-project
prediction is better than the KNN, N1, N2, and N4 model. KNN achieves a
precision of 0.20 and N1, N2, and N4 a value of 0.17. The N5 model beats the
within-project prediction with a value of 0.24, i.e., a small gain of 0.03. This gain
in precision seems to be the reason for the slightly worse recall. This mixture of
the results is also reflected by the F-measure. For project A, the F-measure of
the cross-project predictions is slightly higher with a value of 0.28 for KNN, N1,
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N2, and N4 and 0.27 for N5. This gain in F-measure is due to the slightly higher
precision, which offsets the lower recall. For the project K, the F-measure for
KNN, N1, N2, and N4 is lower than for the within-project model. Only N5 beats
the within-project prediction slightly with a value of 0.36, i.e., a very small gain
of 0.02 in comparison to the within-project prediction.

In summary: the N5 cross-project prediction model performs consistently
best in terms of F-measure, but has a lower recall than the within-project pre-
dictions obtained. However, the precision of all models is quite low, i.e., less
than 0.25 in all cases. Accordingly to the testing experts we consulted, finding
80 % of the fault-prone instances would still be a great enhancement during
the testing stages, which means that such a low precision might be acceptable
for the practical implementation and is comparable to statements by Ostrand
et al. [21].

3.5 Hypotheses Evaluation

In this section, we discuss the consequences of the results obtained for fault
prediction on the hypotheses H1, H2 as well as on our underlying research
question RQ1.

H1: Within-Project Fault Prediction Can be Applied Successfully
to Automatically Generated Code. Our results show a good recall for
within-project predictions, i.e., it is possible to find the faults, but the preci-
sion is rather low. However, according to the testing experts that were involved
in the Projects A and K, predicting 80 % of the fault-prone instances would
still be a great enhancement during the testing stages, which means that a low
precision might be acceptable in practice. Due to the high recall, we find some
support for this hypothesis, but further studies need to be performed to see if
the low precision really is acceptable for the practitioners.

H2: CPFP is Enabled by Auto-generated Code Within a Restric-
tive Setting. Our results for the cross-project prediction are not much worse
than for the within-project prediction, even though we note some drop in the
recall. However, the F-measure of the N5 normalization is even better than for
within-project prediction. Hence, we conclude that it also depends on the prac-
titioners point of view, if the rather low precision is acceptable.

RQ1: Can CPFP be Applied in Projects Using Automatically Gen-
erated Code and Restrictive Coding Standards Like MISRA [25] That
Was Developed for the Same Target Platform? Based on our findings, we
conclude that further research in this direction is warranted but the overall per-
formance is not as good as we initially expected. Further insights are required
to improve the prediction models in the future to increase precision. Moreover,
a test carried out in a practical setting, where testing experts evaluate the app-
roach in a pilot project, would be very much helpful to evaluate the question of
whether or not low values of precision are really acceptable.
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4 Causes for the Obtained Prediction Performance

Our results show an overall surprisingly low prediction performance, especially
in terms of precision. Due to the extremely high similarity between the projects
A and K in terms of the development process and, additionally, the fact that
the source code is automatically generated, which should further increase the
similarities, we were expecting much better prediction results. Therefore, we
further investigated in the following research questions.

RQ2: What are the use fault prediction models reasons to perform low?

To answer this question we perform an in-depth analysis. We postulate three
hypothesis, which we believe should be true for good fault prediction models.
Then, we evaluate whether these hypothesis are true for our data and, thereby,
try to gain insights into why the precision of our predictions is low. The hypothe-
ses are the following:

H3: Metric values are strongly correlated between software projects based on
automatically generated code.

H4: The available software metrics carry information about the faults.
H5: The faulty regions in the training and test data are similar.

Our rational for H3 is that differences between metrics due to developer
characteristics, etc. can be excluded. Moreover, we expect that the rules of code
generators lead to repetitive patterns within the generated source code. This,
in turn, should lead to patterns within the metric values, which should lead
to strong correlations between the metric values, even between projects. Strong
correlations between software projects are a pre-requisite for good cross-project
predictions and week correlations here might by a reasons for a lower prediction
performance.

With H4, we simply state the underlying assumption of fault prediction
models based on software metrics and machine learning: that the metrics actually
contain information about the location of the faults. Similarly, with H5, we want
to investigate a general assumption for machine learning: that the distributions
of the training and test data are similar. If this is not the case, the prediction
model is trained using a wrong distribution that in turn decreases the prediction
performance, which is somehow comparable to He et al’s [13] findings.

4.1 Correlation Analysis

From the Dataset, [1], one can see a strong correlation between the static code
metrics LOC, Halstead (Volume (Hv), Difficultly (Hd) and Effort (He)) and
number of functions (nfunctions). A similar strong correlation has been obtained
between change metrics (LOC add and removed per commit), but only a weak
correlation to the author. We used Kendall’s τ [16] correlation analysis to inves-
tigate the influence of the selected attributes. See Table 2 for the results. In
general there is a small correlation between bugs and all 11 metrics. LOC can be
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seen as the strongest correlation to bugs, but is still weak at 0.23. These results
are in correlation with the attribute influence analysis in Table 3, where LOC is
among the first influencing metric attributes to fault prediction.

Table 2. Kandals τ correlation analysis for metrics with bugs

To see if the bug regions are correlated we selected all commits containing
a fault and correlated their metric attributes with each other. In general there
is a weak or small negative correlation between those two projects, which might
be caused by different bug regions. Again the strongest correlation values are
achieved by static source code metrics (LOC, Halstead, McCab).

Based on this one might conclude “within projects fault prediction” report
on bad performance and “cross project fault prediction” will be impossible, at
least based on the selected attribute metrics.

4.2 Information Gain

We analyzed the influence of 11 attributes using Information Gain. See Table 3
for the results, which delivers consistent values to the Kendall τ correlation
analysis given in Table 2, where static source code attributes (LOC, number of
functions, etc.) have got a higher correlation than change metrics (LOC add,
LOC remove, ...). This ranking is in contrast to Graves et al. [11] or Meneely
et al. [19] but similar to Curtis et al. [7]. This might be caused by the development
method, as the code generator can be seen as the same author for the actual code
files. Due to the fact that a code generator uses templates and the developer is
limited to a finite set of blocks when designing the Matlab/Simulink Model, the
code structure itself is very comparable among the methods. The influence of a
developer’s style is little, because every block will be generated in the same way.

4.3 Visual Analysis

In addition to the correlation analysis, we performed a visual analysis to deter-
mine possible reasons for prediction errors. To visualize the fault data, we use
Principle Component Analysis (PCA) [9] to reduce the dimension of the data.
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Table 3. ranked error types with explanation

Information Gain Rank Attribute Explanation

0.16637 1 Hv Halstead Volume

0.13540 2 McCabe McCabe Cyclomatic Complexity

0.13505 3 Hd Halstead Difficulty

0.12628 4 He Halstead Effort

0.12303 5 sloc Lines Of Code

0.05445 6 nfunctions Number of Functions

0.03483 7 commit age Number of Days since last commit

0.02384 8 loc add LOC Added since last commit

0.02358 9 loc remove LOC Removed since last commit

0.00948 10 num commits Number of total commits to file

0 11 Author Last commiting Author

PCA is a technique that orthogonally transforms into linearly uncorrelated vari-
ables, such that the first principle component has the largest possible variance
and, thereby, explains as much of the variance in the data as possible. In our
case, we can explain 89 %–92 % percent of the variance within the data by using
just the first two principle components. This allows us to create two-dimensional
scatter plots in which we can visually compare data.

In Fig. 2(a) and (b) we show the visual representation of the data of A and
K used for the within-project evaluation. The training data are the oldest 50 %
revisions in the data, the test data are the newest 50 %. We have three types of
interesting areas in those figures.

1. Defects from the training data that are the same area as in the test data.
These faults should be detected correctly.

2. Defects in the training data are located in a region in which no faults are
present in the test data. These faults should lead to false positives and, there-
fore, decrease the precision.

3. Defects in the training data are not in the same area as faults in the test
data. These faults are probably not detected by the classification model and
lead to a decrease in recall.

The figures show that for the most part, we are in the first areas, where we
find faults in both data sets. However, in both data sets there are also areas
where there is no overlap. These lead to the drops in recall and precision. As the
figures also show, there are many more non-fault-prone entities than fault-prone
entities. This is the reasons for the low precision: even if only a relatively small
area in the training data contains faults, where there are no faults in the test
data, the precision drops drastically. Moreover, in the K project, there is also
the problem that the area around the coordinates (0,0) is heavily populated by
both fault-prone and non-fault-prone entities in both the training and test data.
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Fig. 2. Data visualization with PCA. The PCA is performed with all plotted data
points, i.e., with the full data from A/K for the sub-figures (a) and (b) and with the
data from both A and K for sub-figures (c)–(f). The first two principle components of
the data explain between 89 %–92 % of the variance.
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This leads to additional noise in the data and a further drop in the precision and
recall. To further analyze these effects, we compare the training and test data
of the cross-project predictions using the four normalization techniques N1, N2,
N4 and N5 in Fig. 2(c)–(f). The areas of interest are similar.

1. Defects from the data of project A/K that are the same as in the other project.
These faults should be detected correctly by the cross-project prediction.

2. Defects in the data of project A that are located in a region in which no
faults are present in the project K. These faults should lead to false positives
in the cross-project prediction A → K and, therefore, decrease the precision.
Moreover, these faults are likely not detected in the cross-project prediction
K → A and lead to a decrease in recall.

3. Defects in the data of project K that are located in a region in which no
faults are present in the project A. These faults should lead to false positives
in the cross-project prediction K → A and, therefore, decrease the precision.
Moreover, these faults are likely not detected in the cross-project prediction
A → K and lead to a decrease in recall.

As can be seen on all four plots, the faults between A and K are for the most
part non-overlapping. Hence, we are for the most parts in the two “bad” areas
of interest, which reduce the recall and precision. However, a closer look reveals
that whereas the faulty areas themselves are not overlapping, the faults are still
in somewhat similar areas in the data. For example, many faults of K are in all
four plots close to the coordinates (0,0). On the Y-axis only very few instances of
K are located below that cluster. Hence, fault predictors might assume the full
area below those faults as fault-prone. Within that area many faulty instances of
A are located, which then may be predicted correctly as fault prone. Such effects
explain the still relatively good values for the recall. However, the plots also show
that within the very same area below (0,0) many non-faulty instances of A are
also located. They would all also be predicted as faulty, which explains the very
low precision. In addition, we are interested in the general overlap between non-
fault-prone instances of the two projects, i.e., how often the non-fault-prone are
within the same area. The task of the normalization is exactly this: transform the
non-faulty instances in such a way that they are within similar areas. We observe
that the overlap depends on the normalization technique. With N1, i.e., simple
min-max normalization, we see most instances of K in the top-left quadrant of
the plot, whereas the instances of A are distributed scattered through the whole
area of the plot. With the other normalization technique N2, N4, and N5, such a
differentiation is not possible and the data seems to be more evenly distributed
for both projects.

4.4 Hypothesis Evaluation

In this section, we discuss the results of the fault predictions, the hypotheses
H3–H5, as well as our underlying research question RQ2.

H3: Metric Values Are Strongly Correlated Between Software
Projects Based on Automatically Generated Code. Our correlation
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analysis performance shows a very weak correlation between the two projects
A and K. Therefore, we do not find support for this hypothesis. This weak cor-
relation is the possible source for the low precision and overall bad performance
of the cross-project predictions.

H4: The Available Software Metrics Carry Information About the
Faults. The correlation analysis shows that most of the metrics are weakly
correlated with the fault information, with the exception of the commit age, for
which we find almost no correlation. Additionally, we considered the information
gain of the attributes in relation to the fault information. Here, we determined
that about half of the metrics carry information about the faults, however, also
only weak information. The other attributes carry almost no information about
the faults. If we consider this together, this is another reason for low performance,
but it also explains why the predictions did not fail completely, since we found
weak correlations and mutual information between the metrics and the fault
information.

H5: The Faulty Regions in the Training and Test Data Are Similar.
Our PCA based visual analysis shows that the faulty regions are not overlapping
as expected, but only to some degree. We consider this the main source of the
problems with the precision. The transfer learning only helps to fix this to a
minor degree.

RQ2: What Are the Reasons for the Low Performance of the Used
Fault Prediction Models? In our analysis, we found that all three hypotheses
we had are actually not well supported by our data. Hence, it is not surprising
that we have trouble with the overall prediction performance. The reasons we
determined are merely weak instead of strong correlations of the metrics between
projects, weak correlation and low mutual information of the metrics and the
fault information, and a bad overlapping of the faulty regions in the training
and test data.

5 Threats to Validity

We identified several threats to the validity of our results. First of all, our results
are restricted to a narrow setting within the automotive industry. It is unclear
how this translates to other settings, which is a threat to the external validity
of our results. Moreover, the templates used by the code generators may impact
our study. Different templates, which might be part of a new major release on
the code generator, maybe will change our findings. Additionally, we used only
two data sets for our case study. Furthermore, both data sets contain only few
errors. The results may change if projects have many errors.

6 Conclusion and Outlook

In this paper, we present a case study on fault prediction models in the context
of software development in the automotive industry, which is based on projects
comprising automatically generated code. In our study, we considered both the
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within-project and the cross-project setting. Our findings show that predict-
ing faults is possible. However, the precision of the predictions is rather low.
Due to this, we presented an in-depth analysis of possible reasons for this lack
of precision. Our analysis shows that the correlation and mutual information
between the software metrics and the bugs is rather weak. Moreover, the corre-
lation between the projects is also worse then expected, as we show both with a
correlation analysis as well as a visual analysis of the data.

Using these results as a starting point, we suggest multiple venues for future
investigations. Since our findings regarding the metric correlation and mutual
information are rather weak, we suspect that possibly using model-level metrics,
instead of source code level metrics would lead to better results. Therefore, we
plan to study the impact of using model-level metrics on the fault predictions.
As part of this extension to model-level metrics, we also plan to investigate the
influence of static code metrics, change metrics, and social metrics again. Most
modern literature that considers the impact of social and change metrics is based
on modern languages like Java, whereas we consider C code with restrictive
coding conventions. It is unclear if the findings hold in this setting.
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Abstract. Identifying the (finite state) control structure of a black box system
from the traces observed in finite interaction is of great interest for many
model-based activities, such as model-based testing or model-driven engineer-
ing. There are several inference methods, but all those methods assume that the
system can be reset whenever necessary. In this paper, we address the issue of
inferring a finite state machine (FSM) that cannot be reset; we propose a method,
inspired by FSM-based testing generation methods. We assume classical testing
hypotheses, namely that we are given a bound n on the number of states and a
set W of characterizing sequences to distinguish states. To the best of our
knowledge, this is the first model inference method that does not require
resetting the system, and does not require an external oracle to decide on
equivalence. The length of the test sequence is polynomial in n and the exponent
depends on the cardinal |W| of the characterization set.

Keywords: Finite state machines � Model inference � Testing

1 Introduction

For model-driven software engineering, model-based testing including, it is important
to rely on models of the software artefacts. It is also essential that the models are
up-to-date. In many contexts, however, such models are not available. In the last
decade, interest has risen on methods to retrieve models from software artefacts, see,
e.g., [1, 2, 4, 7, 10, 12, 17]. Depending on the context, goal and assumptions, various
types of techniques have been considered for specification mining, reengineering or
model inference. When source code is available, automated analysis of its structure can
yield adequate models [5, 11].

Various algorithms have been proposed for inference of finite state machines. Such
methods have been used to retrieve finite state behavioural models of black box
components by testing them [16, 17]. Typically, such components could be accessed
over a network, so that we do not even assume that the executable can be scrutinized:
the system can only be observed at its interfaces [1]. This corresponds to a typical black
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box testing scenario, where the tester would send inputs to a system and observe its
outputs. This scenario arises in many practical situations. For instance, a component
has to be treated as a black box, when its internals cannot be available due to intel-
lectual property constraints.

We assume that the System Under Test (SUT) can be modelled, at some level of
abstraction on its inputs and outputs, as a Finite State Machine (FSM). FSM-based
testing theory has shown that an FSM can be identified, i.e., the SUT can be tested to be
proven equivalent to it, with the help of state identifying (distinguishing) sequences,
constituting, e.g., a characterization set (W-set) of input sequences.

Existing inference algorithms assume that the black box can be reliably reset to its
initial state. This makes the inference task somehow easier, because it is possible to
start each new experiment from a known state, and explore progressively the neigh-
bouring states. But there are cases where a black box cannot be reset, or where it is
unsure that we can rely on it being restored to the same initial state. There are also cases
where restarting the system completely might be very costly requiring a lot of time to
reset the whole configuration (e.g., rebooting a machine, with possibly many software
components to configure and reinitialize). Actually, our research was triggered by a
case study from the SPaCIoS European project where we had to infer a software
provided (as is common now) as a virtual machine. Although an i/o interaction in
HTTP with it over the local network would require less than a millisecond, resetting the
application would need more than a minute, around 105 more than an i/o.

In this paper, we propose an algorithm that can infer a black-box implementation
without resetting it. This problem has similarities with classical testing methods, in
particular the DS-method [6] and the W-method [18]. In classical testing methods, we
are provided with a characterization set, and we derive a checking sequence or
experiment that identifies a black box. The key difference is that classical testing
methods start from a known specification machine, and just check whether the black
box is equivalent (or conformant) to this specification. Therefore, those methods
heavily rely on transfer sequences that make it possible to test a new state through a
path known to transfer to the right state in the specification. In our context, since no
specification is available, we cannot rely on known transfer sequences. Although the
absence of reset had already been addressed by Hennie [6] and others in the case of a
single distinguishing sequence, the task is made much harder in our context since we
cannot return to a known state to compare the responses to a state of the specification.
Moreover, we consider the case where the black box may not have a distinguishing
sequence. This problem has been investigated in [6, 8, 13, 14], where a characterization
set is used. It turns out that generating a checking sequence (without reset) from a
known specification FSM with a characterization set is very costly, due to the fact that
the sequences of this set have to be applied a number of times which is proportional to
some exponential on the number of states in the specification [14]. Recent work [8, 13]
has reduced the effort by some constant factor, which is a practical improvement;
nonetheless, the complexity remains exponential.

As with other identification problems in FSM based testing, we rely on assumptions
on the black box. First, we assume that an upper bound n on the number of states of the
black box is known. Second, we are provided with a set W of input sequences that
characterize the different states of the black box: each state produces a different set of
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output responses to these input sequences. Such a set could be derived from a previous
version of the software or from domain-specific knowledge.

Rivest and Schapire [15] pioneered the inference of automata without reset, but
their method was based on Angluin’s L* algorithm [3] which assumes that an oracle
can answer equivalence queries. In a typical software testing context, such an oracle
cannot be provided. Our method does not require any equivalence query, and there is
no oracle apart from the black box. In order to guarantee equivalence, we just assume
we know an upper bound on the number of states, which is a much weaker assumption.
Identifying states by their i/o responses to sequences ofW is somehow similar to the set
of suffixes in L* although we do not need suffix-closure contrary to L*.

Our method relies on a localizer, a procedure that can reliably bring the black box
to the same state all over again to make sure that responses to all sequences from theW-
set are observed from a single state. Therefore, it is possible to extend progressively the
knowledge of the transitions starting from that state, while being sure that we actually
come back to a known (previously learnt) state. This procedure is inspired by the
construction of locating sequence used in [6, 14]. The algorithm uses the localizer to
start from a known state, which becomes the first learnt state. Thus, it does not require
the black box to be initially in a particular state. It then tries to characterize progres-
sively the tail state reached after the application of the localizer by repeatedly applying
the sequences from W. By doing so, it will often end up in unknown states, therefore
the algorithm alternates between applications of sequences from W to get more
knowledge and applications of the localizer to restart from some previously learnt state.
The algorithm identifies a correct model in O(p(f + p) 2p np+2) inputs, where n is the
number of states of the machine, f is the size of the input set and p is the size of the
W-set. Hence, the length of the identification sequence is polynomial in the number of
states, although the exponent depends on the number of characterizing sequences.

The paper is organized as follows. Section 2 provides definitions and notations for
our method. Section 3 describes the inference procedure, while Sect. 4 is dedicated to
the localizer subroutine. Section 5 illustrates the algorithm on a small example. Proofs
of termination and correctness, as well as an upper bound on complexity are in Sect. 6.
Section 7 discusses assumptions and Sect. 8 concludes.

2 Definitions

2.1 Basic Definitions

A Finite State Machine is a complete deterministic Mealy machine. Formally, a Finite
State Machine (FSM) M is a 6-tuple (S, s0, I, O, δ, λ), where

• S is a finite set of states with the initial state s0,
• I is a finite set of inputs, and O is a finite set of outputs,
• δ: S × I → S is a transition function, and
• λ: S × I → O is an output function.

δ and λ are actually mappings, i.e., dom(δ) = dom(λ) = S × I since we only consider
complete machines. As M is deterministic, a tuple (s, x) 2 S × I uniquely determines a
transition of M. For simplicity we use (s, x) to denote the transition, thus omitting its
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output and final state. We extend the transition and output functions from input
symbols to input sequences, including the empty sequence ε, as usual: δ(s, ε) = s and
λ(s, ε) = ε, for s 2 S; for αx 2 I+, δ(s, αx) = δ(δ(s, α), x) and λ(s, αx) = λ(s, α)λ(δ(s, α), x).
An FSM M is said to be strongly connected, if for each pair of states s, s′ 2 S, there
exists an input sequence α 2 I*, such that δ(s, α) = s′; α is called a transfer sequence.

Two states s, s′ 2 S are distinguishable, if there exists γ 2 I*, such that λ(s, γ)
≠λ(s′, γ). We say that γ distinguishes s and s′. Given a set H � I*, states s and s′ are H-
equivalent, if λ(s, γ) = λ(s′, γ) for all γ 2 H. Otherwise, i.e., if there exists γ 2 H such
that λ(s, γ) ≠ λ(s′, γ), the states are H-distinguishable. We define H-distinguishability
and H-equivalence of machines as a corresponding relation between their initial states.
An FSM M is minimal, if all states are pairwise distinguishable. In this paper, the
machines are assumed to be minimal and strongly connected. A set of inputs W is a
characterization set for an FSM M if each pair of states is W-distinguishable.

A sequence of input/output pairs α 2 (IO)* is a trace. Given traces α, β, and ω, such
that ω = αβ, we write ω \ β, when we need to refer to the result of deleting the suffix β
from the trace ω, resulting in trace α. The notation α ≤ ω is used to refer to a prefix α of
the trace ω; ω↓A, where A � I [ O, denotes the projection of ω to A, obtained by
removing symbols that are not in A from the trace ω. Formally, ε↓A = ε; if x 2 A, then
(αx)↓A = (α↓A)x; if x 62 A, then (αx)↓A = (α↓A).

Given a machineM = (S, s0, I,O, δ, λ) with a state si and an input sequence α 2 I*, we
use tri(α) to denote the trace from state si such that tri(α)↓I = α and tri(α)↓O = λ(si, α).
Given a characterization setW, rather than naming or numbering states (such as “si”), we
may refer to a state by its state characterization Tri(W) = {tri(w) | w 2 W}. A state
characterization Tri can be seen as a mapping qi fromW to (IO)* such that qi(w) = tri(w).
The set of all mappings Q = {q1, q2, …, qn} corresponds to the set of states of the
machine. Namely, for q 2 Q and s 2 S, we write q ↔ s if 8w 2 W, q(w)↓O = λ(s, w).
Inferring an unknown FSM with the same characterization set, each mapping q 2 Q can
then be considered as its state. In the sequel, we use B (instead of the generalM) to refer
to a black-box machine, P (instead of S) to refer to its states, whereas the inferred model
(also called “conjecture”, in line with L*) will have states denoted by Q.

2.2 Definitions for the Inference Method

Let B = (P, p0, I, O, δ, λ) denote an FSM modelling a given black-box (BB) with the
characterization set W. As the BB cannot be reset, it is possible to observe only a single
trace from it. We introduce the notion of labelling function C: (IO)*→Q [ {⊥}, which
maps each prefix of an observed trace to a state q of Q, if it can be inferred that the
machine B will be in state p such that q↔ p after the observed trace; otherwise C maps
the prefix to an unknown state, denoted ⊥.

Let ω be an observed trace. A labelling C is deterministic for ω if the following
property holds:

For a; a
0 2 IOð Þ�; such that a�x; and a

0 �x; if CðaÞ ¼ Cða0 Þ 6¼ ?;

then for any b; b
0 2 IOð Þ�; such that ab�x; a

0
b

0 �x and b # I ¼ b
0 # I;

we have b ¼ b
0
andCðabÞ ¼ Cða0

b
0 Þ:
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Obviously, a labelling should be deterministic. It should also be consistent with the
state characterizations, i.e., the following property should also hold:

For all a; c 2 IOð Þ � such that ac�x; if CðaÞ ¼ q 6¼ ?andc # I ¼ w 2 W ;

then q wð Þ ¼ c:

We capture the notion of known (or inferred) state by stating that a labelling
C should be revealing. Let B = (P, p0, I, O, δ, λ), a labelling C is revealing w.r.t. B if,
and only if 8α 2 (IO)* (9p 2 P s.t. 8p′ 2 P (δ(p′, α↓I)) = p)⇒ 9q s.t. C(α) = q and q↔
p. In other words, this property forces C to be defined on any trace α that is “homing”
[9], i.e., which leads unambiguously to a single state with a known state characteri-
zation in the FSM B, irrespective of the start state.

The labelling function and state characterizations are the main components of the
proposed method. To ease the presentation and simplify the algorithm, we also introduce
several auxiliary notations and definitions, derived from the labelling function.

