
Automatic Fault Localization for BIP

Wang Qiang1(B), Lei Yan2, Simon Bliudze1, and Mao Xiaoguang3,4

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
wenjunwang.nudt@gmail.com

2 Logistical Engineering University of PLA, Chongqing, China
3 College of Computer, National University of Defense Technology, Changsha, China

4 Laboratory of Science and Technology on Integrated Logistics Support,
National University of Defense Technology, Changsha, China

Abstract. This paper presents a novel idea of automatic fault localiza-
tion by exploiting counterexamples generated by a model checker. The
key insight is that, if a candidate statement is faulty, it is possible to
modify (i.e. correct) this statement so that the counterexample is elim-
inated. We have implemented the proposed fault localization algorithm
for component-based systems modelled in the BIP (Behaviour, Interac-
tion and Priority) language, and conducted the first experimental eval-
uation on a set of benchmarks with injected faults, showing that our
approach is promising and capable of quickly and precisely localizing
faults.

1 Introduction

The rigorous system design process in BIP starts with the high-level modelling
of application software. The final system implementation is then derived from
the high-level system model by a series of property preserving model transfor-
mations, taking into account the architectural features of execution platform.
Thus, correctness of the system implementation with respect to essential safety
properties follows from the correctness of high-level system models, which can be
guaranteed by applying verification techniques [2,12]. When a counterexample is
found, showing that the system model violates the required properties, designers
manually investigate it in order to fix the model. However, the counterexample
generated by a model checker can be large, requiring considerable effort to local-
ize the fault. It is thus desirable to provide a method for automatic localization
of faults to streamline the rigorous system design process.

Existing fault localization techniques [10] are mostly statistical. They are gen-
erally referred to as Spectrum-based Fault Localization (SFL) [11]. In order to
identify suspicious locations, they require a considerable number of test cases,
including both passed and failed ones. When only a few tests are available,
these techniques become imprecise. In [1], the authors exploit the difference
between counterexamples and successful traces to localize faults in the program.

This work was partially funded by National Natural Science Foundation of China
(61379054).

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 277–283, 2015.
DOI: 10.1007/978-3-319-25942-0 18



278 W. Qiang et al.

The faults are those transitions that do not appear in the correct traces. In [7],
the authors propose to instrument the program with additional diagnosis vari-
ables and perform model checking on this modified program. The valuation of
diagnosis variables indicates the location of a fault, when a counterexample is
found. In [8], the authors propose a reduction of the fault localization problem to
the maximum Boolean satisfiability problem extracted from the counterexample
trace. The solution of the satisfiability problem provides a set of locations that
are potentially responsible for the fault.

In this paper, we focus on component-based systems modelled in BIP. In
contrast with the work cited above, our approach does not require neither test
inputs, nor instrumentation of the model. Instead, it exploits the counterexample
generated by a model checker. It reports the exact location, where the fault could
be corrected instead of a set of suspicious locations.

The key insight of our approach stems from the observation that a statement
in the counterexample is faulty if it is possible to modify (i.e. correct) this state-
ment so that the counterexample is eliminated. Given a counterexample—that is
an execution trace that violates the desired property—we first assume that this
counterexample is spurious, meaning that its postcondition is false.1 Our algo-
rithm then proceeds by propagating this postcondition backwards, computing
the weakest preconditions of the statements that form the execution trace, until
it reaches a statement that interferes with the propagated postcondition. We
mark this statement as a candidate fault location. In the second phase, the algo-
rithm symbolically executes the counterexample trace from the initial state to
the candidate faulty statement, which results in a symbolic state. This symbolic
state, together with the candidate faulty statement and the propagated post-
condition form a Hoare triple. We say that the candidate faulty statement is a
fault if this statement can be modified to make the Hoare triple valid. Since the
postcondition of the resulting trace is false, the counterexample is eliminated.

We remark that BIP is an expressive intermediate modelling language for
component-based software. Industrial languages, used, for instance, for the
design of Programmable Logic Controller software [5], can be encoded into BIP.
This opens the possibility of applying our fault localisation approach to real-life
industrial programs.

