
Formal Verification of the Pastry Protocol
Using TLA+

Tianxiang Lu(B)

Department of Computer Science,
Technische Universität Darmstadt, Darmstadt, Germany

contact@tiit.lu

Abstract. As a consequence of the rise of cloud computing, the reliabil-
ity of network protocols is gaining increasing attention. However, formal
methods have revealed inconsistencies in some of these protocols, e.g.,
Chord, where all published versions of the protocol have been discovered
to be incorrect. Pastry is a protocol similar to Chord. Using TLA+, a
formal specification language, we show that LuPastry, a formal model of
Pastry with some improvements, provides correct delivery service. This
is the first formal proof of Pastry where concurrent joins and lookups are
simultaneously allowed. In particular, this article relaxes the assumption
from previous publication to allow arbitrary concurrent joins of nodes,
which reveals new insights into Pastry through a final formal model in
TLA+, LuPastry. Besides, this article also illustrates the methodol-
ogy for the discovery and proof of its invariant. The proof in TLA+ is
mechanically verified using the interactive theorem prover TLAPS.

Keywords: Formal verification · Interactive theorem proving · Network
protocols

1 Introduction

1.1 The Pastry Protocol

Pastry ([16], [3], [4]) is a structured P2P algorithm realizing a Distributed Hash
Table (DHT , by [5]) over an underlying virtual ring. The network nodes are
assigned logical identifiers from an ID space of naturals in the interval [0, 2M −1]
for some M . The ID space is considered as a ring1 as shown in Fig. 1, i.e. 2M −1
is the neighbor of 0.

The IDs are also used as object keys, such that an overlay node is respon-
sible for keys that are numerically close to its ID, i.e. it provides the primary
storage for the hash table entries associated with these keys. Key responsibility
is divided equally according to the distance between two adjacent nodes. If a
node is responsible for a key we say it covers the key.

The most important sub-protocols of Pastry are join and lookup. The join
protocol eventually adds a new node with an unused network ID to the ring.
1 The ring here does not refer to algebraic group structure with operation.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 284–299, 2015.
DOI: 10.1007/978-3-319-25942-0 19



Formal Verification of the Pastry Protocol 285

Fig. 1. Pastry ring.

The lookup protocol delivers the hash table entry for a given key. This paper
focuses on the correctness property CorrectDelivery (mentioned as dependability
in algorithm paper [3]), requiring that there is always at most one node respon-
sible for a given key. This property is non-trivial to obtain in the presence of
concurrent join or departure of nodes, i.e., churn. To cope with that, each Pastry
node maintains a local state of a set of nodes called leaf sets, as shown in Fig. 1,
consisting of a left set and a right set of the same length, which is a parameter of
the algorithm. The nodes in leaf sets are updated when new nodes join or failed
nodes are detected using a maintenance protocol. A Pastry node also maintains
a routing table to store more distant nodes, in order to achieve efficient routing.

In the example of Fig. 1, node a received a lookup message for key k. The
key is outside node a’s coverage. Moreover, it doesn’t lie between the leftmost
node and the rightmost node of its leaf sets. Querying its routing table, node
a finds node b, whose identifier matches the longest prefix with the destination
key and then forwards the message to that node. Node b repeats the process and
finally, the lookup message is answered by node c, which covers the key k. In
this case, we say that node c delivers the lookup request for key k.

1.2 The Methodology

TLA+ by [6], is a formal specification language based on untyped Zermelo-
Fraenkel (ZF) set theory with choice for specifying data structures, and on the
Temporal Logic of Actions (TLA) for describing system behavior. It is chosen
to analyze and verify the correct delivering and routing functionality of Pastry,
because it provides a uniform logic framework for specification, model-checking
and theorem proving. It fits protocol verification quite nicely, because its concept
of actions matches the rule/message-based definition of protocols. In addition,



286 T. Lu

Informal Description

Modeling in TLA+

Static
model

Properties Dynamic
model

Counter
Examples

Model Checking
using TLC

Valid in
small instances

Theorem Proving
using TLAPS

Relax
Assumptions

Proof

Fig. 2. Verification approach using TLA+.

the specification language is straightforward to understand with basic mathemat-
ics and classical first-order logic. Furthermore, the convenient toolbox available
in [7] includes now both the TLC model checker and the TLAPS proof system.

Fig. 2 illustrates the complete process of this framework which includes mod-
eling, model checking and theorem proving.

Starting with an informal description of Pastry in [3], the first task is to model
the requirements of the system using TLA+. This paper distinguishes different
kinds of TLA+ model as properties that specify requirements using logic formulas
(e.g. CorrectDelivery), the static model that defines the data structures (e.g. the
virtual ring of IDs, the leaf sets etc.), and the dynamic model that describes the
behavior using actions of TLA+.