A trace is verified if it is a subtrace of the observed trace ω and its start and end
states are known (labelled by C). Each verified trace is the result of execution of several
transitions between the known states of the FSM B. We define a set of tuples containing
a verified trace together with its start and end states V � Q × (IO)* × Q. Formally, V =
{(q, α, q′) | 9σα ≤ ω, C(σ) = q, C(σα) = q′}. Moreover, since we assume that C is
deterministic, for all (q, α, q′) 2 V, and all χ ≤ ω, such that C(χ) = q, we have C(χα) = q′.

We will also use a subset of it to refer to single transitions, called verified transi-
tions, and not to their sequences. Let T � V, T = {(q, xo, q′) | x 2 I, o 2 O and 9σxo ≤
ω, C(σ) = q, C(σxo) = q′} be the set of verified transitions. We will use as well the term
of input verified in state when we do not need to refer to the end state of a verified
transition. Thus R = {(q, x) 2 Q × I | 9o 2 O, q′ 2 Q, (q, xo, q′) 2 T} is the set of inputs
verified in corresponding states.

Moreover, since we will discover new states as the observed trace grows, we will
have a set of known states associated with a current trace ω. QC denotes a set of states
discovered by ω such that q 2 QC iff C(α) = q, for some α ≤ ω.

We shall be able to derive from ω a complete conjecture, i.e., the FSM B, when for
all q 2 QC, for all x 2 I, (q, x) 2 R.

We further assume that the set W is an ordered set of p sequences and use tr(wp) to
denote a subtrace produced by the BB when the last sequence of W viz. wp is applied.

Finally, K � Q × (IO)+ × (IO)* is used to keep track of the applications of w 2 W in
a state q followed by either a transition or a trace of a sequence from W. (q, α, γ) 2 K, if
there exists a trace β, such that βαγ ≤ ω, C(β) = q, α↓I 2 I [ W and γ↓I 2 W.

3 Inference Procedure

A localizer procedure L(ω, W) is used to ensure that we continue learning transitions
from states visited before. The localizer procedure, given a current trace ω, produces an
updated trace ω′, a set of traces Tr(W), and the last appended trace tr(wp) to label the
state which has produced it and is thus identified with Tr(W). Recall that a state is
defined by its answers to sequences from W, i.e., by Tr(W). At the end of the localizer,
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we know the BB is in state δ(Tr(W), wp), and the state reached after ω\tr(wp) can be
labelled as Tr(W).

Before defining the localizer, we present the main algorithm that calls it.

Build the conjecture from QC and T.
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The sets K, V (hence T) and R should be updated to reflect the changes in C. The
update is done by applying the following rules as long as possible (fix point iterations
with monotonic increase of the sets):
Rule 1 If C(β) = q, C(βα) = q′, βα ≤ ω, then (q, α, q′) 2 V
Rule 2 If C(β) = q, βα ≤ ω and (q, α, q′) 2 V then C(βα) = q′
Rule 3 If (q, x, q′) 2 V, for x 2 I, then (q, x) 2 R
Rule 4 If C(β) = q, βαγ ≤ ω, α↓I 2 I [ W, γ↓I 2 W, then (q, α, γ) 2 K
Rule 5 If 9α s.t. {w 2 W | (q, α, tr(w)) 2 K} = W then 8βα ≤ ω s.t. C(β) = q, we have

C(βα) = {γ | (q, α, γ) 2 K}

Notice that although in this definition of updates we derive V and K sets to be
consistent with their definitions, we do not need to add all elements to them. Typically,
V is transitively closed, but we only need a transitive reduction of it. If (q, α, q′) 2
V and (q′, β, q′′) 2 V then in the implementation of the procedure we would not store (q,
αβ, q′′) in V because we use V to find a shortest concatenation of sequences that would
themselves be in V or to verify transitions (sequences of length 1).

4 Localizer Procedure

In our inference procedure, the main use of the localizer procedure is to ensure that
when the BB is in an unknown state q, we can restart a test from a state q′ of the BB for
which we can be certain that we know all its traces for all sequences from the W-set,
and thus we can identify state q′ of the BB. Actually, we present a generalized pro-
cedure that can work with any set of sequences Z, where Z may not be a fully char-
acterizing set, i.e., there could be non-equivalent states in the BB that are Z-equivalent.
The localizer procedure will be defined recursively with increasing subsets Z of W.

For the design of this localizer procedure, we extend an idea that had already been
investigated by Hennie [6]. The key idea is that since the number of states is finite and
bounded by n, by repeatedly applying a given input sequence α we can observe at most
n different output sequences. This implies that in the state reached applying n times α
the BB must have reached a cycle, coming to one of the states visited after some αi. But
we do not know which one because different states could still have the same output
response to α. The length of the cycle is itself bounded by n. As the proof will show, it
is enough to repeat α another n – 1 times (so 2n – 1 in total) in the worst case to identify
the cycle and be able to know what would be the response from the BB to the 2n-th
application and all subsequent applications of α.

This means that after 2n – 1 applications of α, we are in a state p and we can apply
another input sequence β, and be sure that we know the response of p to both α and β. If
{α, β} is aW-set, we can continue a test from a state p that has been fully characterized,
or at least from δ(p, β) which is a well-defined state. Jumping to more than two
sequences is a bit more elaborate, but it is ensured by the recursive definition of the
localizer. Actually, we build embedded cycles.

We illustrate the above discussion on the example in Fig. 1.
This 3-state machine has no distinguishing sequence. However, states can be fully

characterized by their traces for sequences from the set W = {a, b}. Suppose we start
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our experiment when the machine is in state 1 by sending an input a. We shall get an
output 1. The localizer will repeatedly apply the input sequence a. The second and third
outputs will be 0. Since we know the machine has no more than 3 states, after 3
applications of a, the fourth application will elicit an output which must be one of those
previously seen, 0 or 1. In this case, it will be a 0. Now, since the last 3 outputs were 0s,
we can be sure that the fifth application of a would elicit a 0. We can now apply a b,
and we get 0 as output, since we were trapped in state 2. We know that just before
applying the b, we were in a state that answers 0 to both a and b. Since we assumeW to
be a fully characterizing set, the state is distinguishable from all others. We shall call it
the state {a0, b0}, which corresponds to state 2 in the example.

Note that at the end of the localizer procedure we are not in the state p that has been
fully characterized, but past it: in the example of Fig. 1 we are in state 1 instead of 2,
and more generally withW = {α, β} we are actually in δ(p, β). This will also be the case
for our generalized localizer: at the end of the procedure, the BB will be in a state that
follows the application of the last input sequence wk of the Z set, and the state char-
acterized with the set Z will be the state reached just before applying the last wk

sequence. This is not an issue because our inference procedure handles this situation.
Note that this means that the sequence built by the localizer is not a homing sequence
[9], although it could easily be adapted to provide a kind of homing sequence, modulo
the fact that the states are initially unknown, as we discover state characterization while
applying the localizer. To make a homing sequence, we would just have to add an
empty sequence ε as the last sequence wk+1 of Z.

The localizer procedure is formulated for fixed alphabets I and O, and an assumed
bound on the number of states in the black box n. The procedure uses a given sequence
ω that has already been observed from the BB and has left it in an unknown state, and
given a non-empty ordered set Z of input sequences. It returns an updated ω′ trace (ω
concatenated with the new inputs applied by the localizer and observed outputs), the set
of traces for Z that can be confirmed as the traces of the state p reached just before the
last wk sequence of Z, and the trace suffix observed from the state p.

Fig. 1. An FSM to be inferred.
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Note that if k = 2, the list w1, …, wk-2 is empty, hence Z1 = (w1) and Z2 = (w2).
In the for loop, we repeatedly apply the same localizer sequence L(ω, Z1). We store

in an array τi the trace observed for the last element of Z1, i.e., tr(wk–1). After the n-th
application, we must have reached a cycle, where τn+1 must be equal to some previous
τi. But it could be equal to several τi therefore we must continue another n – 1 times to
ensure that we have completed the cycle. In any case, after 2n – 1 applications, even if
the length of the cycle is unknown, since τj+n–2 = τn+n–2 is in the cycle, applying wk–1

instead of wk would have produced τj+n-1. Now we know what would be the answer of
the state to wk–1 and we can apply wk instead.

We illustrate the localizer procedure on our example in Fig. 1. We start from initial
state 1, with ω = ε and Z = (a, b). We have Z1 = (a) and Z2 = (b). Since the for loop is
executed 2n – 1 = 5 times, we apply w1 = a to BB 5 times and reach the 5th step of the
trace. We get the trace a1a0a0a0a0, with τ0 = a1, τ1 = a0, τ2 = a0, τ3 = a0 and τ4 = a0.
At this point, we recognize the cycle τ2 = τ3 and τ3 = τ4 (j = 2) and we know that if we
apply a, we would get 0. Subsequently we apply w2 = b and get 0.

We identify the state q0 = {a0, b0} The result of the localizer procedure is thus
(a1a0a0a0a0b0, q0 = {a0,b0}, b0).

The input sequence used by the localizer is a fixed sequence. In our small exam-
ple, it is a5b. For a machine with at most n states and W = {w1, w2}, the input sequence
is w1

2n−1w2; with W = {w1,w2,w3}, it becomes (w1
2n−1w2)

2n−1(w1
2n−1w3), and with W =

{w1, w2, w3, w4}, it becomes [(w1
2n−1w2)

2n−1(w1
2n−1w3)]

2n−1 (w1
2n−1w2)

2n−1(w1
2n−1w4)

and so on.
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5 Example of FSM Inference

We now illustrate the proposed method on the example in Fig. 1. As illustrated above,
applying the localizer procedure allows us to identify a first state of the machine: C(ω \
b0) = q0 = {a0, b0}. Thus, the prefix obtained in the 5th step is labelled by q0. C is
updated in the third line of the inference procedure.

We then enter the main while loop in the inference procedure. As the last state of ω
(6th step in the trace) is not yet labelled we proceed to the else part of the first if
statement. Then γ = b0, χ = a1a0a0a0a0 and σ = b0.

After the first if statement, q = q0, K is empty, and we choose w = a. We apply a,
observe a1 and arrive at the 7th step. We get K = {(q0, b0, a1)}, V = R = ∅.

Since the condition of the second if statement is false, we proceed with the third if
statement, which is true. We apply again the localizer procedure, and label the state
after a0a0a0a0a0 (12th step) with q0: C(12) = q0. We then restart the while loop.

We enter the else part of the if statement, with γ = σ = b0. Then q = q0, and we
choose w = b. We apply b, observe b1 and arrive at the 14th step. We get K = {(q0, b0,
a1), (q0, b0, b1)}.

The condition of the second if statement is now true, we have thus identified a new
state q1 = {a1, b1} and C(13) = q1. Then V = {(q0, b0, q1)}, R = {(q0, b)} and C(6) =
q1. Thus K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0)}.

We now execute the third if statement: we apply the localizer procedure and arrive
at the 20th step. C(19) = q0 and C(20) = q1. K is unchanged. We then restart the while
loop. Since the last (20th) step is now labelled, we enter the then part of the first if
statement. α = ε and we choose x = a. We apply a, observe a1 and arrive at step 21. We
have σ = a1. Now q = q1, and we choose w = b. We apply b, observe b0 and arrive at
step 22. We update K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0)}.

Since the condition of the second if statement is true, we identify C(21) = q0 = {a0,
b0}. We update V, R, C and K: V = {(q0, b0, q1), (q1, a1, q0)}, R = {(q0, b), (q1, a)}, C
(7) = q0, C(22) = q1, K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0), (q0, a0,
a0), (q1, b1, a0)}. The trace at the last step (22) is labelled, and the condition of the
third if statement is false.
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We then restart the while loop, which allows us to identify a new state q2 = {a0,
b1} and label C(23) = q2. We apply the localizer procedure and arrive at step 30. C(29)
= q0, C(30) = q1. At this point, V = {(q0, b0, q1), (q1, a1, q0), (q1, b1, q2), (q2,
b1a0a0a0a0a0, q0)}, K = {(q0, b0, a1), (q0, b0, b1), (q1, a1, a0), (q1, a1, b0), (q0, a0,
a0), (q1, b1, a0), (q1, b1, b1), (q2, b1, a0)}, R = {(q0, b), (q1, a), (q1, b)} and C(14) = q2.

We restart the while loop. As the last step (30) is labelled, we enter the then part of
the first if statement. As all transitions from q1 are now known, we must apply a
transfer sequence to move to an unverified transition. We choose to go to q0 with α =
a1 and x = a. We apply a, observe a1, apply a again, observe a0 and arrive at step 32. σ
= a0.

We choose w = b, apply b, observe b0, arrive at step 33 and add (q0, a0, b0) to
K. The condition of the second if statement is true, we have C(32) = q0 and we add (q0,
a0, q0) to V. Now R = {(q0, b), (q1, a), (q1, b), (q0, a)}, C(7) = C(7) = …. = C(11) = q0,
C(33) = q1.

After applying the while loop two more times, we obtain the trace below, with V =
{(q0, b0, q1), (q1, a1, q0), (q1, b1, q2), (q0, a0, q0), (q2, a0, q0), (q2, b1, q2)} and R = {(q0,
b), (q1, a), (q1, b), (q0, a), (q2, a), (q2, b)}. All transitions are known and C(38) = q2.

We now exit from the while loop and V gives us the inferred finite state machine,
which is isomorphic to the FSM in Fig. 1.

6 Proofs and Complexity

6.1 Proof of Localizer

The key theorem for our approach states that the localizer will ensure that the BB
reached (before the application of the last sequence from W) a state that can be labelled
with the mapping returned by the localizer.
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Theorem 1. When Z = W, from any starting state, the localizer will return (ω′, X, β)
such that C(ω′ \ β) = X and X↓I = W.

To prove this theorem, we first introduce notations and two lemmas.
Let IL be the input projection of a trace added by a localizer L(ω, Z), Z = (w1,…, wk)

returning ω′ as the first element, i.e., ω′↓I = ω↓I = IL(w1, …, wk). We denote P = IL \
wk, thus, IL(w1, …, wk) = P(w1, …, wk-1) wk.

Lemma 1. For all k ≥ 1, we have that P(w1, …, wk) = [P(w1, …, wk–1) wk]
2n−1P(w1,

…, wk–1).

Proof. This lemma is proved by induction from k = 1 for P, accordingly we start with
IL(w1, w2). In the loop, Z1 = (w1) and Z2 = (w2) hence we apply w1

2n−1 then w2. So IL
(w1, w2) = w1

2n−1w2, P(w1) = w1
2n−1 and P(w1,w0) is an empty sequence by definition of

IL. Thus indeed P(w1) = [P(w1, w0) w1 ]
2n−1P(w1, w0).

Assuming it is true for some k ≥ 1, then by definition of P we have:
IL(w1, …, wk+2) = P(w1, …, wk+1)wk+2.

And by the structure of the localizer, we have:
IL(w1, …, wk+2) = IL(w1, …, wk+1)

2n−1IL(w1, …, wk, wk+2) = ([P(w1, …, wk)wk+1]
2n−1P

(w1, …, wk)wk+2.
Using the induction hypothesis, we get:

P(w1, …, wk+1) = = ([P(w1, …, wk)wk+1]
2n−1P(w1, …, wk). QED.

Lemma 2. Let ω′ be a trace returned by the localizer for Z = (w1,…, wk) and B = (S, s0,
I, O, δ, λ), then for all w 2 Z, λ(s, w) = tr(w)↓O, where s = δ(s0, ω′ \ tr(wk)↓I).

Proof. We prove this by induction on |Z|.
For |Z| = 1, tr(w) is the β just observed on applying w at the end of ω which was ω′ \

β; thus λ(s, w) = β↓O = tr(w)↓O.
Let us assume the property holds for |Z| = k – 1 ≥ 1. Since Z2 has k - 1 elements, we

already have for all w 2 Z2, λ(s, w) = tr(w)↓O (see how s is defined in Lemma 2). The
only thing which we have to prove is that λ(s, wk-1) = tr(wk-1)↓O = τj+n-1↓O. Actually,
(ω′ \ tr(wk))↓I = (ω↓I).P(w1, …, wk-1) by definition of P. Let us denote M = P(w1, …,
wk-2), and q = δ(s0, ω↓I). Using Lemma 1, we have s = δ(q, P(w1, …, wk-1)) = δ(q,
[Mwk-1]

2n−1M) = δ(q, M[wk-1M]2n−1). Let qi = δ(q, M[wk-1M]i), and λi = λ(qi, wk-1) for
i 2 [0, 2n – 1]. Note that s = q2n-1 and according to the notations of the algorithm, for
all i 2 [0, 2n - 2] λi = τi↓O. Since there are at most n distinct states, and we repeat the
sequence wk-1M, qn must be equal to one of the qj’ for some j′ < n. Then, for all m 2 [0,
n – 1], λj’+m= λn+m. Hence there is at least one such j, as required by the algorithm.

• If qn = qp for some p > 0, then the length of the cycle is n – 1 at most and for any j <
n such that for all m 2 [0, n – 2], λj+m = λn+m then we have: λj+n-1= λn+n-1= λ(s, wk-1).

• If the greatest j is 0, this means there is no cycle of output of length less than n, then
qn = q, qn = q0 and s = q2n-1 = qn-1 and λ(s, wk-1) = λj+n-1 since j = 0.

• So in both cases we have λ(s, wk-1) = λj+n-1= τj+n–1↓O.

QED.
It may be worth mentioning that taking the largest j means we identify the shortest

cycle of outputs. The cycle of states entered by the implementation will have a length
that is divisible by n–j: with the notation of the proof, n – j divides n – j′.
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We can now proceed to the proof of the Theorem 1. Recall that we denote states of
the BB by their Tr(W).

Actually, in all cases, Tr(X)↓I = Z. This directly follows from the recursive defi-
nition: it holds for a singleton, and when we compute Tr for (w1, …, wk) we produce a
set of traces that adds some tr(wk-1) thus the set of traces is computed on Z2 = (w1, …,
wk-2, wk). If Z =W then by Lemma 2, the definition of C and the fact that C is revealing,
we have C(ω′ \ tr(wk)) = X and X↓I = W. QED.

6.2 Proof of the Method

To prove the correctness of the method we need to demonstrate that the mappings
correspond to the states of the BB. We will use the following theorem.

Theorem 2. If q 2 QC then 9p 2 P such that q ↔ p.
This theorem follows from the definitions of C andQC. The proof of the method itself

(captured by Theorem 3) proceeds in several steps following the structure of the
algorithm. In particular we must prove that all the steps that rely on an existence (“find”,
“choose”) are well defined and will find an element, and we show that the algorithm
increases monotonically the set of known states and transitions, and terminates when a
conjecture can be built which is equivalent to the FSM B = (P, p0, I, O, δ, λ).

1. On every entry in the while loop, either we are in a known state, i.e. the BB is in a
state p such that C(ω) = q ↔ p or we are at the end of a localizer, i.e., C(ω \ tr(wp))
is defined (a known state). This is trivial on the first entry in the loop, since we just
applied the localizer and did not move in the BB. And at the end of a cycle in the
loop, we reach either after the case C(ω) = ⊥, in which case we reapply the localizer
and are again at the end of it, or C(ω) is defined.

2. Find a shortest α: since we entered the while loop, we know that 9q′ 2 Qω and x 2 I,
such that (q′, x) 62 R. Moreover, we are in a state q. Then either 9x′ 2 I, such that (q,
x′) 62 R, and we just have to pick α = ε; or we know all successors of q. In that case,
we build the connected graph reachable from q through verified transitions: if one of
them has an unverified transition, we pick the one closest to q, i.e., that yields the
shortest α. Otherwise, this would imply that there is a q′ 2 QC such that there is a
prefix 9σ ≤ ω, C(σ) = q′ which would be distinct from all the successor states of
q that constitute a strongly connected component. Since all successor states and this
state q′ are all paired (through the ↔ relation) to states of the BB (by Theorem 2),
this would contradict the assumption that the BB is strongly connected.

3. “Else find the shortest γ”. In this else branch, we are in the case where C(ω) = ⊥.
The existence of γ follows from 1: γ = wp in this case.

4. “Choose w”: this comes one line after the “end if”. If we followed the “else” branch,
state C(χσ) 62 dom(C) and there is a w for which (q, σ, tr(w)) 62 K. If we followed the
“then” branch, then (qk+1, x) 62 R and σ:= xo and by definition of R, we again have aw.

5. Progress: each loop iteration adds an element to K (by the structure of the loop),
either at the end of a transition (xo) or at the end of a localizer.

6. Termination: there is a finite number of transitions in the BB (hence in the set QC

by Theorem 2), each one is followed by a finite number of traces from the (finite)
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set W. Hence the potential number of elements in K is finite, and the process will
terminate.

7. Building the conjecture: based on Theorem 2, we can build a conjecture that is
isomorphic to the BB by connecting all the transitions of R when the algorithm
terminates.

Theorem 3. The inference procedure terminates and yields a conjecture that is iso-
morphic to the minimal FSM modelling the BB.

6.3 Complexity

As in all testing procedures, interacting with the system under test contributes mostly to
the cost. Therefore we analyse the worst case complexity as the length (number of
inputs) of the test sequence created by the procedure. The key element is the length of
the localizer. Let L be the length of L(ω, W) and |wi| the length of an element of W. As
in the notations of the algorithm, p = |W| is the number of elements of the character-
ization set, n is the number of states, and f is the number of inputs (fan-out). Thus,
L can be computed as follows.

L ¼ jw1jð Þ � 2n� 1ð Þþ jw2jð Þ � 2n� 1ð Þþ . . .þ jwp�1j
� �

� 2n� 1ð Þþ jw1jð Þ. . .� 2n� 1ð Þþ jwp�2j
� �þ wp

�� ��:

O(L) = |w1| (2n–1)p since we can assume that for any i, we have |wi| < n: it is
known that in a complete FSM with n states, any two states can be distinguished by a
sequence of length no more than n. Thus, the length of the localizer is polynomial in n
and exponential in p.

We apply the localizer at most once for each execution of the loop. The loop itself
adds at least one element to K, thus the number of iterations of the loop is n(f + p)
p. Within the loop, the extension to ω would be U =max(|α| + 1 + |w|, |γ|+|w|). |γ| + |w|
is bounded by 2n, and |α| is bounded by n2. Then the overall complexity would be L+ n
(f + p)p (L + U) bounded by (n(f + p)p + 1)(L + n2 + n + 1). As a coarse bound, we have
(n(f + p)p + 1)(n(2n - 1)p + n2 + n + 1) which is O(p(f + p) 2pnp+2), again polynomial in
n and exponential in p.

Of course, this is a coarse upper bound for a worst-case complexity, and it is unsure
it could be reached or even approached. As can be seen from the example, as soon as
states and transitions are added to Q and V, the number of uses of the localizer
decreases. Given the structure of the localizer, the sequences in W would be ordered by
increasing length. And the localizer could be shortened because we may recognize
cycles before reaching 2n – 1 iterations.

Our experiments with hundreds of randomly generated machines show that for n =
15, f = 10, inference is achieved in around 104 steps for p = 2 (around 7000 when |w1| =
1, and around 15000 when |w1| = 2), i.e., around 500 times (3 orders of magnitude) less
than the theoretical bound. To put this in perspective, we had initially tried classical
inference methods [12, 16] on web applications, where a reset would typically take
more than 1 min (restarting a virtual machine and restoring data configuration),
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whereas interacting with it over a local network would take around 1 ms per I/O pair. In
such typical contexts, an inference sequence of length 105 would require no more time
than a single reset.

7 Discussion

Our method assumes we know an upper bound n on the number of states of the BB and
a characterization set W for it. We now discuss the impact of these assumptions. First
let us remark that the localizer does not assume that W is characterizing. It can work
with any set Z and just ensures that we characterize a state reached w.r.t. Z-equivalence
[12]. However, an incorrect value for n could disrupt the localizer.

Actually, if either n or W is wrong (i.e., the assumptions for the BB are not
satisfied), then two cases can occur:

1. The inference procedure runs to the end, but produces an FSM that is not iso-
morphic to a model of the BB.

2. The inference procedure detects an inconsistency (or fails to converge).

In the first case, we can either consider that the inference procedure provides a
model that is approximate, and consistent with all observations: it will have produced
an unrefined model of the BB that may be enough for the intended use of the model.
Alternatively, we could now use the inferred model to check whether the BB conforms
to this model, by some method of conformance testing, e.g., randomly walking through
the model until we find a discrepancy or conclude on some level of confidence for the
approximated model.

In the second case, let us first consider the case where n was an incorrect bound (too
low), and this impacts the localizer. The only problem that can occur there is in the line
“find the greatest j”. We may fail to recognize a cycle in 2n – 1 iterations. This can be
easily addressed: first, we would continue iterating the for loop until we spot such an
output cycle; then, we increase the value of n accordingly; at this point, we restart the
whole inference procedure, because we cannot trust the previous equivalence of states.

Let us now consider the case where W would not be characterizing. This will not
create any problem in the localizer, but in the main procedure. When we reapply a
verified sequence α to go to a given state qk+1 or when we reapply an input x we may
get a different output. This implies that the sequence we just applied distinguishes two
states that we thought were equivalent. That sequence, or a part of it (up to the first
divergence) could be added to W.

This can also be related to the initial assumption about W. The main issue is about
how a characterizing set for a black box can be known. One possibility could be that we
had such a set for a previous version of an implementation, and we take it as input of
the method when we need to infer an updated implementation. It may also be possible
to formulate domain-specific heuristics to identify candidate characterization sets.
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8 Conclusion

We have presented a method that can infer a model of a non-resettable black box FSM
for which we know an upper bound n on the number of states and a characterizing set
W. The method is polynomial in n; the degree of the polynomial is bounded by the
cardinality of W. It has now been implemented, and we are investigating its effec-
tiveness under various settings. We are in particular interested in assessing the average
complexity for various cases of characterization sets.

