
Xuandong Li
Zhiming Liu
Wang Yi (Eds.)

 123

LN
CS

 9
40

9

First International Symposium, SETTA 2015
Nanjing, China, November 4–6, 2015
Proceedings

Dependable
Software Engineering
Theories, Tools, and Applications

Lecture Notes in Computer Science 9409

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Xuandong Li • Zhiming Liu • Wang Yi (Eds.)

Dependable
Software Engineering

Theories, Tools, and Applications

First International Symposium, SETTA 2015
Nanjing, China, November 4–6, 2015
Proceedings

123

Editors
Xuandong Li
Nanjing University
Nanjing
China

Zhiming Liu
Birmingham City University
Birmingham
UK

Wang Yi
Uppsala University
Uppsala
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-25941-3 ISBN 978-3-319-25942-0 (eBook)
DOI 10.1007/978-3-319-25942-0

Library of Congress Control Number: 2015952753

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the inaugural conference of SETTA —
The Symposium on Dependable Software Engineering: Theories, Tools and Applica-
tions — held during November 4–6, 2015 in Nanjing, China.

Formal methods emerged as an discipline area of computer science and software
engineering half a century ago. An international community has been formed
researching, developing, and teaching formal theories, techniques, and tools for soft-
ware modeling, specification, design, and verification. However, its impact upon
commonly used software systems is still far from convincing to software engineering
practitioners. The gap between the development of formal methods and the advances in
software technologies is not getting narrower. More precisely, the relation between
formal methods and software technologies is not well understood. This is clearly
reflected by the challenges in their applications in engineering large-scale systems,
including cyber-physical systems (CPS), networks of things, and cloud-based systems,
which have multi-dimensional complexities. This background is the motivation for this
new symposium series on the foundations, practice, and trends in formal software
engineering methods, with the mission and vision to build a high-quality forum for
computer scientists from the Chinese and international communities to exchange
academic ideas, and to strengthen collaboration between the formal methods com-
munities inside and outside China. SETTA has been established with a long-term view
in expectation that younger scientists will play an ever greater role.

SETTA 2015 received over 70 submissions of abstracts, and among them 60
materialized as full-paper submissions with authors from 22 countries. Each full-paper
submission was reviewed by at least three Program Committee members. After two
weeks of online discussions, the committee decided to accept 20 papers for presenta-
tion at the conference.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium. We are particular thankful to all colleagues who served on the
Program Committee, as well as the external reviewers, whose professional and hard
work in the review process helped us to prepare a high-quality conference program.
Special thanks go to the invited speakers, Sanjoy Baruah from the University of North
Carolina at Chapel Hill, David Harel from the Weizmann Institute of Science, and
Huimin Lin from the Software Institute of Chinese Academy of Sciences, for their
willingness to talk about their research to and share their perspective about formal
methods in software engineering. The abstracts of the invited talks are included in this
volume.

The inaugural edition of a conference series is always more challenging, thus it
received more support. Martin Fräenzle and Cliff Jones made a great start to the
organization of the event in 2013 and put in a lot of work ever since. Organizing Chair
Xin Chen, Publication Chair Martin Fräenzle, and Publicity Chairs Jonathan Bowen
and Lijun Zhang worked very hard to make the conference possible. We are very

grateful for their support. The Steering Committee, led by Naijun Zhan, and the
Advisory Board gave their enthusiastic support and advice on all aspects of the con-
ference. Finally, we enjoyed great support from Nanjing University, with the support of
General Chair Professor Jian Lv and the local organisers in particular, without which
the conference could not have happened

In addition to the main conference program of the presentations included in this
volume, the first Young Researchers Workshop on Formal Methods (YR-SETTA
2015) organized by Xinyu Feng and Zhilin Wu was held on November 3, 2015. We
would like to offer our thanks to all the organizers for their work, which led to a
successful workshop.

September 2015 Xuandong Li
Zhiming Liu

Wang Yi

VI Preface

Organization

Program Co-chairs

Xuandong Li Nanjing University, China
Zhiming Liu Birmingham City University, UK
Wang Yi Uppsala University, Sweden

Program Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Luis Barbosa Universidade do Minho, Portugal
Nikolaj Bjorner Microsoft Research, USA
Jonathan P. Bowen Birmingham City University, UK
Michael Butler University of Southampton, UK
Martin Fräenzle University of Oldenburg, Germany
Goran Frehse Université Joseph Fourier Grenoble 1–Verimag, France
Lindsay Groves Victoria University of Wellington, New Zealand
Ian J. Hayes University of Queensland, Australia
Holger Hermanns Saarland University, Germany
Gerwin Klein NICTA and UNSW, Australia
Tei-Wei Kuo National Taiwan University, China
Insup Lee University of Pennsylvania, USA
Xuandong Li Nanjing University, China
Shaoying Liu Hosei University, Japan
Zhiming Liu Birmingham City University, UK
Xiaoguang Mao National University of Defense Technology, China
Paritosh Pandya TIFR, India
Jun Pang University of Luxembourg, Luxembourg
Paul Pettersson Mälardalen University, Sweden
Shengchao Qin Teesside University, UK
Zongyan Qiu Peking University, China
Jean-Francois Raskin Université Libre de Bruxelles, Belgium
Stefan Ratschan Czech Academy of Sciences, Czech Republic
Martin Steffen University of Oslo, Norway
Cesare Tinelli The University of Iowa, USA
Tarmo Uustalu Tallinn University of Technology, Estonia
Hung Dang Van UET, Vietnam National University, Vientam
Irina Virbitskaite A.P. Ershov Institute of Informatics Systems,

Russian Academy of Sciences, Russia
Farn Wang National Taiwan University, China

Qixin Wang The Hong Kong Polytechnic University, SAR China
Yi Wang Uppsala University, Sweden
Lijun Zhang Institute of Software, Chinese Academy of Sciences,

China
Jianhua Zhao Nanjing University, China
Huibiao Zhu East China Normal University, China

Additional Reviewers

Attie, Paul
Bannister, Callum
Chang, Hsin Yu
Chen, Sanjian
Chen, Wei Ming
Chipara, Octav
Colley, John
Enoiu, Eduard Paul
Fang, Huixing
Feng, Lu
Gallagher, Marcus
Gribovskaya, Nataliya
Hahn, Ernst Moritz
Hoang, Thai Son
Hu, Tingting

Hofner, Peter
Ivanov, Radoslav
Jansen, David N.
Jhawar, Ravi
King, Andrew
Korovina, Margarita
Li, Qin
Lin, Han-Yi
Lindsay, Peter
Marinescu, Raluca
Monmege, Benjamin
Moszkowski, Ben
Murray, Toby
Neves, Renato
Park, Junkil

Salehi Fathabadi, Asieh
Sankur, Ocan
Sewell, Thomas
Sokolsky, Oleg
Su, Wen
Truong, Hoang
Tseng, Chien Chih
Wang, Tse Yuan
Wildman, Luke
Wilkinson, Toby
Winter, Kirsten
Xu, Zhiwu
Yin, Hang
Yuan, Qixia
Zhu, Longfei

VIII Organization

Invited Talks

Criticality-Cognizant Modeling and Analysis
of Mixed-Criticality Systems

(Extended Abstract)

Sanjoy Baruah

The University of North Carolina
Chapel Hill, NC 27599, USA
baruah@cs.unc.edu

http://www.cs.unc.edu/*baruah

Abstract. Driven by cost and related considerations, there is an increasing trend
in embedded systems towards implementing functionalities of different degrees
of importance (or criticality) upon a shared platform. The real-time scheduling
community has been developing a theory of mixed-criticality scheduling that
seeks to solve resource allocation problems for such systems; this theory, used
in conjunction with appropriate software engineering methodologies, has the
potential to significantly enhance our ability to design and implement large,
complex, real-time systems in a manner that is both provably correct and
resource-efficient.

Many safety-critical systems must have their correctness established at very high levels
of assurance, sometimes to the satisfaction of statutory Certification Authorities. In
earlier times, such correctness was ensured by keeping things very simple: safety-
critical computer systems were restricted to being very simple, responsible for very
simple, highly repetitive, functionalities. They were commonly implemented as care-
fully hand-crafted code executing upon very simple and predictable processors. Run-
time behavior was therefore highly predictable, and correctness could hence be
demonstrated in a fairly straightforward manner.

Over time, safety-critical system requirements have increased significantly in size
and complexity, and continue to increase at a very rapid pace. It has consequently
become necessary to implement such systems upon more powerful computing plat-
forms. Cost and availability considerations dictate that such platforms be built using
commercial off-the-shelf (COTS) processors and other components. But COTS com-
ponents are generally developed with the objective of providing improved “typical” or
average-case performance rather than better worst-case guarantees; they therefore
incorporate advanced features that do indeed significantly improve average perfor-
mance but may also lead to very large variances in run-time behavior. In order to
predict the precise behavior that will be experienced during run-time by any particular
process executing upon such a platform, extensive knowledge of the precise context
during run-time – the inputs that are provided to the process during a specific run; the
states of the other processes that are executing concurrently; etc.– must be known;
since such knowledge is not usually obtainable during system design time, the precise
run-time behavior is essentially unpredictable during the system’s design process.

Since the systems are so complex and the run-time behavior essentially unpre-
dictable at design time, system correctness at the required high levels of assurance is
demonstrated during the system design process by tremendous over-provisioning of
computational and other platform resources. That is, very conservative and pessimistic
assumptions are made regarding run-time system behavior, and correctness is demon-
strated to hold in the face of such conservative assumptions. However, these very
conservative assumptions are highly unlikely to occur during the typical run; hence,
much of the over-provisioned resources are unlikely to actually be used during run-time.
As a consequence, such conservative system implementations based upon making very
pessimistic resource-allocation design decisions will tend to experience very low
resource utilization during run-time. SWaP considerations (the Size, and Weight of the
implementation platform, and the Power, or more accurately, the energy, that is con-
sumed by it) make such resource under-utilization increasingly unacceptable. This has
motivated a move towards mixed-criticality implementations, in which highly safety-
critical functionalities share an implementation platform with less critical functionalities.
Informally speaking, the idea behind such mixed-criticality implementations is that the
resources that are provisioned to highly critical functionalities during design time, but
are likely to remain unused by these functionalities at run-time, can be “re-claimed” and
used to make performance guarantees, albeit at lower levels of assurance, to the less
critical functionalities.

Mixed-criticality scheduling theory. The recently emergent field of mixed-criticality
scheduling theory is concerned with the study of resource-allocation, scheduling, and
synchronization in such mixed-criticality systems. Two related but distinct approaches
have been widely investigated: one focused primarily on run-time robustness, and the
other on verification.

Run-time robustness is a form of fault tolerance that allows graceful degradation to
occur in a criticality-cognizant manner: if all functionalities implemented upon a shared
platform cannot be serviced satisfactorily the goal is to ensure that less critical func-
tionalities are denied their requested levels of service before more critical functional-
ities are. Approaches in mixed-criticality scheduling theory that seek to ensure such
run-time robustness are centered upon identifying, during run-time, when cumulative
resource demand exceeds the available supply, and triggering a mode change when this
happens. Real-time scheduling theory has a rich history of results towards obtaining
resource-efficient implementations of mode changes; these techniques may be adapted
to ensure run-time robust mixed-criticality systems.

Static verification of mixed-criticality systems is closely related to the problem of
certification. The increasing trend towards computerized control of an ever-increasing
range of functionalities, both safety-critical and non-critical, means that even in highly
safety-critical systems, typically only a relatively small fraction of the overall system is
actually of critical functionality and needs to be certified. In order to certify a system as
being correct, the certification authority (CA) may mandate that certain assumptions be
made about the worst-case behavior of the system during run-time. It is often the case
that these assumptions that are mandated by the CA are far more conservative than
those the system designer would typically use during the system design process if

XII S. Baruah

certification was not required. However, while the CA is only concerned with the
correctness of the safety-critical part of the system the system designer wishes to ensure
that the entire system is correct, including the non-critical parts. Vestal1 first identified
the challenge of obtaining certification for integrated system implementations in which
different functionalities need to have their correctness validated to different levels of
assurance, while simultaneously ensuring efficient resource-utilization. The real-time
scheduling community has since produced a vast amount of work that builds upon
Vestal’s seminal idea.

A call for participation by the SETTA community. Mixed-criticality scheduling
theory offers a promising approach towards efficient implementations of provably
correct safety-critical systems. However, much of this work is based upon relatively
low-level and simple workload models, such as collections of independent jobs, or
systems represented as a finite collection of recurrent (e.g., periodic and sporadic) tasks.
Prior experience has shown that such simple models are inadequate for building truly
complex systems; instead, the concepts and ideas revealed by the exploration of such
simple models must be integrated into the software engineering design flow used in
safety-critical systems development. There is therefore a pressing need for the
dependable software engineering community to take a closer look at mixed-criticality
systems, to integrate the latest results and insights from mixed-criticality scheduling
theory into the tools and theories that are the focus of this community.

Acknowledgements. The ideas discussed in this extended abstract are based upon
discussions with a number of colleagues and research collaborators, Alan Burns in
particular. This research was supported in part by NSF grants CNS 1115284, CNS
1218693, CNS 1409175, and CPS 1446631, AFOSR grant FA9550-14-1-0161, ARO
grant W911NF-14-1-0499, and a grant from General Motors Corp.

Criticality-Cognizant Modeling and Analysis XIII

S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In Proceedings of the Real-Time Systems Symposium, pages 239–243, Tucson, AZ,
December 2007. IEEE Computer Society Press.

Wise Computing
(Abstract of Invited Lecture)

David Harel

The Weizmann Institute of Science, Rehovot, Israel

Major advances in languages, tools and methodologies have improved our ability to
develop reactive systems, but the task remains difficult, expensive and error prone. One
of the key reasons is the growing complexity of many kinds of reactive systems, which
increasingly prevents the human mind from managing a comprehensive picture of all
their relevant elements and behaviors. We present a vision that calls for a major change
in the way complex software and systems are developed, by shifting the power balance
between the human engineers and the development environment. In our computing
paradigm, which we termWise Computing, the development environment is turned into
a much smarter, proactive, creative and interactive stakeholder in the development and
maintenance processes. Ideally, the computer will join the development team as an
equal partner ̶ knowledgeable, concerned, and active.

The wise development suite (WDS) would interact with us wisely, like a colleague.
It would respond to our needs with knowledge, and, utilizing extensive computing
power “under its hood”, will proactively help in the variety of tasks that constitute the
development process of the desired system. It should thus become a creative and
proactive stakeholder, perhaps even a leader, in the development process. This will be
manifested in it initiating discourse and actions based on deep insights into the system’s
structure and behavior, its overarching goals and rationale, and the environment in
which it operates. It will use relevant knowledge (both general and domain-specific) to
participate in the elicitation, formalization, validation and iterative enrichment of
requirements, thus helping to increase confidence in the requirements, and establishing
their consistency. And in the spirit of almost 30 years of model-driven development,
the WDS will also be central to the ability to directly execute/simulate those require-
ments and/or translate them into running code.

The WDS will be able to explore, on its own, functionality and behavior both
exhaustively and under various “what-if`̀ conditions, communicating on multiple
levels. Throughout development and maintenance, the computer will be constantly
investigating itself, in a sort of self-aware fashion. It will detect problems, including
bad and conflicting behaviors, goals and requirements that are not met, inefficiency in
execution, and unneeded complexities in specification and implementation. The WDS
will then initiate and propose changes and enhancements.

This represents joint work with Guy Katz, Rami Marelly and Assaf Marron.

The WDS vision calls also for runtime enhancements, where the system will be
able to interact with users and with other systems in order to explain past behavior and
allow the user to influence future behaviors. For example, a door in a chemical plant or
an airplane will be able to explain to a human why it is presently closed, what will
happen if it is manually opened, and discuss in detail sensor information and alternative
sequences of manual and automated actions associated with opening and closing it.

The two-way interactions of the WDS will employ visual representations, exam-
ples, pseudo and conventional code. A key capability will be the use of natural lan-
guage in both directions. Indeed, despite much work on natural languages for
requirements and program specification, we are still far from the point where we can
automatically read and parse requirements specified in a way that is natural and
accessible to humans, and from them create a correct formal specification.

The most immediate benefit of a wise computing suite will be, of course, a sig-
nificant reduction in the development time and cost of complex systems, and will result
in much improved system quality. Run-time wisdom will increase user and regulator
confidence in systems, further expanding development and adoption. And over and
above all of this, we believe that in the farther future we will experience new
dimensions of innovation, as rich new capabilities and new ranges of safety will be
initiated (and often invented!) by wise systems, rather than only by humans.

How will the WDS do all this? Well, this is a vision, and for many facets thereof
much research is required even to figure out they can be achieved. However, we have
already done some work, and our ideas are explained in a paper we recently submitted
for publication. A preliminary version can be found at: http://arxiv.org/abs/1501.05924.
Also, we have built a modest and preliminary wise development suite, which we view
as a promising proof-of-concept. The current version of the tool, as well as prerecorded
video clips demonstrating its main principles on two examples, can be found at: http://
www.wisdom.weizmann.ac.il/*harel/CACM.wisecomputing.

Wise Computing XV

http://arxiv.org/abs/1501.05924
http://www.wisdom.weizmann.ac.il/~harel/CACM.wisecomputing
http://www.wisdom.weizmann.ac.il/~harel/CACM.wisecomputing

The Myth of Linearization Points

Huimin Lin

State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences

lhm@ios.ac.cn

Abstract. Linearizability has been established as a widely accepted criterion for
the correctness of concurrent data structures. Intuitively, an implementation of a
concurrent object is linearizable with respect to a sequential specification if
every method call has a linearization point at some instant between its invo-
cation and return, such that every method call appears “to take effect” instantly
at its linearization point, behaving as defined by the specification. However,
despite more than two decades of intensive studies, the notion of linearization
points still remains informal. This has caused confusions in the verification of
Linearizability.

To formulate a formal definition of linearization points we work in a
behavioral formwork in which the semantics of an object system is represented
as a labeled transition system. Our characterization of linearization points is
based on a refined notion of trace equivalence, termed max-trace equivalence,
which equites two states if they have not only the same set of (ordinary) traces
but also the same branching potentials of the states on their traces. With max-
trace equivalence two kinds of internal transitions can be distinguished: those
change the object’s states, and those do not. The former corresponds to lin-
earization points.

It turns out that max-trace equivalence coincides with branching bisimula-
tion, a refinement of Milner’s weak bisimulation by requiring two related states
should respect not only their own branching structures but also the branching
potentials of all intermediate states that are passed through. This allows, for
finite state systems, to efficiently compute the equivalence class under max-trace
equivalence, from which a quotient system can be constructed. Since most
internal transitions in the original object system are not linearization points and
have been abstracted away in the quotient construction, the size of the quotient
system is significantly smaller than the original system, which results in huge
state space reductions when verifying linearizability. The advantages of our
approach have been confirmed by experiments on benchmark problems.

(Based on joint work with Xiaoxiao Yang, Joost-Pieter Katoen and Hao Wu)

Contents

Probabilistic Systems

Fault Trees on a Diet — Automated Reduction by Graph Rewriting — 3
Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, Arend Rensink,
and Mariëlle Stoelinga

Cost vs. Time in Stochastic Games and Markov Automata 19
Hassan Hatefi, Bettina Braitling, Ralf Wimmer,
Luis María Ferrer Fioriti, Holger Hermanns, and Bernd Becker

A Comparative Study of BDD Packages for Probabilistic Symbolic
Model Checking . 35

Tom van Dijk, Ernst Moritz Hahn, David N. Jansen, Yong Li,
Thomas Neele, Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang

Hybrid and Cyber-Physical Systems

Refinement and Proof Based Development of Systems Characterized
by Continuous Functions . 55

Guillaume Babin, Yamine Aїt-Ameur, Shin Nakajima, and Marc Pantel

Synthesizing Controllers for Multi-lane Traffic Maneuvers 71
Gregor v. Bochmann, Martin Hilscher, Sven Linker,
and Ernst-Rüdiger Olderog

Extending Hybrid CSP with Probability and Stochasticity 87
Yu Peng, Shuling Wang, Naijun Zhan, and Lijun Zhang

Testing, Simulation and Inference

Towards Verified Faithful Simulation . 105
Vania Joloboff, Jean-François Monin, and Xiaomu Shi

Cardinality of UDP Transmission Outcomes . 120
Franz Weitl, Nazim Sebih, Cyrille Artho, Masami Hagiya,
Yoshinori Tanabe, Yoriyuki Yamagata, and Mitsuharu Yamamoto

Inferring Software Behavioral Models with MapReduce 135
Chen Luo, Fei He, and Carlo Ghezzi

http://dx.doi.org/10.1007/978-3-319-25942-0_1
http://dx.doi.org/10.1007/978-3-319-25942-0_2
http://dx.doi.org/10.1007/978-3-319-25942-0_3
http://dx.doi.org/10.1007/978-3-319-25942-0_3
http://dx.doi.org/10.1007/978-3-319-25942-0_4
http://dx.doi.org/10.1007/978-3-319-25942-0_4
http://dx.doi.org/10.1007/978-3-319-25942-0_5
http://dx.doi.org/10.1007/978-3-319-25942-0_6
http://dx.doi.org/10.1007/978-3-319-25942-0_7
http://dx.doi.org/10.1007/978-3-319-25942-0_8
http://dx.doi.org/10.1007/978-3-319-25942-0_9

Bisimulation and Correctness

An Application of Temporal Projection to Interleaving Concurrency 153
Ben Moszkowski and Dimitar P. Guelev

A High-Level Model for an Assembly Language Attacker by Means
of Reflection . 168

Adriaan Larmuseau, Marco Patrignani, and Dave Clarke

Design and Implementation

Improving Design Decomposition . 185
David Faitelson and Shmuel Tyszberowicz

From Requirements Engineering to Safety Assurance: Refinement
Approach . 201

Linas Laibinis, Elena Troubitsyna, Yuliya Prokhorova, Alexei Iliasov,
and Alexander Romanovsky

Pareto Optimal Scheduling of Synchronous Data Flow Graphs
via Parallel Methods . 217

Yu-Lei Gu, Xue-Yang Zhu, and Guangquan Zhang

Symbolic Execution and Invariants

PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM
Byte Code Instrumentation . 227

Zhang Jun-xian, Li Zhou-jun, and Zheng Xian-chen

Generating Specifications for Recursive Methods by Abstracting Program
States . 243

Nathan Wasser

Assertion-Directed Precondition Synthesis for Loops over Data Structures . . . 258
Juan Zhai, Hanfei Wang, and Jianhua Zhao

Verification and Case Studies

Automatic Fault Localization for BIP . 277
Wang Qiang, Lei Yan, Simon Bliudze, and Mao Xiaoguang

Formal Verification of the Pastry Protocol Using TLAþ 284
Tianxiang Lu

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-25942-0_10
http://dx.doi.org/10.1007/978-3-319-25942-0_11
http://dx.doi.org/10.1007/978-3-319-25942-0_11
http://dx.doi.org/10.1007/978-3-319-25942-0_12
http://dx.doi.org/10.1007/978-3-319-25942-0_13
http://dx.doi.org/10.1007/978-3-319-25942-0_13
http://dx.doi.org/10.1007/978-3-319-25942-0_14
http://dx.doi.org/10.1007/978-3-319-25942-0_14
http://dx.doi.org/10.1007/978-3-319-25942-0_15
http://dx.doi.org/10.1007/978-3-319-25942-0_15
http://dx.doi.org/10.1007/978-3-319-25942-0_16
http://dx.doi.org/10.1007/978-3-319-25942-0_16
http://dx.doi.org/10.1007/978-3-319-25942-0_17
http://dx.doi.org/10.1007/978-3-319-25942-0_18
http://dx.doi.org/10.1007/978-3-319-25942-0_19

Formal Modelling and Verification of IEC61499 Function Blocks
with Abstract State Machines and SMV - Execution Semantics. 300

Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin

Erratum to: Pareto Optimal Scheduling of Synchronous Data Flow Graphs
via Parallel Methods . E1

Yu-Lei Gu, Xue-Yang Zhu, and Guangquan Zhang

Erratum to: Formal Modelling and Verification of IEC61499 Function
Blocks with Abstract State Machines and SMV - Execution Semantics E2

Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin

Author Index . 317

Contents XIX

http://dx.doi.org/10.1007/978-3-319-25942-0_20
http://dx.doi.org/10.1007/978-3-319-25942-0_20

Probabilistic Systems

Fault Trees on a Diet

— Automated Reduction by Graph Rewriting —

Sebastian Junges1(B), Dennis Guck2, Joost-Pieter Katoen1,2, Arend Rensink2,
and Mariëlle Stoelinga2

1 Software Modeling and Verification, RWTH Aachen University, Aachen, Germany
sebastian.junges@cs.rwth-aachen.de

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands

Abstract. Fault trees are a popular industrial technique for reliability
modelling and analysis. Their extension with common reliability pat-
terns, such as spare management, functional dependencies, and sequenc-
ing — known as dynamic fault trees (DFTs) — has an adverse effect on
scalability, prohibiting the analysis of complex, industrial cases by, e.g.,
probabilistic model checkers. This paper presents a novel, fully auto-
mated reduction technique for DFTs. The key idea is to interpret DFTs
as directed graphs and exploit graph rewriting to simplify them. We
present a collection of rewrite rules, address their correctness, and give
a simple heuristic to determine the order of rewriting. Experiments on a
large set of benchmarks show substantial DFT simplifications, yielding
state space reductions and timing gains of up to two orders of magnitude.

1 Introduction

Probabilistic safety assessment is common practice in the design and monitoring
of safety-critical systems, and often required by law. Typical measures of interest
are the system reliability (what is the probability that the system is operational
up to time t?) and availability (what is the expected up time?).

Fault tree analysis [38] is one of the most prominent safety assessment tech-
nique. It is standardized by the IEC [21], and deployed by many companies and
institutions, like FAA, NASA, ESA, Airbus, Honeywell, etc. Fault trees (FTs)
model how failures propagate through the system: FT leaves model component
failures and are equipped with continuous probability distributions; FT gates
model how component failures lead to system failures. Due to, e.g., redundancy,
not every single component failure leads to a system failure.

Dynamic fault trees (DFTs) [13,38] are a well-known extension to standard
fault trees that cater for common dependability patterns, such as spare manage-
ment, functional dependency, and sequencing. Analysis of DFTs relies on extract-
ing an underlying stochastic model, such as Bayesian networks [3,6], continuous-
time Markov chains (CTMCs) [14], stochastic Petri nets [32,2], and interactive
Markov chains [4]. Stochastic model checking is an efficient technique to analyse
these models [25,33]. Since the order in which the DFT components fail matters,
these approaches severely suffer from the state space explosion problem.
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-25942-0 1

4 S. Junges et al.

This paper presents a novel technique to reduce the state space of DFTs
prior to their analysis. The key idea is to consider DFTs as (typed) directed
graphs and manipulate them by graph transformation [15], a powerful technique
to rewrite graphs via pattern matching. We present a catalogue of 28 (families of)
rules that rewrite a given DFT into a smaller, equivalent DFT, having the same
system reliability and availability. Various rewrite rules are context sensitive.

We have implemented our techniques on top of the graph transformation tool
groove [17] and the DFT analysis tool DFTCalc [1], yielding a fully automated
tool chain for graph-based DFT reduction and analysis. A simple heuristic deter-
mines the order to apply the rewrite rules. We have analysed several variations
of seven benchmarks, comprised of over 170 fault trees in total, originating from
standard examples from the literature as well as industrial case studies from
aerospace and railway engineering. Rewriting enabled to cope with 49 DFTs
that could not be handled before. For the other fault trees rewriting pays off,
being much faster and more memory efficient, up to two orders of magnitude.
This applies to both the peak memory footprint and the size of the resulting
Markov chain (see Figures 9(b) and 9(c), page 15). This comes at no run-time
penalty: graph rewriting is very fast and the stochastic model generation is sig-
nificantly accelerated due to the DFT reduction.

Related Work. Reduction of fault trees is well-investigated. An important tech-
nique is to identify independent static sub-trees [31,26,19,39,35]. These static
sub-trees are analysed using efficient techniques (such as BDDs), whereas the
dynamic parts require more complex methods, as mentioned above. While such
modular approaches yield significant speed ups, they largely depend on the DFT
shape. Shared sub-trees, or a dynamic top-node, inhibits the application of these
techniques. Merle et al. [28,29] map DFTs onto boolean algebra extended with
temporal operators. The resulting expressions can then be minimised via syntac-
tic manipulation. This approach imposes several restrictions on the DFTs. Para-
metric fault trees [32,2] exploit the symmetry in replicated sub-trees while trans-
lating DFTs (using graph transformation) to generalized stochastic Petri nets.
Finally, DFTCalc exploits compositional aggregation, of (interactive) Markov
chains using bisimulation [4].

2 Dynamic Fault Trees

A dynamic fault tree (DFT) is a tree (or more generally, a directed acyclic
graph) that describes how component failures propagate through the system.
DFT leaves represent component failures, called basic events (BEs; drawn as
ellipses).

Fail-safe components and components that have failed already, are denoted
respectively by CONST(⊥) and CONST(�).

Gates, depicted in Figure 1, model failure propagation. The static gates OR,
AND, VOT(k) fail if respectively one, all or k of their inputs fail. The PAND,
SPARE and FDEP are dynamic gates. A PAND-gate fails if the inputs fail from
left to right; if the components fail in any other order, then no failure occurs.

Fault Trees on a Diet 5

(a) OR (b) AND (c) VOT(k) (d) PAND (e) SPARE (f) FDEP

Fig. 1. Dynamic fault tree gates.

A SPARE-gate contains one primary, and one or more spare inputs. If the primary
input fails, then a spare takes over its functionality, putting the spare from
dormant into active mode. If all spares have failed as well, then the SPARE-gate
fails. Note that (1) primary and spares can be subsystems; and (2) spares can
be shared among several components. An FDEP-gate contains a trigger input,
which triggers the failure of all its dependent events.

We follow the standard approach and model component failure by expo-
nential probability distributions. Since dormant spare components fail less fre-
quently, we equip each leaf node with a failure rate λ ∈ R

+ and a dormancy
factor α ∈ [0, 1], reducing the failure rate of a dormant component. Thus, the
probability for an active component to fail with time t equals 1 − e−λt; for a
dormant component this is 1 − e−αλt.

Example 1. The DFT in Figure 2 represents the (simplified) failure behaviour
of a railway level crossing [18], consisting of three subsystems: the sensors, the
barriers and the controller. The crossing fails if either of these subsystems fails.
The sensor system fails if at least two out of the four redundant sensors fail
Furthermore, there can be a detection problem due to a disconnection of the
cables, making all sensors unavailable, modelled by the FDEP-gate No detection
specifying that the trigger Disconnection causes the failure of its dependent events
Sensor1–Sensor4. Finally, the barriers fail if either the main and spare motor fail,
modelled by the SPARE-gate Motors, or if the switch and then a motor fails.

Well-Formedness. As usual, DFTs must be well-formed, meaning: (a) the DFT is
acyclic; (b) leaves have leaf-types, other nodes have gate-types; (c) VOT(k)-gates

Fig. 2. Railway crossing DFT.

6 S. Junges et al.

(a) DFT with AND (b) DFT with SPARE (c) DFT with AND & FDEP

(d) IMC for 3(a) (e) IMC for 3(b) (f) IMC for 3(c)

Fig. 3. Example DFT to IMC transformations

have at least k inputs; (d) the top level event is not an FDEP; (e) FDEPs have
no parents; (f) all dependent events of an FDEP are BEs; (g) spare modules, i.e.,
sub-trees under a SPARE-gate, are independent; (h) primary spare modules, i.e.,
sub-trees under the primary input of a SPARE-gate, do not contain CONST(�)-
nodes; (i) primary spare modules are never shared between SPARE-gates.

DFT Semantics. The semantics of a DFT F is — like in [10] — expressed using
a transition system CF , where transitions correspond to the failure of a BE and
states to sequences of distinct BEs. As the properties of interest are stochastic in
nature, CF is an interactive Markov chain (IMC) [20]. This IMC has two types of
transitions: interactive (here: immediate τ -transitions) and Markovian (labelled
with a rate λ, being the parameter of an exponential distributed delay).

The formal definitions and the construction of CF are given in [22]. Here, we
illustrate the principle by three small examples, depicted in Figure 3. For ease
of reference, we have labelled each state with the sequence of failed BEs. The
DFT in Figure 3(a) fails if BE A and then B (upper path in 3(d)) fails, or if
first B and then A fails (lower path in 3(d)). The DFT in Figure 3(b) fails if
BEs A and B fail, as above. However, if A has not yet failed, then the failure
rate of B is reduced by factor αB. Thus, B is initially dormant, and failes with
rate λB · αB (see 3(e)). The DFT in Figure 3(c) also fails if BEs A and B fail.
However, the failure of A causes B to fail immediately afterwards, as realized by
the τ -transition in Figure 3(f).

DFT Analysis. A wide variety of qualitative and quantitative DFT analysis
techniques are available, see [36] for an overview. We concentrate on two of the
most common quantitative measures: the reliability until a given mission time
t, i.e., the probability that no failure occurs within time t, and the mean time to
failure (MTTF), i.e., the expected time until the first system failure. Example
measures for the DFT in Figure 2 are: “what is the reliability of the level crossing
for a time frame of 10 years after deployment?”, or “what is the mean time until
a first failure of the level crossing occurs?”.

We define the probability measures on a DFT F in terms of CF . Let Fail be
the set of states in IMC CF in which the top event in F has failed. If a state has
multiple dependent events, their order is non-deterministically resolved. This is

Fault Trees on a Diet 7

formalised using a policy (or scheduler) P on CF , resulting in a continuous-time
Markov chain CF [P].

Definition 1 (Relevant measures). Given a DFT F , a policy P on F, and
a mission time t ∈ R, the reliability of F under P given t, RELY t

F [P], is given
by PrCF [P](�≤tFail). The mean time to failure in F under P MTTFF [P] is given
by ETCF [P](�Fail), where ET is defined as the expected time.

3 Rewrite Rules for Dynamic Fault Trees

DFTs tend to be verbose. They are often based on the system architecture,
therefore reflecting their sub-system structure [38]. Moreover, modern techniques
automatically generate DFTs from architectural description languages [7], also
yielding rather verbose DFTs. Given that state-of-the-art algorithms construct
the underlying IMC by a parallel composition of IMCs corresponding to gates, it
is a natural idea to shrink DFTs prior to their analysis. Observe that simplifying
static fault trees (SFTs) can be done by simple Boolean manipulations [38]. This
remains true for FDEPs, but no longer holds in the presence of dynamic gates
such as SPARE- and PAND-gates.

We have identified a set of 28 rewrite rules valid for DFTs, which include
the (now context-sensitive) rules for SFTs originating from the bounded lattice
axioms. Other rules consider combination of dynamic gates which can be simpli-
fied. Each rule contains a left-hand (lhs) and a right-hand (rhs) sub-DFT; they
are applied by matching the lhs in a given DFT and replacing it by the rhs. Rule
application fails if it results in a non-well-formed DFT: in particular, if deletion
of a node produces a dangling edge, then the rule cannot be applied. Techni-
cally, the mappings between the nodes are defined by a few graph morphisms
and context restrictions. For details, see Section 4.

All rules can be used in both directions, i.e., from left to right or from right
to left. Below, we present a few key rules and discuss the main issues involved,
including the correctness of the rules. Please, notice that the application of some
rules might cause an intermediate growth in the number of elements of the DFT,
but makes other rules applicable. In this paper, we display rules only graphically.
The complete set of formally defined rules can be found in [22].

Left-Flattening. The first rewrite rule is rather simple and indicates how a DFT
with root A (lhs) can be flattened into a DFT with root A′ (rhs). In fact, we define
a family of rules here, as A can be an AND-, OR-, or PAND-gate. The rule asserts
that if A’s first successor B has the same type as A, the DFT can be flattened
such that B’s successors become A’s successors (instead of its grandchildren).
The rule’s correctness in case A is an AND- or OR-gate is obvious; in fact, it
can then be applied to any successor of A, not just the first. If A is a PAND-
gate, the correctness follows from the fact that the ordering of B’s successors is
maintained. In this case, the restriction to the first successor is essential.

8 S. Junges et al.

Flattening of PAND-gates. If a PAND-gate has a PAND-successor which is not
necessarily its first successor, then the following rule applies. The ordering of C1

and C2 is ensured by C ′ (rhs) whereas the fact that B should fail prior to C1 and
C2 (in that order) is guaranteed by the PAND-gate A2 (rhs). This PAND-gate
also ensures that B and C2 should fail before D1–Dk fail. (Note that successor
B is optional.)

PAND-gates with a First OR-successor. This rewrite rule illustrates a distribu-
tion rule for PAND-gates. If the first successor C is an OR-gate with successors
C1 and C2, then the DFT can be rewritten into a disjunction of two PAND-gates
where the first one takes care of the failure of C1 whereas the second PAND
considers the failure of C2. Although this rule does not give rise to a reduction
of the number of DFT elements, it may enable other rewrite rules.

The rules so far are context-free: they can be applied to any sub-DFT match-
ing the lhs. We now give an example of a context-sensitive rewrite rule.

Fault Trees on a Diet 9

Conflicting PAND-gates. Consider a DFT rooted by an AND-gate which has
two PAND-successors whose ordering requirements conflict: D1 requires B to
fail before C, whereas D2 requires the opposite. In contrast to the rule above,
the rewrite rule for this case is context-sensitive: under the assumption that the
successors never fail simultaneously (indicated as B and C having independent
inputs), the PAND-gates D1 and D2 can never both fail. Therefore, the AND-root
cannot fail, and the entire DFT is reduced to the DFT on the right. Note that
nodes B and C are not eliminated, as they may be connected to other elements
of the DFT. However, elimination of the edges may prevent the activation of
elements in the sub-tree. Therefore, the rule may only be applied if, e.g., the
sub-trees are activated via another path or if the sub-trees were never activated
in the original DFT, as required by the context restriction ActivationConnection.

Simplifying of FDEP-gates. If the trigger event C of the FDEP occurs, then the
dependent events B1– Bm all fail, yielding a failure of the AND A. The right DFT
emulates this behaviour by adding X – which only fails once trigger C occurs.
The root thus fails if either all basic elements Bi fail, or trigger C occurs. This
rule is context-sensitive, as its correctness depends on the fact that the successors
B1 through Bm do not have other predecessors besides the AND-gate A. Further
rule allow us to get rid of both the FDEP and X in subsequent steps.

Rewriting Order. A DFT is rewritten by applying a series of rules, with the inten-
tion to end up with a simpler, equivalent model. We first consider an example.

10 S. Junges et al.

A

B C

A

D1

B C

A

D2 D3

B C

⊥

A

B C

rule 1
reverse rule 2

Fig. 4. Steps for rewriting PAND with a duplicate successor.

Example 2. Consider the DFT in Figure 4 (left). The second DFT results from
applying rewrite rule 1 in the reverse direction. Note that this DFT is larger
than the first, but enables the application of rule 2, which yields a DFT with a
conflicting PAND with independent successors. Applying rule 4 finally allows us
to remove the two PAND-gates.

Typically, for a given DFT many different rules are applicable, some of which
may be conflicting (in the general sense of rewriting theory [12], meaning that the
application of one rule makes the other inapplicable). For instance, in Figure 4,
instead of applying rule 2 as a second step, we could also have applied rule 1,
thereby returning to the original DFT. Our overall aim of rewriting any given
DFT to a structurally simpler one can in fact be seen as a search problem in
the space of DFTs, where the search steps are rule applications. In this paper,
we have chosen a fixed, deterministic search strategy. We classified the rewrite
rules in three groups, roughly corresponding to the notions of cleaning (e.g.,
removal of disconnected elements), elimination (e.g., rule 1), and rewriting (e.g.,
rule 2). Our heuristic is to apply rules from these groups as long as possible,
with descending priority.

Correctness. In [22] it is shown that the all 28 rule families are correct, in the
sense of preserving the measures-of-interest (see Definition 1).

Theorem 1. All rewrite rules in [22] preserve all RELY- and MTTF-properties.

The proof (cf. [22]) amounts to showing that local equivalence of lhs and rhs,
consisting of a number of local conditions and context restrictions, implies global
equivalence with respect to RELY and MTTF of the source and target DFT of
any rule application. These local conditions are then proven to be fulfilled by
the rule under consideration — much like the explanations given above.

Theorem 1 means that after rewriting a DFT F into DFT F ′ using our
heuristic strategy (or, indeed, any sequence of rewrite rules whatsoever), we
may establish F ’s properties by analysing the — generally smaller — F ′. We
notice that these results remain true even if the set of used rules is incomplete
(in the sense that not all equivalent DFTs can be transformed into each other).

Fault Trees on a Diet 11

Fig. 5. Operationalising DFT rewriting via graph rewriting.

4 Rewriting DFTs via Graph Transformation

Operationalising our rewrite rules is a non-trivial step. Essentially, we need to
ensure that the implementation correctly reflects the rules as formally defined.
Ideally, one would like to be able to use the rule definitions themselves as exe-
cutable specifications. In this paper, we have approached that ideal by using
graph transformation (GT) as a framework in which to encode the rules, and
groove [17] as rule engine. Therefore, we encode the DFTs as graphs and
encode rewrite rules by a sequence of GT rules (called recipes in groove). The
operational framework is depicted in Figure 5.

DFTs as Simple Graphs. DFTs are directed acyclic node-typed graphs with
an ordering imposed on the successors (children) of every node. The graphs in
our graph transformation framework, commonly called simple graphs, are slightly
different: on the one hand they are more basic, since they do not directly support
node ordering. Thus, to represent the ordering of dynamic gate successors, we
use auxiliary intermediate nodes connected by next-edges. On the other hand,
simple graphs are edge-labelled, offering opportunities for compact encodings.
In particular, functional dependencies can be encoded as (sets of) edges rather
than as nodes, leading from trigger to dependent events.

We have to omit the formal definition of simple graphs and of the DFT
encoding. Instead, Figure 6 (slightly simplified for presentation purposes) shows
the types of nodes and edges that may occur in a graph-encoded DFT. The
italic node types are abstract (in the programming language sense, meaning
that only their subtypes can be concretely instantiated). BE-typed nodes repre-
sent basic events, with corresponding failure rate and dormancy factor, whereas

Fig. 6. Type graph for encoded DFTs (slightly simplified)

12 S. Junges et al.

Fig. 7. Example DFT and rewrite rule encodings.

Value-typed nodes represent CONST(�) or CONST(⊥), depending on the val
flag. Ord-nodes encode the child ordering of a dynamic gate, and the fdep-edges
the functional dependencies, as discussed above. Figure 7(a) shows the encoding
of a fragment of the Railway Crossing DFT of Figure 2.

Rewriting Through GT Rules. Our GT rules have a structure very similar to the
DFT rewrite rules they encode. Each rule consists of a left hand side (lhs) and a
right hand side (rhs); the difference between them specifies which nodes or edges
should be deleted and which should be created upon application of the rule.
groove uses a graphical syntax in which lhs and rhs are combined into a single
graph and color coding is used to indicate deletions and creations. In particuar,
dashed blue nodes/edges should be deleted, whereas fat green nodes/edges are
created upon rule application. For example, Figure 7(b) shows the encoding
of the left-flattening of Or-gates in rule 1. A feature of groove that is very
convenient in this context is the ability to universally quantify over substructures
[34]: in the case of left-flattening, all successors of the redundant Or-gate should
be added to the root Or. The context-sensitive side conditions of, for instance,
rules 4 and 5 are directly encoded as part of the GT rules (which are themselves
context sensitive in general). The heuristic search strategy described in Section 3
is implemented in groove using a control program, which is a mechanism to
specify a dedicated schedule of rule applications.

Implementation. We have developed prototypical tool-support1 exploiting the
tools groove [17] for graph rewriting, and DFTCalc [1] for the analysis of DFTs.
As shown in Figure 8, our tool chain takes as input a DFT and a measure, i.e.,

1 Available online at http://moves.rwth-aachen.de/ft-diet/.

http://moves.rwth-aachen.de/ft-diet/

Fault Trees on a Diet 13

Fig. 8. Tool chain for rewriting and model checking dynamic fault trees.

the reliability up to time t, or the MTTF. We translate the DFT into the input
format of groove and the output of groove, i.e., the rewritten graph, back
into a DFT that then is analysed by DFTCalc. DFTCalc exploits CADP [16] for
compositional state space generation and reduction (using bisimulation minimi-
sation) of the underlying IMC of the DFT. Finally, the resulting Markov chain
is analysed for the user-specified measure by the probabilistic model checker
MRMC [24].

5 Experiments

We have selected a set of benchmarks for DFTs from the literature and from
industrial case studies. We have considered four sets of benchmarks that are
scalable in a natural manner, to show the scalability of the approach. Several
variations of these four benchmarks have been considered, yielding in total 163
cases. We have considered another three industrial cases, yielding an additional
20 cases. All benchmarks are shortly described below; Fig. 9(d) shows, in brackets
after the acronym, for each case how many instances were analysed. Full details
and DFTs of the case studies, as well as all statistics can be found at http://
moves.rwth-aachen.de/ft-diet/.

For each benchmark, we compared the performance of base and rewriting
(rw) executions, the difference being whether or not the groove component of
Figure 8 was invoked before DFTCalc was run. We investigated the influence
of rewriting on (1) the number of nodes in the DFT, (2) the peak memory
consumption, (3) the total analysis time (including model generation, rewriting,
and analysis), as well as (4) the size of the resulting Markov chain. As can be
seen in Figure 9(a)-(c), rewriting DFTs improves the performance for all these
criteria in almost all cases. In particular, 49 cases could be analysed that yielded
a time-out or out-of-memory in the base setting.
HECS. The Hypothetical Example Computer System (HECS) stems from the
NASA handbook on fault trees [38]. It features a computer system consisting of a
processing unit (PU), a memory unit (MU) and an operator interface consisting
of hardware and software. These subsystems are connected via a 2-redundant
bus. The PU consists of two processors and an additional spare processor which
can replace either of the two processors, and requires one working processor.
The MU contains 5 memory slots, with the first three slots connected via a
memory interface (MI) and the last three connected via another MI. Memory
slots either fail by themselves, or if all connected interfaces have failed. The MU

http://moves.rwth-aachen.de/ft-diet/
http://moves.rwth-aachen.de/ft-diet/

14 S. Junges et al.

requires three working memory slots. We consider a system which consists of
multiple (m) (identical) computer systems of which k ≤ m are required to be
operational in order for the system to be operational. Furthermore, we vary the
MI configuration, and consider variants in which all computers have a power
supply which is functionally dependent on the power grid.
MCS. The Multiprocessor Computing System (MCS) contains computing mod-
ules (CMs) consisting of a processor, a MU and two disks. A CM fails if either
the processor, the MU or both disks fail. All CMs are connected via a bus. An
additional MU is connected to each pair of CMs, which can be used by both
CMs in case the original memory module fails. The MCS fails, if all CMs fail
or the bus fails. The original MCS model was given as a Petri net [27], a DFT
has been given in [30]. The latter includes a power supply (whose failure causes
all processors to fail) and assumes the usage of the spare memory component to
be exclusive. This is the case we consider. Variations of this model have been
given in [1,32]. Based upon these variations we consider several cases. Therefore,
we consider a farm of m MCSs of which k are required to be operational. Each
MCS contains n CMs (for n uneven, one spare MU is connected to three CMs).
Each system has its own power supply. Which is either single power (sp, no
redundancy) or double power (dp, one redundant supply for each computer).
RC. The Railway Crossing (RC) is an industrial case modelling failures at level
crossing [18] (cf. Figure 2). We consider an RC that fails whenever any of the
sensor-sets fail, or any of the barriers fail, or the controller fails. We obtain scal-
able versions with b identical barriers and s sets of sensors (each with their own
cable which can cause a disconnect). Either the controller failure is represented
by a single basic event or by a computer modeled as in HECS.
SF. The Sensor Filter (SF) benchmark is a DFT that is automatically generated
from an AADL (Architecture Analysis & Design Language) system model [7].
The DFT is obtained by searching for combinations of basic faults which lead
to the predefined configurations in the given system. The SF benchmark is a
synthetic example which contains a number of sensors that are connected to
some filters. The set contains a varying number of sensors and filters.
Other Case Studies. In addition to these scalable benchmarks we have con-
sidered other industrial cases such as a Section of an Alkylate Plant (SAP) [9],
a Hypothetical Cardiac Assist System (HCAS) [5], and some DFTs (MOV) of
railway systems from the Dutch company Movares.

Experimental Results. All experiments were run on an Intel i7 860 CPU with
8GB RAM under Debian GNU/Linux 8.0. Figure 9(a) indicates the run time
for all 163 benchmarks comparing the case with rewriting (x-axis) and without
rewriting (y-axis). Note that both dimensions are in log-scale. The dashed line
indicates a speed-up of a factor ten. The topmost lines indicate an out-of-memory
(MO, 8000 MB) and a time-out (TO, two hours), respectively. Figure 9(b) indi-
cates the peak memory footprint (in MB) for the benchmarks using a similar
plot. The dashed line indicates a reduction in peak memory usage of a factor 10.
Finally, Figure 9(c) shows the size of the resulting Markov chain (in terms of

Fault Trees on a Diet 15

(a) run time (seconds) (b) memory footprint (MB)

(c) # states in MC
(d) timing (bs = base)

Fig. 9. Overview of the experimental results on four different benchmark sets.

the number of states), i.e., the model obtained by DFTCalc after bisimulation
minimisation. The dashed line indicates a reduction of the Markov chain size by
one order of magnitude.

Fig. 9(d) indicates for all 7 case studies how many instances could be handled
in the base setting (second column), with rewriting (third column), the total time
(in hours) in the base (fourth column), the total time with rewriting for those
cases that also could be handled in the base (fifth column), and the total time
for the cases that could be only dealt with rewriting (sixth column), and the
average reduction in number of nodes of the DFTs (last column).

Analysis of the Results. In most cases, the reduction of the peak memory foot-
print as well as the size of the resulting Markov chain is quite substantial, where
reductions of up to a factor ten are common with peaks of up to several orders
of magnitude. Rewriting enabled to cope with 49 out of 183 cases that yielded

16 S. Junges et al.

Fig. 10. Effect of rewriting on MCS (n = # CMs, sp/dp = single/double power).

a time-out or out-of-memory in the standard setting. For a few cases, rewriting
does not give a memory or model reduction, see the points below the diagonal
in Figures 9(b) and 9(c). This is mainly due to the fact that CADP exploits
compositional bisimulation minimisation, where the order in which sub-Markov
chains are composed and minimised is determined heuristically [11]. It may thus
occur that equivalent, but structurally different DFTs yield different minimisa-
tion orders (and thus peak memory consumption) and distinct minimal Markov
chains. In terms of run time, rewriting comes almost for free. In more than
99% of the cases, rewriting speeds up the model construction and analysis, see
Figure 9(a). A more detailed analysis reveals that the graph rewriting with
groove is very fast, typically between 7 and 12 sec. Most time is devoted to
the Markov chain construction and bisimulation minimisation (using CADP).
The verification time of the resulting Markov chain with the probabilistic model
checker MRMC is negligible. The results summarised in Fig. 9(d) underline these
trends. The scalability of our approach becomes clear in Figure 10 that shows,
for two variants of the MCS benchmark, the time, peak memory usage, and size
of the resulting Markov chain (y-axis) versus the number of CMs (x-axis). The
left plot shows that analysis time is decreased drastically, whereas the right plot
shows that the size of the Markov chain is always very close. Plots for the other
case studies show similar improvements. The results indicate that systems with
two to four times more components become feasible for analysis.

6 Conclusions and Future Work

This paper presented a novel reduction technique to minimise DFTs using graph
rewriting. Application to a large number of benchmarks showed that the savings
in terms of time and memory consumption can be drastic, up to two orders of
magnitude. Our rewriting approach is applicable too for alternative DFT analysis
techniques (rather than DFTCalc). We firmly believe that rewriting can further
improve techniques [31,26,19,39,35] that isolate static sub-trees and is applicable
to trees similar to DFTs, e.g., dynamic event/fault trees [23], extended FTs [8]
and attack trees [37]. Future work is needed to substantiate these claims, as well
as to study completeness of the rewrite rules.

Acknowledgments. This work has been supported by the STW-ProRail partner-
ship program ExploRail under the project ArRangeer (12238) and the EU FP7 grant

Fault Trees on a Diet 17

agreements no. 318490 (SENSATION) and 318003 (TREsPASS). We acknowledge our
cooperation with Movares in the ArRangeer project.

References

1. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc:
a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M.
(eds.) SAFECOMP. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013)

2. Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Parametric fault tree for the
dependability analysis of redundant systems and its high-level Petri net semantics.
IEEE Trans. on Softw. Eng. 29(3), 270–287 (2003)

3. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis
of dependable systems by mapping fault trees into Bayesian networks. Rel. Eng.
& Sys. Safety 71(3), 249–260 (2001)

4. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and exten-
sible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secure
Comput. 7(2), 128–143 (2010)

5. Boudali, H., Dugan, J.B.: A discrete-time Bayesian network reliability modeling
and analysis framework. Rel. Eng. & Sys. Safety 87(3), 337–349 (2005)

6. Boudali, H., Dugan, J.B.: A continuous-time Bayesian network reliability modeling
and analysis framework. IEEE Trans. on Reliability 55(1), 86–97 (2006)

7. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. The Computer
Journal 54, 754–775 (2011)

8. Buchacker, K.: Modeling with extended fault trees. In: Proceedings of HASE,
pp. 238–246 (2000)

9. Chiacchio, F., Compagno, L., D’Urso, D., Manno, G., Trapani, N.: Dynamic
fault trees resolution: A conscious trade-off between analytical and simulative
approaches. Rel. Eng. & Sys. Safety 96(11), 1515–1526 (2011)

10. Coppit, D., Sullivan, K.J., Dugan, J.B.: Formal semantics of models for computa-
tional engineering: a case study on dynamic fault trees. In: Proceedings of ISSRE,
pp. 270–282 (2000)

11. Crouzen, P., Hermanns, H., Zhang, L.: On the minimisation of acyclic models. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 295–309.
Springer, Heidelberg (2008)

12. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, pp. 243–320. MIT Press (1991)

13. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Rel., pp. 363–377 (1992)

14. Dugan, J.B., Venkataraman, B., Gulati, R.: DIFtree: a software package for the
analysis of dynamic fault tree models. In: Proceedings of RAMS, pp. 64–70. IEEE
(1997)

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation, Monographs in Th. Comp. Science. Springer (2006)

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

17. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

18 S. Junges et al.

18. Guck, D., Katoen, J.-P., Stoelinga, M.I.A., Luiten, T., Romijn, J.M.T.: Smart
railroad maintenance engineering with stochastic model checking. In: Proceedings
of RAILWAYS. Saxe-Coburg Publications (2014)

19. Han, W., Guo, W., Hou, Z.: Research on the method of dynamic fault tree analysis.
In: Proceedings of ICRMS, pp. 950–953 (2011)

20. Hermanns, H.: Interactive Markov Chains: the Quest for Quantified Quality.
Springer-Verlag, Berlin (2002)

21. Fault tree analysis (FTA). Norm IEC 60050:2006 (2007)
22. Junges, S.: Simplifying dynamic fault trees by graph rewriting. Master thesis,

RWTH Aachen University (2015)
23. Kaiser, B.: Extending the expressive power of fault trees. In: Proceedings of RAMS,

pp. 468–474. IEEE, January 2005
24. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and

outs of the probabilistic model checker MRMC. Perf. Ev. 68(2), 90–104 (2011)
25. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:

Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007)

26. Liu, D., Xiong, L., Li, Z., Wang, P., Zhang, H.: The simplification of cut sequence
set analysis for dynamic systems. Proc. of ICCAE 3, 140–144 (2010)

27. Malhotra, M., Trivedi, K.S.: Dependability modeling using Petri-nets. IEEE Trans.
Rel. 44(3), 428–440 (1995)

28. Merle, G., Roussel, J.-M.: Algebraic modelling of fault trees with priority AND
gates. In: Proceedings of DCDS, pp. 175–180 (2007)

29. Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Probabilistic algebraic analysis
of fault trees with priority dynamic gates and repeated events. IEEE Trans. Rel.
59(1), 250–261 (2010)

30. Montani, S., Portinale, L., Bobbio, A., Codetta-Raiteri, D.: Automatically trans-
lating dynamic fault trees into dynamic Bayesian networks by means of a software
tool. In: Proceedings of ARES, p. 6 (2006)

31. Pullum, L.L., Dugan, J.B.: Fault tree models for the analysis of complex computer-
based systems. In: Proceedings of RAMS, pp. 200–207. IEEE (1996)

32. Raiteri, D.C.: The conversion of dynamic fault trees to stochastic Petri nets, as a
case of graph transformation. ENTCS 127(2), 45–60 (2005)

33. Remke, A., Stoelinga, M. (eds.): Stochastic Model Checking. LNCS, vol. 8453.
Springer, Heidelberg (2014)

34. Rensink, A., Kuperus, J.-H.: Repotting the geraniums: on nested graph transfor-
mation rules, ECEASST, vol. 18 (2009)

35. Rongxing, D., Guochun, W., Decun, D.: A new assessment method for system
reliability based on dynamic fault tree. In: Proceedings of ICICTA, pp. 219–222.
IEEE (2010)

36. Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15–16, 29–62 (2015)

37. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s J., 24(12) (1999)
38. Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.:

Fault Tree Handbook with Aerospace Applications. NASA Headquarters (2002)
39. Yevkin, O.: An improved modular approach for dynamic fault tree analysis. In:

Proceedings of RAMS, pp. 1–5 (2011)

Cost vs. Time in Stochastic Games and Markov
Automata

Hassan Hatefi1, Bettina Braitling2(B), Ralf Wimmer2,
Luis Maŕıa Ferrer Fioriti1, Holger Hermanns1, and Bernd Becker2

1 Saarland University, Saarbrücken, Germany
{hhatefi,ferrer,hermanns}@cs.uni-saarland.de

2 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
{becker,braitlin,wimmer}@informatik.uni-freiburg.de

Abstract. Costs and rewards are important tools for analysing quan-
titative aspects of models like energy consumption and costs of mainte-
nance and repair. Under the assumption of transient costs, this paper
considers the computation of expected cost-bounded rewards and cost-
bounded reachability for Markov automata and stochastic games. We
give a transformation of this class of properties to expected time-bounded
rewards and time-bounded reachability, which can be computed by avail-
able algorithms. We prove the correctness of the transformation and show
its effectiveness on a number of case studies.

1 Introduction

Markov automata (MA) [13] constitute a compositional modelling formalism
for concurrent stochastic systems. They generalise discrete-time Markov chains
(DTMCs), Markov decision processes (MDPs), probabilistic automata (PA [28]),
continuous-time Markov chains (CTMCs), and interactive Markov chains
(IMCs [22]). Markov automata form the semantic foundation of, among others,
dynamic fault trees [6], stochastic activity networks, and generalised stochastic
Petri nets (GSPNs) [12]. Compositional modelling for MA [31] is supported by
the MAMA tool set [17,18], also providing access to effective model analysis
via the IMCA tool [16]. That analysis follows the principles of model check-
ing [5]. Concretely speaking, algorithms for model checking time-bounded reach-
ability and continuous stochastic logic (CSL) [21], as well as long-run average
and expected reachability times [17,18] are supported.

Apart from timing-related properties, there is an immensely large spectrum
of potential applications that ask for integration of cost-related modelling and
analysis. Costs, or dually rewards, are especially convenient to reflect econom-
ical implications, power consumption, wear and abrasion, or other quantitative

This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center AVACS (SFB/TR 14), by the EU
7th Framework Programme under grant agreement no. 295261 (MEALS) and 318490
(SENSATION), by the CDZ project CAP (GZ 1023), and by the CAS/SAFEA
International Partnership Program for Creative Research Teams.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-25942-0 2

20 H. Hatefi et al.

information. Therefore MA have lately been extended to MRA, Markov reward
automata. In MRA, states and transitions can be equipped with rewards or
costs, accumulated as time advances and as transitions are taken. Algorithms
for computing the long-run average reward, for the expected cumulative reward
until reaching a goal, and for the expected cumulative reward until a certain
time bound are known and implemented [19]. Effective abstraction and refine-
ment strategies for MRA have also been introduced [7], working on stochastic
reward game abstractions of MRA.

In this paper, we turn our attention to properties that relate multiple dimen-
sions of cost or rewards. In particular, we enable the computation of expected
cumulative rewards until exceeding a cost bound, both for Markov reward
automata and stochastic reward games. This can, for instance, answer questions
of central importance for energy-harvesting battery-powered missions: Under a
given initial budget, what is the maximum probability of the battery running dry,
or how many tasks can maximally be expected to be carried out by the battery?

To answer such questions we give a fixed point characterisation of expected
cost-bounded rewards and a transformation for stochastic games from cost-
to time-bounded rewards. This transformation supports arbitrary non-negative
transient costs. Markov automata are closed under this transformation. After
the transformation, arbitrary algorithms for expected time-bounded rewards like
[7,19] can be applied to compute expected cost-bounded rewards.

In order to develop our contribution, we take inspiration from various
sources, especially from the domain of continuous-time Markov decision pro-
cesses (CTMDPs). This encompasses works on necessary and sufficient criteria
for optimality with respect to time-bounded rewards [24], and algorithms to
compute optimal time-bounded rewards using uniformisation [10]. Instantaneous
transition rewards have been added to the CTMC setting as well [11].

Our work is strongly influenced by the study of the duality between time
and costs in CTMDPs under time-abstract strategies [4], built up on the ear-
lier work in the setting of CTMCs [3]. We extend it in various dimensions: Our
technique supports zero-cost states, where previously only strictly positive costs
were allowed. We optimise over time-dependent strategies, which are a super-
class of time-abstract ones. We extend the setting to expected reward analysis
on two-player games with discrete and continuous locations, which is also an
improvement over [14,15]. And finally our analysis technique works for any kind
of models, not only uniform ones.

Structure of the Paper. In the following section, we introduce the necessary
foundations. Sec. 3 describes the fixed point characterisation of optimal expected
cost-bounded rewards and the transformation from cost to time bounds. We
report on experimental results in Sec. 4 and conclude the paper in Sec. 5. An
extended version of this paper with proofs of the main propositions is available
at [20].

Cost vs. Time in Stochastic Games and Markov Automata 21

v0

v1

v2

v3

tr1
10

1/10

9/10

tr2

1

1/5

4/5

tr3

∞
1/2

1/2

tr4

∞
3/5

2/5

tr5

5

3/10

7/10

(a) Stochastic game

tr1 tr2 tr3 tr4 tr5 v0 v1 v2 v3

c 5 0 0 0 3
ρt 1 3 0 0 1
ρi 4 1 1 5 2
ρf 1 0 2 3

(b) Costs and rewards

Fig. 1. An example of a stochastic game with costs and rewards

2 Foundations

Let V be a finite (or countably infinite) set. A probability distribution over
V is a function μ : V → [0, 1] such that

∑
v∈V μ(v) = 1. We denote the set

of probability distributions over V by Distr(V). The real numbers are denoted
by R, R≥0 is the set of non-negative real numbers, and R

∞
≥0 := R≥0 ∪ {∞}.

Accordingly R>0, R∞
>0 etc. are used.

Definition 1 (Stochastic game). A stochastic (continuous-time two-player)
game (SG) is a tuple G =

(
V, (V1, V2), vinit, T

)
such that V = V1�V2 is the finite

set of states, vinit ∈ V is the initial state, and T ⊆ V × R
∞
>0 × Distr(V) is the

transition relation.

V1 and V2 are the states of player 1 and player 2, respectively; we also
denote them as V1- and V2-states. Transitions (v, λ, μ) ∈ T with rate λ < ∞
are called Markovian, transitions with infinite rate probabilistic. We denote the
set of Markovian and probabilistic transitions by TM and TP, respectively. We
use TM(v) and TP(v) to refer to the set of Markovian and probabilistic transi-
tions available at state v. Then, T (v) = TM(v) � TP(v) is the set of all available
transitions of v. We assume that T (v) �= ∅ for all v ∈ V .

The game starts in state vinit. If the current state is v ∈ V1, then it is player 1’s
turn, otherwise player 2’s. The current player chooses a transition (v, λ, μ) ∈ T (v)
for leaving state v. The rate θrate

(
(v, λ, μ)

)
= λ ∈ R

∞
≥0 determines how long we

stay at v, whereas θdistr
(
(v, λ, μ)

)
= μ ∈ Distr(V) gives us the distribution which

leads to the successor states. If λ = ∞, the transition is taken instantaneously.
Otherwise, λ is taken as the parameter of an exponential distribution. In this
case, the probability that a transition to state v′ ∈ V happens within t ≥ 0
time units, is given by μ(v′) · (1 − e−λ·t). For conciseness, we write λtr instead
of θrate(tr) and μtr instead of θdistr(tr) for tr ∈ T .

Example 1. Fig. 1(a) shows an example of a stochastic game. It consists of two
player 1 states (drawn as circles) and two player 2 states (drawn as diamonds).

22 H. Hatefi et al.

The exit rates of the transitions tr1, . . . , tr5 are written in red. The game starts
in v0. Player 1 chooses one of the outgoing transitions {tr1, tr2}, say tr1. The
probability to stay in v0 for at most t time units is then given by 1 − e−10·t.
When the transition fires, we move to v1 with probability 0.1 and to v2 with
probability 0.9; say v1 is the successor state. There it is player 2’s turn. As only
one outgoing transition is available, namely tr3, and its exit rate is ∞, it is left
immediately, either to v1, again, or to v3, both with probability 0.5. ��

Markov automata (MA) [13] are a special type of stochastic games with a
single player and without a nondeterministic choice between different Markovian
transitions at one state. The reason for this restriction is that Markov automata
are designed to be a compositional formalism, i. e. the MA for a system con-
sisting of several components can be constructed from the MA of the individual
components.

Definition 2 (Markov automaton). A Markov automaton (MA) is a
stochastic game M =

(
V, (V, ∅), vinit, T

)
such that |TM(v)| ≤ 1 holds for all

v ∈ V . We simply write M = (V, vinit, T) for a Markov automaton M.

In this paper we only consider closed Markov automata which are not sub-
ject to further composition operations. In this case, it is standard for Markov
automata to make an urgency assumption: Since nothing prevents probabilistic
transitions from happening instantaneously and the probability that a Marko-
vian transition is taken without delay is zero, probabilistic transitions take prece-
dence over Markovian transitions. Therefore we assume for MA that Markovian
transitions have been removed from all states which also exhibit an outgoing
probabilistic transition.

Paths Through Stochastic Games. The dynamics of an SG is specified by paths.
An infinite path π ∈ (V × R≥0 × T)ω is an infinite sequence of states, sojourn
times, and transitions. A finite path is such a sequence which is finite and ends in
a state, i. e. π ∈ (V ×R≥0×T)�×V . We usually write v

t,tr−−→ instead of (v, t, tr) ∈
(V ×R≥0×T). We use Pathsfin and Pathsinf to denote the set of finite and infinite
paths, respectively. The length |π| of a path π is ∞ if π is infinite, and equal to
the number of transitions on π if π is finite. The last state of a finite path π is
denoted by last(π). Given a finite or infinite path π = v0

t0,tr0−−−→ v1
t1,tr1−−−→ · · · and

0 ≤ i < |π|, vi is the (i+1)-th state of π, denoted by π[i]; ti is the time of staying
at vi, denoted by time(π[i]); and trans(π[i]) = tri is the executed transition at
vi. Note that vi is left instantaneously, i. e. time(π[i]) = 0, if trans(π[i]) has an
infinite rate. For 0 ≤ i ≤ j ≤ |π|, the sub-path vi

ti,tri−−−→ · · · vj is denoted by
π[i ·· j].

Strategies. The nondeterminism that may occur at a state is resolved by func-
tions, which are called strategies (or policies or schedulers). Each player fol-
lows her own strategy in order to accomplish her goal. A strategy of player i
(i = 1, 2) is a function σi : Vi × R≥0 → T such that σi(v, t) ∈ T (v) for all v ∈ V

Cost vs. Time in Stochastic Games and Markov Automata 23

and t ∈ R≥0. This strategy class is called early total-time dependent positional
deterministic (ETTPD), since it uses the total time which has passed since the
start of the system and the current state to make its choice, and returns a
fixed outgoing transition. Early (in contrast to late) [26] means that the decision
which transition to take has to be made when entering a state and may not be
changed while residing in the state. ETTPD strategies can be easily extended to
the more general early total-cost dependent positional deterministic (ETCPD)
strategies, where the role of time is taken by costs. There are yet more gen-
eral classes of early strategies whose decision may depend, e. g. on the whole
history since the start of the system, and they may return a probability distri-
bution over the available transitions instead of a fixed transition. However, one
can show for the property classes we consider in this paper, that the supremum
(and infimum) over ETCPD strategies coincides with the supremum (infimum,
respectively) over this more general strategy class [14,15,25]. We denote the set
of all ETCPD strategies of player i that are measurable in cost by Σi.

Probability Measure. Given strategies σ1, σ2 for both players and a state v ∈ V , a
probability space on the set of infinite paths starting in v can be constructed. The
set of measurable events is thereby the σ-algebra that is induced by a standard
cylinder set construction [2] together with a unique probability measure Prv,σ1,σ2

on the events. Prv,σ1,σ2(Π) is the probability of the set of paths Π, starting
from state v, given that player 1 and player 2 play with strategies σ1 and σ2,
respectively. Both the σ-algebra and the probability measure are constructed by
extending the existing techniques used for MA and IMCs. We omit the details
here; for more information see, e. g. [21,23,25].

Zenoness. It may happen that an SG contains an end component [5, Def. 10.117]
consisting of probabilistic transitions only. Such an end component leads to
the existence of sets of infinite paths π with finite sojourn times and non-zero
probability, i. e. limn→∞

∑n
i=0 time(π[i]) < ∞. This phenomenon is known as

Zenoness. Since such behaviour has to be considered unrealistic, we assume that
the SGs under consideration are non-Zeno, i. e. that they do not contain such
end components. Formally, an SG is non-Zeno iff

Prv,σ1,σ2

({π ∈ Pathsinf : lim
n→∞

n∑

i=0

time(π[i]) < ∞})
= 0

holds for all states v ∈ V and all strategies σ1 ∈ Σ1 and σ2 ∈ Σ2.
For more on strategies and on SGs in general we refer to [8,29].

Costs and Rewards. We now extend stochastic games by costs and rewards to
analyse properties like “What is the maximal reward one can earn when the
accumulated cost is bounded by b?”

Definition 3 (Cost and reward structures). Let G be a stochastic game
as above. A cost function c : T → R≥0 assigns a non-negative cost rate to

24 H. Hatefi et al.

each transition. A reward structure ρ is a triple ρ = (ρt, ρi, ρf) of functions
ρt, ρi : T → R≥0, and ρf : V → R≥0; ρt is the transient reward rate, ρi the
instantaneous reward, and ρf the final reward.

For a transition tr = (v, λ, μ) ∈ T , costs and transient rewards are granted
per time unit, i. e. residing in v for t time units before taking transition tr causes
a cost of t · c(tr), and a transient reward of t · ρt(tr) is granted. In contrast,
the instantaneous reward ρi(tr) is granted for taking the transition tr. The final
reward is granted for the state reached when the maximal cost has been spent.
This allows, e. g. to consider cost-bounded reachability probabilities as a special
case of expected cost-bounded rewards (for more details, see below).

Please note that we do not consider instantaneous costs in this paper. They
would render the transformation in Sec. 3 impossible, since there is no instan-
taneous time. In principle, adapting the analysis algorithm for time-bounded
rewards [7,19] to cost bounds should be possible. That algorithm is based on
discretising the time interval, yielding a discrete-time probabilistic game. How-
ever, analysing cost-bounded properties for discrete-time models is expensive,
even more so as we have to support non-integer costs [1].

Cost and Reward of Paths. Given a finite path πfin = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · vn−1
tn−1,trn−1−−−−−−−→ vn, its cost is defined as cost(πfin) :=

∑n−1
i=0 c(tri) · ti. The cost can

be extended for an infinite path π = v0
t0,tr0−−−→ v1

t1,tr1−−−→ · · · by cost(π) :=
limn→∞ cost(π[0 ·· n]). The cumulative reward of a finite and an infinite path
can be defined in a similar way, i. e. crew(πfin) :=

∑n−1
i=0

(
ρt(tri) · ti + ρi(tri)

)

and crew(π) := limn→∞ crew(π[0 ·· n]). Furthermore we define the cost-bounded
reward of π by

cbrG
ρ,c(π, b) :=

⎧
⎪⎨

⎪⎩

crew(π), if cost(π) ≤ b,
crew(π[0 ·· n∗]) + b−cost(π[0··n∗])

c(trn∗) · ρt(trn∗)

+ ρf(π[n∗]), otherwise,

where n∗ ∈ N is the index of the state along path π such that cost(π[0 ·· n∗]) ≤ b
and cost(π[0 ·· n∗ + 1]) > b. More precisely, the cost exceeds b after residing
b−cost(π[0··n∗])

c(trn∗) time units in the n∗-th state of the path, and thereby the state
is subject to the final reward. Note that such an index exists, provided that
cost(π) > b.

Example 2. Consider again the stochastic game in Fig. 1(a). We extend it by
the cost function and reward structure shown in Fig. 1(b). Now consider the
path π = v0

3,tr1−−−→ v1
0,tr3−−−→ v3

2,tr5−−−→ v2
0,tr4−−−→ v0 → · · · and assume the cost

bound b = 20. The cost incurring in v0 before taking tr1 is 5 · 3 = 15. Since tr3
is probabilistic, no cost incurs in v1. In v3 we have costs 3 · 2 = 6. Therefore the
cost bound is reached while staying in v3, after 1/3 · (20 − 15) = 5/3 time units.
We then have n∗ = 2. Since v3 is the state in which the cost bound is reached,
we additionally get its final reward ρf(v3) = 3. The cost-bounded reward for this
path is accordingly cbrG

ρ,c(π, 20) = (3 ·1+4)+(0 ·0+1)+(5/3 ·1)+3 = 12 2/3. ��

Cost vs. Time in Stochastic Games and Markov Automata 25

Given strategies σ1 ∈ Σ1 and σ2 ∈ Σ2 we can define the expected cost-bounded
reward (ECR) as the expectation of cbr:

Ecbrσ1,σ2
G,ρ,c (v, b) :=

∫

π∈Pathsinf(v)

cbrG
ρ,c(π, b) dPrv,σ1,σ2(π) .