The challenges here include modeling Pastry on an appropriate level of
abstraction, filling in needed details in the formal model that are not contained in
the published description of Pastry, and formulating the correctness property of
Pastry. These challenges motivate a deeper understanding of the protocol using
the model checker TLC.

The model is validated using TLC in an iterative process, which helped
to discover unexpected corner cases to improve the model and to ensure that
the system has at least some useful executions. For example, accessibility prop-
erties are model-checked by checking that the negation is false. To avoid the
state explosion problem, only a restricted number of instances are verified using
TLC. Upon finding counterexamples, the model is analyzed and reformulated.



Formal Verification of the Pastry Protocol 287

Upon successful validation or in the absence of counterexamples after running
it for a considerable long time, the model is then verified by TLA+ proofs.

Since the previous publications [11] and [12] have already included the model
checking result, we omit it here to save space for illustrating theorem proving
details.

The proof of the Pastry join protocol contains an induction part, where invari-
ants need to be found and formulated. Discovering the invariants is the most
subtle part of the theorem proving approach. On the one hand, it should be gen-
eral enough to imply the target property CorrectDelivery . On the other hand,
it should be specific enough to be provable using itself as induction hypothesis.
In order to prove the safety property CorrectDelivery , we assume no departure
of nodes and that an active node can help at most one node to join at a time,
which relaxes the previous assumption we made in [13].

The model checker TLC is applied again to debug the formulation errors
or discover invalid hypothetical invariants at an early stage. The invariant is
extended during the process of being proved. TLAPS is used to write the proof
manually and sometimes to break it down into small enough pieces so that it
can be checked automatically using the back-end prover. The final verification
result is a TLA+ proof, in which each proof step is automatically verified using
TLAPS.

2 Modelling the Concurrent Join Protocol of Pastry

As illustrated in Fig. 2, the formal model of Pastry consists of a static part speci-
fying the underlying data structures and a dynamic part specifying the behaviour
of the nodes. Due to the page limit for this paper, the formal description of all
the dynamic actions [10] are omitted here.

2.1 Static Model

The static model of Pastry consists of definitions of data structures and opera-
tions on them. A data structure is always a boolean value, a natural number, a
set, a function or a complex composition of them. An operation on a data struc-
ture is always a functional mapping from a given signature of data structures to
a returned value, which is again a data structure.

The static model of Pastry remains the same as in [12]. The distance between
two nodes on the ring is modeled with clockwise distance CwDist(x, y), which
returns how many identifiers lie within the region from node x to y in the clock-
wise direction. The absolute value AbsDist(x, y) gives the length of the shortest
path along the ring from x to y. The routing table has a rather complex data
structure, which is used for efficient routing. Since this article focuses on the
safety property, details of the routing table are omitted here. The simplified
routing table is a set of nodes (RTable Δ= [I → subset I]) and the initial
routing table InitRTable is an empty set.



288 T. Lu

Leaf Set. The leaf set data structure ls of a node is modeled as a record (using
syntax [component1, component2]) with three components: ls.node, ls.left and
ls.right (a dot is used to access a component of a record in TLA+). The first
component contains the identifier of the node maintaining the leaf sets, the other
two components are the two leaf sets to either side of the node. The following
operations access or manipulate leaf sets. Here we reuse the arithmetic operations
(e.g. ≥, ÷) on natural numbers (I ⊆ N).

The operation AddToLSet(delta, ls) adds the set of nodes d into left and right
sides of the leaf sets ls. Due to the space restriction, its complex formal definition
is omitted here and can be found in [10].

Definition 1 (Operations on leaf sets (ls ∈ LSet, delta ∈ SUBSET I))

LSet Δ= [node ∈ I, left ∈ subset I, right ∈ subset I]
GetLSetContent(ls) Δ= ls.left ∪ ls.right ∪ {ls.node}

EmptyLS (i) Δ= [node �→ i, left �→ {}, right �→ {}]
LeftNeighbor(ls) Δ= if ls.left = {} then ls.node

else choose n ∈ ls.left : ∀p ∈ ls.left :
CwDist(p, ls.node) ≥ CwDist(n, ls.node)

RightNeighbor(ls) Δ= if ls.right = {} then ls.node
else choose n ∈ ls.right : ∀q ∈ ls.right :

CwDist(ls.node, q) ≥ CwDist(ls.node,n)

LeftCover(ls) Δ= (ls.node + CwDist(LeftNeighbor(ls), ls.node) ÷ 2)%2M

RightCover(ls) Δ= (RightNeighbor(ls) +
CwDist(ls.node,RightNeighbor(ls)) ÷ 2 + 1)%2M

Covers(ls, k) Δ= CwDist(LeftCover(ls), k)
≤ CwDist(LeftCover(ls),RightCover(ls))

Messages. Messages are defined as records consisting of their destinations and
the message content: DMsg Δ= [destination ∈ I,mreq ∈ MReq ]. The message
content (MReq) consists of different types. The actions in the dynamic model
are mainly designed to handle these messages. Therefore, the different message
types are formally defined here to provide better understanding of the dynamic
models explained later in Section 2.2.