It might also be interesting to see how the algorithm proposed here could benefit
from the improvements that have been proposed in the related problem of conformance
testing for non-resettable machines. As mentioned in several parts of the paper, the
algorithm lends itself to optimizations that could reduce the length of the sequence of
inputs. In particular, the number of iterations in the localizer could be reduced when
short cycles are recognized.

Another direction for research is on relaxing the assumptions, and providing
adaptive heuristics. One direction could be to work towards inference of quotients [12].
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Abstract. We present a mutation testing framework for the Erlang
functional programming language. Mutation testing evaluates a test set
by mutating the original System Under Test (SUT) and measuring the
test set’s ability to detect the change. Designing mutation operators can
be difficult, since they must modify the original program in a way that
is both semantically significant, and a realistic simulation of a potential
fault (either a fault with the system in its real context, or a common
programmer error). The principal contribution of this work is the mu2
framework, which leverages the Wrangler refactoring API to allow users
to specify their own mutation operators. The framework makes it possible
to quickly and clearly define mutation operators that can have complex
and subtle effects on the SUT. This allows users to define domain-specific
operators that can simulate faults that are of particular relevance to their
project, rather than relying on standard operators. The mutation testing
framework was evaluated in an industrial setting and compared to code
coverage test adequacy metrics. It was found to be a valuable compli-
ment to code coverage techniques, since it was able to uncover additional
testing limitations that could not be easily identified by coverage alone.

1 Introduction

Testing is a vital component of any software development process, and often
accounts for a large portion of the development effort. The purpose of testing is
to provide assurance that the software functions correctly. However, as software
projects expand, the size and complexity of the test sets also expand. This can
create a new requirement to provide assurance of the “correct functioning” of the
test set, i.e. that the test set is adequately assessing the software functionality.

Although measures such as code coverage provide some information about
a test set’s scope, they may not provide an accurate measure of a test set’s
ability to detect faults [8]. Mutation testing [10] provides an alternative app-
roach, which has been shown to be able to identify limitations of test sets that
could not be identified even with advanced coverage metrics such as MC/DC [4].
Mutation testing is a testing methodology which inserts deliberate faults into
the System Under Test (SUT) to generate mutants of the program. The test set
to be evaluated is run on each of these mutants. Since the tests were designed to
evaluate the operation of the correct program they should report failure when
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 178–193, 2015.
DOI: 10.1007/978-3-319-25945-1 11
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run on the mutant. The mutation testing terminology is that the tests “kill” the
mutants. Those mutants that are not killed are either semantically equivalent to
the original program — that is, although they will have undergone a syntactic
change, they will have identical behaviour to the original — or they identify a
class of fault that the test set is not adequately identifying. The percentage of
mutants killed provides a numeric metric for the effectiveness of the test set.

Mutation testing has been applied successfully to various imperative lan-
guages, such as Java, C, and Ada [4,7,11,14]. Simple, random changes to the
syntax of the source files can produce many thousands of mutants easily, but a
very high proportion will simply not compile, and many more will be semanti-
cally equivalent. An improvement over simple mutation testing is provided by
first parsing the source file and then applying mutation operators to the parsed
form — changing the semantics of the program directly — before re-rendering
the program to a source code file.

It is not practical to seed every possible fault into a program and measure a
test set’s ability to detect these, so it is important that the mutants generated
are in some way representative of a broader class of system faults. In this case a
test set’s ability to identify a particular deliberate fault provides good evidence
that the test set is well written with respect to this class of fault or this particular
section of the system. This provides some assurance that it would also identify
other faults if they were present. Given this, it is important that the faults that
are seeded in the mutants are representative of faults that are either likely or
significant to the system under test. Consequently, while some general mutation
operators are useful and provide a baseline measure of the quality of a test set, a
principle objective of this work was to allow the development of domain-specific
mutation operators for particular use cases. Specifically, we provide:

– A framework that allows the rapid development of semantically-rich mutation
operators for specific domains

– Integration of mutation testing with the Erlang ecosystem and automation of
a mutation testing workflow for Erlang modules

– An evaluation of the mutation testing framework with an industrial partner
that demonstrates mutations testing’s value, but also how it can be used as a
compliment to other test adequacy metrics

The paper is structured as follows: Sect. 2 contains some background on
Erlang and mutation testing. It also describes the process of applying mutation
testing to the kinds of test suites common in Erlang. Section 3 describes the mu2
framework that implements and automates that application of mutation test-
ing to Erlang. Section 4 details our refactoring-based system for defining muta-
tion operators that allows semantically rich operators to be developed rapidly.
Section 5 documents the evaluation study carried out with Interoud Innovation.
Finally, Sect. 6 concludes.
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2 Background

2.1 Erlang

Erlang [1,2,15] is a programming language originally developed at Ericsson for
use in their telecoms infrastructure products. It is now available as open source
software, and used in a wide variety of companies both large and small. As a
language it is declarative and uses several components of the functional pro-
gramming paradigm, such as pattern matching and extensive use of recursion.

-module(abiftest).

-export([dv/2]).

dv(A,B) ->

if (A == 0) and (B > 4) ->

B;

true ->

B / A

end.

Fig. 1. The abiftest erlang module

An Erlang module contains a number of functions, each of which is defined by
a series of patterns starting with a name, a set of parameters, the arrow symbol
->, the function definition, and ends with a full stop. For example, the abiftest
module in Fig. 1 contains just one function, dv, which takes two numbers A and
B and divides B by A unless some conditions hold. Functions can have multiple
patterns, with separate patterns separated by semicolons and the final pattern
terminated with a full stop. The same syntax extends to internal decisions, such
as the if statement in Fig. 1, or case statements that match structural patterns
over values. Patterns are matched in order with the first matching pattern being
applied — hence the if statement having true as the final pattern, since this
will always match and so functions like an else or otherwise in other languages.

Variable names begin with capital letters or the underscore character (e.g.
Var, S), whilst lower case letters indicate an “atom” value (conceptually a user
defined keyword, e.g. lock, unlock). Tuples are contained in curly brackets
({lock, S}), lists in square brackets ([a,b,c]). Strings are treated as lists but
can be presented in double quotation marks. Erlang is an interpreted language
and so the failure of the interpreter to find a matching pattern for a particu-
lar function application is reported at runtime. There is an exception throwing
model for error handling, which allows pattern matching over the types of excep-
tions caught.

Erlang also features a process-oriented distributed programming model that
uses asynchronous communication channels. Messages sent from one process to
another accumulate in the receiver’s message queue. The receive construct
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allows the process to pattern match over the incoming messages. The first mes-
sage is compared to the patterns and, if it matches any one, then the relevant
code is executed. In the event that the first message in the queue does not match
any of the patterns in the current receive construct, then the second message
in the queue is compared, and so on until a message matches. In this way it is
possible for an Erlang process to skip some messages and handle particular mes-
sage patterns with higher or lower priority. In the event that no message matches
the current patterns the process with block until either a message arrives that
does match, or a time limit (specified with the timeout pattern) is reached.

There is a large range of testing frameworks and support for Erlang. Conven-
tional unit testing is often carried out with the Eunit [5] framework, but there
is considerable use made of more advanced test generation and property-based
testing using the Erlang QuickCheck system [3].

2.2 Mutation Testing

The objectives of any test adequacy metric are:

– Give a general quality metric for the test set
– Identify specific weaknesses of the test set
– Give constructive feedback that guides a user to improve the test set and

address the weaknesses

Mutation testing — first described in [10] — seeks to evaluate test sets by
simulating faults in a software system and measuring the test set’s ability to
identify the faults. Standard mutation testing makes a modification to the soft-
ware’s source code to produce a ‘mutant’. The mutant code is compiled and
then tested using the test suite. If the mutant fails the test suite, such a mutant
is referred to as ‘killed’, if not then it is ‘alive’. Where a mutant remains alive
it must be inspected to determine whether the mutation actually produced a
functional change. In some cases the mutations to the source code have no effect
on the semantics - changing the name of an unused variable, for example.

For a non-trivial program, it is not realistic to explore all possible mutations.
This is why one would usually focus on those that seem ‘representative’ of the
defects a program may contain. For example, a typical hypothesis here is of a
‘competent programmer’ who may introduce an occasional error (such as in a
form of a comparison operator the wrong way around). In this case, a good test
suite is the one that kills all single-comparison mutants.

For example, consider the simple test set given in Fig. 2, which tests the
abiftest module from Fig. 1. The abiftest module passes all these tests, however,
it contains a defect that is not identified by this test set. Specifically: the dv
function can produce a divide by zero error if it is called in such a way that the
first if decision is false but A contains the value 0. Because the decision is a
conjunction this can be triggered by a test in which A is equal to 0, but B is
less than 5. This is not covered by any of these test cases.

Mutation testing assumes that all tests pass for the original source file. For
the test results produced for each mutant, if any of the tests has failed then
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-module(abiftest_tests).

-include_lib("eunit/include/eunit.hrl").

zero_test() ->

?assert(abiftest:dv(5,0) == 0.0).

one_test() ->

?assert(abiftest:dv(1,5) == 5.0).

two_test() ->

?assert(abiftest:dv(2,5) == 2.5).

two_twos_test() ->

?assert(abiftest:dv(2,2) == 1.0).

five_test() ->

?assert(abiftest:dv(5,5) == 1.0).

Fig. 2. A test set for abiftest

the test suite was able to identify the change. This is referred to as killing the
mutant. If all the tests pass, then the change was not detected and the mutant
remains alive. The count of killed vs alive mutants gives a numerical assessment
of the fault identification power of the test suite, which meets the requirement
for a general quality metric.

Reviewing the specific mutants that remained alive can give much more
detailed information about the weaknesses of the test set. That a particular
change went unnoticed by the test set implies that the section of the program
is not adequately tested. This is the primary reason why the mu2 framework
produces separate mutant files with only one mutation in each file, since this
allows clear identification of the specific change that was not detected. This
detail about each undetected mutation provides the required identification of
specific weaknesses of the test set, and the fact that it is tied directly to the
code provides immediate guidance on the areas of the testing to improve.

3 The mu2 Framework

Overview. We have developed the mu2 framework to automate and simplify the
process described in Sect. 2.2, but also to allow the definition of domain-specific
mutation operators in an efficient way.

To support mutation testing the source file of the program is parsed and
analysed, and possible mutations identified. Each mutant is produced by apply-
ing one mutation operator to one point in the program. This allows the mutation
testing results to identify and characterise specific weaknesses of the test suite
in both particular areas of the program and particular styles of fault. To make
the mutation testing efficient it is preferable to first identify all the possible
mutations, and then select mutations from the list to produce mutants, thus
preventing the creation of multiple mutants with identical mutations.
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Mutation operators are defined as a triple that includes a name, a function to
identify applicable parts of the program, and a function to apply the change. The
detailed structure of mutation operators is covered in Sect. 4. By automating the
application of mutation operators and the generation and collation of mutants,
mu2 allows a user to concentrate their efforts on developing innovative and rich
mutation operators that reflect the specific faults they want to simulate, and
against which they want to evaluate their test suite.

Mutant Generation. The mu2 tool1 takes as input an Erlang source file and
a set of mutation operators. The source file is parsed and all of the possible
applications of each of the mutation operators are enumerated. Mutants are
then generated by selecting from the possible applications and producing a new
Erlang source file with the mutation applied and a header comment added to
describe the type and location of the mutation. The result is a folder containing
as many mutant files as requested — up to the number of possible mutation
applications. The test suite can then be run against each of these modules and
the pass or fail status recorded.

The mu2 module provides the generate function to produce mutants. It can
take parameters to specify a particular subset of available operators, or a limited
number of mutants, but in its simplest form it takes the source file and an output
folder:

Eshell V6.0 (abort with ^G)
1> mu2:generate("abiftest.erl","mutants").
Checking applicability of plus_to_minus, 98 more to try...
The current file under checking is:
"abiftest.erl"
Checking applicability of plus_to_mul, 97 more to try...
The current file under checking is:
"abiftest.erl"
[...]
Applying gt_to_lt at {{5,22},{5,26}}...
Renaming to "abiftest_gt_to_le_5_22_5_26"
Writing "mutants/abiftest_gt_to_le_5_22_5_26.erl"...
Applying eq_to_le at {{5,9},{5,14}}...
Renaming to "abiftest_eq_to_le_5_9_5_14"
Writing "mutants/abiftest_eq_to_le_5_9_5_14.erl"...
[...]

This produces a series of files in the output folder, each names according
to the original module name, the mutation operator applied, and the line and
character position of the application.

The mutant abiftest gt to le 5 22 5 26 is shown in Fig. 3, next to the original
source file. The name represents that it is built from the abiftest module by
1 The mu2 Erlang mutation testing framework is available at: https://github.com/

ramsay-t/mu2.

https://github.com/ramsay-t/mu2
https://github.com/ramsay-t/mu2
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-module(abiftest).

-export([dv/2]).

dv(A,B) ->

if (A == 0) and (B > 4) ->

B;

true ->

B / A

end.

-module(abiftest_gt_to_le_5_22_5_26).

-export([dv/2]).

dv(A,B) ->

if (A == 0) and (B =< 4) ->

B;

true ->

B / A

end.

Fig. 3. The application of the gt to le operator to abiftest.erl

applying the gt to le operator (replacing a “greater than” operator with a “less
than or equals” operator) at line 5, characters 22 through 26.

-module(abiftest).

-export([dv/2]).

dv(A,B) ->

if (A == 0) and (B > 4) ->

B;

true ->

B / A

end.

-module(abiftest_eq_to_le_5_9_5_14).

-export([dv/2]).

dv(A,B) ->

if (A =< 0) and (B > 4) ->

B;

true ->

B / A

end.

Fig. 4. The application of the eq to le operator to abiftest.erl

In a similar fashion, Fig. 4 shows the application of the eq to le operator,
replacing an equals operator with a “less than or equals” operator.

Test Set Evaluation. The exact process of evaluating the original test set
against each mutant may vary between projects if there are substantial require-
ments for the testing environment. However, the mu2 framework includes some
support functions to evaluate a test set against mutants. The test function takes
a source folder, module name, mutant folder name, and a test function. It then
takes each of the mutants in turn and moves them into the source folder, refac-
tors the mutant name to the original module name, then compiles the module
and runs the tests with the mutant in place of the original module.

32> Res = mu2:test(".",abiftest,"mutants",fun abiftest_tests:test/0).

Testing "mutants/abiftest_and_to_or_5_9_5_26.erl"

Renaming to "abiftest"

Writing "./abiftest.erl"...

Loading "./abiftest.erl"

abiftest_tests: two_test...*failed*
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[...]

[{"abiftest_and_to_or_5_9_5_26.erl",error},

{"abiftest_and_to_xor_5_9_5_26.erl",error},

{"abiftest_div_to_minus_6_16_6_20.erl",error},

{"abiftest_div_to_mul_6_16_6_20.erl",error},

{"abiftest_div_to_plus_6_16_6_20.erl",error},

{"abiftest_div_to_rem_6_16_6_20.erl",error},

{"abiftest_eq_to_ge_5_9_5_14.erl",error},

{"abiftest_eq_to_gt_5_9_5_14.erl",error},

{"abiftest_eq_to_le_5_9_5_14.erl",ok},

{"abiftest_eq_to_lt_5_9_5_14.erl",ok},

{"abiftest_eq_to_ne_5_9_5_14.erl",error},

{"abiftest_eq_to_nte_5_9_5_14.erl",error},

{"abiftest_eq_to_te_5_9_5_14.erl",ok},

{"abiftest_exchange_if_guard_5_5_7_7.erl",error},

{"abiftest_exchange_if_pattern_5_5_7_7.erl",error},

{"abiftest_gt_to_eq_5_22_5_26.erl",ok},

{"abiftest_gt_to_ge_5_22_5_26.erl",ok},

{"abiftest_gt_to_le_5_22_5_26.erl",ok},

{"abiftest_gt_to_lt_5_22_5_26.erl",ok},

{"abiftest_gt_to_ne_5_22_5_26.erl",ok},

{"abiftest_gt_to_nte_5_22_5_26.erl",ok},

{"abiftest_gt_to_te_5_22_5_26.erl",ok},

{"abiftest_remove_last_if_5_5_7_7.erl",error},

{"abiftest_swap_if_order_5_5_7_7.erl",ok},

{"abiftest_true_to_false_6_8_6_11.erl",error}]

The final result is a collation of mutant names and the atom ok or error
to indicate the success or failure of the test set. Converting this into a simple
killed/alive ratio is simple, but the retention of the mutant names allows the
user to trace any mutants that survive and identify the weakness in the test set.
In this simple example 11 of the 25 mutants were not killed. Of these only one
can be considered semantically equivalent: replacing the == operator with the
type-specific =:= is irrelevant, since it would not be meaningful for the function
to behave differently with 0.0 than with 0.

However, all of the remaining tests highlight the weakness in the test set —
namely that it does not adequately explore the combinations of ways of satisfying
and falsifying the condition over A and B. The majority of surviving mutants
have modified the condition B > 4 on line 5, characters 22 to 26. Although this
condition is exercised, it is only exercised in a limited range of settings (it is only
falsified when the other part of the decision is also falsified).

The addition of this test identifies that error in the original code (and, inci-
dentally, achieves full MC/DC coverage of the system as discussed in [16]):

div_zero_test() ->
?assert(abiftest:dv(0,2) == 2.0).

This succinctly demonstrates the way the mu2 framework meets the test
adequacy metric requirements from Sect. 2.2. The mutation score of 11/25 is a
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general quality metric for the test set, and can be expressed as a percentage with
the test set killing only 56 % of mutants. This may not be directly comparable
to other test adequacy metrics, but gives a similar intuition about the quality
of the test suite that a 56 % coverage score would do.

That the surviving mutants were predominantly located on line 5, characters
22 to 26 identified not only that decision point as the weakly tested element,
but also identified the specific condition that was inadequately tested. Mutation
testing is not limited to decision points, as collection of surviving mutants on any
other program element (e.g. an output or a calculation) would provide similar
evidence that the specific element was inadequately tested. Additionally, the
mutants give some guidance on producing new tests, since it highlights some
examples that should be distinguished – e.g. if B > 4 and B < 4 are not
distinguished then clearly the system should be tested with values of B both
greater and less than 4 (and, perhaps, B equal to 4).

4 Operator Definitions

Practical mutation testing requires that changes be made to the source pro-
gram’s parsed form rather than its source code. Erlang has many libraries in the
standard installation that support the parsing of Erlang programs to an abstract
syntax tree, but modifications to these trees can be complicated to specify and
difficult to understand. The mutation operators that are used in this work can
require quite subtle semantic changes that would be particularly complicated to
specify in terms of standard syntax tree alterations.

To provide a more succinct and readable interface this work leverages the
Wrangler refactoring system [13]. Wrangler is a refactoring system that presents
an emacs interface, but it also contains a programatically accessible API. The
Wrangler API allows refactorings to be specified in an elegant template format.

In general, refactoring is a process that changes a program’s source code
structure in a consistent way. Common refactorings include: renaming a variable
everywhere it is used, extracting blocks of repeated code into a new function,
or moving code between levels in a class hierarchy. In order to support such
changes, refactoring tools require a rich understanding of the semantics of the
target language (e.g. to understand scoping issues when renaming variables).
Consequently, the Wrangler refactoring system provides an ideal platform on
which to build the mutation operators required for Erlang mutation testing.

The template format of the Wrangler refactoring API uses a series of macros
to specify code transformations. The ?RULE macro defines a rule with three
components: a pattern of Erlang code to match, a programatic transformation
on that code, and a programatic guard statement to limit the application of the
rule. Several different macros define the traversal of the abstract syntax tree; the
?FULL TD TP macro traverses all nodes in the tree. As an example, a function to
convert addition to subtraction at a specific program location is shown in Fig. 5.

However, this requires an understanding of the Wrangler system, and it
requires the application of multiple Wrangler macros. To speed up the devel-
opment of mutation operators and allow users to focus on interesting semantic
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plus_to_minus(File, Loc) ->

?FULL_TD_TP([?RULE(?T("X@ + Y@"),

?TO_AST("X@ - Y@"),

api_refac:start_end_loc(_This@)==Loc)],

[File]).

Fig. 5. The Wrangler API code to convert addition to subtraction

{plus_to_minus,

?MUTATION_MATCH("X@ + Y@"),

?MUTATION_EXCHANGE("X@ + Y@", "X@ - Y@")}

Fig. 6. The mu2 plus to minus operator definition

operations the mu2 framework provides a simplified definition structure. A mu2
mutation operator is a triple containing a name that will be used to identify the
change, a function to identify applicable locations, and a function to alter the
code. The mu2 framework also provides several macros to implement common
operations.

Figure 6 shows the same replacement of addition with subtraction but as a
mu2 operator. The ?MUTATION MATCH macro provides a simple way to express a
location identifier function that simply matches a template, and the ?MUTATION
EXCHANGE macro is for mutations that are simple rearrangements or syntax mod-
ifications that do not alter the meta-variables.

The significant power of the Wrangler API comes from the ability to perform
arbitrary operations on the syntax tree as part of the refactoring operation.
The meta-variables in the Wrangler patterns allow the syntax components to
be manipulated easily. For example, Fig. 7 shows a refactoring to re-order the
patterns in a case statement, using the Pats@@@, Guards@@@, and Body@@@ meta
variables that contain lists of the syntax components for the case statement.

{swap_case_order,

?MUTATION_RESTRICT("case Expr@ of Pats@@@ when Guards@@@ -> Body@@@ end",

is_valid_pattern_set(Pats@@@)

),

?MUTATION("case Expr@ of Pats@@@ when Guards@@@ -> Body@@@ end",

begin

A = random:uniform(length(Pats@@@)),

B = random_not_n(length(Pats@@@), A),

NewPats@@@ = swap(Pats@@@, A, B),

NewGuards@@@ = swap(Guards@@@, A, B),

NewBody@@@ = swap(Body@@@, A, B),

?TO_AST("case Expr@ of NewPats@@@ when NewGuards@@@ -> NewBody@@@ end")

end)}

Fig. 7. The mu2 swap case order operator
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The ?MUTATION RESTRICT macro creates a location identifier that matches
a pattern but also evaluates a boolean function over the metavariables (in this
example is simply calls another function to check that the list of patterns is valid).
The general ?MUTATION macro produces a modification function that matches a
pattern and then performs an arbitrary function over the meta-variables. This
function must return a Wrangler Abstract Syntax Tree, but this is simplified by
the ?TO AST macro that can build an AST from a template, which can reference
newly constructed meta-variables.

5 Evaluation

The mu2 framework was built as part of the EU funded PROWESS project2

(Property-based testing of web services). As part of the project the tool was
evaluated in an industrial context, and we briefly explain here the evaluation
and its results.

5.1 Research Questions

As discussed in Sect. 2.2, a test adequacy metric must produce both a rigorous
assessment and measure of the quality of a test set, and useful feedback to guide
a test developer to improve the test set. A simple measure of the rigour of an
adequacy metric is the number of tests required — assuming that the test set
developers don’t produce spurious or overly-repetitive tests. The requirement for
useful guidance is more difficult to measure.

Testing methodologies are often measured using code coverage as a test ade-
quacy metric (e.g. [6]). Several coverage metrics are available for Erlang, includ-
ing basic line coverage metric provided by the cover tool that is included in the
standard Erlang library, and MC/DC analysis provided by the Smother tool [16].
These have the advantage of requiring less time and effort to apply, since they
only require the test suite to be run once, rather than once per mutant. How-
ever, [4] showed that — for the imperative languages C and Ada — mutation
testing was not only able to provide equivalent levels of quality assurance, but
also provide complimentary information and guidance to the test developers.

Consequently, the mu2 framework is evaluated in comparison to these metrics
to demonstrate that it provides similar complimentary benefits in a functional
programming language. Specifically we choose the following research questions
as the basis for our evaluation:

1. Does mutation testing require more tests than other test adequacy metrics
(e.g. coverage) to achieve a maximal score?

2. Do test sets with high mutation scores also achieve high coverage scores, or
are they testing different system behaviours?

3. How much longer does it take to perform mutation testing on realistic Erlang
modules than testing to maximise coverage?

4. How useful is the feedback provided by mutation testing compared to other
metrics?

2 http://www.prowessproject.eu/.

http://www.prowessproject.eu/
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5.2 Evaluation Results

The PROWESS project partner Interoud Innovation3 evaluated the mu2 frame-
work by applying the procedure above. They did not develop any domain-specific
operators and used the simple arithmetic and structural operators that are
included by default with he framework.

The evaluation itself consisted of an iterative process. The participant devel-
opers first measured the coverage and mutation score of their current tests set
and then used feedback from the coverage tools and mutation testing tool to
improve their test set. The feedback - either uncovered sections or code, or un-
killed mutants - should prompt the developers to write new tests. Alternatively,
particular execution sequences or mutants may be presented but impossible to
cover and can be discarded. The augmented test set can be re-run and new
feedback generated. This processes was repeated until there were no uncovered
sections of code, no un-killed mutants, until all that remains was identified as
impossible, or until the developers judged the remaining items not significant.

This produces a collection of test sets, each produced using feedback from
a different metric. The original test set is referred to as T , then the test set
developed using cover is TC, that produced from Smother is TS, and that
produced from mu2 is TM . As well as comparing the improvement made in their
own metric, the final test sets were each evaluated using all of the metrics. The
numerical results for the metric are presented in tabular form below, followed
by a description of each of the test sets.