The two players can independently try to maximise or minimise the reward
earned until the cost bound is reached. Hence, for opt1, opt2 ∈ {inf, sup} we
define the optimal expected cost-bounded reward by

Ecbropt1,opt2
G,ρ,c (v, b) := opt1

σ1∈Σ1

opt2
σ2∈Σ2

Ecbrσ1,σ2
G,ρ,c (v, b) .

Two important classes of properties can be considered as special cases of
expected cost-bounded rewards:

For time-bounded rewards, denoted by random variable tbr, the time is limited
duringwhich reward is collected.This corresponds to using the constant1-function
as cost. We therefor define Etbrσ1,σ2

G,ρ (v, b) := Ecbrσ1,σ2
G,ρ,1 (v, b).

The second class encompasses cost-bounded reachability probabilities, i. e.
questions like “What is the maximal probability to reach a set Vgoal ⊆ V of
states with cost ≤ b?”. We first make the states in Vgoal absorbing and add a
Markovian self-loop trv = (v, λ, {v �→ 1}) with arbitrary finite rate 0 < λ < ∞
to each state v ∈ Vgoal and define the final reward by ρf(v) = 1 if v ∈ Vgoal, and
ρf(v) = 0 otherwise. The transient and instantaneous rewards are constantly 0.
Then the expected reward until cost b is reached corresponds to the probability
of reaching Vgoal with costs ≤ b.

Algorithms to compute optimal expected time-bounded rewards are available
both for Markov automata [19] and stochastic games [7]. To the best of our
knowledge, up to now there are no algorithms available to compute the optimal
expected cost-bounded rewards for MA and SG.

3 Transformation of Stochastic Games

In this section, we first give a fixed point characterisation of expected cost-
bounded rewards for stochastic games and prove its correctness. Similar to time-
bounded properties [7], this fixed point characterisation is not amenable to an
efficient solution. Therefore we transform the stochastic game so that the opti-
mal expected cost-bounded reward coincides with the optimal expected time-
bounded reward in the transformed game. This allows us to apply arbitrary
algorithms like [7,19] for expected time-bounded rewards to compute optimal
expected cost-bounded rewards.

Theorem 1 (Fixed point characterisation). Let G be a stochastic game
with cost function c and reward structure ρ = (ρt, ρi, ρf). Let b ∈ R≥0

be a cost bound, opt1, opt2 ∈ {inf, sup}, and opt[v] = opti if v ∈ Vi.

26 H. Hatefi et al.

Then, Ecbropt1,opt2
G,ρ,c (v, b) is the least fixed point of the higher-order operator

Ωopt1,opt2 : (V × R≥0 → R≥0) → (V × R≥0 → R≥0), such that

Ωopt1,opt2(F)(v, b) =

opt[v]
tr∈T (v)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b/c(tr)∫

0

λtr · e−λtr·t ·
∑

v′∈V

μtr(v
′) · F

(
v′, b − c(tr) · t

)
dt

+
(

ρt(tr)
λtr

+ ρi(tr)
)

·
(
1 − e

− λtr·b
c(tr)

)
+ ρf(v) · e

− λtr·b
c(tr) ,

if tr ∈ TM(v) ∧ c(tr) > 0 ∧ b > 0,
ρt(tr)

λtr
+ ρi(tr) +

∑

v′∈V

μtr(v
′) · F (v′, b), if tr ∈ TM(v) ∧ c(tr) = 0,

ρi(tr) +
∑

v′∈V

μtr(v
′) · F (v′, b), if tr ∈ TP(v),

ρf(v), otherwise.

“Least” means in this context that ∀v ∈ V, b ∈ R≥0 : Ecbropt1,opt2
G,ρ,c (v, b) ≤

F (v, b), with F being another fixed point of Ωopt1,opt2 .
The fixed point characterisation of expected cost-bounded rewards yields a

system of integral equations, which are typically hard to solve. Instead, the fol-
lowing transformation turns cost-bounded rewards into time-bounded rewards.
For the latter, not only a fixed point characterisation is available [7], but also a
more efficient algorithm, based on discretisation [7,19].

Definition 4 (Cost-to-time transformation). Let G =
(
V, (V1, V2), vinit, T

)

be a stochastic game with cost function c : T → R≥0 and reward structure
ρ = (ρt, ρi, ρf). We define the cost-transformed game Gc =

(
V, (V1, V2), vinit, T c

)

with

T c =
{
tr ∈ T

∣
∣ λtr = ∞}

∪ {
(v,∞, μ)

∣
∣ ∃λ ∈ R≥0 : tr = (v, λ, μ) ∈ T ∧ c(tr) = 0

}

∪ {
(v, λ/c(tr), μ)

∣
∣ tr = (v, λ, μ) ∈ T ∧ c(tr) �= 0

}
.

and reward structure ρc = (ρc
t , ρ

c
i , ρ

c
f) such that ρc

f = ρf ,

ρc
t(tr) =

{
ρt(tr)/c(tr), if c(tr) �= 0,
0, if c(tr) = 0, and

ρc
i (tr) =

{
ρi(tr) + ρt(tr)/λtr, if c(tr) = 0 ∧ λtr < ∞,
ρi(tr), otherwise.

The motivation behind this transformation is as follows: Since we want to
transform the cost bound b into a time bound we have to divide b through the
cost gained per time unit. This is done by dividing the rate λ of a Markovian
transition tr ∈ TM through its cost c(tr). The same has to be done with the tran-
sient reward ρt(tr). If tr has no cost, i. e. c(tr) = 0, the transition is transformed

Cost vs. Time in Stochastic Games and Markov Automata 27

v0

v1

v2

v3

tr1
2

1/10

9/10

tr2

∞

1/5

4/5

tr3

∞
1/2

1/2

tr4

∞
3/5

2/5

tr5

5/3

3/10

7/10

(a) Transformed stochastic game

tr1 tr2 tr3 tr4 tr5 v0 v1 v2 v3

ρc
t

1/5 0 0 0 1/3
ρc
i 4 4 1 5 2

ρc
f 1 0 2 3

(b) Transformed rewards

Fig. 2. Fig. 1 after transformation

into a probabilistic transition. The expected transient reward ρt(tr)/λtr has to be
added to the instantaneous reward of the transition in this case.

The transformation does not change the structure or size of the SG, and the
transformed system is an SG as well. Additionally, Markov automata are closed
under this transformation, i. e. if the original SG is actually an MA, so is the
transformed system.

Example 3. Consider again the stochastic game in Fig. 1(a) with the costs and
rewards in Fig. 1(b). We assume a cost bound of b = 20. Then the rewards of
the five transitions after transformation are shown in Fig. 2(b). The Markovian
transitions tr1, tr2, and tr5 are modified as follows. Transitions tr3 and tr4 remain
unchanged as they are probabilistic. The expected residence time before taking
tr1 is scaled such that it matches the expected cost in the original game, i. e. the
new exit rate becomes λtr1/c(tr1) = 10/5 = 2. The transient reward rate is adjusted
accordingly and becomes ρt(tr1)/c(tr1) = 1/5. The instantaneous reward does not
change. The transition tr5 is modified in the same way. As the cost of tr2 is zero,
tr2 becomes probabilistic and the expected reward ρt(tr2)/λtr2 earned in v1 until
tr2 being taken is added to the instantaneous reward of tr2. The stochastic game
after the transformation is shown in Fig. 2(a). ��

Theorem 2 (Measure preservation). Let G be a stochastic game with
reward structure ρ, cost function c, cost bound b ∈ R≥0, v ∈ V , and opt1, opt2 ∈
{inf, sup}. Then we have

Ecbropt1,opt2
G,ρ,c (v, b) = Etbropt1,opt2

Gc,ρc (v, b) .

Proof. Here we sketch the proof of the theorem. It is done by showing that the
original and the transformed games have indeed the same fixed point charac-
terisation for the respective objectives. For this, on the one hand, we construct
the fixed point characterisation of the transformed game using Theorem 1 by
assigning the constant cost of one to all Markovian transitions. On the other

28 H. Hatefi et al.

hand, we reinterpret the representation of the fixed point characterisation of the
original model by a series of sound variable substitutions, partly inspired by the
transformation. At the end we conclude that both of the fixed point characteri-
sations are the same, and thereby their least fixed points are exactly equal. For
more details, see the complete proof in [20]. ��

Zero-cost transitions1 in the original game can introduce Zenoness in the
transformed game. It happens if a set of such transitions constitutes an end
component in the transformed game. This will be problematic for the analy-
sis, in particular if the end component contains positive rewards. Therefore the
strategy that keeps the control of the game inside the end component delivers
infinite expected rewards, since staying there gains reward without any cost.
Nevertheless the analysis may ignore such a strategy in some cases, for instance
in analysis of MA against minimal expected ECR. By any means and for sim-
plicity we exclude such models from our analysis technique.

4 Case Studies and Experimental Results

For our experiments we used the following case studies:
(1) The Dynamic Power Management System (DPMS) [27] describes the follow-
ing scenario: A service requester generates tasks which are stored within a queue
until they are handled by a processor. This processor (P) can either be “busy”
with processing a job, “idle” while the queue is empty, in a “standby” mode,
or in a “sleep” mode. In the latter two modes P is inactive and cannot handle
tasks. The change between “busy” and “idle” occurs automatically, depending
on whether there are tasks in the queue or not. If P has been “idle” for some
time, it is switched into “standby” or “sleep” by a power manager. The power
manager is also responsible for switching from these two modes back to “idle”. P
consumes the least power in “standby” and “sleep” (0.35 W and 0.13 W, respec-
tively), whereas it consumes more power while “idle” (0.95 W) and the most if
it is “busy” (2.15 W) [27,30]. We model the DPMS as an MRA with the costs
representing the power consumption of P. The reward corresponds to the num-
ber of served tasks. For our experiments we varied the number of different task
types (T) and the size of the queue (Q). We explore the expected cost-bounded
reward. The model instances are denoted as “DPMS-T -Q”.
(2) The Queueing System (QS) [21] stores requests of T different types into two
queues of size Q each. A server is attached to each queue, which fetches requests
from its corresponding queue, and then processes them. One of the servers might
insert, with probability 0.1, the already served request into the other queue to be
reprocessed by the other server. Power is consumed by both servers when they are
processing. We compute the minimum and the maximum number of processed
requests under different energy budgets. The model instances are denoted as
“QS-T -Q”.

1 Note that the cost of probabilistic transitions is implicitly zero as the delay until
taking such transitions is zero.

Cost vs. Time in Stochastic Games and Markov Automata 29

(3) The Polling System (PS) [17,32] consists of S station(s) and one server. Each
station comes with a queue of size Q, and buffers incoming jobs of T different
types. The jobs are then polled and processed by the server. There is a probability
of 0.1 for a job to be processed while erroneously remaining in the queue. Each
job brings an instantaneous reward when it is completely processed by the server.
Whenever processing, the server consumes energy. The model is subject to two
kinds of analysis: First we compute the minimum and the maximum probability
of encountering the error under some energy budget. The second analysis is on
the computation of the minimum and the maximum expected energy bounded
reward of the model. The instances of the polling system are denoted as “PS-S-
T -Q”.
(4) The Stochastic Job Scheduling benchmark (SJS) [9] originally stems from
economy. In this setting, a number of jobs with different service rates are dis-
tributed between processors. Each processor consumes resources, e. g. energy
which has to be paid for. The costs in our model represent these expenses. The
goal is to have all jobs processed within a certain cost budget. In our exper-
iments we explore the reachability of this goal with homogeneous costs (“all
processors have the same costs”) and heterogeneous costs (“all processors have
different costs”), while varying the number of jobs (M) and the number of pro-
cessors (N). Since the system degenerates to a CTMC if the service rates are
homogeneous, we do not consider this case. The model instances are denoted as
“SJS-N -M”.

We used SCOOP [31] to create the model files. The transformation from cost
to time was done with a python script; the computation time for this was neg-
ligible. We then employed the tool IMCA [16,17,19] to determine the minimum
and maximum expected cost-bounded reward or the minimum and maximum
cost-bounded reachability of the models. It would be possible to use any other
analyser for MA, e. g. MeGARA, the prototype from [7].

All experiments were run on an Intel Xeon quad-core processor with 3.3 GHz
per core and 64 GB of memory. We set a time limit of 12 hours. The memory
consumption was negligible; all experiments needed less than 300 MB.

We will not give detailed time measurements due to space restrictions, nev-
ertheless we want to briefly discuss the computation times. The shortest com-
putations took only fractions of a second, e. g. the computation of the minimum
reachability for SJS-2-4 with cost budget 5 took 0.06 seconds, whereas the longer
computations needed several hours, e. g. for DPMS-4-10 the computation of the
minimum reachability with cost budget 50 took almost 11 hours, which was the
longest computation time of all our experiments. In general it can be said that
larger systems need more time to analyse than smaller systems. The computa-
tion time is also influenced by the size of the cost budget. For example, for cost
budget 10 the computation of the minimum reachability for DPMS-4-10 took
less than 6 min. This is due to the fact that IMCA uses discretisation [17–19]
to compute the values; for a larger bound more discretisation steps are needed.
There is also an interesting connection between the costs within the system,
its maximum rate, and the computation time: The size of a discretisation step

30 H. Hatefi et al.

depends on the maximum rate of the transformed system. The higher the max-
imum rate is, the smaller the discretisation step must be chosen in order to
satisfy the given accuracy level. For the computation of cost-bounded rewards,
this means that the computation time is strongly influenced by the value of
max

{
λtr/c(tr)

∣
∣ tr ∈ TM : c(tr) > 0

}
. For details on the discretisation, see [7,19].

Tables 1 to 4 show the results of our experiments. The first two columns of
each table contain the name of the respective model instance and its number of
states.

In case of DPMS (Table 1) and QS (Table 2) we explore the minimum and
maximum expected reward under different cost budgets. For DPMS we used
cost budgets of 10, 20, and 50, whereas for QS we used cost budgets of 1, 5, and
10 (see the respective blocks in Table 1 and Table 2). It holds for both DPMS
and QS that the expected reward grows with the budget, as does the difference
between minimum and maximum reward, as to be expected. Another interesting
fact is that the size of the queues in the models – while having a big influence on
the size of the system – has practically no impact on the expected reward. It is
completely determined by the number of different task types. This observation
can be explained as follows: For the processing unit of DPMS (or of QS) it is
not important how many jobs exactly can be stored in the queue(s), as long as
there are jobs in the queue(s).

For PS (Table 3) we studied both minimum and maximum reachability and
minimum and maximum expected reward (see the respective blocks in the table)
under a cost budget of 5. If we increase the queue size, the minimum and maxi-
mum probability for encountering the error decreases, while the expected mini-
mum and maximum reward increases. At the same time we can observe that the
reachability increases with the number of stations, e. g. for PS-2-2-2, containing
two stations, the maximum probability is 0.773, whereas for PS-5-2-2, containing
5 stations, it is 0.992. This makes sense, since the error is caused by the stations
and the probability to encounter the error therefore increases with having more
stations.

For SJS (Table 4) we also used a cost budget of 5. Here we studied the
minimum and maximum reachability while assuming homogeneous or heteroge-
neous costs for the different processors of the system (see the respective blocks

Table 1. Expected reward in the dynamic power managment system

budget = 10 budget = 20 budget = 50
name #states min max min max min max

DPMS-2-5 508 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-10 1,588 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-20 5,548 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-3-5 5,190 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-10 29,530 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-20 195,810 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-4-5 47,528 0.784 0.877 1.617 1.889 4.143 4.936
DPMS-4-10 492,478 0.784 0.877 1.617 1.889 4.143 4.936

Cost vs. Time in Stochastic Games and Markov Automata 31

Table 2. Expected reward of the queueing system

budget = 1 budget = 5 budget = 10
name #states min max min max min max

QS-2-4 46,234 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-5 191,258 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-6 777,754 0.249 0.857 1.294 4.078 2.634 7.975
QS-3-3 117,532 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-4 1,080,865 0.125 0.857 0.649 4.078 1.332 7.972
QS-4-2 42,616 0.125 1.287 0.649 6.127 1.333 12.075
QS-4-3 708,088 0.125 1.287 0.649 6.127 1.333 12.075
QS-6-2 266,974 0.084 1.713 0.433 8.187 0.892 16.201

Table 3. Results for the polling system

rechability reward
name #states min max min max

PS-2-2-2 455 0.743 0.773 3.128 3.219
PS-2-2-3 2,055 0.483 0.551 3.980 4.117
PS-2-3-2 2,392 0.995 0.996 1.209 1.253
PS-2-3-3 22,480 0.973 0.983 1.730 1.848
PS-3-2-2 3,577 0.888 0.917 2.549 2.685
PS-3-2-3 34,425 0.665 0.760 3.493 3.732
PS-3-3-2 35,659 1.000 1.000 0.918 0.965
PS-4-2-2 27,783 0.955 0.973 2.166 2.307
PS-4-2-3 570,375 0.793 0.879 3.116 3.403
PS-5-2-2 213,689 0.983 0.992 1.908 2.039

Table 4. Rechability in the stochastic job scheduling benchmark

homogeneous heterogeneous
costs costs

name #states min max min max

SJS-2-4 464 0.241 0.241 0.186 0.243
SJS-2-6 4,144 0.041 0.041 0.021 0.029
SJS-2-8 29,344 0.004 0.004 0.001 0.002
SJS-4-4 3,168 0.241 0.241 0.120 0.610
SJS-4-6 71,644 0.041 0.041 0.013 0.130
SJS-4-8 1,032,272 0.004 0.004 0.001 0.012
SJS-6-4 13,924 0.241 0.241 0.059 0.945
SJS-6-6 685,774 0.041 0.041 0.005 0.374
SJS-8-4 41,552 0.241 0.241 0.033 0.999
SJS-10-4 98,436 0.241 0.241 0.019 1.000

in Table 4). For homogeneous costs we can observe a similar effect as for DPMS
and PS: The number of processors influences the number of states in the system,
but has a negligible impact on the reachability. The latter is completely deter-
mined by the number of jobs. What’s more, the minimum and the maximum

32 H. Hatefi et al.

reachability are the same in this case. These effects vanish if we assume hetero-
geneous costs. In this case, the distance between minimum and maximum reach-
ability increases, especially the maximum reachability becomes higher. These
observations make sense: In case of a homogeneous system it does not matter,
which processor handles which job. However, in a heterogeneous system there is
a choice between more and less expensive processors which can handle the jobs,
which in turn leads to a higher (lower) maximum (minimum) reachability.

5 Conclusion

We studied the computation of Markov automata and stochastic games against
cost-bounded reward objectives. In this regard, we provided a fixed point
characterisation for the optimal expected cost-bounded reward. Moreover, we
proposed an efficient measure-preserving transformation from cost-bounded to
time-bounded objectives. For the latter, an analysis technique based on discreti-
sation with strict error bound exists. Our experiments demonstrate the effec-
tiveness of the approach.

In the future, we plan to improve the efficiency of the proposed approach,
e. g. via an abstraction/refinement technique on very large games and automata.

References

1. Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked.
In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

2. Ash, R.B., Doléans-Dade, C.A.: Probability & Measure Theory. Academic Press,
2nd edn. (1999)

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the logical charac-
terisation of performability properties. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, p. 780. Springer, Heidelberg (2000)

4. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Reachability in continuous-
time Markov reward decision processes. In: Logic and Automata: History and Per-
spectives [in Honor of Wolfgang Thomas]. Texts in Logic and Games, vol. 2, pp.
53–72. Amsterdam University Press (2008)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
6. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible

framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec. Comput.
7(2), 128–143 (2010)

7. Braitling, B., Ferrer Fioriti, L.M., Hatefi, H., Wimmer, R., Becker, B., Hermanns,
H.: Abstraction-based computation of reward measures for markov automata. In:
D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 172–
189. Springer, Heidelberg (2015)

8. Brázdil, T., Forejt, V., Krcál, J., Kret́ınský, J., Kucera, A.: Continuous-time
stochastic games with time-bounded reachability. Information and Computation
224, 46–70 (2013)

9. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. Journal of the ACM
28(1), 100–113 (1981)

Cost vs. Time in Stochastic Games and Markov Automata 33

10. Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov decision
processes over finite horizons. Computers & Operations Research 38(3), 651–659
(2011)

11. Cloth, L., Katoen, J., Khattri, M., Pulungan, R.: Model checking Markov reward
models with impulse rewards. In: Proceedings of DSN, pp. 722–731. IEEE CS
(2005)

12. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013)

13. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE CS (2010)

14. Fu, H.: Maximal cost-bounded reachability probability on continuous-time markov
decision processes. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol.
8412, pp. 73–87. Springer, Heidelberg (2014)

15. Fu, H.: Verifying Probabilistic Systems: New Algorithms and Complexity Results.
Ph.D. thesis, RWTH Aachen University (2014)

16. Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed analysis of
interactive markov chains. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 8–23. Springer, Heidelberg (2012)

17. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduc-
tion and analysis of markov automata. In: Joshi, K., Siegle, M., Stoelinga, M.,
D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidel-
berg (2013)

18. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed and
long-run objectives for Markov automata. Logical Methods in Computer Science
10(3) (2014). http://dx.doi.org/10.2168/LMCS-10(3:17)2014

19. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and anal-
ysis of markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014)

20. Hatefi, H., Braitling, B., Wimmer, R., Ferrer Fioriti, L.M., Hermanns, H., Becker,
B.: Cost vs. time in stochastic games and Markov automata (extended version).
Reports of SFB/TR 14 AVACS 113, SFB/TR 14 AVACS (2015). http://www.
avacs.org

21. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE-
ASST 53 (2012)

22. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-
delberg (2002)

23. Johr, S.: Model checking compositional Markov systems. Ph.D. thesis, Saarland
University, Germany (2008)

24. Miller, B.L.: Finite state continuous time Markov decision processes with a finite
planning horizon. SIAM Journal on Control 6(2), 266–280 (1968)

25. Neuhäußer, M.R.: Model checking nondeterministic and randomly timed systems.
Ph.D. thesis, RWTH Aachen University and University of Twente (2010)

26. Neuhäußer, M.R., Zhang, L.: Time-bounded reachability probabilities in
continuous-time Markov decision processes. In: Proceedings of QEST, pp. 209–
218. IEEE CS (2010)

27. Qiu, Q., Qu, Q., Pedram, M.: Stochastic modeling of a power-managed system-
construction and optimization. IEEE Transactions on CAD of Integrated Circuits
and Systems 20(10), 1200–1217 (2001)

http://dx.doi.org/10.2168/LMCS-10(3:17)2014
http://www.avacs.org
http://www.avacs.org

34 H. Hatefi et al.

28. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:
Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995)

29. Shapley, L.S.: Stochastic games. Proc. of the National Academy of Sciences of the
United States of America 39(10), 1095 (1953)

30. Simunic, T., Benini, L., Glynn, P.W., Micheli, G.D.: Dynamic power management
for portable systems. In: Proc. of MOBICOM, pp. 11–19 (2000)

31. Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.I.A.: Efficient modelling
and generation of markov automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 364–379. Springer, Heidelberg (2012)

32. Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for markov
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol.
8053, pp. 243–257. Springer, Heidelberg (2013)

A Comparative Study of BDD Packages
for Probabilistic Symbolic Model Checking

Tom van Dijk1, Ernst Moritz Hahn2, David N. Jansen3, Yong Li2,
Thomas Neele1, Mariëlle Stoelinga1, Andrea Turrini2(B), and Lijun Zhang2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
2 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences, Beijing, China
turrini@ios.ac.cn

3 Model-Based System Development,
Radboud Universiteit, Nijmegen, The Netherlands

Abstract. Symbolic data structures using Binary Decision Diagrams
(BDDs) have been successfully used in the last decades to analyse large
systems. While various BDD and MTBDD packages have been developed
in the community, the CUDD package remains the default choice of most
of the symbolic (probabilistic) model checkers. In this paper, we provide
the first comparative study of the performance of various BDD/MTBDD
packages for this purpose. We provide experimental results for several
well-known probabilistic benchmarks and study the effect of several opti-
misations. Our experiments show that no BDD package dominates on a
single core, but that parallelisation yields significant speedups.

1 Introduction

Probabilities play a central role in many areas such as distributed systems, sensor
networks, and robotics. They are used to break symmetries, e.g., to elect a
leader [21], to resolve conflicts in a network, like the exponential backoff in
CSMA/CD [20], or to model unreliable components, such as sensors.

Model checking [7] is an important approach to assess the correctness of such
systems, by exploring the state space of a model and checking whether a proba-
bilistic property is satisfied. Model checking faces the so-called state space explo-
sion problem: a combinatorial blowup of the number of states in the number of
system components and variables. For real-world models, it is therefore infeasible
to traverse all states explicitly, since they often contain billions of states [10]. To
obtain a more compact representation of the state space, Burch et al. proposed
Binary Decision Diagrams (BDDs) [10,27]. These have now become a standard
technique to tackle large systems, with successful applications in the analysis of
many systems.

BDDs are a heuristic method to represent a large set of states or a transition
matrix. They are typically small if the state space contains symmetries, for
example in a system containing multiple similar modules. Standard BDDs store
state spaces (denoted by S ⊆ B

N) and transition relations according to their
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 35–51, 2015.
DOI: 10.1007/978-3-319-25942-0 3

36 T. van Dijk et al.

characteristic function B
N → B. To store functions with any codomain, multi-

terminal BDDs (MTBDDs) have been proposed [12,16]. In this way, functions
B

N → N and B
N → R can be represented.

In [5], MTBDDs were first applied in probabilistic symbolic model checking
to represent the transition probabilities. They play a central role in the leading
probabilistic model checker PRISM [23], which exploits the well-known MTBDD
package CUDD [33].

Many parts of probabilistic model checking can be carried out using BDD
operations only, and these are often the computationally most expensive steps
of the process. In particular, the computation of the set of reachable states and
the qualitative precomputation step, which finds the set of states satisfying a
formula with probability 0 or 1, are computationally heavy, since they operate
on the initial, large model.

In fact, MTBDDs may not be most efficient in probabilistic model checking.
The reduced state space obtained after the above operations already contains
the information required to compute the probability of the formula by means
of numerical approaches, such as linear equation systems or linear program-
ming. MTBDDs may be disadvantageous in such cases, as their regularity is
destroyed [4,19]. A major advantage of avoiding MTBDDs is that the proba-
bilistic model checking process could be accelerated by choosing a suitable BDD
package.

In this paper, we provide a comparative study of the model checking pro-
cess using several BDD packages, together with different settings that influence
the performance of these packages. In our model checker IscasMC [17], we
have integrated the packages CUDD [33], BuDDy [13], CacBDD [26], JDD [35],
Sylvan [36], and BeeDeeDee [25]. As case studies, we use various well-known
probabilistic examples from the PRISM website [31]. We observe that there is
no clear winner for the single-core BDD packages while computing BDD oper-
ations in parallel may improve the runtime considerably, in particular for large
models. We observe moreover that native BDD features offered by the package
to atomically perform a sequence of BDD operations on average improve both
time and memory consumption, but there are cases where such a feature slightly
degrades the performance. Our results suggest it is indeed useful to be able to
choose among several BDD packages and optimisations when performing prob-
abilistic model checking, since different BDD packages perform very differently
on different models.

2 Probabilistic Model Checking

In this section, we first recall the formal definitions of Markov chains and Markov
decision processes. To specify probabilistic properties, we then employ the tem-
poral logic PCTL. Moreover, we sketch some techniques of model checking based
on (MT)BDDs.

A Comparative Study of BDD Packages 37

2.1 Markov Decision Processes

A Markov Chain (MC) can be used to describe a fully probabilistic model; a
Markov Decision Process (MDP) serves to describe a system containing both
probabilistic and nondeterministic choices. Such a system typically arises from
the parallel composition of multiple probabilistic models.

Definition 1. A Markov decision process is a tuple M = (S, s0, AP,L,Act ,P)
where S is a countable, nonempty set of states, s0 ∈ S is the initial state, AP is
a set of atomic propositions, L : S → 2AP a labelling function, Act is a count-
able, nonempty set of actions, and P: S × Act × S → [0, 1] is the transition
probability function such that for all states s ∈ S and actions α ∈ Act it holds
that

∑
s′∈S P(s, α, s′) ∈ {0, 1}.

A (discrete-time) Markov chain can be seen as an MDP where |Act | = 1.

2.2 PCTL Model Checking

Now we introduce the probabilistic logic PCTL, which we use in our case studies.

Definition 2. A PCTL formula is a state formula φ defined by the following
grammar, where a ∈ AP is an atomic proposition, �� ∈ {<,>,≥,≤}, p ∈ [0, 1]∩
Q, n ∈ N, and ψ is a path formula.

φ ::= a | φ ∧ φ | ¬φ | P��p[ψ]
ψ ::= Xφ | φ U φ | φ U≤n φ

A qualitative formula is a formula where each p in P��p[·] is either 0 or 1.

We use standard derived operators such as φ1∨φ2 = ¬(¬φ1∧¬φ2), false = a∧¬a,
true = ¬false, Fφ = true U φ, Gφ = ¬F¬φ and their bounded counterparts.

PCTL model checking is performed by a recursive descent into the formula
under consideration. For model checking the PCTL formula P��p[ψ] over a MC
M, we first need to compute the probability that a path starting from each state
s satisfies the path formula ψ, which is denoted ps(ψ). We divide all states into
three disjoint sets: Sno , Syes , and S?; we call this operation the precomputation.
The sets Sno and Syes contain the states s such that ps(ψ) is trivially 0 and 1,
respectively. The remaining states belong to S?. In order to compute ps(ψ) for
s ∈ S?, we reduce it to solving a linear equation system iteratively. The remaining
work is straightforward: we just compare the results with ��p. Model checking
PCTL over MDPs is similar, but it should deal with adversaries (schedulers,
policies) and fairness because MDPs are non-deterministic models, see [7].

2.3 BDD-Based Probabilistic Symbolic Model Checking

In this section, we recall BDDs and MTBDDs. Then, we briefly discuss symbolic
model checking using BDDs.

38 T. van Dijk et al.

Fig. 1. Overview of the data structures used by the model checking algorithm

The concept of (reduced ordered) binary decision diagrams (BDDs) was pro-
posed by Bryant [9], based on early works in [1,24]. A BDD represents a Boolean
function f(x1, x2, . . . , xn). It is a rooted directed acyclic graph [2] where termi-
nal nodes (leaves) are labelled with either 0 or 1. Non-terminal nodes contain
a variable label xi and two edges labelled 0 and 1, typically called the low
and the high edge. Each non-terminal node represents the Boolean expression
(¬xi ∧ fxi=0)∨ (xi ∧ fxi=1), where the cofactors fxi=0 and fxi=1 are represented
by the target nodes of the low and the high edge, respectively. Furthermore, vari-
able labels xi appear along paths in the BDD according to an ordering. Finding
a good variable ordering is critical for the performance of symbolic model check-
ing; good heuristics exist, which are beyond the scope of this paper. Reduction
rules that remove redundant and duplicate nodes ensure that BDDs represent
Boolean functions canonically.

Some BDD packages use complement edges as further edge labels to denote
negation of a Boolean function, which results in efficient negation and allows
optimisations that are beyond the scope of this paper. To construct and manip-
ulate BDDs efficiently, BDD packages usually have a unique node table to store
all the BDD nodes and provide a way to access nodes in constant time. They also
have a cache that stores previously computed results to avoid duplicate compu-
tations. The initial node size and initial cache size are the initial numbers of
entries in the unique node table and the cache, respectively.

MTBDDs. The papers [12,16] use a variant of BDDs to represent general matri-
ces. It is claimed that MTBDDs are the space-optimal representation of both
dense and sparse matrices, and of permutation matrices [16]. Unlike BDDs, the
terminal nodes in MTBDDs are not restricted to be 0 or 1. (MT)BDDs enable
storing and manipulating very large matrices in a symbolic manner due to their
shared structures. Symbolic encoding of MDPs with (MT)BDDs can be then
applied directly, see [5].

A Comparative Study of BDD Packages 39

BDD-Based Probabilistic Symbolic Model Checking. Figure 1 gives an overview
of the data flow during model checking for PCTL formulas. The data structures
with white background are symbolically stored as (MT)BDDs while the data
structures with grey background are stored explicitly. Given a PCTL formula
P��p[ψ] and a description of the model, the common procedure is to first encode
the transition relation of the model as MTBDDs and the formula and initial
states as BDDs. Moreover, a BDD copy of the transition relation is constructed
by abstracting the probabilities between the states. The resulting transition rela-
tion is the adjacency matrix of the underlying graph. Then the reachability anal-
ysis identifies the reachable states of the model. By employing the reachE and
prob1E iterations proposed in [14], the reachable states are divided into the three
sets we mentioned before, namely Sno , Syes , and S?.

In the next step, one computes the probability of ψ by solving a linear equa-
tion system for MCs, or a Linear Programming (LP) problem for MDPs. First,
the transition relation MTBDD is transformed to a probability sparse matrix,
which is used to encode the corresponding LP problem to compute the prob-
abilities. In practice, approximate value iteration is often used. The resulting
reachability probability is then compared with ��p to decide whether P��p[ψ]
is satisfied. For nested PCTL formulas, the smallest state subformula is han-
dled first, and then the above procedure is recursively applied while traversing
through the abstract syntax tree of the formula in a bottom up order.

And-Exist Optimisation. One of the first steps in the PCTL model checking
algorithm is the computation of the states that are reachable from the initial
states. These are obtained by a fix-point computation of the transition probabil-
ity matrix for MCs or of the transition probability function for MDPs starting
from the set of initial states. For simplicity, consider the MC case and define
the function Post : 2S → 2S as Post(X) = { s′ ∈ S | ∃s ∈ X.P(s, s′) > 0 }.
Symbolically, we can represent this operation as ∃V.R ∧ T where R is the BDD
encoding the set of states X, T the BDD encoding the adjacency matrix, and
V are the variables representing the current states. The resulting BDD encodes
the set of next states (using variables V̂); by means of a variable renaming from
V̂ to V , we convert it to represent the states in Post(X).

A similar construction underlies the computation of the predecessor states;
this operation is the base of the precomputation step that, even for general PCTL
properties, may be performed very frequently and it is quite time consuming.

In the above two computations, we first have to build the conjunction of two
BDDs encoding the current states and the adjacency matrix and afterwards to
remove a number of variables from this conjunction by existential quantification
such as ∃v.bdd1 ∧ bdd2. It is often the case that the BDD representing the con-
junction is quite large. Therefore, building bdd1 ∧ bdd2 and afterwards applying
the existential quantification is often very slow. On the other hand, the BDD
obtained after the existential quantification is often quite small. To improve this
operation, many BDD packages support a so-called And-Exist (relational prod-
uct) operator, in which these two steps are performed at once. This means that

40 T. van Dijk et al.

the construction of the intermediate BDD bdd1 ∧ bdd2 can be avoided, so as to
reduce computation time and memory consumption.

2.4 BDD Packages

In this paper, we study the performance of six different BDD pack-
ages: CUDD [33], BuDDy [13], CacBDD [26], JDD [35], Sylvan [36], and
BeeDeeDee [25]. CUDD is a well-known BDD implementation used in several
model checkers. BuDDy has been integrated in several theorem provers and pro-
vides many efficient BDD operations. As for CacBDD, experiments in [26] show
that it outperforms CUDD in many benchmarks. JDD is a BDD package imple-
mented in Java. Sylvan is a novel parallel decision diagram implementation that
parallelises the BDD operations [36]. BeeDeeDee is a recent Java thread-safe
implementation of a BDD package. We remark that we are aware of other BDD
packages including ABCD [8], PBF [37], Janssen’s BDD [22], Carnegie Mellon’s
BDD [30], BDDNOW [29], and CAL BDD [32]: they are not included in our
tool as these packages are outdated and no longer maintained since 2000. Two
recently updated packages are BiDDy [28] and MEDDLY [3], however they lack
certain basic operations and can therefore not be compared to the other pack-
ages.

CUDD is a C implementation of BDDs and MTBDDs developed by Fabio
Somenzi, University of Colorado at Boulder. It provides support for operating
with ordinary BDDs, Algebraic Decision Diagrams (ADDs), and Zero-suppressed
Binary Decision Diagrams (ZDDs). ADDs are a special implementation of
MTBDDs that are used, for instance, by PRISM as its MTBDD implemen-
tation. The three types of decision diagrams provide essentially the same set of
operations; this means, for instance, that an operation available when operating
with BDDs is also available for ADDs. A notable exception is the And-Exist
operation that is not yet available for ADDs. Besides its several operations on
BDDs, ADDs, and ZDDs, CUDD also supports the conversion of BDDs into
ADDs or ZDDs and vice versa. In addition, it also provides a large assortment
of variable reordering methods. Though written in C, it provides a C++ interface
that provides overloaded operators and that offers to free the decision diagrams
that are no longer used by the application.

BuDDy is a BDD package implemented in C by Jørn Lind-Nielsen as a Ph. D.
project on model checking finite state machines. It supplies most useful opera-
tions for the manipulation of BDDs as well as functions for integer arithmetic like
addition and relational operations like And-Exist. It provides also several highly
efficient vectorised BDD operations and it supports dynamic variable reordering
and garbage collection.

CacBDD is a BDD package written in C++ by Guanfeng Lv. It supports com-
mon BDD operations as well as other useful operations like the multiple-operand
And-Exist. An interesting aspect of CacBDD is its dynamic cache management

A Comparative Study of BDD Packages 41

Table 1. Overview of the features of the BDD packages used.

BDD implementation MTBDDs/
ZDDs And-Exist

dynamic var
remarks

engine language ADDs reordering

CUDD C ✔ ✔ ✔(✗) ✔

BuDDy C ✗ ✗ ✔ ✔

CacBDD C++ ✗ ✗ ✔ ✗ dyn. cache mgmt.
JDD Java ✗ ✔ ✔ ✗

Sylvan C ✗ ✗ ✔ ✗ supports multi-core
BeeDeeDee Java ✗ ✗ ✗ ✗ thread-safe

algorithm and lazy garbage collection that offer remarkable improvements in the
performance of the BDD operations at the expense of free physical memory.

JDD is, unlike the previous BDD packages, a pure Java BDD package developed
by Arash Vahidi. JDD supports BDDs as well as ZDDs and it has been originally
inspired by BuDDy. Though it is implemented purely by Java, it is still an
efficient BDD package and, thanks to its new cache scheme, JDD’s memory
usage per node is less than BuDDy, which is the major advantage of JDD.

Sylvan is a parallel decision diagram package implemented in C by Tom van Dijk
as a Ph. D. project on multi-core decision diagrams. It uses work-stealing and
scalable parallel data structures to provide parallelisation of algorithms on deci-
sion diagrams. Sylvan currently supports BDDs and list decision diagrams, which
are a variation of multi-valued decision diagrams. Among the implemented paral-
lel BDD operations, Sylvan provides other useful operations for model checking
such as And-Exist and the Relnext operation that combines And-Exist with
variable renaming. It has been designed as an extensible framework with custom
BDD operations in mind and features parallel garbage collection.

BeeDeeDee is a thread-safe BDD package implemented in Java developed by
Juliasoft, a spin-off company from the University of Verona. It supports the most
common BDD operations. Thread-safety allows for sharing BDD nodes between
threads, thus reducing the memory footprint when used in multi-threaded model
checking. To improve its performance, BeeDeeDee uses the most modern tech-
niques for multi-threading in Java such as the split locks that are used to control
the concurrent garbage collection and the concurrent accesses to the node table.

An overview of the features of the considered BDD packages is given in
Table 1.

3 Experimental Results

In order to compare the different BDD packages, we have implemented the BDD-
based probabilistic model checking methods in our tool IscasMC [17].

In IscasMC, we provide a common high level Java interface to interact with
the specific BDD packages, each of them wrapped into a dedicated Java class.

42 T. van Dijk et al.

This separates the BDD implementations from the model checking algorithms
and enables extending the tool with new or updated BDD packages, without
having to change other parts of the tool. IscasMC is mainly implemented in
Java and it uses Java Native Access (JNA)1 to call BDD libraries written in
C or C++. JNA is a library decreasing the programmer’s effort to call native
methods from Java. JNA introduces a small overhead compared to using Java
Native Interface (JNI). The overhead turned out to be negligible compared to
the total runtimes.

Since we use some features that are not provided natively by all BDD pack-
ages, like the And-Exist operation, we have implemented IscasMC such that
it falls back to use ordinary BDD operations when these features are not avail-
able. The BDD package to use in the model checking process can be chosen
by setting the corresponding IscasMC command line option. We do not use
dynamic variable reordering, since it is not supported by all BDD packages we
compare. Also, the reorder algorithm typically has a high performance cost and
good static orders were available for the models under consideration.

Experimental Setting and Models. We have performed several experiments on
the BDD packages by tuning their settings. All experiments have been per-
formed on a Linux machine with an Intel Core i7-4790 processor at 3.6GHz with
16GB of RAM of which only 8GB are usable by IscasMC. The time-out for the
experiments is 30 minutes.

Table 2. Models and properties.

model path property ψ

firewire-impl F((s1=8 & s2=7) | (s1=7 & s2=8))
leader F (“elected”)

dining-crypt F (“done” & parity=func(mod, N, 2))
phil-nofair F (“eat”)

cluster F (“premium”)
google F (“light hardware disaster”)

Table 2 shows the models and the path properties taken from the PRISM web-
site [31] we used for the experiments: the IEEE 1394 FireWire protocol (imple-
mentation) [34] (“firewire-impl”), the Google File System model [6] (“google”),
the Asynchronous Leader Election protocol [21] (“leader”), the Dining Cryptog-
raphers protocol [11] (“dining-crypt”), the Dining Philosophers protocol with no
fairness assumption [15] (“phil-nofair”), and the Workstation cluster [18] (“clus-
ter”). Except for the “cluster” and “google” models that are Continuous Time
MarkovChains (CTMCs)2, othermodels areMDPs.Theactual formulawechecked
is P≥1[ψ] for the firewire-impl, leader, cluster, and google models while it is of the
form filter(forall , cond ⇒ P≥1[ψ]) for the remaining dining-crypt (where cond is

1 https://github.com/twall/jna#readme
2 As we consider qualitative unbounded properties, they can be checked by transforming

the CTMCs to the corresponding embedded Markov chains.

https://github.com/twall/jna#readme

A Comparative Study of BDD Packages 43

“hungry”) and phil-nofair (where cond is pay = 0) models. The keyword filter
allows us to analyse the property in a given set of states we are interested in:
filter(forall , (cond) ⇒ P≥1[ψ]) is satisfied whenever for all states satisfying cond
the property P≥1[ψ] holds. Note that the initial state may or may not be considered
in the analysis, depending on whether it satisfies cond .

Remark 1. All the properties we consider here are qualitative properties, so they
can be decided by using the information from the sets Syes , Sno , and S? obtained
from the precomputation step on BDDs. This allows us to measure the time spent
by IscasMC working with only (MT)BDDs, so we get a better understanding
of the effects of the different packages and options on the time spent for checking
the formulas. We do use MTBDDs to construct the transition relation, as doing
so is easier than just using BDDs. The construction never took a significant
amount of time.

We further emphasise that our tool can handle quantitative properties. For
quantitative properties, various BDD packages will produce the same problem
instance but –mostly– in different orders. This will further influence performance
of the linear programming problem solvers in a way that is loosely connected to
the BDD packages.

Running Time. Table 3 shows the running time in seconds for the six different
engines CUDD, BuDDy, CacBDD, JDD, BeeDeeDee, and Sylvan. We repeated
each experiment 10 times and report the rounded average time of the 10 runs. We
used CUDD as a pure BDD package (cudd-bdd) or as a pure MTBDD package
(cudd-mtbdd) while for Sylvan we considered the sequential computation with
1 worker (sylvan-1) or the parallel computation with 7 workers (sylvan-7); we
use 7 workers instead of 8 to reserve a processor core for other threads in Java
and the operating system, as explained at the end of the section. We kept the
default values for the BDD packages except for the initial cache size that we set
to 2 612 440 entries and the initial node size to 1 250 000 entries, for packages
supporting such options. Moreover, we enabled the And-Exist optimisation for
all packages whenever supported natively (see further below). For each model,
we considered several instances corresponding to different parameter choices.
For example, for the model “firewire-impl”, we considered the values 36, 45, 54,
and 63 for the parameter “delay”. We marked by ‘–TO–’ the cases where the
computation took more than 30 minutes and by ‘–MO–’ the computations using
more than 8GB of RAM. We highlighted the best runtimes among all packages
in bold font; we marked also the best runtimes excluding sylvan-7 so to consider
only sequential computations.

By looking at the results in Table 3, we can immediately see that no BDD
package outperforms the others in all case studies. The first thing we note is
that Sylvan-7 takes a large advantage from its parallel operations for the high
time-consuming models, but the overhead induced by the synchronisation on the
parallel operations penalise it on small cases. If we focus on Sylvan-1 and the
other sequential BDD packages, we note that for the CTMC models “cluster”

44 T. van Dijk et al.

Table 3. IscasMC performances with different BDD packages where the values are
the rounded average running time of 10 executions.

BDD
engine

time (secs)

cluster / N firewire-impl / delay leader / N

1536 1792 2048 2304 36 45 54 63 6 7 8 9

cudd-mtbdd 63 92 125 170 109 65 69 86 11 58 218 709
cudd-bdd 40 54 75 95 65 43 42 45 7 25 86 301

buddy 4 4 6 7 78 46 51 82 7 48 165 662
cacbdd 21 28 40 53 87 71 72 85 8 28 95 410

jdd 4 4 7 7 88 49 54 77 8 47 170 637
beedeedee 7 8 12 16 91 55 61 61 11 42 183 853
sylvan-1 5 5 8 8 74 48 50 54 7 27 111 615

sylvan-7 5 5 8 8 29 26 27 28 4 9 28 139

google / M phil-nofair / N dining-crypt / N

500 1000 1500 2000 7 8 9 10 25 30 35 40

cudd-mtbdd 8 32 85 144 25 98 339 –MO– 13 44 68 206
cudd-bdd 6 22 56 91 19 74 268 –MO– 9 17 31 51

buddy 4 9 23 30 24 122 465 –TO– 18 41 91 169
cacbdd 5 15 42 68 13 51 194 –MO– 5 8 13 21

jdd 4 10 25 34 37 203 706 –TO– 19 39 92 172
beedeedee 6 22 56 97 32 136 514 –TO– 20 48 101 166
sylvan-1 5 12 32 46 20 120 500 –TO– 6 11 18 56

sylvan-7 6 12 30 35 5 25 102 –MO– 6 8 16 47

and “google” BuDDy and JDD perform better than the other packages, while
for the remaining MDP models the best are CUDD as BDD (“firewire-impl”
and “leader”) and CacBDD (“phil-nofair” and “dining-crypt”). We remark that
Sylvan-1 is usually very close to the best-performing BDD packages for “cluster”
and “dining-crypt”. The CUDD package remains the default choice of most
of the symbolic (probabilistic) model checkers, but an order of magnitude in
the runtime could be saved sometimes—see the “cluster” and “dining-crypt”
examples.

The overall runtime of the packages on all experiments is summarised by the
next table, where we sum all entries in Table 3 excluding the failures.

cudd-mtbdd cudd-bdd buddy cacbdd jdd beedeedee sylvan-1 sylvan-7

2837 1522 2156 1433 2493 2598 1838 608

It is worthwhile to note that CUDD (as MTBDD) is always one of the slowest
packages and the slowest on the overall set of experiments. This suggests that
using only BDD operations sometimes improves the runtime of the model checker
for probabilistic systems quite considerably.

A Comparative Study of BDD Packages 45

Fig. 2. And-Exist Setting comparison (time).

And-Exist Optimisation. Figure 2 shows the effect of the use of the And-Exist
optimisation in the model checking algorithm. We have performed the experi-
ments by using the BDD packages providing native support to the And-Exist
optimisation in the same setting as for Table 3; thus, we omitted CUDD (as
MTBDD) and BeeDeeDee since they do not provide such an optimisation.

Each mark in the plot corresponds to the execution of the BDD package
with and without the And-Exist optimisation for one instance of the models.
The points below (above) the dotted line represent the cases where the usage of
And-Exist has reduced (increased) the runtime. As we can see, it is in general
convenient to use such an optimisation, but there are cases, like for CacBDD
on “firewire-impl” and JDD on “phil-nofair” where it is preferable to not use
And-Exist.

Figure 3 is similar to Figure 2, except for the fact that we consider the used
memory instead of the runtime. We can note that usually the use of And-Exist
helps in reducing the memory footprint but there are cases where CUDD (as
BDD) and JDD require more memory when And-Exist is used.

Remark 2. Due to space limitations we omit a detailed report of the memory
usage of the BDD packages. We have observed, unless a memory-out is reached,
irregular behaviour of memory usage. We think that it is due to the fact that
different BDD packages have their own way of memory managing strategies, for

46 T. van Dijk et al.

Fig. 3. And-Exist Setting comparison (memory, in MB).

instance by preferring to allocate new memory instead of performing a garbage
collection.

Impact of the Initial Cache Size. In Figure 4 we plot the outcomes of several
experiments on the “firewire-impl” model with BuDDy by varying only the initial
cache size. Note that here the reference value D = 262 144 = 218 is one tenth of
the value we used for Table 3. As one can expect, increasing this value usually
improves the running time. However, we can first note a big decrease in the
running time going from 0.25D to 1D; then, by enlarging the cache size to 4D, the
runtime increases for then decreasing again as expected. Note that by making the

Fig. 4. BuDDy performance on “firewire-impl” with different initial cache sizes.

A Comparative Study of BDD Packages 47

Fig. 5. BuDDy performance on “firewire-impl” with different initial cache and node
sizes.

Fig. 6. IscasMC speedup with Sylvan BDD package with different workers.

48 T. van Dijk et al.

cache much larger (from 18D) slightly increases the runtime again. The hashing
of the elements in the cache and the locality of the cached data may be the
causes of the observed behaviour.

In Figure 5 we plot the result of varying the initial cache size and node size.
For the cache size, we range from D = 262 144 = 218 to 20D; for the node size,
we range from 0.5 · 106 to 2 · 106. By looking at the plots, we can note that
increasing the cache size is counter-productive if the node size is too small, while
it is always worth to increase the node size. Note however that increasing both
parameters too much may cause a failure by memory-out.

Effect of the Number of Workers on Sylvan. Figure 6 shows the speedup gained
by IscasMC by using Sylvan with a different number of workers. For this case,
we used a different machine equipped with 48 cores (4 AMD Opteron 6168
processors) and 128GB of RAM, but with the same time and memory limits as
before.

In general, we observe that the gained speedup is correlated to the runtime
size of the models. The “leader” and “phil-nofair” models result in a higher
speedup. The highest speedup we obtain is with the “phil-nofair” model: here
we obtain a speedup of 26.5 with 47 workers. For the “cluster”, “google”, “dining-
crypt” examples, the speedup is at most 3. For the smallest models, the speedup
increases first with the number of workers, but with too many workers the gained
speedups are lost again. This behavior could be explained as follows. When
reachability consists of only small BDD operations, then there is little oppor-
tunity for parallelisation. Meanwhile, all workers are competing to execute the
same suboperations, which aggravates the overhead from parallelisation. For the
“dining-crypt” example with N = 25, with more than 46 workers we even observe
a slowdown compared to running with 1 worker.

In all experiments we observe reductions of the speedup when nearly all cores
are used. This is likely to be due to the fact that all the 48 workers have to share
the cores with the system processes and the Java virtual machine, thus there is
an increased scheduling activity affecting the workers. Instead, with at most 47
workers, at least one core remains always available for the system processes and
the Java virtual machine, so the scheduling activity is not expected to affect the
workers. We can derive that in general it is better to use a number of workers at
most equal to the number of cores minus 1; this is why in Table 3 and Figure 2
we use 7 workers instead of 8, as confirmed by similar experiments we performed
but omitted for lack of space.

Finally, the result of a speedup of 26.5 with 47 workers is similar to results
obtained with LTSmin (a C-only model checker) in [36] and suggests that Java
and JNA do not have a significant impact on scalability, at least until 44 workers.
The performance drop with 45–48 workers, however, is not seen in [36].

A Comparative Study of BDD Packages 49

4 Conclusion

This paper demonstrates the performances of different BDD packages in the
context of probabilistic model checking. From the experiments, we have seen
that no BDD package is remarkably faster than the others; CUDD (as BDD)
and CacBDD performed rather well on MDP models while BuDDy and JDD
were more suitable for continuous time MCs. The parallel BDD package Sylvan
can outperform the other packages in cases where the overall running time is
sufficiently high and multiple cores are used, and is competitive with the other
packages when used sequentially, despite the overhead added by parallelisation.
This shows that parallelisation of BDD operations is very good for performance
and that other BDD packages might also profit from this approach. The exper-
iments confirmed that BDDs are sufficient for probabilistic model checking and
much faster than MTBDDs. We have also shown that the And-Exist optimi-
sation speeds up the whole verification process in some case studies, while for
others it does not lead to a considerable speedup or even leads to a decreased
performance.

Acknowledgments. This work has been supported by the EU FP7 project SEN-
SATION (318490), the STW-ProRail ExploRail project ArRangeer (12238), the NWO
projects MaDriD (612.001.101) and BEAT (612.001.303), the National Natural Science
Foundation of China (Grants 61472406, 61472473, 61450110461), the Chinese Academy
of Sciences Fellowship for International Young Scientists (Grants 2013Y1GB0006,
2015VTC029), the CAS/SAFEA International Partnership Program for Creative
Research Teams, and the Sino-German CDZ project CAP (GZ 1023).

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. on Computers 27, 509–516
(1978)

2. Andersen, H.R.: An introduction to binary decision diagrams. Course Notes on the
WWW (1997)

3. Babar, J., Miner, A.: Meddly: Multi-terminal and edge-valued decision diagram
library. In: QEST, pp. 195–196. IEEE Comp. Soc., Los Alamitos (2010)

4. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,
Somenzi, F.: Algebraic decision diagrams and their applications. In: ICCAD,
pp. 188–191. IEEE Comp. Soc., Los Alamitos (1993)

5. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.:
Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri,
R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440.
Springer, Heidelberg (1997)

6. Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model check-
ing for performability. MSCS 23(4), 751–795 (2013)

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Biere, A.: ABCD. http://fmv.jku.at/abcd/
9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Trans. on Computers 100(8), 677–691 (1986)

http://fmv.jku.at/abcd/

50 T. van Dijk et al.

10. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. I&C 98(2), 142–170 (1992)

11. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. of Cryptology 1(1), 65–75 (1988)

12. Clarke, E.M., Fujita, M., McGeer, P.C., McMillan, K., Yang, J. C.-Y., Zhao, X.:
Multi-terminal binary decision diagrams: An efficient data structure for matrix
representation. In: IWLS (1993). http://repository.cmu.edu/compsci/453

13. Cohen, H., Whaley, J., Wildt, J., Gorogiannis, N.: BuDDy. http://sourceforge.net/
p/buddy/

14. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the Kronecker rep-
resentation. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 395–410. Springer,
Heidelberg (2000)

15. Duflot, M., Fribourg, L., Picaronny, C.: Randomized dining philosophers without
fairness assumption. Distributed Computing 17(1), 65–76 (2004)

16. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation. FMSD 10(2–3), 149–169
(1997)

17. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: IscasMC: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)

18. Haverkort, B.R., Hermanns, H., Katoen, J.-P.: On the use of model checking tech-
niques for dependability evaluation. In: SRDS, pp. 228–237 (2000)

19. Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use
of MTBDDs for performability analysis and verification of stochastic systems. J.
of Logic and Algebraic Programming 56(1–2), 23–67 (2003)

20. IEEE 802.3-2002. Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) Standard (2002)

21. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. I&C 88(1), 60–87
(1990)

22. Janssen, G.: The Eindhoven BDD package. ftp://ftp.ics.ele.tue.nl/pub/users/
geert/bdd.tar.gz

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

24. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
System Technical Journal 38(4), 985–999 (1959)

25. Lovato, A., Macedonio, D., Spoto, F.: A thread-safe library for binary decision
diagrams. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702,
pp. 35–49. Springer, Heidelberg (2014)

26. Lv, G., Su, K., Xu, Y.: CacBDD: A BDD package with dynamic cache manage-
ment. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 229–234.
Springer, Heidelberg (2013)

27. McMillan, K.L.: Symbolic model checking. Springer (1993)
28. Meolic, R.: Biddy a multi-platform academic bdd package. J. of Software, 7(6)

(2012)
29. Milvang-Jensen, K., Hu, A.J.: BDDNOW: a parallel BDD package. In: Gopalakr-

ishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 501–507.
Springer, Heidelberg (1998)

30. Model Checking Group at Carnegie Mellon University: BDD. http://www.cs.cmu.
edu/modelcheck/bdd.html

http://repository.cmu.edu/compsci/453
http://sourceforge.net/p/buddy/
http://sourceforge.net/p/buddy/
ftp://ftp.ics.ele.tue.nl/pub/users/geert/bdd.tar.gz
ftp://ftp.ics.ele.tue.nl/pub/users/geert/bdd.tar.gz
http://www.cs.cmu.edu/ modelcheck/bdd.html
http://www.cs.cmu.edu/ modelcheck/bdd.html

A Comparative Study of BDD Packages 51

31. PRISM web site. http://www.prismmodelchecker.org
32. Ranjan, R.K., Sanghavi, J..: CAL BDD. http://embedded.eecs.berkeley.edu/

Research/cal bdd/
33. Somenzi, F.: CUDD: CU decision diagram package release 2.5.0. http://vlsi.

colorado.edu/fabio/CUDD/
34. Stoelinga, M., Vaandrager, F.W.: Root contention in IEEE 1394. In: Katoen, J.-P.

(ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601,
pp. 53–74. Springer, Heidelberg (1999)

35. Vahidi, A.: JDD, a pure Java BDD and Z-BDD library. http://javaddlib.
sourceforge.net/jdd/

36. van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015)

37. Yang, B., Chen, Y., Bryant, R.E., O’Hallaron, D.R.: Space- and time-efficient BDD
construction via working set control. In: ASP-DAC, pp. 423–432, IEEE, Piscataway
(1998)

http://www.prismmodelchecker.org
http://embedded.eecs.berkeley.edu/Research/cal_bdd/
http://embedded.eecs.berkeley.edu/Research/cal_bdd/
http://vlsi.colorado.edu/ fabio/CUDD/
http://vlsi.colorado.edu/ fabio/CUDD/
http://javaddlib.sourceforge.net/jdd/
http://javaddlib.sourceforge.net/jdd/

Hybrid and Cyber-Physical Systems

Refinement and Proof Based Development
of Systems Characterized by Continuous

Functions

Guillaume Babin1(B), Yamine Aı̈t-Ameur1, Shin Nakajima2, and Marc Pantel1

1 Université de Toulouse; IRIT / INPT-ENSEEIHT,
2 Rue Charles Camichel, Toulouse, France

guillaume.babin@irit.fr, {yamine,marc.pantel}@enseeiht.fr
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

nkjm@nii.ac.jp

Abstract. The specification of cyber-physical systems usually relies on
continuous functions over dense real numbers whereas their implementa-
tion is discrete. Proving the correctness of the discrete implementation
with respect to the continuous specification remains a challenge in the
presence of dense real numbers. In this paper, we propose a refinement-
based formal method, relying on Event-B, for such developments. We
illustrate our proposal with the development of a simple stability con-
troller for a generic plant model. The continuous function that models
the system behavior is refined as a discrete model of the same kind pre-
serving stability expressed as a safety invariants of the continuous model.
The obtained discrete model uses discrete time (instants modeled on N),
whereas the continuous model is based on dense time (on R). The Rodin
Platform, together with the Theory plug-in handling the Real datatype
and its properties supported the whole developments and proofs.

Keywords: Continuous and discrete behaviors · Dense real numbers ·
Correct-by-construction · Formal methods · Proved refinements ·
Event-B

1 Introduction

According to Lee [20], cyber-physical systems (CPS) are defined as integrations
of computation, networking, and physical processes. Embedded computers and
networks monitor and control the physical processes, with feedback loops where
physical processes affect computations and vice versa. Most of the time, a software
part (the controller) drives the physical part (the plant) through a loop involving
sensors and actuators. The CPS plant behavior is given by dense time contin-
uous functions solution of differential equations. The CPS controller behavior
is specified by continuous functions over dense time. The CPS software imple-
ments a discretization of these functions in order to control the CPS plant. This
discretization proof is a key challenge in the CPS correctness proof.
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 55–70, 2015.
DOI: 10.1007/978-3-319-25942-0 4

56 G. Babin et al.

In the past years, several approaches relying on formal methods, like Hybrid
automata [17] and model checking [5], have been set up to describe the behavior
of the software controllers. Our proposal focuses on the verification of correct
controllers obtained after discretization.

This paper show how proof and refinement based approaches handle the
development of a correct-by-construction discrete controller starting from a dense
time continuous function specification of the continuous controller. A complete
incremental development relying on a theory of reals is conducted to synthesize a
correct discretization of a continuous function. The approach exploits an axioma-
tization of mathematical reals. It maintains a safety invariant characterizing the
physical plant of the studied system. Such invariant defines a safety envelope
(which we called safety corridor) modeling a stability property in which the sys-
tem must evolve i.e. for a continuous function f , we write ∀t ∈ R

+, f(t) ∈ [m,M]
where t is a dense time parameter and the reals m and M define minimum and
maximum values in R

+ ensuring a correct behavior of the physical plant. In
general, these values come from the physics of the studied system. The Event-B
method is used to handle such formal developments. We illustrate our proposal
with the development of a simple stability controller for a generic plant model.

This paper is structured as follows. Section 2 overviews the addressed prob-
lem of discretization. Section 3 summarizes the Event-B method. Sections 4 and
5 are the core of our proposal: the refinement strategy for any continuous func-
tion together with the corresponding requirements are given in section 4 while
the complete Event-B development handling these requirements is provided in
section 5. Related works and possible applications are sketched in section 6. The
conclusion and some perspectives are given in the end.

2 Discretization of Continuous Functions

The behavior of many systems can be characterized by three states: the initial
boot, the nominal behavior, and the final halt. Several CPS involving physical
plants and software controllers follow this pattern such as energy production sys-
tems, smart systems, medical systems, etc. These systems are usually modeled
by differential equations specifying dense time continuous functions. In order to
control their behavior, one has first to discretize these continuous functions. The
main safety property concerns stability where the function values shall be main-
tained inside a safety envelope i.e. an interval of correct values (called corridor).

The correct implementation of such continuous functions is a key point in
ensuring the CPS safety. These ones shall be discretized in a correct manner
that guarantees that the discrete behavior simulates the continuous one. In
other words, the continuous states existing between two observed consecutive
states of the discretization are also in the safety corridor. To achieve this goal,
we follow a correct-by-construction approach based on a formal development of
any continuous function discretization, making our development reusable and
scalable. The approach relies on refinement and on the preservation of invari-
ants. Discretization information are incrementally added while moving from the

Refinement and Proof Based Development of Systems 57

continuous level to the discrete one. Event-B [1] and the Rodin Platform [2] have
been set up to handle the developments.

3 The Event-B Method

An Event-B model [1] (see Table 1) is defined in a MACHINE. It encodes a
state transition system which consists of: variables declared in the VARIABLES
clause to represent the state; and events declared in the EVENTS clause to
represent the transitions (defined by a Before-After predicate BA) from one
state to another.

Table 1. Structure of Event-B
machines

CONTEXT MACHINE
ctxt id 2 machine id 2

EXTENDS REFINES
ctxt id 1 machine id 1

SETS SEES
s ctxt id 2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, cv)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS

Event evt �
any x
where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

Table 2. Generated proof obligations
for an Event-B model

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)

⇒Tm(s, c, v)
Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
progress ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

A model also holds INVARIANTS and THEOREMS to represent its rele-
vant properties. A decreasing VARIANT may introduce convergence properties
when needed. An Event-B machine is related, through the SEES clause to a
CONTEXT which contains the relevant sets, constants axioms, and theorems.
The refinement capability [4], introduced by the REFINES clause, decomposes
a model (thus a transition system) into another transition system containing
more design decisions thus moving from an abstract level to a less abstract one.
New variables and new events may be introduced at the refinement level. In a
refinement, the invariant shall link the variables of the refined machine with the
ones of the refining machine. A gluing invariant is introduced for this purpose.
It preserves the proved properties and supports the definition of new ones.

Once an Event-B machine is defined, a set of proof obligations is generated.
They are submitted to the prover embedded in the RODIN platform. Proof
obligations associated to an Event-B model are listed in Table 2, here the prime
notation is used to denote the value of a variable after an event is triggered.
More details on proof obligations can be found in [1].

58 G. Babin et al.

Use of Reals in Event-B. A recent evolution of the Event-B method allows
to extend it with theories [13] similar to algebraic specifications. In the Rodin
Platform, this evolution is provided by the Theory plugin for Rodin [3]. We need
to model and reason on dense reals. We rely on the theory for reals and continuous
functions, written by Abrial and Butler1. It provides a dense mathematical REAL
datatype with arithmetic operators, axioms and proof rules.

Remark. From a tool point of view, the use of reals with the Theory plugin for
Rodin introduces constants like zero and operators defined on the REAL datatype
like smr for <, gtr for > or leq for ≤. Casting operators need to be defined
in order to work with other data types. These ones are used when discretizing
continuous representations by refinement (see section 5.3).

4 Refinement Strategy

The mathematical model and the specification of the system behavior are
sketched below. Following the approach defined in [23], the adopted refinement
strategy consists in three steps: first, as shown in figure 1, we use three states to
define a simple abstract controller that models the system; then, in a first refine-
ment, we introduce a continuous controller characterizing its behaviors with a
continuous function; finally, a second refinement builds a discrete controller.

4.1 The Illustrating System

The considered system goes through three phases. Figure 1 depicts its general
behavior. First, it is booted (transition boot from state 1 to 2). After a while,
once in state 2, it becomes operational in a nominal mode (run transition).
Then, it stays a given amount of time in the nominal or running mode. When
in nominal mode, it may be halted (stop transition from state 2 to state 3) for
example in case a failure occurs or for maintenance purposes. This behavior is
the one of a simple abstract system controller. When booting, the system cannot
be stopped until it reaches the nominal mode. Other complex behavior scenarios
can be defined with more complex transition systems.

In order to guarantee a correct behavior of the system, the previously defined
controller shall fulfill the requirements from table 3. These ones ensure that the sys-
tem is correctly controlled. For example, an energyproduction system requires that
the power produced by a given system belongs to a specific interval or a pacemaker
must be pacing when a sensed signal belongs to another specific interval.

Fig. 1. Controller Automaton

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library

http://wiki.event-b.org/index.php/Theory_Plug-in#Standard_Library

Refinement and Proof Based Development of Systems 59

Table 3. Requirements at the top level

At any time, the output value of the controlled system shall be less or
equal to M in any mode.

Req.1

At any time, the output value of the controlled system shall belong to an
interval [m, M] in running mode.

Req.2

At any time, if any future output value of the controlled system does not
belong to an interval [m, M], then the system is stopped.

Req. 3

4.2 Continuous Controller

After modeling the system at an abstract level using three states, we introduce
the continuous controller through the definition of a continuous function of the
dense time f : R+ → R

+ corresponding to the behavior of the system.
The requirements identified in the previous section, are rewritten (refined)

to handle the introduced continuous function behavior (see table 4).

Table 4. Requirements at the first refinement

m < M Req.0

∀t ∈ R
+, f(t) ≤ M Req.1

∀t ∈ R
+, state(t) = 2 ⇒ f(t) ∈ [m, M] Req.2.1

∀t1, t2 ∈ R
+, t1 < t2, state(t1) = 2 ∧ f(t2) ∈ [m, M] =⇒ state(t2) = 2 Req.2.2

∀t1, t2 ∈ R
+, t1 < t2, state(t1) = 2 ∧ f(t2) 	∈ [m, M] =⇒ state(t2) = 3 Req. 3

The control action over this system is a simple one. It consists in shutting
down the system if the value of f goes out of range. The obtained continuous
controller corresponds to a refinement of the abstract one from the previous
section, it is described by a hybrid automaton [17]. We are aware that the control
actions of the defined system are very simple. Our objective is to show how a
controller (characterized by a simple state transition system) and a physical
plant (characterized by a continuous function) can be formally integrated into a
single Event-B formal development encoding incrementally a hybrid automaton.

The previously described behavior is depicted by the graph in figure 2(a).
The system is initialized (at point A corresponding to the transition init to
enter state 1). It reaches the running mode state at point B (corresponding to
the event boot and entering state 2). The system stays in the safety corridor
(between m and M in state 2). When point C is reached, the controller switches
its state from state 2 to state 3 by the transition stop in order to prevent f
from going over the threshold M . The system is then halted to reach point D
(corresponding to state 3).

4.3 Discrete Controller

In order to implement the previous controller, we need to discretize the obser-
vation of the system behavior. In practice, when using computers to implement
such controllers, time is observed according to specific clocks and frequencies.
In other words, observations are discrete and depend on the available clocks.

60 G. Babin et al.

Therefore, it is mandatory to define a correct discretization of time that pre-
serves the continuous behavior introduced previously. This preservation entails
the introduction of other requirements on the defined continuous function. Note
that, in practice, these requirements correspond to requirements issued from the
physical plant.

(a) Continuous controller (b) Discrete controller

Fig. 2. Examples of the evolution of the function f

It is mandatory to introduce a margin allowing the controller to anticipate the
next observable behavior before incorrect behavior occurs. Let z be this margin.
z is defined such that the derivation of the function f between two observed
consecutive instants ti and ti+1 shall not be greater than z. Formally, this is
written as z ≥ maxi∈N |f(ti) − f(ti+1)|. We assume that a value for z exists
(even if it is not the optimal one), it is obtained from the physical properties
of the system. This means, that we need to identify the duration δt defining
the amount of time between two consecutive states observed by the discrete
controller. As a consequence, we write z ≥ maxt∈R+ |f(t) − f(t + δt)|. In order
for the problem to be well-defined, δt must be small enough so that the property
m + z < M − z holds. The set D of observation instants can be defined as
D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti+1 = ti + δt} and rewritten as
D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti = i × δt}.

As a consequence of this definition, the safety corridor becomes the interval
[m + z,M − z]. Moreover, it becomes possible to observe, in the running mode,

Table 5. Requirements at the second refinement

z > 0 ∧ m + z < M − z Req.0
∀ti ∈ D, f(ti) ≤ M Req.1
∀ti ∈ D, state(ti) = 2 ⇒ f(ti) ∈ [m + z, M − z] Req.2.1
∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) ∈ [m, M] =⇒ state(ti + δt) = 2

⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) ∈ [m, M] =⇒ state(ti+1) = 2 Req.2.2
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n + 1) δt) ∈ [m, M] =⇒ state((n + 1) δt) = 2

∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) 	∈ [m + z, M − z] =⇒ state(ti + δt) = 3
⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) 	∈ [m + z, M − z] =⇒ state(ti+1) = 3 Req. 3
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n + 1) δt) 	∈ [m + z, M − z]

=⇒ state((n + 1) δt) = 3

Refinement and Proof Based Development of Systems 61

two consecutive instants ti and ti+1 such that f(ti) ∈ [m+z,M−z] and f(ti+1) �∈
[m + z,M − z] ∧ f(ti+1) ∈ [m,M]. This condition characterizes an exit from the
safety corridor and thus the condition to stop the system and move to a stopping
mode. Again, the previous requirements are refined to consider the discretization
of time, using the two new parameters z and δt, and D (Table 5).

The safety margin z is defined such that if f(n δt) is in [m+z,M −z] then the
value of f observed by the controller, f((n+1) δt), is in [m,M]. The definition of
this discretization guarantees that Req.2.1 is fulfilled until the next value due to
∀n ∈ N, ∀t ∈ [n · δt, (n + 1) · δt], |f(t) − f(n δt)| ≤ z. If the monitor observes
a value in [m,m + z[or in]M − z,M], it shuts the system down because in the
next step, the value might be out of range (Req. 3).

4.4 Top-Down Refinement

According to the previous definitions, the refinement starts from a generic defi-
nition of the system with the three identified events. The first refinement intro-
duces the continuous function and the corresponding requirements of table 4.
We start with a continuous model Mc of the system, describing the complete
relevant physical behavior of the system. Then a second refinement defines the
discrete model Md of the behavior correctly glued with the continuous one.
Here, the refined requirements of table 5 are taken into account. Gluing invari-
ants, formalizing the refined requirements, are introduced in order to preserve
the proofs and the behavior of the abstraction. When proving the refinement, we
demonstrate that our discrete model is a correct implementation of the desired
continuous behavior (the specification).

To summarize, in Mc, the continuous function fc : R −→ R is considered. In
Md, we introduce a discrete function fd : N −→ R, where i ∈ N is an instant
and δt is the time discretization interval duration. The functions fd and fc are
glued by the following property: ∀n ∈ 0..i, fc(n × δt) = fd(n).

4.5 About Modeling of Time

In order to reduce the complexity of the proof of the discretization refinement
corresponding to the introduction of fd, we have split the behavior of fc during
an ith discrete macro step [ti, (ti +δt)] into three kinds of smaller discrete micro
steps (see figure 3). For example, at the running state (or nominal phase), we
define the following micro steps.

Fig. 3. Collapsing continuous time micro steps into a discrete time macro step

62 G. Babin et al.

1. RFT: run from tick is the first micro step inside a macro step starting at a
tick (a discrete time ti = i × δt). Its duration is strictly smaller than δt.

2. RBT: run between ticks is a micro step strictly in the macro step (not the
first nor the last micro step in a macro step). Its duration is denoted dt > 0. A
macro step contains V occurrences of such micro steps.

3. ROT: run on ticks is the last micro step in the macro step.

The Zeno problem is avoided by guaranteeing that the number of micro steps
of type RBT is finite, and that dt > 0. From a modeling point of view, it will be
formalized as a decreasing variant (natural number V in N). The trace of micro
steps between ti and ti+1 = ti + δt is defined as RFT (RBT)V ROT.

Our Event-B models introduce events aligned with these macro and micro
steps either in the continuous case of in the discrete one.

5 A Formal Development of a Discrete Controller with
Event-B

Our developments expressed within Event-B follow exactly the refinement strat-
egy defined in section 4. According to [23], three development steps have been
used. Contexts and machines are defined according to figure 4.