Definition 2 (Message Types)

Look Δ= [type ∈ {“Lookup”},node ∈ I]
JReq Δ= [type ∈ {“JoinRequest”}, rtable ∈ RTable,node ∈ I]
JRpl Δ= [type ∈ {“JoinReply”}, rtable ∈ RTable, lset ∈ LSet ]
Prb Δ= [type ∈ {“Probe”},node ∈ I, lset ∈ LSet , failed ∈ subset I)]

PRpl Δ= [type ∈ {“ProbeReply”},node ∈ I, lset ∈ LSet , failed ∈ subset I)]
LReq Δ= [type ∈ {“LeaseRequest”},node ∈ I]

LReply Δ= [type ∈ {“LeaseReply”}, lset ∈ LSet , grant ∈ {true, false}]



Formal Verification of the Pastry Protocol 289

Statuses. Together with the message types above, a brief introduction of the
statuses of a node helps the understanding of the dynamic model.

status ∈ [I → {“ready”, “ok”, “waiting”, “dead”}]

A node is initially either “ready” or “dead”. As soon as a “dead” node sends
the “JoinRequest” message, it turns to the status “waiting”, which means it is
waiting to become “ok”. After it has completed its leaf sets and received all the
“ProbeReply” messages, it will become “ok”. Once it has obtained both leases
from its left and right neighbors, it will become “ready”. Only “ready” nodes
can deliver “Lookup” messages or reply to “JoinRequest” messages.

2.2 Dynamic Model

The overall system specification Spec is defined as Init ∧ �[Next ]vars , which
is the standard form of TLA+ system specifications. � stands for temporal
operator always. The whole expression requires that all runs start with a state
that satisfies the initial condition Init , and that every transition either does not
change vars (defined as the tuple of all state variables) or corresponds to a system
transition as defined by Next . This form of system specification is sufficient for
proving safety properties. Since liveness properties are beyond the verification
interest of this paper, no fairness hypotheses are asserted, claiming that certain
actions eventually occur.

Definition 3 (Overall Structure of the TLA+ Specification of Pastry)

vars
Δ= 〈receivedMsgs, status, lset, probing, failed, rtable, lease, grant, toj〉

Init
Δ= ∧ receivedMsgs = {}

∧ status = [i ∈ I �→ if i ∈ A then “ready” else “dead”]
∧ toj = [i ∈ I �→ i]
∧ probing = [i ∈ I �→ {}]
∧ failed = [i ∈ I �→ {}]
∧ lease = [i ∈ I �→ if i ∈ A then A else {i}]
∧ grant = [i ∈ I �→ if i ∈ A then A else {i}]
∧ lset = [i ∈ I �→ if i ∈ A

then AddToLSet(A,EmptyLS(i))
else EmptyLS(i)]

∧ rtable = [i ∈ I �→ if i ∈ A
then AddToTable(A, InitRTable, i)
else AddToTable({i}, InitRTable, i)]

Next
Δ= ∃i, j ∈ I : ∨ Join(i, j) ∨ Lookup(i, j) ∨ Deliver(i, j)

∨ RouteJReq(i, j) ∨ RouteLookup(i, j)
∨ RecJReq(i) ∨ RecJReply(j)
∨ RecProbe(i) ∨ RecPReply(j)
∨ RecLReq(i) ∨ RecLReply(i)
∨ RequestLease(i)

Spec
Δ= Init ∧ �[Next]vars



290 T. Lu

The variable receivedMsgs holds the set of messages in transit. It is assumed
in the formal model that messages are never modified when they are on the way
to their destination, that is, no message is corrupted.

The other variables hold arrays that assign to every node i ∈ I its status,
leaf sets, routing table, the set of nodes it is currently probing, the set of nodes
it has determined to have dropped off the ring (failed), the node to which it has
sent a join reply and not yet got confirmation if it has become “ready” (toj ), the
nodes from which it has already got the leases (lease) and the nodes to which it
has granted its leases (grant).

The predicate Init is defined as a conjunction that initializes all variables.
In particular, the model takes a parameter A indicating the set of nodes that
are initially “ready”.

The next-state relation Next is a disjunction of all possible system actions,
for all pairs of identifiers i, j ∈ I. Each action is defined as a TLA+ action
formula. Due to the page limit, we only show two formal definitions of the actions.
The action Deliver(i, k) (Definition 4) is referenced in the safety property and
formal proof. The action RecJReq(i) (Definition 5) is crucial of understanding
the improvement of LuPastry in allowing only one node to handle join requests
to avoid collisions caused by concurrent joins.