Original test
set (T)

Cover based
test set (TC)

Smother
based test set
(TS)

Mu2 based
test set (TM)

Coverage(C) 31.17 %
(77/247 lines)

69.23 %
(171/247
lines)

53.44 %
(132/247
lines)

49.79 %
(123/247
lines)

Coverage(S) 47.99 % 73.16 % 69.84 % 64.17 %

Coverage(M) 16.86 %
(14/83 killed)

49.39 %
(41/83 killed)

74.69 %
(62/83 killed)

80.72 %
(67/83 killed)

Original test set (T)

– The original test set contains 4 QuickCheck properties and 81 Eunit tests.

Cover based test set (TC )

– This test set has been developed with the aim of improving line coverage using
the Cover tool. It adds 67 Eunit tests to the original test set (4 QuickCheck
properties and 148 Eunit tests).

3 http://www.interoud.com/.

http://www.interoud.com/
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– That this test set achieves a higher percentage MC/DC (Smother) score than
the test set explicitly designed to achieve a high MC/DC score demonstrates a
problem with representing MC/DC scores numerically. Since the developers of
TC were aiming to simply execute all lines at least once, this test set executes
more lines than TS, resulting in a large number of partially explored deci-
sions. Meanwhile, the developers of TS thoroughly explored the decisions that
they considered important, and ignored some that they considered less signif-
icant. However, that means that TS leaves a number of decisions completely
unexplored, and these contribute multiple MC/DC elements to the percent-
age since they may contain multiple subcomponents with multiple potential
evaluations.

Smother based test set (TS)

– This test set adds 64 Eunit tests to the original test set (4 QuickCheck prop-
erties and 145 Eunit tests).

– This development took approximately 20 hours, although part of that time
was needed to find and fix the bug noted below. This development was also
finished before reaching the maximum reachable MC/DC coverage since it
was considered more than reasonable coverage.

Mutation based test set (TM )

– This test set has been developed with the aim of improving mutation coverage
using the mu2 tool. It adds 15 Eunit tests to the original test set (4 QuickCheck
properties and 96 Eunit tests).

– This development took approximately 8 hours and tests were added for almost
every mutant. Only 16 of the 83 mutants remained alive:
• 7 of them were not killed because the mutations were semantically equiva-

lent to the original code (e.g. reordering completely specified case clauses
or changing =:= to == when comparing atoms).

• 7 of them were not killed because the mutation can never be executed.This
is the case when the mutation is applied in an internal function with
controlled input, so that it is impossible from the tests to cause the input
that would make the test fail. In one example the mutant changed an equal
comparison by a less than comparison but there is no way of passing a
value < normal into the function parameter, because a previous clause
would have match for any other allowed value. This is related to the
impossible conditions required by Smother, but statically determining the
limitations on variable values is a complex problem.

• 2 of them were not killed because tests to kill them would be too difficult
to implement and not useful.

5.3 Developer Feedback

The Interoud developers provided some subjective comments about the useful-
ness of the different strategies used to generate test cases, summarised here:
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Cover.

– Interoud developers think it may be easier to generate tests focusing on lines
of code but it produces worse tests than other metrics.

Smother.

– The test set developed for Smother was the most difficult to develop by the
Interoud developers. Getting complete coverage in clause based functions is
hard because it is likely that some unexpected input (i.e. values of differ-
ent types or forbidden values, mostly on internal functions) is not covered.
Interoud only developed tests using Eunit, but using QuickCheck should have
made it easy to check all condition combinations.

– About MC/DC coverage, Interoud developers think it is more useful than line
coverage, as it focuses on important lines of code.

mu2

– The mutant based test set is very specific, which makes it more time consum-
ing to apply. Interoud developers created tests for this pilot study that aimed
to kill mutants in the most isolated way. Since several mutations are different
changes to operators in the same condition, some of these tests kill several
mutants.

– Interoud developers think that the mu2 tool is slow generating mutants,
although this was not a problem since mutants were generated only once
for all developed test sets.

– Regarding mutation coverage, it was the easiest to develop test for and,
although they tend to be too specific, they can be refactored later.

– The default set of mutation operators was only of limited value, but Interoud
developers think that the investment of time needed to develop more advanced
operators would be worthwhile.

5.4 Evaluation Conclusions

As expected, the test set developed using only line coverage feedback (TC)
did not achieve high scores in MC/DC or Mutation assessment. The Smother
based test set (TS) and the mu2 based test set (TM) achieved commendable
performance when measured by each other’s metric, but there were clearly some
areas of difference that represent complementary value — features that are best
identified with one metric or the other.

It is significant that although the time taken to generate mutants was men-
tioned as a weakness of the mutation testing approach, the overall time taken
to develop the mutation based test set was considerably shorter. The developers
report that the mutants provided the most clear and direct feedback as to what
feature was not being executed and how to write a relevant test, although there
was some concern that these tests were then too narrowly targeted.
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6 Conclusions

This work has produced a framework for applying mutation testing to Erlang
programs, and that supports a powerful refactoring based system for defining
domain-specific mutation operators. The industrial evaluation of the mu2 frame-
work demonstrated that it was not only valuable as a test adequacy framework
in itself, but that it provided complimentary information to MC/DC analysis of
the same system.

Although at the start of this work there was no published mutation test-
ing framework for any functional programming language, the recently released
MuCheck [12] is a mutation testing environment for Haskell, designed to work
with Haskell Quick Check. MuCheck provides conventional mutation operators
for list operations and for reordering pattern in pattern matching. The authors
make a similar observation in Haskell about the impact of mutations on recursive
functions and how this can cause divergent behaviour.

The authors of [9] proposed an approach to automatically generating tests
that uses mutation testing to identify areas and types of fault that were of
interest. By generating and optimising test sets to kill mutants they expect to
create test sets more likely to identify real faults in systems. Because both the
mutant generation and test set generation is automated this can be run on a large
scale if resources are available. Erlang QuickCheck supports feature based testing
that allows test generation to be targeted at specific “features”. This could be
used in conjunction with mu2 mutants to apply this approach to Erlang.

The mu2 framework has been released as an open-source project on GitHub.
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Abstract. Cyber Physical Systems (CPS) bridge the cyber-world of
computing and communications with the physical world and require
development of secure and reliable software. It asserts a big challenge not
only on testing and verifying the correctness of all physical and cyber
components of such big systems, but also on integration of these compo-
nents. This paper develops a categorization of multiple levels of testing
required to test CPS and makes a comparison of these levels with the
levels of software testing based on the V-model. It presents a detailed
state-of-the-art survey on the testing approaches performed on the CPS.
Further, it provides challenges in CPS testing.

Keywords: Testing · Cyber physical systems · Survey

1 Introduction

Cyber Physical System (CPS) is one type of complex engineering systems, which
is based on the integration of physical, computation and communication parts.
The operation of this type of systems needs to be controlled, coordinated, moni-
tored and integrated by a computing and communication core which is integrated
in the physical environment. Examples of CPS with different functionality can be
found in diverse areas, such as health care, smart transportations, data centers,
smart buildings, smart homes, power grids and safety support system. The most
important issues within these systems are dependability, efficiency, and security.

A CPS typically consists of physical and cyber spaces, with various sensors
and actuators, as graphically shown in Fig. 1. These spaces integrate compu-
tation and physical processes, and are interconnected by a network layer for
exchange of data between these two spaces.

Testing and verifying the correctness of all physical and cyber components of
such complex CPS poses a big challenge. It may contain hardware and software
testing, computation and communicational testing, extra-functional testing for
each component individually, besides integration, and system testing to test the
complete system. Despite the well-established concept of CPS, relatively little
work has been performed on testing methods for CPS.

c© IFIP International Federation for Information Processing 2015
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Physical Space 

Network 

Fig. 1. Cyber physical system components

Contributions: This paper presents (1) multiple levels of testing required to
test a complete CPS, and makes a comparison of these levels with the levels of
testing based on the V-model; (2) a state-of-the-art survey on different testing
methods performed on the CPS; and (3) challenges in CPS testing.

Outline: Section 2 presents related work. Section 3 presents different levels
of CPS testing. Section 4 investigates state-of-the-art methods for testing CPS,
Sect. 5 outlines some challenges in testing the CPS and Sect. 6 concludes the
paper.

2 Related Work

Testing is an essential activity in engineering and it is widely used in industry
in order to guarantee the quality of any type of system. Bertolino [4] has orga-
nized the outstanding research challenges for software testing into a consistent
roadmap.

There are many studies performed on testing for different SW development
methods [5,11,14,16] (like web services, cloud, software product lines), and test-
ing software development process [24]. However, to the best of our knowledge,
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this paper is the first study to explore the different CPS testing types and per-
forming a state-of-the-art survey on it.

Koray, et al. performed a survey of software testing of cloud-based systems
and classified related literature according to research activities performed in the
cloud-based testing area [11]. They also identified and clarified the terminologies,
the gaps and open issues.

Bozkurt et al., presented a survey on testing Web service by classifying
the testing types and techniques [5]. They also categorized the previous work
undertaken on web service testing based on some functional testing techniques.
Another survey on web application testing is performed by Li, et al. [16]. They
reviewed the recent Web testing advances and discussed the employed tech-
niques, targets and goals. Further, they categorized Web application testing
techniques into a number of groups (e.g., scanning and crawling techniques,
search-based techniques, mutation testing and more).

Tevanlinna, et al., presented a survey on product family testing and described
methodology and processes for this testing [24]. They emphasized the use of a
careful planned testing process that can be easily adapted and used for prod-
uct families in different application domains. They evaluated the current state-
of-the-art in product family testing and highlight problems that need to be
addressed in the future.

A survey framework on software product line testing (SPL) is defined in [14].
Lee, et al., divided the SPL testing into two separate test engineering activi-
ties: (1) domain testing and (2) application testing. In domain testing assets
(test plans, test cases, and test scenarios) are used as inputs to application test-
ing. They believe that in the normal case, complete products are not obtained
during domain engineering sine domain engineering focuses on core asset devel-
opment. Therefore, in most cases domain system testing can only be conducted
in a limited way. By testing core assets in domain testing the application testing
can focus on the application specific parts, which were not covered in domain
testing. They explained that SPL testing has a W-shape lifecycle, which is typi-
cally called, extended V-model and formed by two overlapping V-models. They
explored the software product line testing approaches by defining a reference
SPL testing processes and identifying their key research perspectives which were
related to testing field.

Research on using monitors for testing purpose has mostly focused on mon-
itors for software that is neither real-time nor distributed. Only a few studies
have addressed monitoring real-time or distributed systems, which characterized
safety-critical systems such as flight-critical systems for aircraft and spacecraft.
A survey on monitors to test distributed real-time systems [7].

Abbaspour et al. classified concurrency bugs based on the observable proper-
ties for multicore applications [1]. They address that such a taxonomy can help
testers and debuggers to understand the causes of concurrency bugs and to avoid
introducing them. Classification helps them to make appropriate decisions when
they encounter problems. It can serve as a structure in which the current body
of knowledge can be arranged, thereby allowing for identification of gaps in this
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knowledge by easing the debugging process, and help users heuristics for more
precise detection tools.

Gupta, et al. compare different approaches towards design and verification
of energy sustainable computing for CPS [8]. They address that a perfect way to
perform verification is either through experimentation on actual deployment of a
CPS or through accurate simulation of the system. Simulation based verification
is widely used since the resources required to build experimental test-bed may
not be affordable. Both simulation and experimentation can also be used to
characterize various functions. Moreover, in many CPS, verification is required
at the design time without real deployment. The early design time verification
has two advantages: it avoids creating real test-scenarios putting lives at risk;
and it provides a way to guarantee and certify the CPS behavior.

3 CPS Testing

In this section we present different levels of testing required to check and verify
CPS, and then compares these levels with the testing types of the V-model.

3.1 Levels of CPS Testing

As explained in Sect. 1 a variety of testing types may be used in testing the
different components of a CPS.

Hardware Testing: Hardware testing consists of testing hardware components
of CPS, including tests of each component’s functionality based on the sys-
tem requirements. The most common and important variables in evaluating and
testing hardware such as desktops, laptops, printers, PDAs and other important
hardware that are used in the CPS are memory size, speed, storage capacity,
spindle size, I/O interfaces (ports), synchronization capabilities, expandability
and similar.

There is another issue in checking the hardware functionality, which is hard-
ware verification. Hardware verification tests the hardware under specific con-
ditions, checking that the hardware follows the local environment requirements
conditions, confirming to the applicable quality assurance measures and more.
Thus, hardware testing is typically more structured and detailed than hardware
verification. There are some similarities between software and hardware testing.
Hardware testing has fewer steps and does not usually undergo a pilot project.

Structural and Computation Testing: Structural testing is normally based
on the detailed design and not on the required functions of the program. How-
ever, for computation testing the tester (or developer) uses the structure of the
program and chose paths that are used to recognize domains. Computation test-
ing is one form of structural testing, which focuses on the computational part of
software.

Extra-Functional Properties Testing (EFP Testing): Multiple parts of
a CPS are often embedded systems executing real-time software. For such a
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system it is required to guarantee both (1) function correctness and (2) non-
functional or extra-functional correctness. Extra-functional properties are closely
related to the inherent interaction with the system environment. Examples of
such properties may be temperature, power consumption, and timing [21,26].

Network Testing: Communication and network testing are other important
issues in a CPS testing. The aim of this testing is to check and verify the protocols
used in a communication flow among multiple devices and users. Besides, the
actual measurement and recording of a networks, state of operation during a
period of time is called network testing. In network testing the tester is assisted
for verifying, controlling or comparing the performance by recording the current
state of network operation.

Integration Testing: Combining the individual software modules in a group
and testing the grouped module is called integration testing. It is a phase of
software testing and prepares the system for the next phase of testing which
is system testing. The errors, that appear because of combining different units
are detected in this phase. In other words, any inconsistency between integrated
software units or integrated software units and hardware can be discovered by
integration testing [19].

System Testing: Finally, hardware system testing or software system testing
is related to test a complete integrated system when all units in a system are
integrated to fulfil the overall requirements of the system [19]. The purpose of
this testing is not just testing the design of the system, but to also test and
verify the behavior and the assumed expectations of the user.

3.2 Comparison of Testing Levels of CPS with the Traditional
V-Model

Comparing to the testing levels presented in a typical V-model [19] which are
performed to verify only software, the levels of CPS testing have to verify soft-
ware, hardware, network and the integration of all these components to work as
a single system.

In the V-model, unit testing represents code level or unit level testing, e.g.
a single program module. It verifies the smallest functional code when isolated
from the rest of the codes. For CPS, as shown in Fig. 2, the unit testing is
performed at the hardware and software levels separately, to independently test
the functionality of both hardware and software. Further, the network testing
is important to verify the network operations and communication flow, which is
not an integral/separate part of the testing levels in the V-model.

Integration testing verifies that different independent units can be integrated
together and that they communicate correctly. Thus, the network testing is per-
formed at both, unit and integration testing levels. In CPS testing it covers
a bigger umbrella by encapsulating the integration of software components as
well as the integration of hardware components, as compared to the traditional
integration testing that refers to the integration of software components only.
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Fig. 2. Life cycle model for CPS

System testing verifies the whole application for its functionality, interdepen-
dency and communication. In the V-model, it usually consist of only a software
part while in CPS, it encapsulates hardware, software, and network parts. User
Acceptance testing is performed in a user environment and verifies that system is
ready to use and meets user’s requirement, and is relevant for CPS and V-model
testing.

4 State-of-the-Art Survey

This section categorizes the SOTA survey based on the testing types described
in the preceding section.

The string that we have used to search articles in Google scholar is ((cyber
physical system) OR (medical systems) OR (real-time systems) OR (robot soft-
ware) OR (vehicle software) OR (hybrid control system) OR (embedded system))
AND ((testing) OR (validating) OR (evaluating)). Based on the search string,
we found totally 59 papers. We considered the most relevant and recent papers
w.r.t. testing, and short-listed 16 papers, which are summarised in Table 1 and
are explained below.

We see from Table 1 that most considered studies focus on System testing.
There are a few studies on Hardware and Network testing. Further, we see that
only Real-time hybrid structural testing [10,25] performs all six levels of CPS
testing.

4.1 Hardware Testing

L. C. Silva, et al., present a model-based architecture for validating/verifying the
Medical CPS [22]. Their architecture includes components representing models
for medical devices and a model for the patient. The architecture can help devel-
opers/testers to generate test cases by validating these models.
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Table 1. Relation between state of the art and testing types

Zhang, et al., address the challenges of generating test cases for CPS from
Formal models [27]. They generate test cases from formal specifications by apply-
ing differential dynamic logic (DL). Differential DL is a logic for specifying and
verifying hybrid systems. They translate the test cases, which are generated from
formal specification into a model in Modelica language. Modelica is sometimes
called a hardware description language that allows the user to specify mathe-
matical models of complex physical systems, thus this testing approach can be
applied to perform hardware testing.

Lim, et al. propose a hierarchical test model and automated test framework
for robot software components of Robot Technology Component (RTC), which
was combined with hardware module [17]. The proposed hierarchical testing
procedure model included three levels of testing: unit testing, integration testing
and system testing. Here the unit testing corresponds to the hardware testing.
Hardware module is considered as a basic unit for hierarchical testing for robotic
software component.

Real-time hybrid structural testing [10,25] is identified as a grand challenge
for CPS and includes all six levels of testing. The physical test specimen in Real-
time hybrid structural testing of Huang et al.’s experimental setup is composed
of a small steel compression spring, which is used to represent the bending stiff-
ness of an actual column in a portal frame structure, thus performing hardware
tests [10]. Tidwell et al. present an initial work on a Cyber-physical Instrument
for Real-time hybrid Structural Testing (CIRST). It targets to provide a highly
configurable architecture for integrating computers and physical components,
thus performing hardware tests [25].

4.2 Structural and Computation Testing

Conformance test using timed automata is another famous approach to perform
structural testing and to test properties of the real-time system [6,13,18]. In this
method, a conformance test algorithm is provided which constructs a set of test
cases. The final output of the test method is either a Yes if the implementation
conforms to its specification, or No when the implementation fails to conform to
the specification because it fails a particular experiment.
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Zhang, et al., generate test cases for CPS from Formal models by applying
differential dynamic logic (DL) for testing in [27].

Badban, et al., present algorithms and techniques for automated test case
and test data generation to test hybrid controlled cyber-physical systems [3].

A model-based architecture is used to test the Medical CPS [22]. A con-
trolled experiment is performed to verify the behavior of components designed
for the proposed architecture. The experiment analyzes the interaction among
components. The most important concern in the Medical system is the patient’s
safety. Thus, the architecture focuses on the aspect that developers can test their
applications without putting any risk on compromising the security of patients.
Moreover, the data privacy is maintained, while keeping the generated data sta-
tistically compatible with real data.

Lee, et al., present embedded system software testing using a Service Ori-
ented Architecture (SOA) method [15]. They present a mobile service testing
process using test case specification. They conclude that service interoperabil-
ity test process can extend the application testing to develop cost efficient and
optimized mobile services. They analyze mobile application requirement, write
service specification, optimize the design, and provide extended use case speci-
fication.

Srivastava and Kim develop variable length genetic algorithms to optimize
software testing [23]. Genetic search algorithms are used to find critical path clus-
ters in software code, and consequently, based on their identification they present
a technique for optimizing testing and report preliminary results. Exhaustive
software testing is intractable for even medium sized software. Therefore, they
present a more selective approach to testing by focusing on those parts that
are most error-prone and critical so that these paths can be tested first. The
efficiency of testing is increased as their technique focuses on the most critical
paths. Additionally, authors address that by applying generic algorithms they
made an undependable technique from any specific problem and it can be of
tremendous importance for users.

Lim, et al. perform structural testing within their hierarchical test model
and automated test framework for robotics software by testing a series of opera-
tions for software component, which were specified in the document of software
component requirement [17].

Structural testing is an integral part to test real-time hybrid structural test-
ing [10,25]. Huang et al. perform structural testing using a case study of several
fundamental interlocking challenges in developing and evaluating CPS [10].

4.3 EFP Testing

Goodloe and Pike check the real-time properties of distributed hard real-time
systems using an online monitor [7]. They claim that testing and formal verifi-
cation are not sufficient to demonstrate the reliability of real-time systems, and
advocate online monitoring as a promising technique for making safety-critical
real-time distributed systems more reliable. Online monitors execute as a sep-
arate process, check conformance to a specification or property at runtime and
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can change the system direction into a known state if it deviates from its given
specification, thus are better suited for safety-critical real-time system, like space
shuttle and aircraft systems.

Badban, et al., present automated test case generation techniques that are
applicable for testing the hybrid controlled embedded real-time systems like in
avionics and railway [3].

As said in the previous section, Conformance test using timed automata
is another approach to test properties of the real-time system. A new testing
framework for real-time systems based on partially observable, non-deterministic
timed automata and a formal conformance is proposed in [13]. The framework
allows users to define the interface between the tester and the system under test
(SUT) as well as assumptions on the environment of SUT via suitable model.
The algorithms are provided in online or offline mode that generate analog clock
or digital clock tests. Authors present coverage criteria to reduce the number
of generated tests. The system is validated using a prototype test generation
tool and two different case studies. Another study on automated derivation of
functional test cases for real-time systems is proposed in [18]. A method for
semiautomatic derivation of test cases is presented using formal specifications
coded in TRIO language in order to fill a critical gap in the field of rigorous
verification. The method is applied to several real-life case studies with indus-
trial partners. The method discovers subtle errors that remained uncovered by
human inspection and by using more-traditional techniques. Finally, authors also
compare TRIO with the TRIO+ language. Another work based on the confor-
mance test method using networks of timed automata is presented in [6]. Based
on a testable model for real-time timed transition systems (TTTS) the author
introduces fault hypotheses and a conformance test generation algorithm that
constructs a set of test cases from a TTTS. The test view detects information on
a particular set of tests, such as: the selection of relevant events to be observed,
the mapping between implementation and specification events, the granularity
of the observer’s clock, a partition of test events into inputs and outputs. After
selecting different test views, the tester can control the number of tests required:
more detailed tests can be used for critical test purposes, and less detailed tests
elsewhere. The authors claim that this method can reduce the number of test
cases and can produce the effective use of features such as persistent variables.
Moreover, testers can use independent test methods to check that assumptions
made are reasonable and that users can easily define have their experiments
in Uppaal specifications and different test views. Since complete test suites are
expensive, authors believe this method is a proper way to reduce the cost when
just critical parts of the system are tested by complete conformance test meth-
ods.

Zhang, et al., generate test cases from formal models. Modelica language
is also used for the purpose of computer simulation of dynamic systems where
behavior evolves as a function of time, thus it can be used to test timing prop-
erties [27].
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Real-time systems are always tested extensively for the timing behaviour,
like deadline misses etc. Thus, EFP testing is covered in real-time hybrid struc-
tural testing [10,25]. To examine the source of the deadline misses, Huang et al.
measure the time for reading sensor data, writing actuator commands and other
numerical computations [10]. Tidwell et al. claim that their testing method has
broad impacts on both civil engineering and real-time computing and that it
can enable real-time testing of a wide range of civil infrastructures and provide
a CPS for the study and evaluation of real-time middleware [25].

4.4 Network Testing

A penetration testing policy is used by F. Alisherov and F. Sattarova [2] in order
to test services and bring conformity between penetration testers and clients of
the penetration test. It is a traditional testing method in which a tester send
data to and from a secure system and then analyze the security measures of the
system using a packet sniffer. This testing method falls under network testing
since the data is sent to and from the system.

Lim, et al. [17] propose an automated test framework for robot software com-
ponents in which the wireless communication station connects test-bed system
to the main PC of robot test engine. Since they propose the wireless commu-
nication station in their framework they may use some technique(s) to test the
communication. However this is not explained completely in the paper.

Real-time hybrid structural testing includes network testing [10,25]. Struc-
tural testing is typically based on data-flow, therefore, researchers explore the
lower level details on testing the communication between ports (over network,
local or shared memory).

He, et al. propose a cyber physical test bed (CPT) in order to visualize
the environment of the wireless access and localize the body sensor networks
(BSN) [9]. They design an analog channel emulator for Ultra Wide Brand (UWB)
technologies. In order to verify their approach and to showcase the application
of the CPT they accomplish some case studies. They evaluate the performance
of data transmission inside the human body and TOA-based indoor localization.
The results of case studies reveal the best performance of the indoor tracking sys-
tem in the non-multipath condition. They also find the influence of the wooden
wall and the metallic chamber in data transmission.

4.5 Integration Testing

F. Alisherov and F. Sattarova tested the integration and security of a CPS in [2]
using penetration testing technique.

The second level of hierarchical testing procedure model is integration testing
which is performed after unit testing for validation of hardware module [17]. The
interoperability of hardware modules and software components was checked by
performing integration testing while the robot hardware API was tested for
performance index of functionality by using test cases.
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Testing the integration of components in big distributed real-time CPS is
very important and performed for Real-time hybrid structural testing [10,25].
Huang et al. test some of the components alone and visualize other components’
behavior. They also perform integration testing by checking the synchroniza-
tion among components [10]. Tidwell et al. perform integration testing using
CRIST to test highly configurable architecture for integrating computers and
physical components and provide a system for supporting real-time operations
in distributed hybrid testing [25].

4.6 System Testing

Kane, et al., use system testing on a prototype vehicle design using a passive
external runtime monitor to detect violations of high-level critical properties [12].
They limit the scope of testing in two respects: (1) by describing and testing only
critical properties instead of complete behavior of system and (2) by providing
approximate bounds to safety instead of specifying exact safety invariants. The
method is applied on an automotive domain. Automotive networks periodically
broadcast system state message. The simulation-based monitor reads the log
file generated by the vehicle’s CAN broadcast network, and verifies whether the
execution trace satisfies the targeted properties or not.