2 The BIP Language

The BIP framework advocates strong separation of computation and coordina-
tion concerns. To this end, the BIP language provides a modelling formalism
based on three layers: Behaviour, Interaction and Priority. Behaviour is char-
acterised by a set of atomic components, modelled by automata extended with
linear arithmetic. Transitions are labelled by ports, used for synchronization and
data transfer with other components. Coordination is specified by interaction
and priority models. An interaction model is a set of interactions, representing
1 We assume the readers to be familiar with the notions of Hoare triple and weakest
precondition.



Automatic Fault Localization for BIP 279

guarded strong synchronizations of transitions of atomic components. An inter-
action is a triple, consisting of a sets of ports to be synchronized, a Boolean
guard and an assignment statement updating the variables of the participating
components. When several interactions are enabled simultaneously, priority can
be used to reduce non-determinism and decide which interaction will be exe-
cuted. We refer to [2,4] for the formal presentation of the BIP framework and
operational semantics.

Example 1. We model in BIP the ticket mutual exclusion algorithm [9] with
two processes. A graphical representation is shown in Fig. 1. Each process gets
a ticket from the controller by taking its corresponding request transition (e.g.
request1 in the leftmost component in Fig. 1), and stores it in its buffer variable
(e.g. buffer1). When the ticket held by the process is equal to the number to be
served (represented by the guards [ticketN = next], with N = 1, 2, on the
interactions in Fig. 1), the process can enter the critical location (i.e. S3 ) by
taking the enter transition. The controller keeps track of the latest ticket it
issues in the number variable and the next ticket to be served in the next variable.
These variables are increased by one when a process requests a ticket or leaves
the critical location, respectively. The mutual exclusion property requires that
the two processes never be in the critical locations simultaneously.

S1

S2

S3

S1

S2

S3

request(number) 2evael)2reffub(2tseuqerevael

enter2

enter(next)

request1(buffer1) leave1

enter1

leave1

buffer1:=number buffer2:=number

controllerprocess1 process2

ticket1:=buffer1
request1

enter1(ticket1)

[ticket1=next] [ticket2=next]

enter2(ticket2)

leave2

ticket2:=buffer2
request2

S1 enter

leave
next++

number++
request

Fig. 1. Ticket mutual exclusion algorithm in BIP

For the sake of conciseness, in Section 3, we will denote the request ports
of the controller and the two process components r, r1 and r2, respectively.
Similarly, we will use e, e1, e2 for the enter ports; t1, b1, t2, b2 for the variables
of the two process components; n and x for the number and next variables of the
controller component.

3 Overview of the Algorithm

We inject a fault in the model presented in Example 1 by modifying the assign-
ment of transition r2 to be t2 := b2 − 1. The mutual exclusion property



280 W. Qiang et al.

is then violated by the sequence of interactions 〈γ1, γ2, γ3, γ4〉, where γ1 =
({r, r1}, true, b1 := n), γ2 = ({r, r2}, true, b2 := n), γ3 = ({e, e1}, t1 = x, skip),
γ4 = ({e, e2}, t2 = x, skip). We first build a sequential execution of this coun-
terexample by serializing the statements associated with interactions and their
participating transitions: cex = 〈b1 := n; t1 := b1; n := n + 1; b2 := n; t2 :=
b2 − 1; n := n + 1; assume(t1 = x ∧ t2 = x)〉.

Our first observation is that if a statement is faulty, it is possible to modify it
so that the counterexample is eliminated. However, this can also be the case for
a correct statement: e.g. replacing n := n+1 in the transition r of the controller
component by n := n eliminates the above counterexample. To avoid this, we
use the following characterisation of faults. We say that a statement s interferes
with a predicate ϕ if the Hoare triple {ϕ}s{ϕ} is invalid. Given a counterexample
cex, we call a statement s faulty, if 1) it interferes with the predicate ϕ obtained
by backward propagation of false along cex through the computation of weakest
preconditions and 2) it is possible to eliminate cex by modifying s. We explain
the idea by applying our algorithm to the counterexample above.