The action Deliver(i, k) is executable if node i is “ready”, if there exists
an unhandled “Lookup” message addressed to i, and if j, the identifier of the
requested key, falls within the coverage of node i (see Definition 1). Its effect is
simply defined as removing the message m from the network, due to the fact
that only the execution of the action is interesting, not the answer message that
it generates. Each time it receives a message, the node will remove the message
from the message pool receivedMsgs, so that it will not be received again. The
other variables are unchanged.

Definition 4 (Action: Deliver(i, j))

Deliver(i, j) Δ=
∧ status[i] = “ready”
∧ ∃m ∈ receivedMsgs : ∧ m.mreq.type = “Lookup”

∧ m.destination = i
∧ m.mreq.node = j
∧ Covers(lset[i], j)
∧ receivedMsgs′ = receivedMsgs \ {m}

∧ unchanged 〈status, rtable, lset, probing, failed, lease, grant, toj〉
The actions basically handle the different message types shown in Section 2.1.

In action Lookup(i, j), a node sends out a “Lookup” message, which contains
only the node j it is looking for. In action Join(i, j), a “JoinRequest” message
is sent to node i to join a new node j. Using the same routing algorithm, the
“Lookup” and “JoinRequest” messages are routed to the node which covers the
key j, through several nodes via execution of RouteJReq(i, j) or RouteLookup(i, j)
actions.



Formal Verification of the Pastry Protocol 291

Definition 5 (Action: RecJReq(i))

RecJReq(i) Δ=
∧ status[i] = “ready”
∧ toj[i] = i
∧ ∃m ∈ receivedMsgs :

∧ m.mreq.type = “JoinRequest”
∧ m.destination = i
∧ Covers(lset[i],m.mreq.node)
∧ toj′ = [except ![i] = m.mreq.node]
∧ lset′ = [except ![i] = AddToLSet({m.mreq.node}, lset[i])]
∧ receivedMsgs′ = (receivedMsgs \ {m})

∪{[destination �→ m.mreq.node, [type �→ “JoinReply”,
rtable �→ m.mreq.rtable, lset �→ lset[i]]]}

∧ unchanged 〈status, rtable, probing, failed, lease, grant〉

In action RecJReq(i) (Definition 5) a “ready” node i covers the joining node
in the “JoinRequest” message and has not yet started helping another node
to join (toj[i] = i), therefore it replies to the joining node with a “JoinReply”
message. It also sets toj to be that joining node to prevent other nodes to join
through it. This is the mechanism for avoiding collision of coverage caused by
concurrent join.

The “Probe” messages are handled in action RecProbe(i) by the receivers i.
As a reply to the probing message, the node i sends a “ProbeReply” message
containing the node replying to the probe (node), the replier’s leaf sets and a
set of failed nodes back to the probing node. In the action RecPReply(i), the
node i adds the sender of the “ProbeReply” message into its own leaf sets.
When all awaiting probe messages have been answered, the node becomes “ok”.
Consequently, it sends out “LeaseRequest” messages to update the leases of its
direct left neighbor and right neighbor.

As long as a node is “ok”, it can send “LeaseRequest” messages to request
leases from its direct neighbors using RequestLease(i). In action RecLReq(i),
the node i replies to the lease request with a “LeaseReply” message containing
its own leaf sets, where its own identifier is contained in lset.node. Instead of
only sending back the node identifier, the leaf sets were designed to provide
extra information, which, as in a “Probe” message, may serve to propagate and
exchange leaf sets among nodes. If the sender is its direct neighbor, it grants the
lease.

In action RecLReply(i), the node i updates its lease of the sender of a
“LeaseReply” message, if the sender is its direct neighbor. If the node i is of
status “ok” and completes leases both of its direct neighbors, then it becomes
“ready”. If the node i is helping the sender to join the network, it also sets the
toj to itself allowing it to help other nodes.

The formal model of LuPastry actions in TLA+ code can be found in [10].



292 T. Lu

2.3 The Correctness Properties

Since TLA+ does not have type, state variables should conform to their desired
data structures, so that accessing their components will always be successful. For
example, status[i] should access the state variable status of a particular node i
and it is supposed to be one of the states, not a node identifier. The correctness
of “types” are defined as state property TypeInvariant and then proved to be
an invariant for the system as shown in Theorem 1.

Property 1 (TypeInvariant)

TypeInvariant Δ= ∧ receivedMsgs ∈ subset DMsg
∧ status ∈ [I → {“ready”, “ok”, “waiting”, “dead”}]
∧ lease ∈ [I → subset I]
∧ grant ∈ [I → subset I]
∧ rtable ∈ [I → RTable]
∧ lset ∈ [I → LSet] ∧ ∀i ∈ I : lset[i].node = i
∧ probing ∈ [I → subset I]
∧ failed ∈ [I → subset I]
∧ toj ∈ [I → I]

Theorem 1 (Type Correctness) Spec ⇒ �TypeInvariant

The property CorrectDelivery asserts that whenever node i can execute the
action Deliver(i, k) for key k then both of the following statements are true:

– The node i has minimal absolute distance from the key k among all the
“ready” nodes in the network.