Goodloe and Pike focus on testing system-level properties of a distributed real-
time systems using online monitors [7]. Conformance test method [6,13,18] is per-
formed on the complete integrated system, thus we categorize this method under
system testing. Testing a Medical CPS includes detailed testing of hardware, struc-
tural and computations, and of complete system to ensure the patient’s safety.

Modelica is a physical modeling language that allows tools to generate effi-
cient simulation code automatically to facilitate exchange of models, and simu-
lation specifications to test a simulation of complete cyber-physical system [27].

A classification of the concurrency bugs based on the observable properties is
presented by Abbaspur et al. [1]. They categorized concurrency bug properties
for concurrent and multicore application, that will help in system testing.

As described previously, the penetration testing is used to test the system’s
security measures [2], thus it falls under the system testing category.

The third level of hierarchical testing procedure model is system testing [17].
In their approach, the test cases are derived using black box testing techniques.
The performance index of functionality includes completeness of function real-
ization, correctness of data, compatibility of data and etc. Testing techniques of
boundary value analysis, equal partitioning testing and state transition testing
are used for system testing of robot software component.

The complete system is tested in real or using simulations for Real-time hybrid
structural testing [10,25].
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5 Challenges in Testing the CPS

The confluence of cyber and physical spaces of CPS technologies leads to new
opportunities and subsequently some challenges in testing the system. Some of
these challenges are summarized as follows:

• One of the essential challenges in validation, verification and certification of
CPS is the current gap between formal methods and testing [20]. Thus compo-
sitional verification and testing methods that explore the heterogeneous nature
of CPS models are necessary.

• Multiple parts of a CPS are often embedded systems with a real-time software
executing. A real-time system requires to guarantee both (1) function correct-
ness and (2) non-functional or extra -functional correctness. Extra-functional
properties are closely related to the inherent interaction with the system envi-
ronment. Examples of such properties may be temperature, power consump-
tion, and timing [21,26]. Testing both functional and specially non-functional
correctness in such systems is a challenge.

• The assertion of the correctness in designing and implementing CPS is another
challenges. Correctness does not only encompass algorithmic and functional
aspects but also extra-functional properties that are closely related to the
inherent interaction with the system environment.

• Creating an automated or semi-automated method to evaluate the results of
system testing is a limitation in CPS testing.

• To test run-time monitoring of real systems, the abstract model technique is
used. In this technique, the real system is mapped to an abstract model. The
runtime state information to perform monitoring is provided by this abstract
model. However, abstract models will not be sufficient and it makes challenges
on real system testing time.

• Defining the boundaries of the test landscape by environment is a challenge
in testing the CPS. For instance, capturing physical limitations of devices or
bounding the frequency of periodic inputs. Thus, system usually tested for the
inputs specified, while it is necessary to also test for any inputs outside those
ranges.

• The CPS which are related to electric power grid testing for power consump-
tion has specific challenge since it requires ingrained measurements.

• The nature of some CPS are related to real-time, therefore testing the system
with multiple time scales of interacting, distributed and control might be a
challenge.

• Many CPS will highly interface with users. These CPS must be user-friendly to
their many non-technical users. There are challenges in designing and testing
these systems. For instance, testing a distance system for daily medical checks
with couple of sensors and controls for old people or people with disabilities
is a challenging task. Thus, testing the user-friendly property of this type of
systems is a challenge.

• From real-time systems perspective the CPS research not only encounters the
adaptation of components technologies and network systems, but also con-
cerns using physical and logical properties (like physical laws, safety, security,
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robustness, verification, energy and resource) [21]. Accordingly, compositional
verification and testing methods should be adapted for the heterogeneous
CPS models. To make a secure CPS with mentioned properties more work is
required towards developing new verification and validation techniques. One
approach could be bridge formal methods and testing approaches [20].

6 Discussion and Conclusion

This paper surveyed a number of past and recent efforts in CPS testing and ver-
ification and/or validation method. Several research groups have had ongoing
efforts in the area for over a decade and have produced impressive tools. Con-
sequently, there is a solid foundation of research in complete testing which can
cover all phase of testing lifecycle of an application. Yet, little research to date
has focused on testing and validation for CPS within health care, smart trans-
portation, power grids and safety support, where suitable testing method can
arguably have profound impact in preventing costly and possibly fatal system
failures. Compositional verification and testing methods should be adapted for
the heterogeneous CPS models. To make a secure CPS, more work is required
towards developing new verification and validation techniques specifically tar-
geting security vulnerabilities. Also, the use of formal methods in combination
with testing, e.g. in the form of mode-based testing, has potential and should be
further explored. Moreover, in the development of new CPS new mathematical
foundation will be defined, therefore a variety of questions need to be resolved
at different phases of software testing to trigger and ease the integration of the
physical and cyber worlds.

Creating an automated or semi-automated method to evaluate the results of
system testing is a challenge in CPS testing that also deserves attention.
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Abstract. The Worst-Case Execution Time (WCET) of real-time sys-
tems is mainly influenced by the program design, its execution envi-
ronment and the input data. To cover the last factor in the context of
WCET estimation, the objective of this work is to generate the test-data
that maximize the execution times of the parallel real-time systems. In
this paper, a test-data generation technique is proposed that uses Genetic
Algorithms to automatically generate the input data, to be used for test-
ing of parallel real-time systems. The proposed technique was applied to
a parallel embedded application – Stringsearch. The result was an analy-
sis that took as input the parallel program and generated the test-data
that cause maximal execution times. The generated test-data showed
improvements by exercising long execution times in comparison to ran-
domly generated input data.

Keywords: Test-data generation · Genetic Algorithm · Real-time sys-
tems · Measurement-based analysis · Worst-case execution time analy-
sis · End-to-end testing

1 Introduction

With the wide use of multicore processors in desktop computers and embedded
systems, and the growing demands of high performance real-time applications, it
is expected that multicore processors will be increasingly used in real-time sys-
tems [26]. The deployment of real-time applications on multicore platforms with
tens or hundreds of cores may become a reality very soon [3]. This demands spe-
cial methods and techniques for the design and testing of future multicore embed-
ded real-time systems, where the previous research mostly assumes sequential
code running on single-core platforms.

The fundamental property to guarantee the performance of a real-time sys-
tem is its Worst-Case Execution Time (WCET) testing. The worst-case bounds
can be derived either by using static timing analysis [11], or by measuring the
programs execution time on a given hardware or simulator using a set of inputs
[24]. The static timing analysis methods applied on hardware and software mod-
els of the system are very difficult to apply for parallel systems. For instance,
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the inter-thread interferences among shared resources, e.g., L2 caches are hard
to analyze statically [26]. In contrast, measurement-based methods can be used
for better estimating the execution time of parallel systems and therefore are
widely used in the industry.

The problem of WCET testing is to find the test-data that causes execu-
tion of the longest path of the program, and thus causes the longest execution
time. But to do so, a complete test with all possible inputs, generally cannot
be carried out. Similarly, exhausting all the possible program paths, for a given
input, is usually infeasible. To handle these problems, evolutionary testing can
be utilized that automatically searches the test-data to estimate the WCET. For
instance, if searching the worst-case inputs from the set of all possible inputs
is considered as an optimization problem, Genetic Algorithms (GA) [1] can be
utilized to automatically search the required test-data.

The current research efforts of WCET analysis for multicore systems are
focused on performance enhancing hardware features [12,15,19], and application
[4,16,18] or programming level [9,27,28]. However, there is lack of research in
test-data generation for WCET estimation of parallel real-time systems execut-
ing on multicore architectures. To fill this gap, this work proposes a Search-Based
Software Engineering (SBSE) technique to generate test-data for testing parallel
real-time systems. The proposed technique uses GA to sub-optimally evolve the
worst-case inputs, with the objective to find those inputs that will cause the
program to take longest execution time.

The proposed technique is applied by measuring the end-to-end execu-
tion time of the ParMiBench benchmark suite [14]. ParMiBench is an open
source parallel version of a subset of MiBench benchmark suite [10] – many
of whose benchmarks appear to be suitable candidates for WCET analysis [7].
ParMiBench benchmark suite, actually designed to evaluate the performance
of embedded multi-core systems, is implemented using C language and POSIX
threads to achieve parallelism and supports Unix/Linux based platforms [14].
The end-to-end time was measured by gathering the execution traces of the
parallel program using the Gem5 simulator [2].

This article is organized as follows. Section 2 explains the methodology fol-
lowed in this work. Section 3 describes the method to approach the problem of
test-data generation along with the details of the actions performed. Section 4
reports the experimental setup and the results obtained from the experiment.
The evaluation of this work is provided in Sect. 5. Section 6 describes related work
in measurement-based WCET analysis for parallel real-time systems. Section 7
contains concluding remarks and directions for future work.

2 Methodology

The ParMiBench benchmark suite, used in this work, is a set of embedded
parallel benchmarks from various domains of the embedded applications which
include, control and automation, networks, offices, and security. However, we
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have selected the Stringsearch benchmark from the suite that is related to search-
ing a token (strings stored in a pattern file) from a text file, due to the following
reasons:

– In this work, the benchmarks are seen as a black box that consumes input and
generates timing information. However, for the testing process to be effective
and the testing results to be meaningful, we need benchmarks with a rich
input space.

– the current Gem5 framework forces to execute the benchmarks from within
a disk image in the full system mode. This requires the benchmarks to have
input parameters that can be easily fed, e.g., via command line.

In the initial experiment, the simulation was executed with the existing data
set of Stringsearch benchmark. However, the initial experiment revealed that
the text and pattern files in the existing data set consist of repeated contents.
Consequently, any new pattern file generated, with tokens picked up randomly
from the text file, had tokens that exist in every line of the file regardless of which
line they have been picked. Thus, the existing data set of the benchmark was
inappropriate to allow evolutionary testing, as the data set should not contain
duplicate values. Therefore, a new text file with dissimilar tokens was generated
that consists of 102400 random characters (file size ≈ 100 KB), and a pattern
file containing 64 tokens each of five characters length. The token length was
kept fixed (i.e., five characters, similar to the given benchmark) to observe the
execution time variations unassociated with the input length. Additionally, fixed
size inputs allow the easy alignment of parts during crossover operation.

In this work, Gem5 architecture simulator was used to measure the end-to-
end execution time of the parallel benchmark. Gem5 was selected as it provides
full-system simulation to execute a program in the operating system environ-
ment, with support of several commercial Instruction Set Architectures (just as
ARM, ALPHA). To get the execution traces of our interest, we performed some
tweaking to the simulator. We applied a Kernel patch and made some custom
modifications to the simulator to get the execution traces of the benchmark1.
These traces were then used to calculate the end-to-end execution time of the
benchmark. Instead of manual calculation, the end-to-end execution time was
calculated automatically by a Java application.

3 Proposed Test-Data Generation Technique

The technique proposed in this work for test-data generation, is based on SBSE
approach, namely GA. GA mimics the process of natural selection and chooses
the best from one generation to produce the next generation and attempts to
reach the solution much faster than otherwise. The steps of the proposed test-
data generation technique, as depicted in Fig. 1, are described is below:
1 Interested readers can visit our technical report for more configuration details,

http://bit.ly/1JqheNS.

http://bit.ly/1JqheNS
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Fig. 1. GA based test-data generation technique proposed for parallel real-time systems

3.1 Define the Initial Population

For applying GA, an initial population of individuals need to be defined which is
evolved across a number of generations. Individuals are usually random guesses
to the solution of a problem. Care should be given to maintain diversity in the
population so that premature convergence towards a sub-optimal solution can
be prevented. For instance, in case of Stringsearch, a good candidate for the best
individual produced by the GA in the last generation is the input to the program
where all tokens to be searched do not exist in the text file.

To achieve this, an intuition-based selection was made to start from a point
where 50 % of tokens exist in the text and 50 % do not. An initial population of
one hundred pattern files, to be used in GA, was generated using the following
ways:

(a) By randomly picking up tokens from this newly generated text file
(b) By randomly generating totally new tokens

Consequently, each file contained a set of tokens gathered from a mixture of
50 % randomly generated tokens and 50 % tokens picked up from the text. Thus,
the chances of each token within a pattern file are equally likely to be in the text
or not, making it a fair distribution to start with.

To conclude, there are (n*k)/2 tokens that exist in the text, and are ran-
domly distributed among the total n*k tokens in n files (considering n pattern
files, each having k patterns). This allows to give the 50-50 found/not found
distribution without making individuals in the population biased. This set of
one hundred pattern files collectively formed the genetic representation of the
solution domain. Thus, the initial population in this experiment consists of one
hundred chromosomes and 64 genes of each chromosome, in GA terminology.
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3.2 End-to-End Time Calculation

In this work, it is proposed to use the end-to-end execution time of parallel
program as fitness function. The end-to-end time was calculated from the traces
obtained from the Gem5 simulator by executing the parallel application. Each
trace was generated by detecting the starting and ending points of a thread
execution. A Java application was written to automatically calculate the end-to-
end time from the obtained execution traces. In the initialization phase, the end-
to-end time was calculated for all the 100 files present in the initial population.
The simulation was run one hundred times to generate one hundred traces,
i.e., one time for each pattern file. However, in all the other iterations it was
calculated for the new individuals of the next generation only.

3.3 Applying Genetic Algorithm

GA uses the concept of natural evolution to reach the desired solution from a
given huge search space. The main idea of using GA, in this work, is to execute
the program with sets of inputs throughout a number of generations. The process
starts with generating k random vectors initially (first generation) and obtain
their timing information. Then, the generated k random inputs with the timing
information are used to produce the next k inputs (second generation). This
process is repeated for n generations. The details of the steps of GA as followed
in the proposed technique are given below.

1. Calculate the Fitness Value

The fitness of the individuals is a problem-dependent value that specifies the
goodness of an individual in solving the problem at hand. The selection of
an individual for the next generation depends on its fitness value, i.e., each
individual in the population is evaluated by calculating its fitness. The fitness
value is used to select the best of any generation to ‘mate’ them in order to
produce the new generation.
As already mentioned, the end-to-end time is considered as a fitness value, in
this work. Thus, the longer the end-to-end time, the higher would be the fit-
ness. The fitness value is generated in GA through fitness function. It means
that calculating the fitness function requires the execution of the program
to produce traces. The time taken by Stringsearch to execute each pattern
file was considered as the fitness value of that pattern file. The use of GA is
suppose to search the inputs with higher fitness values in each generation. In
this way, the program execution using GA would lead towards inputs having
larger fitness values.
It is worth mentioning here that cache hits or misses, thread conflicts or any
other parameters were not considered to evaluate the fitness. Because consid-
ering these parameters is a huge research in its own and requires more effort
and time. In addition, Gem5 simulator does not provide much information
about these parameters which can be useful at this level.
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2. Select the Individuals

A selection strategy is applied to the individuals of a population in a given
generation to decide which ones are allowed to proceed to the next generation.
To make a rank based selection, the individual need to be sorted based on
their fitness values. It is proposed to select only five individuals, as selecting
more individuals would take more time in the remaining steps and also in
calculating their fitness in next generation.
In this experiment, the pattern files were sorted based on their fitness values.
The top five pattern files were selected as chromosomes for the next genera-
tion. Top five files were selected because selecting 50 files, for instance, will be
a big enough number as it will make 100 files for the next generation which
will take too long to calculate their fitness.

3. Crossover

The evolution of the population involves the exchange of genetic material
between the individuals through crossover operation. Traditionally, this is
achieved by choosing a point along two bit strings at random and swapping
the tails. To produce new files, a crossover was made amongst the top five
selected pattern files, by merging two lists of tokens picked up from randomly
selected pattern files. This crossover resulted in ten new chromosomes. In
crossover, one part of a file was concatenated with another part of the second
file, where the size of selected parts may not be the same, e.g., 2 tokens
picked from one file were concatenated with 62 tokens from the other file.
This selection is based on cutting one chromosome at a random location and
concatenating it with the remaining part of the second chromosome cut at
the same location.

4. Mutation

The evolution of the population also involves the alteration of the genetic
material of a single individual through mutation operation. Mutation is
achieved by picking a bit at random and flipping its value. Mutation was
applied to the results of crossover to produce and further improve the next
generation. It was done by randomly picking a token from a pattern file and
replacing its any letter with another random character. This process was
repeated until the desired percentage of mutation was achieved. In this way,
the next generation of 10 chromosomes was produced.

The above process was repeated for a set of ten chromosomes, which was
reproduced after each generation. The evolution continues until a good-enough
individual that solves the problem adequately is found, or until a maximum
number of generations is reached. Opting for the latter case, the whole process
was repeated for 50 generations, as the probability of improving over several
generations is high.
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With the above modeled parameters, a Java application was developed that
implemented GA in the experiment. The implementation used the given pattern
files composed of tokens without converting them into binary strings. This sim-
plified the complex problem of coding and decoding of inputs for this specific
case.

4 Experimentation

4.1 Experimental Setup

The Gem5 configurations, as used in this experiment, included four cores of ARM
detailed architecture as specified by Gem5 (ARMv7-A ISA based) with default
size of L2 cache (2 MB) and 256 MB of Memory. The disk image contained ARM
embedded Linux (AEL) as the guest operating system for the simulator. We used
Gem5 to run the simulations and execute benchmarks for collecting the kernel
level thread traces and computing the end-to-end times. We had Xeon processor
with twelve logical cores and enough memory (48GB) available in our machine
to accommodate multiple instances of simulator running in parallel.

4.2 Experimental Results

To observe the effects of applying GA using visual representation, graphs of the
calculated end-to-end times were plotted for each generation. In each graph,
the length of the execution time is represented on the vertical axis in terms
of CPU ticks, whereas the ten pattern files of each generation are represented
horizontally. For example, in first generation the highest and the lowest values
were found as 59843433000 and 59603617500 ticks for 4th and 8th pattern files
respectively, as shown in Fig. 2(a). Some other results produced during fifty
generations are depicted in the remaining parts of Fig. 2.

From the plotted graphs, i.e., the measured end-to-end times, it is observed
that by using GA an overall improvement can be achieved in the fitness values
corresponding to the pattern files. For instance, in first and third generations
(Fig. 2(a) and (b)) there are only three pattern files which caused the program
to execute for a period longer than 5.98e+10 ticks. In comparison, the number
of pattern files, which execute longer than this number of ticks, is increased
to eight pattern files in 25th generation and nine pattern files in 50th genera-
tion (Fig. 2(c) and (d)). This increase in the number of input files after applying
several generations shows that the inputs are taking longer time. This is a clear
indication that the proposed technique has improved the inputs, i.e., those inputs
are generated that cause the longest time to execute.

Table 1 shows the WCET measured during the experiments in different gen-
erations for five character length input token. A threshold value of 5.98e+10 was
defined to analyze the improvement in the inputs over all generations. The num-
ber of files taking greater or equal time than the threshold value was counted,
as represented by Above (Th.5.98) column in Table 1.
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(a) 1st generation (b) 3rd generation

(c) 25th generation (d) 50th generation

Fig. 2. End-to-End times (fitness values) in different generations for the pattern files
with five characters long tokens

An increasing number of input files above the threshold can be observed, in
Table 1, except for 30th generation. This is due to the very nature of GA where
results can degrade even after reaching to an improved position. However, an
overall improvement is achieved across 50 generations.

5 Evaluation

In order to evaluate the scalability of the proposed technique, the experiment
was repeated with other input files as given with the benchmark. To this end,
the complete process was re-performed for tokens with a length of 10 characters;
compared to the original experiment where five characters input token was used.
Some of the graphs, representing different generations produced using 10 char-
acters length are depicted in Fig. 3. The WCET measured for input tokens of
10 characters length are displayed in Table 2. The threshold value, in this case,
was defined as 5.9e+10 with the same purpose of analyzing the inputs over all
generations.

From Table 2, it can be observed that the number of input files increased
with the number of generations. Although the number of files slightly increased
and decreased due to GA, an overall steady increase in the number of files was
observed after 50th generations.



Test-Data Generation for Testing Parallel Real-Time Systems 219

Table 1. Measured WCET across different generations for 5 characters length token

Input token size Generation no WCET Above (Th.5.98)

5 characters 1 59843433000 3

10 59878900000 5

20 59895367000 8

30 59898941500 6

40 59896569500 7

50 59898461000 9

6 Related Work and Discussion

Most of WCET-analysis research is performed for sequential software and single-
core hardware. Recently, research on WCET analysis of sequential code on
multi-core processors has been a main focus. The work that has been done in
this area so far can be divided into two parts (1) static hardware modeling for
WCET analysis on multi-core architectures [8,25,26,29], and (2) design of ana-
lyzable multi-core computers that favor timing predictability over performance
[6,17,20,21]. In relation to this work, research on parallel applications run-
ning on multi-core architectures is very limited. For instance, Rochange et al.
[19] highlights the problem of analyzing the timing behavior of non-sequential

Fig. 3. End-to-End times (fitness values) in different generations for the pattern files
with ten character long tokens
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Table 2. Measured WCET across different generations for 10 characters length token

Input token size Generation no WCET Above (Th.5.90)

10 characters 1 59102869500 4

10 59134277000 5

20 59097647500 6

30 59100034000 6

40 59181076000 7

50 59181090000 9

software on a multi-core architecture. They report a manual analysis of a parallel
application, which determines the synchronization and communication between
its executing threads.

In contrast, we have used GA to heuristically search the input from a huge
search space of tokens that would cause the program to execute for the longest
period of time. It was observed that the execution time of the search tends to
decrease with the increase in size of the input text (see e.g., WCET of 5 and 10
characters). In general, the proposed technique is applicable to any parallel real-
time system where optimization is needed. This further requires that the system
under consideration can be genetically represented and has a fitness function for
its evaluation. However, the proposed technique should be complemented with
static timing analysis if safety is required, i.e., to ensure that the obtained results
are close to the actual WCET of the considered system.

Evolutionary search (more specifically GA) has been employed in the liter-
ature [5,13,22] to find long execution times of real-time programs. Although,
research on using GA for testing real-time systems dates back to 90s [23], it has
not been used for WCET analysis of parallel programs running on multi-core
hardware, to the best of our knowledge. The fitness function used in this work
considered the end-to-end time for the execution of a program as the fitness
value. This consideration has helped us to produce good enough results by using
GA that maximized the fitness value.

7 Conclusion

In this paper, a measurement-based technique is proposed for automatic test-
data generation for parallel real-time systems running on a multicore architec-
ture. The technique uses Genetic Algorithm to generate test data that maximize
the execution times of the parallel application. It evolves input vectors that cause
long execution times of the program using evolutionary testing. The results of
the experiment showed a significant improvement in the execution times of input
files after applying the proposed technique. Thus, the aim of producing large exe-
cution times, which are either the WCET or close to it, was achieved.

In the future, we aim to use a real-life, real-time application to evaluate our
work. In case of publicly-unavailability of such applications, the method can



Test-Data Generation for Testing Parallel Real-Time Systems 221

be tested with other benchmarks of ParMiBench. Moreover, the static timing
analysis is planned to be performed to evaluate the safeness and tightness of the
proposed technique. Although, the end-to-end time is considered as an output
to the fitness function, it is also planned to consider a richer multi-objective
fitness function in future that might include thread conflicts, cache misses/hits
and cache sizes.
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12. Kästner, D., Schlickling, M., Pister, M., Cullmann, C., Gebhard, G., Heckmann,
R., Ferdinand, C.: Meeting real-time requirements with multi-core processors. In:
Ortmeier, F., Daniel, P. (eds.) SAFECOMP Workshops 2012. LNCS, vol. 7613,
pp. 117–131. Springer, Heidelberg (2012)

13. Khan, U., Bate, I.: Wcet analysis of modern processors using multi-criteria opti-
misation. In: 2009 1st International Symposium on Search Based Software Engi-
neering, pp. 103–112, IEEE (2009)

14. Liang, Y., Iqbal, S.M.Z.: OpenMPBench-an open-source benchmark for multi-
processor based embedded systems. Ph.D. thesis, Master thesis report MCS-2010:
02, School of Computing, Blekinge Institute of Technology, Sweden (2010)

15. Liang, Y., Ding, H., Mitra, T., Roychoudhury, A., Li, Y., Suhendra, V.: Timing
analysis of concurrent programs running on shared cache multi-cores. Real-Time
Syst. 48(6), 638–680 (2012)

16. Ozaktas, H., Rochange, C., Sainrat, P.: Automatic wcet analysis of real-time par-
allel applications. In: OASIcs-OpenAccess Series in Informatics, vol. 30, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

17. Pitter, C., Schoeberl, M.: A real-time java chip-multiprocessor. ACM Trans.
Embed. Comput. Syst. (TECS) 10(1), 9 (2010)

18. Potop-Butucaru, D., Puaut, I., et al.: Integrated worst-case response time evalua-
tion of multicore non-preemptive applications (2013)

19. Rochange, C., Bonenfant, A., Sainrat, P., Gerdes, M., Wolf, J., Ungerer, T., Petrov,
Z., Mikulu, F.: Wcet analysis of a parallel 3D multigrid solver executed on the
merasa multi-core. In: OASIcs-OpenAccess Series in Informatics, vol. 15, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

20. Rosen, J., Andrei, A., Eles, P., Peng, Z.: Bus access optimization for predictable
implementation of real-time applications on multiprocessor systems-on-chip. In:
28th IEEE International Real-Time Systems Symposium 2007, RTSS 2007, pp.
49–60, IEEE (2007)

21. Supercomputing, B.: Merasa: multicore execution of hard real-time applications
supporting analyzability (2010)

22. Wegener, J., Mueller, F.: A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Syst. 21(3), 241–268 (2001)

23. Wegener, J., Sthamer, H., Jones, B.F., Eyres, D.E.: Testing real-time systems using
genetic algorithms. Softw. Qual. J. 6(2), 127–135 (1997)

24. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al.: The worst-case
execution-time problem–overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. (TECS) 7(3), 36 (2008)

25. Wu, L., Zhang, W.: Bounding worst-case execution time for multicore processors
through model checking. In: Proceedings of 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2010), Work-in-Progress Session,
pp. 17–20 (2010)

26. Yan, J., Zhang, W.: Wcet analysis for multi-core processors with shared l2 instruc-
tion caches. In: IEEE Real-Time and Embedded Technology and Applications Sym-
posium 2008, RTAS 2008, pp. 80–89, IEEE (2008)

27. Yip, E., Roop, P.S., Biglari-Abhari, M.: Predictable parallel programming using
PRET-C. Faculty of Engineering, University of Auckland (2010)



Test-Data Generation for Testing Parallel Real-Time Systems 223

28. Yip, E., Roop, P.S., Biglari-Abhari, M., Girault, A.: Programming and timing
analysis of parallel programs on multicores. In: 2013 13th International Conference
on Application of Concurrency to System Design (ACSD), pp. 160–169, IEEE
(2013)

29. Zhang, W., Yan, J.: Accurately estimating worst-case execution time for multi-core
processors with shared direct-mapped instruction caches. In: 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applica-
tions 2009, RTCSA 2009, pp. 455–463, IEEE (2009)



Selective Test Generation Approach for Testing
Dynamic Behavioral Adaptations

Mariam Lahami1(B), Moez Krichen1,2, Hajer Barhoumi1,
and Mohamed Jmaiel1,3

1 ReDCAD Research Laboratory, National School of Engineering of Sfax,
University of Sfax, B.P. 1173, Sfax, Tunisia

{mariam.lahami,hajer.barhoumi}@redcad.org
2 Faculty of Computer Science and Information Technology,

Al-Baha University, Al Bahah, Kingdom of Saudi Arabia
moez.krichen@redcad.org

3 Research Center for Computer Science,
Multimedia and Digital Data Processing of Sfax,

B.P. 275, 3021 Sfax, Sakiet Ezzit, Tunisia
mohamed.jmaiel@enis.rnu.tn

Abstract. This paper presents a model-based black-box testing app-
roach for dynamically adaptive systems. Behavioral models of such sys-
tems are formally specified using timed automata. With the aim of
obtaining the new test suite and avoiding its regeneration in a cost effec-
tive manner, we propose a selective test generation approach. The latter
comprises essentially three modules: (1) a model differencing module that
detects similarities and differences between the initial and the evolved
behavioral models, (2) an old test classification module that identifies
reusable and retestable tests from the old test suite, and finally (3) a
test generation module that generates new tests covering new behaviors
and adapts old tests that failed during animation. To show its efficiency,
the proposed technique is illustrated through the Toast application and
compared to the classical Regenerate All and Retest All approaches.