Fig. 4. Project structure

5.1 Abstract Machine: The Top-Level Specification

The top-level specification introduces the abstract controller with three events
according to figure 1.

Needed Theories. To be able to handle real numbers and the corresponding
theory, we have defined the context C0 reals which uses the theory defining
reals. Listing 1.1 gives an extract of this context with axioms and theorems.

Several other axioms and theorems have been defined and proved. We show
an extract of this theory. As mentioned in section 3 specific operators for manip-
ulating reals are used.

Refinement and Proof Based Development of Systems 63

CONTEXT C0 reals
CONSTANTS REAL POS, REAL STR POS
AXIOMS
def01:REAL POS={x | x ∈ REAL∧ leq(zero,x)}
def02:REAL STR POS={x| x∈ REAL

∧ smr(zero,x)}
...

THEOREMS
thm01: ∀a,b · (a ∈ REAL ∧b ∈ REAL)

⇒(smr(zero,b) ⇒smr(a sub b , a))
thm02: ∀a,b · smr(a,b) ⇔¬leq(b,a)
...

END

Listing 1.1. Part of context C0 reals

CONTEXT C1 corridor
EXTENDS C0 reals
CONSTANTS m, M
AXIOMS
axm01: m ∈ REAL STR POS
axm02: M ∈ REAL STR POS
axm03: smr(m,M)

END

Listing 1.2. Part of context C1 corridor

A second context defines the safety corridor with the values of m and M .
Listing 1.2 defines this context C1 corridor extending the context C0 reals.

The Top-Level Event-B Machine. It defines the global continuous values
issued from the controlled system. The machine introduces the invariant inv03,
guaranteeing Req.1 and Req.2.1 stating that in running mode (identified by
active=true), the continuous value (defining the values of a continuous function
introduced in the first refinement) fv shall be correct. This machine also models
the abstract controller with three events boot, run and stop corresponding to
the transition system of figure 1. These events manipulate fv the real positive
value corresponding to the current continuous value.

Listing 1.3 gives an extract of the top specification machine M0 spec. To
keep this paper in a reasonable length, only details for the event run are given2.
Therefore, the Req. 3 will not explicitly be handled in this paper, it mainly
concerns the stop event.

MACHINE M0_spec SEES C1_corridor
VARIABLES fv, active
INVARIANTS
inv01: fv ∈ REAL_POS
inv02: active ∈ BOOL
inv03: active = TRUE ⇒leq(m,fv) ∧leq(fv,M)
inv04: active = FALSE ⇒fv = zero

EVENTS
INITIALISATION �
THEN
act01: active := FALSE
act02: fv := zero

END

boot � ...
run �
ANY new_fv WHERE
grd01: active = TRUE
grd02: new_fv ∈ REAL_POS
grd03: leq(m,new_fv) ∧leq(new_fv,M)

// new_fv ∈ [m,M]
THEN
act01: fv := new_fv

END
stop � ...

END

Listing 1.3. Extract of machine M0 spec

2 The complete Event-B developments can be downloaded from
http://babin.perso.enseeiht.fr/r/SETTA2015EventBModels.pdf

http://babin.perso.enseeiht.fr/r/SETTA2015EventBModels.pdf

64 G. Babin et al.

5.2 The First Refinement: Introducing Continuous Functions

Needed Theories. As shown on figure 4, the context C2 margin introducing
the margin z is defined. Note that axm02 corresponds to the requirement Req.0.

CONTEXT C2 margin EXTENDS C1 corridor
CONSTANTS z
AXIOMS
axm01: z ∈ REAL POS // z ∈ R+
axm02: gtr(M sub m , (one plus one) mult z) // M−m > 2∗z

END

Listing 1.4. Extract of context C2 margin

The Event-B First Refinement with Continuous Functions. The first
refinement M1 cntn ctrl of the controller explicitly introduces

– the continuous function fc producing the values fv of the abstract machine
and the corresponding invariant prop01

– dense time with the current instant noted now
– an important invariant glue01 gluing the continuous values of the abstrac-

tion with the continuous function defined on dense time fv = fc(now)
– the variable active t recoding the dense time where the system enters a

running mode and the corresponding invariants glue02, glue03 and glue04
gluing the behavior of active t with the active boolean variable.

The events of the M1 cntn ctrl machine refine the ones of the top level specifi-
cation. The boot event fixes the value of active t and the run event builds the
continuous function fc with steps of duration dt. fc becomes the function nfc,
acting until now+dt instant.

MACHINE M1 cntn ctrl REFINES M0 spec SEES C2 margin
VARIABLES
fv , active , fc , now, active t

INVARIANTS
type01: now ∈ REAL POS
type02: fc ∈ REAL POS →REAL POS
type03: active t ∈ REAL POS
prop01: cnt int (fc , zero, now) // fc is continous on [0,now]
glue01: fv = fc(now)
glue02: active = TRUE ⇒(∀t ·t ∈ REAL ∧leq(active t,t) ∧leq(t,now) ⇒

(leq(m plus z , fc(t)) ∧ leq(fc(t) , M sub z)))
glue03: ∀t · t ∈ REAL ∧leq(zero,t) ∧leq(t ,now) ⇒leq(fc(t),M)
glue04: active = TRUE ⇒leq(active t,now)

EVENTS
boot � REFINES boot ...
THEN
...
act04: now := now plus dt
act05: active t := now plus dt

run � REFINES run
ANY dt, nfc , new fv WHERE
...
grd04: dt ∈ REAL STR POS // dt > 0
grd05: nfc ∈ REAL POS →REAL POS
grd06: dom(nfc) = {t | t ∈ REAL ∧leq(now,t) ∧leq(t , now plus dt)} // dom(nf) = [now,now+dt]
grd07: nfc(now) = fc(now)

Refinement and Proof Based Development of Systems 65

grd08: nfc(now plus dt) = new fv
grd09: leq(fv ,new fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc) ∧leq(t1,t2) ⇒

leq(nfc(t1) , nfc(t2)))
grd10: cnt int (nfc , now , now plus dt) // nfc is continuous on [now,now+dt]
grd11: leq(new fv,fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc) ∧leq(t1,t2) ⇒

leq(nfc(t2) , nfc(t1)))
grd12: ∀t · t ∈ dom(nfc) ⇒leq(m plus z , nfc(t) ∧ leq(nfc(t) , M sub z)
THEN
...
act02: now := now plus dt
act03: fc := fc �−nfc
END
stop � REFINES stop...

END

Listing 1.5. Extract of machine M1 cntn ctrl

The current instant now is incremented by the step duration dt as well. The
guards of the event run introduce the relevant conditions to trigger this event.

Note that during the time interval of the step, the function fc shall be con-
tinuous and monotonic so as its value is never outside the safety corridor (grd09
to grd11). This condition is fundamental when the function is discretized. Thus,
grd09 through grd12 guarantee the requirement Req2.2 and are of particular
importance when discretizing.

5.3 The Second Refinement: Introducing Discrete Representation

This refinement introduces the discretization function fd corresponding to the
continuous function fc on each discrete observed instants. This fundamen-
tal property corresponds to requirement Req2.2 of table 5. It is expressed by
the gluing invariants between the continuous controller and the discrete con-
troller. It links the continuous fc and and discrete fd functions by the property
∀n ∈ 0 .. i, fc(n × δt) = fd(n) and is represented by invariant glue01.

CONTEXT C3 cast EXTENDS C0 reals, Nat
CONSTANTS cast
AXIOMS

axm01: cast ∈ N→REAL POS // type
axm02: cast(0) = zero // initial case
axm03: ∀a · a ∈ N ⇒ // induction case

(cast(a+1) = cast(a) plus one)
THEOREMS

...
thm11: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’<’

⇒(a < b ⇔smr(cast(a),cast(b)))
thm12: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’=’

⇒(a = b ⇔cast(a) = cast(b))
thm13: cast ∈ N �� cast[N] // cast is a bijection
...

END

Listing 1.6. Definition and properties of
the cast function

CONTEXT C4 discrete EXTENDS C2 margin
SETS VT
CONSTANTS

tstep // discrete time step duration (δt)
max df // maximum delta for f during tstep
RBT, RV

AXIOMS
axm01: tstep ∈ REAL STR POS
axm02: max df ∈ REAL POS

// max diff of f during tstep
axm03: leq(max df,z)
axm04: partition(VT, {RBT}, {RV})

END

Listing 1.7. Extract of context
C4 discrete

66 G. Babin et al.

MACHINE M2_dsct_ctrl REFINES M1_cntn_ctrl SEES C3_cast, C4_discrete
VARIABLES
fv , active , fc , now, active_t,
fd // discrete power function
i // the current instant number
et // time elapsed from previous discrete value sampling time
rs // remaining continuous micro steps inside the discrete macro step
nv // next variant−related event type

INVARIANTS
type01: fd ∈ 0..i →REAL_POS
type02: i ∈ N

type03: et ∈ REAL_POS
type04: rs ∈ N

type05: nv ∈ VT
glue01: ∀ n · n ∈ 0..i ⇒fc(cast(n) mult tstep) = fd(n) // n ∈ 0..i ⇒fc(n∗tstep) = fd(n)
glue02: now = (cast(i) mult tstep) plus et // now = i∗tstep + et
inv01: ∀ n · n ∈ 0..i−1 ⇒(

∀ t · (leq(cast(n) mult tstep , t) ∧ leq(t , cast(n+1) mult tstep)) ⇒(
leq(fd(n) sub max_df , fc(t)) ∧ leq(fc(t) , fd(n) plus max_df)))

inv02: ∀ t · (leq(cast(i) mult tstep , t) ∧ leq(t , now)) ⇒(
leq(fd(i) sub max_df , fc(t)) ∧ leq(fc(t) , fd(i) plus max_df))

inv03: smr(et,tstep)
VARIANT

rs
EVENTS

run_from_tick � REFINES run
WHERE

...
grd13: et = zero
grd14: smr(dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)
// physical assumption

THEN
...
act04: et := et plus dt
act05: rs :∈ N

act06: nv := RBT
END

run_between_ticks � REFINES run
WHERE

...
grd13: smr(zero, et)
grd14: smr(et plus dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)

grd16: nv = RBT
grd17: rs > 0

THEN
...
act04: et := et plus dt
act05: nv := RV

END

run_variant �
WHERE
grd01: nv = RV
grd02: rs > 0

THEN
act01: rs :| rs ’ ∈ N∧ rs ’ < rs
act02: nv := RBT

END

run_on_tick � REFINES run
WHERE

...
grd13: et plus dt = tstep
grd14: smr(zero,et)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)

grd16: rs = 0
THEOREMS
thm03: cast(i+1) mult tstep = now plus dt

THEN
...
act04: i := i + 1
act05: fd(i+1) := new_f
act06: et := zero

END

END

Listing 1.8. Extract of machine M2 dsct ctrl

Refinement and Proof Based Development of Systems 67

Needed Theories. Two contexts are introduced. As mentioned in section 3 the
first context C3 cast is a technical context related to casting reals and integers.
For example, the invariant ∀n ∈ 0..i, fc(n×δt) = fd(n) corresponding to glue01
is written as ∀n · n∈0..i ⇒ fc(cast(n) mult tstep) = fd(n).

Note that the context C3 cast extends the Nat context3 by Thai Son Hoang
needed for handling inductive proofs on sets 4. The last context C4 discrete
introduces the discrete time macro steps duration tstep corresponding to δt on
figure 3 and the values RBT and RV to identify the different events corresponding
to the run event. It also defines the max df constant corresponding to the max-
imum evolution of the function in a macro step is never more that the margin
z. This assumption usually comes from the conditions on the physical plant.

The Event-B Refinement with Discretization. The defined machine
M2 dsct ctrl produces the discrete behavior of the continuous function fc with
the discrete function fd glued by the invariant glue01. The other invariants
inv01 and inv02 preserve Req2.2 and inv03 states that the elapsed time et is
less that the discrete time tstep. According to figure 3, three events for ROT,
RBT and RFT are defined refine the run event. The run from tick (RFT) event
starts the computation between two consecutive discrete values of function fd
and fixes an arbitrary value of the variant rs.

The most interesting part in this machine relates to the run between tick
(RBT) event which shall avoid the Zeno problem. For this purpose, each time this
event is active, it triggers the event run variant which decreases the variant.
Once, this variant reaches the value 0, the run on tick (ROT) event is triggered
to compute the final value corresponding to next discrete value of the function
fd. Note that the guard grd15 is fundamental to guarantee that the values do
not exit the safety corridor. This assumption relates to the physical plant.

5.4 Proofs Statistics

All these models have been encoded within the Rodin Platform [2]. As shown
on table 6, the main machine and the refinement led to 265 proof obligations.

Table 6. Rodin proofs statistics

Event-B model Automatic proofs Interactive proofs Total
C0 reals 1 29 30
C1 corridor 0 6 6
C2 margin 0 10 10
C3 cast 11 26 37
C4 discrete 0 1 1
M0 spec (top-level) 11 6 17
M1 cntn ctrl (1st ref.) 22 51 73
M2 dsct ctrl (2nd ref.) 22 67 89
Total 67 198 265

3 http://sourceforge.net/p/rodin-b-sharp/mailman/message/30378566/
4 induction: ∀S · S ⊆ N ∧ 0 ∈ S ∧ (∀x · x ∈ S ⇒ x + 1 ∈ S) ⇒ N ⊆ S

http://sourceforge.net/p/rodin-b-sharp/mailman/message/30378566/

68 G. Babin et al.

67 were proved automatically and 198 needed numerous interactive proof steps.
The interactive proofs mainly relate to the use of the Theory plugin for handling
the reals. The lack of dedicated heuristics due to the representation of reals as
an abstract data type, and not as a native type led to more interactive proofs.

6 Related Works and Applications

Two kinds of approaches for modeling hybrid systems can be distinguished. The
first one relies on hybrid automata. They are mainly analyzed and verified by
model checking [5]. Tools like HyTech [18] have succeeded in analyzing complex
hybrid systems. While this approach enables automatic verification, it requires
elaborate optimization techniques in order to handle the state space explosion
as well as symbolic parameters and non-linear equations. To address these prob-
lems, logical analysis of hybrid automata brought interesting results [19]. They
address classes of automata. The second kind of approaches relates to analysis
of hybrid programs. One of the most successful tool is KeYmaera by Platzer et
al. [22]. This tool is dedicated to hybrid system modeling and verification. It
is equipped with an interactive theorem prover. Compared to Event-B, it does
not provide a built-in refinement development operator. In the meantime, other
approaches use Event-B to model hybrid systems. The work initiated in [23], and
pursued in [12] proposes to model first the discrete events of a hybrid systems
and then refine each event by introducing the continuous elements. It includes
the use of a “now” variable, a “click” event that jumps in time to the next instant
where an event can be triggered and simulated real numbers. In our proposal,
we use this notion of “now” variable on dense time. Time jumps are encoded by
the events. We use mathematical reals thanks to the latest developments of the
Rodin Platform. Moreover, compared to [23], we have another refinement that
introduces discretization of continuous elements. However, [23] incorporate ana-
lytical results from the study of differential equations into the Event-B models
through the complementary use of Matlab/Simulink. The second proposed app-
roach based on Event-B, initiated by Banach, is Hybrid Event-B [8]. This is an
extension of Event-B which includes pliant events [7] as a way to model contin-
uous behavior, allowing the direct use of differential equations in the modeling.
However, there is no tool currently supporting this extension whereas our app-
roach enabled us to develop and prove the models using available tools. Banach
also worked on similar topics with ASM [9,10]. In our development we use reals
defined by a minimal set of axioms. We do not use floating-point numbers, they
may be introduced in a further refinement which is out of the scope of this
paper. So, we are not exploiting the results from automated verification tools on
floating-point numbers [21]. Static analysis [16] or abstract interpretation [14]
(with tools such as Astrée [15]) have proved very powerful to analyze such pro-
grams. Our approach is at a modeling level. Moreover, the set of axioms for
reals in the Theory plug-in we have used does not define reals in a construc-
tive manner. So, we were not able to use the results obtained by the Coq [11]
advanced proof tactics on reals. Indeed, our proofs have been discharged using
the interactive prover of Rodin, leading to a large proof effort.

Refinement and Proof Based Development of Systems 69

7 Conclusion

The development of cyber-physical systems needs to handle the behavior of the
physical plant (environment). This behavior is usually described by continuous
functions producing feedback information to the controller, which in turns pro-
duces orders to the actuators. In this paper, we have shown that it is possible to
compose the development of both a controller and the corresponding behavior of
the physical plant. The controller corresponds to a hybrid automaton. A simple
one has been considered in this paper. It consists in booting, running and then
stopping a physical plant (see figure 1). The main contribution of this paper
concerns the synthesis of a discrete controller. We have shown that the synthesis
of a correct-by-construction discretization of a continuous function associated to
the behavior of a physical plant can be obtained by refinement. The proof of the
preservation of the invariants gluing the continuous and discrete levels guarantees
this correctness. We have introduced at the discrete level a variant guaranteeing
that the model is Zeno-free. The Theory plug-in for the Rodin Platform and a
theory of real numbers have been used to model continuous functions. To the
best of our knowledge, this is the first attempt to model continuous controller
discretization with the Event-B method and mathematical reals.

As future work, we plan to address more complex hybrid automata by gener-
alizing the approach presented in this paper. A particular case we expect to study
relates to the system substitution in case of failure for example, already addressed
in the discrete case in [6]. Another research path concerns the refinement by float-
ing point numbers as another discretization step. This refinement will use the
intermediate value theorem as gluing invariant between the obtained discretiza-
tion level and the floating point level. Finally, an effort should be devoted to
handle more efficiently the complex proof process set up in this paper.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York, NY, USA (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Technical report (2009)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamenta Informat. 77(1), 1–28 (2007)

5. Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A.,
Baruah, S. K., Fischmeister, S. (eds.) Proceedings of the 11th International Confer-
ence on Embedded Software, EMSOFT - ESWeek, Taipei, Taiwan, October 9–14,
2011, pp. 273–278. ACM (2011)

6. Babin, G., At-Ameur, Y., Pantel, M.: Formal verification of runtime compensation
of web service compositions: A refinement and proof based proposal with Event-B.
In: International Conference on SCC 2015 IEEE, pp. 98–105, June

70 G. Babin et al.

7. Banach, R.: Pliant modalities in Hybrid Event-B. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051,
pp. 37–53. Springer, Heidelberg (2013)

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B I: Single
Hybrid Event-B machines. Science of Computer Programming (2015)

9. Banach, R., Zhu, H., Su, W., Huang, R.: Formalising the continuous/discrete mod-
eling step. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Proceedings 15th Inter-
national Refinement Workshop, Refine 2011, Limerick, Ireland, 20th June 2011,
volume 55 of EPTCS, pp. 121–138 (2011)

10. Banach, R., Zhu, H., Su, W., Wu, X.: ASM and controller synthesis. In: Derrick, J.,
Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
ABZ 2012. LNCS, vol. 7316, pp. 51–64. Springer, Heidelberg (2012)

11. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

12. Butler, M., Abrial, J.-R., Banach, R.: From Action Systems to Distributed Systems:
The Refinement Approach, chapter Modelling and Refining Hybrid Systems in
Event-B and Rodin, p. 300. Taylor & Francis, February 2016

13. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS,
vol. 8051, pp. 67–81. Springer, Heidelberg (2013)

14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM POPL 1977, pp. 238–252, New York, NY, USA. ACM (1977)

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: The ASTRÉE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

16. Goubault, É.: Static analyses of the precision of floating-point operations. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, p. 234. Springer, Heidelberg (2001)

17. Henzinger. T. A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems, volume 170 of NATO ASI Series,
pp. 265–292. Springer-Verlag (2000)

18. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. International Journal on STTT 1(1–2), 110–122 (1997)

19. Ishii, D., Melquiond, G., Nakajima, S.: Inductive verification of hybrid automata
with strongest postcondition calculus. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013.
LNCS, vol. 7940, pp. 139–153. Springer, Heidelberg (2013)

20. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org, edition 1.5 edition (2014)

21. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefévre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser (2010)

22. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer-Verlag, Heidelberg (2010)

23. Su, W., Abrial, J.-R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Science of Computer Programming, 94, Part 2:164–202 (2014)

Synthesizing Controllers for Multi-lane
Traffic Maneuvers

Gregor v. Bochmann1, Martin Hilscher2(B), Sven Linker2,
and Ernst-Rüdiger Olderog2

1 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, ON, Canada

bochmann@uottawa.ca
2 Department of Computing Science, University of Oldenburg, Oldenburg, Germany

{hilscher,linker,olderog}@informatik.uni-oldenburg.de

Abstract. The dynamic behavior of a car can be modeled as a hybrid
system involving continuous state changes and discrete state transitions.
However, we show that the control of safe (collision free) lane change
maneuvers in multi-lane traffic on highways can be described by finite
state machines extended with continuous variables coming from the envi-
ronment. We use standard theory for controller synthesis to derive the
dynamic behavior of a lane-change controller. Thereby, we contrast the
setting of interleaving semantics and synchronous concurrent semantics.
We also consider the possibility of exchanging knowledge between neigh-
boring cars in order to come up with the right decisions.

Keywords: Multi-lane highway traffic ·Lane-change maneuver · Safety ·
Collision freedeom · Hybrid systems · Controller synthesis · Interleaving
and synchronous concurrency

1 Introduction

We consider the safety (collision freedom) of traffic on multi-lane highways.
A means to avoid collisions in car maneuvers are advanced driver assistance sys-
tems (ADAS) onboard the cars. These systems require that each car is equipped
with suitable controllers that interact with other cars by sensors and communi-
cation. The development of such a controller is difficult because the interaction
of cars on a highway constitutes a distributed hybrid system, combining con-
tinuous car dynamics with discrete decisions of the controllers. Therefore every
part or pattern of the system that can be automated is of great help.

Well-known is the California PATH (Partners for Advanced Transit and High-
ways) project that developed automated highway systems for cars driving in

This research was partially supported by the German Research Council (DFG) in the
Transregional Collaborative Research Center SFB/TR 14 AVACS, and the Natural
Science and Engineering Research Council of Canada.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 71–86, 2015.
DOI: 10.1007/978-3-319-25942-0 5

72 G.v. Bochmann et al.

groups called platoons [1]. The maneuvers include joining and leaving the pla-
toon, and lane change. Lygeros et al. [2] sketch a safety proof for car platoons
taking car dynamics into account, but admitting collisions at a low speed.

This paper is motivated by previous work in [3], where an abstract model of
highway traffic was introduced, consisting of so-called traffic snapshots. The main
idea of [3] was that safety is a spatial property. Using a dedicated spatial logic
called Multi-Lane Spatial Logic (MLSL) to describe spatial properties concisely,
we presented two controllers for the lane-change maneuver on highways and
proved that under certain assumptions the controllers guarantee safety. However,
the controllers themselves were introduced in an ad-hoc manner.

In this paper, we employ methods from discrete-event systems to synthesize
the controllers, thus offering a systematic approach to construct such controllers.
The achievement is that we connect methods from discrete-event systems with
the application area of traffic maneuvers of multiple cars on highways. We also
use methods from protocol derivation to obtain the specification of message
exchanges in the case that certain cars need to communicate for their control
decisions.

We describe the setting of multi-lane traffic as in [3] (however, without using
MLSL), the control architecture, and the control components inside a single car
with their interactions. As a formal representation of hybrid systems we consider
a variant of Hybrid Input-Output Automata (HIOA), where assumptions on
inputs are allowed [4]. However, we focus on the discrete actions needed for lane
control, thereby assuming that the car maneuvers of speed control and steering
are dealt with separately.

Our main contributions are as follows:

– We show that from a description of the set of all possible discrete behav-
iors during a lane change we can synthesize constraints that yield a safe
lane change controller. This is achieved by applying a standard method for
controller synthesis in discrete event systems [5].

– We investigate the impact of different semantic models of parallel composi-
tion: interleaving vs. synchronous parallelism. In the latter model more intri-
cate safety risks of a lane change are revealed. We show that the method for
controller synthesis can cope with both models.

– We investigate different sensor models that represent different knowledge a
car may have about its neighboring cars during a lane change. In [3], the
case that a car can sense only the lengths of other cars but not their braking
distances was solved by stipulating a helper car and suitable communications
with it. Here we show that these communications can be synthesized by
applying methods for protocol synthesis [6].

This paper is structured as follows. In Section 2 we present the details of our car
traffic modelling. In Section 3 we develop stepwise our approach to controller
synthesis for multi-lane highway traffic. Conclusions are presented in Section 4.

Synthesizing Controllers for Multi-lane Traffic Maneuvers 73

2 Car Traffic Modeling

2.1 The Multi-lane Highway

The development of a controller is based on models of the system to be controlled.
In the case of car traffic, the system consists of the traffic infrastructure, such
as roads, traffic lights, etc., and cars that drive within this infrastructure. The
traffic infrastructure and the cars can be modelled as consisting of multiple
components.

Fig. 1. A multi-lane highway with several cars. The large rectangle shows the view of
car A, i.e., the part of the environment visible to A.

In this paper, we consider the infrastructure of multi-lane highways as shown
in Fig. 1. In this case, the infrastructure consists of a fixed number of lanes,
numbered 0 through L. This infrastructure is passive. It only serves as a coor-
dinate system in which the cars evolve. Each car has a position along the road
(from left to right in the figure) and the current lanes used, normally a single
lane, but during a lane change a car uses two adjacent lanes.

Each car posssesses a set of sensors, which defines the part of the highway it
may perceive, called its view. In Fig. 2, a possible view of the car A is indicated by
the rectangle surrounding A. The main motivation behind the concept of views
is that safety of each car only depends on its local environment. The physical
constraints on such a finite set of space ensure that only finitely many cars can be
responsible for unsafe situations during each maneuver. Finally, since we assume
that all cars behave alike, it is sufficient to analyse the interaction of two cars: if
an accident happens, at least two cars are colliding. In this paper, we deal with
the conflicting situation where two cars, say cars A and F in Fig. 1, claim space
on the same lane. For conflicts between a claiming car and a car already on the
claimed lane, say cars A and E in Fig. 1, we refer to our extended version [7].

2.2 A Hybrid Model of a Car

A car can also be modelled as consisting of several components. In this paper,
we consider the components shown in Fig. 2: velocity control, steering, and lane
control. These components are not passive, but have dynamic behavior. In order
to describe such behavior, one first has to define their communication with their

74 G.v. Bochmann et al.

Fig. 2. Control components of a single car.

environment. The interfaces over which the components communicate are indi-
cated in Fig. 2 by arrows. We distinguish between two types of interfaces: (a)
shared (real-valued) interface variables, and (b) so-called interaction interfaces
(dashed arrows). The static interconnection structure between components and
interface variables is such that each interface variable has exactly one component
(possibly the environment) that determines the value of the variable – it repre-
sents the output of that component – while several components may read the
value of the variable – it is the input for those components. The actions occur-
ring over interaction interfaces are related to discrete transitions (see below). An
action is initiated by the component for which the interface is output. Examples
of interface variables in Fig. 2 are target-speed and acceleration; examples of
actions are r(m) and wd-c(m).

Each component can be modelled as a Hybrid Input-Output Automaton. Its
dynamic behavior is determined by (a) continuous state changes (called trajecto-
ries in [8]) which determine the values of output variables as a function of input
variables and the evolving time, and (b) discrete transitions, associated with
internal actions or interactions, which change the internal state (called mode)
which determines the trajectories that are active in this mode and usually asso-
ciated with an invariant that holds in this mode (see for example [9])

The roles of the components shown in Fig. 2 are as follows. The velocity
control component receives as input the target velocity set by the driver, the
measured current velocity of the car, and the front distance to be maintained, as
determined by the lane control component. The defined trajectories determine
the value of the acceleration (output variable) as a function of the input variables

Synthesizing Controllers for Multi-lane Traffic Maneuvers 75

and time. As dependent output variables, the component also produces the value
of the safety distance, sd, which depends on the speed of the car. This distance
is calculated such that the car could stop before that distance in case that a
fixed obstacle suddenly occurs at that distance in front of the car. In the normal
operation mode, the speed control component will select a trajectory for the
acceleration (or deceleration) such that the target speed will be attained under
the condition that the front distance is larger than the safety distance. A possible
way to construct such a component is described in [9,10].

The steering component controls the direction output variable, which acts via
the steering angle on the front wheels of the car. It uses as input the orientation
(angle of the car to the forward direction of the lane), the current velocity of the
car, and the measured left-to-right position of the car over the different lanes.
It has an internal variable which contains the target lane of the car. The value
of this variable is set by the input action r(m) which sets the target lane to the
value m. When the current lane has been changed, the component will perform
a discrete transition with the output action wd-r(n) when the reservation of the
old lane n is not needed any more. A possible way to construct such a component
is described in [10].

The lane control component is responsible for determining when a lane
change maneuver can be performed. Such a lane change maneuver is requested
by the driver through a discrete transition with the input action “lane-change-
request” which tells the steering component to which lane it should move. Before
performing such a maneuver, the component has to make sure that there is the
necessary space on the new lane and that there is no conflict with other cars that
may want to change their lane, as described in the following sections. For this
purpose, there are a number of input and output variables through which the
lane control component interacts with other cars in its environment (see Fig. 2).

2.3 Highway Traffic with Lane Change

In this paper we concentrate on lane change on multi-lane highway which is
handled by the lane control component. Its behavior does not involve any tra-
jectories and can be described by a finit-state input-output automaton (IOA)
where transitions may have guards that depend on variables.

The following lane change procedure was proposed in [3]: a car that wants
to change lane, for instance the car A in Fig. 1, first “claims” the lane to which
it wants to move (this corresponds to setting the turn signal (“blinker”) in the
manual car driving mode), and then “reserves” the new lane before it moves
over on to the new lane.

Each car has the following attributes, in addition to those mentioned above:

– res: the set of lanes reserved. It has at most two elements, namely the current
lane n, and possibly an adjacent lane m to which the car wants to move.

– clm: the set of lanes claimed. It has at most one element. The claimed element
must be a lane adjacent to the current lane n.

76 G.v. Bochmann et al.

The reserved lanes of the cars define the safety condition for the system. The
meaning of a lane reservation by car c is that the lane is reserved for car c over
the distance range from the current position of the car, c.pos, up to the point of
its safety distance, c.pos + c.sd. We call this range the safety envelope of c.

The dangerous situation of a collision is formalized by the following condition:

col = ∃ c1, c2 : ((c1.res ∩ c2.res �= ∅) ∧ safetyOverlap(c1, c2)), (1)

where safetyOverlap(c1, c2) is true if there is an overlap of the ranges from
the current position up to the point of the safety distance for the two cars c1
and c2:

safetyOverlap(c1, c2) = (c1.pos ≤ c2.pos ≤ c1.pos + c1.sd) ∨
(c2.pos ≤ c1.pos ≤ c2.pos + c2.sd).

We say that the system is safe if there is no overlap of the safety envelopes of
any two cars on any given lane, that is, if the collision condition col is false.

To describe the dynamic behavior of the lane change control component
during lane change, the following interactions are introduced::

– c(m): introduce a claim for lane m,
– wd-c(m): withdraw the claim for lane m,
– r(m): change a claim for lane m into a reservation for lane m,
– wd-r(m): withdraw the reservation for lane m.

3 Controller Synthesis for Multi-lane Traffic Maneuvers

3.1 Overview of Controller Synthesis

The design of controllers for hybrid systems has to deal with two aspects: the con-
trol of the continuous flows, and the control of the discrete actions. In this paper
we limit ourselves to the discrete aspects, since we concentrate the discussion
on the lane control component, which has a behavior essentially characterized
by discrete transitions, such as shown in Fig. 3. The synthesis of controllers for
discrete event systems was first described in [11]. Distributed control of systems
consisting of several communicating components is described in [5]. It turns out
that the method of submodule construction, as introduced in [6], can also be
used for this purpose. In [12] this approach is formalized and described for dif-
ferent types of interactions between the controlled system, the environment and
the controller. The approach of [12] is used in the following.

The typical system architecture for controlling a single component comprises
the plant (to be controlled, called world model in [13]), the environment, and the
controller. The behavior of the plant is defined in terms of its interactions with
the environment. These interactions are classified into controllable and uncon-
trollable interactions. The controller can observe a subset of these interactions,
called the visible interactions, and it may prevent the occurrence of a visible

Synthesizing Controllers for Multi-lane Traffic Maneuvers 77

controllable interaction, but it has no impact on uncontrollable or invisible inter-
actions. In our modeling framework, we distinguish between input and output
interactions. Plant inputs from the environment are in general uncontrollable,
while input from the controller is controllable. The outputs of the plant to the
controller are either controllable (can be prevented) or uncontrollable.

The environment provides input interactions to the plant, called disturbances
in [13]. These inputs may depend on the outputs received from the plant pre-
viously. The order in which these inputs may arrive is sometimes called the
environment assumption. The behavior of the environment may be described
by a state machine model. In this case, the model explicitly describes in which
state which input may be provided, thus defining the environment assumption.
The environment model is also used to define control objectives: Safeness objec-
tives, namely that in certain states the plant should not provide certain specific
outputs, can be modeled by including in the behavior of the environment a tran-
sition for such outputs into a Fail state – and the objective is that such a Fail
state should never be reached.

We assume in the following that the set of possible sequences of interactions
of the plant can be described by a finite automaton P where all its states sP are
accepting, and the set of interaction sequences of the environment are described
by a finite automaton E where its states sE are accepting, except the Fail states.
In the case of full visibility, the most general controller behavior C that avoids the
Fail states of the environment is obtained from the finite automaton C1 = P ×E
(product of P with E where a state (sP , sE) of the product is accepting iff sE
is accepting in E). From this automaton, certain states must be pruned, that is,
eliminated, in order to obtain the controller C.

Pruning is a recursive procedure. In each iteration, the following states are
pruned: (a) any non-accepting states, (b) any states that have a transition with
an uncontrollable interaction to a state that was pruned in an earlier itera-
tion, and (c) any state that is a deadlock (that has no outgoing transition – we
assume here that the plant and the environment, separately, do not have a final
(deadlocking) state). A state is pruned by eliminating all outgoing transitions,
all incoming transitions with controllable (and visible) interactions that lead
into the state, and the state itself. The procedure stops when during the next
iteration no further state is pruned.

If all states are eliminated by the pruning procedure, then there exists no
suitable controller. However, it is important to note that, if a suitable controller
is found, this controller may constrain the plant so much that the remaining
behavior is not useful for the application at hand – in other words, the behavior
satisfies the safety properties defined by the control objectives, but does not
satisfy the liveness properties of the application. Controller synthesis including
liveness objectives is discussed for instance in [14].

In the case of partial visibility, the product automaton C1 must first be pro-
jected onto the visible interactions. The resulting projected automaton, which is
in general non-deterministic, must be determinized before the pruning operations
can be performed. Hence, partial visibility introduces an exponential blow-up of

78 G.v. Bochmann et al.

the set of states. However, in the examples discussed in this paper all interactions
are visible, i.e., no blow-up occurs.

For the application of multi-lane traffic control, as described in Section 2, we
have a plant that consists of a large number of cars. We would like to obtain
a controller per car that is able to control the controllable interactions of that
car, and may possibly see some of the interactions of other cars, without being
able to control them. In fact, in this paper we are mainly interested in deriving a
controller for the lane control component of cars. For such a controller, all output
interactions of its lane control component are controllable, but all other inter-
actions – including output interactions of other cars – are uncontrollable. This
situation is studied in [5] and called distributed control. We note, however, that
in general the problem of synthesizing distributed control is undecidable [15].

3.2 A Simple Algorithm for Lane Change

Let us first assume that the lane control component has the simple behavior
shown in Fig. 3 (a). In this case no claims are made. The notation A.qRC means
that car A is in control state q, it has reserved the lanes in the set R, and it
claims the lanes in the set C. The car A in lane n starts with an action r(m)
which is an output action that interacts with the steering component which will
steer the car on to the new lane m. When this is done, that component will
withdraw from the previous lane by producing the wd-r(n) interactions which
is received by the lane control component, and the car goes back to the normal
driving condition.

Fig. 3. Behavior of a car A changing from its current lane n to a neighboring target
lane m ∈ {n−1, n+1}: (a) simple algorithm, (b) protocol with a claim transition c(m)
as in [3].

Let us consider a given car ego with its lane change controller. Its environment
consists of all the other cars in the system and the requirement that the system
should be safe in all instants. A safety condition can be proven by showing that
it holds in the initial state and remains invariant under all transitions that the
system may make. In this example, the safety objective to be satisfied is the
condition ¬ col (no collision). This can be modeled by an environment E with
two states, one where ¬ col holds, and one where it is false. The latter is a Fail
state. The plant P consists of all cars operating concurrently. Consider now
two arbitrarily chosen cars A and F . We are interested in understanding what

Synthesizing Controllers for Multi-lane Traffic Maneuvers 79

happens if two cars want to reserve the same lane at the same time, as in Fig. 1.
In order to understand the situation in more detail, Fig. 4 shows the states of
the plant, that is, the global reachability analysis involving the two cars A and
F . Building the product C1 = P × E, we see that the state 4 in the figure is a
Fail state if the two cars have a safety overlap, that is, if safetyOverlap(A,F) is
true (which implies col).

Therefore this Fail state must be pruned, if such an overlap exists. To this
end, the transitions leading into this state should be pruned (see dashed arrows
in the figure). The transition A.r(n + 1) shown in the figure is performed by
car A. It should be pruned if safetyOverlap(A,F) is true, because car F has
already reserved lane (n + 1) which makes the condition col true for the cars A
and F . Generalizing from this example, we conclude that the transition r(m) in
Fig. 3(a) should be pruned if the following condition cc, called collision check
in [3], is false:

A.cc(m) = ¬∃ c : ((m ∈ c.res) ∧ safetyOverlap(A, c)).

This means that the predicate A.cc(m) is an enabling condition for the transi-
tion r(m) of car A. The same condition for car F restricts the transition F.r(n+1)
in Fig. 4 in such a way that the system remains safe.

It is important to note that the global system model uses the interleaving
semantics [16], that is, there are never two transitions that occur at the same
time. If, on the contrary, transitions may occur concurrently, it would be possible
that the cars A and F in Fig. 1 would simultaneously perform a transition
r(1), i.e., the dotted transition in the figure, resulting in a collision on lane 1.
Interleaving semantics is widely used for modeling concurrent state machines.
We note that interleaving semantics was also assumed in the safety proof of [3].

We note that the output action r(m) also induces a mode change in the lane
control component which determines the front distance used by the velocity con-
troller for keeping safe distance with the cars in front. The function determining
the front distance will have to change because the car must now keep safe dis-
tance to the preceding cars on both lanes. Similarly, a mode change occurs with
the subsequent wd-r(m) action.

3.3 Interleaving Semantics or Synchronous Models?

It can be argued that interleaving semantics is not a realistic assumption for
distributed systems where transitions are controlled independently by different
components. Suppose that cars A and F decide at the same time that they want
to reserve lane number 1. They will check whether the lane is free and then
perform the r(1) transition. If car A does this just before car F , the question
arises whether it is realistic to assume that car F will notice this change of
reservation made by car A before it performs its own reservation?

A better modeling paradigm appears to be synchronous systems with stut-
tering. In synchronous systems, all system components perform a transition in
parallel during a transition period. Stuttering means that, in each transition

80 G.v. Bochmann et al.

period, a component may decide to do no transition, that is, remain in the same
state. For the IOA modeling paradigm that we use for the discrete transitions
of the lane control component, this means that an output transition of one com-
ponent will proceed in parallel with the corresponding input transitions of those
components receiving the output as input. Other components, during the same
transition period, may remain in the same state or perform an internal discrete
transition. For the example of lane changing cars considered in this paper, this
means that a transition of the lane controller of one car may occur in parallel
with a lane controller transition of another car (which is not possible in the
context of interleaving semantics).

Fig. 4. Reachability analysis for two cars, A and F , behaving as in Fig. 3 (a). Solid
and dashed arrows represent transitions in interleaving semantics. The dotted arrow
represents an additional transition in the synchronous model.

When this modeling paradigm is used for the simple lane change algorithm
discussed above, there are problems as shown in Fig. 4 and discussed above.
The dashed transitions are pruned by the cc enabling condition for the r(m)
transition, but this condition does not prevent the possibility of simultaneous
transitions of both cars from state (A.1, F.1) to state (A.2, F.2), as indicated by
the dotted transition in the figure. Because of the independence of the distributed
controllers in cars A and F , this dotted transition can only be pruned by also
pruning the transitions from (A.1, F.1) to (A.2, F.1) and from (A.1, F.1) to (A.1,
F.2), which means that no reservations can be made at all. Therefore, there does
not exist a suitable controller for the simple algorithm for lane change when
simultaneous transitions of different cars are allowed.

3.4 Lane Change Algorithm Allowing for Parallel Transitions

The problem of avoiding car collisions is an instance of the mutual exclusion
problem. The space on the lane is the shared resource that must be managed
in mutual exclusion by the different cars. One of the earliest mutual exclusion

Synthesizing Controllers for Multi-lane Traffic Maneuvers 81

algorithms proposed by Dekker [17] achieves this goal by introducing for each
user a variable ‘claimed’ which can be read by the other user. Before using the
resource, a user first has to set its own claimed variable to true, and then he can
only use the resource if the claimed variable of the other user is false.

The lane reservation protocol proposed in [3] is based on this principle and
represented in Fig. 3 (b). In case of a conflict between the two cars, both cars
abandon their reservation and withdraw their claim. In order to avoid infinite
looping, it must be assumed that there is some random waiting before each user
repeats his claim, similar to the behavior of agents in the ALOHA system [18].

Fig. 5. Reachability analysis for two cars, A and F , behaving according to Figure 3 (b),
with concurrent transitions, trying to reserve overlapping space on the same target lane
n + 1.

The proposed protocol proceeds as follows. First, car A claims a space on the
target lane m adjacent to its current lane n by the action c(m). Subsequently, it
checks whether this claim intersects with the reservation or claim of any other
car. In that case, A withdraws its claim by the action wd-c(m). Otherwise,
without any intersection, A turns its claim into a reservation by the action r(m)
so that it now reserves space on the two neighboring lanes m and n. During
this double reservation A performs the lane change. Once this is completed,
A withdraws its reservation on the original lane n by the action wd-r(n) and
continues to drive on the target lane m.

82 G.v. Bochmann et al.

In order to derive the necessary control constraints, we proceed along the
lines discussed in Section 3.2. Again, we consider the the plant P consisting of
two cars that want to reserve the same space on a given lane, for example the
cars A and F in Fig. 1. The global plant behavior is shown by the state diagram
of Fig. 5 which is the product of two state machines defined by Fig. 3 (b). The
figure represents the uncontrolled behavior of two cars on lanes n and n+2 that
both want to move to lane m = n + 1. If we build the product of the plant
behavior with the environment objective, C1 = P × E, we see that the lower
right state becomes a Fail state where both cars collide.

As in Section 3.2, we can introduce constraints (pruning) in the state machine
of Fig. 3 (b) in order to eliminate the transitions into the Fail state. This means
that we introduce a constraint on the r transition t3 in Fig. 3 (b), such that this
transition is not possible when the global system is in a state where the other
car is in state 2 or 3, as shown in Fig. 5 by the dashed transitions. These states
are characterized by the fact that the other car either has claimed or reserved an
overlapping space on the same lane. Therefore the constraint for the transition
of a car ego is the following condition pcc, called potential collision check :

ego.pcc(m) = ¬∃ c : ((m ∈ c.res ∨ m ∈ c.clm) ∧ safetyOverlap(ego, c)).

If this constraint is implemented in both cars, then the joint transition from
state (A.2, F.2) in Fig. 5 directly into the Fail state will also be eliminated and
the system is safe.

We note that the lane change algorithm obtained by our derivation approach
is very similar to the algorithm proposed in [3], which was verified for interleaving
semantics. In fact, they are identical if the states q1 and q2 of Fig. 2 in [3] are
combined by ignoring the time constraint for state q2. However, this constraint
does not concern safety, but was only included to obtain a upper time-bound for
a lane-change maneuver. Therefore this paper shows that the algorithm of [3] is
not only correct for interleaving semantics, but also in a synchronous model.

3.5 Using a Helper Car

The preceding discussion assumes that a driving car has local knowledge about
the reserved and claimed lanes of other cars in its environment and of the posi-
tion and safety distance of these other cars. Among this information, the safety
distance is probably the most difficult to obtain since it depends on the position
and velocity of the other car. Therefore it is considered in [3] that this infor-
mation may be obtained through message exchanges with another car in the
environment, which is called a helper car. Such a car c should be on the target
lane, but behind the lane changing car ego. It should provide information for the
evaluation of the safetyOverlap(ego, c) predicate. This predicate must be eval-
uated in state 2 of Fig. 3 (b), before the transition r(m) can be performed. In
Fig. 1, car E is a helper car for A in its lane change.

We would like to derive the behavior of the lane changing and helper cars
from the behavior discussed in Section 3.4 for the case that the safety distance

Synthesizing Controllers for Multi-lane Traffic Maneuvers 83

(a)

(b)

(c)

Fig. 6. (a) Global transition diagram involving a helper car that reads its own safety
distance. Derived behavior for (b) lane changing car and (c) helper car.

information is available locally in each car. For this purpose, we can use the
derivation algorithm described in [19] or use the approach described in [20]. In
both cases, one starts out with a global specification of the different actions and
their order of execution without being preoccupied by the question which com-
ponents is responsible for executing each action, such as shown in Fig. 3 (b).
After the different actions are allocated to the components that are responsi-
ble for their execution, a so-called protocol derivation algorithm constructs the
local behavior specification for each component which include, in addition to the
actions for which the component is responsible, the exchanges of coordination
messages that are required for assuring the orderly execution of all these actions.

The principle of the protocol derivation algorithm [19] is to copy the control
flow graph of the global specification for execution by each component, but to
ignore all actions performed by other components and include instead the sending
and reception of certain coordination messages. These coordination messages
depend on the control flow operators in the global specification. For concurrency
and weak sequencing (enforcing sequencing only locally inside components [21]),
no coordination messages are required. However, they are essential for strict
(i.e., global) sequencing, alternatives and loops. If a local action a1, performed
by component c1, is followed (strictly) by an action a2 performed by another
component c2, a coordination message will be send by c1 to c2, and the message
will be received by by c2 before the local action a2 is performed.

84 G.v. Bochmann et al.

In the case of the system of a lane changing car with its helper car, we take as
global behavior specification a modified version of Fig. 3 (b), where an additional
get-info action is introduced before entering state 2, as shown in Fig. 6 (a). This
action is executed by the helper car, while all other actions are executed by the
lane changing car. If we apply the protocol derivation algorithm, we obtain the
behaviors for the lane changing car and the helper car shown in Figures 6 (b)
and (c). Sending and receiving the synthesized coordination messages mes1 and
mes2 guarantee the right sequencing of the get-info action and the actions of
the lane changing car.

The behavior of Fig. 6 (c) should be performed in each car by the lane control
component concurrently with its normal behavior described by Fig. 6 (b). The
message mes1 is effectively a request to send the safety distance information,
and the message mes2 sent by the helper car contains the information.

The algorithm obtained here is quite different than the algorithm proposed
in [3]. The reason is that in [3], the helper car makes the decision whether a
lane change can be done and answers yes or no. In our approach, the helper car
simply returns the value of a local variable; the decision whether the lane change
can be done remains with the lane changing car. The algorithm proposed in this
paper is simpler.

4 Conclusion

This paper revisits the traffic maneuvers on multi-lane highways as discussed
in [3]. The main conclusions of the discussions in this paper, which apply to the
control of hybrid systems in general, are as follows:

(1) For verifying the safety of systems consisting of several loosely coupled
components, where the behavior of a component may depend on the state of
other components and where there may be some (even small) delay of com-
munication, a modeling paradigm using interleaving semantics is not suitable.
The possibility that different discrete transitions of several components occur
in parallel must be considered, which can be modeled by synchronous modeling
paradigms. (For a detailed discussion, see Section 3.3).

(2) Well-known algorithms for synthesizing controllers for discrete event sys-
tems (e.g. [5]) can be used for synthesizing controllers for the discrete transitions
of hybrid systems. Corresponding algorithms exist for interleaving semantics,
synchronous systems, and IOA [12]. (For a detailed discussion, see Section 3.1).

(3) When the global behavior involving several system components is known,
for instance the actions that should be performed by different controllers of differ-
ent components, then the behavior of each controller, including the exchange of
coordination messages, can be synthesized using an algorithm described in [19].
(For a detailed discussion, see Section 3.5).

We note that an additional difficulty may occur during the lane change
maneuver if a fast driving car approaches the claimed space just when the claim
is being made. It could happen that the safetyOverlap condition with this car
becomes false at the same time as the claim is set. It is shown in an extended

Synthesizing Controllers for Multi-lane Traffic Maneuvers 85

version of this paper [7] that a collision can be avoided by requiring that the
front distance, which is used for the calculation of the safety distance by the
approaching car, should take into account the distance to the lane changing car
as soon as the claim is made.

References

1. Varaija, P.: Smart cars on smart roads: problems of control. IEEE Trans. on Auto-
matic Control AC–38, 195–207 (1993)

2. Lygeros, J., Godbole, D.N., Sastry, S.S.: Verified hybrid controllers for automated
vehicles. IEEE Trans. on Automatic Control 43, 522–539 (1998)

3. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

4. Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.: Hybrid i/o automata.
Technical Report Report CSI-R9907, April 1999, Computing Science Institute,
University of Nijmegen (1999)

5. Cai, K., Wonham, W.: Supervisor localization: A top-down approach to distributed
control of discrete-event systems. IEEE Trans. Autom. Control 55, 605–618 (2010)

6. Merlin, P., v. Bochmann, G.: On the construction of submodule specifications and
communication protocols. ACM Trans. Program. Lang. Syst. 5, 1–25 (1983)

7. v. Bochmann, G., Hilscher, M., Linker, S., Olderog, E.R.: Synthesizing and ver-
ifying controllers for multi-lane traffic maneuvers. Technical Report 109, AVACS
(2015). see www.avacs.org under ‘Papers’

8. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid i/o automata. Inf. Comput.
185, 105–157 (2003)

9. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
Intern. Journal of Control 79, 395–421 (2006)

10. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems:
A case study on concurrency and coupling. In: Proc. 17th Intern. Conf. on Hybrid
Systems: Computation and Control, HSCC 2014, pp.145–150, ACM (2014)

11. Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25, 206–230 (1987)

12. v. Bochmann, G.: Using logic to solve the submodule construction problem. Dis-
crete Event Dynamic Systems 23, 27–59 (2013)

13. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model?
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 12–26. Springer,
Heidelberg (2011)

14. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM
Trans. Embed. Comput. Syst. 4, 331–362 (2005)

15. Thistle, J.G.: Undecidability in decentralized supervision. Systems & Control Let-
ters 54, 503–509 (2005)

16. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
17. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-

ming Languages: NATO Advanced Study Institute, pp. 43–112. Academic Press
(1968)

18. Abramson, N.: The ALOHA system: Another alternative for computer commu-
nications. In: Proc. Fall Joint Computer Conf. AFIPS 1970, pp. 281–285. ACM
(1970)

http://www.avacs.org

86 G.v. Bochmann et al.

19. Gotzhein, R., v. Bochmann, G.: Deriving protocol specifications from service spec-
ifications including parameters. ACM Trans. Comput. Syst. 8, 255–283 (1990)

20. Castejón, H.N., v. Bochmann, G., Bræk, R.: On the realizability of collaborative
services. Software and System Modeling 12, 597–617 (2013)

21. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL 1997: Time
for Testing - SDL, MSC and Trends, pp. 291–306. Elsevier Science B.V. (1997)

Extending Hybrid CSP with Probability
and Stochasticity

Yu Peng, Shuling Wang(B), Naijun Zhan, and Lijun Zhang

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

wangsl@ios.ac.cn

Abstract. Probabilistic and stochastic behavior are omnipresent in
computer controlled systems, in particular, so-called safety-critical
hybrid systems, because of fundamental properties of nature, uncertain
environments, or simplifications to overcome complexity. Tightly inter-
twining discrete, continuous and stochastic dynamics complicates mod-
elling, analysis and verification of stochastic hybrid systems (SHSs). In
the literature, this issue has been extensively investigated, but unfortu-
nately it still remains challenging as no promising general solutions are
available yet. In this paper, we give our effort by proposing a general
compositional approach for modelling and verification of SHSs. First, we
extend Hybrid CSP (HCSP), a very expressive and process algebra-like
formal modeling language for hybrid systems, by introducing probabil-
ity and stochasticity to model SHSs, which is called stochastic HCSP
(SHCSP). To this end, ordinary differential equations (ODEs) are gener-
alized by stochastic differential equations (SDEs) and non-deterministic
choice is replaced by probabilistic choice. Then, we extend Hybrid Hoare
Logic (HHL) to specify and reason about SHCSP processes. We demon-
strate our approach by an example from real-world.

1 Introduction

Probabilistic and stochastic behavior are omnipresent in computer controlled
systems, such as safety-critical hybrid systems, because of uncertain environ-
ments, or simplifications to overcome complexity. For example, the movement
of aircrafts could be influenced by wind; in networked control systems, message
loss and other random effects (e.g., node placement, node failure, battery drain,
measurement imprecision) may happen.

Stochastic hybrid systems (SHSs) are systems in which discrete, continuous
and stochastic dynamics tightly intertwine. As many of SHSs are safety-critical,
a thorough validation and verification activity is necessary to enhance the quality
of SHSs and, in particular, to fulfill the quality criteria mandated by the relevant
standards. But modeling, analysis and verification of SHSs is difficult and chal-
lenging. An obvious research line is to extend hybrid automata [10], which is the
most popular model for traditional hybrid systems, by adding probability and

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 87–102, 2015.
DOI: 10.1007/978-3-319-25942-0 6

88 Y. Peng et al.

stochasticity. Then, verification of SHSs can be done naturally through reacha-
bility analysis, either by probabilistic model-checking [1–3,6,8,20,21], or by sim-
ulation i.e., statistical model-checking [15,23]. Along this line, several different
notions of stochastic hybrid automata have been proposed [1–3,6,8,20,21], with
the difference on where to introduce randomness. One option is to replace deter-
ministic jumps by probability distribution over deterministic jumps. Another
option is to generalize differential equations inside a mode by stochastic differen-
tial equations. Stochastic hybrid systems comprising stochastic differential equa-
tions have been investigated in [1,5,13]. More general models can be obtained by
mixing the above two choices, and by combining them with memoryless timed
probabilistic jumps [4], with a random reset function for each discrete jump [6].
An overview of this line can be found in [4].

To model complex systems, some compositional modelling formalisms have
been proposed, e.g., HMODEST [7] and stochastic hybrid programs [18]. HCSP
due to He, Zhou, et al [9,22] is an extension of CSP [12] by introducing differential
equations to model continuous evolution and three types of interruptions (i.e.,
communication interruption, timeout and boundary condition) to model inter-
actions between continuous evolutions and discrete jumps in HSs. The extension
of CSP to probabilistic setting has been investigated by Morgan et al. [16].
In this paper, we propose a compositional approach for modelling and verifi-
cation of stochastic hybrid systems. First, we extend Hybrid CSP (HCSP), a
very expressive and process algebra-like modeling language for hybrid systems
by introducing probability and stochasticity, called stochastic HCSP (SHCSP),
to model SHSs. In SHCSP, ordinary differential equations (ODEs) are general-
ized to stochastic differential equations (SDEs), and non-deterministic choice is
replaced by probabilistic choice. Different from Platzer’s work [18], SHCSP pro-
vides more expressive constructs for describing hybrid systems, including com-
munication, parallelism, interruption, and so on.

Probabilistic model-checking of SHSs does not scale, in particular, taking
SDEs into account. For example, it is not clear how to approximate the reach-
able sets of a simple linear SDEs with more than two variables. Therefore, exist-
ing verification techniques based on reachability analysis for SHSs are inad-
equate, and new approaches are expected. As an alternative, in [18], Platzer
for the first time investigated how to extend deductive verification to SHSs.
Inspired by Platzer’s work, for specifying and reasoning about SHCSP process,
we extend Hybrid Hoare Logic [14], which is an extension of Hoare logic [11]
to HSs, to SHSs. Comparing with Platzer’s work, more computation features of
SHSs, and more expressive constructs such as concurrency, communication and
interruption, can be well handled in our setting. We demonstrate our approach
by modeling and verification of the example of aircraft planning problem from
the real-world.

2 Background and Notations

Assume that F is a σ-algebra on set Ω and P is a probability measure on
(Ω,F), then (Ω,F , P) is called a probability space. We here assume that every

Extending Hybrid CSP with Probability and Stochasticity 89

subset of a null set (i.e., P (A) = 0) with probability 0 is measurable. A property
which holds with probability 1 is said to hold almost surely (a.s.). A filtration
is a sequence of σ-algebras {Ft}t≥0 with Ft1 ⊆ Ft2 for all t1 < t2. We always
assume that a filtration {Ft}t≥0 has been completed to include all null sets and
is right-continuous.

Let B represent the Borel σ-algebra on Rn, i.e. the σ-algebra generated by all
open subsets. A mapping X : Ω → Rn is called Rn-valued random variable if for
each B ∈ B, we have X−1(B) ∈ F , i.e. X is F-measurable. A stochastic process
X is a function X : T × Ω → Rn such that for each t ∈ T , X(t, ·) : Ω → Rn

is a random variable, and for each ω ∈ Ω, X(·, ω) : T → Rn corresponds to
a sample path. A stochastic process X is adapted to a filtration {Ft}t≥0 if Xt

is Ft-measurable. Intuitively, a filtration represents all available historical infor-
mation of a stochastic process, but nothing related to its future. A càdlàg func-
tion defined on R is right continuous and has left limit. A stochastic process
X is càdlàg iff all of its paths t → Xt(ω) (for each ω ∈ Ω) are càdlàg. A d-
dimensional Brownian motion W is a stochastic process with W0 = 0 that is
continuous almost surely everywhere and has independent increments with time,
i.e. Wt − Ws ∼ N(0, t − s) (for 0 ≤ s < t), where N(0, t − s) denotes the normal
distribution with mean 0 and variance t − s. Brownian motion is mathemati-
cally extremely complex. Its path is almost surely continuous everywhere but
differentiable nowhere. Intuitively, W can be understood as the limit of a ran-
dom walk. A Markov time with respect to a stochastic process X is a random
variable τ such that for any t ≥ 0, the event {τ ≤ t} is determined by (at most)
the information up to time t, i.e. {τ ≤ t} ∈ Ft.

We use stochastic differential equation (SDE) to model stochastic continuous
evolution, which is of the form dXt = b(Xt)dt+σ(Xt)dWt, where Wt is a Brown-
ian motion. In which, the drift coefficient b(Xt) determines how the deterministic
part of Xt changes with respect to time and the diffusion coefficient σ(Xt) deter-
mines the stochastic influence to Xt with respect to the Brownian motion Wt.
Obviously, any solution to an SDE is a stochastic process.

3 Stochastic HCSP

A system in Stochastic HCSP (SHCSP) consists of a finite set of sequential pro-
cesses in parallel which communicate via channels synchronously. Each sequential
process is represented as a collection of stochastic processes, each of which arises
from the interaction of discrete computation and stochastic continuous dynamics
modeled by stochastic differential equations.

Let Proc represent the set of SHCSP processes, Σ the set of channel names.
The syntax of SHCSP is given as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P ∗

| P �p Q | 〈ds = bdt + σdW&B〉
| 〈ds = bdt + σdW&B〉 � �i∈I(ωi · chi∗ → Qi)

S ::= P | S‖S

90 Y. Peng et al.

Here ch, chi ∈ Σ, chi∗ stands for a communication event, e.g. ch?x or ch!e, x is
a variable, B and e are Boolean and arithmetic expressions, P, Q, Qi ∈ Proc are
sequential processes, p ∈ [0, 1] stands for the probability of the choice between
P and Q, s for a vector of continuous variables, b and σ for functions of s, W for
the Brownian motion process. At the end, S stands for a system, i.e., a SHCSP
process.

As defined in the syntax of P , the processes in the first line are original from
HCSP, while the last two lines are new for SHCSP. The individual constructs
can be understood intuitively as follows:

– skip, the assignment x := e, the sequential composition P ;Q, and the alter-
native statement B → P are defined as usual.

– ch?x receives a value along channel ch and assigns it to x.
– ch!e sends the value of e along channel ch. A communication takes place

when both the sending and the receiving parties are ready, and may cause
one side to wait.

– The repetition P ∗ executes P for some finite number of times.
– P �p Q denotes probabilistic choice. It behaves as P with probability p and

as Q with probability 1 − p.
– 〈ds = bdt + σdW&B〉 specifies that the system evolves according to the

stochastic process defined by the stochastic differential equation ds = bdt +
σdW . As long as the boolean expression B, which defines the domain of s,
turns false, it terminates. We will later use d(s) to return the dimension of s.

– 〈ds = bdt+σdW&B〉��i∈I(ωi·chi∗ → Qi) behaves like 〈ds = bdt+σdW&B〉,
except that the stochastic evolution is preempted as soon as one of the com-
munications chi∗ takes place, after that the respective Qi is executed. I is
supposed to be finite and for each i ∈ I, ωi ∈ Q+ represents the weight of
chi∗. If one or more communications are ready at the same time, say they are
{chj∗}j∈J with J ⊆ I and |J | ≥ 1, then chj is chosen with the probability

ωj

Σj∈Jωj
, for each j ∈ J . If the stochastic dynamics terminates before a com-

munication among {chi∗}I occurring, then the process terminates without
communicating.

– S1‖S2 behaves as if S1 and S2 run independently except that all communi-
cations along the common channels connecting S1 and S2 are to be synchro-
nized. The processes S1 and S2 in parallel can neither share variables, nor
input nor output channels.

3.1 A Running Example

We use SHCSP to model the aircraft position during the flight, which is inspired
from [19]. Consider an aircraft that is following a flight path consisting of a
sequence of line segments at a fixed altitude. Ideally, the aircraft should fly at
a constant velocity v along the nominal path, but due to the wind or cloud
disturbance, the deviation of the aircraft from the path may occur. For safety,
the aircraft should follow a correction heading to get back to the nominal path as
quickly as possible. On one hand, the correction heading should be orthogonal to

Extending Hybrid CSP with Probability and Stochasticity 91

the nominal path for the shortest way back, but on the other hand, it should also
go ahead to meet the destination. Considering these two objectives, we assume
the correction heading always an acute angle with the nominal path.

Here we model the behavior of the aircraft along one line segment. Without
loss of generality, we assume the segment is along x-axis, with (xs, 0) as the
starting point and (xe, 0) as the ending point. When the aircraft deviates from
the segment with a vertical distance greater than λ, we consider it enters a
dangerous state. Let (xs, y0) be the initial position of the aircraft in this segment,
then the future position of the aircraft (x(t), y(t)) is governed by the following
SDE: (

dx(t)
dy(t)

)

= v

(
cos(θ(t))
sin(θ(t))

)

dt + dW (t)

where θ(t) is the correction heading and is defined with a constant degree π
4

when the aircraft deviates from the nominal path:

θ(t) =

⎧
⎨

⎩

−π
4 if y(t) > 0

0 if y(t) = 0
π
4 if y(t) < 0

Let B be xs ≤ x ≤ xe, the movement of the aircraft described above can be
modelled by the following SHCSP process PAir:

x = xs; y = y0; 〈[dx, dy]T = v[cos(θ(t)), sin(θ(t))]T dt + dW (t)&B〉

4 Operational Semantics

Before giving operational semantics, we introduce some notations first.

System Variables. In order to interpret SHCSP processes, we use non-negative
reals R+ to model time, and introduce a global clock now as a system variable to
record the time in the execution of a process. A timed communication is of the
form 〈ch.c, b〉, where ch ∈ Σ, c ∈ R and b ∈ R+, representing that a communication
along channel ch occurs at time b with value c transmitted. The set Σ × R × R+

of all timed communications is denoted by TΣ. The set of all timed traces is

TΣ∗
≤ = {γ ∈ TΣ∗ | if 〈ch1.c1, b1〉 precedes 〈ch2.c2, b2〉 in γ, then b1 ≤ b2}.

If C ⊆ Σ, γ �C is the projection of γ onto C such that only the timed communica-
tions along channels of C in γ are preserved. Given two timed traces γ1, γ2, and
X ⊆ Σ, the alphabetized parallel of γ1 and γ2 over X, denoted by γ1γ2, results in
the following set of timed traces

{γ | γ �Σ−(Σ(γ1)∪Σ(γ2))= ε, γ �Σ(γ1)= γ1, γ �Σ(γ2)= γ2 and γ �X= γ1 �X= γ2 �X},

where Σ(γ) stands for the set of channels that occur in γ.
To model synchronization of communication events, we need to describe their

readiness. Because a communication itself takes no time when both parties get

92 Y. Peng et al.

ready, thus, at a time point, multiple communications may occur. In order to
record the execution order of communications occurring at the same time point,
we prefix each communication readiness a timed trace that happened before the
ready communication event. Formally, each communication readiness has the
form of γ.ch? or γ.ch!, where γ ∈ TΣ∗

≤. We denote by RDY the set of communi-
cation readiness in the sequel.

Finally, we introduce two system variables, rdy and tr, to represent the ready
set of communication events and the timed trace accumulated at the considered
time, respectively. In what follows, we use Var(P) to represent the set of process
variables of P , plus the system variables {rdy, tr,now} introduced above, which
take values respectively from R ∪ RDY ∪ TΣ∗

≤ ∪ R+, denoted by Val.

States and Functions. To interpret a process P ∈ Proc, we define a state
ds as a mapping from Var(P) to Val, and denote by D the set of such states.
Because of stochasticity, we introduce a random variable ρ : Ω → D to describe
a distribution of all possible states. In addition,we introduce a stochastic process
H : Intv × Ω → D to represent the continuous flow of process P over the time
interval Intv, i.e., state distributions on the interval. In what follows, we will
abuse state distribution as state if not stated otherwise.

Given two states ρ1 and ρ2, we say ρ1 and ρ2 are parallelable iff for each ω ∈ Ω,
Dom(ρ1(ω)) ∩ Dom(ρ2(ω)) = {rdy, tr,now} and ρ1(ω)(now) = ρ2(ω)(now). Given two
parallelable states ρ1 and ρ2, paralleling them over X ⊆ Σ results in a set of new
states, denoted by ρ1 � ρ2, any of which ρ is given by

ρ(ω)(v)
def
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ1(ω)(v) if v ∈ Dom(ρ1(ω)) \ Dom(ρ2(ω)),
ρ2(ω)(v) if v ∈ Dom(ρ2(ω)) \ Dom(ρ1(ω)),
ρ1(ω)(now) if v = now,
γ, where γ ∈ ρ1(ω)(tr)ρ2(ω)(tr) if v = tr,
ρ1(ω)(rdy) ∪ ρ2(ω)(rdy) if v = rdy.

It makes no sense to distinguish any two states in ρ1 � ρ2, so hereafter we abuse
ρ1 � ρ2 to represent any of its elements.ρ1 � ρ2 will be used to represent states of
parallel processes.

Given a random variable ρ, the update ρ[v → e] represents a new random
variable such that for any ω ∈ Ω and x ∈ Var, ρ[v → e](ω)(x) is defined
as the value of e if x is v, and ρ(ω)(x) otherwise. Given a stochastic process
X : [0, d) × Ω → Rd(s), for any t in the domain, ρ[s → Xt] is a new random
variable such that for any ω ∈ Ω and x ∈ Var, ρ[s → Xt](ω)(x) is defined as
X(t, w) if x is s, and ρ(ω)(x) otherwise.

At last, we define Hρ
d as the stochastic process over interval [ρ(now), ρ(now)+

d] such that for any t ∈ [ρ(now), ρ(now) + d] and any ω, Hρ
d (t, ω) =

ρ[now �→ t](ω), and moreover, Hρ,s,X
d as the stochastic process over interval

[ρ(now), ρ(now) + d] such that for any t ∈ [ρ(now), ρ(now) + d] and any ω,
Hρ,s,X

d (t, ω) = ρ[now �→ t, rdy �→ ∅, s �→ Xt](ω).

Extending Hybrid CSP with Probability and Stochasticity 93

4.1 Operational Semantics

Each transition relation has the form of (P, ρ) α−→ (P ′, ρ′,H), where P and
P ′ are processes, α is an event, ρ, ρ′ are states, H is a stochastic process. It
expresses that starting from initial state ρ, P evolves into P ′ by performing
event α, and ends in state ρ′ and the execution history of α is recorded by
continuous flow H. When the transition is discrete and thus produces a flow on
a point interval (i.e. current time now), we will write (P, ρ) α−→ (P ′, ρ′) instead
of (P, ρ) α−→ (P ′, ρ′, {ρ(now) �→ ρ′}). The label α represents events, which can
be an internal event like skip, assignment, or a termination of a continuous etc,
uniformly denoted by τ , or an external communication event ch!c or ch?c, or an
internal communication ch.c, or a time delay d that is a positive real number.
We call the events but the time delay discrete events, and will use β to range
over them. We define the dual of ch?c (denoted by ch?c) as ch!c, and vice versa,
and define comm(ch!c, ch?c) or comm(ch?c, ch!c) as the communication ch.c. In the
operational semantics, besides the timed communications, we will also record
the internal events that have occurred till now in tr.

For page limit, we present the semantics for the new constructs of SHCSP
in the paper in Table 1. The semantics for the rest is same to HCSP, which
can be found at [17]. The semantics for probabilistic choice is given by rules
(PCho-1) and (PCho-2): it is defined with respect to a random variable U which
distributes uniformly in [0, 1], such that for any sample ω, if U(ω) ≤ p, then
P is taken, otherwise, Q is taken. In either case, it is assumed that an internal
action happened. A stochastic dynamics can continuously evolve for d time units
if B always holds during this period, see (Cont-1). In (Cont-1), the variable X
solves the stochastic process and the ready set keeps unchanged, reflected by the
flow Hρ,s,X

d . The stochastic dynamics terminates at a point whenever B turns
out false at a neighborhood of the point (Cont-2). Communication interrupt
evolves for d time units if none of the communications chi∗ is ready (IntP-1),
or is interrupted to execute chij∗ whenever chij∗ occurs first (IntP-2), or termi-
nates immediately in case the continuous terminates before any communication
happening (IntP-3).

The following theorem indicates that the semantics of SHCSP is well defined.

Theorem 1. For each transition (P, ρ) α−→ (P ′, ρ′,H), H is an almost surely
càdlàg process and adapted to the completed filtration (Ft)t≥0 (generated by ρ,
the Brownian motion (Bs)s≤t, the weights {ωi}i∈I and uniform U process) and
the evolving time from P to P ′, denoted by Δ(P, P ′), is a Markov time.

Proof. The proof of this theorem can be found at [17].

5 Assertions and Specifications

In this section, we define a specification logic for reasoning about SHCSP pro-
grams. We will first present the assertions including syntax and semantics, and
then the specifications based on Hoare triples. The proof system will be given in
next section.

94 Y. Peng et al.

5.1 Assertion Language

The assertion language is essentially defined by a first-order logic with emphasis
on the notion of explicit time and the addition of several specific predicates
on occurrence of communication traces and events. Before giving the syntax of
assertions, we introduce three kinds of expressions first.

h ::= ε | 〈ch.E, T 〉 | h · h | h∗

E ::= c | x | fk(E1, ..., Ek)
T ::= o | now | ul(T1, ..., Tl)

h defines trace expressions, among which 〈ch.E, T 〉 represents that there is a
value E transmitted along channel ch at time T . E defines value expressions,

Table 1. The semantics of new constructs of SHCSP

U is a random variable distributed uniformly in [0, 1], U(ω) ≤ p

(P �p Q, ρ)
τ−→ (P, ρ[tr → tr · 〈τ, now〉]) (PCho-1)

U is a random variable distributed uniformly in [0, 1], U(ω) > p

(P �p Q, ρ)
τ−→ (Q, ρ[tr → tr · 〈τ, now〉]) (PCho-2)

X : [0, d) × Ω → Rd(s) is the solution of
ds = bdt + σdW ∧ ∀t ∈ [0, d), ∀ω.ρ[now → now + t, s → Xt](ω)(B) = T

(〈ds = bdt + σdW&B〉, ρ)
d−→
(〈ds = bdt + σdW&B〉,

ρ[now → now + d, s → Xd], Hρ,s,X
d

)

(Cont-1)

∃ω.(ρ(ω)(B) = F) or (X : [0, d) × Ω → Rd(s) is the solution of ds = bdt + σdW,
∃ε > 0∀t ∈ (0, ε)∃ω.ρ[now → now + t, s → Xt](ω)(B) = F)

(〈ds = bdt + σdW&B〉, ρ)
τ−→ (ε, ρ[tr → tr · 〈τ, now〉)

(Cont-2)

(chi∗; Qi, ρ)
d−→ (chi∗; Qi, ρ

′
i, Hi), ∀i ∈ I

(〈ds = bdt + σdW&B〉, ρ)
d−→ (〈ds = bdt + σdW&B〉, ρ′, H)

(〈ds = bdt + σdW&B〉 � �i∈I(ωi · chi∗ → Qi), ρ)
d−→(〈ds = bdt + σdW&B〉 � �i∈I(ωi · chi∗ → Qi),

ρ′[rdy → ∪i∈Iρ′
i(rdy)], H[rdy → ∪i∈Iρ′

i(rdy)]

)

(IntP-1)

{chik∗}1≤k≤n get ready simultaneously while others not
U is a random variable distributed uniformly in [0,1], and for 1 ≤ j ≤ n
∑j−1

k=1 ωik∑n
k=1 ωik

≤ U(ω) <
∑j

k=1 ωik∑n
k=1 ωik

and (chij∗; Qij , ρ)
chij

∗
−−−→ (Qij , ρ

′)

(〈ds = bdt + σdW&B〉 � �i∈I(ωi · chi∗ → Qi), ρ)
chij

∗
−−−→ (Qij , ρ

′)
(IntP-2)

(〈ds = bdt + σdW&B〉, ρ)
τ−→ (ε, ρ′)

(〈ds = bdt + σdW&B〉 � �i∈I(ωi · chi∗ → Qi), ρ)
τ−→ (ε, ρ′)

(IntP-3)

Extending Hybrid CSP with Probability and Stochasticity 95

including a value constant c, a variable x, or arithmetic value expressions. T
defines time expressions, including a time constant o, system variable now, or
arithmetic time expressions.