We start by computing the weakest precondition of false for the assume
statement: wp(false, assume(t1 = x ∧ t2 = x)) = (t1 �= x ∨ t2 �= x). According
to our fault model for BIP (Section 4), an assume statement cannot be a fault
candidate. Therefore, we proceed to the statement n := n + 1, which is a fault
candidate. Since wp(t1 �= x ∨ t2 �= x, n := n + 1) = (t1 �= x ∨ t2 �= x), n := n + 1
does not interfere with the predicate (t1 �= x∨ t2 �= x). Hence it is not faulty and
we proceed to the next statement. Since wp(t1 �= x∨ t2 �= x, t2 := b2−1) = (t1 �=
x ∨ b2 − 1 �= x) is not implied by t1 �= x ∨ t2 �= x, we conclude that t2 := b2 − 1
interferes with this latter predicate.

To check if this statement is the fault, we replace it by t2 := v, where v
is a fresh variable, and compute its precondition by symbolically executing the
fragment preceding t2 := b2 − 1, (i.e. 〈b1 := n; t1 := b1; n := n + 1; b2 := n〉),
which results in b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 = 2 ∧ t2 = 0. We now
have to check whether there exists a valuation of v that makes the Hoare triple
{b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 = 2 ∧ t2 = 0} t2 := v {t1 �= x ∨ t2 �= x}
valid, which would ensure the elimination of the counterexample cex. This is,
indeed, the case, since the implication b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 =
2∧t2 = 0 → wp(t1 �= x∨t2 �= x, t2 := v) is satisfiable. Thus we conclude that the
statement t2 := b2 − 1 associated with the transition r2 is the fault responsible
for the counterexample cex.

4 Fault Localization Algorithm for BIP

Since the synchronization aspect of interaction models is memoryless and can
be synthesized from high-level properties [3], it is reasonable to assume that
coordination is correct and focus on the faults in the assignment statements. We
assume that there is at most one fault, which can occur in the right-hand side
of an assignment, and we do not consider missing-code faults. Although these
assumptions are quite strong, they are satisfied by a considerable number of



Automatic Fault Localization for BIP 281

Algorithm 1. Automatic fault localization algorithm
Input: A BIP model B with the encoding of safety property
Output: Either no counterexample is found or potential fault is suggested
1: cex ← CounterexampleDetection(B)
2: if cex is Null then
3: return ‘No counterexamples found’
4: else
5: tr ← SequentialExecution(cex)
6: post ← false
7: for each s in tr do
8: pre ← WeakestPrecondition(post, s)
9: if s is suspicious and post → pre is invalid then
10: s′ ← Modify(s)
11: prefix ← PrefixExecution(tr, s)
12: st ← SymbolicExecute(prefix , s)
13: pre′ ← WeakestPrecondition(post, s′)
14: if st → pre′ is satisfiable then
15: return ‘s is the fault location’
16: else
17: post ← pre

18: else
19: post ← pre

realistic models. In fact, our fault model is quite similar to the faulty expression
model widely used for fault localization in C programs [7], where the control flow
of the program is assumed to be correct, but the expressions may be wrong.

Our algorithm (Algorithm 1) utilizes a model checker or a symbolic executor
as a subroutine to detect a counterexample (line 1). When a counterexample
is generated, a sequential execution trace tr is constructed (line 5). Then for
each statement s in tr, we compute the weakest precondition pre of s with
respect to post, initially set to false (lines 6, 8, 17, 19). If s is suspicious (i.e. it
is admitted by our fault model) and interferes with its postcondition (line 9),
we check whether it is possible to modify it to eliminate cex. To this end, we
compute s′ = Modify(s) (line 10), which replaces the right-hand side of s by a
fresh variable. We symbolically execute the counterexample until s (lines 11–12).
Notice that the same statement may appear in the prefix due to the presence
of a loop. Finally, we check whether the symbolic state st implies the weakest
precondition pre′ of s′ (lines 13–14). If the implication is satisfiable, there exists
a replacement s′ of s that eliminates cex and s is the fault (line 16). Otherwise,
we propagate the postcondition backwards and proceed to the next statement.