1 Introduction

Due to increasingly rapid changes in the context, goals, and user requirements
of recent critical software systems, there is a demand to perform automatically
validation tasks at runtime to ensure firstly that existing functionalities have not
been affected by dynamic changes. Secondly, it is essential to verify that new
requirements are fulfilled by the new version of the system.

One of the emerging and promising techniques for testing a software is the
Model Based Testing (MBT) approach. Instead of writing hundred of test cases
manually, the test designer defines an abstract model of the System Under Test
(SUT) and then MBT tool generates automatically a set of test cases from the
model. MBT methods have recently gained increased attention because main-
taining and adapting test cases can be facilitated and also automated [17].

Another technique widely used for testing an evolving software system is the
Regression Testing. Most research and tools perform usually white box regression
c© IFIP International Federation for Information Processing 2015
K. El-Fakih et al. (Eds.): ICTSS 2015, LNCS 9447, pp. 224–239, 2015.
DOI: 10.1007/978-3-319-25945-1 14
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testing at design time [7,16]. Up to our best knowledge, there is a trend to merge
these two techniques to build approaches and tools for black/gray box regression
testing, known as specification-based regression approaches [4,15]. The majority
of those potential solutions use UML diagrams to model SUT behaviors and
deal mainly with selecting test cases from existing test suites specified before
modifications. This is not sufficient because new tests have to be generated and
thus stored test suites need to be updated [5,6].

Following this direction, we provide a selective test generation approach
called TestGenApp, that reduces the cost of adapting and maintaining test suites
covering either modified or newly added behaviors at runtime. Our proposal
ensures that tests cases continue to be consistent and fault revealing even if the
SUT evolves dynamically. It avoids the regeneration of the full test suite by cov-
ering only affected parts of the behavioral model. The latter was specified using
UPPAAL Timed Automata formalism. The well-establish tool UPPAAL Cover
is customized to generate effectively new abstract tests and to adapt failed ones.
To do so, we reuse its expressive approach to specify coverage criteria, called
Observer Automata. To show its efficiency, the proposed technique is illustrated
through the Toast dynamic application [13] and compared to the classical Regen-
erate All and Retest All approaches.

The rest of this paper is organized as follows. Section 2 provides background
material for understanding the research problem. Subsequently, the selective
test generation approach is outlined in Sect. 3. Afterward, its application to
the Toast application is highlighted in Sect. 4. Section 5 draws comparison with
related work in the context of selective regression testing. Finally, in Sect. 6, we
conclude with a summary of paper contributions, and we identify potential areas
of future research.

2 Background

This section provides background material on testing evolvable systems, formal
modeling as timed automata, coverage criteria and automata observers.

2.1 Testing Evolvable Systems

One of the well-known technique used to check the correctness of software after
modification is Regression Testing. As quoted from [8], it “attempts to validate
modified software and ensure that no new errors are introduced into previously
tested code”. This technique guarantees that the modified software is still work-
ing according to its specification and it is maintaining its level of reliability. It is
commonly applied during development phase and not at runtime. Leung et al.
[12] present two types of regression testing. In the progressive regression testing,
the SUT specification can be modified by reflecting some enhancements or some
new requirements added in the SUT. In the corrective regression testing, only
the SUT code is modified by altering some instructions in the program whereas
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Fig. 1. Test classification

the specification does not change. For the above defined types, Leung et al. illus-
trate the same test case classification of the old test suite into three categories
(see Fig. 1a):

– Reusable tests: valid tests that cover the unmodified parts of the SUT.
– Retestable tests: still valid tests that cover modified parts of the SUT.
– Obsolete tests: invalid tests that cover deleted parts of the SUT.

After modifications, new tests can be classified into two classes (see Fig. 1b and
c):

– New specification tests: include new test cases generated from the modified
parts of the specification.

– New structural tests: include structural-based test cases that test altered pro-
gram instructions.

Contrary to regression testing, runtime testing is emerging as a novel solution
for the validation of dynamically evolvable systems. It is defined in Brenner et
al. [3] as an online testing method that is carried out on the final execution
environment of a system when the system or a part of it is operational. It can
be performed either at deployment-time or at service-time. The deployment-
time testing serves to validate and verify the assembled system in its runtime
environment while it is deployed for the first time. For systems whose architecture
remains constant after initial installation, there is obviously no need to retest
the system when it has been placed in- service. On the contrary, if the execution
environment or the system behavior or its architecture has been changed, service-
time testing will be a necessity to verify and validate the new system in the new
situation.

In this work, we merge findings on both specification-based regression testing
and runtime testing with the aim of conceiving a runtime model-based testing
approach. The latter is applied in a cost effective manner whenever the SUT
behavior evolves dynamically.
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2.2 Formal Modeling Using UPPAAL

UPPAAL is a well-established model-checking tool charged with verifying a
given model w.r.t. a formally expressed requirement specification. It uses a pop-
ular and widespread formalism for specifying critical and real-time systems,
called Timed Automata (TA). Indeed, a system is modeled as a network of
timed automata, called processes. A timed automaton is an extended finite-
state machine equipped with a set of clock-variables that track the progress of
time and that can guard when transitions are allowed. In this work, we adopt
the particular UPPAAL style of timed automata. As they have proven their
expressiveness and convenience, behavioral models of both initial system and
the evolved system are expressed using the formal notation bellow:

Definition of Timed Automaton
Let C be a set of valued variables called clocks, and A = I ∪ O ∪ {τ} with

I a set of input actions, O a set of output actions (denoted a? and a!), and
the non-synchronizing action (denoted τ). Let G(C) denote the set of guards on
clocks being conjunctions of constraints of the form c �� n, and let U(C) denote
the set of updates of clocks corresponding to sequences of statements of the form
c := n, where c ∈ C, n ∈ NNN, and ��∈ {�,≤,=,≥,�}. A timed automaton over
(A, C) is a quadruple (L, l0, I, E), where:

– L is a set of locations, l0 ∈ L is an initial location.
– I : L �−→ G(C) a function that assigns to each location an invariant.
– E is a set of edges such that E ⊆ L × G(C) × Aτ × U(C) × L

We shall write l
g,α,u−−−→ l′ when 〈l, g, α, u, l′〉 ∈ E.

Due to space limitations, the semantics of TA as well as the semantics of a
network of TA have not been presented in this paper. Moreover, it is worthy to
note that UPPAAL modeling language extends timed automata with additional
features such as integer variables, urgent locations, and committed locations,
etc. For more details, readers can refer to [2].

It is worthy to note that several restrictions have to be fulfilled in this work
by each timed automaton in the SUT behavioral specification. They have to be
deterministic input enabled output urgent timed automata (DIEOU-TA). For
short these restrictions means that: (i) Two transitions with the same label lead
to the same state, (ii) no delay can be done when an input is enabled, (iii) when
an output is enabled, no input, output, or delay is permitted [10]. Moreover,
we assume that the test specification is given as a closed network of TA that
can be partitioned into one network of TA modeling the SUT behavior, and one
modeling its environment behavior (ENV). Note here that the tester replaces the
environment and controls the SUT via a distinguished set of observable input
and output actions.

2.3 Automata Observer for Specifying Coverage Criteria

A coverage criterion is a specification of items such as locations and edges to be
traversed or visited by the timed automaton. An example of a coverage criterion
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Fig. 2. Edge coverage observer presented in both textual and graphical notations.

is edge coverage which means that a test case should traverse all edges of a given
timed automaton. An item to be traversed or visited is called a coverage item
and can be modeled by an observer. The latter observes the execution of a timed
automaton and accepts when the coverage item is covered by the trace.

As depicted in Fig. 2, an observer automaton can be presented either in graph-
ical or textual notations. It is made of locations and edges. Locations are labeled
with a name and optional variables, and edges are labeled with predicates. Two
special types of locations are identified: the initial location denoted with a black
filled circle, and the accepting location denoted with a double circle. In addition,
an observer can only have one initial location but can reach several accepting
locations. Formally, an observer automaton is a quadruple (Q, q0,Qf ,B) where:

– Q is a finite set of observer locations.
– q0 is the initial observer location.
– Qf ⊂ Q is a set of accepting observer locations.
– B is a set of edges such q

b−→ q′ where b is a predicate based on attributes of
timed automata as variables, edges, locations, etc.

We believe that the use of the observer language simplifies the expression
of coverage criteria as it can be used to specify and combine the most popular
ones such as “all edges”, “all locations”, “all-definition use-pairs”[9], etc. In our
context, this formalism is used to express our own coverage criteria: covering
new items and adapted ones.

3 Selective Test Generation Approach

The proposed selective test generation approach, called TestGenApp, is built
upon three modules as outlined in Fig. 3. Each one is introduced in the following
subsections.

3.1 Model Differencing Module

Model differencing technique is used to detect similarities and differences
between the original model M and the evolved M′ taken as inputs. It gen-
erates as output a colored Mdiff that highlights changed and unchanged ele-
ments. Added locations and transitions are marked in Red, modified locations
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Fig. 3. TestGenApp: selective test generation approach.

and transitions are marked in Yellow, finally unchanged locations and transi-
tions are marked in Green. The colored model includes a new variable called
col initially equal to 1. This variable is updated in response to the performed
modification. If target and source locations or transition labels (guard, update,
synchronization) are newly added and then colored in Red, the col variable asso-
ciated with this transition is multiplied by zero (i.e., col := col ∗ 0). Similarly, if
transition labels, source or target location are colored in Yellow, the col variable
is multiplied by two (i.e., col := col ∗ 2). Otherwise, transition labels, target and
source location are unchanged and so the col variable is multiplied by one (i.e.,
col := col ∗ 1).

Several kinds of changes are taken into account in this work. First of all,
we support clock modification, location addition/removal and transition addi-
tion/removal. Moreover, state modification is considered by changing state
invariant or changing the incoming and the outgoing transitions. Finally, transi-
tion modification is also handled by changing guard, synchronization and update
fields. It is worthy to note that we support elementary as well as complex mod-
ifications.

3.2 Old Test Suite Classification Module

Based on the test classification proposed by Leung et al. [12], the old test suite
issued from the original model M is divided into reusable, retestable and obsolete
tests. Tests that traverse inchanged parts (locations and transitions marked as
green) on the Mdiff model are classified as reusable tests. Tests that cover at
least a removed state or removed transition are classified as obsolete tests and
will be automatically discarded from the new test suite.



230 M. Lahami et al.

We extend Leung et al. work by animating the remaining set of tests. First,
we obtain valid tests called retestabe tests that cover the same coverage items in
the new model and traverse the same paths with possibly updated clock values.
Second, some failed tests are also detected. Generally, they cannot be animated
on the new model because they may traverse altered paths. Thus, they need to be
adapted by regenerating them. The Algorithm 1 is used in this test classification
step. To do so, a new variable called ColY is added to the Mdiff model and it
is used to mark the new reachable transition with the failed test. It will be used
later to generate the adapted test.

Algorithm 1. Test Classification Algorithm
Input: Old test traces T R

A network of Timed Automata TAdiff highlighting unchanged and changed
elements.

Output: Reusable tests TRu.
Retestable tests TRt.

1: BEGIN
2: for each trace in T R do
3: coveredItemsList= get CoveredItems(trace)
4: if (VerifColorGreen(coveredItemsList)= true) then
5: trace ∈ TRu

6: else
7: if (isAnimated(trace,TAdiff )=true) then
8: trace ∈ TRt

9: else
10: trace needs to be adapted
11: the new reachable transition.setUpdate(ColY := 1)
12: end if
13: end if
14: end for
15: END

3.3 Test Generation Module

The used test generation technique is based on model checking. The main idea
is to formulate the test generation problem as a reachability problem that can
be solved with the model checker tool UPPAAL [2]. However, instead of using
model annotations and reachability properties to express coverage criteria, the
observer language is used.

In this direction, we reuse the finding of Hessel et al. [9] by exploiting its
extension of UPPAAL namely UPPAAL CO

√
ER1. This tool takes as inputs a

model, an observer and a configuration file. The model is specified as a network of
1 http://user.it.uu.se/∼hessel/CoVer/index.php.

http://user.it.uu.se/~hessel/CoVer/index.php.
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observer obs (procid P;varid col;varid colY;) {

node edgeN (edgeid, varid) ;

node edgeA(edgeid,varid) ;

rule start to edgeA(K,colY) with K:=edge(P),eval(colY)==1; 

rule start to edgeN(E, col) with E:=edge(P),eval(col)==0 ;

accepting edgeN,edgeA;}

Fig. 4. Covering new and adapted tests with automata observers

UPPAAL timed automata (.xml) that comprises a SUT part and an environment
part. The observer (.obs) expresses the coverage criterion that guides the model
exploration during test case generation. The configuration file (.cfg) describes
mainly the interactions between the system part and the environment part in
terms of input/output signals. It may also specify the variables that should
be passed as parameters in these signals. As output, it produces a test suite
containing a set of timed traces (.xml).

Our test generation module is built upon these well-elaborated tools. The key
idea here is to use UPPAAL CO

√
ER and its generic and formal specification

language for coverage criteria to generate new tests and adapted ones.
As depicted in Fig. 4, we express our own observer that covers only new

behaviors and adapts modified ones. Observer parameters are denoted with cap-
ital letters. The parameters can refer in the model to variables, edges, loca-
tions, variable valuations, etc. In this example, we use the E parameter for an
edge. The observer collects all different edges from the parameter process P .
edge(E) is a predicate which evaluates to true if the observer monitors edge
E of the timed automaton. The evaluation of the col variable to zero indicates
that the current edge is marked as new edge. The rule rule start to edgeN(E,
col) with E:=edge(P),eval(col)==0; formalizes this new edge coverage criterion.
A test sequence satisfies this coverage criterion if when executed on the model
it traverses at least on edge where the col variable is updated to zero. Simi-
larly, if the variable colY is evaluated to one as outlined in the rule rule start
to edgeA(K,colY) with K:=edge(P),eval(colY)==1; this means that the current
edge is marked as modified edge. Thus, the monitored edge can be taken as
accepted covered item by the new generated test sequence.

4 Application to the Toast Case Study

In this section, we describe the application of the presented technique on a case
study in the telematics and fleet management domain called Toast [13]. For this
aim, our prototype has been implemented in Java language. We have used the
UPPAAL model checker, version 4.1.18 for modeling the SUT specification with
timed automata and for checking that the developed models are deadlock free.
Regarding the test generation, UPPAAL CO

√
ER version 1.4 is adopted.
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4.1 Toast Description

Toast is an OSGi2 application used to demonstrate a wide range of EclipseRT
technologies. It provides means to manage and to interact with devices instal-
lable in a vehicle. For the sake of simplicity, the studied scenario covers the case
of emergency notification. The vehicle comprises two devices: an Airbag and a
GPS. If the airbag deploys, an Emergency Monitor is notified. In this case, the
monitor queries the GPS for the vehicle heading, latitude, longitude and speed
(see Fig. 5). The three components in the Toast initial configuration can be mod-
eled by the three UPPAAL timed automata as shown in Fig. 6. In the beginning,
timing constraints are omitted and we focus mainly on synchronization of inputs
and outputs signals between components.

Fig. 5. Initial toast architecture.

When the airbag is deployed (i.e., this internal action is modeled with an
empty label from location 0 to location 1), the Airbag component sends a mes-
sage (via the action em) to the Emergency Monitor and waits for an acknowledge
(an emAck action). In case of a negative replay (modeled by action emNoAck),
the Airbag sends the emergency message again. Afterwards, the Emergency Mon-
itor interacts with the GPS to get vehicle’s latitude, longitude, heading and
speed. To allow the system to come back to its initial state, the Airbag is unde-
ployed (this internal action is modeled with an empty label from location 5 to
location 6). Similarly, it sends a corresponding message to the Emergency Mon-
itor. Notice that the Emergency Monitor depends on both GPS and Airbag but
GPS and Airbag are independent of one another. Also, it can only communicate
with the GPS component.

4.2 Dynamic Toast Evolution

Starting from the basic configuration introduced in the subsection below, new
components and features can be installed at run-time during system operation.
To prove the feasibility of our approach and its efficiency in reducing the test
generation cost, five cases of behavioral adaptations are studied as illustrated in
Table 1.
2 Open Services Gateway initiative.
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Fig. 6. Behavioral models of the initial configuration.

Table 1. Several studied toast evolutions.

Case study evolutions Kind of the
evolution

Templates States Transitions

Case 0:Initial toast
configuration

——– GPS 8 8

Airbag 10 12

Emergency 17 21

Case 1:Case 0 with updated
GPS behavior

Complex (updating
transition labels)

GPS 8 8

Airbag 10 12

Emergency 17 21

Case 2: Case 0 with errors
in data transmission

Complex (adding
states and
transitions)

GPS 16 20

Airbag 10 12

Emergency 25 33

Case 3: Case 0 with timing
constraints

Complex (adding
transitions)

GPS 8 12

Airbag 10 12

Emergency 17 25

Case 4: Case 2 with Back
End Server

Complex (adding
templates)

GPS 16 20

Airbag 10 12

Emergency 29 38

Back End 4 5

Case 5: Case 4 with timing
constraints

Complex (adding
and updating
transitions)

GPS 16 28

Airbag 10 12

Emergency 29 46

Back End 4 5



234 M. Lahami et al.

Fig. 7. The GPSdiff model in case 2.

Case 1: The initial Toast architecture is maintained whereas GPS behavior is
changed with sending bearing3 measure instead of heading measure to the Emer-
gency Monitor. In the new version of the GPS model, getHead? and Head! tran-
sition labels are replaced with getBearing? and Bearing! transition labels. Such
modification is propagated to the Emergency Monitor model, as well. Notice
that for each modified transition the col variable is updated with col := col ∗ 2.

Case 2: The initial GPS behavior is improved with taking into account errors
during data emission to the Emergency Monitor. To handle such problem, the
new version of the GPS component sends vehicle information again in case of
error occurrence. Such modification introduces new states and transitions both
in GPS and Emergency Monitor models.

Due to space constraints, Fig. 7 depicts only the generated GPS model by
the model differencing module. It points out that for each new transition the col
variable is updated with col := col ∗ 0 and for each unchanged transition this
variable is updated with col := col ∗ 1.

Case 3: The initial GPS behavioral model is enhanced with timing constraints.
In fact, we assume that the new GPS version sends each requested vehicle infor-
mation in lapse of time that does not exceed Tprocessing which is equal to 4 time
units. In this case, different transitions are updated and others new transitions
are added to both Emergency Monitor and GPS automata. Figure 8 illustrates
modifications made on the GPS component. As mentioned before, the col vari-
able is updated in response to modifications made on the SUT model.

Case 4: The Toast architecture is evolved while including the new Back End
component [1]. The latter is responsible with collecting information from the

3 Bearing is the direction from the vehicle location to the destination point given in
degree from the north whereas the heading is a direction toward which a vehicle is
(or should be) moving.
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Fig. 8. The GPSdiff model in case 3.

Emergency Monitor. It is a server running entirely on a separate computer and
it listens for the client to report emergencies. The new architecture is outlined in
Fig. 9a. The overall toast behavior is changed and a new template for the Back
End component is introduced as shown in Fig. 9b.

Fig. 9. The addition of Back End template in the toast specification (Case 4).

The main idea is to establish the correctness of the evolved Toast application
in a cost effective manner. This can be done by avoiding the regeneration of the
full test suite and applying our TestGenApp technique as discussed in the next
subsection.

4.3 Selective Test Generation with TestGenApp

As mentioned before, UPPAAL CO
√

ER is used to generate diagnostic traces.
From each diagnostic trace, a test sequence that is an alternating sequence of
concrete delay actions and observable actions, may be obtained simply by pro-
jecting the trace to the environment model, while removing invisible transitions,
and summing adjacent delay actions [9]. The same tool is used to generate test
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Table 2. Comparison between Regenerate All, Retest All and TestGenApp strategies.

Case study evolutions Regenerate All Retest All TestGenApp

Old New Reusable New Retestable Adapted

From Case 0 to Case 1 2 traces 2 0 1 0 0 1

From Case 0 to Case 2 6 traces 2 4 2 4 0 0

From Case 0 to Case 3 6 traces 2 4 0 4 2 0

From Case 2 to Case 4 6 traces 6 2 4 2 0 0

From Case 3 to Case 5 11 traces 6 5 6 5 0 0

From Case 4 to Case 5 11 traces 6 8 0 8 3 0

cases when dynamic evolutions take place. An example of the obtained test
sequence for case 0 is highlighted in the following:

em! emAck? getLat? Lat! getLong? Long! getHead? Head! getSpeed?
Speed! unEm! unNoEmAck? unEm!

Compared to the Regenerate All technique, our proposal reduces the number
of generated traces as shown in Table 2. For instance, instead of generating the
full test suite (6 traces here) when the Toast evolves from Case 2 to Case 4, only
2 traces are newly generated and 4 traces are still valid and cover unimpacted
parts of the model by the evolution. Similarly, the evolution from Case 0 to Case
2 requires the generation of 4 tests and the selection of 2 retestable tests from
the old test suite.

Concerning the Retest All strategy, it consists in re-executing all tests from
the old test suite and generates tests for uncovered behaviors. The main limita-
tion of this approach is that it possibly re-executes obsolete tests. As outlined
in Table 2, when the Toast evolves from Case 0 to Case 1, the two old traces are
re-executed by this approach whereas one of them is failed and requires to be
adapted.

To conclude, our proposal reduces the cost of test generation and gives an
important information about the obtained tests and which parts of the SUT
they cover.

5 Related Work

There has been a spate of interest in how to reestablish confidence in modified
software systems. As one of the key method to improve software quality and
dependability, selective regression testing has been widely used. Three kinds
of approaches are identified in this research area: code-based regression testing
[7,16], model based regression testing [4–6,15] and software architecture based
regression testing [14]. In the first class, Granja et al. [7] discuss two techniques
of code-based regression testing. The first one deals with identifying program
modifications and selecting attributes required for regression testing. Based on
dataflow analysis, the second technique uses the obtained required elements to
select retestable tests. According to the metrics defined in Rothermel et al. [16],
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authors show that their proposal has a good precision, a high generality but
requires further work to attain inclusiveness and efficiency. Contrarily to these
approaches, our work deals with model based regression testing. Such method
has the main advantage to handle test selection and test generation on a higher
abstraction level.