The categories of the assertion language include terms, denoted by θ, θ1 etc.,
state formulas, denoted by S, S1 etc., formulas, denoted by ϕ,ϕ1 etc., and prob-
ability formulas, denoted by P etc., which are given by the following BNFs:

θ ::= E | T | h | tr
S ::= ⊥ | Rn(θ1, ..., θn) | h.ch? | h.ch! | ¬S | S1 ∨ S2

ϕ ::= ⊥ | S at T | ¬ϕ | ϕ1 ∨ ϕ2 | ∀v.ϕ | ∀t.ϕ
P ::= P (ϕ) �� p | ¬P | P ∨ P

The terms θ include value, time and trace expressions, plus trace variable tr.
The state expressions S include false (denoted by ⊥), truth-valued relation Rn

on terms, readiness, and logical combinations of state formulas. In particular,
the readiness h.ch? or h.ch! represents that the communication event ch? or
ch! is enabled, and prior to it, the sequence of communications recorded in h
has occurred. The formulas ϕ include false, a primitive S at T representing that
S holds at time T ; and logical combinations of formulas (v, t represent logical
variables for values and time resp.). For time primitive, we have an axiom that
(S1 at T ∧S2 at T) ⇔ (S1 ∧S2) at T . We omit all the other axiom and inference
rules for the formulas, that are same to first-order logic. The probability formula
P has the form P (ϕ) �� p, where ��∈ {<,≤, >,≥}, p ∈ Q ∩ [0, 1], or the logical
composition of probability formulas free of quantifiers. In particular, P (ϕ) �� p
means that ϕ is true with probability �� p. For the special case P (ϕ) = 1, we
write ϕ for short.

In the sequel, we use the standard logical abbreviations, as well as

ϕ dr [T1, T2]
def= ∀t.(T1≤ t≤ T2)⇒ϕ at t

ϕ in [T1, T2]
def= ∃t.(T1≤ t≤ T2)∧ϕ at t

Interpretation. In the following, we will use a random variable Z : Ω →
(Var → Val) to describe the current state and a stochastic process H : [0,+∞)×
Ω → (Var → Val) to represent the whole evolution. The semantics of a term θ
is a function [θ] : (Ω → (Var → Val)) → (Ω → Val) that maps any random
variable Z to a random variable [θ]Z , defined as follows:

[c]Z = c
[x]Z = Y where Y (ω) = Z(ω)(x) for ω ∈ Ω
[fk(E1, ..., Ek)]Z = fk([E1]Z , ..., [Ek]Z)
[o]Z = o
[now]Z = Y where Y (ω) = Z(ω)(now) for ω ∈ Ω
[ul(T1, ..., Tl)]Z = ul([T1]Z , ..., [Tl]Z)
[ε]Z = ε
[〈ch.E, T 〉]Z = 〈ch.[E]Z , [T]Z〉
[h1 · h2]Z = [h1]Z · [h2]Z

[h∗]Z = ([h]Z)∗

96 Y. Peng et al.

The semantics of state formula S is a function [S] : (Ω → (Var → Val)) →
(Ω → {0, 1}) that maps any random variable Z describing the current state to
a boolean random variable [S]Z , defined as follows:

[⊥]Z = 0
[Rn(θ1, . . . , θn)]Z = Rn([θ1]Z , . . . , [θn]Z)
where Rn([θ1]Z , . . . , [θn]Z)(ω) = Rn([θ1]Z(ω), . . . , [θn]Z(ω))
[h.ch?]Z = I{ω∈Ω|[h]Z(ω).ch?∈Z(ω)(rdy)}
[h.ch!]Z = I{ω∈Ω|[h]Z(ω).ch!∈Z(ω)(rdy)}
[¬S]Z = 1 − [S]Z

[S1 ∨ S2]Z = [S1]Z + [S2]Z − [S1]Z ∗ [S2]Z

where given a set S, the characteristic function IS is defined such that IS(w) = 1
if w ∈ S and IS(w) = 0 otherwise. The semantics of formula ϕ is interpreted over
a stochastic process and an initial random variable. More precisely, it’s a function
[ϕ] : ([0,+∞) × Ω → (Var → Val)) → (Ω → (Var → Val)) → (Ω → {0, 1}) that
maps a stochastic process H with initial state Z to a boolean random variable
[ϕ]H,Z . The definition is given below:

[⊥]H,Z = 0
[S at T]H,Z = [S]H([T]Z)

[¬ϕ]H,Z = 1 − [ϕ]H,Z

[ϕ1 ∨ ϕ2]H,Z = [ϕ1]H,Z + [ϕ2]H,Z − [ϕ1]H,Z ∗ [ϕ2]H,Z

[∀v.ϕ]H,Z = inf{[ϕ[b/v]]H,Z : b ∈ R}
[∀t.ϕ]H,Z = inf{[ϕ[b/t]]H,Z : b ∈ R+}

The semantics of probability formula P is defined by function [P] : ([0,+∞) ×
Ω → (Var → Val)) → (Ω → (Var → Val)) → {0, 1} that maps a stochastic
process H with initial state Z to a boolean variable [P]H,Z . Formally,

[P (ϕ) �� p]H,Z = (P ([ϕ]H,Z = 1) = P ({ω ∈ Ω : [ϕ]H,Z(ω) = 1}) �� p)

The semantics for ¬ and ∨ can be defined as usual.
We have proved that the terms and formulas of the assertion language are

measurable, stated by the following theorem:

Theorem 2 (Measurability). For any random variable Z and any stochastic
process H, the semantics of [θ]Z , [S]Z and [ϕ]H,Z are random variables (i.e.
measurable).

Proof. The proof of this theorem can be found at [17].

5.2 Specifications

Based on the assertion language, the specification for a SHCSP process P is
defined as a Hoare triple of the form {A;E}P {R;C}, where A,E,R,C are
probability formulas. A and R are precondition and postcondition, which specify

Extending Hybrid CSP with Probability and Stochasticity 97

the initial state and the terminating state of P respectively. For both of them, the
formulas ϕ occurring in them have the special form S at now, and we will write
S for short. E is called an assumption of P , which expresses the timed occurrence
of the dual of communication events provided by the environment. C is called
a commitment of P , which expresses the timed occurrence of communication
events, and the real-time properties of P .

Definition 1 (Validity). We say a Hoare triple {A; E} P {R; C} is valid,
denoted by |= {A; E} P {R; C}, iff for any process Q, any initial states ρ1 and
ρ2, if P terminates, i.e.(P‖Q, ρ1 � ρ2)

α∗−−→ (ε‖Q′, ρ′
1 � ρ′

2, H) then [A]ρ1 and [E]H,ρ2

imply [R]ρ
′
1 and [C]H,ρ′

1 , where H is the stochastic process of the evolution.

6 Proof System

We present a proof system for reasoning about all valid Hoare triples for SHCSP
processes. First we axiomatize SHCSP language by defining the axioms and
inference rules for all the primitive and compound constructs, and then the
general rules and axioms that are applicable to all processes.

Skip. The rule for skip is very simple. Indicated by �, the skip process requires
nothing from the environment for it to execute, and guarantees nothing during
its execution.

{A;�} skip {A;�}

Assignment. The assignment x := e changes nothing but assigns x to e in the
final state, taking no time to complete.

{A[e/x];�}x := e {A;�}

Input. For input ch?x, we use logical variables o to denote the starting time, h
the initial trace, and v the initial value of x respectively, in the precondition. The
assumption indicates that the compatible output event is not ready during [o, o1),
and at time o1, it becomes ready. As a consequence of the assumption, during the
whole interval [o, o1], the input event keeps waiting and ready, as indicated by the
commitment. At time o1, the communication occurs and terminates immediately.
As indicated by the postcondition, x is assigned by some value v′ received, the
trace is augmented by the new pair 〈ch.v′, o1〉, and now is increased to o1. Assume
A does not contain tr and o1 is finite (and this assumption will be adopted for
the rest of the paper). Let h′ be h[v/x, o/now] · 〈ch.v′, o1〉, the rule is presented
as follows:

{A ∧ now = o ∧ tr = h ∧ x = v;¬h.ch! dr [o, o1) ∧ h.ch! at o1}ch?x
{A[o/now] ∧ now = o1 ∧ ∃v′.(x = v′ ∧ tr = h′);h.ch? dr [o, o1]}

A communication event is equivalent to a sequential composition of a wait state-
ment and an assignment, both of which are deterministic. Thus, as shown above,
the formulas related to traces and readiness hold with probability 1.

98 Y. Peng et al.

If such finite o1 does not exist, i.e., the compatible output event will never
become available. As a consequence, the input event will keep waiting forever,
as shown by the following rule:

{A ∧ now = o ∧ tr = h;¬h.ch! dr [o,∞)}ch?x
{A[o/now] ∧ now = ∞;h.ch? dr [o,∞)}

Output. Similarly, for output ch!e, we have one rule for the case when the
compatible input event becomes ready in finite time. Thus the communication
occurs successfully.

{A ∧ now = o ∧ tr = h;¬h.ch? dr [o, o1) ∧ h.ch? at o1}ch!e
{A[o/now] ∧ now = o1 ∧ tr = h[o/now] · 〈ch.e, o1〉, h.ch! dr [o, o1]}

We also have another rule for the case when the compatible input event will
never get ready.

{A ∧ now = o ∧ tr = h; (¬h.ch?) dr [o,∞)} ch!e
{A[o/now] ∧ now = ∞;h.ch! dr [o,∞)}

Stochastic Differential Equation. Let f be a function, and λ > 0, p ≥ 0 are
real values. We have the following rule for 〈ds = bdt + σdW&B〉.

f(s) ∈ C2(Rn,R) has compact support on B, λ, p > 0 and
A → B → (f ≤ λp) B → (f ≥ 0) ∧ (Lf ≤ 0)

{A ∧ s = s0 ∧ now = o; �}〈ds = bdt + σdW&B〉{P (f(s) ≥ λ) ≤ p ∧ A[s0/s, o/now]
∧now = o + d ∧ cl(B); B ∧ P (f(s) ≥ λ dr [o, o + d]) ≤ p}

where o, s0 are logical variables denoting the starting time and the initial value
of s resp., d is the execution time of the SDE, and cl(B) returns the closure of B,
e.g. cl(x < 2) = x ≤ 2; and the Lie derivative Lf(s) is defined as

∑

i

bi(s) ∂f
∂si

(s)+

1
2

∑

i,j

(σ(s)σ(s)T)i,j
∂2f

∂si∂sj
(s). The rule states that, if the initial state of the SDE

satisfies f ≤ λp, and in the domain B, f is always non-negative and Lf is non-
positive, then during the whole evolution of the SDE, the probability of f(s) ≥ λ
is less than or equal to p; on the other hand, during the evolution, the domain
B holds almost surely, while at the end, the closure of B holds almost surely.

Sequential Composition. For P ;Q, we use o to denote the starting time, and
o1 the termination time of P , if P terminates, which is also the starting time of
Q. The first rule is for the case when P terminates.

{A ∧ now = o; E} P {R1 ∧ now = o1; C1} {R1 ∧ now = o1; C1} Q {R; C}
{A;E}P ;Q {R;C}

On the other hand, if P does not terminate, the effect of executing P ;Q is same
to that of executing P itself.

{A ∧ now = o; E} P {R ∧ now = ∞; C}
{A ∧ now = o;E}P ;Q {R ∧ now = ∞;C}

Extending Hybrid CSP with Probability and Stochasticity 99

Conditional. There are two rules depending on whether B holds or not initially.

A ⇒ B {A;E}P {R;C}
{A;E}B → P {R;C} and A ⇒ ¬B

{A;�}B → P {A;�}

Probabilistic Choice. The rule for P �p Q is defined as follows:

{A ∧ now = o; E} P {P (S) �1 p1; P (ϕ) �2 p2}
{A ∧ now = o; E} Q {P (S) �1 q1; P (ϕ) �2 q2}

{A ∧ now = o;E} P �p Q {P (S) ��1 pp1 + (1 − p)q1;P (ϕ) ��2 pp2 + (1 − p)q2}
where ��1, ��2 are two relational operators. The final postcondition indicates that,
if after P executes S holds with probability ��1 p1, and after Q executes S holds
with probability ��1 q1, then after P �p Q executes, S holds with probability
��1 pp1 + (1 − p)q1; The history formula can be understood similarly.

Communication Interrupt. We define the rule for the special case 〈ds =
bdt+σdW&B〉� (ch?x → Q) for simplicity, which can be generalized to general
case without any difficulty. We use oF to denote the execution time of the SDE.
The premise of the first rule indicates that the compatible event (i.e. h.ch!) is
not ready after the continuous terminates. For this case, the effect of executing
the whole process is thus equivalent to that of executing the SDE.

{A ∧ now = o; E}〈ds = bdt + σdW&B〉{R ∧ now = o + oF ; C}
A ∧ now = o ∧ E ⇒ (tr = h ∧ ¬h.ch! dr [o, o + oF])

{A ∧ now = o; E} 〈ds = bdt + σdW&B〉 � (ch?x → Q) {R ∧ now = o + oF ; C}

In contrary, when the compatible event gets ready before the continuous termi-
nates, the continuous will be interrupted by the communication, which is then
followed by Q. Thus, as shown in the following rule, the effect of executing the
whole process is equivalent to that of executing ch?x;Q, plus that of executing
the SDE before the communication occurs, i.e. in the first o1 time units.

{A ∧ now = o; E}〈ds = bdt + σdW&B〉{R ∧ now = o + oF ; C}
(A ∧ now = o ∧ E) ⇒ (tr = h ∧ h.ch! at (o + o1) ∧ o1 ≤ oF)

{A ∧ B ∧ now = o; E} ch?x; Q {R1; C1}
{A ∧ now = o; E} 〈ds = bdt + σdW&B〉 � (ch?x → Q)

{R1; R|[o,o+o1) ∧ C1}
where R|[o,o+o1] extracts from R the formulas before o + o1, e.g., (P (S at T) ��
p)|[o,o+o1] is equal to P (S at T) �� p if T is less or equal to o + o1, and true
otherwise.

Parallel Composition
For P‖Q, let X be X1 ∩ X2 where X1 = Σ(P) and X2 = Σ(Q), then

A ⇒ A1 ∧ A2, {A1 ∧ now = o; E1} P {R1 ∧ tr = γ1 ∧ now = o1; C1}
{A2 ∧ now = o; E2} Q {R2 ∧ tr = γ2 ∧ now = o2; C2}

∀ch ∈ X.(C1[o1/now]�ch⇒ E2 �ch) ∧ (C2[o2/now]�ch⇒ E1 �ch)
∀dh ∈ X1 \ X.E �dh⇒ E1 �dh ∀dh′ ∈ X2 \ X.E �dh′⇒ E2 �dh′

{A ∧ now = o; E} P‖Q {R; C′
1 ∧ C′

2}

100 Y. Peng et al.

where A1 is a property of P (i.e., it only contains variables of P), A2 a property
of Q, and o1 and o2, γ1 and γ2 logical variables representing the time and trace
at termination of P and Q respectively. Let om be max{o1, o2}, R, C′

1 and C′
2 are

defined as follows:

R
def
= R1[γ1/tr, o1/now] ∧ R2[γ2/tr, o2/now] ∧ now = om ∧ γ1 �X= γ2 �X ∧tr = γ1γ2

C′
i
def
= Ci[oi/now] ∧ R′

i[oi/now] dr [oi, om) for i = 1, 2

where for i = 1, 2, Ri ⇒ R′
i but tr /∈ R′

i. At termination of P‖Q, the time will be
the maximum of o1 and o2, and the trace will be the alphabetized parallel of the
traces of P and Q, i.e. γ1, γ2. In C′

1 and C′
2, we specify that none of variables of

P and Q except for now and tr will change after their termination.

Repetition. For P ∗, let k be an arbitrary non-negative integer, then (tr /∈ A)
{A ∧ now = o + k ∗ t ∧ tr = (h · αk); E[o/now]} P

{A ∧ now = o + (k + 1) ∗ t ∧ tr = (h · αk+1); C}
{A ∧ now = o ∧ tr = h; E} P ∗ {A ∧ now = o′ ∧ tr = (h · α∗) + τ ; C ∨ (o = o′ at now)}
t and α are logical variables representing the time elapsed and trace accumu-
lated respectively by each execution of P , and o and o′ denote the starting and
termination time of the loop (o′ could be infinite).

The general rules that are applicable to all processes, such as Monotonicity,
Case Analysis, and so on, are similar to the traditional Hoare Logic. We will not
list them here for page limit.

Theorem 3 (Soundness). If � {A;E}P {R;C}, then |= {A;E}P {R;C}, i.e.
every theorem of the proof system is valid.

Proof. The proof of this theorem can be found at [17].

Example 1. For the aircraft example, define f(x, y) as |y|, assume f(xs, y0) =
|y0| ≤ λp, where p ∈ [0, 1]. Obviously, B → (f ≥ 0) ∧ (Lf ≤ 0) holds. By
applying the inference rule of SDE, we have the following result:

{now = o;True}PAir {∃d.now = o + d ∧ B ∧ P (f ≥ λ) ≤ p;
B ∧ P (f ≥ λ dr [o, o + d]) ≤ p

}

which shows that, the probability of the aircraft entering the dangerous state is
always less than or equal to p during the flight. Thus, to guarantee the safety
of the aircraft, p should be as little as possible. For instance, if the safety factor
of the aircraft is required to be 99.98%, then p should be less than or equal to
0.0002, and in correspondence, |y0| ≤ λ

5000 should be satisfied.

7 Conclusion

This paper presents stochastic HCSP (SHCSP) for modelling hybrid systems
with probability and stochasticity. SHCSP is expressive but complicated with
interacting discrete, continuous and stochastic dynamics. We have defined the
semantics of stochastic HCSP and proved that it is well-defined with respect to
stochasticity. We propose an assertion language for specifying time-related and

Extending Hybrid CSP with Probability and Stochasticity 101

probability-related properties of SHCSP, and have proved the measurability of
it. Based on the assertion language, we define a compositional Hoare Logic for
specifying and verifying SHCSP processes. The logic is an extension of traditional
Hoare Logic, and can be used to reason about how the probability of a property
changes with respect to the execution of a process. To illustrate our approach,
we model and verify a case study on a flight planing problem at the end.

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

2. Altman, E., Gaitsgory, V.: Asymptotic optimization of a nonlinear hybrid system
governed by a Markov decision process. SIAM Journal of Control and Optimization
35(6), 2070–2085 (1997)

3. Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability prob-
lem. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 234–249.
Springer, Heidelberg (2004)

4. Bujorianu, M.L., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
In: Blom, H.A.P., Lygeros, J. (eds.) Stochastic Hybrid Systems. LNCIS, vol. 337,
pp. 3–30. Springer, Heidelberg (2006)

5. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic
hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 198–214. Springer, Heidelberg (2005)

6. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC 2011, pp. 43–52.
ACM (2011)

7. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System
Design 43(2), 191–232 (2013)

8. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

9. He, J.: From CSP to hybrid systems. In: A Classical Mind, Essays in Honour of
C.A.R. Hoare, pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

10. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292, July
1996

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
13. Hu, J., Lygeros, J., Sastry, S.S.: Towards a theory of stochastic hybrid systems. In:

Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 160. Springer,
Heidelberg (2000)

14. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010)

15. Meseguer, J., Sharykin, R.: Specification and analysis of distributed object-based
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 460–475. Springer, Heidelberg (2006)

102 Y. Peng et al.

16. Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability
for CSP. Formal Asp. Comput. 8(6), 617–647 (1996)

17. Peng, Y., Wang, S., Zhan, N., Zhang, L.: Extending hybrid CSP with probabil-
ity and stochasticity. Technical report, Institute of Software, Chinese Academy of
Sciences (2015). http://arxiv.org/abs/1509.01660

18. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 446–460. Springer, Heidelberg (2011)

19. Prandini, M., Hu, J.: Application of reachability analysis for stochastic hybrid
systems to aircraft conflict prediction. In: 47th IEEE Conference on Decision and
Control (CDC), pp. 4036–4041. IEEE (2008)

20. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, p. 31. Springer, Heidelberg
(2000)

21. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

22. Zhou, C., Wang, J., Ravn, A.P.: A formal description of hybrid systems. In:
Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer,
Heidelberg (1996)

23. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to stateflow/simulink verification. Formal Methods in System Design
43(2), 338–367 (2013)

http://arxiv.org/abs/1509.01660

Testing, Simulation and Inference

Towards Verified Faithful Simulation

Vania Joloboff1,2,3(B), Jean-François Monin4, and Xiaomu Shi5

1 East China Normal University, Shanghai, China
vania.Joloboff@inria.fr

2 INRIA, Sophia Antipolis, France
3 LIAMA, Beijing, China

4 Université de Grenoble - Verimag, Grenoble, France
5 Tsinghua University, Beijing, China

Abstract. This paper presents an approach to construct a verified vir-
tual protoyping framework of embedded software. The machine code
executed on a simulated target architecture can be proven to provide
the same results as the real hardware, and the proof is verified with a
theorem prover. The method consists in proving each instruction of the
instruction set independently, by proving that the execution of the C
code simulating an instruction yields an identical result to that obtained
by a formal executable model of the processor architecture. This formal
model itself is obtained through an automated translation process from
the architecture specifications. Each independent proof draws a number
of lemmas from a generic lemma library and also uses the automation
of inversion tactics in the theorem prover. The paper presents the proof
of the ARM architecture version 6 Instruction Set Simulator of the Sim-
SoC open source simulator, with all of the proofs being verified by the
Coq proof assistant, using automated tactics to reduce manual proof
development.

1 Introduction

In many embedded systems applications nowadays, virtual prototyping is used
to design, develop and test new applications. Most of these virtual prototypes
include an Instruction Set Simulator (ISS) to simulate the target processor. The
ISS runs the target executable binary code in emulating the hardware and gen-
erate the outputs that the executable should produce when run on the target
platform. An ISS can be used for example to optimize algorithms such as cryp-
tographic software, or to debug new compiler developments, or in the design
of many embedded systems applications. Instead of using real hardware proto-
types, simulated platforms are more convenient and less expensive. Then, it is
important to be sure that the simulator used is faithful to the hardware that it
emulates. A faithful ISS must produce exactly the same results as the executable
would if run on hardware implementation of the instruction set specification, and
this guarantee must be proven.

The purpose of our work is to formally verify that the execution of a pro-
gram on our Instruction Set Simulator for the target ARM architecture indeed
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 105–119, 2015.
DOI: 10.1007/978-3-319-25942-0 7

106 V. Joloboff et al.

produces the expected results, to be certain that the data output from the sim-
ulator, the final processor and memory states are indeed identical to the result
obtained with the real hardware. This requires sequential steps, to prove first
that the translation from the C code of the simulator to the simulation machine
is correct, and second that the simulation of the target machine code is also cor-
rect, that is, it preserves the semantics of the computer architecture, together
with the fact that all of these proofs are verified using a theorem prover, or proof
checker, not subject to human error in the proof elaboration or verification.

The next sections of the paper are organized as follows. Section 2 reviews
related work. Section 3 describes the tools that we have used, in particular the
Compcert C compiler, a certified compiler for the C language, the Coq proof
assistant, and the SimSoC simulator in which our work is integrated. Section
4 presents our contribution to prove the correctness of an ARM Instruction
Set Simulator, integrated within SimSoC. In summary, the method consists in
proving each instruction of the instruction set independently, by proving that the
execution of the C code simulating an instruction yields identical result to that
obtained by a formal executable model of the architecture. Each independent
proof requires using a number of lemmas from a generic lemmas library and
usage of a new inversion tactics in the theorem prover. Finally, our conclusion
mentions lessons learned and directions for future work.

2 Related Work

Program certification has to be based on a formal model of the program under
study. Such a formal model is itself derived from a formal semantics of the pro-
gramming language. Axiomatic semantics and Hoare logic have been widely used
for proving the correctness of programs. For imperative programming languages
such as C, a possible approach is to consider tools based on axiomatic semantics,
like Frama-C [5], a framework for a set of interoperable program analyzers for C.
Most of the modules integrated inside rely on ACSL (ANSI/ISO C Specification
Language), a specification language based on an axiomatic semantics for C.

Frama-C software leverages off from Why technology [3,7], a platform for
deductive program verification, which is an implementation of Dijkstra’s calculus
of weakest preconditions. Why compiles annotated C code into an intermediate
language. The result is given as input to the VC (Verification Conditions) gener-
ator, which produces formulas to be sent to both automatic provers or interactive
provers like Coq.

In our case of verifying an instruction set implementation, we have to deal
with a very large specification including complex features of the C language. A
framework is required that is rich enough to make the specification manageable,
using abstraction mechanisms for instance, and in which an accurate definition
of C features is available. As we need to verify specific properties referring to
a formal version of the ARM architecture, operational semantics offer a more
concrete approach to program semantics as it is based on states. The behav-
ior of a piece of program corresponds to a transition between abstract states.

Towards Verified Faithful Simulation 107

This transition relation makes it possible to define the execution of programs by a
mathematical computation relation. This approach is quite convenient for prov-
ing the correctness of compilers, using operational semantics for the source and
target languages (and, possibly intermediate languages). Operational semantics
are used in CompCert (described below) to define the execution of C programs, or
more precisely programs in the subset of C considered by the CompCert project.
The work presented in this paper is based on this approach. Interesting examples
are given by Brian Campbell in the CerCo project [4], in order to show that the
evaluation order constraints in C are lax and not uniform.

A very significant verification work has been done to prove the SEL4 oper-
ating system[11]. It is comparable to our work in that they have considered a C
implementation. The main difference is that they have not considered operational
semantics of C, but deduced the proof obligations from the C code, considering
the compiler and the architecture as correct. In our work, we believe that the
subset of C accepted by CompCert is even larger than the subset accepted in
SEL4.

Regarding formalization and proofs related to an instruction set, a Java byte
code verifier has been proved by Cornelia Pusch[15], the Power architecture
semantics has been formally specified in [1], and closer to our work, the computer
science laboratory in Cambridge University has used HOL4 to formalize the
instruction set architecture of ARM [8]. The objective of their work was to
verify an implementation of the ARM architecture with logical gates, whereas
we consider a ARM architecture simulator coded in C. Reusing the work done
at Cambridge in [8] was considered. But, because we need a certified C compiler
and our approach is based on CompCert C, which is itself coded in Coq, it would
have required us to translate all of the C operational semantics as well, which
would have been error prone, not to mention the very large effort. It was more
convenient to develop our formal model and our proofs in Coq.

Our work is based on the SimSoC simulation framework [10], available as
open source software at http://gforge.inria.fr/projects/simsoc, described in the
next section.

3 Background

3.1 Coq

Coq [2] is an interactive theorem prover, implemented in OCaml. It allows the
expression of mathematical assertions, mechanically checks proofs of these asser-
tions, helps to discover formal proofs, and may extract a certified program from
the constructive proof of its formal specification. Coq can also be presented as
a dependently typed λ-calculus (or functional language). For a detailed presen-
tation, the reader can consult [6] or [2]. Coq proofs are typed functions and
checking the correctness of a proof boils down to type-checking.

The logic supported by Coq includes arithmetic, therefore it is too rich to
be decidable. As full automation is not possible for generating proofs, human
interaction is essential. The latter is realized by proof scripts, which are sequences

http://gforge.inria.fr/projects/simsoc

108 V. Joloboff et al.

of commands for building a proof step by step. Coq also provides built-in tactics
implementing various decision procedures for suitable fragments of the calculus
of inductive constructions and a language which can be used for automating the
search of proofs and shortening scripts.

When a proof has been interactively developed, Coq automatically verifies
the proof, or possibly signals where errors are located. Our work has consisted
in developing proofs demonstrating that the C functions simulating the behavior
of the ARM processor indeed implement the ARM architecture semantics.

3.2 Compert-C

CompCert is a formally verified compiler for the C programming language pro-
vided by INRIA [12,13], which currently targets Power, ARM and 32-bit x86
architectures. The compiler is specified, programmed, and proved in Coq. It
aims to be used for programming embedded systems requiring high reliability.
The generated assembly code is proved to behave exactly the same as the input C
program, according to a formally defined operational semantics of the language.

A key point is that we are considering here C programs compliant with
the definition of ISO-C 99 standard of correct C programs. Indeed the ISO-C
standard identifies many constructions that are syntactically correct, but have
undefined semantics such as a[i++] = i;. The document identifies about one
hundred such constructions, and says that a C compiler in that case basically
may choose its own interpretation of the abstract syntax, resulting in unspecified
behavior. This is very important in our work. All of the C code implementing
the ISS is correct with respect to the ISO C standard, meaning that it does not
contain any construction with unspecified behavior. Compcert-C does not accept
such ill-defined expressions and only well formed programs can be translated
according to the formal, unambiguous, semantics. All of the C code considered
here has unique and well defined semantics. We need to prove that it implements
the ARM semantics, but we do not need to worry about multiple interpretations.

Three parts of CompCert C are used in this work. The first is that we use
the correct machine code generated by the C compiler. The second is the C
language operational semantics in Coq from which we get a formal model of the
program. Third, we use the CompCert Coq library for words, half-words, bytes
etc., and bitwise operations to describe the instruction set model. These low level
functions have been proven already in CompCert, so we can safely re-use them.

It must be noted that the C code of an ISS does not use functions from the C
library that invoke the operating system, such as gettimeofday(), It uses a very
limited number of functions from the C library such as memset() or memcpy().
CompCert provides the formalized properties of such built-in external functions,
so we can reason formally on their potential side effects in our proofs.

3.3 SimSoC

There is abundant literature covering Instruction Set Simulation. Using inter-
pretive simulation, such as used in Insulin [16], each instruction of the target

Towards Verified Faithful Simulation 109

program is fetched from memory, decoded, and executed. With static transla-
tion, the target application program is decoded at compile time and translated
into a new program for the simulation host. The simulation speed is vastly
improved [18] , but it is not suitable for application programs that generate, or
dynamically load code at run-time. Most ISS’es today use some kind of dynamic
binary translation, initiated with systems such as Embra [17].

As mentioned above, the target ISS for the verification is integrated within
SimSoC [10], a full system simulator of System-on-Chips, available as open source
software. SimSoC takes as input real binary code and executes simulation models
of the complete embedded system: processor, memory units, interconnect, and
peripherals. The chip simulator also includes a network controller simulator, so
that the simulator can communicate with the real world. Our proof assumes the
existence of a correct decoder to dynamically generate the translation of the
input binary into C structures, e.g. the program that takes the binary input
sequence and translates it into a sequence of qualified instructions. It is out of
scope of the proof.

SimSoC uses the SystemC kernel to simulate hardware parallellism and trans-
action level modeling (TLM) to model communications between the modules. It
includes ISS’es to execute embedded applications on various processors. We are
considering here the ARM Version 6 ISS. SimSoC supports two modes of dynamic
translation. In the first mode, our verification target, the binary decoder trans-
lates each instruction into a C structure that has a semantics function [9]. It is
these C semantic functions that we are verifying here.

4 Verified Simulation

The general objective is to obtain a verified simulator is illustrated in Figure 1.
Considering the ARM architecture, we need to have the following:

– a formal model of the ARM instruction set.
– an instruction set simulator of the ARM arcchitecture coded in the

(CompCert) C programming language.

Fig. 1. Overall goal

110 V. Joloboff et al.

– a formal operational semantics of the ISS. As shown in Figure 1, from the
ISS source code in C, we can obtain through CompCert C on one hand the
Coq formal semantics of the compiled C program constructed by CompCert,
since the intermediate representation of the C compiler is a Coq represen-
tation and, on the other hand, the verified machine code, which conforms
to this operational semantics as guaranteed by CompCert. We use both, the
compiled machine code to run simulations, and the formal semantics for the
proof.

– prove, using the Coq proof assistant, that the resulting ISS semantics indeed
implement the formal model of the ARM processor, which boils down to ver-
ifying that the semantics of the simulator accurately modifies the processor
(and memory) state representation at each step and ends up in results that
comply with the formal model of the ARM architecture.

These steps are described in the following paragraphs.

4.1 Constructing the Formal Model

Ideally the formal specification of the ARM architecture should be provided by
the vendor. But it is not the case, an issue already raised in the work with HOL4
mentioned above [8]. We decided to derive the formal model of ARM architecture
in Coq from the architecture reference manual as output of a semi-automated
process. The main relevant chapters of the manual are:

– Programmer’s Model introduces the main features in ARMv6 architecture,
the data types, registers, exceptions, etc;

– The ARM Instruction Set explains the instruction encoding in general and
puts the instructions in categories;

– ARM Instructions lists all the ARM instructions in ARMv6 architecture in
alphabetical order and the ARM Addressing modes section explains the five
kinds of addressing modes.

There are 147 ARM instructions in the ARM V6 architecture. For each
instruction, the manual provides its encoding table, its syntax, a piece of pseudo-
code explaining its own operation, its exceptions, usage, and notes. Three kinds
of information are extracted for each ARM operation: its binary encoding for-
mat, the corresponding assembly syntax, and the instruction semantics, which
is an algorithm operating on the processor state. This algorithm may call basic
functions defined elsewhere in the manual, for which we provide a Coq library
defining their semantics. Other than these extracted data files, there is still use-
ful information left in the document which cannot be automatically extracted,
such as validity constraints information required by the decoder generator. How-
ever, the most tedious (then, arguably, error prone) part is described using fairly
simple, precise and regular pseudo-code, allowing us to extract the Coq formal
model in three automated steps: (i) extracting information from the .pdf file;
(ii) parsing the data into abstract syntax trees (iii) automated translation from
the abstract syntax into Coq formal model.

Towards Verified Faithful Simulation 111

During this process, a dozen documentation problems were found but none
that were relevant to instruction semantics. These documentation mistakes have
been acknowledged by ARM Ltd. Moreover, a single mistake in our automated
extractor would impact the formal model of many or even all instructions and
then become rather easy to detect. The model has then tested on real programs
to verify that we obtain the same results, which gives reasonable confidence in
the model.

4.2 Proof Structure

The proof starts from an ISS coded in C, where each instruction is coded as a C
function that modifies the processor state and possibly the memory state (but
everything is represented in memory on the simulation host machine). Each C
function may also call basic functions from a library. As mentioned above, this
C code does not include any construction with “unspecified behavior” of the C
language specification. To prove that the simulator is correct, we need to prove
that, given the initial state of the system, the execution of an instruction as
implemented by a C function results in the same state as the formal specification.
To establish the proof, a formal model of that C implementation is provided by
CompCert, which defines operational semantics of C formalized in Coq.

Fig. 2. Theorem statement for a given ARM instruction

The proof shall demonstrate that the operational semantics of the C code
corresponds to the ARM formal specification. The complete proof is too lengthy
for this article, and we only provide here an outline of the method. The state of
the ARM V6 processor defined in the formal model is called the abstract state.
Alternatively, the same state is represented by the data structures correspond-
ing to C semantics that we shall call the concrete state. In order to establish
correctness theorems we need to relate these two models. Executing the same
instruction on the two sides produces a pair of new processor states which should
be related as equivalent. Informally, executing the same instruction on a pair of
equivalent states should produce a new pair of equivalent states, as schematized
by Figure 2. Equivalent states are defined according to a suitable projection
from the C concrete state to the abstract model, as represented in Figure 3.

112 V. Joloboff et al.

This projection constructs a formal structure from the concrete one. The for-
mal structure obtained should be identical to that obtained through the formal
model, otherwise the C code is incorrect.

Fig. 3. Projection

4.3 Projection

In order to achieve a high speed simulation, the C ISS includes optimizations. In
particular, processor state representation in the C implementation is complex,
not only due to the inherent complexity of the C language memory model, but
also because of optimization and design decisions targeting efficiency. Despite
the complexity of the C memory model, the CompCert C semantics makes it
possible to define and prove the projection. Fortunately, all of the instructions
operate on the processor state and there is a single representation of that state
in the simulator. It is necessary and sufficient to prove the projection for each
variant case of the representation structure. For example, the projection of a
register performs a case analysis on possible values, whereas the projection of
saved data upon exceptions depends on the type of exception modes. Although
there are a number of specific cases to handle, the proof of the projection is
relatively straightforward. In more detail:

– The C implementation uses large embedded structs to express the ARM pro-
cessor state. Consequently the model of the state is a complex Coq record
type, including not only data fields but also proofs to verify access permis-
sion, next block pointer, etc.

Towards Verified Faithful Simulation 113

– Transitions are defined with a relational style (as opposed to a functional
style where reasoning steps can be replaced by computations). Relational
style is more flexible, especially when dealing with constraints; and fits well
with operational semantics.

– The global state is based on a memory model with load and store functions
that are used for read/write operations.

The proofs for instructions start from the abstract state described by the
formal specification. To verify the projection of the original state, we need the
following data: the initial memory state, the local environment, and the formal
initial processor state. The projection is meaningful only after the C memory
state is prepared for evaluating the current function body representing a ARM
instruction. In the abstract Coq model, we directly use the processor state st.
But on the C side, the memory state is described by the contents of several
parameters, including the memory representation of the processor state. We
also need to observe the modifications of certain memory blocks corresponding
to local variables.

The semantics of CompCert C considers two environments. The global envi-
ronment genv maps global function identifiers, global variables identifiers to their
blocks in memory, and function pointers to a function definition body. The local
environment env maps local variables of a function to their memory blocks ref-
erence. It maps each variable identifier to its location and its type, and its value
is stored in the associated memory block. The value associated to a C variable
or a parameter of a C function is obtained by applying load to the suitable
reference block in memory. These two operations are performed when a function
is called, building a local environment and an initialized memory state. When
the program starts its execution, genv is built. The local environment env is
built when the associated function starts to allocate its variables. Therefore, on
the concrete side, a memory state and a local environment is prepared initially
using two steps. First, from an empty local environment, all function parameters
and local variables are allocated, resulting into some memory state and the local
environment. Second, function parameters are set up using a dedicated function
bind parameters and the initial state is thus created.

4.4 Lemmas Library

Next, we need to consider the execution of the instruction. In the C ISS, there is a
standalone C function for each ARM V6 instruction. Each function (instruction)
has its own correctness proof. Each function is composed of its return type,
arguments variables, local variables, and the function body. The function body is
a sequence of statements including assignments and expressions. Let us consider
as an example the ARM instruction BL (Branch and Link). The C code is:

void B(struct SLv6_Processor *proc,

const bool L,

const SLv6_Condition cond,

const uint32_t signed_immed_24){

114 V. Joloboff et al.

if (ConditionPassed(&proc->cpsr, cond)){

if ((L == 1))

set_reg(proc,14,address_of_next_instruction(proc));

set_pc_raw(proc,reg(proc,15)+(SignExtend_30(signed_immed_24)<<2));

}

}

CompCert has designed semantics for CompCert C in big-step inductive types
for evaluating expressions, which we reuse for the proof. The semantics is defined
as a relation between an initial expression and an output expression after eval-
uation. Then, the body of the function is executed. On the concrete side, the
execution yields a new state mfin. On the abstract side, the new state is obtained
by running the formal model. We have to verify that the projection from the
concrete state mfin is related to this abstract state. The proof is performed in
a top-down manner. It follows the definition of the instruction, analyzing the
expression step by step. The function body is split into statements and then
into expressions. When evaluating an expression, one has to search for two kinds
of information. The first one is how the memory state changes on the concrete
side; the other is whether the results on the abstract and the concrete model are
related by the projection. To this end, a library of lemmas had to be developed,
identifying five categories summarized below.

1. Evaluating a CompCert expression with no modification on the memory state
Such lemmas are concerned with the expression evaluation on CompCert C side
and in particular the C memory state change issue. Asserting that a memory
state is not modified has two aspects: one is that the memory contents are not
modified; the other is that the memory access permission is not changed. For
example, evaluating the boolean expression Sbit == 1 returns an unchanged
memory state.

if G,E � eval binopc (Sbit == 1), M
ε==⇒ v, M ′

then M = M ′.

In Coq syntax, the relation in premise is expressed with eval binop. In this
lemma and the following, E is the local environment, G is the global environment,
M is the memory state, ε is the empty event (we may have here a series of
events, e.g. system call, volatile load/store) and v is the result. The evaluation
is performed under environments G and E. Before evaluation, we are in memory
state M . With no event occurring, we get the next memory state M ′. According
to the definition of eval binop, an internal memory state will be introduced.

G,E � a1,M ⇒ M ′ G,E � a2,M
′ ⇒ M ′′

G,E � (a1 binop a2),M ⇒ M ′′

In the example, expression a1 is the value of Sbit and a2 is the constant
value 1. By inverting the hypothesis of type eval binop, we obtain several
new hypotheses, including on the evaluation of the two subexpressions and
the introduction of an intermediate memory state M ′′. Evaluating them has

Towards Verified Faithful Simulation 115

no change on the C memory state, hence we have M = M ′′ = M ′. In more
detail, from the CompCert C semantics definition, we know that the evaluation
of an expression will change the memory state if the evaluation contains uses
of store value of type. In CompCert, the basic store function on memory is
represented by an inductive type assign loc instead of store value of type.
As a note, since CompCert version supports volatile memory access, we also have
to determine whether the object type is volatile before storage.

2. Result of the evaluation of an expression with no modification on the memory
Continuing the example above, we now discuss the result of evaluating the binary
operation Sbit == 1 both in the abstract and the concrete model. At the end
of evaluation, a boolean value true or false is returned in both the concrete and
the abstract models.

if Sbit related M Sbit,
and G,E � eval rvalue binopc (Sbit == 1),M ⇒ v,M ′

then v = (Sbit == 1)coq

Intuitively, the projection corresponding to the parameter sbit in the concrete
model must yield the same value as in the abstract model. Here, the expres-
sion is a so-called “simple expression” that always terminates in a determin-
istic way, and preserves the memory state. To evaluate the value of simple
expressions, CompCert provides two big-step relations eval simple rvalue and
eval simple lvalue for evaluating respectively their left and right values. The
rules have the following shape:

G,E � a1,M ⇒ v1 G,E � a2,M ⇒ v2
sem binary operation(op, v1, v2,M) = v

G,E � (a1 op a2),M ⇒ v

In order to evaluate the binary expression a1 op a2, the sub-expressions a1 and
a2 are first evaluated, and their respective results v1 and v2 are used to compute
the final result v.

3. Memory state changed by storage operation or side effects
As mentioned before, evaluating some expressions such as eval assign may
modify the memory state. Lemmas are required to state that corresponding
variables in the abstract and in the concrete model must evolve consistently.
For example, considering an assignment on register Rn, the projection relation
register related is used. Expressions with side effects of modifying memory
are very similar.

if rn related M rn
and G,E � eval assignc (rn := rx),M ⇒ M ′, v
then rn related M ′ rn

116 V. Joloboff et al.

4. Internal function call.
The simulation code is sometimes using functions from libraries. We distinguish
internal functions and external functions. An internal function is a function
that belongs to a library, the code of which is part of the simulator, that we have
coded ourselves, or the C code is provided by compcert C. An external function is
a function for which we do not have access to the operational semantics. After an
internal function is called, a new stack of blocks is typically allocated in memory.
After the evaluation of the function, these blocks will be freed. Unfortunately,
this may not bring the memory back to the previous state: the memory contents
may stay the same, but pointers and memory organization may have changed.

if proc state related M st
and G,E � eval funcallc(copy StatusRegister)c,M ⇒ v, M ′

and st′ = (copy StatusRegister)coq st
then proc state related M ′ st′.

Lemmas must be developed regarding the evaluation of internal functions,
so that one can observe the returned results, compare it with the corresponding
evaluation in the formal specification, and verify some conditions. For example,
the lemma above is about the processor state after evaluating an internal func-
tion call copy StatusRegister, which reads the value of the CPSR (Current
Processor Status Register) and copies it into the SPSR (Saved Processor Status
Register) when an exception occurs. The evaluation of copy StatusRegister
must be protected by a check on the current processor mode. If it is in authorized
mode, the function copy StatusRegister can be called. Otherwise, the result
is “unpredictable”, which is defined by ARM architecture

It is necessary to reason on the newly returned states, which should still be
related by the projection. This step is usually easy to prove, by calculation on
the two representations of the processor state to verify that they match.

5. External function call
The CompCert C AST of an external function call contains the types of input
arguments and of the returned value, and an empty body. For each external
function (e.g. memcpy()), we have its asserted properties. mostly provided by
CompCert C. The general expected properties of an external call are that (i)
the call returns a result, which has to be related to the abstract state, (ii) the
arguments must comply with the signature. (iii) after the call, no memory blocks
are invalidated, (iv) the call does not increase the access permission of any valid
block, and finally that the memory state can be modified only when the access
permission of the call is granted. For each external call, such required properties
are verified.

4.5 Inversion

Equipped with these lemmas we can build the proof scripts for ARM instructions.
For that, we are decomposing the ARM instruction execution step by step to
perform the execution of the C programs. CompCert C operational semantics

Towards Verified Faithful Simulation 117

define large and complex inductive relations. Each constructor describes the
memory state transformation of an expression, statement, or function. As soon
as we want to discover the relation between memory states before and after
evaluating the C code, we have to invert the hypotheses of operational semantics
to follow the clue given by its definition, to verify the hypotheses relating concrete
memory states according to the operational semantics.

An inversion is a kind of forward reasoning step that allows for users to
extract all useful information contained in a hypothesis. It is an analysis over the
given hypothesis according to its specific arguments, that removes absurd cases,
introduces relevant premises in the environment and performs suitable substitu-
tions in the whole goal. Most proof assistants provide an inversion mechanism.
In the case of Coq, it is a general tactic called inversion [6].

Every instruction contains complex expressions, but each use of inversion
will go one step only. If we want to find the relation between the memory states
affected by these expressions, we have to invert many times. For illustration, let
us consider the simple example from the ARM reference manual CPSR = SPSR,
that assigns to register CPSR the value of SPSR (defined above). As the status
register is not implemented by a single value, but a set of individual fields, the
corresponding C code is a call to the function copy StatusRegister, which
sets the CPSR field by field with the values from SPSR. Lemma same cp SR
below states that the C memory state of the simulator and the corresponding
formal representation of ARM processor state evolve consistently during this
assignment.

Lemma same_copy_SR :

∀ e m l b s t m’ v em,

proc_state_related m e (Ok tt (mk_semstate l b s)) →
eval_expression (Genv.globalenv prog_adc) e m expr_cp_SR t m’ v →
∀ l b, proc_state_related m’ e

(Ok tt (mk_semstate l b (Arm6_State.set_cpsr s

(Arm6_State.spsr s em))))

In its proof, 18 consecutive inversions are needed in order to exhaust all construc-
tors occuring in the assumptions. Unfortunately, inversion generates uncon-
trolable names which pollute proof scripts. Here, an intensive use of inversion
makes proofs scripts unmanageable, and not robust to version changes of Coq
or CompCert. In order to reduce the script size and get better maintainability,
we studied a general solution to the inversion problem, and developed a new
mechanism described in [14]. On top of it, we could program a Coq tactic able
to automatically find the hypothesis to invert by matching the targeted memory
states, properly manage other hypotheses, perform our inversion, clean up the
goal, and repeat the above steps until all transitions between the two targeted
memory states are discovered.

As a result, proofs script have become much shorter and more manage-
able. Considering the former example of same copy SR, the 18 calls to standard
inversion reduce into one single step: inv eval expr m m’.

118 V. Joloboff et al.

4.6 Instruction Proofs

Proofs of instructions rely heavily on the library of lemmas and the controlable
inversion mechanism described above. Scripts size vary with the instructions
complexity from less than 200 lines (e.g 170 for LDRB) to over 1000 (1204 for
ADC). As a result, for each ARM instruction, we have established a theorem
proving that the C code simulating an ARM instruction is equivalent to the
formal specification of the ARM processor.

5 Conclusion

Using the approach presented in this paper, we have constructed a tool chain that
makes it possible to certify that the simulation of a binary executable program
on some simulation platform is compliant with the formal model of the target
hardware architecture. Using Compcert-C, that has defined formal C semantics,
we have formally proved, using the Coq theorem prover, the ARM v6 Instruction
Set Simulator of SimSoc.

We certainly acknowledge the limits of our approach: the quality of our “ver-
ified simulation” relies on the faithfulness of our formal model of the ARM
processor to the real hardware. Because the vendor companies do not provide a
formal description of their hardware, one has to build them1. This issue is partly
solved in this work by automatically deriving the most tedious parts of the Coq
formal model from pseudo-code extracted from the vendor reference manual. If
the vendors would make public formal specifications of their architectures, then
our toolchain would become fully verified.

We believe this work has further impact on proofs of programs. First, we have
proved here a significantly large C program. Second, because the proved program
is a hardware simulator, it can be used as a tool to prove execution of target
programs. For example considering a cryptographic algorithm implemented for
the ARM archiecture and compiled with Compcert-C, it could then be proved
that the execution of that program provides the exact encryption required, and
nothing else. Therefore, the tool presented is an enabler for the proofs of other
programs, which offers a direction for future research.

Another consequence of this work is that, supposing one could compile the C
instructions to silicon using a silicon compiler, and that compiler would also be
certified, ala CompCert, it would then make it possible to prove real hardware...

References

1. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of power and ARM multiprocessor machine code. In: DAMP 2009,
pp. 13–24. ACM, New York (2008)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

1 Note that this problem is the same as for the work done by Cambridge University.

Towards Verified Faithful Simulation 119

3. Bobot, F., Filliâtre, J., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. Boogie 53–64, 2011 (2011)

4. Campbell, B.: An executable semantics for CompCert C. In: Hawblitzel, C.,
Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 60–75. Springer, Heidelberg
(2012)

5. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: SCAM 2009,
pp. 123–124. IEEE (2009)

6. Coq Development Team. The Coq Reference Manual, Version 8.2. INRIA Roc-
quencourt, France (2008). http://coq.inria.fr/

7. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 173–177. Springer, Heidelberg (2007)

8. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

9. Hao, H., Song, J., Helmstetter, C., Joloboff, V.: Generation of executable repre-
sentation for processor simulation with dynamic translation. In: Proceedings of the
International Conference on Computer Science and Software Engineering, Wuhan,
China. IEEE (2008)

10. Helmstetter, C., Joloboff, V., Xiao, H.: SimSoC: a full system simulation software
for embedded systems. In: IEEE (ed.) 2009 IEEE International Workshop on Open-
source Software for Scientific Computation (OSSC), pp. 49–55, Sept 2009

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: sel4: Formal verification of an os kernel. In: Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP 2009,
pp. 207–220. ACM, New York (2009)

12. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM
52(7), 107–115 (2009)

13. Leroy, X.: The CompCert C verified compiler. Documentation and user’s manual.
INRIA Paris-Rocquencourt, March 2012

14. Monin, J.-F., Shi, X.: Handcrafted inversions made operational on operational
semantics. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 338–353. Springer, Heidelberg (2013)

15. Pusch, C.: Proving the soundness of a java bytecode verifier specification in
isabelle/HOL. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 89.
Springer, Heidelberg (1999)

16. Sutarwala, S., Paulin, P.G., Kumar, Y.: Insulin: An instruction set simula-
tion environment. In: CHDL 1993: 11th IFIP WG10.2 International Conference,
pp. 369–376. North-Holland, Amsterdam (1993)

17. Witchel, E., Rosenblum, M.: Embra: fast and flexible machine simulation. In: SIG-
METRICS 1996, pp. 68–79. ACM, New York (1996)

18. Zhu, J., Gajski, D.D.: An ultra-fast instruction set simulator. IEEE Trans. Very
Large Scale Integr. Syst. 10(3), 363–373 (2002)

http://coq.inria.fr/

Cardinality of UDP Transmission Outcomes

Franz Weitl1(B), Nazim Sebih3, Cyrille Artho2, Masami Hagiya3,
Yoshinori Tanabe4, Yoriyuki Yamagata2, and Mitsuharu Yamamoto1

1 Chiba University, Chiba, Japan
franz@chiba-u.jp, mituharu@math.s.chiba-u.ac.jp

2 AIST/RISEC, Amagasaki/tsukuba, Japan
{yoriyuki.yamagata,c.artho}@aist.go.jp
3 The University of Tokyo, Tokyo, Japan

n.sebih@gmail.com, hagiya@is.s.u-tokyo.ac.jp
4 Tsurumi University, Yokohama, Japan

tanabe-y@tsurumi-u.ac.jp

Abstract. This paper examines the cost of testing network applications
using the User Datagram Protocol (UDP). Such applications must deal
with packet loss, duplication, and reordering. Ideally, a UDP applica-
tion should be tested against all possible outcomes of unreliable UDP
transmissions. Their number, however, grows at least exponentially in
the number of transmitted packets.

To estimate the cost of the exhaustive testing of UDP applications,
we determine the number of UDP transmission outcomes analytically.
Based on this combinatorial analysis, we derive a sound, complete, and
optimal algorithm for generating outcomes of unreliable UDP transmis-
sions. The algorithm is implemented in the net-iocache extension of the
software model checker Java Pathfinder (JPF).

Experimental results confirm the consistency of the implementation
with the analytical results. In addition, we found that JPF’s state match-
ing reduces the explored state space significantly and ensures the prac-
ticability of the approach despite of its exponential complexity.

Keywords: User datagram protocol · Software model checking · Java
Pathfinder · Combinatorial analysis

1 Introduction

Modern software often involves both multi-threading and network communica-
tion. Testing such systems is complex due to non-determinism in thread schedul-
ing and network behavior. When applying the User Datagram Protocol (UDP),
the application must be tested against non-deterministic outcomes of network
input/output (I/O) including packet loss, duplication, and reordering.

Despite of its unreliability, UDP is favorable over the Transmission Control
Protocol (TCP) for applications that require low latency and high through-
put. These include real-time and multimedia applications such as gaming and

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 120–134, 2015.
DOI: 10.1007/978-3-319-25942-0 8

Cardinality of UDP Transmission Outcomes 121

media streaming [11,22], but also high performance computing [13], widely used
application-level protocols such as DNS [17], DHCP [5], and the new protocol
QUIC [21] for web applications. Studies [32] report on a significant and increasing
portion of UDP traffic on the Internet.

Testing a distributed application against all possible outcomes of UDP I/O is
challenging because of the explosion of cases when combining packet loss, dupli-
cation, and reordering. Network emulators [7,15,19,26] that use stochastic meth-
ods for the injection of such packet perturbation, avoid a combinatorial explosion
but cannot guarantee the coverage of all combinations. Recent work [23,31] pro-
poses the application of software model checking with Java Pathfinder (JPF) [29]
for testing UDP applications exhaustively against possible outcomes of UDP I/O
but it is unclear which problem sizes these exhaustive methods scale up to.

In this paper, we analyze the practical feasibility of model checking UDP
applications. We describe unreliable UDP I/O in a formal model and analyze
the number of possible outcomes for a sequence of n transmitted packets. The
formal model and its analysis yield a sound, complete, and optimal algorithm
of generating outcome sets which is a formal and generally applicable version of
the algorithms presented in previous work [23]. In experiments, we determine its
cost in terms of runtime and memory consumption and compare the number of
generated cases with the analytically derived cardinality results. A major finding
is that the runtime grows less than the analytical results suggest because JPF
recognizes visited states and prunes the exploration of the state space.

These results encourage the application of software model checking for UDP
applications despite of its exponential complexity. The availability of efficient
formal methods promotes the use of UDP for a broader range of applications,
including dependable systems. The contributions of this paper are:

Formal Analysis: We formalize the set of UDP transmission outcomes for n
packets and analyze its cardinality. This is an indicator of the computational
cost of exhaustively testing UDP applications.

General Algorithm: We derive a new generally applicable algorithm for gen-
erating outcome sets which is sound, complete, and optimal. In contrast to
previous algorithms [23], it can be implemented independently from JPF.

Evaluation: In experiments, we compare the analytical results with the number
of cases generated by the JPF extension net-iocache, and evaluate the impact
JPF’s state matching on the runtime.

This paper is structured as follows. We introduce relevant concepts of JPF and
its extension net-iocache for networked systems in Section 2. Section 3 defines
outcome sets of unreliable UDP transmissions and proves their cardinality while
Section 4 presents algorithms for generating them. We report on experimental
results in Section 5 and discuss related work in Section 6 before concluding the
paper in Section 7.

122 F. Weitl et al.

System Under Test

Java Virtual Machine

Java Pathfinder
Remote Peer

net-
iocache

 Socket Socket

Fig. 1. Java Pathfinder and its extension net-iocache for network communication.

2

1

1
0

3

0
0getInt(0,2)

getInt(0,1)

getInt(0,0)
0

1 2

5

1

4
0

6

getInt(0,1)

8

1

7
0

9

getInt(0,1)

[a,b,c] [a,c,b]

[a] [b] [c]

[b,a,c] [b,c,a] [c,a,b] [c,b,a]

0
getInt(0,2)

1

2

1
1

getInt(0,1)
[a]

[a,a,a]

getInt(0,0)
0

0 2

0

Fig. 2. State space exploration for input sequence a,b,c (left) and a,a,a (right) with
JPF v8.0 rev 25; Dotted arrows: backtracking.

Table 1. Explored state space for different input sequences.

input cases branches states transitions

a,b,c 6 6 10 9
a,a,a 6 4 3 5

2 Background

Java Pathfinder (JPF) [10,29] is a custom Java Virtual Machine (JVM) written
in Java. It runs on top of a host JVM (Fig. 1). The application verified by
JPF is called the system under test (SUT). Net-iocache [3,14] extends JPF
towards major parts of the java.net application programmig interface (API): It
intercepts method calls of the SUT to classes such as java.net.DatagramSocket
and forwards network I/O to the remote peers (Fig. 1 center). This way, instances
of packet loss, duplication, or reordering can be injected transparently.

For non-deterministic operations such as thread scheduling or random num-
ber generation, JPF creates a choice generator and explores the rest of the SUT
for each of the possible choices on a separate execution branch. JPF offers an
application programming interface (API) for creating custom choice generators.
Net-iocache uses this API for the exhaustive exploration of non-deterministic
outcomes of UDP I/O [23]. E. g., permutations can be generated as follows:
1 List<Character> l=new ArrayList<Character>(Arrays.asList(’a’,’b’,’c’));
 for(int i=0; i<perm.length; i++) {
 int max=l.size()-1;
 perm[i]=l.remove(Verify.getInt(0, max));
5 }
 System.out.print(Arrays.toString(perm)+" ");

Cardinality of UDP Transmission Outcomes 123

The program stores the character sequence ’a’,’b’,’c’ in a list l (line 1)
and moves it to an array perm (lines 2–5). Verify.getInt(0,max) in line 4
creates a data choice generator with choices 0,1,...,max. When executing on
a standard JVM, Verify.getInt returns a randomly chosen value in [0,max]
and the program outputs a single permutation of a,b,c, for instance [c,a,b]. In
contrast, when executing the same program on JPF, it outputs all permutations
[a,b,c] [a,c,b] [b,a,c] [b,c,a] [c,a,b] [c,b,a]. This is because JPF
executes the SUT for all possible return values of each call to Verify.getInt
in a depth-first-search manner (Fig. 2 lhs). For the input sequence a,b,c, each
alternative choice results in a new program state, numbered in the order of
their first visit (0: initial state, 9: last visited state). When reaching one of
the 6 terminal states {2, 3, 5, 6, 8, 9}, JPF backtracks the SUT to a previous
state with open choices. Note that the result of Verify.getInt(0,0) is deter-
ministic. JPF merges it into the same transition as the preceding invocation
Verify.getInt(0,1) (Fig. 2 lhs bottom).

When the arguments of method Arrays.asList in line 1 are changed to
“’a’,’a’,’a’”, different return values of Verify.getInt lead to the same pro-
gram state (Fig. 2 rhs). By default, JPF recognizes previously visited states by
state matching and prunes the search as follows (dotted arrows indicate back-
tracking): 0 → 1 → 2 ��� 1 → 2 (visited) ��� 0 → 1 (visited) ��� 0 → 1
(visited). Note that only 4 execution branches and 5 forward transitions are exe-
cuted instead of 6 branches and 9 transitions in the scenario of Fig. 2 lhs. Table 1
summarizes the size and structure of the explored state space for each of the two
input sequences a,b,c and a,a,a. Column ‘cases’ refers to the number of per-
mutations of length 3, while ‘branches’ refers to the number of combined choices
generated by calls of Verify.getInt. If state matching detects visited states, the
number of explored ‘branches’ can be smaller than the number of ‘cases’. State
matching can be disabled in the JPF settings via property vm.storage.class
to save memory. If enabled, it leads to a significant speed up in our experiments
(Section 5).

3 Formal Analysis of Unreliable UDP Behavior

When a message consisting of a sequence of n packets is sent by UDP, which
messages possibly arrive at the destination? How many possibilities are there,
taking arbitrary combinations of packet loss, duplication and reordering into
account?

Consider a message being fragmented into the three packets (p1, p2, p3) put
onto the network subsequently. Since each packet may get lost, duplicated,
and/or reordered, the packet sequences, which possibly arrive at the destina-
tion, include

ε empty sequence, all packets lost
(p1, p2, p3) normal delivery, no loss/duplication/reordering
(p1, p3, p3) p2 lost, p3 duplicated, no reordering
(p2, p3, p2, p1, p3) p2, p3 duplicated, reordered
...

124 F. Weitl et al.

How many such messages are there? Let us assume first that packets are dupli-
cated at most once and do not get reordered. Then there are three possibilities
for each individual packet: 1) loss, 2) delivery once, 3) delivery twice, resulting
in 3n combinations for n packets, i.e., 27 in the given case of n = 3. This means
that even in scenarios without reordering, the number of transmission outcomes
grows already exponentially in the number of transmitted packets.

We will show that the number of transmission outcomes increases up to 271
for messages of 3 packets (Table 2), if cases of reordering are considered in
addition. Their number depends on the network capacity which is the maximum
number of packets the network can hold at a certain time. For instance, the
number of transmission outcomes for messages of 3 packets drops to 135 on a
network with a capacity of 2 packets and to 27 on a network with capacity 1
which does not permit any reordering (Table 2).

Why is it important to know the number of transmission outcomes precisely?
Obviously it is an indicator of the cost of testing a UDP application exhaustively.
More importantly, the cardinality analysis reveals the structure of outcome sets
and yields an algorithm for generating them which is sound, complete, and opti-
mal by construction.

3.1 Unreliable UDP Transmissions

We denote the set of natural numbers including 0 as N. N1 =def N \ {0} denotes
the set of positive natural numbers; [n,m] =def {i ∈ N : n ≤ i ≤ m} denotes a
closed interval in N; P(A) =def {S : S ⊆ A} denotes the powerset of set A; A�B
denotes the union of disjoint sets A,B, i. e., A � B = A ∪ B and A ∩ B = ∅.

Definition 1 (Packet, Packet Sequence)
P denotes an infinite set of packets.
Pn with n ∈ N denotes the set of packet sequences of length n. Elements of

Pn are denoted as (p1, ..., pn). ε denotes the empty sequence for n = 0.

p1 p2 ... pn
delivery set Dp

p1 p2 p2 p1p1 ...p1 p1

dispatch p

Fig. 3. Set of possible deliveries for a sequence of n dispatched packets (p1, ..., pn).

In our model we fix a sequence of n unique packets p ∈ Pn, forwarded to the
network (dispatch), and define the possible UDP transmission outcomes of p as
delivery set (Fig. 3):

Definition 2 (Dispatch, Delivery, Dispatch Order)
Let p ∈ Pn be a packet sequence of length n ∈ N. Then

– p is a dispatch iff pi = pj implies i = j for all i, j ∈ [1, n].

Cardinality of UDP Transmission Outcomes 125

– Dp =def

⋃
m∈N

{pi : i ∈ [1, n]}m denotes the set of deliveries of dispatch p.
– The dispatch order is: pi < pj ⇔def i < j for all i, j ∈ [1, n].

Each element of Dp is a sequence of packets of p with arbitrary order and number
of instances: (p1, p2, p1) ∈ D(p1,p2) and ε ∈ D(p1,p2) but (p1, p2, p3) �∈ D(p1,p2)

with p1, p2, p3 ∈ P being distinct packets.
The network has a limited capacity; it can hold at most c packets at a time.

After a packet pi is delivered, at most c − 1 late packets can be delivered that
have been sent before pi. This limits the delivery set for p as follows:

Definition 3 (Capacity-Bounded Deliveries)
Let Dp be the set of deliveries of a dispatch p ∈ Pn. Let c ∈ N1 be the

maximum number of packets the network can hold at a given time.
For a delivery q ∈ Dp with length m and i ∈ [1,m− 1], let Lq,i =def {qj : j >

i ∧ qj < qi} denote the set of packets which are late in q w. r. t. qi. Then

Dp,c =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1,m − 1]. |L(q1,...,qm),i| < c}

is the set of capacity-c-bounded deliveries of p.

As an example, consider the delivery q = (p2, p3, p1, p3, p2) of dispatch p =
(p1, p2, p3). Then Lq,1 = {p1}, Lq,2 = {p1, p2}, Lq,3 = ∅, and Lq,4 = {p2}.
Thus q ∈ Dp,c if and only if c > |Lq,2| = 2. Note that Dp,c = Dp if c ≥ n.
Furthermore, a network with capacity 1 does not permit reordering. For instance,
(p1, p1, p2) ∈ D(p1,p2),1 but (p1, p2, p1) �∈ D(p1,p2),1.

In the example above one may argue that a network capacity of 3 is still not
sufficient for delivering (p2, p3, p1, p3, p2) because after the first delivery of p3
there are three more packets delivered which must have been on the network at
the time p3 is delivered. Definition 3 is based on the assumption that a packet
is not necessarily duplicated at dispatch time but at any time while it is on the
network. The latest possible time is just the time of delivery. This most general
assumption regarding duplication maximizes the cases of reordering permitted
by a given network capacity in our model. For instance, a network with capacity
3 can generate the delivery (p2, p3, p1, p3, p2) as follows:

Event Packets on the network Delivered packets

p1, p2, p3 dispatched {p1, p2, p3} ()
duplicate of p2 delivered {p1, p2, p3} (p2)
duplicate of p3 delivered {p1, p2, p3} (p2, p3)
p1 delivered {p2, p3} (p2, p3, p1)
p3 delivered {p2} (p2, p3, p1, p3)
p2 delivered ∅ (p2, p3, p1, p3, p2)

Delivery sets of non-empty dispatches are infinite because deliveries may con-
tain arbitrarily many instances of dispatched packets. We identify finite subsets
by constraining the number of times each dispatched packet may appear in a
delivery, using a set of multiplicity choices:

126 F. Weitl et al.

Definition 4 (Multiplicity-Bounded Deliveries)
Let M ⊂ N be a non-empty, finite set of natural numbers, called multiplicity

choices. Let Dp be the delivery set of dispatch p ∈ Pn. Then

Dp,M =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1, n]. |{j ∈ [1,m] : qj = pi}| ∈ M}

is the set of multiplicity-M -bounded deliveries of p.

For instance, {1, 2} is the set of multiplicity choices that permits each packet to
be delivered once or twice. Hence (p1, p2, p1) ∈ D(p1,p2),{1,2} but (p1, p2, p1, p1) �∈
D(p1,p2),{1,2} and (p1, p1) �∈ D(p1,p2),{1,2}. In general, we consider the deliveries
that are both multiplicity- and capacity-bounded:

Definition 5 (Multiplicity-and-Capacity-Bounded Deliveries)
Let p ∈ Pn be a dispatch, M ⊂ N a non-empty, finite set of multiplicity

choices, and c ∈ N1 a network capacity. Then

Dp,M,c =def Dp,M ∩ Dp,c

is the set of multiplicity-M -and-capacity-c-bounded deliveries of p.

3.2 Cardinality of Unreliable UDP Transmissions

We analyze the cardinality of the delivery set Dp,M,c by splitting it into parti-
tions whose cardinality can be determined easier. This partitioning also provides
the formal ground for a sound, complete, and optimal algorithm for generating
delivery sets (Section 4).

Delivery sets are partitioned along the two independent dimensions of vari-
ation: 1) the number of delivered instances of each dispatched packet, called
multiplicity vector and 2) reordering as permitted by the network’s capacity.

For instance, (p2, p4, p2, p1, p4) is a delivery of (p1, p2, p3, p4) with multiplicity
vector (1, 2, 0, 2), meaning that p1 is delivered exactly once, p2 and p4 are deliv-
ered exactly twice, and p3 is not delivered. Other instances with this multiplicity
vector are obtained by reordering, e.g., (p1, p2, p2, p4, p4), (p1, p2, p4, p2, p4), ...
For determining the number of such permutations with repetition, we can apply
known results of combinatorics.

Formally, we divide Dp,M,c into partitions using multiplicity vectors as fol-
lows:

Definition 6 (Multiplicity-Vector-Bounded Delivery Sets)
Let p ∈ Pn be a dispatch. Then μ ∈ N

n is a multiplicity vector for p and

Dp,µ =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1, n]. |{j ∈ [1,m] : qj = pi}| = μi}

is the set of multiplicity-vector-μ-bounded deliveries of p.
For c ∈ N1, Dp,µ,c =def Dp,µ ∩ Dp,c is the set of multiplicity-vector-μ-and-

capacity-c-bounded deliveries of p.

Cardinality of UDP Transmission Outcomes 127

A multiplicity vector μ defines for each individual packet pi of a dispatch
p ∈ Pn, how often it appears in a delivery of Dp,µ. For instance, the multiplicity
vector (2, 1) permits such deliveries of dispatch (p1, p2) where p1 appears twice
and p2 once. Thus (p1, p2, p1) ∈ D(p1,p2),(2,1) but (p2, p1, p2) �∈ D(p1,p2),(2,1).

Multiplicity vectors partition the set of multiplicity-M -and-capacity-c-
bounded deliveries Dp,M,c into pairwise disjoint sets. By Definitions 4 and 6, it
holds for μ ∈ Mn and μ′ ∈ Mn \ {μ} : Dp,µ,c ∩ Dp,µ′,c = ∅ and

⋃
µ∈Mn Dp,µ,c =

Dp,M,c. This gives the following Lemma:

Lemma 1 (Partitioning of Delivery Set)
For a dispatch p ∈ Pn, a non-empty, finite set of multiplicity choices M ⊂ N,

and a network capacity c ∈ N1 it holds:

Dp,M,c =
⊎

µ∈Mn

Dp,µ,c (1)

|Dp,M,c| =
∑

µ∈Mn

|Dp,µ,c| (2)

Next we derive the cardinality of Dp,µ,c, using the following operations:

Definition 7 (Vector Operations)
Let p ∈ Pn be a dispatch, c ∈ N1 a network capacity, and μ ∈ N

n a multi-
plicity vector. Then

– |μ| =def |{i ∈ [1, n] : μi �= 0}| denotes the number of packets that appear at
least once in any delivery q ∈ Dp,µ,c.

– ui denotes the i-th unit vector in N
n for i ∈ [1, n]. I. e., with x = ui it holds:

xi = 1 and xj = 0 for all j ∈ [1, n] \ {i}.
– μ − ui denotes the vector subtraction of ui from μ. I. e., with x = μ − ui it

holds: xi = μi − 1 and xj = μj for all j ∈ [1, n] \ {i}.
– Fµ,c =def {i ∈ [1, n] : μi > 0 ∧ |{j ∈ [1, i] : μj > 0}| ≤ c} denotes the first

c indices where μ has a value greater than zero. These are the indices of
the first c packets of a dispatch p which appear at least once in any delivery
q ∈ Dp,µ,c.

Lemma 2 (Partitioning of Multiplicity-Vector-Bounded Deliveries)
For a dispatch p ∈ Pn, capacity c ∈ N1, and multiplicity vector μ ∈ N

n it
holds:

Dp,µ,c =
{ {ε} if |μ| = 0⊎

i∈Fµ,c
{pi} × Dp,µ−ui,c if |μ| > 0 (3)

Proof (Sketch)
Dp,µ,c = {ε} for |μ| = 0 follows directly from Definitions 2 and 6.
Assume |μ| > 0. On a network with capacity c, the first packet q1 of a delivery

q ∈ Dp,µ,c of length m ∈ N is one of the first c packets of dispatch p which appear
at least once in q, i. e., q1 = pi for some i ∈ Fµ,c. Packet pi appears μi − 1 times
in the remaining delivery sequence (q2, ..., qm) Thus the multiplicity vector of
(q2, ..., qm) is μ − ui and we get Equation (3) for |μ| > 0. ��

128 F. Weitl et al.

Proposition 1 (Cardinality ofMultiplicity-Vector-BoundedDeliveries)

For a dispatch p ∈ Pn, capacity c ∈ N1, and multiplicity vector μ ∈ N
n with

|μ| > 0 it holds:
|Dp,µ,c| =

∑

i∈Fµ,c

|Dp,µ−ui,c| (4)

For |μ| ≤ c it holds:

|Dp,µ,c| = |Dp,µ| =
(
∑n

i=1 μi)!∏n
i=1 μi!

(5)

Proof
Equation (4) is direct consequence of Lemma 2.
Equation (5) is shown as follows. For |μ| ≤ c we get: Dp,µ,c = Dp,µ since

reordering is not limited by c if less than c packets are delivered.
Dp,µ is the set of permutations of n packets where each packet pi with i ∈

[1, n] appears μi times (multiset permutation [4]). Its cardinality is given by the
multinomial coefficient

(
m

µ1,...,µn

)
with m =

∑n
i=1 μi [4,9]. We get:

|Dp,µ,c| = |Dp,µ| =
(∑n

i=1 μi

μ1, ..., μn

)

=
(
∑n

i=1 μi)!∏n
i=1 μi!

��

Lemma 1 and Proposition 1 enable the calculation of |Dp,M,c| with p ∈
Pn, by unfolding the recursive Equation (4) until |μ| ≤ c and then applying
Equation 5. Table 2 displays the numbers for M = {0, 1, 2} (packet loss/normal
delivery/duplication), n ∈ [1, 5], and c ∈ [1, 6].

Table 2. Cardinality of delivery sets Dp,{0,1,2},c with p ∈ Pn, n ∈ [1, 5] and c ∈ [1, 6];
Numbers in blue are referred in the beginning of Section 3 and in Section 5.

n \ c 1 2 3 4 5 6

1 3 3 3 3 3 3
2 9 19 19 19 19 19
3 27 135 271 271 271 271
4 81 955 3825 7365 7365 7365
5 243 6711 51331 176011 326011 326011

4 Generating UDP Transmission Outcomes

According to Lemmata 1 and 2, the delivery set Dp,M,c for a given dispatch
p ∈ Pn, a non-empty, finite set of multiplicity choices M ⊂ N, and a network
capacity c ∈ N1 is partitioned as

Dp,M,c =
⊎

µ∈Mn

Dp,µ,c

Dp,µ,c =
{ {ε} if |μ| = 0⊎

i∈Fµ,c
{pi} × Dp,µ−ui,c if |μ| > 0

Cardinality of UDP Transmission Outcomes 129

Algorithm 1 is a direct operational reformulation of these equations. This
ensures its soundness, completeness, and optimality in the sense that each ele-
ment in Dp,M,c is calculated exactly once.