– The node i is the only node that may execute the action Deliver(i, k) for the
key k.

Property 2 (CorrectDelivery)

CorrectDelivery Δ= ∀i, k ∈ I :
enabled Deliver(i, k)
⇒ ∧ ∀n ∈ I \ {k} : status[n] = “ready” ⇒ AbsDist(i, k) ≤ AbsDist(n, k)

∧ ∀j ∈ I \ {i} : ¬enabled Deliver(j, k)

Observe that there can be two nodes with minimal distance from k, to either
side of the key. Therefore, the asymmetry in the definition of LeftCover(ls, k)
and RightCover(ls, k) in Definition 1 is designed to break the tie and ensure that
only one node is allowed to deliver. The major verification goal is formalised in
Theorem 2, that given the formulas defined for Pastry as Spec, it can be entailed
that the property
CorrectDelivery always holds.

Theorem 2 (Correctness of Pastry) Spec ⇒ �CorrectDelivery



Formal Verification of the Pastry Protocol 293

3 Theorem Proving

Model checking can only provide validation on four nodes. To get a generic
verification of the Pastry protocol on arbitrary number of nodes, we need to
use a theorem proving approach. Using the TLA+ theorem prover TLAPS, we
proved in [12] that the conjunction of HalfNeighbor and NeighborClosest implies
CorrectDelivery . The most subtle part left is the induction proof of invariants,
which extends these two properties. The proof is based on the assumption that
there are no departure of nodes and that an active node can help at most one
node to join at a time.

3.1 Inductive Proof of Invariant HalfNeighbor

The property HalfNeighbor (part of Invariant 1) is extended finally to a more
complex one: HalfNeighborExt, stating that if there is more than one member of
ReadyOK on the ring (a node is either “ready” or “ok”), then none of them will
have an empty leaf set.

For the special case that there is only one member of ReadyOK k on the
ring, the following statements hold:

– k has no neighbor;
– every “waiting” node (waiting to become “ok”) knows at most the node k

and itself;
– there is no “Probe” message to k;
– there is no “ProbeReply” message or “LeaseReply” message at all;
– the leaf set within a “JoinReply” message can only contain k.

Invariant 1 (HalfNeighborExt)

∨∀k ∈ ReadyOK : RightNeighbor(lset[k]) �= k ∧ LeftNeighbor(lset[k]) �= k
∨∃k ∈ ReadyOK :

∧ ReadyOK = {k}
∧ LeftNeighbor(lset[k]) = k
∧ RightNeighbor(lset[k]) = k
∧ ∀w ∈ NodesWait : GetLSetContent(lset[w]) ∈ subset {k,w}
∧ ¬∃ms ∈ receivedMsgs : ms.mreq.type = “ProbeReply”
∧ ¬∃mk ∈ receivedMsgs :∧ mk.mreq.type = “Probe”

∧ mk.destination �= k
∧ ∀mj ∈ receivedMsgs :mj.mreq.type = “JoinReply”

⇒ GetLSetContent(mj.mreq.lset) = k
∧ ¬∃mb ∈ receivedMsgs : mb.mreq.type = “LeaseReply”

The formal expression shown in Invariant 1 includes the original property
HalfNeighbor (the first 5 lines), and its extension (the remaining lines in bold).

This invariant is extended during the proof HalfNeighbor step by step. Firstly,
we check what is missing as prerequisites to prove HalfNeighbor′ on its inductive
proof at each action. Secondly, we strengthen HalfNeighbor by adding auxiliary



294 T. Lu

conjunctions in such a way that it provides exactly the prerequisite for the proof.
Each time the invariant is extended, the model checker TLC is employed on the
Pastry model to help check if the new invariant holds on the model of four nodes.
Upon violation of such a model checking approach, the formula derived from the
last state of the counterexample is used to reformulate the invariant.

3.2 Proof of NeighborClosest

The property NeighborClosest states that the left and right neighbors of any
“ready” node i lie closer to i than any other “ready” node j.

Property 3 (NeighborClosest)

NeighborClosest Δ= ∀i, j ∈ ReadyNodes :
i �= j ⇒ ∧ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(j, i)

∧ CwDist(i, RightNeighbor(lset[i])) ≤ CwDist(i, j)

The intuition of searching for the appropriate invariant for proving Neigh-
borClosest is backwards symbolic execution. The idea is to find a candidate
invariant whose violation trace, if it is not valid, can be shorter, such that the
model checker TLC can be used to help discover and improve such an invari-
ant. Based on the assumption that no nodes leave the network and the protocol
improvement in LuPastry that a “ready” node can handle at most one join-
ing node at a time, the property NeighborClosest can be further reduced to the
following properties: IRN and NRI (formally specified in Proerty 4).