In the second class, we introduce the work of Brian et al. [4] that present a
UML-based regression test selection strategy. By supporting changes in actions
of sequence diagrams and in variables, operations, relationships and classes,
the proposed change analysis approach automatically classifies tests on obso-
lete, reusable and retestable tests. In the same direction, the approach cited
in [6] deals with minimizing the impact of test case evolution by avoiding the
regeneration of full test suites and focusing only on generating the new or the
updated ones. A point in favor this work is the improvement of test classification
based on code analysis proposed by [12]. In fact, authors enable more precise
test status definition based on model dependence analysis. Notably, retestable
tests are animated on the model and can be classified as updated, adapted,
unimpacted, re-executed, outdated or failed tests. Conversely to our approach,
these approaches are based on UML as a semi formal description language to
model system behaviors (namely class, object and statechart diagrams). Ana-
lyzing such various diagrams to identify modification impact can be seen as
a tedious task. Such problem has been resolved by Pilskalns et al. [15]. They
present a regression testing approach based on an integrated model called Object
Method Directed Acyclic Graph (OMDAG) built from class diagrams, sequence
diagrams and OCL expressions. They consider when a path in the OMDAG
changes it affects one or more test cases associated to the path and they clas-
sify changes as NEWSET, MODSET and DELSET. Based on Extended Finite
State Machine (EFSM) models, [5] proposes a safe regression technique relying
on dependence analysis, as well. It supports three types of elementary modifi-
cations of the machine (addition, deletion, modification of a transition). Sim-
ilarly, our approach takes into account such kinds of transition modifications
and improves them by considering also addition, deletion and modification of a
state. Another point in favor our approach is the support of either elementary
or composite modifications.

In the third class, Muccini et al. [14] propose an effective approach called
SARTE: SA-based regression testing. The authors apply regression testing at both
code and architecture levels whenever the system architecture or its implementa-
tion evolve. First , they test the conformance of a modified implementation to a
given software architecture. Second, they test the implementation conformance to
the new software architecture. SA specifications are modeled using Labeled Tran-
sition Systems (LTS). Similar to our proposal, authors utilize a SAdiff algorithm
which compares the behavioral models of both architectures and returns differ-
ences between them. This technique was used to identify tests to rerun covering the
affected paths. This work differs from our in two major ways. First, our approach
deals with model-based black box regression testing. Thus, we assume that code is
not available and we consider that any modification done at the code source level
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is reflected at/in the behavioral model of the SUT. Second, our focus is mainly on
dynamic behavioral adaptations, structural modifications are studied in previous
work [11].

6 Conclusion

This paper described a selective test generation approach for critical and dynam-
ically adaptive systems formally modeled as Timed Automta. First of all, a model
differencing technique was applied to detect similarities and differences between
initial and evolved behavioral models. Moreover, we presented a simple and
flexible technique for specifying coverage criteria using observer automata with
parameters. This technique was adopted to generate in a cost effective manner
new tests and adapt modified ones. The use of UPPAAL as a well-established
model checker and its extension for test generation UPPAAL CO

√
ER makes

our approach more consistent and sound.
Its application to the Toast architecture shows the efficiency of TestGenApp

in reducing the cost of test generation especially when model scale increases. The
comparison of our solution with the Regenerate All and the Retest All strategies
highlighted such efficiency.

As future work, we investigate efforts in improving our methodology and
applying it to more complex and real systems. Also, we aim to conceive several
transformations rules for the mapping of the obtained abstract test suites to
executable TTCN-34 test suites.
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Abstract. Distinguishing Sequences (DS) and Homing Sequences (HS) are used
for state identification purposes in Finite State Machine (FSM) based testing. For
deterministic FSMs, DS and HS related problems are well studied, for both preset
and adaptive cases. There are also recent algorithms for checking the existence
and constructing Adaptive DS and Adaptive HS for nondeterministic FSMs.
However, most of the related problems are proven to be PSPACE-complete,
while the worst case height of Adaptive DS and HS is known to be exponential.
Therefore, novel heuristics and FSM classes where they can be applied need to be
provided for effective derivation of such sequences. In this paper, we present a
work in progress on the minimization of Adaptive DS and Adaptive HS for
nondeterministic FSMs.

Keywords: Nondeterministic finite state machines � Adaptive homing
sequence � Adaptive distinguishing sequence � Novel heuristics

1 Introduction

Distinguishing Sequences (DS) and Homing Sequences (HS) are used for state iden-
tification purposes in Finite State Machine (FSM) based testing [1–3]. A DS identifies
the initial state of the FSM under investigation, while an HS is used to identify the final
state after the sequence has been applied. A sequence is adaptive if the next input to be
applied to an FSM under investigation is chosen based on the previously observed
outputs, and the sequence is preset if the outputs need to be observed only after the
entire sequence applied. The methods to derive preset/adaptive HS/DS are well elab-
orated for complete and deterministic FSMs [3–5]. Even though the length of most of
these sequences is polynomial w.r.t. the number of FSM states, the current complexity
of digital systems and software makes it almost impossible to derive a complete
deterministic behavior of the system integrated into the overall software and/or hard-
ware environment. Moreover, current specifications of telecommunication protocols
and other digital systems include an optionality of output responses under the same
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queries. That is the reason why researchers turn their attention towards special FSM
types, and in particular, nondeterministic FSMs.

A method for deriving a DS for two states of an observable nondeterministic FSM
has been proposed in [6], where the length of this sequence is shown to be exponential
for nondeterministic FSMs. The upper bound on the length of an HS for an observable
nondeterministic FSM is shown to be exponential as well, and this upper bound is
reachable [7]. As for adaptive experiments for nondeterministic FSMs, it has been
shown that the length of a shortest adaptive DS for two states of an observable non-
deterministic FSM with n states is at most n(n – 1)/2 [8]. Whenever such an adaptive
sequence is derived to distinguish m > 2 states of an observable nondeterministic FSM,
the length of this sequence grows exponentially [9]. The problem of checking the
existence of a preset DS is known to be PSPACE-complete even for complete deter-
ministic FSMs [3]. The latter means one cannot directly apply these techniques to
effectively derive test sequences against FSM specifications. That is the reason why a
number of heuristics to decrease such complexity have been proposed. In particular,
various heuristic methods to construct reduced adaptive DS for complete deterministic
FSMs have been proposed in [10]. However, it has been also proven that constructing a
minimal adaptive DS for complete deterministic FSMs is an NP-hard problem [11].
Therefore, novel heuristics need to be provided for effective derivation of adaptive HS
and adaptive DS for nondeterministic FSMs.

In this paper, we focus on two techniques for deriving adaptive DS and adaptive HS
for nondeterministic FSMs. In particular, we present a class of nondeterministic FSMs
for which it is possible to construct an adaptive DS without using any nondeterministic
transitions. We also argue how existing adaptive DS minimization approaches can be
used for such nondeterministic FSMs. As for adaptive HS, we address a method
proposed in [9] that constructs an adaptive HS for an observable nondeterministic FSM
when each state pair is adaptively homing. We discuss how this method can be
improved so that the resulting adaptive HS can be shorter. Therefore, the main con-
tributions of this work in progress are two novel heuristics for effective derivation of
adaptive DSs for nondeterministic FSMs and adaptive HSs for observable nondeter-
ministic FSMs.

The paper is organized as follows. Section 2 contains preliminaries. A heuristic
method for effective adaptive DS derivation for nondeterministic FSMs is given in
Sect. 3 while Sect. 4 presents an approach for minimizing adaptive HS for observable
nondeterministic FSMs. Section 5 concludes the paper.

2 Preliminaries

In this paper, we focus on minimizing adaptive HS and DS for nondeterministic FSMs.
As usual, an FSM S is a 4-tuple ðS; I;O; hSÞ, where S is a finite set of states; I and O are
finite non-empty disjoint sets of inputs and outputs, respectively; hS � S × I × O × S is a
transition relation, where a 4-tuple (s, i, o, s′) 2 hS is a transition. An FSM is complete
if for each pair (s, i) 2 S × I there exists (o, s′) 2 O × S such that (s, i, o, s′) 2 hS.
Otherwise it is called partially specified. If for some pair (s, i) 2 S × I, there exist two
transitions (s, i, o1, s1), (s, i, o2, s2) 2 hS, such that o1 ≠ o2 or s1 ≠ s2 then s is called
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nondeterministic. For a nondeterministic FSM the nondeterminism is observable if
each input/output pair i/o uniquely identifies the successor of each FSM state (if it
exists). Given a state s of s and an input/output sequence α/β, the α/β-successor of state
s is the set of all states that are reached from s via an application of α when an output
reaction β is produced. Note that for an observable FSM s, the cardinality of the α/β-
successor of state s is at most one for any input/output sequence α/β.

A sequence α is a distinguishing (homing) sequence (DS/HS) for the FSM S if after
applying α and observing output reaction β one can uniquely conclude about the initial
(final/current) state of S. The length of preset DS and HS is exponential for nonde-
terministic FSMs, however sometimes this length can be shorter when adaptivity is
used. An adaptive DS/HS can be represented as a tree or as a specific acyclic
single-input output-complete FSM that are called test cases [3, 12].

A number of methods for deriving adaptive DS and HS for nondeterministic FSMs
have been proposed (see, for example [9]). However, the length of the corresponding
sequence in general case remains exponential and thus, novel heuristics need to be
provided for minimizing the length of such sequences.

3 Nondeterministic FSMs with a Deterministic Adaptive DS

For a complete deterministic FSM with n states, it is known that n(n – 1)/2 is the tight
upper bound for the height of an adaptive DS [3]. However, for nondeterministic
FSMs, the height of an adaptive DS is exponential in general. In this section, we
present a class of nondeterministic FSMs for which the height of an adaptive DS is at
most 2n2 – n – 1 and existing algorithms of adaptive DS minimization can be readily
applied.

A transition (s, i, o′, s′) 2 hS is a deterministic transition if for any transition (s, i, o′
′, s′′) 2 hS we have o′′= o′ and s′′= s′. For a given FSM S, we define the determin-
istic projection Sd of S as follows. Sd and S have the same set S of states. For a
transition (s, i, o′, s′) 2 hS, (s, i, o′, s′) 2 hdS, if and only if (s, i, o′, s′) is a deterministic
transition in S. Id and Od consist of the inputs and outputs used in the transitions in hdS.
Intuitively, Sd is the same FSM as S where the deterministic transitions are preserved
but all other transitions are removed. Hence, Sd is a deterministic FSM by definition. It
is easy to see that an adaptive DS for Sd can be directly used as an adaptive DS for S as
well, and it will be a deterministic adaptive DS in the sense that only the deterministic
transitions are used throughout the application of the adaptive DS in S. In the lucky
case that Sd is a complete deterministic FSM, the existence check and the adaptive DS
construction algorithms given in [3] can be directly applied. However, in general, Sd is
a partially specified deterministic FSM. Moreover, in the worst case the transition
relation of Sd can be empty, and in this case, the question of existence of an ADS for
S remains open.

Although there usually is a complexity jump for the algorithms when one considers
partially specified FSMs, this is not the case for the problems related to adaptive DS. In
[13] a polynomial time algorithm is provided to check if a partially specified FSM has
an adaptive DS or not. In this paper, we adapt this algorithm for efficient derivation of
an ADS for a nondeterministic FSM that requires a partial deterministic projection.
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We also improve the upper bound on the length of such ADS compared to the one
given in [13]. In fact, the approach given in [13] is based on constructing a complete
deterministic FSM C(Sd) from a given partially specified deterministic FSM Sd such
that there exists an adaptive DS with the height H for C(Sd) iff there exists an adaptive
DS with height H – 1 for C(Sd). The number of states in C(Sd) is 2n, where n is the
number of states in Sd. Therefore, it is possible to check if there exists an adaptive DS
for Sd (and hence a deterministic ADS for S) in O(pnlgn) time [3], where p is the
cardinality of Id.

If there exists an adaptive DS for C(Sd), one can then use the LY algorithm (the
adaptive DS construction algorithm given in [3]) to construct an adaptive DS. Although
[13] provides an upper bound of π2n2/3 for the height H of the adaptive DS constructed
for C(Sd), using the result in [14], the LY algorithm actually constructs an adaptive DS
with the height at most H = 2n2 – n for C(Sd). Therefore, the height of the adaptive DS
for Sd is at most H – 1 = 2n2 – n – 1.

Note that the LY algorithm does not aim for the minimization of the adaptive DS it
constructs. However, there exist heuristics for the minimization of adaptive DSs with
respect to different metrics (e.g. height, total external path length, etc.) for complete
deterministic FSMs [10]. Since C(Sd) is a complete deterministic FSM, one can
directly use these heuristics in order to construct minimized adaptive DSs for C(Sd),
and hence for the nondeterministic FSM S. Note that S can be nonobservable as well.

4 Minimizing Adaptive HS for Nondeterministic FSMs

In this section, we discuss how to optimize the procedure for deriving an adaptive HS
for an observable FSM S. The procedure is taken from [9] while the complexity of the
related problem is given in [15]. The homing test case derivation strategy is based on
the condition that each state pair of S is adaptively homing. In other words, there exists
a homing test case for S if there exists an adaptive homing sequence for each subset {si,
sj} � S of states of the observable nondeterministic FSM S. A test case Pi,j is a homing
test case for the subset {si, sj} � S of states if for every input/output sequence α/β
defined in Pi,j, the α/β-successor of the subset {si, sj} � S has at most one state.

If there exists a homing test case for the FSM S then the set S is a homing set and the
test case P is a homing test case for the set S or the test case P homes states of the set
S. Otherwise, the set S is not homing. The homing test case for the set S = {s1,.., sn} is
derived iteratively. As mentioned above, Pi,j is a homing test case for the subset (pair)
{si, sj} � S of FSM states. The procedure starts with a homing test case P1,2 for the set
{s1, s2}, then state s3 is added to the subset {s1, s2} � S. Each input/output sequence α/β
that is defined in the test case P1,2 is applied at state s3. If the sequence α/β is defined at
state s3, then the deadlock state q in the test case P1,2 is replaced with a test case Pq,z,
where q is the α/β-successor of state pair {s1, s2}, while z is the α/β-successor of state s3.
All the input/output sequences α/β′ that are defined at state s3 but not defined in the test
case P1,2 are also included into the test case P1,2,3. Proceeding in this way by iteratively
adding the remaining states s4, s5, …, sn, the test case P1,2,...,n is derived.

We note that there exist various homing test cases Pi,j for the same state pair
{si, sj} � S. Therefore, the first optimization step can be to consider a somehow optimal
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test case Pi,j that is chosen for the first state pair and for those test cases Pq,z that are
appended iteratively, when P1,2,...,n is being derived. On the other hand, the length of
the resulting test case can significantly depend on the choice of state sj that is added to
the test case P1,2,...,j–1 . Thus, the second optimization criterion can be on an optimal
choice of the next state sj when the test case P1,2,...,j–1 is already constructed. We further
discuss how these two ideas can be taken into account to effectively derive a test case
P1,2,...,n. We mention that when optimizing the length of the corresponding adaptive
HS, represented as a test case, we focus on optimizing not only the height of the
corresponding tree but also the number of transitions in the acyclic FSM.

The first type of heuristics is related to making an optimal choice between possible
initial state pairs {si, sj} � S, i < j, as well as defining the best homing test case Pi,j for
this pair. As it is shown in [9], the length of the overall homing test case P 1,2,...,

nsignificantly depends even on the first input to be included into the test case P1,2. As
the test case P 1,2,...,j is defined based on the test case P 1,2,...,j–1 , the height/the number
of transitions of it significantly depends on the number of sequences that are defined in
the test case P 1,2,...,j–1 and in state sj that will be added to the root of the corresponding
successor tree. That is the reason why we suggest to choose a pair {si, sj} � S to start
with in such a way that its homing test case Pi,j is a homing test case for some other
state pairs. It is naturally to assume that the more state pairs are ‘covered’ by a homing
test case Pi,j , the better is the resulting test case P1,2,...,n. Therefore, we suggest to
choose the first state pair {si, sj} � S, i < j, such that there exists a homing test casePfor
this pair that homes as much state pairs in S as possible.

The idea behind the second optimization step is the same as in the previous case. In
particular, we suggest choosing the next state sj to be added to a test case P 1,2,...,j–1 in
such a way that the number of input/output sequences that are defined in P 1,2,...,j–1 and
are not defined at state sj would be minimal. This fact can help to reduce the number of
homing test cases Pq,z that have to be appended at each state z, where z is the α/β-
successor of state sj, and q is the α/β-successor of the set {s1, …, sj - 1}. Moreover, as
for each pair of states {q, z} there can exist various adaptive homing test cases, the best
choice of the test case Pq,z can affect the overall height / transition number of the test
case P 1,2,...,n. Therefore, it is also necessary to consider which test case Pq,z should be
chosen for an intermediate state pair {q, z} � S.

We mention that both optimization steps for deriving an adaptive homing test case
P 1,2,...,n need to be thoroughly estimated. On one hand, theoretical investigation on
FSM classes that have shorter adaptive HS need to be elaborated, and on the other,
experimental evaluation on the efficiency of proposed heuristics needs to be performed.

5 Conclusion

In this paper, we proposed two heuristic methods for optimizing the size of adaptive DS
and adaptive HS for nondeterministic FSMs. The topic of such optimization is always
motivated by the fact that the length of such sequences is exponential for nondeter-
ministic FSMs. Moreover, related decision problems on the existence of such
sequences even for the preset case are known to be PSPACE-complete. We note that
this current work in progress only presents the ideas behind optimization criteria and
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optimization techniques to achieve shorter resulting trees for adaptive DS or HS. As a
future work, we plan to perform experimental evaluation over machines of various
types (random, protocol specifications, etc.) to estimate the efficiency of the proposed
techniques.
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Abstract. Software testing is the most crucial phase in software development
life cycle which intends to find faults as much as possible. Test case generation
leads the research in software testing. So, many techniques were proposed for
the sake of automating the test case generation process. State sensitivity parti-
tioning is a technique that partitions the entire states of a module. The generated
test cases are composed of sequences of events. However, there is an infinite set
of sequences with no upper bound on the length of a sequence. Thus, a lengthy
test sequence might be encountered with redundant data states, which will
increase the size of test suite and, consequently, the process of testing will be
ineffective. Therefore, there is a need to optimize those test cases generated by
SSP. GA has been identified as the most common potential technique among
several optimization techniques. Thus, GA is investigated to integrate it with the
existing SSP. This paper addresses the issue on deriving the fitness function for
optimizing the sequence of events produced by SSP.

Keywords: Genetic Algorithm (GA) � State-Sensitivity partitioning (SSP) �
Test case � Sequence of events � Data state

1 Introduction

Amongst software development life cycle (SDLC) phases, software testing is the most
crucial one [1]. It intends to execute the software and find faults as much as possible.
Generally, test case generation dominates the research in software testing while other
research areas include test execution and test oracles. Hence, a number of techniques
were proposed for improving the effectiveness and efficiency of faults detection.
State-sensitivity portioning (SSP) is one of them [2–4].

SSP employs Parnas formal specifications in order to test a module that consists of
one or more access programs, which share the same data structure. The output depends
on the event triggered, input parameters, conditions and actions. Thus, test data for a
module might consist of event sequences (or test sequences) rather than a single event.
For the sake of avoiding the exhaustive testing of a module’s entire states, SSP par-
titions the entire states according to their sensitiveness toward events, conditions and
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actions. Test sequences are selected manually based on all-transitions coverage crite-
rion. However, the sequence of events can be very lengthy and might contain redundant
data states, which makes the testing expensive and relatively ineffective.

In the literature, many optimization techniques have been suggested. One technique
is search techniques [5, 6] and, among them, genetic algorithm (GA) has been iden-
tified as the most common for generating test cases [7]. The success stories of GA
inspired us to adopt GA in our work. Similar to other search techniques, the adoption of
GA requires the derivation of fitness function [8]. Thus, this paper describes the
on-going research that addresses the issue of deriving a fitness function in order to
search within the population of states produced by SSP sequence of events. The
remainder of this paper is organized as follows: an overview of SSP is presented in the
next section; followed by a general overview on GA. Next, the fitness function
application in SSP is being described followed by a case study. Finally, the last section
summarizes the paper along with the conclusion.

2 State-Sensitivity Partitioning (SSP)

A module may consist of one or more access programs that share the same data
structure. Its behavior is depending on the event triggered, the value of input param-
eters and conditions. Consequently, generating test cases for such a module might
involve a large number of data states, which grows exponentially in terms of the
number of program variables. For example, approximately 10^20 tests (2^32 X 2^32)
have to be performed in order to test the correctness of two variables A and B of 32 bit
integers, as in [9]. Hence, it would take more than 30,000 years of testing with the
assumption of performing 10^8 tests per second. Therefore, it is impossible to explore
the space of entire states with limited time resources and memories.

SSP is a test case generation technique for modules [2–4]. The states are partitioned
based on state’s sensitivity towards events, conditions (pre-conditions) and actions
(post-conditions). The goal is to group all states that behave similarly towards access-
programs (events), conditions and actions (either sensitive or insensitive) together.

SSP has six sequential steps, which are: (i) identifying sensitive access programs,
(ii) partitioning states into equivalence classes, (iii) constructing a state transition
model, (iv) selecting test cases based on all-transition coverage criteria, (v) adding the
insensitive events to the end of each selected test case and (vi) applying boundary value
analysis (BVA) technique in order to select the input parameters. Nonetheless, each test
case from the fourth step must be represented by at least one sequence of events.
The SSP sequence of events has to be selected randomly as long as it follows the
specified conditions of the constructed state transition model in step three (3). Below is
an example.

2.1 Example

In order to grasp the idea of SSP, let’s consider the example of circular queue. Circular
queue has three access programs, which are: add(), remove(), and front(). The former
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two access programs are sensitive as they modify the data states during their execution
while the latter is insensitive as it does not modify the data states. According to SSP,
the entire data states are partitioned into equivalence classes based on the number of
identified sensitive access programs. So, the circular queue has four possible partitions.
In the third step, a state transition model is constructed as in Fig. 1.

Once the state transition diagram is constructed, all-transitions coverage criteria
will be used for selecting test cases. Table 1 lists the ten test cases obtained from the
state transition model. Each test case will be represented by at least one sequence of
events. Then, the insensitive events is going to be added to the end of the sequence.
Lastly, the BVA technique is applied in order to determine the value of input
parameter. With the assumption that maximum length of the circular queue is five, here
are some examples of test sequences produced by SSP.

TC1: _.add(1).front()

TC2: _.remove().front()
TC3: _.add(1).add(−1).remove().add(1295644148).add(−1295644148).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(−1).front()

As the SSP sequence of events is selected randomly, any sequence follows the
conditions specified by the state transition model is valid. For example, a sequence of
events for adding an item to a full queue might include adding twenty items; removing
eighteen items, adding fifty more, removing fifty two, adding ten more, removing ten,
adding one more and checking the result. Hence, the sequence of events might be
lengthy and contain redundant data states. The lengthy sequence with redundant states
makes testing expensive and ineffective. Also, there is a redundancy occurs between
two or more test sequences (i.e. sequence of events), where a test sequence is subset
from other sequence(s). Therefore, there is a need to optimize the test suites through
removing redundant data states. Among the available techniques, search techniques are
the most common for obtaining optimized test suites.

Fig. 1. State transition model for circular queue
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3 Genetic Algorithm (GA)

The applications of search techniques in the domain of software testing grew dra-
matically as they save efforts and times. For test cases generation, GA is the most
common amongst all search techniques. It is a population based metaheuristic tech-
nique that follows the theory of natural evolution by Darwin. In GA, the optimal
solutions evolved through applying reproduction and selection operations on popula-
tions over successive generations [10]. The typical GA consists of five repetitive steps
that continue till the stopping criteria is met. The stopping criteria is either finding an
optimum solution or reaching the maximum number of iterations. The GA steps are:
(1) random initialization of population that contains candidate solutions. Each solution
is represented as a chromosome or sequence of variables [11]; (2) evaluation of new
candidate solutions, if the stopping criteria is not met; (3) selection of promising
candidate solutions based on fitness function. Fitness function is used for evaluating the
solution in terms of its ability to solve the problem; (4) crossover; and (5) mutation.

GA performs search in parallel, which leads to fast calculations. Consequently,
software testing leads the GA applications compared with other SDLC phases. This
includes different disciplines such as test cases generation [7, 12], test cases prioriti-
zation within test suites [13], and test suites reductions [11].

However, prior to apply GA for optimizing the test cases, there is a need to derive
the fitness function. Besides, the invocation of each event in the sequence may lead to
different states. Therefore, there is a need to grasp the changes of states and search

Table 1. The test cases for circularqueue program

# P Event Pre-condition Post-condition

1. 1 Add len = 0 dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

2. 1 Remove len = 0 dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

3. 2 Add len = QSIZE dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

4. 2 Remove len = QSIZE dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

5. 3 Add 0 < len < QSIZE –

1
dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

6. 3 Add len = QSIZE – 1 dataQ’[rear’] = x, rear’ = (’rear + 1)%QSIZE,
len’=’len + 1

7. 3 Remove 1 < len < QSIZE dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

8. 3 Remove len = 1 dataQ’[rear’] = x, front’ = (’front + 1)%
QSIZE, len’=’len–1

9. 4 Add len < 0 &&
len > QSIZE

dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len

10. 4 Remove len < 0 &&
len > QSIZE

dataQ’=’dataQ, front’=’front, rear’=’rear,
len’ = ‘len
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within for good solutions to be used in GA next iterations. In the next section, the
derivation of fitness function is described.

4 Fitness Function Application in SSP

Fitness function plays an important role in guiding the search within a population of
solutions. It judges whether a potential solution presents a good candidate and, hence,
has to be used in GA next iterations. The fitness function comes from existing software
metrics followed by several refinements according to the results [8].