Function delivery of Algorithm 2 returns an arbitrary element of the deliv-
ery set Dp,M,c. Function chooseOneOf, similar to JPF’s Verify.getInt (see
Section 2), performs a non-deterministic choice, returning an arbitrary element
of a non-empty set. The combination of all non-deterministic choices in Algo-
rithm 2 yields the delivery set Dp,M,c. Parameters M and c of function delivery
are configuration settings chosen by the user according to the test goals for a
given SUT [23,24].

Function deliveries(p, M , c)
n ← arity(p);
D ← ∅;
for μ ∈ Mn do

D ← D � delivsRec(p, μ, c);

return D;

Function delivsRec(p, μ, c)
if |μ| = 0 then

return {ε};

F ← getFirst(μ, c);
D ← ∅;
for i ∈ F do

μ′ ← μ;
μ′
i ← μ′

i − 1;
D′ ← delivsRec(p, μ′, c);
D ← D � ({pi} × D′);

return D;

Function getFirst(μ, c)
F ← ∅;
i ← 1;
while i ≤ arity(μ) ∧ |F | < c do

if μi > 0 then
|F | ← |F | � {i};

i ← i + 1;

return F ;

Algorithm 1. Delivery set generation.

Function delivery(p, M , c)
n ← arity(p);

for i ∈ [1, n] do
μi ← chooseOneOf(M);

return delivRec(p, μ, c);

Function delivRec(p, μ, c)
if |μ| = 0 then

return ε;

F ← getFirst(μ, c);

i ← chooseOneOf(F);
μ′ ← μ;
μ′
i ← μ′

i − 1;
(q1, ..., qm) ← delivRec(p, μ′, c);

return (pi, q1, ..., qm);

Algorithm 2. Non-deterministic
generation of a single delivery.

5 Experimental Results

We implemented an adapted version of Algorithm 2 in net-iocache [23]: It gen-
erates packet perturbation for individually sent and received packets rather than
for packet sequences.

130 F. Weitl et al.

In a scenario inspired by the UDP-based file transfer protocols TFTP [27]
and MFTP [20], we determine the number of cases generated by net-iocache
and compare them with the analytical results on the cardinality of delivery sets
(Proposition 1). In addition, we evaluate the impact of JPF’s state matching
(Section 2) on the performance. The source repository of net-iocache v2 [30]
comprises this and other experiments.

File ServerClient
 getFile(fileId)

 file sizeTCP Socket

UDP Socket file data
pkt 1 pkt 2 ...

TCP Socket

UDP Socket

Fig. 4. Components of the file transfer application.

Fig. 4 shows the setting: A client connects to a TCP port of a file server for
exchanging control information and listens on a UDP port for receiving files. The
server adds a sequence number to each UDP packet, allowing the client to detect
missing or duplicated packets, and to restore their original order. The server does
not read files from the disk but synthesizes them on demand in such a way that
each packet of each file is distinct. This maximizes the number of program states
of the client (cf. scenario in Fig. 2). The client checks the validity of the received
file content but does not store it to the file system. This avoids effects of file
I/O on the runtime behavior. Dropped packets are not retransmitted to keep
the number of packets sent by the server independent from the generated packet
perturbation.

We analyze the runtime behavior of JPF when checking the client, receiv-
ing files with increasing number of packets (packet size: 512 bytes), for UDP
transmissions with possible packet loss, duplication and reordering, according to
multiplicity choices M = {0, 1, 2} and capacity c = 2.

JPF does not detect any errors and thus explores the entire state space of
the SUT. Both the client and file server were executed on the same 8 core Mac
Pro workstation with 24 GB of memory running Ubuntu 14.04.2 LTS (64 Bit),
Java RTE 1.8.0 45-b14, JPF v8.0 (rev 25), and net-iocache v2 (rev 76) [30].

Table 3 shows the runtime results when transferring one file with an increas-
ing number of packets. Column ‘cases’ refers to the cardinality of the delivery set
Dp,{0,1,2},2 (second data column of Table 2) while ‘branches’ refers to number of
combined choices actually explored by JPF (cf. Section 2, especially Table 1).
When state matching is disabled, the number of cases is identical with the num-
ber of branches JPF explores. This confirms the consistency of the implemen-
tation with the analytical results for the cardinality of delivery sets in Section
3.2. Enabled state matching, however, reduces the number of explored execution
branches significantly and enables the exhaustive exploration of much larger
problems than the analytical results suggest.

Cardinality of UDP Transmission Outcomes 131

Table 3. File transfer client explored by JPF for one file with n ∈ [1, 12] packets and
delivery set Dp,{0,1,2},2, permitting packet loss, duplication, and reordering.

no state matching state matching speed-up
packets cases branches time[s] mem[MB] branches time[s] mem[MB] factor

1 3 3 0.3 362 3 0.3 362 1.00
2 19 19 0.5 362 19 0.4 362 1.25
4 955 955 3.4 457 303 0.8 362 4.25
8 2,305,819 2,305,819 5437.3 1,782 17,383 11.4 1,021 476.96

16 13.9· 1012 – – – 12.2· 106 6693.7 1,782 –

Equivalent states detected by JPF’s state matching arise from the reaction
of the SUT on packet duplication and reordering. Duplicated packets are dis-
carded immediately [23] and do not lead to a new program state. Similarly, the
compensation of packet reordering eventually leads to the same program state
for all generated packet permutations. A similar speed up by state matching
can be expected for applications such as multimedia streaming that cope with
duplicated and reordered packets in this way.

6 Related Work

In previous work [23,24], we created a new version of net-iocache [30] for the
exhaustive exploration of UDP transmission outcomes with JPF and conducted
first experiments to confirm the feasibility and usefulness of the approach. This
paper describes UDP transmissions and their enumeration formally and analyzes
its cardinality. The proposed algorithm for generating the set of possible outcomes
of unreliable UDP transmissions extends existing algorithms for enumerating per-
mutations [12] towards a limited reorder window according to the assumed net-
work capacity. The non-deterministic version of the algorithm can be considered
as a variant of the Fisher-Yates shuffle algorithm [6,8] for generating random per-
mutations, extended in two aspects: 1) Instead of choosing each element exactly
once, each element (packet) is chosen a number of times according to the config-
ured number of duplications; 2) Instead of choosing an arbitrary element from the
set of not yet chosen elements, only one of the remaining first c elements (packets)
is chosen in each iteration to account for the network capacity c.

Rathje and Richards [31] use JPF for exploring non-deterministic outcomes
of UDP I/O. They apply a centralization- and stub-based approach: All commu-
nicating peers are transformed into a single multi-threaded program and network
I/O is replaced by inter-thread communication using message queues. Packet loss
and reordering is generated but packet duplication is not covered. The adopted
approach is not entirely automatic: A small implementation effort is required for
each individual SUT. Stoller and Liu [28] coined the term centralization for merg-
ing multiple processes into one. In their work, Java RMI method invocations are
replaced by local method calls. This has been extended to TCP sockets [2,16]. A
similar approach analyzes the complete state space of all processes by extending
JPF itself [25] rather than pre-processing the SUT.

132 F. Weitl et al.

In contrast to centralization, net-iocache adopts a modular approach [3,14]:
A single peer is selected as SUT and explored by JPF while the other peers
run as remote processes outside of JPF. Net-iocache stores and replays network
I/O in a cache to synchronize the backtracked SUT with the remote peers. The
modular approach leads to smaller number of concurrent threads in the SUT,
reducing the state space and increasing scalability. In general, however, only a
part of the state space of the distributed system is covered. For an in-depth
discussion of the differences between centralization and net-iocache, we refer the
reader to previous work [14].

Instead of software model checking, stochastic methods have been applied
for the testing of UDP applications: Farchi et al. [7] propose to instrument Java
bytecode related to the UDP API to introduce a layer for creating “automatic
noise” which subsumes delay, packet loss, duplication, and reordering. In their
approach, each packet is randomly selected to be subject to noise with an equal
probability. The network emulator netem [15] and its extensions [19,26] are Linux
modules that inject stochastically packet delays, loss, duplication, reordering,
and IP packet corruption to simulate non-deterministic unreliable UDP I/O.
Stochastic methods are more scalable but cannot guarantee complete coverage.

The reordering of network packets has been described formally and the
impact of re-sequencing on the performance of streaming applications has been
evaluated [18]. Two metrics are considered: reordering density, defining the distri-
bution of the displacement of packets from their original position, and reordering
buffer occupancy density which is the degree of occupancy of a buffer used for
re-sequencing out-of-order packets. To the best of our knowledge, the number of
outcomes of unreliable UDP I/O has not been addressed in previous work.

Work on verifying programs with unreliable channels [1] shows that the reach-
ability problem as well as safety and eventuality properties become decidable for
communicating infinite state systems when lossy instead of lossless channels are
used. In our work, we address the verification of finite state systems by exhaus-
tively enumerating the outcomes of non-deterministic UDP I/O. The implemen-
tation of the proposed algorithm in the software model checker JPF enables
the direct checking of Java programs without modeling effort, but it cannot be
applied to models of infinite state systems.

7 Conclusion

Based on a formal model of UDP’s unreliable transmission behavior, we analyzed
the number of transmission outcomes and derived a sound, complete, and opti-
mal algorithm for generating them. The algorithm is implemented in the JPF
extension net-iocache. In experiments, the behavior of net-iocache is consistent
with the analytical results: It generates the same number of cases as predicted
by the formal analysis. We observed in addition, that JPF’s state matching
reduces the state space significantly which enables the exhaustive exploration of
scenarios with trillions of cases.

Future work addresses the following issues: 1) By mapping multiplicity-and-
capacity-bounded delivery sets onto known problems in combinatorics, it may

Cardinality of UDP Transmission Outcomes 133

be possible to derive a non-recursive precise formula and/or tight approxima-
tions of their cardinality. 2) Additional experiments would help to evaluate the
effectiveness and scalability of the approach for a broader range of applications.
3) Since techniques such as state matching cannot solve the inherent combina-
tional complexity of exhaustive techniques, the combination of software model
checking with other, more scalable methods such as runtime verification, is an
important issue of our future work.

Acknowledgments. This work was supported by JSPS KAKENHI Grants Number
23240003, 23300004, and 26280019. The authors thank Lei Ma for his helpful comments.

References

1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

2. Artho, C., Garoche, P.: Accurate centralization for applying model checking on
networked applications. In: Proceedings of the 21st International Conference on
Automated Software Engineering (ASE 2006). pp. 177–188. Tokyo, Japan (2006)

3. Artho, C., Leungwattanakit, W., Hagiya, M., Tanabe, Y.: Efficient model checking
of networked applications. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE
2008. LNBIP, vol. 19, pp. 22–40. Springer, Heidelberg (2008)

4. Bona, M.: Combinatorics of Permutations. CRC Press, second edition edn. (2012)
5. Droms, R.: Dynamic host configuration protocol. IETF RFC 2131 (1997). http://

www.ietf.org/rfc/rfc2131 Accessed: 13th Feb 2015
6. Durstenfeld, R.: Algorithm 235: Random permutation. Communications of the

ACM 7(7), 420 (1964)
7. Farchi, E., Krasny, Y., Nir, Y.: Automatic simulation of network problems in UDP-

based Java programs. In: Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium. IEEE (2004)

8. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural and medical
research. Oliver & Boyd, London, 3rd edn, pp. 26–27 (1948)

9. Hall, M.: Combinatorial theory. Wiley (1986)
10. Havelund, K., Pressburger, T.: Model checking Java programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer 2(4),
366–381 (2000)

11. Huitema, C.: Real time control protocol (RTCP) attribute in session descrip-
tion protocol (SDP). IETF RFC 3605 (2003). http://tools.ietf.org/html/rfc3605
Accessed: 13th Feb 2015

12. Ives, F.M.: Permutation enumeration: four new permutation algorithms. Commu-
nications of the ACM 19(2), 68–72 (1976)

13. Junqueira, F., Reed, B.: ZooKeeper: Distributed Process Coordination. O’Reilly
(2013)

14. Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M., Taka-
hashi, K.: Modular software model checking for distributed systems. IEEE Trans-
actions on Software Engineering 40(5), 483–501 (2014)

15. Linux Foundation: Network emulation with netem. www.linuxfoundation.org/
collaborate/workgroups/networking/netem (accessed on October 7, 2014

http://www.ietf.org/rfc/rfc2131
http://www.ietf.org/rfc/rfc2131
http://tools.ietf.org/html/rfc3605
www.linuxfoundation.org/collaborate/workgroups/networking/netem
www.linuxfoundation.org/collaborate/workgroups/networking/netem

134 F. Weitl et al.

16. Ma, L., Artho, C., Sato, H.: Analyzing distributed Java applications by automatic
centralization. In: Proceedings of the 2nd IEEE Workshop on Tools in Process.
IEEE, Kyoto, Japan (2013)

17. Mockapetris, P.: Domain names – implementation and specification. IETF RFC
1035 (1987). http://www.ietf.org/rfc/rfc1035 Accessed: 13th Feb 2015

18. Narasiodeyar R., J.A.: Improvement in packet-reordering with limited re-
sequencing buffers: An analysis. In: 2013 IEEE 38th Conference on Local Computer
Networks (LCN), pp. 453–457. IEEE (2013)

19. Reinecke, P., Drager, M., Wolter, K.: Netemcg – IP packet-loss injection using a
continuous-time Gilbert model. Tech. Rep. TR-B-11-05, Freie Universitt Berlin,
Germany (2011)

20. Robertson, K., Miller, K., White, M., Tweedly, A.: Starburst multicast file transfer
protocol (MFTP) specification. IETF-DRAFT (1998). http://tools.ietf.org/html/
draft-miller-mftp-spec-03 Accessed: 12th Feb 2015

21. Roskind, J.: QUIC: Multiplexed stream transport over UDP. Google working design
document (2013)

22. Schulzrinne, H.: RTP: A transport protocol for real-time applications. IETF RFC
3550 (2003). http://tools.ietf.org/html/rfc3550 Accessed: 13th Feb 2015

23. Sebih, N., Weitl, F., Artho, C., Hagiya, M., Yamamoto, M., Tanabe, Y.: Software
model checking of UDP-based distributed applications. In: Proceedings of the Sec-
ond International Symposium on Computing and Networking (CANDAR 2014).
pp. 96–105. IEEE, Shizuoka, Japan (2014)

24. Sebih, N., Weitl, F., Artho, C., Hagiya, M., Yamamoto, M., Tanabe, Y.: Software
model checking of UDP-based distributed applications. International Journal of
Networking and Computing (IJNC) 5(2), 373–402 (2015)

25. Shafiei, N., Mehlitz, P.C.: Extending JPF to verify distributed systems. ACM SIG-
SOFT Software Engineering Notes 39(1), 1–5 (2014)

26. Sliwinski, J., Beben, A., Krawiec, P.: EmPath: tool to emulate packet transfer
characteristics in IP network. In: Ricciato, F., Mellia, M., Biersack, E. (eds.) Pro-
ceedings of the Second International Workshop on Traffic Monitoring and Analysis
(TMA 2010). LNCS, vol. 6003, pp. 46–58. Springer, Heidelberg (2010)

27. Sollins, K.: The TFTP protocol (revision 2). IETF RFC 1350 (1992). http://tools.
ietf.org/html/rfc1350 Accessed: 1th May 2015

28. Stoller, S.D., Liu, Y.A.: Transformations for model checking distributed java pro-
grams. In: Dwyer, M.B. (ed.) Proceedings of the 8th International SPIN Workshop
(SPIN 2001). LNCS, vol. 2057, p. 192. Springer, Heidelberg (2001)

29. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2), 203–232 (2003)

30. Weitl, F., Sebih, N., Artho, C.: jpf-net-iocache v2 – source code repository. https://
bitbucket.org/weitl/jpf-net-iocache Accessed: 15th Apr 2015

31. Rathje, W., Richards, B.: A framework for model checking UDP network programs
with Java Pathfinder. In: HILT 2014 Proceedings of the 2014 ACM SIGAda Annual
Conference on High Integrity Language Technology (2014)

32. Zhang, M., Dusi, M., John, W., Chen, C.: Analysis of UDP traffic usage on Internet
backbone links. In: Ninth Annual International Symposium on Applications and
the Internet (SAINT 2009), pp. 280–281. IEEE (2009)

http://www.ietf.org/rfc/rfc1035
http://tools.ietf.org/html/draft-miller-mftp-spec-03
http://tools.ietf.org/html/draft-miller-mftp-spec-03
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc1350
https://bitbucket.org/weitl/jpf-net-iocache
https://bitbucket.org/weitl/jpf-net-iocache

Inferring Software Behavioral Models
with MapReduce

Chen Luo1,2,3, Fei He1,2,3(B), and Carlo Ghezzi4

1 Tsinghua National Laboratory for Information Science and Technology (TNList),
Beijing, China

luoc13@mails.tsinghua.edu.cn, hefei@tsinghua.edu.cn
2 Key Laboratory for Information System Security, Ministry of Education,

Beijing, China
3 School of Software, Tsinghua University, Beijing 100084, China

4 Politecnico di Milano, Milano, Italy
carlo.ghezzi@polimi.it

Abstract. Software systems are often built without developing any
explicit model and therefore research has been focusing on automatic
inference of models by applying machine learning to execution logs. How-
ever, the logs generated by a real software system may be very large and
the inference algorithm can exceed the capacity of a single computer.

This paper focuses on inference of behavioral models and explores
to use of MapReduce to deal with large logs. The approach consists of
two distributed algorithms that perform trace slicing and model synthe-
sis. For each job, a distributed algorithm using MapReduce is developed.
With the parallel data processing capacity of MapReduce, the problem of
inferring behavioral models from large logs can be efficiently solved. The
technique is implemented on top of Hadoop. Experiments on Amazon
clusters show efficiency and scalability of our approach.

Keywords: Model inference · Parametric trace · Log analysis ·
MapReduce

1 Introduction

Software behavioral models play an important role in the whole life cycle of
software systems. Through models, software engineers may gain a deep under-
standing of how a system behaves without dealing with the intricacies of the
implementation. Although good software engineering practices suggest that mod-
els should be developed first and then used to derive an implementation, reality
shows that often models do not exist, or they are inconsistent with the implemen-
tation. In fact, building a proper model is hard and requires both mathematical
skills and ingenuity. Moreover, even if they are developed, they are often not
kept in sync with changes to the implementation.

One promising approach to tackle this problem is to use machine learning to
infer the software behavioral models automatically from execution logs [7,14].
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 135–149, 2015.
DOI: 10.1007/978-3-319-25942-0 9

136 C. Luo et al.

Many model inference algorithms [4,10,13] have been proposed by recent
research. To infer accurate models, the logs should contain as much detail infor-
mation as possible. However, a log with more information also increases the
difficulty of model inference task. The logs generated by real systems are usually
very large. For example, the production systems in Google generate billions of
log events each day [18], which far exceeds the capacity of a single computer.

It is thus desirable to parallelize the processing of massive logs. In prior
work [11], Lee et al. proposed an algorithm for slicing traces by parametric events.
This algorithm is useful for log processing and model inference. However, one
cannot parallelize this algorithm by simply dividing the trace into N segments
and running N copies of the algorithm on these segments in parallel. Note that
the events in different segments may be correlated and should be sliced together
(Section 3). Processing the segments independently can lead to incorrect results.

To this end, we propose to use MapReduce [9] to deal with large logs in model
inference tasks. Using the MapReduce model, we can effectively distribute the
processing of massive logs to numerous computing nodes, meanwhile ensuring the
related events are always processed together. With the powerful data processing
capacity of MapReduce, the problem of inferring behavioral models from large
logs can be efficiently solved.

In a nutshell, our approach consists of two stages: trace slicing and model
synthesis. The first stage parses and slices the log into different trace slices,
and constructs a prefix tree acceptor as the intermediate result. The second
stage reads the prefix tree acceptor, and synthesizes the behavioral model. Both
stages are realized under the MapReduce framework. We develop a distributed
algorithm for the trace slicing and model synthesis, respectively. With these two
algorithms, we propose a novel MapReduce framework for inferring software
behavioral models.

The main contributions are summarized as follows:

– We propose a distributed trace slicing algorithm using MapReduce;
– We propose a distributed model synthesis algorithm using MapReduce;
– With these algorithms, we developed an inference method that, to the best of

our knowledge, represents a novel attempt to use the MapReduce framework
for inferring software behavioral models;

– We implemented a prototype of our technique. The experimental results
show the promising performance of our approach.

The rest of the paper is organized as follows: Section 2 provides an overview of
our approach. Section 3 introduces some formal definitions of this work. Section 4
and Section 5 introduce our distributed algorithms for trace slicing and model
synthesis, respectively. Section 6 reports the experimental results. Section 7 dis-
cusses the related work and Section 8 concludes this paper.

Inferring Software Behavioral Models with MapReduce 137

2 Approach Overview

2.1 MapReduce

MapReduce [9] is a large-scale parallel data processing framework based on dis-
tributed architectures. It hides the details of data distribution, load balanc-
ing, and failure recovery while providing simple yet powerful interfaces to users.
Hadoop 1 is an open-source implementation of MapReduce.

In MapReduce, the data is stored in a distributed file system (DFS) and the
computation is based on key-value pairs. A MapReduce job consists of three
phases, i.e., map, shuffle and reduce. In the map phase, the input data are parti-
tioned and distributed to a number of mappers. At each mapper, a user-defined
map function is invoked to handle the input data and produce intermediate
results (in the form of key-value pairs). These intermediate results are then par-
titioned and sorted in the shuffle phase. Each partition corresponds to a reducer
in the reduce phase. At each reducer, a user-defined reduce function is invoked
to handle that partition. Note that the MapReduce framework ensures the val-
ues for the same key are passed to a single reduce call. The output of a reducer
is written to the DFS.

When solving a problem on top of MapReduce, one major concern is to design
the distributed algorithm with map and reduce functions. Once the algorithm
is well encoded, one can leverage clusters and parallel computing to speed up
the computation. The interested reader may refer to [12] for more information.

2.2 Behavioral Model Inference

The workflow of a typical behavioral model inference mainly consists of three
steps: log parsing, trace slicing, and model synthesis. First, we rely on a parser to
extract relevant events from the log files as defined in the event specification. The
events are usually associated with some parameters, called parametric events.
A parameter corresponds to an entity in the system. We say an interaction
happens when two or more events with the same parameter are detected in the
log file. After parsing, we get a sequence of parametric events, called a parametric
trace. The parametric trace may contain many independent interactions, and
thus cannot be directly used for model synthesis. A trace slicer then slices the
parametric trace into many slices, each of which corresponds to an interaction
scenario. Finally, a synthesis algorithm is called to infer the behavioral model
from the set of trace slices.

Consider the online shopping system shown in Figure 1 as a running example.
The relevant events and their corresponding parameters are as follows:

– the user userid logins in the system,
– the user userid creates an order with the ID of orderid,
– the item itemid is added to the order orderid,
– the item itemid is removed from the order orderid,

1 http://hadoop.apache.org/

http://hadoop.apache.org/

138 C. Luo et al.

– the user userid pays the order orderid, and
– the user userid cancels the order orderid.

An example parametric trace excerpt for the system is shown in Figure 1a, and
the behavioral model is depicted in Figure 1b.

(a) A parametric trace (b) The behavioral model

Fig. 1. An online shopping system example

2.3 Our Approach

To deal with the large logs generate by the software system, we propose to apply
MapReduce to parallelize the model inference process. As shown in Figure 2, our
approach consists of two stages, i.e., the distributed trace slicing stage and the
distributed model synthesis stage, both of which are realized using MapReduce.
The first stage takes as input a log file, performs the log parsing and trace
slicing, and outputs a prefix tree acceptor (PTA) [13]. The log parsing task
is performed by mappers, while the trace slicing task is executed by reducers.
The second stage takes as input the PTA generated in the former stage, and
infers the behavioral model by a distributed model synthesis algorithm. With
the large-scale data processing capacity of MapReduce framework, the problem
of inferring behavioral models from large log files can be efficiently solved.

Fig. 2. Model inference with MapReduce

Although the basic algorithms for trace slicing [11] and model synthesis [7]
exist, our contribution is to realize a novel MapReduce version of both algorithms
and integrate them seamlessly.

Inferring Software Behavioral Models with MapReduce 139

3 Formal Definitions

This section introduces the formal definitions needed in our framework. Some of
these definitions originate from [11].

Definition 1. An event specification is a pair 〈E ,X〉, where E is a set of base
events, and X is a set of parameters.

An event specification specifies the events of interest and the parameters. The
event specification for the running example is E={login, create order, add item,
remove item, pay order, cancel order}, X = {userid, orderid, itemid}.

Let [A → B] (or [A ⇁ B]) be the sets of total (or partial) functions from A
to B. For any partial function θ ∈ [A ⇁ B], Dom(θ) = {x ∈ A | θ(x) is defined}.
Let ⊥ be the partial function for which Dom(⊥) = ∅.

Definition 2. A parameter instance θ is a partial function from X to VX , i.e.,
θ ∈ [X ⇁ VX], where VX is a set of parameter values for the parameter set X.
A parameter instance θ is called complete if Dom(θ) = X. Let Y ⊆ Dom(θ), a
restriction θ �Y of θ to Y is a parameter instance such that Dom(θ �Y) = Y and
for any y ∈ Y , θ �Y (y) = θ(y).

To simplify the notation, we often ignore the parameter names X and use
the parameter values VX to represent the parameter instance, if the mapping
from X to VX is clear from the context. For example, the parameter instance
〈userid 	→ user1, orderid 	→ order1〉 can be simplified as 〈user1, order1〉.
Definition 3. The parametric event definition De is a function from E to 2X ,
i.e., De ∈ [E → 2X]. A parametric event is e〈θ〉, where e is a base event, θ is a
parameter instance such that Dom(θ) = De(e).

A parametric event definition provides parameter information for each base
event e ∈ E , and we assume parameters for each base event to be fixed as in [11].

Definition 4. A trace is a finite sequence of base events. A parametric trace is
a finite sequence of parametric events. Denote e ∈ τ (or e〈θ〉 ∈ τ) if base event
e (or parametric event e〈θ〉) appears in trace (or parametric trace) τ .

Definition 5. A parameter instance θ′ is called less informative than another
parameter instance θ (written θ′
 θ), if for any x ∈ X, θ′(x) is defined implies
θ(x) is also defined and θ′(x) = θ(x).

For example, 〈user1〉 is less informative than 〈user1, order1〉.
Definition 6. Let τ be a parametric trace and θ be a parameter instance, the
θ-trace slice τ �θ of τ is a (non-parametric) trace defined as:

– ε�θ= ε, where ε is the empty trace, and

– (τe〈θ′〉)�θ=

{
(τ �θ)e, if θ′
 θ

τ �θ, otherwise

140 C. Luo et al.

Intuitively, the θ-trace slice τ �θ first filters out the irrelevant parametric
events to θ, then leaves out the parameter instances and only keeps the base
events. For example, let τ1 be the parametric trace in Figure 1a. For θ1 =
〈user1, order1〉, τ1 �θ1 is the sequence of: login, create order, pay order.

A trace slice corresponds to a parameter instance. However, all parameter
instances appearing in τ1 are incomplete. With the following operator, incom-
plete parameter instances can be combined to form a complete one.

Definition 7. Two parameter instances θ and θ′ are compatible if for any x ∈
Dom(θ) ∩ Dom(θ′), θ(x) = θ′(x). If θ and θ′ are compatible, we define their
combination (written θ � θ′) as:

(θ � θ′)(x) =

⎧
⎪⎨

⎪⎩

θ(x) if θ(x) is defined
θ′(x) if θ′(x) is defined
undefined otherwise

For example, the parameter instances 〈user1, order1〉 and 〈order1, item1〉
are compatible, and their combination gives 〈user1, order1, item1〉. However,
the parameter instances 〈user1〉 and 〈user2, order2〉 are incompatible.

The combination of parameter instances may lead to meaningless results.
For example, the parameter instance 〈user1〉 and 〈order2, item2〉 are compati-
ble, but their combination 〈user1, order2, item2〉 is meaningless since user1 and
order2 do not interact in any event. To avoid such meaningless combinations,
we require only connected parameter instances to be combined.

Definition 8. Two parameter instances θ1 and θ2 are strong compatible (writ-
ten θ1 �� θ2), if θ1 and θ2 are compatible, and Dom(θ1) ∩ Dom(θ2) = ∅.
Definition 9. Given a parametric trace τ and a parameter instance θ, we say
θ is τ -connected (or connected if τ is clear from the context), if

– e〈θ〉 ∈ τ , or
– there exist θ1, θ2 such that both θ1 and θ2 are τ -connected, θ1 �� θ2, and

θ = θ1 � θ2.

Considering the running example. The parameter instances 〈user1, order1〉
and 〈order1, item1〉 satisfy the first condition in above definition, and 〈user1,
order1〉� 〈order1, item1〉 = 〈user1, order1, item1〉, thus the parameter instance
〈user1, order1, item1〉 is connected. In the remainder of this paper, we only
consider trace slices for complete and connected parameter instances to avoid
meaningless results as in [11].

4 Distributed Trace Slicing with MapReduce

This section presents our distributed trace slicing algorithm with MapReduce.
The basic idea is to group all related parameter events and send then to the same
reducer to generate correct trace slices. In the following, we first propose a data
encoding mechanism, and then introduce the mapper and reducer functions.

Inferring Software Behavioral Models with MapReduce 141

4.1 Data Encoding

In MapReduce, the transmitted data between mappers and reducers are orga-
nized as key-value pairs. The transmitted data for our problem are basically
parametric events. We thus need a mechanism to set a key for each parametric
event to distribute them to reducers.

The basic idea is to watch a subset of X, and for each parametric event e〈θ〉,
we report the watched value on θ as its key, which is used by MapReduce to
determine to which reducer the parameter event should be passed.

Definition 10. A parameter window X is a subset of X, such that for all e ∈ E,
either X ⊆ De(e) or X ∩ De(e) = ∅. A parameter window X is nontrivial if
X = ∅.

Note that any singleton parameter set is always a well-formed and nontriv-
ial parameter window. Consider the running example, a nontrivial parameter
window can be X = {orderid}.

Definition 11. The key of a parametric event e〈θ〉 (written key(e〈θ〉)) with
respect to the parameter window X is

– the restriction of θ to X , i.e., θ �X , if X ⊆ De(e), or
– ⊥, if X ∩ De(e) = ∅.

For example, with the parameter window X = {orderid}, the key of the first
parametric event login〈user1〉 in Figure 1a is ⊥. And the keys of the remaining
parametric events in Figure 1a are: 〈order1〉, ⊥, 〈order2〉, 〈order1〉, 〈order2〉,
〈order2〉, 〈order1〉 and 〈order2〉, respectively.

With a parameter window X , we divide all parametric events into two disjoint
sets: T1 = {e〈θ〉|X ⊆ De(e)} and T2 = {e〈θ〉|X ∩ De(e) = ∅}. Continue the
previous example, the parametric events labeled 2, 4, 5, 6, 7, 8 and 9 belong to
T1, and the parametric events labeled 1 and 3 belong to T2.

Lemma 1. Let e1〈θ1〉 and e2〈θ2〉 be two parametric events in T1, if
key(e1〈θ1〉) = key(e2〈θ2〉), then e1〈θ1〉 and e2〈θ2〉 must be incompatible. 2

Let hash() be a hash function that takes a key as input and returns the
ID of a reducer. For a parametric event e1〈θ1〉 ∈ T1, let k1 = key(e1〈θ1〉),
we pass the key-value pair (k1, e1〈θ1〉) to the reducer with the ID of hash(k1).
However, parametric events in T2 may be combined with any parametric events
in T1. Thus, for any parametric event e2〈θ2〉 ∈ T2, we pass the key-value pair
(⊥, e2〈θ2〉) to all reducers.

We now discuss how to choose X automatically. Since the parametric events
in T2 need to be passed to all reducers, X should be chosen such that T2 is as
small as possible. However, the optimal X cannot be determined unless we have
processed the entire log. To handle this, we define non-parametric version of T2

as T̂2 = {e|X ∩ De(e) = ∅}, and relax the criteria as follows.
2 Due to space limitation, all proofs can be found in the extended version [15].

142 C. Luo et al.

Heuristic 1. The set X should be chosen such that T̂2 is as small as possible.

This heuristic is an approximation, since minimizing T̂2 does not necessarily
mean that T2 is minimized. However, one advantage is that T̂2 can be computed
with the event definition, which is known a priori. Thus, the parameter window
X can be decided before MapReduce computations.

Moreover, for parametric events in T1, we want them to be distributed evenly
to reducers, i.e., we want keys in T1 to be as many as possible. Notice that the
number of different keys is influenced by |X |, we thus have another heuristic.

Heuristic 2. The set X should be as large as possible.

With above heuristics, the parameter window X can be decided with a brute-
force search as follows. We first find all non-trivial parameter windows according
to Definition 10, then apply the first heuristic to maximize T̂2. If there is more
than one candidate X , we then apply the second heuristic to select the one with
the largest size.

4.2 Mapper

The log is split (implicitly by the MapReduce) into blocks, each of which is
passed to a mapper. We call each line in the log a log entry. A log entry records
a parametric event, and the time when it happens. In the remainder of the paper,
we assume each event to be associated with a timestamp. However, for simplicity,
we will consider them only when we need to sort the parametric events.

Figure 3 shows the pseudocode of the Map function, which takes as input a
log entry and outputs a key-value pair. Note that the parameter window X is
provided a priori to all mappers. For each log entry, the Parse function is called
(line 2) to get the parametric event e〈θ〉. If the event is not in E , the Parse
function returns NULL and this log entry is simply skipped (line 4). Otherwise,
the mapper outputs a key-value pair (lines 5-8) based on Definition 11.

Consider the example trace in Figure 1a. Suppose there are two mappers
and two reducers respectively. We assume each key-value pair output by the
mappers is with the same label as the parametric event. Let hash(〈order1〉) = 1
and hash(〈order2〉) = 2. Then the key-value pairs labeled 1, 2, 3, 5, 8 are passed
to Reducer1; the key-value pairs labeled 1, 3, 4, 6, 7, 9 are passed to Reducer2.

4.3 Reducer

Recall that during the shuffle phase, MapReduce merges and sorts key-value
pairs to ensure that values corresponding to the same key are passed to a single
reduce call. Denote values[] the list of parametric events with the key of key.
The Reduce function is called for each pair of key and values[].

The Reduce function is shown in Figure 3. Note that all parametric events
in values[] are with the same key, but their parameter instances may be different.
The Restore function first reorganizes values[] into several lists (lines 3-6), each
list Δtmp(θ) corresponds to a parameter instance θ, and consists of base events

Inferring Software Behavioral Models with MapReduce 143

1: function Map(line)
2: e〈θ〉 ← Parse(line);
3: if e〈θ〉 = NULL then
4: return ;

5: if X ⊆ De(e) then
6: Output(θ �X , e〈θ〉);
7: else
8: Output(⊥, e〈θ〉);

1: function Restore(values[])
2: Δtmp ← ∅;
3: for e〈θ〉 ∈ values[] do
4: if θ 	∈ Dom(Δtmp) then
5: Initialize Δtmp(θ);

6: Insert e into Δtmp(θ);

7: return Δtmp;

1: function Reduce(key, values[])
2: if key = ⊥ then
3: Δ⊥ ←Restore(values[]);
4: return ;

5: Δ ←Restore(values[]);
6: while ∃θ1 ∈ Dom(Δ⊥), θ2 ∈ Dom(Δ)
7: s.t. θ1 	∈ Dom(Δ) ∧ θ1 �� θ2 do
8: Δ(θ1) ← Δ⊥(θ1);

9: Construct(Δ);

1: function Construct(Δ)
2: Ω ← Dom(Δ);
3: while ∃θ1, θ2 ∈ Ω
4: s.t. θ1 �� θ2, (θ1 � θ2 /∈ Ω) do
5: Ω ← Ω ∪ {θ1 � θ2};

6: for complete θ ∈ Ω do
7: Γ ← {Δ(θ′)|θ′ � θ, θ′ ∈ Dom(Δ)};
8: τ �θ← merging event lists in Γ ;
9: Update PTA using τ �θ;

Fig. 3. Distributed trace slicing

only. Here we abuse the notion of Dom(Δ), which denotes the set of parameter
instances θ where the list Δ(θ) is defined, i.e., Dom(Δ) = {θ|Δ(θ) is defined}.
Recall that each event is associated with a timestamp. At line 6, the base event
e is inserted to a proper position in Δtmp(θ) such that Δtmp(θ) is in ascending
order of timestamp.

Note that Δ⊥ is global and shared by multiple calls of the Reduce function.
And the MapReduce framework is configured such that key-value pairs in T2

always come before pairs in T1. As a result, when the Reduce function proceeds
to line 5, Δ⊥ must have already been initialized.

The while loop at line 6 tries to retrieve some lists Δ⊥(θ1) into Δ such that
θ1 can be combined with some θ2 ∈ Dom(Δ). According to Definition 9, if θ1
and θ2 are connected, and θ1 �� θ2, then θ1 � θ2 is also connected, thus the list
Δ⊥(θ1) can be added to Δ (line 7). Note that θ1 may again be strong compatible
to other parameter instances in T2; this process is thus iterative.

The Construct function is called at line 9 to compute trace slices and then
update the intermediate structure PTA. Ω is the set of parameter instances in
Δ. The function tries to combine (lines 3-5) all strong compatible parameter
instances in Ω. This process is iterative, since the newly generated parameter
instance may be combined to the existing ones. Then the trace slice for each
complete and connected parameter instance θ is constructed by merging the
event sequences of θ’s less informative parameter instances (lines 7-9).

Consider Reducer1 of our running example. After line 5 of the Reduce
function, Δ⊥ and Δ are defined as follows. For Δ⊥, Δ⊥(〈user1〉) = login and
Δ⊥(〈user2〉) = login. For Δ, Δ(〈user1, order1〉) = create order, pay order
and Δ(〈order1, item1〉) = add item. Then at line 6, since 〈user1〉 is strong

144 C. Luo et al.

compatible with 〈user1, order1〉, the list Δ⊥(〈user1〉) is added to Δ. After the
while loop at line 3 of the Construct function, Ω = {〈user1〉, 〈user1, order1〉,
〈order1, item1〉, 〈user1, order1, item1〉}. Let θ = 〈user1, order1, item1〉, then
τ �θ= login, create order, add item, pay order.

We take the prefix tree acceptor (PTA) as the intermediate structure. Each
reducer keeps a partial PTA, which only maintains trace slices generated at the
reducer. However, since the model inference algorithm (see Section Section 5)
takes as input a complete PTA, we then merge the PTAs in each reducer to form
a complete one after the reduce process terminates. The complete PTA accepts
all trace slices generated, and an example is shown in Figure 4.

Fig. 4. PTA for the running example

5 Distributed Model Synthesis with MapReduce

Once the complete PTA has been generated, as previously shown, many off-the-
shelf model synthesis algorithms [7,16] can be applied to infer the system model.
However, since these are centralized algorithms and the PTA can be a very large
data structure, we further propose a distributed model synthesis algorithm based
on k-tail [7] with MapReduce to improve efficiency.

The most expensive operation of k-tail is to decide which states can be
merged. Our idea is to distribute the most expensive operations to a number
of mappers. With the intermediate results computed by the mappers, the model
construction is comparatively simple, and is performed by a single reducer.

5.1 Data Encoding

To implement the distributed model synthesis algorithm with MapReduce, the
intermediate results must be in the form of key-value pairs. The “value” here
is a state, we thus need a mechanism to set a key for each state. Moreover, as
states with the same key are grouped together by MapReduce, the key should
convey information about the merged state of these states.

We first introduce some notation relevant to the description of the behav-
ioral model. A behavioral model M is defined as a finite-state automaton
M = (Σ,S, s0, σ, F), where Σ is the set of base events, S is a finite, non-empty
set of states, s0 ∈ S is an initial state, σ is the state-transition function, and
F ⊆ S is the set of non-final states. Let σ∗ : S × Σ∗ → S be the extended

Inferring Software Behavioral Models with MapReduce 145

transition function, i.e., σ∗(s, ε) = s and σ∗(s, eω) =
⋃

s′∈σ(s,e)

σ∗(s′, ω). Denote

the input PTA model as MPTA, and the target finite-state model as MFSM .
Let k be a predefined integer. Let ω ∈ Σ∗ be a word, i.e. a trace of base

events. Let Σ≤k = Σ0 ∪ Σ1 · · · ∪ Σk, then ω ∈ Σ≤k is a word of maximum
length k. Given an automaton M , let f be a function from S × Σ∗ to Boolean,
such that for any state s ∈ S and any word ω ∈ Σ∗, f(s, ω) = 1 iff starting from
s, the word ω is accepted by σ∗ 3.

Definition 12. Let s1, s2 be two states in M , we say s1 and s2 are k-equivalent,
if for any word ω ∈ Σ≤k, f(s1, ω) = 1 iff f(s2, ω) = 1.

The k-equivalence class that contains s is

[s] = {t ∈ S | s and t are k-equivalent}.

All states in a k-equivalent class can be merged. A k-equivalent class in MPTA

corresponds to a state in MFSM . The function f can be lifted to a equivalent
class: ∀ω ∈ Σ≤k, f([s], ω) = f(s′, ω), where s′ can be any state in [s].

Lemma 2. For any two k-equivalent classes [s] and [t], there must exist a word
ω ∈ Σ≤k, such that f([s], ω) = f([t], ω).

We can use the valuations of f([s], ω) for all ω ∈ Σ≤k to characterize [s].
Assume words in Σ≤k to be indexed from 1 to |Σ≤k|. We use following definition
to compute the signature of a state.

Definition 13. Let s be a state in S, the signature sig of s is a Boolean vector
of length |Σ≤k|, such that sig[i] = 1 iff with the i-th word ω in Σ≤k, f(s, ω) = 1
for 1 ≤ i ≤ |Σ≤k|.

By Lemma 2, the signatures of s and t are identical, if and only if they are
in the same k-equivalent class. We thus choose the key of a given state s as the
signature of s.

5.2 Mapper and Reducer

The pseudocode of distributed model synthesis is shown in Figure 5. Let Si be
the set of states distributed to Mapper i. For each state s ∈ Si, Mapper i computes
the signature sig for s, and outputs the signature-state pair.

When all states signatures have been computed, the synthesis of MFSM is
simple, and can be performed by a single reducer. MapReduce sorts all signature-
state pairs and puts the states with the same signature into one list. Let states[]
be the list of states with the same signature sig. The Reduce function is called
for each pair of sig and states[], and simply creates a new state in MFSM in
correspondence to the given signature.

After all signatures have been processed, the PostReduce function is
invoked, which adds transitions to MFSM . For each transition in MPTA from s
to t due to event e, a transition from [s] to [t] labeled e is added to MFSM . The
PostReduce function is called once and returns the synthesized model MFSM .
3 We do not require that a word ends in a final state, as in [8].

146 C. Luo et al.

1: function Map(state)
2: compute signature sig of state by Definition 13;
3: Output(sig, state);

4: function Reduce(sig, states[])
5: Create a new state in MFSM w.r.t. sig;

6: function PostReduce
7: for each transition (s1, e, s2) in MPTA do
8: Add a transition ([s1], e, [s2]) in MFSM ;

Fig. 5. Distributed model synthesis

6 Experimental Evaluation

We implemented our approach on top of Hadoop 1.2.1, and conducted exper-
iments on Amazon Elastic MapReduce clusters 4. Each computing node has a
dual-core CPU and 7.5 GB memories. We let each node serve as two mappers
and one reducer simultaneously. The running time spent on both MapReduce
jobs (trace slicing and model synthesis) is measured separately. Each experiment
is performed 3 times, and the average value is reported.

The datasets used in our experiments are synthetically generated as follows.
(1) An automaton is randomly generated as the target model, which contains
50 states and maximally 5 transitions per state. (2) The automaton is randomly
simulated to generate parametric traces. Each parametric trace is with 10 to
100 parametric events. (3) All generated parametric traces are randomly mixed
up. (4) The same number of irrelevant entries are randomly added to the log as
noises. Other parameters are set as: |E| = 15, |X| = 4 and k = 1. The event
definition De is randomly determined, and the parameter value is randomly
chosen from integer domain. The size of the largest log file exceeds 10 GB.

We designed several sets of experiments to evaluate our approach, ranging
from basic performance, speed up to scalability. The experimental results are
reported and discussed below.

Basic Performance. The first set of experiments tests the running time of
our approach for logs with increasing size. Sizes of these logs range from 20
to 100 million events. The cluster size is fixed to 10 nodes. The results are
plotted in Figure 6a. Each column in the graph contains two parts, representing
the running time of trace slicing and model synthesis, respectively. Most of the
running time is spent on trace slicing. The total processing time for the largest
log (the file size exceeds 10GB) is less than 7 minutes.

Speed-Up. In the second set of experiments, we test the speed-up of our app-
roach with increasing number of computing nodes. The log size is fixed to 40
million events, while the cluster size varies from 1 node to 10 nodes. The experi-
mental results are plotted in Figure 6b. We observed that the total running time

4 http://aws.amazon.com/elasticmapreduce/

http://aws.amazon.com/elasticmapreduce/

Inferring Software Behavioral Models with MapReduce 147

(a) Running time with
inreasing log size

(b) Running time with
increasing nodes

(c) Running time with
increasing nodes and log
size

Fig. 6. Experimental results

of our approach decreases considerably when given more computing nodes. This
is well understandable. Moreover, along with the increase of computing nodes,
the speed-up ratio goes down slowly. This is also reasonable, since the commu-
nication cost increases and there are some operations (for example, the Reduce
and PostReduce functions in model synthesis) that cannot be parallelized or
completely parallelized.

Scalability. The third set of experiments tests the scalability of our approach.
We increase the log size (from 20 million to 100 million events) and the cluster
size (from 2 to 10 nodes) by the same factor, and then observe the running time
of our approach. Note that the ratio between log size and cluster size remains
unchanged. The experimental results are shown in Figure 6c. When both log
size and cluster size increase, the total running time increases a little. This
phenomenon is very encouraging, which means our approach scales well.

Threat to Validity. The main threat to validity is the synthetic logs used in the
evaluation. To mitigate this, the log generator is designed as practical as possible
by imitating the practical parameter settings and the noises. Another possible
threat to validity is certain characteristics of logs, e.g., the event definition,
because of the heuristics we used for determining the parameter windows. To
eliminate the bias involved in designing the data sets, we also choose synthetic
logs and randomly generated event definitions in our evaluation.

7 Related Works

The related works fall into two categories: behavioral model inference and trace
checking with MapReduce.

Behavioral Model Inference. A lot of work exists on inferring software behav-
ioral models from execution traces. Ammons et al. [1] first proposed the technique
of specification mining to mine program specifications from program execution
traces. GK-Tail [14] extends the k-tail algorithm and infers extended finite state

148 C. Luo et al.

machines. Walkinshaw and Bogdanov [17] considered LTL constraints as addi-
tional input, and used model checking technique to guide the state merging
process. Lo et al. [13] mined temporal invariants from execution traces and used
the invariants to guide the model inference. Synoptic [5] adopted similar idea
and incorporated refinement and coarsening to generate accurate but concise
models. Lee et al. [11] proposed the trace slicing technique to mine paramet-
ric specifications. Ghezzi et al. [10] inferred users’ behavior models from web
application logs. However, to the best of our knowledge, there is no previously
published work on applying MapReduce to model inference.

Trace Checking with MapReduce. Recently, there have been several works
on checking trace compliance against temporal logics using MapReduce. Barre
et al. [2] presented an iterative algorithm for checking Linear Temporal Logic
(LTL) formula over event traces with MapReduce. Bianculli et al. [6] further
improved the work [2] by supporting metric temporal logic with aggregating
modalities. Basin et al. [3] presented a formal log slicing framework for check-
ing policies expressed with metric first-order temporal logic. These works share
some similarities with ours, i.e., log processing with MapReduce. But the major
difference is that our work focus on behavioral model inference from large logs,
rather than checking compliance against temporal logics.

8 Conclusion

In this paper, we presented an approach to infer software behavioral models
from large logs using MapReduce. In our approach, the logs are first parsed
and sliced, then the model is inferred by the distributed k-tail algorithm. Our
approach can also be used as a log preprocessor and combined with existing
model inference algorithms. Experiments on Amazon clusters and large datasets
show the efficiency and scalability of our approach.

We plan to perform case studies on logs generated by real software systems
to further evaluate the performance and applicability of our approach. We also
plan to investigate the parallelization of more precise and robust model inference
algorithms [16] or incorporating temporal invariants [13] during inference phase.

Acknowledgment. This work was supported in part by the Chinese National 973
Plan (2010CB328003), the NSF of China (61272001, 91218302), the Chinese National
Key Technology R&D Program (SQ2012BAJY4052), the Importation and Develop-
ment of High-Caliber Talents Project of Beijing Municipal Institutions (YETP0167),
and the Tsinghua University Initiative Scientific Research Program.

References

1. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2002, pp. 4–16. ACM, New York (2002)

Inferring Software Behavioral Models with MapReduce 149

2. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.-A., Hallé, S.: MapReduce for
parallel trace validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 184–198. Springer, Heidelberg (2013)

3. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 31–47. Springer, Heidelberg (2014)

4. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A.: Inferring models of
concurrent systems from logs of their behavior with CSight. In: Proceedings of the
36th International Conference on Software Engineering, pp. 468–479. ACM (2014)

5. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging
existing instrumentation to automatically infer invariant-constrained models. In:
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
Conference on Foundations of Software Engineering, pp. 267–277. ACM (2011)

6. Bianculli, D., Ghezzi, C., Krstić, S.: Trace checking of metric temporal logic with
aggregating modalities using MapReduce. In: Giannakopoulou, D., Salaün, G.
(eds.) SEFM 2014. LNCS, vol. 8702, pp. 144–158. Springer, Heidelberg (2014)

7. Biermann, A., Feldman, J.: On the synthesis of finite-state machines from samples
of their behavior. Computers, IEEE Transactions on C 21(6), 592–597 (1972)

8. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

9. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

10. Ghezzi, C., Pezzè, M., Sama, M., Tamburrelli, G.: Mining behavior models from
user-intensive web applications. In: Proceedings of the 36th International Confer-
ence on Software Engineering, pp. 277–287. ACM (2014)

11. Lee, C., Chen, F., Roşu, G.: Mining parametric specifications. In: Proceedings of
the 33rd International Conference on Software Engineering, pp. 591–600. ICSE
2011. ACM, New York (2011)

12. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with mapreduce: A survey. SIGMOD Rec. 40(4), 11–20 (2012)

13. Lo, D., Mariani, L., Pezzè, M.: Automatic steering of behavioral model inference.
In: Proceedings of the 7th Joint Meeting Of The European Software Engineering
Conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pp. 345–354. ACM (2009)

14. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of the 30th international conference on Software engineer-
ing, pp. 501–510. ACM (2008)

15. Luo, C., He, F., Ghezzi, C.: Inferring software behavioral models with mapreduce
(extended version). http://sts.thss.tsinghua.edu.cn/beagle/paper/model-2015.pdf

16. Thollard, F., Dupont, P., Higuera, C.d.l.: Probabilistic dfa inference using kullback-
leibler divergence and minimality. In: Proceedings of the Seventeenth International
Conference on Machine Learning, ICML 2000, pp. 975–982. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2000)

17. Walkinshaw, N., Bogdanov, K.: Inferring finite-state models with temporal con-
straints. In: Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 248–257. IEEE Computer Society (2008)

18. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Experience mining google’s
production console logs. In: Proceedings of the 2010 Workshop on Managing
Systems via Log Analysis and Machine Learning Techniques, SLAML 2010,
pp. 5–5. USENIX Association, Berkeley, CA, USA (2010)

http://sts.thss.tsinghua.edu.cn/beagle/paper/model-2015.pdf

Bisimulation and Correctness

An Application of Temporal Projection
to Interleaving Concurrency

Ben Moszkowski1(B) and Dimitar P. Guelev2

1 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
benmos63@gmail.com

2 Department of Algebra and Logic,
Institute of Mathematics and Informatics, Sofia, Bulgaria

gelevdp@math.bas.bg

Abstract. We revisit the earliest temporal projection operator Π in
discrete-time Propositional Interval Temporal Logic (PITL) and use it to
formalise interleaving concurrency. The logical properties of Π as a nor-
mal modality and a way to eliminate it in both PITL and conventional
point-based Linear-Time Temporal Logic (LTL), which can be viewed
as a PITL subset, are examined. We also formalise concurrency without
Π, and relate the two approaches. Furthermore, Π and another stan-
dard PITL projection operator are interdefinable and both suitable for
reasoning about different time granularities. We mention other (mostly
interval-based) temporal logics with similar forms of projection, as well
as some related applications and international standards.

Keywords: Interleaving concurrency · Interval temporal logic ·
Temporal projection · Time granularities

1 Introduction

Temporal intervals, which are finite and infinite state sequences, offer a com-
pellingly natural and flexible way to model computational processes involving
hardware or software. Interval Temporal Logic (ITL) [35],[19],[36] is an estab-
lished formalism for reasoning about such phenomena. In ITL, satisfaction of
formulas is defined at intervals rather than time points which are used in other
temporal logics. ITL operators for sequentially combining formulas A;B (“A
chop B”) and A∗ (“A chop-star”) are related to the concatenation and Kleene
star operators for regular expressions.

In the early 1980s, we proposed in [35],[19] a simple binary temporal operator
Π for time granularities and projection to enhance ITL’s usefulness for formalis-
ing digital circuits. Here we revisit Π’s logical properties and use it to formalise
interleaving concurrency. We also discuss a related operator for modelling time
granularities and related work on temporal projection in general.

Structure of the Paper: Section 2 overviews propositional ITL. Section 3 looks
at the projection operator Π. Section 4 uses Π to formalise concurrent programs
and also shows how to do this without Π. Section 5 discusses related work.
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 153–167, 2016.
DOI: 10.1007/978-3-319-25942-0 10

154 B. Moszkowski and D.P. Guelev

2 Propositional Interval Temporal Logic

For an in-depth presentation of PITL we refer the reader to [39]; see also [36],[31]
and the ITL web pages [27]. The version of PITL used here has the syntax

A ::= true | p | ¬A | A ∨ A | © A | A U A | A;A | A∗ , (1)

where p denotes a propositional variable. Owing to our purposes here, the Until
operator U is included. We define false, ∧, ⊃ and ≡ as usual.

PITL models time using discrete (linear) state sequences. The set of states Σ
is the powerset 2V of the set V of propositional variables, so each state in Σ sets
every propositional variable p, q, . . . to true or false. Local PITL is the (standard)
version of PITL with such state-based variables (instead of interval-based ones).
An interval σ = σ0σ1 . . . is any element of Σ+ ∪ Σω. If σ is finite, its interval
length |σ| is the number of σ’s states minus 1, otherwise ω. Given i ≤ j ≤ |σ|,
j < ω, σi..j denotes σi . . . σj , and σi↑ is the suffix subinterval σiσi+1 . . . of σ. We
write σ |= A for interval σ satisfies A. Formula A is valid if all intervals satisfy
A. The definition of σ |= A by induction on the construction of A is as follows,
where i, j, k, ki and n are natural numbers:

σ |= true for any σ σ |= p iff p ∈ σ0 σ |= ¬A iff σ �|= A

σ |= A ∨ B iff σ |= A or σ |= B σ |= © A iff |σ| ≥ 1 and σ1↑ |= A

σ |= A U B iff, for some k ≤ |σ|, σk↑ |= B and for all j < k, σj↑ |= A

σ |= A;B iff for some k ≤ |σ|, σ0..k |= A and σk↑ |= B, or |σ| = ω and σ |= A

σ |= A∗ iff either (1) |σ| = 0,
or (2) there exists a finite sequence k0 = 0 < k1 < . . . < kn ≤ |σ|

such that for all i < n, σki..ki+1 |= A, and σkn↑ |=A,
or (3) |σ| = ω and there exists an infinite sequence

k0 = 0 < k1 < . . . such that σki..ki+1 |= A for all i < ω.

In the first case for chop, intervals σ0..k and σk↑ have overlapping state σk.
Cases (1)-(3) for chop-star concern zero, nonzero but finite, and infinite (“chop-
omega”) iterations, respectively. Chop here is weak, like the weak version W of
U, for potentially nonterminating programs which ignore B. Strong chop, which
forces the left subinterval to be finite, is derivable.

Consider a sample 5-state interval σ with the following alternating values for
the variable p: p ¬p p ¬p p. Here are four formulas σ satisfies:

p (© ¬ © true);¬p p ∧ (true;¬p)
(
p ∧ © ©(p ∧ ¬ © true)

)∗
.

For example, (© ¬ © true);¬p is true since σ’s prefix subinterval σ0σ1 satisfies
© ¬ © true (which is true exactly on 2-state intervals) and the adjacent suffix
subinterval σ1 . . . σ4 satisfies ¬p because p �∈ σ1. The formula (p ∧ © © ¬ © true)∗

is true since σ’s subintervals σ0σ1σ2 and σ2σ3σ4 both satisfy p ∧ © © ¬ © true,
but σ does not satisfy formulas ¬p, (© ¬ © true); p and true; (¬p ∧ ¬(true; p)).

An Application of Temporal Projection to Interleaving Concurrency 155

Table 1. Some Useful Derived LTL Operators

w©A =̂ ¬ © ¬A Weak Next more =̂ © true ≥ 2 states

empty =̂ ¬more One state skip =̂ © empty = 2 states

�A =̂ true U A Eventually �A =̂ ¬�¬A Always

inf =̂ �more Infinite interval finite =̂ ¬inf Finite interval

fin A =̂ �(empty ⊃ A) Final state (weak) halt w =̂ �(w ≡ empty) Halt upon test

Let w, w1 and w2 denote state formulas, which have no temporal operators.
Conventional LTL can be viewed as the subset of PITL with just the temporal
operators © and U. The infinite state sequences that are common with LTL are
just infinite intervals. Table 1 shows useful derived LTL operators.

Here are some sample valid PITL formulas:

A ⊃ (A;true) skip∗ inf ≡ true; false (w∧A);B ≡ w∧(A;B) A ≡ (empty ;A) .

We note that PITL without chop-star has the same expressiveness as LTL.
With chop-star, PITL has the same expressiveness as LTL with the addition of
propositional quantification (explicitly defined later in Sect. 4). That is, having
propositional quantification instead of chop-star gives the same regular expres-
siveness for finite intervals and ω-regular expressive power (i.e., MSO(ω,<)) for
infinite intervals. The LTL operator U is also expressible using chop, © and quan-
tification. More details about PITL’s expressiveness are found in [35],[38],[39].

3 Temporal Projection

The binary temporal operator Π for state projection [35],[19] provides a way to
examine dynamic behaviour at certain points in time and ignore all intermediate
states. Given an interval σ and a state formula w, let σ|w denote the sequence of
σ’s states satisfying w. If σ is infinite, σ|w can be finite or infinite. The definition
of Π, whose first argument is supposed to be a state formula, is

σ |= w Π A iff σi |= w, for some i ≤ |σ|, and σ|w |= A .

For example, σ |= p Π �q if p is true at some state of σ, and q is true whenever p
is, i.e., if σ |= �p ∧ �(p ⊃ q). We can generalise Π to permit arbitrary formulas
for selecting projected states by using σ|B = 〈σi : i ≤ |σ|, σi↑ |= B〉 to define
σ |= B Π A. This does not alter Π’s meaning when B is a state formula.

For a fixed w, w Π A is a normal unary modality on A. Its accessibility
relation σ �→ σ|w is deterministic. This entails the validity of the standard modal
axioms K and Dc, and the necessitation rule N [6,23]. These are normally
written in terms of the “universal” dual ¬(w Π ¬A) of w Π A, denoted w Πu A:

(K) w Πu (A⊃B)⊃(w Πu A ⊃ w Πu B), (Dc) w Π A ⊃ w Πu A, (N)
A

w Πu A
.

156 B. Moszkowski and D.P. Guelev

K, Dc and N are sufficient to infer equivalences such as

w Π (A ∧ B) ≡ w Π A ∧ w Π B

w Πu A ∧ w Π B ⊃ w Π (A ∧ B)
w Πu (A ⊃ B) ∧ w Π A ⊃ w Π B .

The following valid formulas are specific to Π:

�(w1 ≡ w2) ⊃ (w1 Π A) ≡ (w2 Π A)
w1 Π (w2 Π A) ≡ (w1 ∧ w2) Π A (2)
w Πu A ≡ �¬w ∨ w Π A, w Π A ≡ �w ∧ w Πu A (3)
w1 Π �w2 ⊃ �w2, �w2 ⊃ w1 Πu �w2 (4)

The equivalences (3) give a simple way to define Π and Πu in terms of each
other because �w is available to indicate whether the reference interval has a
nonempty projection. The implications (4) facilitate importing and exporting
properties into and from the scope of Π.

The valid equivalences below form a complete axiomatisation of Π relative to
basic PITL and show that every PITL formula with Π has a Π-free equivalent.

w Π true ≡ �w w Π (A ∨ B) ≡ w Π A ∨ w Π B
w Π p ≡ (¬w) U (w ∧ p) w Π (A U B) ≡ (w Π A) U (w Π B)
w Π ¬A ≡ �w ∧ ¬(w Π A) w Π © A ≡ (¬w) U (w∧ ©(w Π A))
w Π (A;B) ≡ (w Π A); (w ∧ w Π B)
w Π (A∗) ≡ ¬w U (

w ∧ ((w Π A) ∧ fin w)∗; w©�¬w
)

The equivalences about the LTL operators show that LTL formulas with Π have
Π-free LTL equivalents too.

By (2), A ≡ w Π B entails w Π A ≡ w Π B, so A has an equivalent of the
form w Π B iff |= A ≡ w Π A. This may be useful for synthesising a controller
to be run in parallel with other code from a global requirement R. The synthesis
is possible only if |= R ≡ (w Π R), where w marks the controller’s time slices.
The latter reduces to a basic ITL validity after eliminating Π from w Π R.

We originally defined Π so that σ |= w Π A vacuously holds when σ|w has
no states [19],[35]. This holds for Πu in this paper. Projection is false when no
projection interval exists for the real-time projection operators from [15–17], and
likewise for the projection operator from [36],[37] discussed in Sect. 4.2.

4 Formalisation of Imperative Concurrent Programs

We now look at a way to formalise in ITL imperative concurrent programs in
which processes are interleaved. The availability of sequential composition oper-
ators such as chop has long made ITL well suited for expressing sequential and
concurrent programs and executing them in ITL-based interpreters, as we previ-
ously investigated in [36]. Such an interpreter for an ITL programming language

An Application of Temporal Projection to Interleaving Concurrency 157

subset called Tempura is available from [27]. ITL has also been productively used
for symbolic execution for theorem proving [2,3]. Some later research by others
on expressing concurrent programs in variants of ITL is discussed in Sect. 5.

The approach described here is specifically meant to correspond to the popu-
lar notion of state transition systems (based on Keller’s work [30] and extensively
surveyed by Baier and Katoen [1]; see also [7],[31]), where at any time only one
of the program’s processes is allowed in global time to make a transition from
the current state to its immediate successor state and possibly make assignments
involving just these two adjacent states. This is a quite widely employed stan-
dard assumption for interleaving found in frameworks including Manna-Pnueli
Reactive Systems [33] (see also [4],[31]), Lamport’s TLA+ [32] (including the
TLC model checker), Jones’ Rely-Guarantee Conditions [28] (see also [43]), the
SPIN model checker [22] and Partial Order Reduction [7],[1] used by some model
checkers such as SPIN. Our intention is to develop a framework that a priori
seeks to maximise the use of ITL together with the operator Π for the inter-
leaving model. Projection constructs are not strictly required (since they can be
eliminated, as discussed later in Sect. 4.1), but we consider them here because
they bring succinctness and clarity.

Interleaved Parallel Composition. We now define

A |||p B =̂ p Π A ∧ (¬p) Π B

to express that two formulas A and B operate concurrently in an interleaved
manner with a boolean variable p indicating which is active in any given state.
We refer to this three-operand interleaving operator as |||−. It is commutative
and associative, subject to suitable manipulations of the middle operand:

|= A |||p B ≡ B |||¬p A (5)

|= (A |||p B) |||q C ≡ A |||p∧q (B |||q C) (6)

|= A |||p (B |||q C) ≡ (A |||p B) |||p∨q C (7)

Commutativity is easily proved, as is associativity, using the validity of

p Π (A |||q B) ≡ (p ∧ q) Π A ∧ (p ∧ ¬q) Π B .

When irrelevant, |||−’s middle operand can be quantified away:

A ||| B =̂ ∃p. (A |||p B) .

Here, σ |= ∃p. C holds iff σ′ |= C holds for some interval σ′ identical to σ
except possibly for p’s behaviour. 1 The definition of ||| here corresponds to
1 As noted in the introduction, such quantification does not increase PITL’s expres-

siveness: quantified formulas have equivalent quantifier-free ones. Here is how to
express U: |= A U B ≡ �B ∧ ∃p. (p ∧ �(p ⊃ (B ∨ (A ∧ © p)))

)
(e.g., see [31, p.84]),

where the following straightforward valid equivalences are used: inf ≡ (true; false),
finite ≡ ¬inf , �C ≡ (finite;C) (with � still being �’s dual: �C ≡ ¬�¬C).

158 B. Moszkowski and D.P. Guelev

Table 2. Some imperative programming constructs expressed in ITL

a := e =̂ skip ∧ nval [.a] = e
∧ ∀v ∈ (dom(nval) \ {.a}). (nval [v] = v̂)

a1, . . . , an := e1, . . . , en =̂ skip ∧ nval [.a1] = e1 ∧ · · · ∧ nval [.an] = en
∧ ∀v∈(dom(nval) \ {.a1, . . . , .an}). (nval [v] = v̂)

noop =̂ skip ∧ ∀v ∈ dom(nval). (nval [.v] = v̂)

li : A =̂ lab = li ∧ A

empty (Already defined in Table 1)

A;B (Already defined as primitive ITL operator in Sect. 2)

if w then A else B =̂ (w ∧ A) ∨ (¬w ∧ B)

while w do A =̂ (¬w ∧ A)∗; (empty ∧ w)

for some times do A =̂ A∗

A � B =̂ A ∨ B (Nondeterministic choice)

Baier and Katoen’s notion in [1]. With the middle operand quantified away, |||
is commutative and associative in the usual way. Both Π and |||− are expressible
using either ||| or |||−, so these operators can be taken as primitive instead of Π:

|= A |||w B ≡ (�w ∧ A) ||| (�¬w ∧ B)
|= w Π A ≡ (A |||w true) ∨ (�w ∧ A) .

The equivalence for expressing w Π A needs two cases because, unlike w Π A,
the disjunct A |||w true ensures that sometimes w is false.

Multiple Processes with Process Identifiers. When dealing with multiple
processes, it can be convenient to associate a numerical index with each one. An
auxiliary variable pid can be readily used for this. For instance, for a formula A |||p
B with two processes, we can take pid to range over {0, 1} and construct it using
the formula �(pid = if p then 0 else 1). For any expression e and formula A,
define e :: A to specify that e is the process id for A:

e :: A =̂ �(pid = e) ∧ A .

The existence of a suitable pid then readily ensures the validity of A ||| B ≡
∃pid . (0 :: A ||| 1 :: B). The proof uses the validity of A |||pid=0 B ≡ (0 ::
A ||| 1 :: B). The techniques easily generalise to any number of processes (e.g.,
0 :: A1 ||| 1 :: A2 ||| 2 :: A3).

The Rest of the Imperative Constructs. When formalising programs and
processes, the framework here takes the liberty of assuming that data variables
range over finite domains. Besides various constants such as the bit values 0 and
1, we also employ some finite sets and lists to deal with program variables. For
any given finite set of program variables, this all can in principle be proposition-
ally encoded.

Table 2 contains imperative programming constructs which can be viewed as
derived operators in ITL. We let \ denote set difference. Labels are optional,

An Application of Temporal Projection to Interleaving Concurrency 159

normally only added to each atomic assignment and noop, and do not affect
program operation. When specified, lab’s value is the active process’s current
label. Labelling just the atomic statements suffices to fully determine lab’s value
in all states but the final one, if the process terminates. Hence, each process ends
with another labelled formula of the form li : empty .

As we already noted, interleaving-based transition systems only perform
assignments involving two states adjacent in global time. However, a process
within |||− in projected time might not see the next global state even if the
current projected and current global states are identical. For example, suppose
the current global interval is s1s2s3s4 Therefore, assignments from current
global state s1 should involve s1 and the next global state s2. If a process in |||−
sees the current projected interval s1s4 . . . without states s2 and s3, then any
:= within |||− that sees the current state s1 cannot see global state s2 and so
cannot access s2 with © to assign variables. Such an instance of © instead sees
the next projected state s4 (although an alternative approach without projection
in Sect. 4.1 can indeed see state s2 by simply employing ©). Exactly the same
issue applies to the remaining program variables which := needs to frame (i.e.,
leave unchanged) and likewise for noop.

The assignment construct := instead uses state formulas and a state variable
nval which is a record (i.e., a finite list indexed by field names and like records in
Lamport’s TLA+ [32]). The purpose of nval is to store in the current projected
state the values which are to be assigned to variables in the next global state
(itself normally only accessible from outside of the scope of |||−). In effect, nval
helps tunnel from projected to global time. For each program variable a, nval
has an element nval [.a], where .a is a field name constant (like a quoted atom in
Lisp) serving as a subscript (TLA+ uses strings such as “a” to index records).
The assignment a := e does not actually change a or frame the remaining pro-
gram variables (i.e., it does not explicitly keep them unchanged). Instead, in the
current projected state (which is also the current global state), a := e treats its
first operand as a kind of reference (i.e., .a) and just sets nval [.a] equal to e, and
nval [.b] equal to b’s current value for every other (unaltered) program variable
b. The desired setting of a’s and b’s values in the next global state (to equal the
current values of nval [.a] and nval [.b], respectively) is handled separately outside
of |||− in global time, as discussed later, where the operator © can indeed access
the next global state.

The field name constant .a can serve as a reference to the variable a itself
because we let a be accessible via .a using the dereferencing construct .â (e.g.,
the equality .â = a is valid). We can abbreviate nval [.a] as nval .a (as in TLA+,
where nval [“a”] = nval .a). This shorthand is not applicable if the subscript is a
variable whose value is a field name constant. For example, if b equals .a, then
nval [b] equals both nval [.a] and nval .a (e.g., |= b = .a ⊃ nval [b] = nval .a) but
not necessarily nval .b.

As in TLA+, we can regard the record nval as a function from field name
constants to values, and let dom(nval) denote nval ’s domain which is in fact
the set of these field name constants. Hence, dom(nval) can serve as a set of

160 B. Moszkowski and D.P. Guelev

Process Pr0: Process Pr1:
l0 : x := 1; l2 : x := 1− x;
l1 : empty l3 : empty

A. Let dom(nvalPr) = {.x}. Initially x = 0.

Process Pr ′
0: Process Pr ′

1:
l′0 : x := 1; while y = 0 do
l′1 : y := 1; l′3 : noop;
l′2 : empty l′4 : x := 1− x;

l′5 : empty

B. Let dom(nvalPr′) = {.x, .y}.
Initially both x = 0 and y = 0.

Fig. 1. Simple concurrent programs Pr and Pr ′

references to the program variables for use in the semantics of atomic state-
ments (given above in Table 2) when framing variables (e.g., for an assignment
a := e, we need to explicitly formalise in the logic that all program variables
referenced by dom(nval) besides a remain unchanged.) For example, one con-
current program Pr ′ considered shortly has just two program variables x and
y, so dom(nval) = {.x, .y}, where .x and .y are the field name constants associ-
ated with x and y, respectively. The set dom(nval) especially helps to formalise
framing for programs with several variables.

The framing construct iframe now defined, when used in global states, ensures
that intended assignments of values recorded in nval in each projected state
actually take effect on the program variables themselves in the next global state:

iframe =̂ �
(
more ⊃ ∀v ∈ dom(nval). (nval [v] = © v̂)

)
.

For example, if dom(nval) = {.a}, then iframe is semantically equivalent to both
of the formulas �(more ⊃ nval [.a] = .â) and �(more ⊃ nval .a = a).

Here are sample valid formulas involving iframe (assume dom(nval) = {.a}):

|= iframe ∧ �(more ⊃ nval .a = a) ⊃ �(more ⊃ (© a) = a) (8)
|= iframe ∧ (¬p) Πu �(more ⊃ nval .a = a) ⊃ p Πu iframe . (9)

According to (8), if iframe controls a and also nval .a always equals a (except
maybe at the end), then © a also always equals a (except maybe at the end),
so, in other words, a is stable. Implication (9) describes that if iframe controls a
and also in time projected by ¬p, nval .a always equals a (except maybe at the
end), then iframe as well controls a within time projected by p.

Figure 1 shows two simple concurrent programs Pr and Pr ′. The next formula
for Pr includes initialisation and framing (as noted in Fig. 1, dom(nvalPr) =
{.x}):

x = 0 ∧ iframe ∧ Pr0 |||r Pr1 .

The middle operand r of |||− here need not be quantified away because we only
use |||− on the left side of ⊃. The first program can terminate with x equal to 0
or 1, but the second program ensures x ends equal to 0, as formalised below (as
noted in Fig. 1, dom(nvalPr ′) = {.x, .y}):

|= x = 0 ∧ y = 0 ∧ iframe ∧ Pr ′
0 |||r Pr ′

1 ⊃ fin(x = 0 ∧ y = 1) .

An Application of Temporal Projection to Interleaving Concurrency 161

Process Petersoni, for i ∈ {0, 1}
for some times do (

l0 : noop;
l1 : flagi := 1;
l2 : turn := 1;

while(flag1−i = 1 ∧ turn = 1 − i) do
l3 : noop;
l4 : noop; /* Enter critical section */
l5 : noop; /* Critical section */
l6 : flagi := 0; /* Leave critical section */
l7 : noop

);
l8 : empty

Let dom(nvalPeterson) = {.flag0, .flag1, .turn}.
Initially both flag0 = 0 and flag1 = 0, but turn’s initial value is unimportant.