5 Experimental Evaluation

We have implemented the proposed algorithm based on an existing model
checker [2], and adopted several benchmarks from the same work for the exper-
imental evaluation. We also used industrial benchmarks [5] and the TCAS test
suite [6], which is widely used by the fault localization community. Faults are



282 W. Qiang et al.

injected into all benchmarks by modifying some assignments in the transitions
of atomic components. Due to the space limitation, we refer the reader to our
website2 for further detail.

All the experiments have been performed on a 64-bit Linux PC with a 2.8
Ghz Intel i7-2640M CPU, with a memory limit of 4Gb and a time limit of
300 seconds. The results are listed in Table 1, which shows that our algorithm
has quickly and precisely localized the faults in all considered benchmarks. The
second column of Table 1 shows the number of lines of the BIP model; the third
shows the exact location (i.e. line number) of the fault in the program; in the
forth,

√
indicates that our algorithm has localized the fault successfully; the fifth

shows the time of performing fault localization, which remains stable with the
size of the benchmarks. This can be explained by the fact that our algorithm uses
counterexamples, rather than the models themselves. The last column shows the
total time of detecting and localizing the fault.

Table 1. Experimental results

Benchmark LOC Fault Location Result FaultLoc Time (s) Total Time (s)

atm transaction system 90 L57
√

0.004 0.036

ticket algorithm 89 L54
√

0.008 0.024

gate control system 80 L51
√

0.004 0.244

bakery algorithm 77 L41
√

0.004 0.048

plc code1 162 L98
√

0.004 0.040

plc code2 76 L46
√

0.004 0.016

plc code3 133 L96
√

0.008 1.144

simple c code 68 L32
√

0.004 0.020

tcas 197 L140
√

0.008 0.700

6 Conclusion

Fault localization techniques based on formal methods are attracting attention.
In this short paper, we have presented a novel automatic fault-localization algo-
rithm for single assignment faults in BIP models. Our first experimental evalu-
ation shows that the algorithm is promising: under some admittedly strong, but
realistic assumptions, it is capable of quickly and precisely localizing faults. In
the future work, we are planning to explore the possibilities of relaxing these
assumptions, perform further experimental evaluation, and investigate the pos-
sibilities of automatically repairing the detected faults.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in
counterexample traces. In: POPL (2003)

2. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.:
Formal verification of infinite-state BIP models. In: ATVA (2015, to appear)

2 http://risd.epfl.ch/fault-localisation

http://risd.epfl.ch/fault-localisation


Automatic Fault Localization for BIP 283

3. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the
construction of component-based systems. In: Apel, S., Jackson, E. (eds.) SC 2011.
LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)

4. Bliudze, S., Sifakis, J., Bozga, M.D., Jaber, M.: Architecture internalisation in BIP.
In: Proceedings of the 17th International ACM Sigsoft Symposium on Component-
based Software Engineering, CBSE 2014, pp. 169–178. ACM, New York (2014)

5. Darvas, D., Fernández Adiego, B., Vörös, A., Bartha, T., Blanco Viñuela, E.,
González Suárez, V.M.: Formal verification of complex properties on PLC pro-
grams. In: Formal Techniques for Distributed Objects, Components and Systems
(2014)

6. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering (2005)

7. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Electron. Notes Theor. Comput, Sci (2007)

8. Jose, M., Majumdar, R.: Cause clue clauses: Error localization using maximum
satisfiability. In: PLDI (2011)

9. Lynch, N.A.: Distributed Algorithms (1996)
10. Mao, X., Lei, Y., Dai, Z., Qi, Y., Wang, C.: Slice-based statistical fault localization.

Journal of Systems and Software (2014)
11. Naish, L., Lee, H., Ramamohanarao, K.: A model for spectra-based software diag-

nosis. ACM Transactions on Software Engineering and Methodology (2011)
12. Sifakis, J.: Rigorous system design. Foundations and Trends in Electronic Design

Automation (2013)


	Automatic Fault Localization for BIP
	1 Introduction
	2 The BIP Language
	3 Overview of the Algorithm
	4 Fault Localization Algorithm for BIP
	5 Experimental Evaluation
	6 Conclusion
	References