The properties IRN and NRI together subsume the property NeighborClos-
est . The difference is that NeighborClosest guarantees that “ready” nodes do not
ignore other “ready” nodes between themselves and their neighbors, while IRN
and NRI states that every node does not ignore any “ready” nodes between
itself and its neighbor.

Property 4 (IRN and NRI )

IRN
Δ= ∀i ∈ I, r ∈ ReadyNodes : i �= r

⇒ CwDist(i, RightNeighbor(lset[i])) ≤ CwDist(i, r)
NRI

Δ= ∀i ∈ I, r ∈ ReadyNodes : i �= r
⇒ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(r, i)

The properties IRN and NRI state that there cannot be a “ready” node
closer to arbitrary node i, than its left and right neighbors. Since these two
properties are symmetrical, we only focus on one of them in this paper, IRN.

Induction Invariant. Due to the page limit, we only focus on the invariant
IRN and give intuition of the discovery of the relevant invariants used for proving
IRN. The formal description and proof of all invariants can be found in full in [10]
and are explained intuitively in [9].

Invariant 2 (InvLuPastry)

IRN ∧ TojNoReady ∧ SemToj ∧ TojClosestL ∧ GrantNeighbor ∧ GrantHistL ∧ . . .



Formal Verification of the Pastry Protocol 295

Proof Sketch of the Invariant IRN. The following proof sketch illustrates
the discovery and proof of the induction invariant for proving IRN, the most
interesting and subtle part of the formal verification approach.

Based on the definition of IRN, the modification of two variables lset and
status is critical. Regarding the change of leaf sets lset, adding nodes into leaf
sets preserves the validity of the invariant. Since no action in the new Pastry
model removes nodes from leaf sets, the changes of leaf sets always preserve the
invariant IRN.

Regarding the changes of status from “ok” to “ready” in the action
RecLReply(r), we construct the negation of IRN as shown in Fig. 3: assume
that a node r is turning from “ok” to “ready” in action RecLReply(r) and this
node lies exactly between an arbitrary node i and its direct right neighbor n.
The proof is to find the contradiction of this situation.

For this we need an invariant TojNoReady : if the leaf sets of some not yet
“ready” node i is not empty, then there must exist a “ready” node, through
which node i has joined the network.

TojNoReady
Δ= ∀i ∈ I : i /∈ ReadyNodes ∧ lset[i] �= EmtyLS(i)

⇒ ∃r ∈ ReadyNodes : toj[r] = i

Applying TojNoReady on the “ok” node r, there must be a “ready” node r2,
such that toj [r2] = r. The proof method is to refute the existence of such a node r2.
According to IRN, node r2 cannot be inside the range from r to its right neighbor.
Hence, 3 cases are possible for the position of node r2 as shown in Fig. 3.

“ok” to “ready”

CASE 1 n

r

r2 = i

“ok” to “ready”

CASE 2

r2

n

r

i

“ok” to “ready”

CASE 3 r2 = n

r

iln1/

ln2/

ln3/

Fig. 3. Case analysis of the node r2 w.r.t. node i and its right neighbor n.

CASE 1 : r2 = i. Let us introduce another invariant SemToj (the “semantic” of
variable toj ): if a not yet “ready” node i has joined through the “ready” node r,
then node i must be r’s direct neighbor. We reuse r, i as binding variables here
because we can directly apply the invariant into our sub-goal.

SemToj
Δ= ∀r, i ∈ I : i /∈ ReadyNodes ∧ toj[r] = i ∧ r �= i

⇒ RightNeighbor(lset[r]) = i ∨ LeftNeighbor(lset[r]) = i



296 T. Lu

By SemToj and our assumption we know that r must be a direct neighbor
of r2.
(1) If r were the right neighbor of r2, which is now i, then r should be the right
neighbor of i, which contradicts with n (see Fig. 3). (2) If r were the left neighbor
of r2, then the left distance (counterclockwise) from i to its left neighbor r is
larger than the left distance from i to its right neighbor, which contradicts the
definitions of LeftNeighbor and RightNeighbor in Definition 1. Hence r2 cannot
be i.
CASE 2 : CwDist(i, RightNeighbor(lset[i])) < CwDist(i, r2). Given that the
node r is the direct neighbor of r2 (shown using SemToj ), we perform case
analysis on the node r. Suppose r is the right neighbor of node r2 as illustrated
in Fig. 3 since the other case can be proved symmetrically.

To refute this possibility, let us analyze the status of node i. If node i were a
“ready” node, then this would violate IRN for the node r. If not, we need to use
invariant TojNoReady to construct an arbitraryly positioned “ready” node r4,
through which node i is currently joining. Then we introduce another invariant
TojClosestL, which states that if node r is joined through some node r2, then
between these two nodes, there exists no further node such as i, which is currently
joining through another node r4. Hence, we can refute the existence of such a
node r4 and get the contradiction to close this case.