Fig. 2. Version of Peterson’s algorithm with processes Peterson0 and Peterson1

The labels help link conditions on state to control points. Here is an example
stating that x will equal 1 when process Pr ′

1 is at label l′4:

|= x = 0 ∧ y = 0 ∧ iframe ∧ Pr ′
0 |||r Pr ′

1 ⊃ ¬r Π (lab = l′4⊃ x = 1) .

The next construct is a shorthand to test a process’s current label:

atp li =̂ p Π (lab = li)
atp{li1 , . . . , lik} =̂ p Π (lab ∈ {li1 , . . . , lik}) .

The previously discussed translation of Π to LTL in Sect. 3 ensures that atp li
can be expressed in LTL as ¬p U (p ∧ lab = li).

Figure 2 shows Peterson’s mutual exclusion algorithm [42]. The two processes
do not simultaneously access their critical sections (labels l5 and l6). Below are
some valid properties, where we let init denote flag0 = 0 ∧ flag1 = 0 (also, as
noted in Fig. 2, dom(nvalPeterson) = {.flag0, .flag1, .turn}):

|= init ∧ iframe ∧ Peterson0 |||r Peterson1

⊃ �¬(atr{l5, l6} ∧ at¬r{l5, l6})
(10)

|= init ∧ iframe ∧ Peterson0 |||r Peterson1

⊃ �(atr l0 ⊃ � atr l5) ∧ �(at¬r l0 ⊃ � at¬r l5)

|= init ∧ iframe ∧ (inf ∧ Peterson0) |||r (inf ∧ Peterson1)
⊃ �� atr l0 ∧ �� atr l5 ∧ �� at¬r l0 ∧ �� at¬r l5

|= Petersoni ⊃ �(more ⊃ nval .flag1−i = flag1−i)

|= Petersoni ⊃ �(more ⊃ nval .turn = turn ∨ nval .turn = 1 − i).

Implication (10) concerns mutual exclusion. Surprisingly, variants with l4 or
{l4, l5} instead of {l5, l6} are not valid: Suppose Peterson0’s process is active
(i.e., r is true) with lab = l4 (so atr l4 holds). If Peterson1’s currently inactive

162 B. Moszkowski and D.P. Guelev

process is beyond l2 and l3 but before l4, it could later on have lab = l4 when
in its next active state entering its critical section. Then at¬r l4 would be true
now! Hence, our approach has an interesting idiom to formalise behaviour.

4.1 Formalising Interleaving without Projection

As already discussed above, modelling of interleaving with Π needs the variable
nval and the iframe construct to ensure that each assignment to a program
variable is suitably performed between two globally adjacent states. An alter-
native framework without Π now presented avoids the need for either nval or
iframe and so is even closer to the interleaving semantics described by Baier and
Katoen [1]. Instead of using a record nval , we simply let pvars denote the set of
program variables’ field name constants to play a role like that of dom(nval).

The only constructs in Table 2 which need to be changed are the assignment
operator :=, noop and empty . Below is a definition of the alternative construct
:=′ for assigning to a single variable, where pvars is the set of program variables’
field name constants:

a :=′ e =̂ (© a) = e ∧ ∀v ∈ pvars \ {.a}. ((© v̂) = v̂)
∧ active ∧ ©

(
finite ∧ �(more ⊃ ¬active)

)
.

Here the operator © helps assign to a and frame other program variables over
the first two (global) states. The variable active is initially true, but then false
in the finite number of subsequent (intermediate) states, except in the last state,
to indicate inactivity. Note that :=′ does not determine active’s value in the last
state since this is left for a follow-on atomic statement to do. Similar definitions
for multiple assignments and the alternative construct noop′ are omitted here.
A variant of empty ensures active holds in a process’s final state:

empty ′ =̂ empty ∧ active .

Any such process A has the valid implication A ⊃ (active ∧ fin active).
Here are variants of Π and |||− which seem suitable:

w π A =̂ ¬w U (
(w ∧ Aw

active); (w ∧ w©�¬w)
)

A |||′w B =̂ (active ∧ w) π A ∧ (active ∧ ¬w) π B .

The construct w π A is similar to w Π A, but instead of projection, π uses the
variable active to restrict A’s active steps to when w holds. Properties of Π such
as (2) can be adapted to π. The role of π in the definition of |||′− is similar to that
of Π in the definition of |||−. Variants of the properties of commutativity (5) and
associativity (6)-(7) for |||− can also be shown for |||′−. It is possible to formally
relate programs with the projected and global constructs. Here is one possibility:

|= iframe ∧ �active ⊃ Pgm1 ≡ Pgm2 ,

where Pgm1 uses :=, ||| and so forth, which are replaced in Pgm2 with primed
versions such as :=′ and |||′, and we let sets dom(nval) and pvars be equal.

An Application of Temporal Projection to Interleaving Concurrency 163

Incidentally, as a handy shorthand we can let pvarsˆ denote the record with
indices in pvars such that for each .a ∈ pvars, the record element pvarsˆ[.a]
equals a’s value. For example, the equality (© pvarsˆ) = pvarsˆ keeps program
variables’ values unchanged in the next state. Also, nval [dom(nval) \ {.a}] can
denote the record equalling nval but without element nval [.a].

4.2 Comparison of State Projection with Time-Step Projection

Somewhat after Π was introduced in [19],[35], another binary ITL operator was
proposed in [36] (see also [37],[31]) for what can be referred to as time-step
projection. It is alternatively written as proj , � or \\. Unlike for Π, temporal
connectives almost always occur in both operands of proj . For finite σ,

σ |= A proj B iff there exists n ≥ 0 and i0 = 0 < i1 < . . . < in = |σ| such that
σik . . . σik+1 |= A, for each k < n, and σi0 . . . σin |= B .

Intuitively, A defines time steps and B is interpreted over the interval formed of
the endpoints of a sequence of such steps that links the endpoints of the reference
interval. The formula A∗ is expressible as A proj true, so it expresses the mere
possibility to represent the reference interval as a sequence of time steps specified
by A. Note that an interval may admit more than one suitable partitioning.

The definition of proj generalises to infinite time by allowing an infinite
number of adjacent finite subintervals. The validity of the implication

inf ⊃ A proj true ≡ (finite ∧ A)∗

shows how the operator proj can express chop-omega.
A primary application of proj is to define coarser time granularities, and it

is included in the Tempura programming language for such purposes, whereas
Π is best fit for interleaving concurrency. A variant of proj for projecting from
real to discrete time has been studied in [20],[15].

Π and, consequently, parallel composition |||−, can be expressed using proj :

|= p Π A ≡ ¬p U (
p ∧ ((© halt p) proj A); w©�¬p

)
.

Conversely, proj can be defined using Π and propositional quantification,
which, as noted in Sect. 2, does not add expressiveness to PITL:

|= A proj B ≡ ∃p. (p ∧ (A ∧ finite ∧ © halt p)∗ ∧ p Π B) ,

where variable p does not occur in A or B.

5 Related Work

Projection in the Duration Calculus. Dang [8] proposed for the Duration
Calculus (DC) [45],[44],[41] a real-time version of the projection operator Π writ-
ten / to reason about interleaving concurrency in hybrid systems. An operator

164 B. Moszkowski and D.P. Guelev

for parallel composition involving global time is also defined by Dang. The defini-
tion does not use projection, although some connections to it are demonstrated.
Guelev and Dang [17] further investigated this topic and other aspects of /.
A complete axiomatisation of DC with / is given in [18]. In [16], / is used to
specify that pairs of corresponding flexible non-logical symbols from isomorphic
predicate ITL vocabularies have the same meaning in projected subintervals. It
is shown that this entails the existence of interpolants for implications between
formulas written in the two vocabularies as in Craig’s classical interpolation
theorem.

Other kinds of Temporal Projection. Several research groups have subse-
quently proposed and studied other forms of temporal projection [36],[37],[20] for
use with ITL, DC and further variants such as Projection Temporal Logic [9–
11] and RGITL [2,3]. RGITL, which combines Jones’ Rely-Guarantee Condi-
tions [28] with ITL, also assumes interleaving and involves temporal projection
and local time. It has concurrency operators which are akin to ||| but defined
without using an explicit projection operator, and, as the authors acknowledge,
are much more complicated to handle. RGITL has been used extensively to rea-
soning about interleaved concurrent programs in the KIV proof verifier. Maybe
Π can help elucidate RGITL’s operators.

Our new approach aims to avoid as much as possible the need to intro-
duce new primitive temporal constructs (such as RGITL’s addition of branching-
time constructs) and assumptions about time. For example, reasoning in RGITL
about an individual process involving both its own next step and the system’s
(environment’s) next step uses for each program variable x two additional primed
variants x′ and x′′ associated with these. Of course, our purist approach (both
with and without a projection operator) will have some limitations (e.g., it might
indeed be incompatible with RGITL’s overall goals), but we would like to thor-
oughly research and assess the situation in future case studies and comparisons
involving a range of concurrent applications.

Jones et al. observe in [29] that RGITL could perhaps be quite attractive
(“seductive” in their words), although it might be too expressive, particularly
for an unskilled person. On the other hand, recent experience by Newcombe et
al. [40] at Amazon Web Services with successfully specifying and verifying subtle
industrial-strength concurrent algorithms using Lamport’s TLA+ [32] supports
the view that logics which can equally express algorithms and their correctness
properties are desirable, and can with care be made sufficiently accessible to sig-
nificantly benefit nonspecialists. More evaluation and comparison will be needed
to see whether powerful and general interval-based frameworks are overkill in
relation to other approaches specifically developed for the required purposes.

Eisner et al. [13,14] have developed LTL@, which adds a clock operator to
LTL to deal with time granularities in hardware systems. This is included in
the international standards Property Specification Language (PSL, IEEE Stan-
dard 1850 [24]) [12] and SystemVerilog Assertions (SVA, in IEEE Standard
1800 [26]) [5]. The clock operator adds succinctness but not expressiveness and is
its own dual. It requires modifying the semantics of formulas (e.g., “|=” includes

An Application of Temporal Projection to Interleaving Concurrency 165

both a state sequence and clock). The authors point out that the use of the term
“projection” for the clock operator in LTL@ and standards which adapt it is
imprecise since states in between the projected ones are still accessible (unlike
for Π). A similar construct called the sampling operator is found in temporal ‘e’
(part of IEEE Standard 1647 [25] and influenced by ITL [34],[21]).

6 Conclusions

We have explored new uses of the oldest known projection operator for ITL and
also related it with other such constructs. In future work, we would like to apply
this approach to larger concurrent applications. This research would include of
an evaluation of the merits of the two approaches presented here for formalising
concurrency in ITL with and without projection. Our plans also include explor-
ing formal connections with RGITL and Projection Temporal Logic as well as
clocked-based logics such as LTL@ (all mentioned in Sect. 5).

Acknowledgments. This research was partially supported by Royal Society Inter-
national Exchanges grant IE141148 and the EPSRC Uncover project (Ref.:
EP/K001698/1). We thank Maciej Koutny and the anonymous reviewers for their
comments and suggestions.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification

of concurrent systems using symbolic execution. AI Commun. 23(2–3), 285–307
(2010)

3. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with tem-
poral logic. Formal Aspects of Computing 23(1), 91–112 (2011)

4. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison-
Wesley, second edn. (2006)

5. Cerny, E., Dudani, S., Havlicek, J., Korchemny, D.: SVA: The Power of Assertions
in SystemVerilog, 2nd edn. Springer, Heidelberg (2015)

6. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

8. Dang, V.H.: Projections: A technique for verifying real-time programs in DC. Tech.
Rep. 178, UNU/IIST, Macau (1999). In: Proc. Conf. on Information Technology
and Education, Ho Chi Minh City, Vietnam, January 2000

9. Duan, Z.: An Extended Interval Temporal Logic and a Framing Technique for
Temporal Logic Programming. Ph.D. thesis, Dept. Comp. Sci., tech. rep. 556,
Newcastle University, UK (1996). http://hdl.handle.net/10443/2075

10. Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In:
Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg
(1994)

166 B. Moszkowski and D.P. Guelev

11. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of
Computer Programming 70(1), 31–61 (2008)

12. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

13. Eisner, C., Fisman, D.: Temporal logic made practical. In: Clarke, E.M., Henzinger,
T.A., Veith, H. (eds.) Handbook of Model Checking. Springer (Expected 2016).
http://www.cis.upenn.edu/∼fisman/documents/EF HBMC14.pdf

14. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The def-
inition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer,
Heidelberg (2003)

15. Guelev, D.P.: A complete proof system for first-order interval temporal logic with
projection. J. Log. Comput. 14(2), 215–249 (2004)

16. Guelev, D.P.: Logical interpolation and projection onto state in the Duration
Calculus. J. Applied Non-Classical Logics 14(1–2), 181–208 (2004)

17. Guelev, D.P., Dang, V.H.: Prefix and projection onto state in duration calculus.
Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)

18. Guelev, D.P., Dang, V.H.: A relatively complete axiomatisation of projection onto
state in the Duration Calculus. J. Applied Non-Classical Logics 14(1–2), 149–180
(2004)

19. Halpern, J., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal
intervals. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer,
Heidelberg (1983)

20. He, J.: A behavioral model for co-design. In: Wing, J.M., Woodcock, J., Davies, J.
(eds.) FM 1999. LNCS, vol. 1709, p. 1420. Springer, Heidelberg (1999)

21. Hollander, Y., Morley, M., Noy, A.: The e language: a fresh separation of concerns.
In: Proc. TOOLS Europe 2001: 38th Int’l Conf. on Technology of Object-Oriented
Languages and Systems, Components for Mobile Computing, pp. 41–50. IEEE
Computer Society Press (2001)

22. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional (2003)

23. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge,
London (1996)

24. IEEE: Standard for Property Specification Language (PSL), Standard 1850–2010.
ANSI/IEEE, New York (2010)

25. IEEE: Standard for the Functional Verification Language e, Standard 1647–2011.
ANSI/IEEE, New York (2011)

26. IEEE: Standard for SystemVerilog-Unified Hardware Design, Specification, and
Verification Language, Standard 1800–2012. ANSI/IEEE, New York (2012)

27. ITL web pages. http://www.antonio-cau.co.uk/ITL/
28. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
29. Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal

approaches to concurrency. Formal Asp. Comput. 27(3), 475–497 (2015)
30. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7),

371–384 (1976)
31. Kröger, F., Merz, S.: Temporal Logic and State Systems. Texts in Theoretical

Computer Science (An EATCS Series). Springer, Heidelberg (2008)
32. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Professional (2002)

http://hdl.handle.net/10443/2075
http://www.cis.upenn.edu/~{}fisman/documents/EF_HBMC14.pdf
http://www.antonio-cau.co.uk/ITL/

An Application of Temporal Projection to Interleaving Concurrency 167

33. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specifications. Springer, New York (1992)

34. Morley, M.J.: Semantics of temporal e. In: Melham, T.F., Moller, F.G. (eds.)
Banff’99 Higher Order Workshop: Formal Methods in Computation, Ullapool,
Scotland, 9–11 Sept. 1999. pp. 138–142. Univ. Glasgow, Dept. Comp. Sci., tech.
rep. (1999)

35. Moszkowski, B.: Reasoning about Digital Circuits. Ph.D. thesis, Department of
Computer Science, Stanford University, tech. rep. STAN-CS-83-970 (June 1983)

36. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press,
Cambridge (1986)

37. Moszkowski, B.: Compositional reasoning about projected and infinite time.
In: Proc. 1st IEEE Int’l Conf. on Engineering of Complex Computer Systems
(ICECCS’95), pp. 238–245. IEEE Computer Society Press (1995)

38. Moszkowski, B.: A hierarchical completeness proof for Propositional Interval
Temporal Logic with finite time. J. Applied Non-Classical Logics 14(1–2), 55–104
(2004)

39. Moszkowski, B.: A complete axiom system for propositional Interval Temporal
Logic with infinite time. Log. Meth. Comp. Sci. 8(3:10), 1–56 (2012)

40. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

41. Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic
Verification. Cambridge University Press, Cambridge (2008)

42. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett.
12(3), 115–116 (1981)

43. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge University Press (2001)

44. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. Springer, Heidelberg (2004)

45. Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

A High-Level Model for an Assembly Language
Attacker by Means of Reflection

Adriaan Larmuseau1(B), Marco Patrignani2, and Dave Clarke1,2

1 Uppsala University, Uppsala, Sweden
Adriaan.Larmuseau@it.uu.se

2 iMinds-Distrinet, K.U. Leuven, Leuven, Belgium
Marco.Patrignani@cs.kuleuven.be

Abstract. Many high-level functional programming languages are com-
piled to or interoperate with, low-level languages such as C and assem-
bly. Research into the security of these compilation and interoperation
mechanisms often makes use of high-level attacker models to simplify for-
malisations. In practice, however, the validity of such high-level attacker
models is frequently called into question. In this paper we formally prove
that a light-weight ML equipped with a reflection operator can serve as
an accurate model for malicious assembly language programs, when rea-
soning about the security threats such an attacker model poses to the
abstractions of ML programs that reside within a protected memory
space. The proof proceeds by relating bisimulations over the assembly
language attacker and the high-level attacker.

1 Introduction

High-level functional programming languages such as ML and Haskell offer pro-
grammers numerous security features through abstractions such as type systems,
module systems and encapsulation primitives. Motivated by speed and memory
efficiency, these high-level functional programming languages are often compiled
to low-level target languages such as C and assembly [7] or extended with For-
eign Function Interfaces (FFIs) that enable interoperation with these low-level
target languages [2]. The security features of these low-level languages, however,
rarely coincide with those of functional languages. In practice, the high-level
programs are often compromised by low-level components and/or libraries that
may be written with malicious intent or susceptible to code injection attacks.

Accurately modeling the impact that such malicious low-level code has on
high-level programs is rather challenging, as the semantics of low-level code
differs greatly from that of high-level functional programming languages. As an
alternative, high-level models that capture the capabilities of certain low-level
attackers have been introduced. Jagadeesan et al. [3], for example, make use of a
λ-calculus extended with low-level memory access operators to model a low-level
attacker within a memory with randomized address spaces. The validity of such
high-level models for low-level attackers is, however, often called into question.

In this paper we present La, a high-level attacker model derived directly from
a source language L by removing type safety and adding a reflection operator.
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 168–182, 2015.
DOI: 10.1007/978-3-319-25942-0 11

A High-Level Model for an Assembly Language Attacker 169

Our claim in previous works [5] has been that this attacker model accurately
captures the threats posed by an assembly language attacker to the abstractions
of a source language L, when the programs of that language reside within a
protected memory space. This protected memory space is provided by the Pro-
tected Module Architecture (PMA) [19]. PMA is a low-level memory isolation
mechanism, that protects a certain memory area by restricting access to that
area based on the location of the program counter. PMA will be supported in
a future generation of commercial processors [10]. Our high-level model of the
threats that the assembly language attacker, residing outside of the protected
memory, poses to the abstractions of programs residing within the protected
memory, is thus bound to be useful for many different practical applications.

In what follows, we prove that La, despite being simple to derive and for-
malise, is an accurate model of this assembly language attacker. We do so for
an example source language MiniML: a light-weight ML featuring references
and recursion, from which we derive a La attacker model MiniMLa. The proof
technique proceeds as follows: first we develop a notion of bisimulation over
the interactions between the high-level attacker MiniMLa and programs in the
source language MiniML. Next we develop a notion of bisimulation over the
interactions between the assembly language attacker and programs in MiniML
by adopting the labels of a previously developed fully abstract trace semantics
for the attacker model [11]. Finally, we establish our result by proving that the
latter bisimulation is a full abstraction of the former and vice versa.

The remainder of this paper is organised as follows. Firstly the paper intro-
duces the assembly language attacker and its high-level replacement (Section 2).
Secondly it details the example source language MiniML, the derived attacker
model MiniMLa and the bisimulation over MiniMLa (Section 3). Next, the paper
introduces a bisimulation over the assembly language attacker (Section 4) and
then presents a proof of full abstraction between both bisimulations (Section 5).
Finally the paper presents related work (Section 6) and concludes (Section 7).

2 Security Overview

This section presents the security-relevant notions of this paper. Firstly it details
the PMA enhanced low-level machine model and the associated assembly lan-
guage attacker (Section 2.1). Then it details contextual equivalence: the formal-
ism used to reason about the abstractions of high-level programming languages
as well as the threats that attackers pose to them (Section 2.2). Lastly we intro-
duce our high-level attacker model La, for which we prove further on in this
paper, that it captures all threats that the low-level attacker poses to the con-
textual equivalence of a source language L (Section 2.3).

2.1 PMA and the Assembly Language Attacker

Our low-level attacker is a standard untyped assembly language attacker running
on a von Neumann machine consisting of a program counter p, a register file r,
a flags register f and a memory space m that maps addresses to words and

170 A. Larmuseau et al.

contains all code and data. The supported instructions are the standard assem-
bly instructions for integer arithmetic, value comparison, address jumping, stack
pushing and popping, register loading and memory storing. For a full formalisa-
tion of these instructions and their operational semantics we refer the interested
reader to Patrignani and Clarke’s formalisation [11].

To enable the development of secure applications, for this paper the devel-
opment of secure programs in MiniML, this machine model has been enhanced
with the Protected Module Architecture (PMA). PMA is a fine-grained, pro-
gram counter-based, memory access control mechanism that divides memory
into a protected memory module and unprotected memory [13]. The protected
module is further split into two sections: a protected code section accessible
only through a fixed collection of designated entry points, and a protected data
section that can only be accessed by the code section. As such the unprotected
memory is limited to executing the code at entry points. The code section can
only be executed from the outside through the entry points and the data section
can only be accessed by the code section. An overview of the access control
mechanism is given below.

From \To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

A variety of PMA implementations exist. While current implementations of
PMA are still research prototypes [13], Intel is developing a new instruction set,
referred to as SGX, that will enable the usage of PMA in future commercially
available processors [10].

The attacker. The attacker considered in this work is an assembly program that
has kernel-level code injection privileges that can be used to introduce malware
into a software system. Kernel-level code injection is a critical vulnerability that
bypasses all existing software-based security mechanisms: disclosing confidential
data, disrupting applications and so forth. The attacker can thus inspect and
manipulate every bit of code and data in the system except for the programs
that reside within the protected memory of the PMA mechanism. As noted
above, PMA is a program counter-based mechanism, which the kernel-level code
injection capabilities of this attacker model cannot bypass [13].

2.2 Contextual Equivalence

As detailed in Section 1 our interest in the assembly language attacker of
Section 2.1, revolves around the security threat this attacker poses to the abstrac-
tions of programs that reside within a protected memory space. We formally
reason about this threat by means of contextual equivalence, as is often the case
in this research field [12]. Contextual equivalence (also known as observational
equivalence) provides a notion of observation of the behaviour of a program and
states when two programs exhibit the same observable behaviour. Only what

A High-Level Model for an Assembly Language Attacker 171

can be observed by the context is of any relevance, and this changes from lan-
guage to language, since different languages have different levels of abstractions.
Languages that feature many strong abstractions will thus produce a larger set
of contextually equivalent programs then those languages that do not.

Informally, a context C is a program with a single hole [·] that can be filled
with a program P , generating a new program C[P]. For example, if P is a
λ-calculus expression λx.x, a context is another λ-calculus expression with a
hole, such as ((λy.y)[·]). Two programs P1 and P2 are said to be contextually
equivalent if and only if there exists no context C, that can distinguish between
the two programs. Contextual equivalence is formalised as follows.

Definition 1. Contextual equivalence (�) is defined as:

P1 � P2
def= ∀C . C [P1]⇑ ⇐⇒ C [P2]⇑

where ⇑ denotes divergence [12].
From our security based perspective, contexts model malicious attackers that

interoperate with a program P and attack it. Consider, for example, the following
two higher-order λ-terms:

(a) (λx.(x 2) + (x 2)) (b) (λx.(x 2) ∗ 2) (Ex-1)

In a purely functional λ-calculus with no side-effects, these two terms are contex-
tually equivalent as there is no context that can distinguish them. In a λ-calculus
that includes references these two terms are, however, not equivalent as the fol-
lowing context/attack can distinguish between them.

Applying λ-term (a) will result in divergence as the reference r will be increased
twice, whereas applying λ-term (b) will not. The above is thus considered a
successful attack against the implementation details of the two λ-terms.

Our low-level assembly-language attacker of Section 2.1 poses an incredibly
strong threat to the contextual equivalences of any source language L as it can
compare and manipulate any sequence of bits it has access to. When interop-
erating with the λ-terms of Ex-1 our low-level attacker could thus distinguish
them by doing a bit-wise comparison on their memory encodings.

2.3 The High-Level Attacker Model La

Our high-level attacker model La aims to accurately model the threats posed
by the assembly-language attacker to the contextual equivalences of a source
language L, whose programs reside in the protected memory space of PMA. To
ensure that this attacker model can be formalised quickly and easily, we specify
it as three simple transformations that one must apply to a source language L
to derive the high-level, but accurate, attacker model La.

Transformation 1: removal of type safety. Type safety forces programs to pre-
serve types and avoids stuck states. Removing the typing rules of L ensures that
La has no such restrictions.

172 A. Larmuseau et al.

Transformation 2: introduction of reflection. The assembly language attacker is
not constrained by the source level restrictions of any programming language as
it can inspect and manipulate any sequence of bits it has access to. To replicate
this observational power we apply an insight from Wand [15], who discovered that
the inclusion of reflection into a programming language renders all abstractions
and associated source level restrictions meaningless.

Transformation 3: limit control flow. The assembly language attacker is in com-
plete control of its execution. The assembly language attacker can thus apply
reflection to any execution mechanisms of the original source language L. The
high-level attacker model La, however, is derived from L and is thus susceptible
to the same execution mechanisms as L. For La to be an accurate model of the
assembly language attacker these mechanisms must be relaxed or removed.

In all of our experimentations with applying the La attacker model to dif-
ferent source languages L, we have encountered but one constraint. It is only
possible to derive an accurate attacker model La from a source language L whose
function calls are observable, as an assembly-language attacker can accurately
observe function calls and their arguments. It is thus not possible to derive an
La style attacker from a purely functional λ-calculus, for example, because, as
illustrated in Ex-1 of Section 2.2, function calls are not observable there.

3 A Bisimulation over the High-Level Attacker

To prove the accuracy of the La attacker models in a general manner would
require a proof technique capable of reasoning over all source languages. This
not being possible, we instead introduce an example source language MiniML
(Section 3.1), for which we derive an instance of our La attacker model denoted
as MiniMLa (Section 3.2). Next, we model the interactions between MiniML and
the high-level attacker MiniMLa by applying our previously developed interop-
eration semantics [5], resulting in a combined calculus MiniML+ (section 3.3).
Lastly a bisimulation Ba that captures the observations and inputs of the
high-level MiniMLa attacker is derived over the semantics of this MiniML+

(Section 3.4). Later on, in Section 5, this bisimulation is related to a bisimu-
lation Bl over the observations and inputs of the assembly-language attacker
(Section 4), to prove the accuracy of the high-level MiniMLa attacker.

In what follows, the source language MiniML is typeset in a black font, The
attacker model MiniMLa is typeset in a bold red font.

3.1 The Source Language MiniML

The source language is MiniML: an extension of the typed λ-calculus featuring
constants, references and recursion. The syntax is as follows.

t ::= v | x | (t1 t2) | t1 op t2 | if t1 t2 t3 | ref t | t1 := t2 | t1 ; t2
| let x = t1 in t2 | !t | fix t | hash t | letrec x : τ = t1 in t2

A High-Level Model for an Assembly Language Attacker 173

op ::= + | − | ∗ | < | > | ==
v ::= unit | li | n | (λx : τ.t) | true | false
τ ::= Bool | Int | Unit | τ1 → τ2 | Ref τ
E ::= [·] | E t | v E | op E t | op v E | if E t2 t3 | ...

Here n indicates the syntactic term representing the number n, τ denotes the
types and E is a Felleisen-Hieb-style evaluation context with a hole [·] that lifts
the basic reduction steps to a standard left-to-right call-by-value semantics [1].
The letrec operator is syntactic sugar for a combination of let and fix. The
operators op apply only to booleans and integers. Locations li are an artefact of
the dynamic semantics that do not appear in the syntax used by programmers
and are tracked at run-time in a store μ ::= ∅ | μ, li = v. Allocating new locations
is done deterministically l1, .., ln. The term hash t maps a location to its index:
li
→ i, similar to how Java’s .hashCode method converts references to integers.

The reduction and type rules are standard and are thus omitted. The inter-
ested reader can find a full formalisation of the semantics of MiniML in a com-
panion technical report [6].

3.2 The High-Level Attacker Model MiniMLa

We now apply the three transformations specified for La to MiniML, resulting
in a new calculus MiniMLa: the high-level attacker.

Transformation 1: removal of type safety. Removing type safety is a straightfor-
ward transformation. The types and type checking rules of MiniML are removed
from the formalism and a new term wr is introduced that captures non reducible
expressions such as the following one:

where μ is the run-time store of MiniMLa. While capturing the stuck states of
the attacker is not required, removing them from the semantics does significantly
simplify proofs over the attacker model without reducing its effectiveness.

Transformation 2: introduce reflection. The most important feature of the La

attacker model is the inclusion of a reflection operator, as it renders the abstrac-
tions and the associated source level restrictions of a language meaningless [15].
Reflection is added to MiniMLa by means of a syntactic equality testing opera-
tor modulo α-equivalence ≡α. It enables a program in MiniMLa to compare the
syntax of any two terms as follows.

Transformation 3: limit control flow. MiniML enforces an evaluation order
through the evaluation contexts E (Section 3.1). The α-equivalence testing oper-
ator ≡α works around this enforced control flow, by not reducing its sub-terms
to values.

174 A. Larmuseau et al.

Attacks in MiniMLa. While MiniMLa is clearly not a low-level code formalism,
it does capture all relevant threats to contextual equivalence by the assembly
language attacker, as the addition of reflection in MiniMLa by means of the
α-equivalence operator, reduces contextual equivalence to α-equivalence [15].
Consider, for example, the following two contextually equivalent MiniML terms.

(λx : Int.(+ x x)) (λx : Int.(∗ 2 x)) (Ex-2)

There exists no context/attack in MiniML that can distinguish these two terms.
The following MiniMLa context, however, is an attack against this equivalence.

The context distinguishes the two equivalent terms due to the ≡α operator’s
ability to inspect the syntax of MiniML terms, where Ω is a diverging MiniMLa

term. A similar context C can thus be built for every pair of contextually equiv-
alent terms in MiniML apart from α-equivalent terms.

3.3 MiniML+: Interoperation Between MiniMLa and MiniML

To accurately capture the inputs and observations of the high-level attacker we
must first introduce a formalism for its interactions with programs in MiniML.
To do so we apply our previously developed language interoperation seman-
tics [5]. While there exists many different multi-language semantics (Section 6),
our interoperation semantics is the only one that supports separated program
states and explicit marshalling rules. The former is required to accurately cap-
ture the behaviour of the attacker, the latter is used to simplify and streamline
the transition to the low-level attacker model in Section 4.

Concretely the MiniML+-calculus combines the attacker model MiniMLa and
the source language MiniML by defining separated program states, specifying
marshalling rules, encoding cross boundary function calls through call stacks
and sharing data structures through reference objects.

Separated program states. The program state P = A || S of MiniML+ is split
into two sub-states: an attacker state A and a MiniML program state S. The
reduction rules for MiniML+ programs are denoted as follows: A || S � A′ || S′.

The MiniML state S is either (1) executing a term t of type τ , (2) marshalling
out values, (3) marshalling in input from the attacker that is expected to be of
type τ or (4) waiting on input.

(1) N;μ � ◦ t : τ (2) N;μ � � m : τ (3) N;μ � � m : τ (4) N;μ �

where m = v | v as the marshalling rules convert MiniML values to MiniMLa

values, and vice versa. The attacker state takes two forms: (1) it executes a
MiniMLa term t or (2) is suspended waiting on input from the MiniML program.

The states never compute concurrently. Whenever the MiniML state S computes,
the attacker state A is suspended and vice-versa.

A High-Level Model for an Assembly Language Attacker 175

Marshalling. Marshalling converts the result of MiniML programs to MiniMLa

values and inputs from the MiniMLa attacker to MiniML values. Marshalling,
booleans for example, is done as follows.

Note that when marshalling, the typing information encoded in the MiniML
state is used to ensure that the input does not violate MiniML typing rules.

Call stacks. To ensure that the program state is separable, the combined lan-
guage must explicitly encode the depth of the interactions between MiniML and
the attacker MiniMLa. To do so each state is extended with a call stack. The
MiniML state S encodes this call stack as a type annotated stack of evalua-
tion contexts ::= : τ → τ ′ | ε, where denotes a sequence of evaluation
contexts E that represent the continuation of computation when a call to the
attacker returns and are thus only to be filled in by input originating from the
attacker. The stack of evaluation contexts is type annotated, these types are
incorporated into the dynamic type checks of the marshalling rules to ensure
that the input from the attacker does not break type safety.

In contrast the attacker encodes the call stack through a sequence of con-
texts/attacks C, enabling it to attack each interaction with the MiniML pro-
gram. The attacker stack C is updated directly (Share), the MiniML stack is
plugged by the result of the marshalling rules (Plug), as follows.

Reference objects. Security relevant MiniML terms, namely λ-terms and loca-
tions, are shared by providing the attacker with reference objects, objects that
refer to the original terms of the program in MiniML. These reference objects,
have two purposes: firstly they mask the contents of the original term and sec-
ondly they enable the MiniML program residing within the protected memory, to
keep track of which locations or λ-terms and locations have been shared with the
attacker. MiniML+ models reference objects for λ-terms and locations through
names nf

i and nl
i respectively. Both names are tracked in the MiniML state S

through a map N that records the associated term and type, as follows.

N ::= � | N,nf
i
→ (t, τ) | N,nl

i
→ (t, τ)

A fresh name nf
i is created deterministically every time a λ-term is shared be-

tween the MiniML program and the attacker, in contrast the index i of the name
nl
i will correspond to the index of the location it refers to (nl

i
→ li).
The MiniMLa attacker shares only its functions with the MiniML programs.

These attacker functions are embedded through a term τF(λx.t). A MiniML
program calls this embedded attacker function, as follows.

176 A. Larmuseau et al.

3.4 Ba: A Bisimulation over the MiniMLa Attacker

To capture the inputs and observations of the high-level MiniMLa attacker in a
formalism that can be easily related to the inputs and observations of the assem-
bly language attacker, we define a notion of bisimulation Ba. To do so we define
an applicative bisimulation in the style of Jeffrey and Rathke’s applicative bisim-
ulation for the vref-calculus [4]. The applicative bisimulation is defined through a
labelled transition system (LTS), that models the inputs and observations of the
high-level MiniMLa attacker in its interactions with the MiniML program. The
LTS is a triple (S, α,

α−−→) where the MiniML states S of MiniML+ are the states
of the LTS, α the set of labels and α−−→ the labelled transitions between states. The
attacker state A is thus not represented in these labelled reductions, instead the
labels α denote the observations of the high-level MiniMLa attacker as follows.

α ::= γ | τ | √
γ ::= v? | v! | wr | � (λx.t) | � nl

i | � nf
i | � refτ | !nl

i

The labelled reductions of the LTS are of the form: S
γ−−→S′. The most relevant

transitions are as follows.

The internal reduction steps (S-Inner) and the marshalling transitions are not
observable to the attacker and are thus labelled as silent through the label τ .
The values v that the attacker returns or inputs are decorated with ? (A-V). The
values returned by the MiniML program to the attacker, returned as marshalled
values v, are decorated with ! (M-V). The attacker can dereference a shared
location in a one step transition that is labeled as !ni (D-N). The attacker can
also set locations, create shared locations (A-R) and apply shared MiniML λ-
terms through two transitions. In the first step, whose label is decorated with �,
the MiniML program is updated with the requested operation and the targeted
term. In the second step the attacker injects an argument as captured by the
value sharing rule (A-V). Whenever, an MiniML program calls a function of the
attacker (C-L) the attacker observes the call as well as the, immediately following,

A High-Level Model for an Assembly Language Attacker 177

argument to the function (M-V). If the marshalling fails (Wr-I) or the attacker
makes an inappropriate call (Wr-C), the transition is labelled as wrong (wr).

We define a weak bisimulation over this LTS. In contrast to a strong bisimu-
lation, such a bisimulation does not use the silent transitions between two states,
thus capturing the fact that the attacker cannot directly observe the number of
internal reduction steps within a MiniML program. Define the transition rela-
tion S

γ
=⇒ S′ as S

τ−−→∗ γ−−→S′ where τ−−→∗
is the reflexive transitive closure of the

silent transitions τ−−→. Our bismulation Ba over the observations and inputs of
the MiniMLa attacker is now defined as follows.

Definition 2. The relation Ba is a bisimulation iff S1 Ba S2 implies:
(1) Given S1

γ
=⇒ S′

1 there is S′
2 such that: S2

γ
=⇒ S′

2 and S′
1 Ba S′

2

(2) Given S2
γ
=⇒ S′

2 there is S′
1 such that: S1

γ
=⇒ S′

1 and S′
1 Ba S′

2

We denote bisimilarity, the largest bisimulation, as ≈a.

Congruence. Just defining a bisimulation over the observations and inputs of
the MiniMLa attacker is not enough. We must also prove that the bisimulation
accurately captures those observations and inputs. We do this by proving that
the bisimulation Ba is a congruence: it coincides with contextual equivalence in
MiniML+ where the contexts of MiniML+ are all possible attacks definable in
MiniMLa. Formally contextual equivalence over MiniML+ is defined as follows.

Definition 3. Contextual equivalence for MiniML+ (�a) is defined as:

S1 �a S2
def= ∀A.(A || S1)⇑ ⇐⇒ (A || S2)⇑

Theorem 1 (Congruence of the Bisimilarity). S1 �a S2 ⇐⇒ S1 ≈a S2.

A proof of this property is an adaptation of existing results [5], as such we leave
it to the companion technical report [6].

4 A Bisimulation over the Assembly Language Attacker

In this section we introduce a bisimulation over the assembly language that cap-
tures its interactions with an MiniML program residing in the protected memory
of the PMA mechanism. To accurately capture the inputs and observations of the
assembly language attacker we adopt the labels of a fully abstract trace seman-
tics over the interactions between the attacker and the protected memory space
(Section 4.1). Next, we define the applicative bisimulation ≈l over an LTS whose
state is a low level extension of the MiniML state of Section 3.3 (Section 4.2).
Later on in Section 5, we relate this bisimulation to the bisimulation over the
high-level attacker to prove the accuracy of the high-level attacker.

4.1 A Trace Semantics for the Assembly Language Attacker

To accurately reason about the capabilities and behaviour of the assembly
attacker we make use of the labels used by the fully abstract trace semantics of
Patrignani and Clarke [11] for assembly programs enhanced with PMA. These

178 A. Larmuseau et al.

trace semantics transitions over a state Λ = (p, r, f,m, s) where p is the program
counter, m is the protected memory of PMA and s is a descriptor that details
where the protected memory partition starts as well as the number of entry
points. Additionally Λ can be (unkown,m, s) when modeling the attacker. The
attacker thus does not feature an explicit state, instead the labels L capture its
observations and inputs as follows.

L ::= α | τ α ::=
√ | γ! | γ? γ ::= call p(r) | ret p(r)

A label L can be either an observable action α or a non-observable action τ .
Decorations ? and ! indicate the direction of the observable action: from the
attacker to the protected memory (?) or vice-versa (!). Observable actions include
a tick

√
indicating termination, and actions γ: function calls or returns to a

certain address p, combined with the registers r. These registers convey the
arguments of the calls and returns.

The traces provide an accurate model of the attacker as they coincide with
contextual equivalence for assembly programs enhanced with PMA.

Proposition 1 (Full Abstraction [11]).

Where �l denotes contextual equivalence between low-level programs and where
Tr(P) computes the traces of a program, with an initial state Λ(P) as follows.

Tr(P) = {γ | ∃Λ′.Λ(P)
γ

==⇒ Λ′}
Note that this trace semantics does not include explicit reads or writes from

the protected memory to the unprotected memory or reads and writes from
the attacker to the protected memory. The latter is not possible as it violates
PMA (Section 2.1), the former is not required in our work as the data shared by
MiniML programs fits in to the registers r. Incorporating larger data structures
that require low-level reads and writes, has been left for future work.

4.2 Bl: A Bisimulation over the Assembly Language Attacker

While the trace semantics of Section 4.1 provides an accurate method for rea-
soning about the attacker, the states Λ of that semantics include many low-level
details of the protected memory that are not relevant to the result of this paper.
We thus define a bisimulation Bl that keeps the labels of the trace semantics,
to denote the inputs and observations of the assembly language attacker, but
features a more high-level state that denotes only the relevant information.

This state is a triple 〈S, e, p〉: the MiniML state of MiniML+ extended with
static set of entry points e and a stack of return pointers p. The MiniML state S
captures the current state of the MiniML program interacting with the attacker
from within protected memory. The set of entry points e contains the addresses
pe of the entry points into the protected memory that the attacker can call. The
stack of return pointers p enables the MiniML program to return to the address
of the attacker were a call to an entry point originated from.

Note that assembly language attacker inputs and outputs words of bytes w
instead of the high-level values v. The marshalling rules of MiniML+ over the

A High-Level Model for an Assembly Language Attacker 179

MiniML state S are thus adapted to convert to and from words w. Marshalling
in a value and marshalling out a value, for example, is as follows.

The numbers n, and names nl
j and nf

i are converted into a word of bytes w, in
a similar manner. Functions pf from the attacker are embedded as τ1→τ2Fpf .

The bisimulation Bl is now over defined an LTS (〈S, e, p〉, L,
L−−→), where L

are the labels of the fully abstract trace semantics and L−−→ denotes the labelled
transitions between the states. The most relevant transitions are as follows.

Transitions within the MiniML program, such as for example S-Inner, are not
observable the attacker and are thus again labelled as silent. To start the compu-
tation of the MiniML program, the low-level attacker calls the entry point pe

start

passing as its only argument pr the address at which it expects the result returned
(A-Start). When the MiniML program returns to that address (M-Ret), it makes
use of modified marshalling rules to return a word w to the address at the head of
the stack p instead of MiniMLa values, as detailed earlier. The assembly language
attacker, in contrast, has less freedom for its returns. Because it cannot jump to an
address of the protected memory outside of the entry points, it must return its val-
ues through a return entry point pe

retb (A-R). Whereas each operation by the high-
level attacker on the MiniML terms shared to it through names ni was denoted

180 A. Larmuseau et al.

with its own label, the assembly language attacker calls a separate entry point for
each operation (A-Deref,A-Apply) passing a byte word representation of the names
(wn) as an argument to the call. Whenever the assembly-language attacker makes
a mistake by either providing words that cannot be marshalled (Wr-I) or by call-
ing or returning to an inaccessible address (Wr-C,Wr-R) the protected memory is
terminated to the empty state 〈(�; ∅ � ε), e, ∅〉. While the attacker makes many
different types of calls to the protected memory, the MiniML program, only calls
attacker functions pf whenever it applies them to an MiniML value (M-Call).

We now define a notion of weak bisimulation, that does not take into account
the silent transitions τ only the actions α, over the LTS. Define the transition
relation 〈S, e, p〉 α==⇒ 〈S′, e, p′〉 as 〈S, e, p〉 τ−−→∗ α−−→〈S′, e, p′〉 where τ−−→∗

is the
reflexive transitive closure of the silent transitions τ−−→.

Definition 4. Bl is a bisimulation iff 〈S1, e1, p1〉 B 〈S2, e2p2〉 implies:

1. Given 〈S1, e1, p1〉 α==⇒ 〈S′
1, e1, p1

′〉, There is 〈S′
2, e2, p2

′〉 such that
〈S2, e2, p2〉 α==⇒ 〈S′

2, e2, p2
′〉 and 〈S′

1, e1, p1
′〉B〈S′

2, e2, p2
′〉

2. Given 〈S2, e2, p2〉 α==⇒ 〈S′
2, e2, p2

′〉, There is 〈S′
1, e1, p1

′〉 such that
〈S1, e1, p1〉 α==⇒ 〈S′

1, e1, p1
′〉 and 〈S′

1, e1, p1
′〉B〈S′

2, e2, p2
′〉

We denote bisimilarity, the largest bisimulation as, ≈l.

5 Full Abstraction

We now establish the accuracy of the high-level attacker by proving that the
bisimulation over the assembly-language attacker is a full abstraction of the
bisimulation over the high-level MiniMLa attacker. We thus prove that there is
no assembly language attacker action that affects the abstractions of MiniML
programs residing in the protected memory, that cannot be replicated by the
high-level attacker MiniMLa.

Theorem 2 (Full Abstraction). {t1}↑ ≈a {t2}↑ ⇐⇒ {t1}↓ ≈l {t2}↓

where {t}↑ denotes the start state: (�; ∅ � ε ◦ t : τ) of an MiniML term t when
faced with the MiniMLa attacker and where {t}↓ denotes the start state: 〈(�; ∅ �
ε ◦ t : τ), e, ∅〉 of an MiniML term when faced with the assembly language attacker.

The proof splits the thesis into two sublemma: preservation and reflection.

Lemma 1. (Preservation) {t1}↑ ≈a {t2}↑ ⇒ {t1}↓ ≈l {t2}↓.

Proof Sketch. We must establish that there exists a relation R, so that:
(1) {t1}↓ R{t2}↓ and (2) that R relates low-level states 〈S, e, p〉 and 〈S′, e′, p′〉
as would Bl. We define R as a union of relations R = R0 ∪ R1 ∪ R2 ∪ R3: one
relation for each possible kind of low-level state. The relation R0 relates halted
states: 〈(N;μ �), e, p〉 and 〈(N′;μ′ � ′), e′, p′〉 and enforces that the name maps
are equivalent: Dom(N) = Dom(N′) ∧ ∀ni.N(ni) � N′(ni), the evaluation stacks
are equivalent: | | = | ′| ∧ ∀E, E′, t.E[t] � E′[t], the entry point sets are equal

A High-Level Model for an Assembly Language Attacker 181

e = e′, and that the return address stacks are equal as well p = p′. The relation
R1 relates two states reducing terms contextually equivalent terms t and t′ in
addition to upholding R0. The relations R2 and R3 relate the marshalling states,
they require that R0 holds and that the marshalled terms are equal if they are
assembly language terms. Case (1) now follows from the assumption. Case (2)
proceeds by analysis on the label L. The most challenging sub-case is the call
from MiniML to the low-level attacker labelled as L = call pf (w)!. To prove that
both states will perform the same outward calls, we rely on the insight that by
including references in MiniML we have that two equivalent MiniML terms will
perform the same function calls, as illustrated for (Ex-1) in Section 2.2.

Lemma 2. (Reflection) {t1}↓ ≈l {t2}↓ ⇒ {t1}↑ ≈a {t2}↑.

Proof Sketch. We prove the contrapositive: {t1}↑ �≈a {t2}↑ ⇒ {t1}↓ �≈l {t2}↓.
The proof has two cases. In the first case the bisimulation fails immediately as
the MiniML terms t1 and t2 embedded in S either reduce to difference values or
diverge. These differing LTS transitions are replicated directly in the low-level
bisimulation, the only difference being the inclusion of a start transition with label:
call pe

start(pr) that starts the reduction of the embedded MiniML terms. In the
second case there is a sequence of context actions (� (λx.t) | � nl

i | � nf
i |

� refτ | !nl
i) that result in two states where different LTS transitions apply. In

this case we establish the thesis by showing that each high-level attacker action
can be replicated by an assembly-language attacker action.

Full proofs for both lemmas are provided in a companion report [6].

6 Related Work

Our attacker model is based on the insights of Wand [15] on the nature of pro-
gramming language reflection. Alternative attacker models are Jagadeesan et
al.’s attacker language with low-level memory access operators [3] or the erasure
function approach of several non-interference works [8]. The former is only suit-
able for low-memory models with address space randomization, the latter does
not lend itself to low-level attackers.

In Section 3.3 we use the interoperation semantics of Larmuseau et al. [5] to
model the interoperation between the MiniMLa attacker and the source language
MiniML. There exist multiple alternatives for language interoperation: Matthews
and Findler’s multi-language semantics [9] enables two languages to interoperate
through direct syntactic embedding and Zdancewic et al.’s multi-agent calculus
that treats the different modules or calculi that make up a program as different
principals, each with a different view of the environment [16]. These alternatives,
however, do not provide separated program states or explicated marshalling rules
both required to model the assembly language attacker.

Our notions of bisimulation over the interactions of the high-level and low-
level attackers are based on the bisimulations for the νref-calculus by Jeffrey and
Rathke [4]. An alternative approach could be the environmental bisimulations of
Sumii and Pierce [14], which would not require a hash operation in MiniML to

182 A. Larmuseau et al.

make the locations observable within the labels. Their bisimulations, however,
do not provide a clear formalism to reason about the observations of an attacker.

7 Conclusions

This paper presented a high-level attacker model La that captures the threat
that an assembly-language attacker poses to the abstractions of a program that
resides within the memory space protected by PMA, a low-level memory isolation
mechanism. The accuracy of this high-level attacker model was proven for an
example language MiniML, by relating a bisimulation over the the high-level
attacker model to a bisimulation over the assembly language attacker.

References

1. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoret. Comput. Sci. 103(2), 235–271 (1992)

2. Furr, M., Foster, J.S.: Checking type safety of foreign function calls. In: PLDI 2005,
pp. 62–72. ACM (2005)

3. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: CSF 2011, pp. 161–174. IEEE (2011)

4. Jeffrey, A., Rathke, J.: Towards a theory of bisimilarity for local names. In: Logic
in Computer Science, pp. 56–66. IEEE (2000)

5. Larmuseau, A., Clarke, D.: Formalizing a secure foreign function interface. In:
Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 215–230.
Springer, Heidelberg (2015)

6. Larmuseau, A., Clarke, D.: Modelling an Assembly Attacker by Reflection. Tech-
nical Report 2015–026, Uppsala University (2015)

7. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vôuillon, J.: The Objective Caml
system, release 4.02. Technical report, INRIA, August 2014

8. Li, P., Zdancewic, S.: Arrows for secure information flow. Theoret. Comput. Sci.
411(19), 1974–1994 (2010)

9. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
TOPLAS, 31(3):12:1–12:44 (2009)

10. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., hanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated
execution. In: HASP 2013, pp. 10:1–10:1. ACM (2013)

11. Patrignani, M., Clarke, D.: Fully Abstract Trace Semantics of Low-level Isolation
Mechanisms. In: SAC 2014, pp. 1562–1569. ACM (2014)

12. Plotkin, G.: LCF considered as a programming language. Theor. Comput. Science
5, 223–255 (1977)

13. Strackx, R., Piessens, F.: Fides: Selectively hardening software application compo-
nents against kernel-level malware. In: CCS 2012, pp. 2–13. ACM

14. Sumii, E., Pierce, B.C.: A bisimulation for dynamic sealing. In: POPL 2004, pp.
161–172. ACM (2004)

15. Wand, M.: The theory of fexprs is trivial. Lisp and Symbolic Computation 10(3),
189–199 (1998)

16. Zdancewic, S., Grossman, D., Morrisett, G.: Principals in programming languages:a
syntactic proof technique. In: ICFP 1999, pp. 197– 207. ACM

Design and Implementation

Improving Design Decomposition

David Faitelson1(B) and Shmuel Tyszberowicz2

1 Afeka Tel-Aviv Academic College of Engineering, Tel Aviv, Israel
davidf@afeka.ac.il

2 The Academic College Tel Aviv-Yaffo, Tel Aviv, Israel
tyshbe@tau.ac.il

Abstract. Decomposing a system into subsystems is essential to the
design of large software systems. Traditionally, it is performed intuitively
without rigorously analyzing the system model. This makes it difficult
to check the decomposition correctness, and risks creating subsystems
that are either too tightly coupled or not cohesive enough. An aggra-
vating factor is that traditionally classes are the atomic design units.
In many cases, however, the same classes play a role in more than one
subsystem, and partitioning them unbroken among the subsystems may
increase coupling and reduce cohesion. We present an analytical approach
that enables reasoning about early exploration of decomposition alter-
natives. In addition, we describe a visual notation for diagramming the
composition of subsystems, and an automatic technique for suggesting
good decompositions. A key to our approach is that individual relations,
not classes, are the atomic design units. We illustrate the approach with
examples and demonstrate its effectiveness on a commercial system.

Keywords: Decomposition · Coupling · Cohesion · Visualization ·
Refinement

1 Introduction

Decomposing a system into subsystems is an essential activity in the design
of large software systems. Traditionally, subsystem decomposition is performed
intuitively, based on the experience of the system designers [12], not on any
rigorous analysis of the actual dependencies between the system’s functionality
and structure. While intuition is indispensable, relying solely on it has caused
many systems to fail to meet their requirements due to poor design [19].

There is not a lot of modern work on functional decomposition. Software
architecture explores different decomposition styles to address non-functional
concerns (e.g. peer-to-peer to address distribution, pipe and filter to address
throughput, layers to address security and incremental development, etc. [9]).
Similarly, the aspect oriented approach deals with non-functional concerns that
crosscut the entire system (tracing, logging, synchronization, etc.). Neither, how-
ever, address functional decomposition.

This work has been partially supported by GIF (grant No. 1131-9.6/2011).

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 185–200, 2015.
DOI: 10.1007/978-3-319-25942-0 12

186 D. Faitelson and S. Tyszberowicz

The object-oriented design (OOD) literature does not say much about sub-
system decomposition, as most discussions focus on finding classes. Even when
this problem is addressed, it receives little treatment and often the advice is to
partition the system into “loosely coupled, strongly cohesive” modules, without
saying how to find such a decomposition. An exception is [9], that offers two
heuristics: one is to create subsystems from groups of classes that are densely
connected and the other is to create a subsystem from the classes that partic-
ipate in each use case. In practice, however, this advice is very hard to follow.
The problem is that traditional OOD assumes that classes are atomic design
units and decomposition is defined as partitioning classes between subsystems.
In many cases, however, such an approach leads to fundamental difficulties. For
example, consider a restaurant management system that keeps track of orders,
reservations, and a waiting list of people waiting outside. As ordering food, man-
aging reservations, and managing the wait list are separate areas of functionality,
it is reasonable to partition the system into three subsystems. The concept of
a table is essential to this domain, thus we define a class to model it. But in
which subsystem should we put it? In the subsystem that manages the orders?
In the subsystem that keeps track of reservations? Or should we create a special
subsystem to hold the class?

In general, many conceptual entities may be shared by the different areas of
functionality that a system manages. But if we model each entity as an atomic
class we create an artificial problem of where to put the class (i.e., in which sub-
system). Creating subsystems to hold the overlapping concepts is bad, because
such subsystems have poor cohesion and no coherent behavior. Instead, we argue
that it is better to allocate individual relations to the subsystems according to
how they are used by the system operations. The class, once broken, is used only
to represent the unique identity of its instances, to ensure that the subsystems
refer to the same (problem domain) objects.

Regarding our restaurant example, it may be better to split the attributes
and associations of the table class into subsets of coherent functionality: the
attributes that correspond to taking orders become a part of the orders subsys-
tem, the attributes and associations that keep track of the waiting list become a
part of the waiting list subsystem, etc. Instances of the table class can be used
as identifiers, to ensure that all the subsystems refer to the same set of tables.

Our contribution consists of: (1) a method for scaling formal system models
by breaking them into modular subsystems, (2) criteria for reasoning about the
decomposition correctness, (3) a technique for visualizing the impact of decom-
position choices on the system’s functional structure, and (4) an approach for
automatically finding good (low coupling/high cohesion) subsystem candidates.

In the following sections we describe a formal model of software systems
that takes relations as atomic units of design. We then explain how we can use
it to model software systems and subsystem decompositions, and how we can
reason about their correctness. Next, we show how to visualize the dependencies
between the system operations and state variables, and how this facilitates the

Improving Design Decomposition 187

sig Table { occupied : set Diner }

sig Diner { reservations : set Table }

fact { ∀ t : Table • lone t.occupied }

Fig. 1. A simple Alloy model. Note that w are using a LaTeX package that replaces
Alloy keywords with their equivalent mathematical symbols.

selection of good decompositions. We explain how to use the approach even when
the system is developed without a formal model. Finally, we provide a case study
to demonstrate the approach’s scalability.

2 A Relational Model of Software Systems

The relational state based model is a familiar approach to the specification of
software systems [2,3,15,26]. In essence, a relational model consists of: (i) a finite
collection of sets of atomic entities (basic sets in Z, atoms in Alloy), (ii) a finite set
of state variables, each being a relation between the basic sets, (iii) an invariant
predicate that constrains the sets and relational variables to fit the requirements
of the system that we model, and (iv) a finite set of operation-specifications,
each a predicate that defines the effect of an operation by describing the relation
of the state variables before the operation begins to their value after it ends.

As we are using Alloy in this paper, we explain briefly its essential con-
cepts and the modeling style that we are using. For more details see [15]. In a
nutshell, the Alloy language describes constraints over relational variables that
range over relations between sets of atoms. The constraints are first order predi-
cates on the variables. To make Alloy more friendly to software engineers, these
concepts are presented in a syntax similar to that of popular object oriented
languages. For example, the Alloy model in Fig. 1 appears similar to a class
model with two classes, Table having an occupied field and Diner hav-
ing a reservations field. But actually, this model defines two sets of atoms
(Table and Diner) and two relational variables (occupied is a relation
between Table and Diner and reservations is a relation between Diner
and Table). The relational semantics behind the object-oriented skin becomes
apparent when we write expressions such as ~occupied (the inverse relation
of occupied) or reservations.occupied (the relational composition of
reservations and occupied). In addition the model defines a constraint
(fact) that ensures a table can be occupied by at most one (lone) diner1.

Alloy has no predefined notion of a software system. Therefore, we must adopt
a particular style and a set of conventions for writing such models. In the style
that we use2, each system variable that represents a relation of arity n is modeled
as a relational variable with an arity of n + 1, the extra dimension representing
the moment in time (aka the system’s state, because the system evolves through

1 This can be written more concisely; we write it this way to illustrate facts in general.
2 This style is explained in detail in chapter 6 of [15].

188 D. Faitelson and S. Tyszberowicz

Table 1. A summary of the operations provided by the restaurant management system.

Operation Description

reserve reserve a table for a diner at a future date
unreserve cancel an existing reservation
leave remove a diner from the waiting list
wait add a diner to the waiting list
order order food for an occupied table
cancel cancel an order
checkin assign a diner to a free table
checkout clear the table of a diner that has left the restaurant
prepare setup reserved tables and release stale reservations

sig State { today : Date }

sig Dish {}

sig Diner {

waiting : set State ,

head : set State , // last person in waiting list

next : Diner lone -> State , // next in waiting list

reservations : Table -> Date -> State }

sig Table {

free , occupied : set State ,

reserved : Diner -> Date -> State ,

orders : Dish -> State }

pred wait[s,s’ : State ,p : Diner] {

s.today = s’.today and p �∈ waiting.s and no free.s

waiting.s’ = waiting.s + p

next.s’ = next.s + p -> head.s

head.s’ = p

reservations.s’ = reservations.s

orders.s’ = orders.s

occupied.s’ = occupied.s

reserved.s’ = reserved.s

free.s’ = free.s }

Fig. 2. An Alloy fragment of the restaurant system model.

a sequence of discrete time steps) in which the variable held this particular
value. For example, to model how the occupied relation changes when the
system operates, we replace its definition with occupied : Diner ->State .
We can now write occupied.s1 and occupied.s2 to refer to the value
of occupied at different system states. Note that in this modeling style the
State signature has no fields of its own. In general, given a system with n state
variables v1, . . . , vn the state of the system at a particular moment s is defined
as the value of all the state variables at moment s, that is as v1.s, . . . , vn .s.

Finally, to model system operations, we use Alloy pred definitions. For
example, the predicate wait in Fig. 2 models the operation that adds a diner to

Improving Design Decomposition 189

Restaurant

free : set Table
occupied : set Table
orders : Table ->Dish
head : lone Diner
next : Diner ->Diner
waiting : set Diner
reservations : Diner ->Table ->Date

order

unreserve

reserve leave

wait

cancel

checkin checkout prepare

Fig. 3. A subsystem diagram of the entire restaurant system model.

the waiting list when the restaurant is full. The states s and s ′ represent the
system state just before the operation begins (s) and immediately after it ends
(s ′). The operation is enabled when the restaurant is full and the diner is not
already waiting. It adds the diner p to the end of the waiting list, and keep
everything else unchanged. All other system operations are similarly described.
A complete model is available online [1]. We summarize the system operations
in Table 1.

As a system model can be long, we will summarize it in a subsystem dia-
gram (see Fig. 3). 3 The subsystem diagram represents the system as a box with
its state variables inside, and its operations as short line segments protruding
from the edges of the box. There are two important differences between the
way the state variables appear in the model and in the diagram. First, in the
diagram they appear as relations without using the sig keyword (remember
that a field x : T in signature A is a relation x : A->T). Second, as each state
variable has a final State component we omit it from the diagram. E.g., the
field free : set State of sig Table (the relation free : Table ->State),
becomes, after removing State , the variable free : set Table that repre-
sents the set of free tables at a particular state. As we will see in the next section,
this diagram is very useful to describe the structure of subsystem models.

3 Subsystem Decomposition

Modeling. Now that we have formalized the notion of a software system model,
we can rephrase the problem of decomposition in precise terms: given a system
model that consists of a state space, an invariant, and a finite set of operations,
how can we partition it into subsystems, each with its own state space, invariant
and operations, such that when these subsystems communicate with each other,
the result refines [21] the original system?

3 We have borrowed the idea for these diagrams from the informal diagrams that are
often used to summarize CSP [25] models.

190 D. Faitelson and S. Tyszberowicz

pred WaitingList_wait [s,s’ : State ,p : Diner] {

s.today = s’.today and p �∈ waiting.s

waiting.s’ = waiting.s + p

next.s’ = next.s + p -> head.s

head.s’ = p }

pred Reception_is_full[s,s’ : State] {

no free.s

occupied.s’ = occupied.s

free.s’ = free.s }

pred wait[s,s’ : State ,p : Diner] {

WaitingList_wait [s,s’,p]

Reception_is_full[s,s’]

Orders_skip[s,s’]

Reservations_skip[s,s’] }

Fig. 4. Assembling the wait operation in the restaurant subsystem (modular) model.

Our solution is to model decomposition as a syntactical partition of the state
space; i.e., the subsystems partition the set of system state variables. The oper-
ations of each subsystem may access only the subsystem’s variables. Each sub-
system operation is still a predicate on the entire state space, but it refers only
to the variables of the subsystem, leaving the other variables unspecified. This
facilitates composition of subsystems by conjoining their operations (in Alloy,
predicates on separate lines are implicitly conjoined). For example, we have
decomposed the restaurant system into 4 subsystems: Orders keeps track of the
food served to tables, Reception is responsible for allocating tables to incoming
diners, WaitingList manages the queue of waiting customers, and Reservations
manages reservation requests. The system operation wait (Fig. 4) is now achieved
by cooperation with the Reception and WaitingList subsystems, while the other
subsystems are not involved. Figure 5 is a subsystem diagram that summarizes
the structure of the decomposition. The diagram clearly shows which parts of
the state space belong to which subsystems, and how the subsystem operations
are used to support the system operations. Note that we do not specify how
the subsystems communicate, only what information is passed between them.
Essentially, we assume a perfect communication medium. We could, in princi-
ple, describe the medium explicitly by adding buffer components between the
subsystems, each one will hold variables for the messages in transit. But unless we
are interested in designing mechanisms for overcoming communication problems
(e.g., messages disappearing or getting out of order) adding such components
will only complicate the model without providing any additional value.

We can verify the decomposition by checking that the compositional (modu-
lar) form of each system operation refines the original unpartitioned (monolithic)
version.4 We are using data-refinement ([26], Chapter 18) with the special case of

4 We could insist that the two versions be equivalent but refinement gives more freedom
for specifying the subsystems.

Improving Design Decomposition 191

an identity function for the retrieve relation.5 E.g., to check that wait is correctly
implemented, we must show that

∀ s, s ′ : State, d : Diner • Modular/wait [s, s ′, d] ⇒ Monolithic/wait [s, s ′, d]
∀ s, s ′ : State, d : Diner •

Monolithic/wait [s, s ′, d] ⇒ ∃ s ′′ : State | Modular/wait [s, s ′′, d]

The first predicate ensures that every behavior of the modular model is also
a behavior of the monolithic model, and the second ensures that the modular
version of the operation can be used whenever the monolithic version can be used.
A similar check must be made to every operation. As the focus of this paper is
not on proof methods, we leave the question of how to check these predicates
open. One could use a theorem prover, informal reasoning, or a model finder.6

Once we are satisfied with the correctness of the decomposition, we can create
a separate model for each subsystem. We can then develop each subsystem inde-
pendently, e.g. by data refinement [26] or by decomposing the subsystem itself
into further subsystems. Every time we refine the model, we increase the number
of its state space variables, thus complexity grows. Every time we decompose the
system, we decrease the number of state space variables in each subsystem, hence
decreasing complexity. Provided that the subsystems are decoupled, the decom-
position effect is to offset the increase in complexity that results from making
the model more concrete. This combination of data refinement and subsystem
decomposition steps, facilitates scalable development of large formal models. To
illustrate, if we start with an abstract model that consists of k state variables,
and perform 3 data refinement steps in which we double the number of state
variables, interleaved with 3 decomposition steps in which we halve the number
of state variables, we end with 23 subsystems, each consisting of k state vari-
ables. Without decomposition we will have a single model that consists of 8k
state variables. It is much easier to reason about each individual subsystem (and
all can be analyzed in parallel) than to reason about the large monolithic model.

So far we have described a relational approach to model software systems,
and illustrated how it can be used to create an abstract version of an entire
system, how it can be decomposed into a subsystem model, and how the decom-
position can be verified. We have also introduced the subsystem diagram, which
summarizes the decomposition by listing the state variables and operations of
each subsystem and by showing how the subsystem operations collaborate to
support the system operations. But how can we find a good decomposition?

Visualizing. A good decomposition partitions a system into loosely coupled,
yet cohesive subsystems. Our approach to finding such a decomposition is to
visualize the relationships between the system operations and the state variables
that they use, in such a way that we can recognize clusters of dense relationships

5 because we do not change the representation of the state variables.
6 For an example of how this is performed with the Alloy analyzer, see the complete

model in the online website [1].

192 D. Faitelson and S. Tyszberowicz

Reception

free :set table
occupied : set Table

Orders

orders: Table ->Dish

Reservations

reservations : Diner->Table->Date
reserved : Table >Diner >Date

Waiting List

head : lone Diner
waiting : set Diner
next : Diner ->Diner

order cancel

is waiting

leave wait

is occupied

checkout

checkin

is full
reserve unreserve

prepare

has reservations

Fig. 5. A subsystem diagram of the restaurant system. Each subsystem box contains
a subset of the system’s state variables and operations. All the system operations must
appear in the diagram. When a system operation is supported by a single subsystem,
we draw a line on the border of the subsystem labeled with the operation’s name.
When several subsystems collaborate to support a system operation, we connect the
subsystem operations to the system operation’s line segment.

that are weakly connected to other clusters. Each such cluster is a good candidate
for a subsystem for two reasons: (i) the amount of information it shares with
the rest of the system is small, thus it is protected from changes in the rest of
the system and vice versa, and (ii) its internal relationships are relatively dense
which in most cases indicates a cohesive unit of functionality.

To create the visualization, we record in an operation/relation table the rela-
tionships between the system operations and the state variables that they read
and write.7 For example, Table 2 records the operation/relation dependencies
in the restaurant system. An operation reads a variable if it refers to the vari-
able only at the current system state. It writes to a variable if the variable is
referenced in the next system state. For example, the operation wait only reads
the variable free because it uses this variable to check that the restaurant is not
full, but does not change its value (in fact it insists that it remains the same).
In contrast, the operation changes the variable head because it sets head to the
new diner in the next system state (see Fig. 2). Currently we produce the table
by hand, however, it should not be difficult to write a tool that will generate the
table from an Alloy model that follows our specification style.

We now use the table to build8 an undirected bipartite graph whose vertices
are the system’s state variables and operations. An edge connects operation p
to variable v if and only if p uses v (either reads or writes to v). In addition,
we assign a weight to each edge, depending on the nature of the connection. A

7 The information for this table is taken from the functional specification of the system.
8 Building the graph could be easily automated.

Improving Design Decomposition 193

Table 2. An operation/relation dependency table for the restaurant system. Columns
represent state variables and rows represent operations (‘w’ write, ‘r’ read).

Operation State variable

free occupied reserved waiting next head orders

reserve w
unreserve w w
leave w w w
wait r w w w
checkin w w r r
checkout w w
order r w
cancel r w
prepare w w

read connection has the lowest weight (currently 1) and a write connection has
the highest weight (currently 2). This choice tends to cluster together data with
operations that change the data, thus preferring read interfaces between clusters.
A write interface has a stronger coupling than a read interface because it actively
engages both subsystems whereas a read interface affects only the reader. Finally,
we use a spring model based drawing algorithm [16] to visualize the graph.9

The algorithm draws undirected graphs such that nodes that are close to each
other in graph theoretic space (i.e. shorted weighted path) are drawn closer to
each other (see Fig. 6). The result clearly visualizes the dependencies between
the system’s operations and state variables. For example, we can see that the
orders state variable is used by just 2 operations: cancel , and order . No other
operation needs this variable. Similarly, the waiting state variable is used only
by wait , leave, and checkin. We can use this visualization in three ways: (i) to
suggest low dependency partitions, (ii) to evaluate partitions that are dictated
by non-functional constraints, and (iii) to explore changes to the system model
that reduce the dependencies between areas that we consider as good subsystem
candidates. Figure 7 shows a partition based on the visualized graph, illustrating
the first usage. We now illustrate the other two.

Exploring Alternative Decompositions. The partition we have selected in
the previous section is not the only reasonable choice. Figure 8 shows two addi-
tional partitions. We can reason about which partition yields weaker dependen-
cies by comparing the number and weight of the edges that cross the partitions.
We can see that the right hand version connects two subsystems that are uncon-
nected in the left hand version. Thus it may be better to use the one on the
left.10. Adding non-functional requirements may force a different decomposition
(e.g. some subsystems must run on specific hosts). In such cases we can use

9 More specifically, we use neato [23].
10 Note that Fig. 5 is the diagram that corresponds to this partition.

194 D. Faitelson and S. Tyszberowicz

reserve

unreserve

leave
wait

checkin
checkout

order

cancel

prepare

reserved

reservations

free
waiting

headnext

occupied

orders

Fig. 6. A dependency diagram of the
restaurant model. Thin (thick) edges
are read (write) relationships; Circles
are operations; squares are variables.

reserve

unreserve

leave
wait

checkin
checkout

order

cancel

prepare

reserved

reservations

free
waiting

headnext

occupied

orders

C

B

A

Fig. 7. A dependency diagram with
a suggested partition. Each subsystem
candidate is enclosed in an ellipse.

the diagram to assess the impact of the decision on the interfaces between the
subsystems.

Partitioning the diagram facilitates the specification of the subsystems’ oper-
ations. E.g., we can see that each of the operations prepare, unreserve, reserve,
and leave can be supported by a single subsystem, while the operations wait and
checkin require the cooperation of several subsystems. The checkin operation,
for instance, requires the cooperation of three subsystems: reception, waiting
list, and reservations. It must check if the incoming diner has a reservation, or
if she is at the head of the waiting list, and it must allocate her a table.

Automatically Suggesting Decompositions. So far we have seen how to use
the diagrams to manually look for good decompositions. But it is also possible
to detect good decompositions automatically. Our criteria for a good decom-
position is identical to that of a community, as defined in [8]: “The problem
of community detection requires the partition of a network into communities of
densely connected nodes, with the nodes belonging to different communities being
only sparsely connected.” This problem has received much interest recently and
several algorithms were developed to solve it. We have applied11 the algorithm
described in [8] to the graphs of several systems, with good results.12 For exam-
ple, when applied to the restaurant system the algorithm selects exactly the
same partition that we have selected (the left hand side of Fig. 8). For details on
the results of applying the algorithms to commercial case studies see Section 4.

11 We have used the modularity report feature of Gephi [5].
12 The online website [1] includes models and diagrams of additional examples.

Improving Design Decomposition 195

reserve

unreserve

leave
wait

checkin
checkout

order

cancel

prepare

reserved

reservations

free
waiting

headnext

occupied

orders

C

B

D

A

reserve

unreserve

leave
wait

checkin
checkout

order

cancel

prepare

reserved

reservations

free
waiting

headnext

occupied

orders

C

B’

D’

A

Fig. 8. Two additional partitions of the restaurant system. The difference in the par-
titions is in the location of the variable free. In the left version, free becomes a part of
subsystem B while in the right version free becomes a part of subsystem D. The left
version corresponds to the subsystem diagram in Fig. 5. We have used generic names
to avoid bias in the decomposition.

Application to Informal Models. As illustrated earlier, a formal subsystem
model has two powerful merits: it facilitates a rigorous analysis of correctness,
and it increases our confidence in the validity of the decomposition. Unfortu-
nately, most software engineers are either not familiar with or reluctant to use
formal methods. Instead, they create semi formal models, using a mixture of
diagrams and textual notations, for example with UML class diagrams and use
cases. In such a case we may use parts of our technique to achieve some of its
benefits. The idea is to consider the UML class model as a visual description of a
relational model. Each class represents the set of all of its instances, inheritance
is a subset relation and attributes and associations are functions and relations
between the corresponding sets. We assume that the system model does not yet
contain methods and that the functionality of the system is described at the
level of the entire system (e.g., with use cases). The reason is that we consider
the assignment of methods to objects to be a later task of the design activity,
a task that depends on the subsystem decomposition model and follows from
the discovery and assignment of operations to the subsystems. For instance, the
UML class diagram in Fig. 9 represents the static structure of our restaurant sys-
tem. We may then create the operation/relation dependency table by analyzing
the use cases and recording how each use case manipulates the class diagram’s
attributes and associations. We can then perform the visualization as before.