Anyhow, SSP sequences of events produced a group of states which are unique and
redundant states. In order to optimize SSP, we aim to remove the redundant states.
There are two types of redundancies: (1) redundancy in test case level and (2) redun-
dancy in test suite level. Therefore, the calculation of fitness function has to take both
types into consideration. We introduce two score namely test case states minimization
(TCSM) and test suite states minimization (TSSM). The fitness function is:

Fitness ¼ TCSM þ TSSM ð1Þ

4.1 Test Cases States Minimization (TCSM)

TCSM aims to remove redundant states on the test case level, such as the states
encountered when trying to add to after reaching the maximum in circular queue or
removing when there is no item to be removed. In order to calculate TCSM, there is a
need to differentiate between unique and redundant states per sequence of events.
A score of TCSM is calculated based on the following equation:

TCSM ¼ USC þ RSC ð2Þ

where USC is the unique states score per sequence of events and RSC is the redundant
states score per sequence of events. Let A be a set of unique states in a sequence of
events. The calculations for USC is shown in the following equation:

USC ¼
XjAj

i¼1

A
MAX

� �

i
¼ 1

MAX
þ 1

MAX
þ . . .þ 1

MAX
ð3Þ

where |A| is the cardinality for set A, which counts the number of unique states in the
sequence of events and MAX is the maximum number of items that can be added to the
data structure. For the calculation of RSC, let B be the set of redundant states in a
sequence of events where B � A and B\A = B. The calculation for RSC as follows:

RSC ¼
XjBj

i¼1

�B
MAX

� �

i
¼ � 1

MAX
� 1
MAX

� . . .� 1
MAX

ð4Þ
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where |B| is the cardinality for set B, which counts the number of redundant states per
sequence of events. Obviously, the score of TCSM can produce a negative value,
which indicates that the sequence is unlikely to be in the GA next generations.

4.2 Test Suites States Minimization (TSSM)

TSSM focuses on removing redundancies between sequences of events in the test
suites. This is due to the fact that some sequences of events are subsets from others. So,
for a set C = {tc1, tc2… tcn} of test cases (tc), the TSSM is calculated as follows:

TSSM ¼ TCO
jCj ð5Þ

where |C| is the cardinality for set C, which counts the number of test cases in the
population and TCO is a test case occurrence, which counts the occurrences of a
specific sequence within the suite. In order to calculate TCO, every sequence (test case)
is considered as an individual set such as: {tc1}, {tc2}, {tcn}. If k is the counter for
counting the occurrence of similar test cases, the sets are compared as follows:

8tcn�1�tcn; k ¼ kþ 1; ð6Þ

5 Case Study

Assume that the following test suite is produced from the SSP technique based on the
circular queue example.

TC1: _.add(1).front()

TC2: _.remove().front()
TC3: _.add(1).add(−1).remove().add(1295644148).add(−1295644148).add(0).add(1).add

(−1).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(−1).front()
TC5: _.remove().remove().front()

To get the fitness, Eq. (1) will be used. However, the values may be greater than or
equal to one. So, there is a need to use the average fitness as follows:

Average Fitness ¼ Fitness
Total Fitness

ð7Þ

where Total Fitness is the summation of all fitness values in the population. Table 2
shows the fitness along with the average fitness for the population above.

The results show that test cases with events close to the maximum number of items
that can be added to the data structure. Hence, TC3 got the highest value followed by
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TC4. Besides, the test cases with redundant events, such as TC5, obtain the lowest
value.

6 Conclusion

The integration of SSP and GA is promising in order to optimize sequence of events.
Prior to any application, there is a need to derive a fitness function that guides the
search for solutions within a population. This is a part of an on-going research which
aims to enhance the effectiveness of test case generation technique for testing a module
with internal memory. We believe that the adoption of GA can improve the effec-
tiveness of SSP to overcome the redundancy issues in SSP and consequently will
produce optimized test cases.
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Abstract. Fuzz testing is an established technique in order to find zero-
day-vulnerabilities by stimulating a system under test with invalid or
unexpected input data. However, fuzzing techniques still generate far
more test cases than can be executed. Therefore, different kinds of risk-
based testing approaches are used for test case identification, selection
and prioritization. In contrast to many approaches that require manual
risk analysis, such as fault tree analysis, failure mode and effect analysis,
and the CORAS method, we propose an automated approach that takes
advantage of an already shown correlation between interface complexity
and error proneness. Since fuzzing is a negative testing approach, we
propose a complexity metric for the negative input space that measures
the boundaries of the negative input space of primitive types and complex
data types. Based on this metric, the assumed most error prone interfaces
are selected and used as a starting point for fuzz test case generation.
This paper presents work in progress.

Keywords: Security testing · Risk-based testing · Fuzz testing ·
Security metrics

1 Introduction

Today’s system are getting more and more complex, becoming systems of sys-
tems, such as Cyber-Physical Systems and Internet of Things. This has several
implications, in particular with respect to the security point of view. Security
relevant vulnerabilities are found and exploited nearly everywhere and have an
impact of 3 trillion dollars on the economy [2]. As systems grow and getting
more complex, the risk for security-relevant faults is also increasing. This is true
for several reasons: complex systems such as Cyber-Physical Systems are a het-
erogeneous network of sensors, actuators and components that process sensor
data and control the actuators. Different transport mechanisms and process-
ing algorithms, e.g. HTTP and SQL, may also lead to vulnerabilities. Complex
interfaces, data types and dependencies between different fields of complex data
types as well as between different parts of an interface are exacerbating such
problems.

Fuzz testing is a technique that tests for faulty input validation mechanism of
a system under test (SUT) and their effects if invalid input data is not recognized
c© IFIP International Federation for Information Processing 2015
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and rejected but processed by the SUT. Input validation mechanisms determine
whether a given value is valid or not in terms of a specification. They specify
the boundaries of the input space for valid data. The complement of the input
space of valid data is the negative input space comprising all invalid values. We
suppose that the more boundaries have to be checked for given data, the higher is
the risk of a faulty implementation of the corresponding validation mechanisms.

The rest of this paper is organized as follows: Sect. 2 presents related work
with respect to metrics for vulnerabilities that supports our hypothesis. Section 3
describes the different elements our metric is composed of. Since we propose to
use this metric as a selection criterion for fuzz testing, we describe in Sect. 4 how
this could be achieved. Section 5 presents first results from the MIDAS project
and Sect. 6 concludes with an outlook.

2 Related Work

There are several investigations on complexity of code and its error proneness.
This includes vulnerabilities as well. Corresponding metrics can be distinguished
whether they are based on source code, code changes or interfaces.

Shin et al. [7] employed a combination of different code complexity, code
churn, and developer metrics in order to predict vulnerabilities and vulnerable
source code files, built prediction models using logistic regression and showed
their prediction capabilities on the Mozilla Firefox web browser and the Linux
kernel. Their goal was to reduce the effort for code inspection and testing.

Chowdhury and Zulkernine [6] presented a framework for vulnerability pre-
diction based on complexity, coupling, and cohesion metrics applied to source
code. They built vulnerability predictors employing C4.5, random forest, logis-
tic regression, and naive-Bayes classifier. A vulnerability prediction accuracy of
74 % has been achieved by this approach.

Cataldo et al. [5] showed that there is not only a correlation between source
code based metrics and vulnerabilities but also between interface complexity and
error proneness. Since he considered only errors that occurred for systems in the
field, this correlation is not only of statistical but also of practical significance.
Cataldo employed the metrics interface size and operation argument complexity
that were used by Bandi et al. [3]. Operation argument complexity was dependent
of the type of the operation’s arguments. A constant value is assigned to each
type, e.g. 0 is assigned to Boolean, 2 to Real, and 6 to Record, Struct, and
Objects. The operation argument complexity is determined by the sum of the
complexity of each argument’s type [3]. The interface size is defined the product
of the number of parameters and the sum of their sizes (operation argument
complexity).

3 Negative Input Space Complexity

The works of Cataldo [5] and Bandi [3] form the basis for a negative input space
complexity suitable for security testing. In contrast to Shin [7] and Chowdhury [6],
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the metrics used by Cataldo do not require access to source code but only to the
interfaces while preserving a correlation to the error proneness. Thus, this cor-
relation is appropriate for black box approaches. Therefore, we call such metrics
black box metrics.

We aim at using black box metrics in order to assess the risk for a vulner-
ability within an implementation of an interface. Since there is a correlation
between interface complexity, operation argument complexity and error prone-
ness, we suppose this correlation holds true for security-relevant errors as well.

We would like to exploit the supposed correlation for prioritization of secu-
rity test cases generated by using data fuzzing techniques and to select types
as a starting point for fuzzing. Data fuzzing techniques inject invalid or unex-
pected input data to a system under test in order to reveal security-relevant
implementation flaws based on missing or faulty input validation mechanisms
[4]. Semi-valid input data is generated to test each input validation mechanism
separately in order to ensure that each constraint that must be hold by valid
input data is correctly implemented. Our presumption is: The more constraints
apply for an input date of a certain type, the higher is the chance that one of
these validation mechanism is faulty.

The negative input space of a certain type is determined by the boundaries
of the positive input space comprising all valid values. The boundaries between
the positive and negative input space is specified by the constraint a valid input
data has to respect. Therefore, the negative input space metric is expressed with
respect to these constraints.

Hypothesis: A high negative input space complexity is an indicator for a
higher risk of a faulty implementation of an input validation mechanism.

However, given the fact that there is a faulty implementation of an input
validation mechanism, there may be two cases. On one hand, the validation
mechanism is too loose, i.e. an actually invalid input date is considered to be
valid. Such a situation may pose a security-relevant fault, i.e. a vulnerability. On
the other hand, the validation mechanism may be too strict and reject actual
valid values assuming that they are invalid. This may constitute a functional
error. Whilst the focus of this work is on the first case, it may also have an
impact on assessing the functionality of a system considering the second case.

Since our metric is based on the constraints for valid input data, we have to
carefully investigate the different kinds and the structure of them and how they
may be assessed by the metrics.

Basically, we can distinguish two kinds of separations between valid and
invalid input data: static and dynamic boundaries. A static boundary is defined
by an expression that does not contain any variable despite that one whose value
shall be decided whether it is valid or not. Considering x > 5 as a constraint
for valid values. x is the variable whose valid range is defined to be all values
greater than 5. Obviously, such a constraint is quite easily implemented and
there is only very little chance for a faulty implementation of a corresponding
input validation mechanism. However, considering as input type a string, there
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may be a lot of such constraints that has to be tested in order to decide whether
a given value is valid leading to a higher risk of a faulty validation mechanism.

In contrast, a dynamic boundary depends on other variables, e.g. parts of a
given input data, in order to determine if a provided data is valid. Considering a
calendar date, the lower boundary of the day value is static, i.e. day > 0, while
its upper boundary is dynamic because it depends on the month:

(day < 29 ∧ month = 2) ∨
(day < 31 ∧ (month = 4 ∨ month = 6 ∨ month = 9 ∨ month = 11)) ∨
(day < 32 ∧ (month = 1 ∨ month = 3 ∨ month = 5 ∨ month = 7 ∨
month = 8 ∨ month = 10 ∨ month = 12))
This boundary is dynamic, i.e. it is a different value depending on the value

of another variable, the month. The implementation of an appropriate input
validation mechanism is more error prone than one of a static boundary because
another variable has to be evaluated. Obviously, the above-noted expression
is not correct because leap years are not yet considered. Considering leap years
increases the complexity of the expression because additional logical clauses have
to be added that take the year variable into account. On the whole, the validity
of the day number depends on two other variables (month and year) and on a
complex expression that specifies four boundaries (28, 29, 30, and 31 may be the
upper boundary of a valid day number).

Until now, the metric shall take into account the following aspects: whether
a boundary is static or dynamic, the number of different boundaries, and on how
many variables a dynamic boundary depends on.

The complexity of the expression for a boundary does also have an impact on
the complexity and may increase the error proneness of the implementation. The
complexity of the boundary expression can be measured using the corresponding
abstract syntax tree that depends on its height. This is the fourth aspect that
shall influence the metrics. A first approximation of the metric is defined as
follows:

|bstat| +
|bdyn|∑

i=1

|varsi| · heightAST (1)

where |bstat| denotes the number of static boundaries, i.e. boundaries that
do not depend on any other variable as for instance day > 0,

|bdyn| denotes the number of dynamic boundaries, i.e. boundaries that do
depend on other variables, e.g. 28, 29, 30, and 31 for a day,

|varsi| denotes the number of variables on which a dynamic boundary
depends, e.g. 2 for the day its dynamic boundaries that depends on month and
year,

heightAST denotes the height of the abstract syntax tree of the expression of
a dynamic boundary, e.g. 1 for the expression (day < 29∧month = 2), and 2 for
the expression (day < 31∧(month = 4∨month = 6∨month = 9∨month = 11)).

The correct implementation of an input validation mechanism for a static
boundary is rather easy to implement, we set it to one, resulting in a complex-
ity that depends on the number of static boundaries |bstat|. For each dynamic
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boundary, we determine its complexity by the number of variables it depends
on (|varsi|) and the complexity of its expression in terms of the height of the
expression’s abstract syntax tree (heightAST ). We use the sum of the complexity
of all boundaries as metric of the negative input space complexity.

4 Using the Metric as Selection Criterion for Fuzz
Testing

The metric described above presents an approach to assess the proneness of
the implementation of an interface for being faulty in terms of input validation
and thus, for potential vulnerabilities. The easiest way to use this metric is to
perform a prioritization of testing efforts based on decreasing metric score. Of
much more interest would be to find a threshold of the complexity metric beyond
the most implementations, e.g. 80 percent, are faulty. Of course, this threshold
may depend on other factors such as the programming language. Another aspect
would be whether the interface size by Bandi et al. [3] is still of statistical
significance when being based on the presented metric.

5 Examples from the MIDAS Project

Within the MIDAS European research project [1], we are currently building a
test platform on the cloud for testing of service-oriented architectures. As part of
this project, we are implementing different fuzzing techniques in addition to the
metric presented above. Our joint input model is a Domain Specific Language
(DSL) based on Unified Modeling Language (UML) and UML Testing Profile
(UTP) which already provides mechanics for defining fuzzing operators for test
cases.

Within the project, we are working together with industrial partners. One is
from the logistics domains. Its web services are implementing the Global Stan-
dards One (GS1) Logistics Interoperability Model (LIM)1. It provides a large
number of different types specified using XML schema.

We parsed the type specifications and their constraints and calculated a few
complexity scores depicted in Table 1. The first type String80Type is a simple
string with a length restriction of at least one character and at most 80. The
calculated score is determined by the number of boundaries, in this example 2,
one for the lower bound and one for the upper bound. The remaining two types
are of interest because the type validity is specified by a regular expression. In
order to determine their complexity score, we resolve predefined character classes
and evaluate the different number of character ranges as well as quantifiers. The
difference between the two types GIAIType and GRAIType results from the
predefined character range \d that comprises many more than the Arabic digits
and thus, are constituting an interesting starting point for fuzz testing.
1 http://www.gs1.org/lim.

http://www.gs1.org/lim
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Table 1. Complexity Score Examples from GS1 LIM

Type name Expression Complexity score

String80Type length ≥ 1 ∧ length ≤ 80 2

GIAIType [-!”&’()*+,./0–9:;<=>?A–Z a–z]4,30 27

GRAIType \d{14}[-!”&’()*+,./0-9:;<=>?A–Z a–z]4,30 102

6 Outlook

Within the MIDAS project, we will validate the metrics using our pilots from the
Logistics domain and the Healthcare domain, using HL7-based web services and
thus, a complex type system as well. We will adjust the metric based on our expe-
riences and are considering also different aspects, such as the different number of
constraint types, e.g. regular expressions and simple constraints, e.g. the length
constraints. Investigating a threshold beyond that components, interfaces, and
types shall be selected for fuzzing testing is a second task of importance. A com-
parison with other metric-based vulnerability prediction frameworks described
in Sect. 2 can be achieved by applying the metric to the Mozilla Firefox web
browser.
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Abstract. Communications network operators are supposed to provide high
quality network service at low cost. Operators always monitor the amount of
traffic and decide equipment investment when the amount exceeds a certain
threshold considering trade-offs between link capacity and its utilization. To find
the proper threshold efficiently, this paper proposes a practical threshold defi-
nition method which consists of fine grained data collection and computer
simulation. We evaluate the proposed method using commercial traffic data-set.
The results show the proper timing for the equipment investment.

Keywords: Capacity planning � Traffic monitoring � Traffic load testing �
Queuing simulation

1 Introduction

The largest mission for communications network operator is to provide high-quality
network service at low cost, but there always exists trade-off between quality and cost.
To ensure quality of network service, it is crucial to keep traffic load of the link below a
certain threshold level and to upgrade the link capacity immediately after the load
exceeds the threshold. From the viewpoint of the capital expenditure, on the other hand,
this threshold value should be set to high so that traffic can be accommodated into the
link as much as possible. Thus finding the appropriate threshold value is the main effort
for capacity planning.

Traffic load is typically observed with a monitoring tool such as MRTG [1] (Multi
Router Traffic Grapher) in terms of average volume during several minutes, because
watching traffic load with finer granularity requires computing resources. Considering
practical use, the threshold mentioned above should be represented as the ratio of
average traffic volume in minutes to the original link capacity. For example, the
threshold would be 80 % if five-minute average of 800 Mbit/s is the maximum load for
a certain GbE (Gigabit Ethernet) link so as not to degrade quality. However, averaging
through minutes masks information about burstiness of traffic on each link. In the case
of bursty traffic where the difference between the instantaneous peak and several-
minute average is large, probability of packet loss would be high compared to the case
of traffic where such the difference is small even though average loads in minutes are
equivalent. Thus capacity for links with bursty traffic should be upgraded earlier than
links with not-bursty traffic. A lot of past work addressed characterizing traffic
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burstiness [2–6], but there are no generalized models which can be applied to indi-
vidual network operating and/or planning task because network structure, network
usage, and applications on network are quite diverse nowadays.

For the purpose of obtaining an appropriate threshold of upgrading capacity for
each link, we propose a practical method to evaluate traffic load considering its
burstiness while satisfying the target level of packet loss ratio. Furthermore, we also
evaluate this method using commercial traffic data-set in an operator’s network.

2 Proposed Method

There are two challenges to be addressed in this study. One is to comprehend the
burstiness about the traffic on the target link and the other is to calculate the threshold
for upgrading capacity considering burstiness. Thus the proposed method consists of
(1) collecting data about inter-packet arrival time and packet size for several minutes on
the target link and (2) evaluating the burstiness of the collected data and to calculate the
threshold value using computer simulation.

(1) Data collection

Burstiness of traffic cannot be estimated from five-minute average load where
operators usually observe. To show that, we select four data-sets which were observed at
two different points and on two different dates. Figure 1 shows the data-sets. They are
hereinafter referred to as Data 1, Data 2, Data 3 and Data 4. All data-sets describe traffic
load on Link A or Link B in terms of bit/s for five minutes. Note that X-axes of all
figures indicate 0 to 300 s. Each of Link A and Link B belongs to different commercial
network. Traffic load during five minutes of Data 1 and Data 3 are nearly equal to that of
Data 2 and Data 4, respectively. The normalized five-minute volumes of Data 1 through
Data 4 are 1.003, 1.000, 1.210 and 1.223, respectively. Note that Y-axes of all figures
are in the same scale. We also show three kinds of granularity of each data-set, which
are one-millisecond, one-second and five-minutes. For evaluation of burstiness, the
proposed method obtains packet-by-packet data. Note that this is only for deciding the
threshold and observing fine grained data is not required for daily operation.

(2) Computer simulation

The simulation solves the least required link capacity under the given conditions
regarding target packet loss ratio and buffer size when traffic pattern is provided as
input. The input data in this study is time-series data describing a pair of inter-arrival
time and length of each packet, which are extracted from Data 1 through Data 4. The
size of each input data for the simulation ranges from around 70 Mbytes to 130 Mbytes.
The least required capacity corresponds to the value of the threshold discussed so far.
The notations of R, B, X, m and p are output rate from the queue, buffer size, input
traffic to the queue, input mean rate to the queue and target packet loss ratio, respec-
tively. In the simulation, an event will be processed each time the packet #n (n = 1,…,
N) arrives at the queue. Note that X consists of N packets. We define tn, ln and Q[n] as
the time when the packet #n arrives, the length of the packet #n and the queue length at
the time tn, respectively. Figure 2 represents the relationship among the notations.
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According to Eq. (1), Q[n] will be updated each time n is increased, which means a
packet arrives at the queue. This process will continue until n reaches N.

Qtmp ¼ Q n� 1½ � � R � tn � tn�1ð Þ n ¼ 1; 2; . . .;Nð Þ

Q n½ � ¼ Qtmp þ ln if Qtmp þ ln\B
� �

Qtmp otherwiseð Þ

(

Nloss ¼ Nloss if Qtmp þ ln\B
� �

Nloss þ 1 otherwiseð Þ

�
ð1Þ

(a) 1 msec (b) 1 sec (c) 5 min

Data 1 (Link A)

(a) 1 msec (b) 1 sec (c) 5 min

Data 2 (Link B)

(a) 1 msec (b) 1 sec (c) 5 min

Data 3 (Link A)

(a) 1 msec (b) 1 sec (c) 5 min

Data 4 (Link B)

Fig. 1. Traffic volume during five minutes

Buffer size: B

Output rate: RInput mean rate: m

Target loss ratio: p

Queue length:Q[n]

Input process: X

Fig. 2. Notations of the simulation.
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where Nloss describes the number of packet losses during the simulation. Figure 3
shows an example of queuing process. In this example, packet #n enters into the queue
but packet #(n + 1) is dropped. To calculate the least required capacity meeting the
packet loss ratio p, the following steps are performed. Such the capacity is denoted as
Copt and we employ a bisection method to find the value of Copt for this study.

Step 1
Determine p and B based on the operation policy. Calculate the value of m of a

data-set X we focus on. Determine Clow and Chigh for initial values of R. We used
Clow = m and Chigh = 10 m as the initial values, respectively. In addition, dC should be
determined as the terminal condition. In this simulation, we employ 100 kbit/s as the
value of dC.

Step 2
Perform the queuing simulation based on Eq. (1) in the both cases of Clow and

Chigh. The values of Nloss for both cases are obtained through the simulation. Note that
the simulation will be terminated, if Nloss exceeds p·N during the simulation.

Step 3
Update Clow and Chigh by using a bisection method [6]. If Nloss/N > p, Clow is set to

(Clow + Chigh)/2. In the same manner, if Nloss/N < p, Chigh is set to (Clow + Chigh)/2.
Figure 4 shows the conceptual diagram of the bisection method for this simulation.

Timetn-1

ln

R (tn-tn-1)

tn

Q[n-1]
Q[n]

Queue length

…

B

R (tn+1-tn)

tn+1

ln+1

Q[n+1]

Packet #(n+1) is dropped.

.

.

Fig. 3. Example of simulation process.
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Fig. 4. Bisection method for the simulation.
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Step 4
Repeat Step 3 until Chigh – Clow < dC. Then the value obtained is Copt. We define ρ

as m/Copt, which is the key indicator for capacity planning. This is because the value
of ρ represents maximum allowable ratio of traffic load to meet the target quality for the
link.

3 Simulation Result and Discussion

Figure 5 shows the result of the simulation using Data 1 through Data 4. In the
simulation, buffer size B for each simulation is set to m multiplied by 1 and 10 ms. This
implies that maximum delay of the buffer is around 1 or 10 ms. We observe the
significant difference regarding ρ between Data 1 and Data 2 although the values m are
nearly equivalent as mentioned before. This is also applied to between Data 3 and Data
4. Since each of Data 1 and Data 3 is bursty compared to each of Data 2 and Data 4
respectively as intuitively confirmed in Fig. 1, the difference of ρ is found to depend on
the burstiness of the traffic. Furthermore ρ of Data 1 is quite close to that of Data 3 and
this relationship is applied to between Data 2 and Data 4. This suggests that the degree
of the burstiness should be dependent on the link we observed. In other words, average
volume do not have a large impact on the value of ρ. In addition, we confirm the target
packet loss ratio has a considerable impact to the value of ρ. This targeting is left to a
policy of the trade-off between quality and investment. To make a right decision for
operators, the obtained values of ρ are quite beneficial. Furthermore, computing time
required to obtain the results is important from the practical viewpoint. In this simu-
lation, it takes about 10 to 20 min to complete a simulation to obtain one value of ρ
corresponding to one point in Fig. 5.

There are not purely theoretical methods to calculate the value of ρ, because ρ is
determined by quite many factors. The possible factors affecting ρ are the number of
nodes where the traffic goes through, services and applications generating traffic,
customers where the network is targeted for, and so on. This paper, however, does not
focus on these factors because these factors themselves are not so important from the
viewpoint of practical capacity planning. The largest interest for practitioners is “when
do I need to increase the capacity?”. The answer is when the observed mean rate

(a) Buffer size is 10ms (b) Buffer size is 1ms.
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Fig. 5. Simulation results regarding maximum allowable ratio of traffic load ρ.
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reaches original link capacity C multiplied by ρ. Since the mean rate is able to be
predicted using conventional techniques of time-series analysis, the appropriate timing
for enhancement of capacity can be easily estimated. If a practitioner collects some
datasets on a certain link and calculates ρ corresponding to each dataset, the lowest
value of ρ should be applied to the link against the unexpected excessive load while it
depends on operator’s policy. Note that we assume that the value of ρ of the future,
which is the time when total traffic volume increases, should not be significantly
changed. Figure 5 supports this assumption.

4 Conclusion

While research related to burstiness of traffic have been studied in these twenty years,
network operators might still rely on their experienced knowledge. Since real traffic is
quite diverse, there are no generalized models which can apply to all kinds of traffic.
Thus we were eager to fill the gap between research and practice. This paper proposed a
practical evaluation method for network capacity planning. We applied the proposed
method to commercial traffic data which were observed at two different points and on
two different dates. Since the proposed method is quite specific and concrete, network
operators can easily apply this method to their work. We believe the contribution of this
paper helps them to improve quality of their work.
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