TojClosestL
Δ= ∀r1, r2, i, k ∈ I :

∧ i �= r1 ∧ i �= k ∧ toj[r1] = i ∧ toj[r2] = k ∧ r2 �= k
∧ RightNeighbor(lset[r1]) = i ∧ i /∈ ReadyNodes
⇒ CwDist(r1, i) ≤ CwDist(k, i)

CASE 3 : r2 = n (n refers to RightNeighbor(lset [i])). Here, we make a case
analysis on the position of ln = LeftNeighbor(lset [r]), and then close all the
cases by refuting the existence of such ln.

(i) The node ln cannot be the same node as i (ln1 in case 3 of Fig. 3),
because according to GrantNeighbor (introduced below), if node ln had granted
the node r, then r could not be closer than its right neighbor n.

GrantNeighbor
Δ= ∀k, i ∈ I : i �= k ∧ i ∈ grant[k]

⇒ CwDist(k,RightNeighbor(lset[k])) ≤ CwDist(k, i) ∧ . . .

(ii) The node ln cannot be to the left of i (ln2 in case 3 of Fig. 3). Since
the node i cannot be “ready” due to IRN, let us use invariant TojNoReady to
construct a node r3, through which node i is currently joining. It remains to
refute the existence of such a node r3. The node r3 cannot be r2, hence, node r3
must be the left neighbor of i.

Now we can do case analysis on the position of r3 as the left neighbor of i.
On the one hand, it must lie between i and ln, because if node ln is “ready”, it
cannot lie between a node i and its left neighbor r3 by NRI. But on the other
hand, node r3 cannot lie between i and ln, because r3 is “ready” and it should



Formal Verification of the Pastry Protocol 297

not lie between a node r and its left neighbor ln. Therefore, r3 can only be equal
to node ln.

To force contradiction, the further invariant GrantHistL is needed, which
takes the facts above as precondition and derives that r2 must be closer to i
than the other node r. GrantHistL states that if a not yet “ready” node i lies
between two other different nodes l and r, and node i is joined through one of
the nodes (e.g. l), whereas this node (i.e. l) has granted its lease to the other
node (i.e. r), then the direct neighbor of i must be closer to i than the other
node (i.e. r). Regarding the last case in Fig. 3, r2 is not closer to i than r. Hence
a contradiction is derived, concluding the proof of this case.

GrantHistL
Δ
= ∀l, i, r ∈ I :

toj[r] = i ∧ i �= l ∧ l ∈ grant[l] ∧ i /∈ ReadyNodes ∧ CwDist(l, i) < CwDist(l, r)
⇒ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(l, i)

(iii) The node ln cannot exist between i and r (ln3 in case 3 of Fig. 3).
By IRN, ln cannot be “ready”, because it lies between a node i and its right
neighbor r2. Then again by TojNoReady, there exists a node r5, such that
toj[r5] = LeftNeighbor(lset[r]). The next step is to make a case analysis of the
position of r5. Because of IRN, it cannot be inside the range [i, rn(i)]. Because
of TojClosestL, r5 cannot be outside the range of (i, r). Hence, r5 cannot exist.
Hence, node ln cannot lie between i and r.

In conclusion, there is no possible position for such a node ln to exist, which
means that there exists no node to grant node r its lease to make it “ready”,
and therefore, the constructed assumption as violation of IRN is impossible,
completing the overall proof. ��

The invariants introduced in this proof are also proved using TLAPS, and
further invariants are introduced and proved. The final TLA+ proof for the
inductive invariant consists of more than 14,500 lines. Additionally, the type
correctness is also proved inductively in about 1,000 lines. These proofs with
more than 20,000 lines, corresponding to more than 10,000 proof steps, are all
automatically verified using the TLAPS proof manager, which launches different
back-end first-order theorem provers or an extension of ISABELLE to find the
proof.

4 Conclusion, Related Work and Future Work

This paper represented a formal verification of the Pastry protocol, a funda-
mental building block of P2P overlay networks. To the best of my knowledge,
this is the first formal verification of Pastry, although the application of formal
modeling and verification techniques to P2P protocols is not entirely new. For
example, Borgström et al. [2] present initial work towards the verification of a
distributed hash table in a P2P overlay network in a process calculus setting,
but only considered fixed configurations with perfect routing information. As we
have seen, the main challenge in verifying Pastry lies in the correct handling of
nodes joining the system on the fly.



298 T. Lu

Chord ([17]) is another virtual ring implementation of DHT . Being described
with a more formal specification, it is targeted by many verification approaches,
such as [14], [8], [15] and [1]. A recent approach is [18], which uses Alloy to model
Chord at a high level of abstraction where operations such as join or stabilize
are considered atomic and non-interfering. Focusing on eventual consistency, she
found a flaw in the original description of the algorithm and suggests a repair
that may be correct. However, Alloy is not supported by a theorem proving
language and tools like TLAPS to formally show an understandable proof of
invariants as shown in this paper.