4 Case Studies

In addition to smaller case studies, we have applied our technique to two
non-trivial systems. The first is XOXO — a commercial mobile location-based

196 D. Faitelson and S. Tyszberowicz

Table

free :Bool
occupied: Bool

Diner

head : Bool
waiting : Bool

Dish

Date

reservations
* *

1
orders
* 0..1

next0..1

Fig. 9. A UML class diagram of the restaurant system, corresponding to the relational
model of Section 3. E.g., the next association corresponds to the binary relation that
models the queue of diners waiting outside. The reservations association corresponds
to the reservations relation between the tables, the diners that have reserved them,
and the reservation date. Because UML has no explicit representation of system state,
we model the free, occupied , head , and waiting relations as boolean attributes.

chat application, and the second is the common component modeling example
(CoCoME) [13], a system developed to evaluate and compare the practical appli-
cation of component modeling approaches. this section we describe the results
of applying our approach to each system. For more details of CoCoME, see [1].

XOXO was a commercial system for the iPhone that facilitated chatting
between people based on common location and interests. It consisted of a chat
server and an iPhone application. During its three years of active service, XOXO
served tens of thousands of people. The system was specified in Z (available in
the online website) by one of the authors. We have used this specification to
generate the dependency diagram13 for the system and compared the result
with the system’s actual design. The clustering algorithm suggests the following
subsystems: profile management, search, photo capture, location management,
chatterer blocking, and messaging. This partition appears reasonable and not
too surprising. However, in practice, the system design did not decompose the
system along these functional areas at all, with the exception of photo capturing.
Instead the actual design focused on technological, non-functional constraints,
and entirely neglected the functional decomposition. The system was partitioned
into a client and a server, with the client being further partitioned into communi-
cation, entity and user interface layers. As a result, the functional areas identified
by our technique are intertwined in the client and server code, making it diffi-
cult to understand and modify. Clearly, in this case, our technique would have
significantly improved the system’s design.

We now discuss the results of applying our technique to the CoCoME system.
Briefly, this is a system for managing a commercial enterprise consisting of a set
of stores and a set of product providers. Its specification includes operations for
selling products, for ordering products from providers, and for managing the
stocks in each store. The CoCoME reference implementation has 9,521 lines of
code, 126 classes, and 21 interfaces. For more details see [6]. The specification is
informal, given as a set of use cases and a UML class diagram. We have first used
the informal specification to generate a dependency diagram, and compared the

13 All the artifacts are available in the online website [1].

Improving Design Decomposition 197

result with the reference implementation. In addition, we have created a formal
model of the system and again applied our technique. The formal model has
given us (in addition to the major subsystems) the detailed interfaces of each
subsystem. In both the informal and the formal analysis we have identified three
major subsystems: sales, inventory, and procurement. This is despite the consid-
erable differences between the two models. This result gives us some confidence
that our technique is not too sensitive to variations in the model.13

A particularly interesting option that our technique suggests, is to manage
the price attribute of a stock item in the sales subsystem separately from the
item’s amount and product attributes (which are managed by the inventory sub-
system). At first it seems wrong, as (especially from an object-oriented point of
view) all these attributes belong to the same problem domain object (Stock-
Item). However, upon further reflection, it becomes clear that the price of an
item has nothing to do with its inventory status. Changing the price of an item,
e.g., does not affect the number of items in the inventory. In fact, by managing
the price in the sales subsystem, we have discovered the price-list, a problem
domain concept that is separate from that of inventory.

The suggested partition appears reasonable. Yet, neither the reference model
nor any of the other 13 models in the CoCoME site (http://www.cocome.org)
have discovered it. Most models partitioned the system into an inventory and
cash-desk-line components. None has identified procurement as a separate con-
cern. Indeed, as in the XOXO case study, the emphasis of the decomposition is
on technological (problem related) aspects such as layering the application into
user interface, logic, data, and database components.

Finally, we have intended to apply our approach to a large open source
project, but looking at the top 100 projects in sourceforge.net, we could not
find any that had specification documents (neither use cases nor conceptual
class models). As our approach needs these documents, we could not apply it to
any of the projects.

5 Related Work

Parnas [24] argued that modules should hide parts of the system that may change
in the future, thus protecting the rest of the system from the effects of these
changes. We consider information hiding to be orthogonal to our work, as in
essence it argues for implementing systems using high level abstractions, while
we consider the problem of decomposing a system model (i.e., already at a high
level of abstraction) into coherent subsystems at the same level of abstraction.
Both techniques are examples of the principle of separation of concerns. But
while information hiding separates the concerns of purpose from implementation,
we separate different functional concerns into separate subsystems.

Event-B supports a notion of process refinement, where an abstract atomic
event is refined to a sequence of events at a more concrete level. It is possible to
reason about subsystems in Event-B using events, but we show that they are not
necessary, as simple propositional logic is enough. In addition, shared variables

http://www.cocome.org

198 D. Faitelson and S. Tyszberowicz

in Event-B are replicated in all the subsystems that use them, whereas in our
approach every variable appears in exactly one subsystem [3].

UML component diagrams describe what services one subsystem requires
from another, but they do not show how several subsystems collaborate to imple-
ment the system. In contrast, our subsystem diagram shows which subsystems
(and which subsystem operations) collaborate to implement every system oper-
ation. In addition, our subsystem diagram can be formally derived from a formal
model and thus serve as a guiding and organizing map of the model.

There exists much research in computing coupling and cohesion metrics for
object oriented systems [4,10,14,20,22]. These works focus on assessing the qual-
ity of existing decompositions, by measuring properties of the code. As a result
they cannot be used at the early design phase.

Subsystem decomposition is similar in many ways to component identifica-
tion. Researchers have suggested several approaches for identifying components
(See [7] for a survey). These approaches are essentially elaborations of the heuris-
tic mentioned in the introduction. They define a metric for measuring the sim-
ilarity between use cases [17] (or classes [18]) and use clustering algorithms to
collect groups of similar use cases (or classes) into components. When a class
participates in several use cases, a conflict resolution algorithm decides which
component is allocated the class (no work considers the possibility of partition-
ing the class itself between the components). And none of these works discuss
the problems that we have raised. Indeed it is not even clear what is meant by
allocating a class to a component. Does it mean that the class is entirely hidden
inside the component? if so, what happens to the components whose use cases
(or objects) refer to instances of this class? and what happens when a use case
requires the cooperation of several components (for example, sitting a guest at a
table requires the cooperation of the checkin and reservation subsystems)? None
of these works consider these problems. In fact, we could not compare these
approaches with ours, because they either lack examples entirely (e.g. [17]) or
use examples that lack key details such as the actual uses cases (e.g. [11,18]).

The work most relevant to ours is [19]. It is a clustering technique for software
requirements based on how they reference common attributes, where an attribute
is any descriptive property or object associated with a requirement. The require-
ments and the attributes are written in a table, then the requirements are clus-
tered based on their similarity with respect to the attributes that they use. The
result is displayed as a dendrogram — a tree whose leaves are the requirements
and the degree of similarity is higher the deeper the nodes are in the tree. The
requirements are then partitioned into subsystems by selecting subtrees of the
dendrogram. Compared with our approach, only the functional requirements
are clustered, there is no rule to cluster the attributes. This is problematic when
attributes are shared between requirements from different components. Second,
the technique does not consider relationships between the attributes. Next, it
offers no way to check correctness. Finally, because the dependencies between
the subsystems are not visible, it is more difficult to explore different alternatives.

Improving Design Decomposition 199

6 Summary

We have described a simple formal technique to model and reason about subsys-
tem decomposition. In addition, we have described a diagram for showing how
the system state variables and operations are partitioned into subsystems, and
how the subsystems collaborate to implement the system operations. Finally,
we have described a technique for visualizing the relationships between system
operations and state variables in order to facilitate the selection of a good (strong
cohesion, weak coupling) decomposition. We have illustrated the approach using
an example and explained how it can improve the structure of two commercial
systems. The results so far look promising; we plan to apply this technique to
more commercial systems to further assess its effectiveness.

Modeling a system in a particular style affects its design, regardless of the
approach. Our technique makes it possible to explicitly assess the design choices.

How scalable is this approach? The tools that create the diagrams and to
suggest decompositions are quite fast. For example, neato takes about 4 seconds
on our PC (Intel Core i5, 3GHz, 8Gig) to layout a graph of about 800 nodes
and 4000 edges; it takes gephi less than a second to partition this graph into
communities. To put these numbers into perspective, the commercial application
that we have analyzed, a system whose implementation consists of about 60,000
lines of code, has a graph of 47 nodes and 73 edges.

Acknowledgment. We would like to thank Jim Davies and Daniel Jackson for their
helpful and insightful comments and suggestions.

References

1. Subsystem decomposition. http://goo.gl/m5gnW3. Accessed: June 2015
2. Abrial, J.: The B-book: Assigning programs to meanings. Cambridge Press (2005)
3. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-

crete models: Application to event-b. Fundam. Inf. 77(1–2), 1–28 (2007)
4. Al-Dallal, J.: Measuring the discriminative power of object-oriented class cohesion

metrics. Trans. on Software Engineering 37(6), 788–804 (2011)
5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-

ing and manipulating networks. In: ICWSM. The AAAI Press (2009)
6. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofron, J.: Reverse engineering

component models for quality predictions. In: CSMR, pp. 194–197. IEEE (2010)
7. Birkmeier, D., Overhage, S.: On component identification approaches – classifica-

tion, state of the art, and comparison. In: Lewis, G.A., Poernomo, I., Hofmeister, C.
(eds.) CBSE. LNCS, vol. 5582, pp. 1–18. Springer, Heidelberg (2009)

8. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities
in large networks. J. Stat. Mech. 2008(10) (2008)

9. Bruegge, B., Dutoit, A.: Object-Oriented Software Engineering. Pearson (2010)
10. e Abreu, F.B., Goulão, M.: Coupling and cohesion as modularization drivers: Are

we being over-persuaded? In: CSMR, pp. 47–57. IEEE (2001)
11. Fan-Chao, M., Den-Chen, Z., Xiao-Fei, X.: Business component identification

of enterprise information system: a hierarchical clustering method. In: ICEBE,
pp. 473–480. IEEE (2005)

http://goo.gl/m5gnW3

200 D. Faitelson and S. Tyszberowicz

12. Fowler, M.: Reducing coupling. IEEE Software 18(4), 102–104 (2001)
13. Heinrich, R., Gärtner, S., Hesse, T.-M., Ruhroth, T., Reussner, R., Schneider, K.,

Paech, B., Jürjens, J.: A platform for empirical research on information system
evolution. In: SEKE, pp. 415–420 (2015)

14. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented
systems. In: ISAAC, pp. 1–10 (1995)

15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
(2012)

16. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Infor-
mation processing letters 31(1), 7–15 (1989)

17. Kim, S.D., Chang, S.H.: A systematic method to identify software components. In:
APSEC, pp. 538–545. IEEE (2004)

18. Lee, J.K., Jung, S.J., Kim, S.D., Jang, W.H., Ham, D.H.: Component identification
method with coupling and cohesion. In: APSEC, pp. 79–86 (2001)

19. Lung, C.-H., Xu, X., Zaman, M.: Software architecture decomposition using
attributes. Software Engineering and Knowledge Engineering 17(5), 599–613
(2007)

20. Mayer, T., Hall, T.: Measuring OO systems: A critical analysis of the MOOD
metrics. In: TOOLS, pp. 108–117. IEEE (1999)

21. Morgan, C.: Programming from Specifications. Prentice-Hall Inc (1990)
22. Moser, M., Misic, V.B.: Measuring class coupling and cohesion: A formal meta-

model approach. In: APSEC, pp. 31–40. IEEE (1997)
23. North, S.C.: Drawing graphs with NEATO, 2004. NEATO User Manual
24. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15(12), 1053–1058 (1972)
25. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall (1997)
26. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-

Hall (1996)

From Requirements Engineering to Safety
Assurance: Refinement Approach

Linas Laibinis1(B), Elena Troubitsyna1, Yuliya Prokhorova2, Alexei Iliasov3,
and Alexander Romanovsky3

1 Åbo Akademi University, Turku, Finland
{linas.laibinis,elena.troubitsyna}@abo.fi

2 Space Systems Finland, Espoo, Finland
yuliya.prokhorova@ssf.fi

3 Newcastle University, Newcastle Upon Tyne, UK
{alexei.iliasov,alexander.romanovsky}@ncl.ac.uk

Abstract. Formal modelling and verification are widely used in
the development of safety-critical systems. They aim at providing a
mathematically-grounded argument about system safety. In particular,
this argument can facilitate construction of a safety case – a structured
safety assurance document required for certification of safety-critical sys-
tems. However, currently there is no adequate support for using the arte-
facts created during formal modelling in safety case development. In this
paper, we present an approach and the corresponding tool support that
tackles this problem in the Event-B modelling framework. Our approach
establishes a link between safety requirements, Event-B models and cor-
responding fragments of a safety case. The supporting automated tool
ensures traceability between requirements, models and safety cases.

1 Introduction

Formal techniques provide the designers with a rigorous mathematical basis
for reasoning about the system behaviour and properties. Usually formal mod-
elling helps in uncovering problems in requirements definition as well as deriving
additional constraints for ensuring safety. Though formal modelling provide the
designers with a valuable input for safety assurance, currently there is no ade-
quate support for integrating the results of formal modelling into construction
of safety argument – a safety case. In this paper, we propose a method and tool
support for linking formal modelling in Event-B and safety case construction.

Event-B is a formal framework for correct-by-construction system develop-
ment [1]. It has been extensively experimented with in the industrial setting
[2,3]. The framework employs refinement as the main development technique
and proofs to verify correctness of the system behaviour with respect to system-
level properties, such as safety. The industrial-strength tool support – the Rodin
platform [4] – provides the developers with highly automated environment for
modelling and verification.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 201–216, 2015.
DOI: 10.1007/978-3-319-25942-0 13

202 L. Laibinis et al.

Machine M
Variables v
Invariants I
Events

Init
evt1
· · ·
evtN

−→
Context C
Carrier Sets d
Constants c
Axioms A

Fig. 1. Event-B machine and context

To efficiently exploit the benefits of formal modelling, in this paper we present
an automated integrated approach that facilitates construction of safety cases
from Event-B models. The approach spans over requirements engineering, for-
mal modelling and safety argumentation via safety cases. While automating
the proposed approach, we aim at creating a non-obtrusive tool support that
nevertheless allows us to maintain the link between the dynamically chang-
ing requirements, models and safety cases. To achieve this goal, we relied on
a novel industry-driven standard OSLC – Open Services for Life Cycle Col-
laborations [5]. The standard allows the engineers to achieve inter-operability
between engineering tools by specifying the access to the external resources of
these tools. We believe that the proposed approach has two main benefits: it
supports co-engineering of requirements, models and safety cases, while the tool
support ensures seamless interoperability and traceability across the domains.

The paper is structured as follows. In Section 2, we describe our chosen for-
mal framework – Event-B as well as discuss classification and formalisation of
safety requirements in Event-B. Section 3 presents our methodology for con-
structing safety cases from requirements and artefacts of formal modelling. In
Section 4, we present the steam boiler case study demonstrating the proposed
methodology. Section 5 presents our proposal on dynamic tool integration in a
common information environment. Finally, in Section 6, we overview the related
work and give some concluding remarks.

2 Modelling and Verification of Safety-Critical Systems
in Event-B

Event-B: Background. Event-B is a state-based framework that promotes the
top-down, correct-by-construction approach to system development and formal
verification by theorem proving. In Event-B, a system model is specified as an
abstract state machine [1]. An abstract state machine encapsulates the model
state, represented as a collection of variables, and defines operations on the state,
i.e., it describes the dynamic behaviour of a modelled system. The variables are
strongly typed by the constraining predicates that together with other important
properties of the systems are defined in the model invariants. Usually, a machine
has an accompanying component, called context, which includes user-defined
sets, constants and their properties given as a list of model axioms.

From Requirements Engineering to Safety Assurance: Refinement Approach 203

A general form for Event-B models is given in Fig. 1. The machine is uniquely
identified by its name M . The state variables, v, are declared in the Variables
clause and initialised in the Init event. The variables are strongly typed by the
constraining predicates I given in the Invariants clause. The invariant clause
might also contain other predicates defining properties (e.g., safety invariants)
that should be preserved during system execution.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,
where e is the event’s name, a is the list of local variables, the guard Ge is a pred-
icate over the local variables of the event and the state variables of the system.
The event body is defined by a multiple (possibly nondeterministic) assignment
over the system variables. In Event-B, such an assignment represents the corre-
sponding next-state relation Re. The guard defines the conditions under which
the event is enabled, i.e., its body can be executed. If several events are enabled
at the same time, any of them can be chosen for execution nondeterministically.

Event-B development starts from an abstract specification that nondetermin-
istically models most essential functional requirements. In a sequence of refine-
ment steps, we gradually reduce nondeterminism and introduce detailed design
decisions. In particular, we can add new events, split events as well as replace
abstract variables by their concrete counterparts, i.e., perform data refinement.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging a number of verification conditions – proof obligations. Moreover,
the Event-B formalism allows the developers themselves to formulate theorems
to be proven. Full definitions of all the proof obligations are given in [1].

The Rodin platform [6] provides an automated support for formal modelling
and verification in Event-B. In particular, it automatically generates the required
proof obligations and attempts to discharge them. The remaining unproven con-
ditions can be dealt with by using the provided interactive provers.
Formalisation of Safety Requirements in Event-B. Formal modelling is
especially beneficial for requirements engineering. It helps to spot missing or con-
tradictory requirements and rigorously define system properties and constraints.
In a succession of EU projects [2,4,7], the most prominent of which is Deploy [2],
we have gained significant experience in modelling safety-critical systems from
different domains. It allowed us to identify a number of typical solutions for rep-
resenting requirements in formal models. These solutions can be represented as
classes of requirements (for more details, see [8]). Below we give a few examples
of the classes of the requirements:

– Class 1 : Global properties – contain invariant properties to be maintained;
– Class 2 : Local properties – define effects of certain action in a particular

system state;
– Class 3 : Causal order – define the required order of system events;
– Class 4 : Absence of system deadlock – require that execution of safety actions

should not be prevented by a deadlock.

204 L. Laibinis et al.

Table 1. Formalisation of safety requirements

Safety Model element Associated verification
requirement expressions theorem(s)

SR of Cl. 1 invariants group of invariance theorems for each event
SR of Cl. 2 event, theorem about a specific post-state of

state predicate an event
SR of Cl. 3 pairs of events, group of theorems about enabling

event control flow relationships between events
SR of Cl. 4 all events theorem about the deadlock freedom

Table 1 summarises typical representation of the above classes in an Event-B
model. Formally, the described relationships can be defined as a function FM

mapping safety requirements (SRs) into a set of the related model expressions:

SRs → P(MExpr),
where P(T) corresponds to a power set on elements of T and MExpr stands
for a generalised type for all possible expressions that can be built from the
model elements, i.e., model expressions. Here model elements are basic elements
of Event-B models such as axioms, variables, invariants, events, and attributes.
Such defined mapping allows us to trace the system safety requirements given
in an informal manner into formal specifications in Event-B.

Formal modelling and verification allow the designers to not only achieve a
high confidence in system design, but also justify system safety during certifi-
cation. The increasing reliance on safety cases in the certification process has
motivated our work on linking formal modelling in Event-B with safety case
construction – the work that we describe next.

3 From Event-B Models to Safety Cases

Safety Cases: Background. A safety case is “a structured argument, sup-
ported by a body of evidence that provides a convincing and valid case that a
system is safe for a given application in a given operating environment” [9]. The
construction, review and acceptance of safety cases are valuable steps in the
safety assurance process of critical systems. Several industrial standards, e.g.,
ISO 26262 [10] and EN 50126 [11], prescribe production and evaluation of safety
cases for system certification.

In general, safety cases can be documented either textually or graphically.
Currently, the graphical notation called Goal Structuring Notation (GSN) [12,13]
is gaining popularity for presenting safety arguments within safety cases. GSN
aims at graphical representation of safety case elements as well as the relation-
ships between them. The building blocks of GSN are shown in Fig. 2. Essentially,
such a constructed safety case consists of goals, strategies and solutions. Here
goals are the requirements, targets or constraints to be met by a system. Solu-
tions contain the information extracted from analysis, verification or simulation
of a system (i.e., evidence) to show that the goals have been met. Finally, strate-
gies are reasoning steps describing how goals are decomposed into sub-goals.

From Requirements Engineering to Safety Assurance: Refinement Approach 205

In context of

Is solved by

A requirement, target or

constraint to be met

by a system

Goal (G)

Information necessary

for an argument to be

understood

Context (C)

A goal that needs to be

developed later on

Undeveloped Goal

Either a rule to be

used in solution of

a goal or a rule to

break down a goal

into a number

of sub-goals

Strategy (S)

A statement whose

validity has to be relied

upon in order to make

an argument
A

Assumption (A)

Provides

evidence to

show that a goal

has been met

Solution

(Sn)
n

A strategy that

needs to be

developed

later on

Undeveloped Strategy

m-of-n

A statement of rationale

for the use of particular

goal or strategy

J

Justification (J)

Principal GSN Elements and Relationships GSN Extensions

Structural Abstraction

Entity Abstraction

A context symbol

which refers to an information

artefact in the form of

a model

Model (M)

Undeveloped and

Uninstantiated Entity

Uninstantiated Entity

Fig. 2. Elements of GSN

Safety case elements can be in two types of relationships: “Is solved by” and
“In context of”. The former is used between goals, strategies and solutions. The
latter links a goal (a strategy) to a context, an assumption or a justification.

GSN has been extended with generic argument patterns [12], supporting
structural and entity abstraction. The examples of structural abstraction are
multiplicity and optionality. Multiplicity is a generalised n-ary relationship
between the GSN elements, while optionality stands for optional and alternative
relationship between them. There are also two extensions for entity abstraction:
uninstantiated entity as well as undeveloped and uninstantiated entity. The for-
mer one specifies that the entity requires to be instantiated, i.e., to be replaced
with a more concrete instance. In Fig. 2, this is depicted as a hollow triangle.
The latter one indicates that the entity needs both further development and
instantiation. This is displayed as a hollow diamond with a line in the middle.
From Requirements to Safety Cases via Event-B Models. The app-
roach proposed at this paper should create an information continuum that
spans requirements engineering, formal modelling and safety case construction
as shown in Fig. 3. Problems with defining a safety argument during safety case
construction might indicate that some safety requirements are overlooked or a
formal specification is not sufficiently constrained. Such a feedback should invoke
the corresponding corrective actions (a dashed line in Fig. 3).

The proposed approach encompasses two main activities : (1) representation
of safety requirements in Event-B models, and (2) derivation of safety cases from
the associated Event-B specifications. The activities are tightly connected with
each other. They depend on several factors such as adequacy of representation
of the system behaviour by a formal model and availability of modelling and
verification artefact to substantiate safety argument.

To facilitate the first activity – representation of safety requirements in Event-
B models – we rely on our classification and mapping rules defined above. To
simplify the task of linking the formalised system safety requirements with the
constructed safety case, we propose a set of classification-based argument pat-
terns. In addition, a special pattern is created to provide the argumentation that
the formal model we rely on is by itself correct and well-defined.

206 L. Laibinis et al.

Fig. 3. High-level representation of the overall approach

The patterns have been developed using the described above GSN extensions.
Some parts of an argument pattern may remain the same for any instance, while
others need to be further instantiated (those are labelled with a hollow triangle).
The text highlighted by braces { } should be replaced by a concrete value.

A generic representation of a classification-based argument pattern is given
in Fig. 4. Here, a safety requirement Requirement of some class Class {X} is
reflected in the goal GX. According to the proposed approach, the requirement
is verified within a formal model M in Event-B (the model element MX.1).

In order to obtain the evidence that a specific safety requirement is met,
different construction techniques might be undertaken. The choice of a particular
technique influences the argumentation strategies to be used in each pattern.

{Requirement} of Class {X}
is met

GX

Argument over all

formulated theorems /

properties

{Discharged
PO} / {model
checking
result}

SX.3

SnX.1

The provided theorem

{thm} is indeed provable / the model

satisfies the property {propertyi}

GX.3

no. of theorems /

properties

Theorem {thm} /

property {propertyi}

CX.2

Theorem prover /

Model checker

CX.1

Argument over the

involved model

elements

SX.1

Property of the involved

model elements holds

GX.1

Formal model {M}

in Event-B

MX.1 Argument over

formalisation of

{Requirement}

SX.2

Formulated theorems/properties

are the proper formalisation of

{Requirement}

GX.2

Agreement over

inspection

conducted by

domain and

formalisation

experts

SnX.2

Fig. 4. Generic argument pattern

From Requirements Engineering to Safety Assurance: Refinement Approach 207

For example, if a safety requirement can be associated with a model invariant
property, the corresponding theorem for each event in the model M is required
to be proved. Correspondingly, the proofs of these theorems are attached as the
evidence for the constructed safety case.

To bridge a semantic gap in the mapping associating an informally specified
safety requirement with the corresponding formal expression in Event-B, we need
to argue over a correct formalisation of the requirement (SX.2 in Fig. 4). We rely
on a joint inspection conducted by domain and formalisation experts (SnX.2)
as the evidence that the associated model elements (via the defined mappings)
are proper formalisations of the requirement under consideration.

As soon as all safety requirements are assigned to their respective classes
and their mapping into Event-B elements is performed, we can construct the
part of a safety case corresponding to assurance of these requirements. To make
this construction generic, we associate each class with the corresponding safety
case argument pattern that can be instantiated in different ways. Note that
the process of safety requirements elicitation is left outside of consideration in
this paper. We assume that the given list of these requirements is completed
beforehand by applying safety analysis techniques.

In the next section, we will illustrate such safety case construction by a case
study. More details of the proposed arguments patterns can be found in [14].

4 Case Study: A Steam Boiler System

In this section, we demonstrate our approach by a case study – a steam boiler
control system [15]. Due to lack of space, we only give a brief overview of system
requirements, constructed formal models and fragments of the safety case. The
complete description can be found in [16].
Steam Boiler: Requirements and Development Strategy. The steam
boiler is a safety-critical control system that produces steam and adjusts the
quantity of water in the steam boiler chamber to maintain it between the lower
safety boundary M1 and upper safety boundary M2 . The situations when the
water level is too low or high are hazardous and must be avoided.

The system consists of the following units: a chamber, a pump, a valve, a
sensor to measure the water quantity in the chamber, a sensor to measure the
steam quantity out of the chamber, a sensor to measure water input through the
pump, and a sensor to measure water output through the valve.

After being powered on, the system enters the Initialisation mode. At each
control cycle, the system reads sensors and performs failure detection. If no
failure detected, the system may enter one of its operational modes Normal,
Degraded or Rescue. In the Normal mode, the system attempts to maintain
the water level in the chamber between the normal boundaries N1 and N2 (such
that N1 < N2) providing that no failures of the system units have occurred.
In the Degraded mode, the system tries to maintain the water level within
the normal boundaries despite failures of some physical non-critical units. In the
Rescue mode, the system attempts to maintain the normal water level in the

208 L. Laibinis et al.

Invariant

{safetyi}

Argument over all

formulated invariants

S2.1.1
Invariants

{safety1,…, safetyN}
are the proper

formalisation of the

requirement
A

The invariant {safetyi}
holds for all events

G2.1.1

Sn2.1.1

Discharged PO

{Eventk}/
{safetyi}/INV

Argument over each

event individually

S2.1.2

The invariant {safetyi}
holds for the event {Eventk}

G2.1.2

{Requirement} of Class 1

is met

G2.1

A2.1.1

no. of events

C2.1.1

no. of invariants

Model {M}

M2.1.1

Rodin

theorem

provers

C2.1.2

Fig. 5. Argument pattern for safety requirements of Class 1

presence of a failure of the critical unit – the water level sensor. If failures of the
system units and the water level sensor occur simultaneously or the water level
is outside of the predefined safety boundaries M1 and M2 (such that M1 < M2),
the system enters the non-operational mode Emergency Stop.

The failure of the steam boiler control system is detected if either the water
level in the chamber is outside of the safety boundaries or the combination of a
water level sensor failure and a failure of any other system unit (the pump or
the steam sensor) is detected. The water level sensor is considered as failed if it
returns a value which is outside of the nominal sensor range or the estimated
range predicted in the last cycle. In a similar way, a steam output sensor failure
is detected. The pump fails if it does not change its state when required.

Our Event-B development of the steam boiler case study consists of
an abstract specification and its four refinements [16]. The abstract model
(MACHINE M0) implements a basic control loop. The first refinement
(MACHINE M1) introduces an abstract representation of the activities per-
formed after the system is powered on and during system operation. The second
refinement (MACHINE M2) introduces a detailed representation of the system
failure conditions. The third refinement (MACHINE M3) models the system
physical environment as well as elaborates on more advanced failure detection
procedures. Finally, the fourth refinement (MACHINE M4) introduces a rep-
resentation of the required execution modes. Each machine has the associated
context where the necessary data structures are introduced and their properties
are postulated as axioms.
From an Event-B Model to a Safety Case. The steam boiler control system
should adhere to a number of safety requirements. Let us illustrate construction
of fragments of a safety case for some given safety requirements.

From Requirements Engineering to Safety Assurance: Refinement Approach 209

Invariant

inv1.2

Argument over all

formulated invariants

S2.1.1
Invariant inv1.2 is the

proper formalisation of

the requirement
A

The invariant inv1.2

holds for all events

G2.1.1

Sn2.1.1

Discharged PO

Environment/

inv1.2/INV

Argument over each

event individually
S2.1.2

The invariant inv1.2

holds for the event

Environment

G2.1.2

SR-02 of Class 1

is met

G2.1

A2.1.1

C2.1.1

Sn2.1.2

Discharged PO

Detection_OK/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_OK

G2.1.3

Sn2.1.3
Discharged PO

Detec-

tion_NOK1/

inv1.2/INV

The invariant inv1.2

holds for the event

Detection_NOK1

G2.1.4

Sn2.1.8

Discharged PO

Prediction/

inv1.2/INV

The invariant inv1.2

holds for the event

Prediction

G2.1.9
...

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.1.1

Rodin

theorem

provers

C2.1.2

Fig. 6. A fragment of the safety case corresponding to assurance of SR1

The main safety requirement – SR-02: During the system operation the water
level shall not exceed the predefined safety boundaries belongs to requirements
Class 1. A natural way to formalise these requirements is by associating them
with the corresponding invariant properties in the associated Event-B model.
Therefore, the proposed form of the mapping function for Class 1 is

Reqi �→ {safety invi1, ..., safety inviN}
for each such requirement Reqi and its associated invariants.

To formally verify the requirement, we have to prove the invariant preser-
vation for all the affected model events.1 The discharged proof obligations can
be used then as the safety case evidence that the requirement holds. This is
reflected in the associated safety case argument pattern for Class 1 (see Fig. 5).

We formalise the requirement SR-02 as the invariant inv1.2 at the first
refinement step of the Event-B development (MACHINE M1):

inv1.2: failure = FALSE ∧ phase ∈ {CONT,PRED} ⇒
min water level ≥ M1 ∧ max water level ≤ M2,

where the variable failure represents a system failure, the variable phase models
the stages of the steam boiler controller behaviour (i.e., the stages of its control
loop), and finally the variables min water level and max water level represent
the estimated interval for the sensed water level.

The (fragment of) mapping function FM for this case is
SR-02 �→ {inv1.2},

which is a concrete instance of its general form given above.
Finally, we instantiate the argument pattern for Class 1 as shown in Fig. 6.

To support the claim that inv1.2 holds for all the affected events, we attach the
discharged proof obligations as the evidence.

1 The affected model events are those that change any variables appearing in the
considered invariant(s).

210 L. Laibinis et al.

Since the steam boiler system is a failsafe system, whenever an unrecoverable
system failure occurs, the system should be stopped. In our model, such a failure
is associated with raising the corresponding flag stop. The overall condition is
defined by the safety requirement SR-01: When a system failure is detected, the
steam boiler control system shall be shut down and an alarm shall be activated.

The requirements belonging to Class 2 that represents local properties, i.e.,
the properties that need to be true at particular points of system execution. In
terms of Event-B, the particular system states we are interested in are usually
associated with some desired post-states of specific model events. Hence, the
proposed form of the mapping function for Class 2 is

Reqi �→ {(eventi1, q1), ..., (eventiN , qN)},
where Reqi is a requirement, eventij are the associated events, and qj are the
desired post-conditions for those events. For each pair of an event and a predi-
cate, it is rather straightforward in Event-B to generate the corresponding the-
orem, which becomes an additional proof obligation. In its turn, the proved the-
orem becomes the evidence for the constructed safety case (see [14] for details).

The corresponding instance of the mapping function FM for SR-01 is

SR-01 �→ {(EmergencyStop, stop = TRUE)}.
Thus, we formalise the requirement by associating it with the desired post-

condition stop = TRUE of the event EmergencyStop. To verify it, we construct
and prove the following theorem:

Thm1.1: ∀stop′ · stop′ ∈ BOOL ∧ (∃phase, stop · phase ∈ PHASE ∧
stop ∈ BOOL ∧ phase = CONT ∧ stop = FALSE ∧ stop′ =TRUE)
⇒ stop′ = TRUE,

The theorem is trivially true (i.e., automatically discharged by the Rodin
provers).

The instantiated fragment of the safety case is presented in Fig. 7. The proof
obligation thm1.1/THM serves as the evidence that this requirement holds.

The steam boiler is a typical control system that cyclically executes a prede-
fined sequence of actions: reading sensors, detecting failures, executing control
actions or error recovery, and predicting the next system state. We can formulate
that sequence of events as a corresponding requirement belonging to Class 3.

SR-01 of Class 2

is met

G2.2

Discharged

PO

thm1.1/THM

Argument by providing

theorems for events

where post-conditions

are required to hold

S2.2.1

Sn2.2.1

The provided theorem

thm1.1 is indeed provable

G2.2.1
Theorem

thm1.1

C2.2.2

Theorem

thm1.1 is the proper

formalisation of the

requirement

A2.2.1

A

Model: the first

refinement (MACHINE

M1 and CONTEXT

C1)

M2.2.1

Rodin

theorem

provers

C2.2.1

Fig. 7. A fragment of the safety case corresponding to assurance of SR-01

From Requirements Engineering to Safety Assurance: Refinement Approach 211

Formally, the ordering between system events can be expressed as a particular
relationship amongst possible pre- and post-states of the corresponding model
events. We rely on flow Event-B extension proposed by Iliasov [17] to verify that
the required order of events is enforced. The Flow plug-in for the Rodin platform
allows us to express all these relationships in a diagrammatic way, generating
the corresponding theorems automatically.

In this paper, we omit further illustration of safety case construction for
different classes of requirements. However, let us note that to ensure that the
constructed safety arguments are valid, we also have to define a special argument
pattern that demonstrates well-definedness of the formal models themselves as
described in the accompanying technical report[14].

The use of the Rodin platform and accompanying plug-ins has facilitated
derivation of formal evidence that the given safety requirements hold for the
modelled system. The proof-based semantics of Event-B (a strong relationship
between model elements and the associated proof obligations) has given us a
direct access to the corresponding proof obligations, which in turn allowed us to
explicitly refer to their proofs in the resulting safety case.

In this section, we demonstrated how models and proofs in Event-B can be
used in construction of a safety case. Though the resultant development appears
as a linearly constructed refinement chain, in practice it is a result of several
iterations of trials and errors. To maintain traceability between the requirements,
models and safety case fragments, we need to create an automated integrated
engineering environment – the problem that we discuss next.

5 Integrated Automated Tool Support

Development of safety-critical systems is a joint effort of engineers from diverse
domains, including electro-mechanical, hardware, software, safety etc. Each of
the engineering teams applies domain-specific analysis and design methods and
correspondingly uses the dedicated engineering tools. Though the engineering
environment is inherently heterogenous, productivity of the development pro-
cess and safety per se depend on how seamlessly the information about design
decisions and constraints propagates across domains.

Let us consider the interactions between requirements engineering and for-
mal modelling. Formal modelling typically results in identifying problems in
given requirements (e.g., missing or contradictory ones) as well as deriving the
constraints for the requirements to be satisfied. Hence, requirements definition
and model creation co-evolve, and changes in one domain should invoke changes
in the other. In its turn, these changes should be reflected in a safety case.
Since the safety case construction should proceed alongside the development,
the inability to produce safety argument may trigger the whole chain of require-
ment re-definition, formal model change and safety case re-construction.

Therefore, to address establishing an information continuum from require-
ments to safety cases, we should create a platform for non-obtrusive integration
of tools in an integrated tool chain. The work presented in the paper is a part

212 L. Laibinis et al.

of a more general ongoing effort of tool integration as well as formalisation and
mechanisation of rules that turn a collection of disparate tools into a tool chain.

We believe that dynamic tool integration enabling real-time sharing of data is
the way to build tool chains of tomorrow. There is enough technological context
to make such integration relatively cheap and painless, even for pre-existing
tools not meant to operate in a dynamic setting. The enabling technologies we
consider crucial are the structured data representation with stable identifiers and
the actor paradigm. The former gives a common syntactic base for all the tools
without enforcing unreasonable restrictions. An example of such a technology
is OSLC [5] described below. The actor model provides a simple and flexible
integration framework detached from the logic and code of integrated tools.

Before describing our solution in more detail, let us give a brief overview of
a new industry-driven interoperability standard – OSLC – that we rely on.
OSLC: Background. Open Services for Lifecycle Collaboration (OSLC) [5] is
an open community, the goal of which is to create specifications for integrat-
ing tools, their data and workflows to support lifecycle processes. OSLC address
integration scenarios for individual topics such as change management, test man-
agement, requirements management and configuration management.

In simple terms, OSLC specifications focus on how the external resources of
a particular tool can be accessed, browsed over, and specific change requests can
be made. OSLC is not trying to standardise the behaviour of any tool. Instead,
OSLC specifies a minimum amount of protocol and a small number of resource
types to allow two different tools to work together relatively seamlessly.

To ensure coherence and integration across these domains, each workgroup
builds on the concepts and rules defined in the OSLC Core specification [5].
OSLC Core consists mostly of standard rules and patterns for using HTTP and
RDF (Resource Description Framework) that all the domains must adopt.

In OSLC, each artefact in the lifecycle – a requirement, test case, source file
etc. – is an HTTP resource that is manipulated using the standard HTTP meth-
ods (GET, POST, etc.). Each resource has its RDF representation, which allows
statements about resources in the form of subject/predicate/object expressions,
i.e., as linked data. Other formats, like JSON or HTML, are also supported.

OSLC Requirements Management (RM) specification is built on the top of
OSLC Core. It supports key REST APIs for software Requirements Management
systems. The additionally specified properties describe the requirements-related
resources and the relationships between them.

There are several different approaches to implementing an OSLC provider for
software. For this work, we rely on so called the Adapter approach. It proposes
to create a new web application that acts as an OSLC adapter, runs along-side of
the target application, provides OSLC support and ”under the hood” makes calls
to the application web APIs to create, retrieve, and update external resources.
OSLC Tool Bus. To enable tool interconnection, we require that each tool has
an OSLC adapter. The adapter offers a web service style API for traversing as
well as changing tool data in real time. Generally, all well designed tools following

From Requirements Engineering to Safety Assurance: Refinement Approach 213

Fig. 8. OSLC-based tool bus.

the model-view-controller design pattern (e.g., based on Eclipse GMF) can be
easily extended with an OSLC adapter.

An OSLC adapter is purely passive: it offers access to structured data that
may be rendered in differing formats. It does not by itself link two tools together.
The linking, or as we call it, tool orchestration, requires an additional piece of
logic to define how and when the tools need to exchange information as illus-
trated in Fig. 8. An orchestration solution must (i) ensure that common names
refer to same concepts, and (ii) manage the information flow between the tools.

To address this, we propose to use the agent paradigm [18], where each tool
comes with one or more agents necessary for tool coordination. A collection
of agents working together coordinating several tools is called an orchestration
component. A tool may be a part of several interactions (see Fig. 8). Thus, e.g., a
specification may be interlinked with code base, a safety case and requirements.

The role of an agent is to represent the interests of a respective tool by noti-
fying other agents of any relevant new data and also acting on any such updates
from other agents. The underlying communication framework implements a fed-
erated tuple space [19] - a distributed implementation of a shared blackboard
with Linda coordination primitives [20]. To simplify agent implementation, we
also offer the publisher/subscriber and mailbox communication styles realised
on top of the tuple space API. Asynchronous message passing is a good fit for
real-time coordination of a distributed tool chain, while federated tuple space
is especially well-suited to loosely coupled parties that at times may be dis-
connected from some or all of peers. It is possible to construct generic agents
able to handle simple tasks like synchronising certain data of some two tools or
constantly broadcasting changes to a certain part of tool data. This enables, in
principle, a compositional approach to agent design where complex orchestration
logic is built, brick by brick, from the predefined agents.

A logical extension of this idea is fusion of an agent specification and the tool
OSLC interface. Recall that OSLC is primarily a gateway to the tool data. It
does not span across several tools. We are working on a way to extend an OSLC
specification with the coordination meta-data defining the logic of orchestration
components via static documents serialised in, e.g., XML or RDF form.
Prototype Tool Chain. In our prototype implementation, we aim at building
an environment that integrates requirements engineering, formal modelling and

214 L. Laibinis et al.

verification, and safety case development. We strive to retain flexibility and
notation that is native for each domain. For instance, requirements are defined
in natural language. To maintain the link between the dynamically changing
requirements and the associated formal models, we have created a prototype
Requirements-Rodin adapter [21]. Formal modelling is done using the Event-B
language, while safety cases are generated in a goal-structuring notation.

Our requirements tool uses the generic principle of organising requirements
into a tree with further optional cross-links between them, and their classifi-
cations (by taxonomy, component, developer, etc.). The tool provides a sim-
ple form-based user interface. It embeds a web-service that provides OSLC-
compliant RDF descriptions of requirements. Every requirement may be referred
to by the project name and requirement id.

The second part of the prototype achieves a similar goal for the Rodin
Platform. We have developed a Rodin plug-in that exposes the Event-B model
database and proofs as externally referable OSLC resources. Once again, each
model element (variable, invariant, refinement) has a unique global identifiers
that can be used to cross-link with other OSLC and RDF resources.

The third part of the environment facilitates generation of safety case. It
maps relevant elements of requirements and models into the corresponding parts
of safety case, i.e., allows to reuse the results of formal modelling and verification
to construct a safety argument.

6 Related Work and Conclusions

Related Work. The relationships between formal methods and safety cases
have been studied along two main directions: to prove soundness of safety argu-
ment and gather evidences from formal modelling to substantiate safety argu-
ment. The most prominent work on the former is by Rushby [22], in which he
formalises the top-level safety argument to support automated soundness check-
ing. The obtained theorem can be then verified by a theorem prover or a model
checker.

Our work is closer to the second research direction. Hawkins et al. [23] propose
an approach that relies on static analysis of program code to demonstrate that
the software does not contain hazardous errors. In [24], the authors automate
generation of heterogeneous safety cases, starting from a (manually developed)
top-level system safety case, while lower-level fragments are automatically gen-
erated from formal verification of safety requirements. In [25], to ensure that
a model derived during model-driven development of a safety critical system
satisfies all the required properties, the authors use the obtained model check-
ing results. Our approach follows a similar idea. The main difference is in the
reliance on the introduced requirements classification to construct both associ-
ated formal model and resulting safety argument. Moreover, the automatic tool
support created for the proposed approach significantly improves its usability.
Conclusions. In this paper, we have presented an approach and a prototype
tool implementation for integrating formal modelling in Event-B into the process

From Requirements Engineering to Safety Assurance: Refinement Approach 215

of development and assurance of safety-critical systems. We aimed at providing
support for linking requirements and formal models as well as efficient reuse of
formal modelling and verification artefacts in safety case construction. The pro-
totype tool implementation provides a platform for dynamic information sharing
between safety engineers and verification team. It relies on the idea of linked data
promoted by the OSLC standard, which is now rapidly spreading in industry.

To validate the approach, we have undertaken formal development and safety
case construction of the steam boiler system. In our work, to test the approach
scalability and usability, we have deliberately aimed at representing a large set
of complex requirements of the system and then constructing the safety case.

We believe that the proposed approach is beneficial for the development of
complex safety-critical systems because it allows the engineers to establish an
information continuum between different involved domains. As a future work, we
are planning to continue our work on integration by focusing on the integration
with techniques for safety analysis as well as different verification tools.

Acknowledgement. The presented work is partially supported by the TEKES project

Cyber Trust.

References

1. Abrial, J.R.: Modeling in Event B. Cambridge University Press (2010)
2. (EU-project DEPLOY). http://www.deploy-project.eu/
3. Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering

Methods. Springer, Heidelberg (2013)
4. (EU-project RODIN). http://rodin.cs.ncl.ac.uk/
5. OSLC: (Open Services for Lifecycle Collaboration.). http://open-services.net/
6. RODIN: Event-B Platform (2009). http://www.event-b.org/
7. (EU-project ADVANCE). http://www.advance-ict.eu
8. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Towards rigorous construction of

safety cases. Technical Report 1110 (2014)
9. Bishop, P., Bloomfield, R.: A methodology for safety case development. In: Safety-

Critical Systems Symposium, Birmingham, UK. Springer (1998)
10. International Organization for Standardization: ISO 26262 Road Vehicles Func-

tional Safety (2011)
11. European Committee for Electrotechnical Standardization: EN 50126 Railway

applications - The Specification and Demonstration of Reliability. Availability,
Maintainability and Safety (RAMS) (2011)

12. Kelly, T., McDermid, J.: Safety case construction and reuse using patterns. In:
Daniel, P. (ed.) Proceedings of the 16th International Conference on Computer
Safety, Reliability and Security (SAFECOMP 1997), pp. 55–69. Springer (1997)

13. Goal Structuring Notation Working Group: Goal Structuring Notation Standard
(2011). http://www.goalstructuringnotation.info/

14. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Facilitating construction of safety
cases from formal models in Event-B. Information and Software Technology 60,
51–76 (2015)

15. Abrial, J.R.: Steam-Boiler control specification problem. In: Formal Methods for
Industrial Applications, Specifying and Programming the Steam Boiler Control,
London, UK, pp. 500–509. Springer (1996)

http://www.deploy-project.eu/
http://rodin.cs.ncl.ac.uk/
http://open-services.net/
http://www.event-b.org/
http://www.advance-ict.eu
http://www.goalstructuringnotation.info/

216 L. Laibinis et al.

16. Prokhorova, Y., Troubitsyna, E., Laibinis, L.: A Case Study in Refinement-Based
Modelling of a Resilient Control System. TUCS Technical Report 1086 (2013)

17. Iliasov, A.: Use case scenarios as verification conditions: event-B/Flow approach.
In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 9–23. Springer,
Heidelberg (2011)

18. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley Publishing (2009)
19. Iliasov, A., Romanovsky, A.: Structured coordination spaces for fault tolerant mobile

agents. In: Cheraghchi, H.S., Lindskov Knudsen, J., Romanovsky, A., Babu, C.S.
(eds.)AdvancedTopics inExceptionHandlingTechniques. LNCS, vol. 4119, pp. 181–
199. Springer, Heidelberg (2006)

20. Gelernter, D.: Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems 7(1), 80–112 (1985)

21. Rodin OSLC Adapter: (Using Instructions). http://iliasov.org/oslc/
22. Rushby, J.: Formalism in safety cases. In: Dale, C., Anderson, T. (eds.) Making

Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium,
pp. 3–17. Springer, Bristol (2010)

23. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive
software safety certification: a comparative study. Safety Science 59, 55–71 (2013)

24. Denney, E., Pai, G., Pohl, J.: Automating the Generation of Heterogeneous Avia-
tion Safety Cases. NASA Contractor Report NASA/CR-2011-215983 (2011)

25. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the
pacemaker software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS,
vol. 6416, pp. 343–356. Springer, Heidelberg (2010)

http://iliasov.org/oslc/

Pareto Optimal Scheduling of Synchronous Data
Flow Graphs via Parallel Methods

Yu-Lei Gu1,2(B), Xue-Yang Zhu1, and Guangquan Zhang2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{guyl,zxy}@ios.ac.cn
2 School of Computer Science and Technology, Soochow University, Suzhou, China

gqzhang@suda.edu.cn

Abstract. Synchronous data flow graphs (SDFGs) are widely used to
model streaming applications such as multimedia and digital signal pro-
cessing applications. They usually run on multicore processors and are
required a high throughput, which in turn may increase the energy con-
sumption. In this paper, we present a parallel framework to explore the
Pareto space of energy consumption and throughput of SDFGs and to
find the schedule of each Pareto point. The considered multicore plat-
forms are heterogeneous. We present an exact method pruning the state
space according to the properties of SDFGs and two approximate solu-
tions to make the processes faster. Our experimental results show that
our methods can deal with large scale models within reasonable execution
time, and perform better than the existing methods.

Keywords: Synchronous data flow graphs · Multicore · Pareto
optimization · Scheduling · Parallel

1 Introduction and Related Work

Embedded systems are everywhere today. They are in smart phones, e-book read-
ers, portable media players and digital printers, etc. Streaming applications like
audio and video processing, usually modeled by Synchronous data flow graphs
(SDFGs) [5], are an important class of applications in these electronic devices.
Energy efficiency is an essential issue in these devices, for reasons like the increas-
ing demand for portable devices or the heat dissipation.

Streaming applications are usually required to reach a high throughput. The
use of heterogeneous multicore processors to improve the throughput of stream-
ing applications has become a feasible solution. However, a higher throughput
is usually achieved at the cost of the increase of energy consumption. Designers
have to carefully tune the mapping of applications on the platforms to meet
performance requirement.

This work is partially supported by 973 program (No. 2014CB340701) and the
National Natural Science Foundation of China (Nos. 61472406 and 61472474).

An erratum to this chapter is available at DOI: 10.1007/978-3-319-25942-0 21

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 217–223, 2016.
DOI: 10.1007/978-3-319-25942-0 14

218 Y.-L. Gu et al.

Most mapping methods reported in the literature fall under design-time map-
ping [7]. The optimization goal of the mapping includes timing, energy consump-
tion and reliability, etc. [6] and [2] present methods to achieve significant energy
savings. [1] and [4] perform optimization for both energy consumption and execu-
tion time. However, these methods only consider homogeneous architectures. [9]
works on heterogeneous architecture but only take energy consumption into
consideration.

In this paper, we are concerned with constructing throughput and energy
efficient static (compile-time) schedules of SDFGs on a heterogeneous multipro-
cessor platform. For a given platform, even we consider only one optimization
criterion, e.g. throughput, the scheduling and mapping problem is already NP-
complete [7]. [10] uses model checking to address the same problem and provides
exact solutions. In this paper, we try to prune the state space and present a
more efficient parallel algorithm which returns exact results. Two approximative
methods are provided for larger models.

2 System Model and Problem Formulation

An execution platform P is a set of heterogeneous processors. For each processor
p, the power consumption is defined by the consumption rates when p is used
and when it’s idle. The power consumption of processor p1 shown in Fig. 1(b) is
90 when it’s in use, for example.

A simple SDFG is depicted in Fig. 1(a). The nodes are called actors, mod-
eling the computations of a system. The edges are FIFO channels, transferring
the data items, called tokens. An essential property of SDFG is that when an
actor starts an execution, also called firing, it consumes the same amount of
tokens from its incoming edges, and when an actor ends a firing, it produces
the same amount of tokens to its outgoing edges. The numbers of tokens are
called consumption rate and production rate of edges, respectively. They are
labeled on each edge. Each actor is weighted with a set of computation times,
corresponding to processors. For example, actor a of G1 in Fig. 1(a) need 1 unit
of time to finish on p1 and 2 units of time on p2, respectively.

A System model M = (G,P) includes an SDFG G and its execution plat-
form P . A simple system model M1 is shown in Fig. 1(a) and Fig. 1(b).

An SDFG G is sample rate consistent [5] if and only if there exists a positive
integer vector q. After any sequence of actor firings conforming to q, the number of
tokens in the channels are equal to their initial state values. The repetition vector of
G1 is q = [3, 2, 1] for example. An iteration is a firing sequence in which each actor
α occurs exactly q(α) times. We consider only sample rate consistent SDFGs. Only
such SDFGs are meaningful in practice. A static schedule arranges computations
of an algorithm to be executed repeatedly. An f-schedule of system model M =
(G,P) is a static schedule arranging f consecutive iterations of G running on P .

The throughput (denoted by thr) of f -schedule S is the average number of
iterations per unit time, that is, thr = f

T , where T is the total execution time of
S. The throughput of schedule S1 shown in Fig. 1(c) is 1/8 = 0.125 for example.

Pareto Optimal Scheduling of SDFGs via Parallel Methods 219

The total energy consumption(denoted by tec) of f -schedule S is the sum energy
of all processors. For each processor, it includes the energy consumed while it’s
in idle and in use. The energy consumption(denoted by ec) of S is ec = tec

f . For
schedule S1, for example, ec = [(2 ∗ 10 + 6 ∗ 90) + (2 ∗ 20 + 6 ∗ 30)]/1 = 780. A
Pareto point is a tuple (thr, ec) of S in which one element (thr or ec) becomes
better must make another element worse. Fig. 1(d) shows two Pareto points of
the system model M1, which are (0.1, 720) and (0.125, 780). Schedule S is a
Pareto schedule when (thr, ec) of S is a Pareto point.

(a)

power time
inuse idle a b c

p1 90 10 1 2 2
p2 30 20 2 4 4

(b) (c) (d)

Fig. 1. The system model M1 and its schedules. (a) The SDFG G1; (b) the execution
platform P1 and the execution time of actors in G1 on different processors; (c) a periodic
schedule S1 with thr=0.125 and ec=780;(d)Pareto points diagrams of M1

Given a system model M = (G,P) and the number of iterations f , the
problems we address are to find all Pareto f -schedules.

3 Pareto Optimal Scheduling and Mapping

We use a parallel framework to find all Pareto f -schedules from a system model.
We use a map table to store the constructing schedules at each step. Initially, a
constructing schedule includes one firing. The number of firings of schedules in the
map table is increased by one at each step until all f ∗ qSum firings have been
allocated,where qSum is the sumof elements of the repetition vector q. Thatmeans
the execution of f iterations of an SDFG has been mapped and scheduled. A map
table is created by producer-consumer threads extending its previous map table.

Fig. 2. The framework of our parallel method

220 Y.-L. Gu et al.

Taking Pareto 1-schedules of M1 for example, we show our method frame-
work in Fig. 2. The key of a map table is a vector contains the scheduled number
of firings of each actor. Taking key < 1, 0, 0 > in mapTable1 for example, it means
actor a has already be executed once while other actors none. The value of a
map table is a set of constructing schedules. The number of firings of each actor
of each schedule equals the corresponding element of the key. Taking value with
key < 1, 0, 0 > in mapTable1 for example, it contains two constructing sched-
ules, in which a firing of actor a is allocated on p1 and p2, respectively. We
allocate one enable actor on one processor each time, called extension, based on
the constructing schedules in previous map table. It finally stores all the Pareto
schedules when the algorithm finishes. And we finally get two Pareto schedules
in the mapTable6.

Algorithm 1 Judge
Input: two compared schedule A,B
Output: judge result of A and B
1: if A � B then
2: return -1 // A is not worse than B
3: else
4: if B � A then
5: return 1 // A is worse than B
6: else
7: return 0 // can’t judge
8: end if
9: end if

Producer-consumer mode is used
in each extension. Producer threads
take each constructing schedule from
previous table, extend the schedule
and put the extended schedule set
into buffer queue. The start time of
each actor can be obtained via max-
plus algebra [3] by simply calculating
max(maxT, maxP), where maxT is
the max produced time of tokens that
actors need to consume and maxP is
the max end time of the last actor on
each processor. Taking the extension
between mapTable2 and mapTable3 for example, one producer thread may take
schedule sch2 1 in mapTable2, and extend it to two schedules by allocating a
third firing of actor a on p1 and p2, respectively. This producer thread puts the
two schedules into buffer. Then one consumer thread takes these two schedules
and put them into mapTable3 which are sch3 1 and sch3 2, respectively.

Consumer threads take schedules from buffer queues and insert them into
the next map tables. For pruning the state space, we compare the new schedule
with those in the map table to decide whether to insert it. By judging schedule
B in buffer queue with each schedule A with same key in that next map table
via Algorithm 1, we insert B when we can’t judge, discard it when A is not
worse , insert B and remove A when A is worse. Taking the extension between
mapTable1 and mapTable2 for example, sch2 2 is extended by sch1 1 through
allocating a firing of a on processor p2. We discard sch2 3 because it’s the same
as sch2 2.

Let sch[p] be the end time of the last firing on processor p and occT [p] be
the total occupied time of processor p. Schedule A dominate(�) schedule B is
defined as following.

1. A.sch[p] ≤ B.sch[p],
2. A.occT [p] ≤ B.occT [p], and
3. the start time of each next enable actor of A is earlier than that of B.

Pareto Optimal Scheduling of SDFGs via Parallel Methods 221

Proposition. Method above is an exact pruning policy. We can always find a
schedule extended by A which is not worse than that of B if A � B.

Proof : According to condition 1 and 3, for any f -schedule B′ extended by
the constructing schedule B, we can move the firings after B to extend A. The
procedure is illustrated in Fig. 3 with shadow boxes. The resulting f -schedule
A′ has the same thr as B′. According to condition 2, ec of A is apparently not
worse than B. So it’s proved.

Fig. 3. dominate (�) illustration

The state space of scheduling an
SDFG can be very large. To further
prune the state space, approximate
methods can be obtained by replac-
ing the definition of dominate(�) but
may lose accuracy at different degree.
The first approximate method we pro-
posed , named appr1, is obtained by removing the third condition in the accurate
dominate(�) definition. The second approximate method, named appr2, is less
accurate than appr1. Its dominate(�) definition is defined as: both of the tem-
porary throughput and energy consumption of constructing schedule A are not
greater than that of B.

4 Experiments

We have implemented our algorithms and tested them on two sets of system
models on a 2.9GHz server with 32 logical cores, 24M Cache and 384GB RAM.
The platforms in system models we considered are 2 processors with different
type and 4 processors with two processors per type.

Table 1. Experimental results for MPEG-4 Decoder

info P5 P10 P30 P5 P10 P30
f #P model checking [10] parallel(exact)

1
2 2/0.1a 2/0.2 3/8.1 2/0.3 2/0.3 3/0.5

4 1/17.8 1/1221 0/Nb 1/0.4 1/5.5 0/N

2
2 2/1.2 3/8.3 2/235.5 2/0.4 3/0.6 2/4.3
4 1/1902 0/N 0/N 1/55.6 2/28479 0/N

parallel(appr1) parallel(appr2)

1
2 2/0.2 2/0.3 3/0.5 2/0.3 2/0.3 3/0.5
4 1/0.4 1/2.1 2/6978 1/0.3 1/0.3 2/0.5

2
2 2/0.4 3/0.5 2/3.1 2/0.3 3/0.5 2/2.5
4 1/3.9 2/270 0/N 1/0.3 2/0.5 1/2.6

a number of Pareto points/execution time(s).
b not finished after 10 hours or running out of memory.

The first case is an MPEG-4 decoder [8] with different parameters. We con-
sider three scenarios, P5, P10 and P30. For each scenario Px, the sum of ele-
ments of their q is 3+2x, which means the problem scale grows when x is larger.
We compare the model checking methods in [10] with our parallel methods.

222 Y.-L. Gu et al.

The results are shown in Table 1. Each cell is filled with the number of Pareto
points the corresponding method returns and its execution time in seconds. For
small scale problems, model checking method performs as well as the parallel
method, while it takes a lot of time or even can’t work when problem scale grows.
The results show that even our approximate methods hit all the Pareto points
while the execution time is much less than the model checking methods for large
scale problems.

Fig. 4. Experimental results for large models

The second set of case includes
some large SDFGs. It is mainly
used to show the scalability of our
methods. We randomly generate 30
SDFGs using SDF3 tool (http://
www.es.ele.tue.nl/sdf3) with the
sum of elements of their q nearly 1000. The system models we considered are
these 30 SDFGs with a platform with two processors. The experimental results
illustrated in Fig. 4 present the execution time of the model checking method
and our parallel method appr2. The number in cell indicates the number of cases
solved within these duration. Method appr2 can solve 7 cases in 500∼5000 sec-
onds, for example. The results show method appr2 can solve 24 of the 30 cases
while model checking method solves only 6 cases.

5 Conclusion

In this paper, we have presented a parallel framework for scheduling SDFGs
on heterogenous multiprocessor platforms considering the optimization of both
throughput and energy consumption. An exact method can be used to obtain all
exact Pareto-optimal schedules and two approximate methods have provided a
trade-off between accuracy and execution time. Our experimental results show
that the execution time of our algorithm is much less than the existing methods
for large models while hits all Pareto points for the MPEG-4 decoder case.
We will conduct more comparative studies, comparing our methods with other
heuristics like list scheduling, in the future.

References

1. Ascia, G., Catania, V., Palesi, M.: Multi-objective mapping for mesh-based noc
architectures, pp. 182–187. IEEE (2004)

2. Chen, G., Li, F., Son, S., Kandemir, M.: Application mapping for chip multipro-
cessors, pp. 620–625. IEEE (2008)

3. Heidergott, B., Olsder, G.J., Woude, J.v.d.: Max Plus at Work: Modeling and
Analysis of Synchronized Systems. Princeton University Press (2005)

4. Hu, J., Marculescu, R.: Energy- and performance-aware mapping for regular noc
architectures. Computer-Aided Design of Integrated Circuits and Systems 4(24),
551–562 (2005)

5. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

http://www.es.ele.tue.nl/sdf3
http://www.es.ele.tue.nl/sdf3

Pareto Optimal Scheduling of SDFGs via Parallel Methods 223

6. Murali, S., Coenen, M., Radulescu, A., Goossens, K., Micheli, G.D.: A methodology
for mapping multiple use-cases onto networks on chips. In: DATE, pp. 118–123.
IEEE (2006)

7. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: Survey of current and emerging trends. In: Proc. of the 50th Ann. Design
Automation Conf. (DAC), pp. 1–10 (2013)

8. Theelen, B., Katoen, J.P., Wu, H.: Model checking of scenario-aware dataflow
with CADP. In: Proceedings of the Conference on Design, Automation and Test
in Europe, pp. 653–658 (2012)

9. Wu, D., Al-Hashimi, B., Else, P.: Scheduling and mapping of conditional task
graph for the synthesis of low power embedded systems. Computers and Digital
Techniques 150(5), 262–273 (2003)

10. Zhu, X.-Y., Yan, R., Gu, Y.-L., Zhang, J., Zhang, W., Zhang, G.: Static optimal
scheduling for synchronous data flow graphs with model checking. In: Bjørner, N.,
de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 551–569. Springer, Heidelberg
(2015)

Symbolic Execution and Invariants

© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 227–242, 2015.
DOI:10.1007/978-3-319-25942-0_15

PathWalker: A Dynamic Symbolic Execution Tool Based
on LLVM Byte Code Instrumentation

Zhang Jun-xian1(), Li Zhou-jun1, and Zheng Xian-chen2

1 School of Computer Science & Engineering, Beihang University, Beijing 100191, China
LoongWalker@163.com, lizj@buaa.edu.cn

2 School of Electrical Engineering, University of Jinan, Jinan 250022, Shan Dong, China
zxcwin@163.com

Abstract. Dynamic symbolic execution (or concolic execution) is a powerful
method for program analysis and software testing by attaching symbolic execu-
tion to the concrete running of a program. This paper proposes an approach to
handle aggregate types (e.g., pointers, arrays, structures) and their complex
combinations for the dynamic symbolic execution of C programs. The main
idea of the approach is splitting a complex type program variable into a series
of primitive type variables. During the concrete execution of a program, a con-
colic execution engine is provided to observe the operations on every program
variable at the level of primitive types, and then the symbolic state of the pro-
gram is updated. The path constraints which must be satisfied to drive the pro-
gram running along the current execution path are collected to generate new test
data for other paths. Our approach guarantees that only primitive type variables
can appear in the symbolic states and path constraints. Based on LLVM byte
code instrumentation, we present a new tool, called PathWalker, which imple-
ments this approach. Experimental results reveal that PathWalker is effective to
deal with complex types in C codes.

Keywords: Dynamic symbolic execution · Program instrumentation · LLVM
aggregate type

1 Introduction

Software testing is indispensable for software development. It is a necessary part of
the software engineering discipline. However, testing is labor-intensive and expen-
sive. It often accounts for more than 50% of total development costs [1]. Thus, there
are clearly visible benefits in reducing the cost and improving the effectiveness of
software testing by making the process automatic. In fact, there has been a rapid
growth of practice in using automated software testing tools. Currently, a large num-
ber of software test automation tools or prototypes have been developed and already
available.

Random Fuzz Testing plays an important role to guarantee the safety quality of soft-
ware. Yet, in practice, in fuzz testing it is quite hard to randomly choose all the values
within the domain of potential inputs [2] as many sets of values may lead to the same

228 Z. Jun-xian et al.

runtime behavior, which means most of them are unnecessary. To select particular inputs
that can hit the bug the program under test may need to be executed for thousands of
times.

Static symbolic execution that aims to represent the path's computations, as op-
posed to concrete execution, is a traditional program analysis method. It was proposed
by Balzer for “extensible debugging and monitoring system” in 1969[3]. The key
idea behind this method is to use symbolic values instead of actual values as program
input data, and to replace concrete states of program variables with symbolic expres-
sions which only consist of input symbolic variables. As a result, at every step during
the running of the program, a variable can be expressed as a function of the symbolic
inputs. Once a specific execution is over, symbolic path constraints are generated.
These constraints limit what conditions the input data must satisfy to guide the pro-
gram to run along the same path.

In this paper, we propose a new tool to automatically generate test cases for C
codes that can drive the program under test to run time and time again in order to
achieve a high rate of branch coverage. It recognizes complex data structures used in
the program and builds the test driver code. We use a mechanism which is referred to
as dynamic symbolic or concolic execution [2] that consists in performing tests, i.e. a
concrete execution, mirrored by a symbolic execution following the same path.

1.1 Background

The main limitation of static symbolic execution method is that when the decision
procedure fails to solve the path constraints, the symbolic execution engine will get
stuck and have to drop the current path. This leads to the reduction of the code cover-
age rate and may miss some potential bugs. To cope with this problem, P. Godefroid,
etc. proposed a dynamic symbolic execution method named concolic execution [4][2].
It improves classical symbolic execution by making a distinction between the con-
crete and the symbolic state of a program. The code is essentially run unmodified, and
only statements that depend on the symbolic inputs are treated differently, adding
constraints to the current path condition [5]. When the decision procedure fails, con-
colic execution will find out which part of the path constraints results in this failure
and try to replace this symbolic expression with its concrete value. This allows con-
colic execution to continue to run through the current path and bypass the limitation
of the decision procedure.

The concolic execution method was proposed about a decade ago. Since then re-
searchers have spent a great amount of efforts in this area, and a significant number of
different techniques, prototypes and tools for test case generation using this method have
been proposed. All these works could be roughly divided into two groups by whether
they aim to process source code like DART [4], CUTE [2] and KLEE [6], or binary code
like SAGE [1], and MergePoint [7]. A tool that works on binary code has the advantage
of being more direct and precise; however, it has to suffer the loss of type information of
the tested program. On the other hand, a tool that handles source code can take full ad-
vantage of type information of the analyzed code; however, until now to our knowledge,
few of such tools pay attention to generate input data for complex types.

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 229

Fig. 1. Logical Framework of PathWalker

1.2 Overview

Fig. 1 shows the overall framework of PathWalker which consists of two main parts.
In the static stage, we compile C source code to LLVM [8, 9] byte code using Clang
[10], a compiler front-end which is a part of LLVM compile framework. Then Path-
Walker extracts type information and other static information of the byte code to gen-
erate the test driver. This test driver is a C++ program that performs the random
initialization of the input data for the testee function, and then it reads the results of
the SMT solver and feeds them back to the testee function again.

The instrumentation procedure reads the byte code and inserts additional function
calls into the concolic execution engine, where we implement the concolic execution

230 Z. Jun-xian et al.

logic. Finally, we compile the instrumented LLVM byte code to a dynamic link li-
brary, and link it with the compiled test driver and our concolic execution engine
library to form an executable binary.

In the dynamic stage, the preprocessed program is executed symbolically. The
process of this stage can be explained as follows:
• The Test Driver performs the random initialization of the input data for the testee

function, and calls the testee function.
• During the actual execution of the program, the concolic execution engine ob-

serves the dynamic behaviors of the program under test and updates the symbolic
states of the symbolic variables.

• After a path is executed, the outcome is a sequence of path constraints. Path-
Walker negates one of them in depth first order to form a set of mutated path
constraints.

• PathWalker feeds the mutated constraints to the SMT Solver to generate new
input data which should drive the program to run along an unexecuted path.

• If the solver succeeds, the test driver will use these new input data to call the
testee function.

• If the solver fails, PathWalker will replace the symbolic values of last constraint
with their concrete values and resolve the simplified path constraints again.

1.3 Contributions

The main contributions of this paper are as follows:
• Extraction of structure information from complex types: How to deal with com-

plex type variables effectively is one of the challenges of symbolic execution. We
proposed an approach in this paper to decompose the combination of array, struct
and pointer types in C codes, and scatter an aggregate type variable to a series of
primitive type variables.

• Generating test drivers automatically: To save the laborious work to write the test
driver code, PathWalker exploits the information extracted from complex types to
generate test drivers automatically.

• Implementation and Evaluation: Based on LLVM byte code instrumentation, we
develop a tool, called PathWalker, using the concolic execution method to gener-
ate test data for complex types. The experimental results show that our approach
is effective.

1.4 Structure of the Paper

The rest of this paper is organized as follows. In the following section, a motivating
example is presented to illustrate our brief idea. The framework of our approach is
discussed in Section 3 and its implementation is introduced in Section 4. Experiments
are performed to show the efficiency of our approach, and the results are demonstrat-
ed in Section 4. Section 5 discusses the related work and Section 6 concludes this
paper.

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 231

2 Example

We use a simple example to illustrate how PathWalker recognizes input data with
complex types as symbolic variables and performs concolic execution. PathWalker
can only process C source code for now; but we will extend it to other programming
languages in the future. Consider the C function testee shown in Fig. 2a, it accepts
two formal arguments: an array of struct s and an unsigned integer index. The error at
line 15 will occur if the input arguments satisfy the constraint s[0].arr[3] == 3*s[1].a.
In this case, a concolic execution tool that cannot handle pointer reference, aggregate
type, or address calculations may just drop the symbolic execution and only perform
the concrete execution or even abort the current running, which misses the chance to
hit the error.

Fig. 2a. An Example of C Code

Fig. 2b. Memory Layout of array s

To deal with this problem, PathWalker will first extract the structure information
of the array variable s which is in fact transformed into a pointer that refers to the
address of the first element in the struct array s[0], and then it labels out all child pri-
mitive variables contained in the struct array s and saves all these information. Path-
Walker performs this task in the static analysis stage. After that, the test driver which
is generated automatically will randomly initialize the input data, and uses them as
arguments to make a call into function testee.

232 Z. Jun-xian et al.

Suppose there are two elements in array s which is passed to testee and the actual
argument index equals 0, Fig. 2b shows the memory layout of s.

In the first iteration of the execution, when function testee reaches the branch, it
will first make a call to function triple, passing the concrete value of s[1].a, which is
the actual argument and equals 8, and also the symbolic value of s[1].a to the func-
tion. When function triple returns, we will get 24 as its return value and a symbolic
expression 3*s[1].a as its symbolic value. According to the current program state, we
have the path constraints which is index=0∧s[0].arr[3]=3∧triple(s[1].a)=24. As 324,
the branch condition fails, thus the function testee takes the false branch and has the
error missed. Then PathWalker will negate the last part of the path constraints and
query the SMT Solver again. Now we may have index=0∧s[0].arr[3]=3∧s[1].a=1. In
the second iteration of execution, the test driver feeds these new input data to function
testee, and this time the execution will cover the other branch of the condition state-
ment and hit the error successfully.

3 Our Approach

In this section, we present our approach in details. Firstly, we introduce the concolic
execution method by a simple example. Then we explain how our approach splits
variables of complex types into series of primitive type variables. Finally, we describe
how to instrument the program under test based on LLVM byte code, and automati-
cally generate a test driver.

3.1 Concolic Execution

PathWalker firstly establishes a logical memory model mapping every program varia-
ble at the level of primitive type to a pair of concrete and symbolic value. We define
this pair as the concolic state of a specific program variable. All these concolic states
of the program variables constitute the concolic state of the program.

With the given input data, the program under test is executed concretely while be-
ing observed by a concolic engine which updates the concolic states of program’s
variables at every execution step and collects path constraints at every branch it en-
counters.

Fig. 3. An Example of C Code

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 233

Consider the C function testee shown in Fig. 3, we give the input data as a=3, b=5.
Once an assignment statement is executed, the concolic program state of the function
testee will be correspondingly updated. Thus we could have a concolic state transition
trace as shown in Fig. 4.

Fig. 4. A Concolic State Transition Trace

We label out both the concrete and symbolic variable states updated using red color
in every program state. For a specific function, there are three types of symbolic va-
riables, including global variable, local variable and arguments.

Fig. 5. All Traces Compose an Execution Tree

234 Z. Jun-xian et al.

After an assignment statement is executed, a symbolic variable should be assigned
a new symbolic expression; if there appear local symbolic variables in the right hand
of this assignment statement, PathWalker uses their symbolic values to replace their
occurrences. Obviously, in every symbolic expression, there can only appear symbol-
ic global variables and symbolic arguments. This can be proved inductively.

In every symbolic state shown in Fig. 5, the up-left corner shows the symbolic ar-
guments, the up-right corner shows the symbolic local variables, and the bottom
shows the path constraints. Every updating is labeled in red color.

Using different input data, function testee can come out with different concolic
state transition traces; all possible traces can be organized as an execution tree as
shown in Fig. 5. Two traces may have a common prefix until they fork to two suffixes
after a branch condition. PathWalker tries to explore the execution tree of the program
under test dynamically, and it uses DFS algorithm which is similar with DART [4].

3.2 Splitting Complex Type Variable

In source code written in C programming language, there are amount of pointers,
structures, arrays, and their combinations are frequently used. The type system of the
C language is powerful to represent complicated data structures while it also results in
the difficulty that has to be faced by a program analysis tool. Fig. 6 models the cross-
references among variable types in the C language.