Pastry is a reasonably complicated algorithm that mixes complex data struc-
tures, dynamic network protocols, and timed behavior for periodic node updates.
LuPastry abstracts from timing aspects, which are mainly important for per-
formance, but otherwise models the algorithm as faithfully as possible. Here a
“ready” node adds the joining node as soon as it receives the join request and
does not accept any new join request until it gets the confirmation that the cur-
rent joining node is “ready”. In fact, LuPastry has been modified iteratively
until the final proof of its invariants. LuPastry is verified against the property
CorrectDelivery through inductive proof of invariants, under the assumption
that no nodes leave the network. The proof serves at the same time as evidence
of correctness of the formal model with respect to the verified property Correct-
Delivery as well as a real world example demonstrating the possibility of using
TLAPS for a large scale proof consisting of more than 10,000 proof steps.

Future work will include weaker assumptions to allow some bounded depar-
ture of nodes and prove that under particular constraints, the CorrectDelivery
can still be ensured. Future work may also include formulating liveness properties
for proving availability of the system based on our validation approach; gener-
alizing the DHT model based on the static model of LuPastry; and increasing
the automation degree of the interactive theorem prover TLAPS based on the
similar patterns I have written as part of the formal proof.

Acknowledgments. I would like to thank my PhD supervisors ChristophWeidenbach
and Stephan Merz for their support on this research topic and all the thesis and paper
reviewers for their valuable comments.

References

1. Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: A case study.
Electr. Notes Theor. Comput. Sci. 181, 35–47 (2007)

2. Borgström, J., Nestmann, U., Onana, L., Gurov, D.: Verifying a structured peer-
to-peer overlay network: the static case. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 250–265. Springer, Heidelberg (2005)

3. Castro, M., Costa, M., Rowstron, A.I.T.: Performance and dependability of struc-
tured peer-to-peer overlays. In: International Conference on Dependable Systems
and Networks (DSN 2004), pp. 9–18. IEEE Computer Society, Florence (2004)

4. Haeberlen, A., Hoye, J., Mislove, A., Druschel, P.: Consistent key mapping in struc-
tured overlays. Tech. Rep. TR05-456, Rice University, Department of Computer
Science, August 2005



Formal Verification of the Pastry Protocol 299

5. Hellerstein, J.M.: Toward network data independence. ACM SIGMOD Record
32(3), 34–40 (2003)

6. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

7. Lamport, L.: TLA tools (2012). http://www.tlaplus.net/
8. Li, X., Misra, J., Plaxton, C.G.: Active and Concurrent Topology Maintenance. In:

Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg
(2004)

9. Lu, T.: Formal Verification of the Pastry Protocol. Ph.D. thesis, Universität des
Saarlandes, Saarbrücken (2013). urn:nbn:de:bsz:291-scidok-55878

10. Lu, T.: The TLA+ codes for the pastry model (2013). http://tiit.lu/fmPastry/
11. Lu, T., Merz, S., Weidenbach, C.: Model checking the Pastry routing protocol. In:

Bendisposto, J., Leuschel, M., Roggenbach, M. (eds.) 10th Intl. Workshop Auto-
matic Verification of Critical Systems (AVOCS), pp. 19–21. Universität Düseldorf,
Düsseldorf, Germany (2010)

12. Lu, T., Merz, S., Weidenbach, C.: Towards verification of the pastry protocol using
TLA+. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS,
vol. 6722, pp. 244–258. Springer, Heidelberg (2011)

13. Lu, T., Merz, S., Weidenbach, C.: Formal verification of the pastry protocol using
TLA+. 18th International Symposium on Formal Methods (2012)

14. Lynch, N., Stoica, I.: Multichord: A resilient namespace management protocol.
MIT CSAIL Technical Report (2004)

15. Risson, J., Robinson, K., Moors, T.: Fault tolerant active rings for structured peer-
to-peer overlays. In: The IEEE Conference on Local Computer Networks, 30th
Anniversary 2005, pp. 18–25. IEEE (2005)

16. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review 31(4), 149–160 (2001). ACM

18. Zave, P.: Using lightweight modeling to understand chord. Computer Communica-
tion Review 42(2), 49–57 (2012)

http://www.tlaplus.net/
http://scidok.sulb.uni-saarland.de/volltexte/2013/5587/
http://tiit.lu/fmPastry/

	Formal Verification of the Pastry Protocol Using TLA+
	1 Introduction
	1.1 The Pastry Protocol
	1.2 The Methodology

	2 Modelling the Concurrent Join Protocol of Pastry
	2.1 Static Model
	Leaf Set.
	Messages.
	Statuses.

	2.2 Dynamic Model
	2.3 The Correctness Properties

	3 Theorem Proving
	3.1 Inductive Proof of Invariant HalfNeighbor
	3.2 Proof of NeighborClosest
	Induction Invariant.
	Proof Sketch of the Invariant IRN.


	4 Conclusion, Related Work and Future Work
	References