Fig. 6. Cross-references among Variable Types in C

Our goal is to scatter any complex type variable into a series of primitive variables
which would be labeled as symbolic variables at runtime. For an example as shown in
Fig. 2, the results of scattering variable struct array s will be 14 variables including:
s[0], s[0].a, s[0].arr, s[0].arr[0], s[0].arr[1], s[0].arr[2], s[0].arr[3], s[1], s[1].a,
s[1].arr, s[1].arr[0], s[1].arr[1], s[1].arr[2], s[1].arr[3].

LLVM has a sufficient type system to represent the type information in C codes
completely. Unfortunately, this information will no longer exist when the program is
concretely executed. Thus before PathWalker concolicly executes the tested program,

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 235

it will at first extract the type information of every program variable including global
variables, local variables and function arguments. For aggregate types like (multi
dimension) array, structure, pointer and any possible combination of them, the struc-
tural information must also be extracted. All these information will be saved and can
be accessed at runtime.

To save the type information, we design a set of classes to represent the relation-
ships of concolic variables with different types as illustrated in Fig. 7a; we also devel-
op an algorithm to extract type information, as shown in Fig. 7b.

Fig. 7a. Relationships of Concolic Variables with Different Types

The procedures shown in Fig. 7b make calls into each other and thus form indirect
recursive calls. These indirect recursive calls will terminate ultimately for sure. The
key insight is that any variable that appears in program P can only possess limited
memory which can always be treated as a series of primitive type variables. When a
sequence of calls meets such a deep-most primitive variable, it will execute a return
instruction definitely.

3.3 Generation of Test Driver

After the type information has been extracted, PathWalker automatically generates a
test driver for the C program under test. This test driver is a readable C++ program
which can be easily modified or extended. Once the test driver has been generated, it
can be compiled to an executable program combined with the C program under test.
All these works are performed automatically.

This test driver simulates the general environment visible to the program. In the
first execution it performs the random initialization and feeds these data to the pro-
gram under test. After one execution, a path constraints file will be generated. We use
the Z3 SMT Solver [12] to solve these constraints and get a solution file, and then the
test driver reads this solution to rebuild input data and calls the program again.

236 Z. Jun-xian et al.

Input: an LLVM variable object v, Program P
Output: type information

FOR EACH v in Program P

t = typeof (v)
ExtractTypeInfo (t)

END

ExtractTypeInfo (t)
IF t Has Been Recorded RETURN
IF t is Primitive

 ExtractPrimitiveType (t)
IF t is Array

 ExtractArrayType (t)
IF t is Struct

 ExtractStructType (t)
IF t is Pointer

 ExtractPointerType (t)
END

ExtractArrayType (t)

Retrieve Dimension information of t
IF t is Multi Dimension
For EACH ELEMENT ARRAY TYPE subt

 ExtractArrayType (subt)
 END

ELSE

t1= typeof (First element of t)
ExtractTypeInfo (t1)

END

ExtractStructType (t)
 FOR EACH field f of Struct t

ExtractTypeInfo (f)
 END

END

ExtractPointerType (t)

Retrieve the Level of t
t2 = typeof (referenced type of t)
ExtractTypeInfo (t2)

END

Fig. 7b. Type Information Extraction Algorithm

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 237

Fig. 8. Tree Structure of Struct Array s

The structure of a complex type variable can be represented as a tree, in which the
root node is the variable and all the leaf nodes are primitive types. For each primitive
type that LLVM supports we design a specific loader. To generate these loaders we
use a DFS algorithm to explore the structure tree. Fig. 8 shows the structure tree of
the struct array s shown in Fig. 2a, and the loaders read data from the solution file in
the depth first order which is:

s[0].as[0].arr[0]s[0].arr[1]s[0].arr[2]s[0].arr[3]
s[1].as[1].arr[0]s[1].arr[1]s[1].arr[2]s[1].arr[3].

3.4 Program Instrumentation Based on LLVM Byte Code

LLVM is a compiler infrastructure which supports effective optimization and analysis
at compile time, link-time, run-time and offline. PathWalker utilizes some useful
features and interfaces provided by LLVM to instrument the tested program which
has been compiled into LLVM byte code before. Klee is another concolic execution
tool based on the LLVM interpreter, lli, which is a general purpose LLVM execution
tool. It directly interprets compressed LLVM byte code without a code generation
pass, just like Java VM does. lli is very slow (approximately 1000 times slower than
native execution), because it is designed for flexibility and ease of implementation,
not performance [11]. For performance consideration, we instrument the tested pro-
gram based on LLVM byte code, and then compile it to an executable binary which
can be directly executed.The instrumentation of LLVM instructions is straightfor-
ward. For example, to instrument an LLVM add instruction:

%dst = add i32 %src0, %src1

PathWalker inserts an LLVM call instruction that invokes ConcolicAdd function
which has been implemented in our concolic execution engine. Six arguments are
passed to the function ConcolicAdd, including the two addends from the %src0 and
%src1 registers, the return register %dst and three IDs of concolic variables
representing them.

In LLVM, everything is an LLVM value object; that is, a value representing
an instruction can be treated as the returned register variable of the instruction.

238 Z. Jun-xian et al.

This implies that such a value could be used as the operand of another instruction,
thus we use the value object representing the add instruction to label the return regis-
ter %dst. Besides, the two operands %src0 and %src1 of the add instruction must
have already been loaded by two LLVM load instructions before, and these two load
instructions are used to represent the two operands passing to ConcolicAdd function.
Then we have the instrumented code:

 %dst = add i32 %src0, %src1

call void @ConcolicAdd(i32 24677784, %dst

i32 24677564, %src0,

i32 24677668, %src1)

The three integer constants are identifiers labelling the three concolic variables.
Function ConcolicAdd assigns a new expression Add(24677564, 24677668) to the
concolic variable whose ID is 24677784.

4 Implementation and Evaluation

This section presents the experimental evaluation of our developed tool PathWalker
for test case generation. The main part of PathWalker is implemented in C++ lan-
guage. Program instrumentation is performed by using llvm-2.8. To solve path con-
straints, we use the Z3 SMT solve, which is developed by Microsoft Corporation. We
have performed the experiments on a machine with an Intel(R) Core(TM) 2 Duo CPU
@ 2.40GHz with 3GB allocated memory running Windows XP OS.

4.1 Implementation

As shown in Fig. 9, PathWalker consists of 4 main modules including a symbolic
standard C library, a program instrumenter, a test driver generator and a concolic
execution engine. Particularly we instrument the most frequently used part of the
standard C library to generate correct and precise constraints.

4.2 Evaluation

We use the benchmark provided by K. Kratkiewicz [16] to test the effectiveness of
PathWalker. This benchmark is originally designed to evaluate static analysis tools for
detecting buffer overflow vulnerabilities in C codes, while we only aim to test the
branch coverage of our tool.

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 239

Fig. 9. Physical Architecture of PathWalker

Table 1. Experiment Result of PathWalker

Prog Vul-ID Iters Time(s) Cov
wu-ftpd CVE-1999-0368 7 5 100%
sendmail CVE-2002-0906 6 3 100%
wu-ftpd CVE-2003-0466 7 8 100%
sendmail CVE-2003-0681 9 12 91%
apache CVE-2004-0940 14 82 77%
apache CVE-2006-3747 10 25 100%
MADWiFi CVE-2006-6332 6 13 100%
OpenSER CVE-2006-6876 8 11 100%
gxine CVE-2007-0406 5 4 100%
samba CVE-2007-0453 6 7 100%

The result is shown in Table 1. The first column shows the name of the code sample;

the second column shows the vulnerability ID; the third column shows the iteration times
PathWalker runs the program under test; the fourth column shows the time that is used;
and the last column shows the branch coverage reached by our tool finally.

In some cases, PathWalker fails to cover all branches in the program under test.
There are two main reasons. First, PathWalker doesn’t yet symbolically execute all

240 Z. Jun-xian et al.

library functions while this can lead to a loss of precision. Second, there exist dead
codes in the program being tested which can never be reached.

5 Related Work

Up to now, how to build new tools for properly making the testing tasks automatic is
still a problem worth more research effort. One of the key challenges is how to gener-
ate appropriate test input adapting to complex types. Many methods and tools have
been proposed in the past decades. Following are some representative tools that gen-
erate test cases for C source code.

DART [4] (Directed Automated Random Testing) is one of the first tools to use
dynamic symbolic execution. It aims to systematically executing all feasible program
paths to detect latent runtime errors. Yet it pays little attention to handle aggregate
types.

CUTE [2] is a concolic unit testing engine for C which proposed the concept
“Concolic Execution” for the first time which could handle multi-threaded programs
and pointer operations.

EXE [13] is a bug-finding tool that uses symbolic and concrete execution by turns.
EXE was later redesigned in KLEE [6] which can automatically generates tests that
achieve high coverage on a diverse set of complex and environmentally-intensive
programs. However, to analyze the target program, it must run the program by using
an LLVM interpreter, which is very slow compared to concrete execution [11].

CREST [14] is an automatic test generation tool for C. It instruments the source
code to perform symbolic execution, and uses a constraint solver to search for unex-
plored program paths.

6 Conclusion and Future Work

We propose an approach to generate test data for C code in this paper; furthermore,
we also implement a prototype tool named PathWalker. This tool can generate test
data for (multi dimension) arrays, pointers, structs and any possible combination of
them. Experiments show that our tool is effective, but still, the development is in the
prototype stage. We plan to improve the tool on several aspects in the future work
including:

A. Performance
PathWalker heavily depends on the SMT Solver which becomes the bottleneck of
performance. We intend to use some constraints optimization algorithm to simplify
the constraint set in order to alleviate the heavy load of the SMT Solver. Moreover,
we plan to leverage the ability of parallel computing to solve multiple constraints
simultaneously.

 PathWalker: A Dynamic Symbolic Execution Tool Based on LLVM 241

B. Environment Modeling
A large portion of research has practically ignored the possible issues of test data
generation when the system under test interacts with its environment [15]. In the real
world, data from files or sockets is an important input source for a program. To ex-
pand the range of the application of our tool, we plan to symbolically simulate the
running environment that the program under test interacts with.

C. Safety Property Checker
Detection of vulnerabilities including memory overrun, integer overflow and so forth,
hidden in C codes is our ultimate goal to develop PathWalker. To achieve this goal
we may provide some safety property checkers and insert them to proper check points
in the C program.

D. Extending to Other Programming Languages
Various LLVM front-ends have been developed to compile C++, FORTRAN, Java,
PHP, JavaScript, Python and Haskell source code to LLVM byte code. In the future,
we plan to extend PathWalker in order to deal with programs written in these pro-
gramming languages.

Acknowledgments. This work was supported by the National Natural Science Foundation of
China under Grant No.90718017, 60973105, 61170189 and the Research Fund for the Doctoral
Program of Higher Education of China under Grant No.20111102130003.

References

1. Godefroid, P., Levin, M., Molnar, D.: Automated whitebox fuzz testing. In: 16th Annual
Network & Distributed System Security Symposium, pp. 6–79. THE INTERNET
SOCIETY, San Diego, California, USA (2008)

2. Sen, Koushik, Agha, Gul: CUTE and jCUTE: Concolic unit testing and explicit path mod-
el-checking tools. In: Ball, Thomas, Jones, Robert B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006)

3. Clarke, L.A.: A system to generate test data and symbolically execute programs. J. IEEE
Trans on Software Engineering. 2(3), 215–222 (1976)

4. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: 26th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pp.
213–223. ACM Press, Chicago, Illinois, USA (2005)

5. Cadar, C., Godefroid, P., Tillmann, N., Visser, W.: Symbolic execution for software test-
ing in practice preliminary assessment. In: 33th International Conference on Software En-
gineering, pp. 1066–1071. ACM Press, Waikiki, Honolulu, HI, USA (2011)

6. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. In: 8th USENIX Symposium on Operating
Systems Design and Implementation, pp. 209–224. IEEE Press, San Diego, California,
USA. (2008)

7. Avgerinos, T., Rebert, T., Cha, S.K., Brumley, D.: Enhancing symbolic execution with ve-
ritesting. In: 36th International Conference on Software Engineering, pp. 1083–1094.
IEEE Press, New York, USA (2014)

242 Z. Jun-xian et al.

8. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis and
transformation. In: 2nd International Symposium on Code Generation and Optimization,
pp. 75–88. IEEE Press, San Jose, CA, USA (2004)

9. Lattner, C.: LLVM: an Infrastructure for Multi-Stage Optimization. Masters Thesis, Com-
puter Science Dept., University of Illinois at Urbana-Champaign (2002)

10. Clang: a C language family frontend for LLVM. http://clang.llvm.org/
11. Lattner, C., Adve, V.: The LLVM Instruction Set and Compilation Strategy. Technical re-

port, University of Illinois at Urbana-Champaign (2002)
12. de Moura, Leonardo, Bjørner, Nikolaj S.: Z3: an efficient SMT solver. In: Ramakrishnan,

C.R., Rehof, Jakob (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidel-
berg (2008)

13. Cadar, Cristian, Engler, Dawson: Execution generated test cases: how to make systems
code crash itself. In: Godefroid, Patrice (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23.
Springer, Heidelberg (2005)

14. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: 23rd IEEE/ACM
International Conference on Automated Software Engineering, pp. 443–446. IEEE Press,
L’Aquila, Italy (2008)

15. Fraser, G., Arcuri, A.: Sound empirical evidence in software testing. In: 34th International
Conference on Software Engineering, pp. 178–188. IEEE Press, Zurich, Switzerland
(2012)

16. Kratkiewicz, K.: Evaluating Static Analysis Tools for Detecting Buffer Overflows in C
Code. Harvard University, USA (2005)

Generating Specifications for Recursive Methods
by Abstracting Program States

Nathan Wasser(B)

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
wasser@informatik.tu-darmstadt.de

Abstract. In this paper we present a novel approach to automatically
generate sound specifications for recursive methods. These specifications
can help prove the absence of undesired behavior, provide programmers
with a foundation to build upon and help locate implementation bugs.
Our approach is based on symbolic execution which we use to deter-
mine the states of re-entry and exit points. From these we generalize the
necessary pre- and postconditions using techniques from abstract inter-
pretation. The presented approach has been prototypically implemented
by integration into a faithful and precise program logic for sequential
Java programs.

Keywords: Programverification ·Abstract interpretation ·Specification
generation ·Method contracts ·Recursion

1 Introduction

Program verification and deductive program analysis for non-trivial properties
must choose a trade-off between automation and exactness. There has been much
research on the topic of automatic generation of loop invariants: starting in the
1970s with abstract interpretation [1], much new research has appeared in the
last 15 years: counterexample-guided abstraction refinement [2], linear [3] and
non-linear [4] invariants, using postconditions to generate invariants [5], dynamic
invariant generation [6] and more. The automatic generation of specifications for
recursive methods in imperative programs has also received some attention, for
example in the form of Boolean program models [7–9]. While some form of
recursion analysis is obviously required when dealing with functional languages,
recursion is also used in modern imperative languages. Furthermore, some of the
most fundamental code is recursive in nature: for example quicksort, mergesort
and recursive descent parsers; while other code can often be expressed in a much
more natural way using recursion, even if the optimized code would usually be
iterative: for example the calculation of Fibonacci numbers.

The work has been funded by the DFG priority program 1496 Reliably Secure Soft-
ware Systems.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 243–257, 2015.
DOI: 10.1007/978-3-319-25942-0 16

244 N. Wasser

In this paper we concentrate on the automatic generation of specifications for
method calls, i.e. method contracts. Based on previous work [10] in which a the-
oretical framework combining deductive reasoning with abstract interpretation
was introduced in order to automatically generate loop invariants, we extend
their framework with a novel approach for automatic specification generation
for recursive method calls. In addition to generating a one-size-fits-all specifica-
tion applicable to all recursive calls encountered while dealing with the initial
method call, our approach can further refine this specification to produce addi-
tional, stronger specifications for some calls, resulting in a better approximation.

The ideal approach to writing code with specifications is to write the speci-
fications first and base the code on the specification, trying to ensure that it is
valid. Verification techniques can be used to try and prove this. We turn this on
its head and generate specifications from the code, a practice fairly common in
industry. Our generated specifications are valid by construction.

As a proof of concept we implemented our approach using the KeY verification
system [11] as our theorem prover backend.

The paper has the following structure: Section 2 describes the overview of
our approach, as well as how and why we use abstract interpretation. Some
uses for our generated specifications are listed in Section 3. In Section 4 we
introduce the logic framework, calculus rules to deal with method calls and how
abstraction is integrated into the framework. Section 5 shows the general idea
behind automatic specification generation alongside an example, before delving
more deeply into the specifics. In Section 6 our implementation is described
and results for some analyzed methods are shown. Related work is discussed in
Section 7, while Section 8 shows our conclusions and future outlook.

2 Methodology

For a brief overview of our approach, we consider a method fact which calculates

n! =

{
1 , if n = 0

n ∗ (n − 1)! , if n > 0

Fig. 1. Factorial

the factorial n! for a non-negative input n through
case distinction and recursion, similar to the
declarative definition of factorial (see Fig. 1).

Our approach finds a sound specification appli-
cable for all calls to the method fact which can
be reached by starting at the initial call fact(n). I.e. for n = 2 it would generate
a specification that at least holds for fact(2), fact(1) and fact(0). The specifi-
cation contains a precondition and a postcondition. The precondition expresses
what values the parameters may have, while the postcondition expresses what
values the return values may have. In this case, therefore, the precondition must
at least express that n may be in the set {2, 1, 0}, while the postcondition must at
least allow return values in the set {2!, 1!, 0!} = {2, 1}. Relational postconditions,
such as fact(n) ≥ n, will be discussed at the end of section 5.

In order to calculate (overapproximations of) these sets, our approach starts
with PRE = {2} as initial precondition set and POST = ∅ as initial postcondi-
tion set, based on the initial call fact(2). Until fixpoints for both sets are found,

Generating Specifications for Recursive Methods 245

Table 1. Fixpoint iteration starting with call to fact(2).

PRE POST Return Values Recursive Calls

{ 2 } ∅ - fact(1)

{ 2, 1 } ∅ - fact(1), fact(0)

{ 2, 1, 0 } ∅ 1 fact(1), fact(0)

{ 2, 1, 0 } { 1 } 1, 2 * 1, 1 * 1 fact(1), fact(0)

{ 2, 1, 0 } { 1, 2 } 1, 2, 2 * 2, 1 * 2 fact(1), fact(0)

.

{ 2, 1, 0 } {1, 2, 4, 8, . . .} 1, 2, 4, 8, . . . fact(1), fact(0)

we gather all return
statements and recur-
sive calls reached
by calling fact(pre),
with pre ∈ PRE.
These new parame-
ters/return values are
then added to PRE
and POST , as well
as all recursive calls
being replaced by post
in order to reach new return statements (and possibly new recursive calls), with
post ∈ POST . As can be seen in Table 1, the postcondition is an overapproxi-
mation. We cannot stop at the optimal sets PRE = {2, 1, 0}, POST = {1, 2} as
a method contract stating that fact called with an element of {2, 1, 0} returns
an element of {1, 2} is not provable using only induction. Based on this contract
fact(1) = 2 could be possible and therefore fact(2) = 2 ∗ fact(1) = 4 as well.
Avoiding overapproximation is therefore not possible. Additionally, infinite steps
are required in order to reach a fixpoint for POST . Our approach uses abstrac-
tions for the pre- and postcondition with abstract domains of finite height in
order to reach a fixpoint in finite steps.1 This abstraction can overapproximate
pre- and postconditions, but as this is possible in any case it serves a good
purpose with limited downside.

Section 5.1 has a more detailed description of this example.

3 Application Scenarios

Generating specifications directly from the code serves more as a supportive func-
tion, rather than a way to generate precise functional specifications. While the
specification generated for fact by our approach will not express exactly what
the method does (at least not without a highly specialized abstract domain sup-
plied which would be useless in analyzing most other methods), it remains quite
useful by, e.g., i) being strong enough to show that calculating

(
n
k

)
= n!

k!(n−k)!

for n ≥ k ≥ 0 will not cause division by zero, and ii) supplying a sound contract
as a foundation upon which programmers can build by strengthening it where
needed. In addition, the generated specifications can help find bugs in the imple-
mentation, as a specification which is stronger than it should be signals that the
implementation is faulty and a specification much weaker than it should be could
be a sign that the programmer has neglected corner cases.

In particular, the specifications we generate related to integers tend to be able
to supply upper and/or lower bounds for these, which in turn can help prove the
absence of Java ArithmeticExceptions and IndexOutOfBoundsExceptions.

1 A widening operator could be used instead of abstract domains of finite height.

246 N. Wasser

4 Background

4.1 Program Logic

Here we introduce our program logic and calculus, and explain our integration
of value-based abstraction based on previous work [10].

Syntax. The program logic is a first order dynamic logic which is closely related
to Java Card DL [11]. To define the logic, we need first to define its signature
which is a collection of the symbols that can be used to construct formulas.

Definition 1 (Signature). A signature Σ = ((T ,�),P,F ,PV ,V) consists of
a set of sorts T together with a type hierarchy �, predicates P, functions F ,
program variables PV and logical variables V. The set of sorts contains at least
the sorts � and int with � being the top element and the other sorts being direct
subsorts of �.

Our logic consists of terms Trm, formulas For , programs Prog and
updates Upd . Besides some extension, which we elaborate on below, terms and
formulas are defined as in standard first-order logic. Note, that there is a dis-
tinction between logical variables and program variables. Both are terms them-
selves, the difference is that logical variables must not occur in programs, but
can be bound by a quantifier. On the other hand, program variables can occur
in programs, but cannot be bound by a quantifier. Program variables are flexible
function constants, whose value can be changed by a program.

Updates are discussed in [11] and can be viewed as generalized explicit sub-
stitutions. The syntax of updates is: U ::= (U ‖U) | x := t , where x ∈ PV and
t is a term of the same type as x (or a subtype thereof). Updates can be applied
to terms and formulas, i.e., given a term t then {U}t is also a term (analog for
formulas). The only other non-standard operator for terms and formulas in our
logic is the conditional term: let ϕ be a formula and ξ1, ξ2 are both terms of com-
patible type or formulas, then if (ϕ) then (ξ1) else (ξ2) is also a term or formula.
There is a modality called box [·]· which takes a program as first parameter and a
formula as second parameter. Intuitively the meaning of [p]φ is that if program
p terminates (uncaught exceptions are treated as non-termination) then in its
final state the formula φ holds (our programs are deterministic). This means the
box modality is used to express partial correctness. The formula φ → [p]ψ has
the exact same meaning as the Hoare triple {φ} p {ψ}. In contrast to Hoare
logic, dynamic logic allows nested modalities. The grammar for programs is:

p ::= st where defs

defs ::= m(x1, . . . , xn){local l1, . . . , lk; st return li; } defs | ε

st ::= st st | if (ϕ) {st} else {st} | x = t; | x = m(x1, . . . , xn); |
m-f(x){st return y;} | ε

where x, y, xi ∈ PV, m is a method name and t, ϕ are terms/formulas contain-
ing no method calls. The abbreviation m-f stands for method frame and signals a

Generating Specifications for Recursive Methods 247

block being executed within a call to a method. Our calculus rules create method
frames when expanding method calls and destroy them when returning; they are
not allowed in user defined programs. The statement st in a method body may
contain no variables other than the parameters xi and the local variables li.
Syntactically valid programs are well-typed and do not contain logic variables,
quantifiers or modalities.

We write if (ϕ) {p} as an abbreviation for if (ϕ) {p} else {x = x},
where x ∈ PV is an arbitrary program variable.

Semantics. Terms, formulas and programs are evaluated with respect to a first
order structure.

Definition 2 (First Order Structure, Variable Assignment). Let D
denote a non-empty domain of elements. A first order structure M = (D, I, s)
consists of

1. an interpretation I which assigns each
– sort T ∈ T a non-empty domain DT ⊆ D s.t. for S � T ∈ T : DS ⊆ DT

– f : T1 × . . . × Tn → T ∈ F a function I(f) : DT1 × . . . × DTn → DT

– p : T1 × . . . × Tn ∈ P a relation I(p) ⊆ DT1 × . . . × DTn

2. a state s : PV → D assigning each program variable v ∈ PV of type T a
value s(t) ∈ DT . We denote the set of all states by States.

We fix the interpretation of some sorts and symbols: I(int) = Z, I(�) = D and
the arithmetic operations +,−, /,%, . . . as well as the comparators <,>,≤,≥,

.=
are interpreted according to their standard semantics.

In addition we need the notion of a variable assignment β : V → D which
assigns to each logical variable an element of its domain.

Definition 3 (Evaluation). Given a first order structure M = (D, I, s) and a
variable assignment β, we evaluate terms t (of sort T) to a value valM,β(t) ∈ DT ,
updates U to a function valM,β(U) : States → States, formulas ϕ to a truth value
valM,β(ϕ) ∈ {tt ,ff }, and programs p to a set of states valM,β(p) ∈ 2States with
valM,β(p) being either empty or a singleton set.

A formula ϕ is called valid iff valM,β(ϕ) = tt for all interpretations I, all
states s and all variable assignments β.

The evaluation of terms and formulas without programs and updates is
almost identical to standard first-order logic and omitted for brevity. The evalua-
tion of an elementary update with respect to a first order structure M = (D, I, s)
and variable assignment β is defined as follows:

valM,β(x := t)(s′) =
{

s′(y) , y �= x
valM,β(t) , otherwise

The evaluation of a parallel update valM,β(x1 := t1 ‖ x2 := t2) maps a state
s′ to a state s′′ such that s′′ coincides with s′ except for the program variables
x1, x2 which are assigned the values of the terms ti in parallel. In case of a clash

248 N. Wasser

between two sub-updates (i.e., when xi = xj for i �= j), the rightmost update
“wins” and overwrites the effect of the other. The meaning of a term {U}t and
of a formula {U}ϕ is that the result state of the update U should be used for
evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may terminate in when
started in s. We only consider deterministic programs, so this set is always either
empty (if the program does not terminate) or it consists of exactly one state.
The semantics of a program formula [p]ϕ is that ϕ should hold in all result states
of the program p, which corresponds to partial correctness of p wrt. ϕ.

seq1 . . . seqn

seq

Fig. 2. Rule Schema

Calculus. We use a sequent calculus to prove that a for-
mula is valid. A sequent is a tuple Γ ⇒ Δ where Γ (the
antecedent) and Δ (the succedent) are finite sets of for-
mulas. A sequent valM,β(Γ ⇒ Δ) has the same meaning
as the formula valM,β(

∧
Γ −>

∨
Δ). A sequent calculus

rule is given by the rule schema in Fig. 2, where seq1, . . . , seqn (the premisses)
and seq (the conclusion) are sequents. A rule is sound iff the validity of the
conclusion follows from the validity of all its premisses.

A sequent proof is a tree of which each node is annotated with a sequent. The
root node is annotated with the sequent to be proven valid. A rule is applied by
matching its conclusion with a sequent of a leaf node and attaching the premisses
as its children. If a branch of the tree ends in a leaf that is trivially true, the
branch is called closed. A proof is closed if all its leaves are closed.

As the first order calculus rules are standard, we explain only selected rules
which deal with formulas involving programs. Given a suitable strategy for rule
selection, the sequent calculus implements a symbolic interpreter. For example,
symbolic execution of conditional statements splits the proof into two branches:

ifElse
Γ, {U}g ⇒ {U}[π p1; ω]ϕ,Δ Γ, {U} ! g ⇒ {U}[π p2; ω]ϕ,Δ

Γ ⇒ {U}[π if (g) {p1} else {p2}; ω]ϕ,Δ

where π contains the opening method frames of all entered method calls and ω
has the form rest where defs, with rest containing the rest of the program and
closing method frames and defs containing method definitions. The assignment
rule moves an assignment into an update. Updates are accumulated in front
of modalities during symbolic execution of the program and can be simplified
and applied to terms and formulas using the set of (schematic) rewrite rules
given in [11,12]. Once the program has been symbolically executed, the update
is applied to the formula behind the modality (using the emptyModality rule)
computing its weakest precondition.

assignment

Γ ⇒ {U}{x := t}[π ω]ϕ,Δ

Γ ⇒ {U}[π x = t; ω]ϕ,Δ

emptyModality

Γ ⇒ {U}ϕ,Δ

Γ ⇒ {U}[where defs]ϕ,Δ

For a method call the simplest approach is to expand it. However, this is only
useful if the method is not recursive or the number of recursions required is
bound.

Generating Specifications for Recursive Methods 249

methodExpand
Γ ⇒ {U}[π z1 = x1; . . . ; zn = xn; m-f(x){body’} ω]ϕ,Δ

Γ ⇒ {U}[π x = m(x1, . . . , xn); ω]ϕ,Δ

where m(y1, . . . , yn){local l1, . . . , lk; body} is in the where-clause of ω, all zi

are fresh program variables and replacing all yi in body with matching zi and all
lj with matching fresh variables gj results in body′. Returning from a method
is dealt with by the return rule:

return
Γ ⇒ {U}[π x = g; ω]ϕ,Δ

Γ ⇒ {U}[π m-f(x){return g;} ω]ϕ,Δ

There is also a rule for applying a method contract (requiring an additional proof
obligation stating that the method contract is sound to be proven), instead
of expanding the method body. In particular this allows recursive calls with
unknown depth to be dealt with.

useMethodContract

Γ ⇒ {U}PRE′,Δ
Γ, POST ′ ⇒ {U}[π x = result’; rest where defs]ϕ,Δ

Γ ⇒ {U}[π x = m(x1, . . . , xn); rest where defs]ϕ,Δ

where result’ is a fresh program variable, defs contains m(y1, . . . , yn){body}
and a method contract PRE ⇒ [result = m(y1, . . . , yn); where defs]POST
exists, where yi are the only program variables in PRE, the only program vari-
ables in POST are yi and result, and replacing all yi with matching xi and
result with result’ leads to PRE′ and POST ′. When proving a method con-
tract, induction allows us to use the contract on all recursive calls.

4.2 Integrating Abstraction

We summarize from [10] how to integrate abstraction into our program logic.
This integration provides the technical foundation for generating loop invariants.

Definition 4 (Abstract Domain). Let D be a concrete domain (e.g., from a
first order structure). An abstract domain A is a countable lattice with partial
order � and join operator � and without infinite ascending chains. It is connected
to D with an abstraction function α : 2D → A and a concretization function
γ : A → 2D which form a Galois connection [1].

Instead of extending our program logic by abstract elements, we use a differ-
ent approach to refer to the element of an abstract domain:

Definition 5 (γα,N-symbols). Given an abstract domain A = {α1, α2, . . .}.
For each abstract element αi ∈ A there a) are infinitely many constant symbols
γαi,j ∈ F , j ∈ N and I(γαi,j) ∈ γ(αi), and b) is a unary predicate χαi

where
I(χαi

) is the characteristic predicate of set γ(αi).

250 N. Wasser

The interpretation I of a symbol γαi,j is restricted to one of the concrete
domain elements represented by αi, but it is not fixed. This is important for the
following notion of weakening: with respect to the symbols occurring in a given
(partial) proof P and a set of formulas C, we call an update U ′ (P,C)-weaker
than an update U if U ′ describes at least all state transitions that are also allowed
by U . Formally, given a fixed D and β, then U is weaker than U ′ iff for any first
order structure M = (D, I, s) there is a first order structure M ′ = (D, I ′, s) with
I and I ′ being two interpretations coinciding on all symbols used so far in P and
in C and for both structures valM,β(C) = tt and valM ′,β(C) = tt holds, for all
program variables v the equation valM,β({U}v) = valM ′,β({U ′}v) must hold.

Example 1. An abstract domain for integers (ZZ): The abstract domain is A =
(�,≤,≥, neg, pos, ∅, 0, 1,−1, 2,−2, . . .). The partial order between elements of A
is shown in the graph below.

Let P be a partial proof
with γ≤,3 not occurring
in P . Then update i :=
γ≤,3 is (P, ∅)-weaker than
update i := −5 or update
i := c with a constant c
(occurring in P) provided
χ≤(c) holds, i.e. c ≤ 0.

γ(�) = ZZ

γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0}

γ(neg) = {i ∈ ZZ | i < 0}
γ(pos) = {i ∈ ZZ | i > 0}

γ(z) = {z}, for all z ∈ ZZ

γ(∅) = {}

The weakenUpdate rule from [10] allows abstraction in our calculus:

weakenUpdate
Γ, {U}(x̄ .= c̄) ⇒ ∃γ̄.{U ′}(x̄ .= c̄),Δ Γ ⇒ {U ′}ϕ,Δ

Γ ⇒ {U}ϕ,Δ

where x̄ are all program variables occurring as left-hand sides in U and c̄ are
fresh skolem constants. The formula ∃γ̄.ψ is a shortcut for ∃ȳ.(χā(ȳ) ∧ ψ[γ̄/ȳ]),
where ȳ = (y1, . . . , ym) is a list of fresh first order variables of the same length
as γ̄, and where ψ[γ̄/ȳ] stands for the formula obtained from ψ by replacing all
occurrences of a symbol in γ̄ with its counterpart in ȳ.

Performing value-based abstraction thus becomes replacement of an update
by a weaker update. In particular, we do not perform abstraction on the program,
but on the symbolic state.

5 Generation of Method Contracts

In [10] loop unrolling is used to find an invariant for an update invariant
rule. Similarly we expand a method’s body in order to find precondition and
postcondition invariants, allowing us to create, prove and use a method contract.

Note: The ϕ in a DL-formula [p]ϕ is required for the sequent calculus rules.
However, we do not use ϕ in our analysis, as we generate a specification of the
program, not of what may be wanted to be proven (as this could be false).

Generating Specifications for Recursive Methods 251

5.1 Example

Given the program p in Listing 1.1 and some property ϕ we can simplify the
sequent ⇒ [p]ϕ, leading to two branches, of which we are interested in the open
branch with the method call: y > 0 ⇒ [x = fact(y); where fact(n){...}]ϕ

In order to be able to use a method contract for this call to fact, the con-
tract’s precondition must hold for y. In this case therefore the precondition
cannot be stronger than n > 0 for the formal parameter n. This gives us a
starting point for the precondition. At this point we have no knowledge of the
postcondition. Expanding the method call gives us:

y > 0 ⇒ [z = y; m-f(x){if (z == 0) {res = 1;} else {...}} where ...]ϕ

Performing some simplification results in a closed goal on one branch (as y cannot
be both greater than and also equal to 0) and the sequent:

y > 0, y �= 0 ⇒ {z := y ‖ arg := y − 1}[m-f(x){tmp = fact(arg); ...]ϕ

Here we have another call to fact. If we want a method contract which is
applicable not only for the initial call but for all recursive calls as well, we

Listing 1.1. Factorial

(y > 0) {

x = fact(y);

} where fact(n) {

local res,arg,tmp;

(n == 0) {

res = 1;

} {

arg = n - 1;

tmp = fact(arg);

res = n * tmp;

}

res;

}

need to make sure the precondition is valid for all
calls. As arg is not necessarily greater than 0, we
need to refine our initial precondition. Using the
abstract domain A from Example 1 we join the
abstract elements > (the abstraction of our initial
argument y) and ≥ (the abstraction of the argument
arg to the recursive call) to get ≥ and create the
weaker precondition n ≥ 0.

In order to analyse what effect this new precon-
dition has on the execution of the method call, we
incorporate the precondition in an update, which is
placed before a call to fact in an otherwise empty
sequent with an uninterpreted predicate ψ:

⇒ {y := γ≥,1}[x = fact(y); where fact(n) {...}]ψ

Performing methodExpand and simplification once more results in two open
branches with the sequents:

γ≥,1
.
= 0 ⇒{y := γ≥,1 ‖ z := γ≥,1 ‖ res := 1}[m-f(x){return res;} ...]ψ (1)

γ≥,1
= 0 ⇒{y := γ≥,1 ‖ z := γ≥,1 ‖ arg := γ≥,1 − 1}
[m-f(x){tmp = fact(arg); res = z * tmp; return res;} ...]ψ (2)

The return statement in sequent (1) is used to refine the postcondition, which
now states that the return value is always 1. This can be expressed by the method
contract χ≥(n) ⇒ [result = fact(n); where ...]χ1(result), which is not yet
guaranteed to be valid as it is still being generated. Sequent (2) once again
requires a method contract fulfilling the precondition arg ≥ 0, but this time
our generated precondition holds. We can therefore use our method contract

252 N. Wasser

and simply replace the method call with a fresh γ-term matching our generated
postcondition:

γ≥,1
= 0 ⇒{y := γ≥,1 ‖ z := γ≥,1 ‖ arg := z − 1}
[m-f(x){tmp = γ1,2; res = z * tmp; return res;} ...]ψ

Simplification leads to:

γ≥,1
= 0 ⇒{y := γ≥,1 ‖ z := γ≥,1 ‖ arg := z − 1 ‖ tmp := 1 ‖ res := γ≥,1}
[m-f(x){return res;} ...]ψ

This return statement provides yet another postcondition which states that the
return value is γ≥,1 and also unequal to 0. The abstract element expressing this
is >, which when joined with 1 remains >. Our new partial method contract is
therefore χ≥(n) ⇒ [result = fact(n); where ...]χ>(result). With this new
contract we can now reconsider sequent (2). Simplification leads to:

γ≥,1
= 0 ⇒{y := γ≥,1 ‖ z := γ≥,1 ‖ arg := z − 1 ‖ tmp := γ>,3 ‖ res := γ≥,1 ∗ γ>,3}
[m-f(x){return res;} ...]ψ

The abstract element for the return value remains > while no calls to fact can
be reached where the parameter is not in χ≥ so we have reached a fixpoint
for both pre- and postconditions and therefore our partially generated method
contract holds in each call to fact originating from the initial call fact(y) and
therefore is guaranteed to be a sound contract:

χ≥(n) ⇒ [result = fact(n); where ...]χ>(result)

This contract states that if fact is called with a non-negative parameter and
terminates, its result will be positive. It makes no claim about whether or not
fact terminates on this input (which indeed it always does). The contract gener-
ated for fact if called initially with a negative number states that fact does not
terminate when called with a negative parameter, as nothing is in the abstract
class ⊥:

χ<(n) ⇒ [result = fact(n); where ...]χ⊥(result)

5.2 Gathering Partial Method Contracts

Definition 6 (Partial method contract stack). A partial method contract
stack is a stack of triples, with each entry containing:

1. an abstract update matching each parameter to an abstract element
2. the method call, i.e. method name and method parameters
3. an abstract element expressing our current knowledge of the return value.

Given an initial sequent seq to generate method contracts for, we simplify seq
until we reach a sequent Γ ⇒ {U}[π x = m(x1, . . . , xn); . . . where defs]ϕ,Δ. In
order to generate a method contract for m, we first find ai, i ∈ {1, . . . , n}, such
that Γ∪!Δ → {U}χai

(xi) holds for all i. We now create a partial method contract

Generating Specifications for Recursive Methods 253

stack with the only entry (x1 := γa1,z1 ‖ . . . ‖ xn := γan,zn
,m(x1, . . . , xn),⊥),

where all zi are chosen such that all γai,zi
are fresh. We then create the sequent

⇒ {x1 := γa1,z1 ‖ . . . ‖ xn := γan,zn
}[x = m(x1, . . . , xn); where defs]ψ, with

ψ an uninterpreted predicate, and simplify the sequent, allowing all rules except
methodExpand, useMethodContract and return. Finally, we examine the fol-
lowing groups of resulting branches:

Closed branches. A branch is closed either due to a purely logical reason,
which does not interest us for method contract generation, or due to an
infeasibility introduced by the program, i.e. unreachable code. This is also
not of interest for method contract generation. Therefore closed branches
can be safely ignored.

Return statements. From Γ ′ ⇒ {U ′}[π′ return z; . . . where defs]ψ,Δ′

we generate an abstract element a such that Γ ′∪!Δ′ → {U ′}χa(z) holds.
We look at the top stack entry (V,m(. . .), b) and check if a � b. If so noth-
ing more is done for this branch and we move on to the next open branch.
Otherwise the stack entry is changed to (V,m(. . .), a � b) and we keep track
of the fact that a fixpoint has not yet been found.

Recursive calls to m. We look at the top entry (x1 := γa1,z1 ‖ . . . ‖ xn :=
γan,zn

,m(x1, . . . , xn), b) of the stack and for each i ∈ {1, . . . , n} set pi ini-
tially to the value ai. Now for each open branch containing a recursive
call to m Γ ′ ⇒ {U ′}[π′ y = m(y1, . . . , yn); . . . where defs]ψ,Δ′, we first
check if the call fulfills the precondition, i.e. if Γ ′∪!Δ′ → {U ′}χai

(yi) holds
for all i ∈ {1, . . . , n}. If so, we replace y = m(. . .) with y = γb,z, where
z ∈ ZZ is chosen such that γb,z is fresh. We then continue the simplifi-
cation of this branch, adding any branches still open after simplification
to the set of remaining branches to consider (returns or recursive calls).
If the precondition is not fulfilled, we find abstract elements bi such that
Γ ′∪!Δ′ → {U ′}χbi(yi) and set each pi to pi � bi. Once all recursive calls
have been dealt with, if any pi has been changed, we add a new entry
(x1 := γp1,z1 ‖ . . . ‖ xn := γpn,zn

,m(x1, . . . , xn), b) to the stack and mark
that a fixpoint has not yet been found.

If we have not yet found a fixpoint, the sequent ⇒ {V}[x = m(. . .); where defs]ψ
is generated from the top entry of the stack (V,m(. . .), b), to be used in the
next iteration. If a fixpoint has been found, i.e. neither pre- nor postcondi-
tion has been changed in an iteration, we generate (and are able to trivially
prove, possibly with induction) a method contract based on the top stack entry
(x1 := γa1,z1 ‖ . . . ‖ xn := γan,zn

,m(x1, . . . , xn), b):

χa1(x1), . . . , χan
(xn) ⇒ [res = m(x1, . . . , xn); where defs]χb(res)

While this method contract is a decent overapproximation, it relies on the pre-
condition being valid for each and every recursive call and therefore could possi-
bly be refined into multiple separate method contracts expressing more detailed
postconditions for less vague preconditions. For this reason we have left some

254 N. Wasser

Listing 1.2. Fibonacci

(y > 0) {

x = fib(y);

} where fib(n) {

local res,arg,fib1,fib2;

(n == 0 || n == 1) {

res = n;

} {

arg = n - 1;

fib1 = fib(arg);

arg = n - 2;

fib2 = fib(arg);

res = fib1 + fib2;

}

res;

}

partially generated method contracts on the
stack. From these we can re-run our con-
tract generation, applying the partial contract
where applicable while applying the weaker
contract where required. In this way we can
for example generate for the sequent ⇒ [p]ϕ,
where p is the Fibonacci program in List-
ing 1.2, not only the method contract

χ≥(n) ⇒ [result = fib(n); ...]χ≥(result)

which is applicable for all reachable calls to
fib, but also the stronger method contract

χ>(n) ⇒ [result = fib(n); ...]χ>(result)

applicable, in particular, to the initial call.
There is one further possibility for an open branch resulting from simplifica-

tion: a call to a method other than the one under consideration. This last option
must be dealt with carefully, as it can lead to, among others, mutual recursion.

5.3 Dealing with Other Method Calls, Mutual Recursion

Our goal is to keep high precision whenever possible, abstracting only at points
where this is needed to ensure termination of our analysis. For this reason we do
not want to start abstracting the first time we reach a method call, but only once
we reach a recursive call and are therefore forced to perform abstraction. This
allows us not only to be able to expand method calls which are not recursive in
nature, but also to turn some forms of mutual recursion into direct recursion,
creating method contracts only for method calls that really require one. One
such example is where even and odd are defined in a mutual recursive way (so,
e.g., even(2) = odd(1) = even(0) = true), but by always expanding any call to
odd it suffices to generate a method contract only for even.

Beginning with an initial sequent Γ ⇒ [p]ϕ,Δ for some program p, we need
to generate all required method contracts, i.e. contracts for method calls reached
by analysis of p which are called recursively. The basic idea is to simply expand
a method call if it is not being called from within a call to itself and to keep
track of all such methods so as to begin generating partial method contracts
for these methods once a recursive call is reached. These partial contracts are
iteratively refined until a fixpoint is found, based on new pre- and postconditions
determined during further analysis. Once a fixpoint has been determined for a
contract, it is stored in a set of sound contracts, both to be used for further
analysis of other calls, as well as for the final result we are computing: all sound
method contracts required in order to analyze the sequent Γ ⇒ [p]ϕ,Δ.

Relational Abstract Domains. While our approach does not explicitly allow rela-
tional abstract domains, we can simulate some of these by tracking, for example,

Generating Specifications for Recursive Methods 255

Table 2. Test results on an Intel Core i7 processor with 2.6 GHz.

Method Call Constraints Precondition Postcondition (r is result) Time (s)

fact(x) x > 0 x ≥ 0 r > 0 7.236

fact(x) x < 0 x < 0 false 0.689

fib(x) x > 0
x ≥ 0 r ≥ 0

10.465
x > 0 r > 0

hanoiCount(x) x > 0 x > 0 r > 0 ∧ r ≥ x 2.971

ackermann(x,y) x > 0, y > 0 x ≥ 0, y ≥ 0 r > 0 ∧ r > y 15.879

gcd(x,y) x > y, y > 0 x > 0, y ≥ 0 r > 0 ∧ r ≤ x 9.308

gcd2(x,y) x > y, y > 0 x > 0, y > 0 r > 0 ∧ r ≤ x ∧ r ≤ y 7.511

gcd3(x,y) x > y, y > 0 x > 0, y ≥ 0, x > y r > 0 ∧ r ≤ x 8.986

the value of x−y. Knowing that χ>(x−y) implies x > y and so on for the other
abstract elements. We use this to compare method parameters amongst one
another and with the result to gain further pre- and postconditions.

6 Experimental Evaluation

Our implementation differs somewhat from the theoretical ideas discussed in the
last section, as it is based on the KeY system which allows for full sequential
Java, rather than the toy language described in this paper. Some aspects of the
implementation are more powerfull: both pre- and postconditions additionally
contain information about the state of the program heap, return statements can
appear at any point in the code rather than only as the final method statement,
etc. However, the implementation cannot yet deal with mutual recursion.

An extension of the framework with our approach to automatic specification
generation is available at http://www.key-project.org/setta15-albia/ and has
been used to generate method contracts for some recursive method calls with
initial constraints as shown in Table 2. The abstract domain used is A from
Example 1.

Even with this simple abstract domain, the postconditions generated can be
used to show, for example, that calculation of x/gcd(x,y) will not divide by
zero and the result will be greater than zero, given the initial constraints.

7 Related Work

The basics of interprocedural dataflow analysis stem from Sharir and Pnueli [13].
The tools Bebop [14], SLAM [7] and BLAST [8] all transform a program using
Boolean program models before performing analysis on the resulting Boolean
program. We do not abstract the program, but rather the program state and
only at points where abstraction is needed to ensure termination. At all other
points we keep full precision. The dynamic program analysis tool Daikon [6]
can generate pre- and postconditions for methods reached in program runs, but

http://www.key-project.org/setta15-albia/

256 N. Wasser

it only generates likely invariants based on the actual runs it has performed,
while our invariants are correct by construction. Chen et al. [15] use a tool
which can analyze only non-recursive methods and reduce all recursive calls to
a non-recursive under-approximation in order to re-use the existing tool. In our
approach we deal more directly with recursion. Houdini [16] is an annotation
assistant for ESC/Java which generates pre- and postconditions in a bottom
up fashion from a large set of annotation candidates by iteratively dropping
candidates that do not provably hold at some method call or return statement.
SATURN [17] is a bug finding framework, which keeps full precision for loop-free
code (like our approach) and generates method summaries from the bottom up,
which is quite efficient provided the method call graph is acyclic. As we wish to
be able to analyze programs with mutual recursion we use a top down approach.

8 Conclusion and Future Work

We have shown a novel approach to automate generation of specifications for
(mutually) recursive methods. In addition to a single specification which is appli-
cable at all reachable call sites, our approach can also deliver stronger specifi-
cations for some call sites. Our approach integrates easily into a framework
combining deductive verification with abstract interpretation. The implemen-
tation shows this approach to be feasible. As future work we intend to extend
the implementation by adding the ability to deal with mutual recursion as out-
lined in Section 5.3. In addition, integration with our extension of the frame-
work for array abstraction [18] will enable more detailed automatic analysis of
recursive array-manipulating methods, such as quicksort, mergesort and binary
search implementations. Our approach will also be extended to generate total
correctness specifications. We will investigate integrating our approach into the
framework presented in [19], allowing their analysis to deal with recursive meth-
ods without the need for user specified method contracts. Finally, we will look
into using the property ϕ in [p]ϕ to help guide analysis.

Acknowledgments. We thank Richard Bubel and Reiner Hähnle for our many fruit-
ful discussions, Eduard Kamburjan for his work on the implementation and the anony-
mous reviewers for their helpful comments.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: 4th Sympo-
sium on Principles of Programming Languages (POPL), pp. 238–252. ACM (1977)

2. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Computer Aided Verification, pp. 154–169. Springer
(2000)

3. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

Generating Specifications for Recursive Methods 257

4. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant gener-
ation using gröbner bases. In: Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL 2004, pp. 318–329.
ACM (2004)

5. Furia, C.A., Meyer, B.: Inferring loop invariants using postconditions. In: Blass,
A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol.
6300, pp. 277–300. Springer, Heidelberg (2010)

6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

7. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, p. 260. Springer, Heidelberg (2001)

8. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In:
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL 2002, pp. 58–70. ACM (2002)

9. La Torre, S., Parthasarathy, M., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. In: Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI 2009, pp. 211–222.
ACM (2009)

10. Bubel, R., Hähnle, R., Weiß, B.: Abstract interpretation of symbolic execution
with explicit state updates. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E.
(eds.) FMCO 2008. LNCS, vol. 5751, pp. 247–277. Springer, Heidelberg (2009)

11. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented
Software: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

12. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 422–436. Springer, Heidelberg (2006)

13. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S., Jones, N., (eds.) Program Flow Analysis: Theory and Applications.
pp.189–233, Prentice-Hall (1981)

14. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: Proceedings of the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification, pp. 113–130. Springer (2000)

15. Chen, Y.-F., Hsieh, C., Tsai, M.-H., Wang, B.-Y., Wang, F.: Verifying recursive
programs using intraprocedural analyzers. In: Müller-Olm, M., Seidl, H. (eds.)
Static Analysis. LNCS, vol. 8723, pp. 118–133. Springer, Heidelberg (2014)

16. Flanagan, C., M. Leino, K.R.: Houdini, an annotation assistant for ESC/Java.
In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, p. 500. Springer,
Heidelberg (2001)

17. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean
satisfiability. ACM Trans. Program. Lang. Syst. 29(3), May 2007

18. Wasser, N., Bubel, R., Hähnle, R.: Array abstraction with symbolic pivots. Tech-
nical report, Department of Computer Science, Technische Universität Darm-
stadt, Germany August 2015. URL: https://www.se.tu-darmstadt.de/fileadmin/
user upload/Group SE/Publications/ALBIA/TR Symbolic Pivots.pdf

19. Hentschel, M., Käsdorf, S., Hähnle, R., Bubel, R.: An interactive verification tool
meets an IDE. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739,
pp. 55–70. Springer, Heidelberg (2014)

https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/ALBIA/TR_Symbolic_Pivots.pdf
https://www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Publications/ALBIA/TR_Symbolic_Pivots.pdf

Assertion-Directed Precondition Synthesis
for Loops over Data Structures

Juan Zhai1,2(B), Hanfei Wang1,3, and Jianhua Zhao1,3

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

{zhaijuan,wanghaifei1988}@seg.nju.edu.cn, zhaojh@nju.edu.cn
2 Software Institute, Nanjing University, Nanjing, China

3 Department of Computer Science and Technology,
Nanjing University, Nanjing, China

Abstract. Program verification typically generates verification condi-
tions for a program to be proven and then uses a theorem prover to prove
their correctness. These verification conditions are normally generated
by means of weakest-precondition calculus. Nevertheless, the weakest-
precondition calculus faces a big challenge when dealing with loops. In
this paper, we propose a framework that automatically generates pre-
conditions for loops that iterate over commonly-used data structures.
The preconditions are generated based on given assertions of loops and
they are proved to be strong enough to ensure those given assertions hold.
The data structures dealt with in our framework include one-dimensional
arrays, acyclic singly-linked lists, doubly-linked lists and static lists. Such
loops usually achieve their final results by focusing on one element in each
iteration. In many such cases, the given assertion and the corresponding
precondition of the loop separately reflect the part and the whole or vice
versa. Inspired by this, our framework automatically generates precon-
dition candidates for loops by transforming a given assertion. Then the
framework uses the SMT solver Z3 and the weakest-precondition calcula-
tor for non-loop statements provided in the interactive code-verification
tool Accumulator to check whether they are strong enough to prove
the given assertion. The framework has been integrated into the tool
Accumulator to generate suitable preconditions for loops, which greatly
relieves the burden of manually providing preconditions for loops.

1 Introduction

Program verification is a classic approach to improve software reliability by
verifying program correctness. A standard method for program verification is
to generate weakest-preconditions for assertions of a program and then prove
these weakest-preconditions using theorem provers. The generation of weakest-
preconditions is of great significance in the research field of program verification
and has been explored in many literatures, see e.g., [1–5]. Weakest-preconditions
for simple program statements can be obtained easily by weakest-precondition
calculus techniques while weakest-preconditions for loop statements are difficult
c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 258–274, 2015.
DOI: 10.1007/978-3-319-25942-0 17

Assertion-Directed Precondition Synthesis for Loops over Data Structures 259

to generate. In order to verify programs containing loop statements, program-
mers are required to provide weakest-preconditions for loops, which increases
the burden for programmers. Automatic generation of weakest-preconditions for
loops will facilitate the formal verification of programs containing loops.

However, it is challenging to calculate weakest-preconditions for loop state-
ments due to two main factors: (1) there are a great many kinds of loops
which makes it difficult to find a uniform way to automatically gain weakest-
preconditions for all kinds of loop statements. (2) It is difficult to determine
whether the loop terminates and obtain the exact number of loop iterations. In
this paper, we present a framework to automatically generate preconditions for
the kind of loops that manipulate commonly-used data structures. These data
structures include one-dimensional arrays, acyclic singly-linked lists, doubly-
linked lists and static lists. The data stored in these data structures can be
modified in the loop, but the shapes of these data structures cannot be modi-
fied. We generate preconditions for such loops with respect to both intermediate
assertions inside the loops and post-conditions of the loops. Although the pre-
conditions generated using our framework may not be the weakest-preconditions,
they are proved to be practically useful to prove the given assertions of the kind
of loops that operate frequently-used data structures.

The framework proposed in this paper is inspired by our statistic analysis
on loops that operate frequently-used data structures occurring in several open-
source softwares. These softwares include memcached, Apache httpd and nginx.
The inspiring observations are as follows:

1. We found that about eighty percent of loops manipulate a data structure by
iterating over its elements. From a practical standpoint, automatic genera-
tion of preconditions for this kind of loops would cover a great number of
real-world cases and make the task of verifying such loops much easier.

2. This kind of loops usually achieves the final goals by concerning one element
in each iteration. In this sense, a precondition of such loops with respect to
an intermediate assertion inside the loop is usually a quantified result of the
intermediate assertion. On the contrary, a precondition of such loops with
respect to a post-condition of the loop usually applies the property in the
post-condition to some specific elements. This leads us to believe that we
are able to generate practical preconditions for such loops by transforming
given assertions of these loops.

Our research is based on Scope Logic [6], though the core idea presented
in this paper can be applied in code verifications using other logics. Scope
Logic is an extension of Hoare Logic for verification of pointer programs with
recursive data structures. An interactive tool named Accumulator(Available at
http://seg.nju.edu.cn/scl.html) has been implemented to support code verifica-
tion in Scope Logic. The weakest-precondition calculation for assignments and
conditionals is well-supported in this logic, which greatly eases the verification
tasks of programs without loops. However, loop statements cannot benefit from
this calculation. This motivates us to provide an automatic framework to gen-
erate preconditions for loops to relieve the burden of verify loops.

260 J. Zhai et al.

Given a loop, we first collect information like names/types of the loop con-
trol variable, and check whether the loop can be handled by our approach.
Then we generate precondition candidates of the loop based on a given asser-
tion, which are subsequently checked to see whether they are strong enough to
prove the given assertion. The checking process uses the high-performance SMT
solver Z3 [7] and the weakest-precondition calculator for non-loop statements in
Accumulator. For an intermediate assertion inside a loop, we first compute the
weakest-precondition of the loop body with respect to the intermediate asser-
tion using the weakest-precondition calculator provided in Accumulator. Then
precondition candidates are obtained by transforming the generated weakest-
precondition according to whether it contains the loop control variable. By con-
trast, we generate preconditions of the loop for a post-condition by transforming
the post-condition itself based on whether it contains loop variables.

The main contribution of this paper is a novel framework that automatically
generates preconditions for loops that manipulate commonly-used data struc-
tures, including one-dimensional arrays, acyclic singly-linked lists, doubly-linked
lists and static lists. The framework has been implemented as a module of the
tool Accumulator. We have evaluated it on several programs and the results show
that the framework is capable of generating suitable preconditions to prove the
partial correctness of the loops manipulating commonly-used data structures.

The remainder of the paper is organized as follows. Section 2 makes a brief
introduction to Scope Logic and its weakest-precondition calculus. Section 3 gives
a motivating example to show why automatic generation of preconditions for
loops are necessary in code verification. Section 4 gives the details of generating
preconditions for while-loops by dealing informally with an example program.
Section 5 sketches the implementation and application of the framework. Section
6 lists the limitations of our approach together with the future work. Section 7
surveys related work and, finally, Section 8 concludes the paper.

2 Preliminary

In this section, we present a brief overview of Scope Logic and the weakest-
precondition calculus in Scope Logic.

2.1 Scope Logic

Scope Logic is an extension of Hoare Logic for verification of pointer programs
with recursive data structures. For details, please refer to [6]. The basic idea of
Scope Logic is that the value of an expression e depends only on the memory
units which are accessed during the evaluation of e. The set of these memory
units are called the memory scope of e, denoted as M(e). If no memory unit in
the set M(e) is modified by program statements, the value of e keeps unchanged.

Assertion-Directed Precondition Synthesis for Loops over Data Structures 261

isSL(x : P (Node)) : bool
Δ
=(x == null)?true : isSL(x → link)

Nodes(x : P (Node)) : SetOf(P (Node))
Δ
=(x == null)?∅ : ({x} ∪ Nodes(x → link))

isSLSeg(x : P (Node), y : P (Node)) : bool
Δ
=(x == null)?false :

((x == y)?true : isSLSeg(x → link, y))

NodesSeg(x : P (Node), y : P (Node)) :SetOf(P (Node))
Δ
= (x == null)?∅ : ((x == y)?∅ :

({x} ∪ NodesSeg(x → link, y)))

Fig. 1. A set of recursive functions of singly-linked lists

User-Defined Recursive Functions. Scope Logic allows users to define
recursive functions to describe properties of recursive data structures. For exam-
ple, four user-defined recursive functions are given in Fig. 1 to specify properties
of acyclic singly-linked lists. Here an acyclic singly-linked list node contains two
fields: the data field d and the link field link. These functions will be used in the
rest of this paper to verify code manipulating acyclic singly-linked lists.

Example 1. In Fig. 1, the function isSL(x) asserts that if a node x is a null
pointer or x → link points to an acyclic singly-linked list, then x is an acyclic
singly-linked list. The function Nodes(x) yields the node set of the singly-linked
list x. The function isSLSeg(x, y) asserts that if the node x can reach node y
along the field link, then the segment from x to y is an acyclic singly-linked list
segment. The function NodesSeg(x, y) yields the set of nodes from node x to
node y (excluded) along the filed link. ��
Nevertheless, some properties should be provided to support local reasoning
because first-order logic cannot handle recursive functions directly. Some selected
properties of the user-defined functions in Fig. 1 are listed in Table 1. Take the
first property as an example, it describes that if the expression x is null, then x
is an acyclic singly-linked list and the node set of x is empty.

Table 1. Properties of user-defined acyclic singly-linked list functions

ID Property
1 ∀x(x == null) ⇒ (isSL(x) ∧ Nodes(x) == ∅)
2 ∀x(x 	= null ∧ isSL(x)) ⇒ (Nodes(x) == {x} ∪ Nodes(x → link) ∧ x /∈ Nodes(x → link))
3 ∀x∀y(x == y) ⇒ (NodesSeg(x, y) == ∅)
4 ∀x∀y(x 	= null ∧ y == null) ⇒ (NodesSeg(x, y) == Nodes(x))
5 ∀x∀y(isSL(y) ∧ isSLSeg(x, y)) ⇒ (isSL(x) ∧ Nodes(x) == NodesSeg(x, y) ∪ Nodes(y))

Program-Point-Specific Expressions. In Scope Logic, assertions and veri-
fications are written in the proof-in-code form. Formulas are written at program
points which are places before and after program statements. All the program
points are uniquely numbered. A formula at a program point is used to describe
a property that the program satisfies. If a program runs into the program point j
before it runs into the program point i, e@j can be written at the program point

262 J. Zhai et al.

{1 : sl 	= null , isSL(sl) , ∀x ∈ Nodes(sl).x → d > 0}
min = s l→d ;
{2 : sl 	= null , isSL(sl) , min == sl → d , min > 0 , ∀x ∈ Nodes(sl).x → d > 0 ,

min ∈ (λx.x → d)[Nodes(sl)]}
p = s l→ l i n k ;
{3 : sl 	= null , isSL(sl) , p == sl → link , isSL(p) , ∀x ∈ Nodes(sl).x → d > 0 , min > 0 ,

p ∈ Nodes(sl)}
while (p 	= nu l l){

{4 : p 	= null , p ∈ Nodes(sl) , ∀x ∈ Nodes(sl).x → d > 0}
i f (p→d < min)

{5 : p 	= null , p → d < min}
min = p→d ;
{6 : p 	= null , min == p → d , min > 0 , min ∈ (λx.x → d)[Nodes(sl)]}

else
{7 : p 	= null , not(p → d < min)}
sk ip ;
{8 : p 	= null }

{9 : p 	= null }
p = p→ l i n k ;
{10 : isSL(sl) }

}
{11 : p == null , ∀x ∈ Nodes(sl).x → d > 0 ,

(λx.x → d)[Nodes(sl)] == (λx.x → d)[Nodes(sl)]@1 ,
min ∈ (λx.x → d)[Nodes(sl)] , ∀x ∈ Nodes(sl).x → d ≥ min}

Fig. 2. Find the minimum value of an acyclic singly-linked list

i to represent the value of e evaluated at the program point j. Expressions like
e@j are called program-point-specific expressions. With this kind of expressions,
the relations between different program states can be specified.

Set-Image Expression. Set-image expression is of the form λx.exp[setExp],
which means the set of values derived by applying the anonymous function
defined by λx.exp to the elements in the set setExp.

Restricted Quantifier Expression. Restricted quantifier expression is of the
form ∀x ∈ setExp.exp, which asserts that for each element x in the set setExp,
exp is satisfied.

Example 2. A program written in the proof-in-code form is given in Fig. 2 where
the numbered program points and some formulas are also shown. This program
finds the minimum element in the acyclic singly-linked list sl. The entrance
program point and the exit point are respectively 1 and 11. The preconditions
of this program are shown at the program point 1 while the post-conditions are
written at the program point 11.

2.2 Weakest-Precondition Calculus in Scope Logic

The weakest-precondition was introduced by Dijkstra in [8]. For a statement S
and a predicate Q on the post-state of S, the weakest-precondition of S with

Assertion-Directed Precondition Synthesis for Loops over Data Structures 263

respect to Q, written as wp(S,Q), is a predicate that characterizes all the pre-
states of S from which no execution will go wrong and from which every termi-
nating execution ends in a state satisfying Q. In program verification, weakest-
preconditions are often used to prove the correctness of programs in regard to
assertions represented by preconditions and post-conditions. Here we assume
that P stands for the predicates on the pre-state of S, we can verify {P}S{Q}
by proving P ⇒ wp(S,Q).

The calculation of weakest-preconditions for assignments and conditionals
are well-supported in Scope Logic. Suppose that we have an assignment e1 = e2
and the program points before/after this assignment are i and j respectively. The
differences between the program state at i and the program state at j result from
the modification of the contents in the memory unit (&e1)@j. The basic idea of
generating weakest-preconditions is that for an arbitrary x of a memory unit,
the value of ((x �= (&e1)@i)? ∗ x : e2@i) at the program point i is equivalent
to the value of ∗x at the program point j. Firstly, an expression exp(&e) is
constructed. The value of exp(&e) at i equals to the value &e at j. After that,
exp(e′) is constructed as (exp(&e) �= (&e1)@i)? ∗ exp(&e) : e2@i. As discussed
earlier, the value of exp(e) at i and the value of ∗(&e) at j are equivalent. The
detailed rules for generating weakest-preconditions are omitted here. Interested
readers can refer to the paper [6].

3 Motivating Example

The program findMin in Fig. 2 finds the minimum element in the list sl. It is
used as an example here to show why preconditions of loops are necessary and
helpful to verify this program.

Proving that no null-pointer dereference occurs requires that p �= null holds
in some program points. Take the assertion p �= null at program point 5 as
an example, we can compute the weakest-precondition at program point 4 with
respect to it and we get (p → d < min) ⇒ (p �= null). At program point 4, this
weakest-precondition can be implied by p �= null which is surly true because of
the loop condition.

The above is a simple assertion which can be proved inside the loop. There
are many other assertions that cannot be proved without preconditions of the
loop, for example, min > 0 at program point 6. Just like p �= null, the weakest-
precondition

(p → d < min) ⇒ (p → d > 0) (1)

at program point 4 is first generated for min > 0 at program point 6. Proving
this weakest-precondition requires ingenuity in generating the precondition of
the loop for it.

Based on the weakest-precondition (1), the following precondition of the loop
is generated using our framework.

∀x ∈ Nodes(sl).((x → d < min) ⇒ (x → d > 0)) (2)

264 J. Zhai et al.

Information
Extractor

Pre-condition
Generator

Pre-condition
Validator

Pre-conditionPre-processor
Program annotated

with assertions

Fig. 3. Overview of our approach

The precondition (2) is proved to be a loop invariant of this loop, thus it
holds at the program point 4. The weakest-precondition (1) at program point
4 is implied by (2) together with p �= null and p ∈ Nodes(sl). In this way, the
assertion min > 0 at program point 6 is proved to be true.

Preconditions of loops are also necessary to prove post-conditions of loops.
Take the post-condition

∀x ∈ Nodes(sl).x → d ≥ min (3)

as an example. Our framework generates the precondition of the loop for it and
the precondition is

∀x ∈ NodesSeg(sl, p).x → d ≥ min (4)

This precondition is proved to be a loop invariant and the post-condition (3)
can be implied by this precondition (4) together with the loop exit condition
p == null, the precondition of the loop l �= null and Property 4 in Table 1.

From this, we can see that automatically generating preconditions for loops
is useful and practical in verifying programs.

4 Design

In this section, we present our approach of automatically generating precondi-
tions for the kind of loops that manipulate commonly-used data structures. Fig. 3
gives the overview of our approach, which takes the program annotated with
assertions as input, and uses information extractor, pre-processor, pre-condition
generator and pre-condition validator to generate pre-conditions for the loop in
this program. The information extractor takes the program as input, and extracts
necessary information to generate pre-conditions and checks whether the loop
can be handled by our approach. The pre-processor derives some simple but
useful loop invariants used as the premises to check the generated preconditions.
The pre-condition generator generates pre-conditions from a given assertion and
the information extracted before. The pre-condition validator makes use of the
SMT solver Z3 and the weakest-precondition calculator to check whether the
generated pre-condition is strong enough to prove the correctness of the asser-
tion based on which to generate the pre-conditions.

In the rest of this section, we discuss the details of our approach. The dis-
cussion is driven by the example shown in Fig. 2.

Assertion-Directed Precondition Synthesis for Loops over Data Structures 265

4.1 Information Extractor

The information extractor mainly performs the following two tasks:

Information Collector. Our approach collects different kinds of information
of the loop, which include names, types, initial values and final values of the loop
control variables, the loop condition, and the data structure manipulated by the
loop. If the data structure manipulated by the loop is a one-dimensional array,
the size of the array and the traverse pattern are also needed to be gathered.
Here the traverse pattern means whether the loop iterates over the array elements
from left to right or the other way.

Loop Checker. Our approach is capable of generating pre-conditions for while-
loops that iterate over elements stored in a data structure without modifying
the shape of this data structure. These loops should conform to our pre-defined
loop patterns. Because of space limitation, we only gives the patterns for loops
manipulating acyclic singly-linked lists and one-dimensional arrays.

{i: isSL(first), cur == first}
while(cur �= null){

{j: }

S

{m: cur == (cur → link)@j}
}

{n: ψ}

(a)

{i: index == low exp}
while(index#up_exp){

{j: }

S

{m: index == index@j + 1}
}

{n: ψ}

(b)

Fig. 4. The loop patterns for acyclic singly-linked lists and one-dimensional arrays

(1) Pattern of Loops Manipulating Acyclic Singly-Linked Lists. The pattern
of the while-loops that manipulate an acyclic singly-linked list in C syntax is
given in Fig. 4a. Here first represents the acyclic singly-linked list traversed in
the loop and cur represents the expression used to access each list node. In this
pattern, cur is also the loop control variable. This is often the case when an
acyclic singly-linked list is iterated over in practice. For example, in Fig. 2, p is
the loop control variable and the loop body accesses each data stored in the list
node referred to by p.

For the loop to be handled by our approach, the following are also required:

1) isSL(first) and cur == first hold at the program point i.
2) The loop control condition is either cur �= null or null �= cur.
3) cur == (cur → link)@j holds at the program point m, which guarantees

that the value of cur after the loop body equals to the value of cur → link
before the loop body.

266 J. Zhai et al.

4) For each assignment e1 = e2 in the loop body, &e1 /∈ M(isSL(first))
holds at the point before the assignment statement, which guarantees
that the loop does not modify the field link of all the nodes. Hence the
shape of the singly-linked list is not modified.

Together with the definition of an acyclic singly-linked list in Fig. 1 and the
loop control condition, the condition 3) listed above can guarantee that the loop
will terminate.

(2)Pattern of Loops Manipulating One-Dimensional Arrays. The pattern of
the while-loops that iterate over a one-dimensional array from left to right in C
syntax is shown in Fig. 4b. The pattern of the while-loops that iterate over a
one-dimensional array from right to left is symmetrical, which is omitted here.
In this pattern, index represents the subscript used to access each element of the
array being traversed. The expressions low exp and up exp respectively represent
the lower/upper bound expressions of index. In this pattern, index is also the
loop control variable. The expression index#up exp represents the loop control
condition where # can be operators <, ≤ or �=.

For the loop to be handled by our approach, the following are also required:

1) up exp == up exp@j holds at the program point m.
2) The loop control condition is one of the following six forms: index <

up exp, index �= up exp, up exp > index, up exp �= index, index ≤
up exp and up exp ≥ index.

3) index == index@j + 1 holds at the program point m.

Together the loop control condition, the condition 3) listed above can guar-
antee that the loop will terminate.

4.2 Pre-processor

The pre-processor makes an attempt to generate some simple but useful loop
invariants which are used to check the generated preconditions. These loop invari-
ants are verified via Z3 and the weakest-precondition calculator. For example,
in Fig. 2, the loop invariant (p �= null) ⇒ (p ∈ Nodes(sl)) is generated.

4.3 Pre-condition Generator

In this section, we describe in details how to generate preconditions candidates
based on a given intermediate assertion inside a loop and a post-condition of a
loop.

Generating Precondition Candidates from an Intermediate Assertion.
Generating preconditions based on an intermediate assertion inside a loop is
given in Algorithm 1. The algorithm takes as arguments a loop program loop,
a given intermediate assertion assertion of loop and the information info of
loop. This algorithm returns a set of precondition candidates with respect to
assertion.

Assertion-Directed Precondition Synthesis for Loops over Data Structures 267

Algorithm 1. Generating Preconditions from an Intermediate Assertion
Input: a loop program loop; an intermediate assertion assertion of loop; loop infor-

mation info;
Output: a set of precondition candidates with respect to assertion;
1: set ← ∅;
2: let i be the program point before the loop body of loop
3: let j be the program point of assertion inside loop
4: wp ← compute wp(assertion, j, i);
5: swp ← simplify(wp);
6: if swp contains the loop control variable then
7: qwp = quantify(swp, info);
8: set ← set ∪ qwp;
9: else

10: set ← set ∪ swp;
11: end if
12: let cond be the loop control condition of loop
13: for each exp ∈ set do
14: exp′ = transform(exp, cond);
15: set ← set ∪ exp′;
16: end for
17: return set;

To start with, the variable set used to store precondition candidates of loop
is initialized to an empty set. In line 4, the algorithm invokes the procedure
compute wp to obtain the weakest-precondition at program point i with respect
to the intermediate assertion assertion at program point j. Since wp may contain
redundant information, this algorithm simplifies it via the procedure simplify
in line 5 and the simplified result is stored in swp. Then the algorithm analyzed
swp to see whether swp contains the loop control variable. If so, what swp
reflects is the property which holds by a set of elements. In this case, swp is
universally quantified via the procedure quantify in line 7. The quantified result
qwp is added to set as a precondition candidate. Otherwise, we simply regard
swp as a precondition candidate and add it to set in line 10. Lines 13-16 make a
transformation of each expression in set and add the transformation result to set.
The procedure tranform in line 14 construct a new expression (cond) ⇒ (exp)
where cond represents the loop control condition of loop. Eventually, set which
contains all the precondition candidates is returned in line 17.

Example 3. Consider the intermediate assertion isSL(l) at program point 10 of
the program in Fig. 2. Firstly, Algorithm 1 computes the weakest-precondition
at program point 4 for isSL(l) and we get p → d < min?(isSL(l)) : (isSL(l))
which can be simplified to isSL(l). Since &p /∈ M(isSL(l)) holds at program
point 4, the algorithm simply adds isSL(l) to the set containing precondition
candidates. After that, the pre-condition (p �= null) ⇒ (isSL(l)) is constructed
via the procedure transform in line 14 and added to the candidate set. ��

268 J. Zhai et al.

Universal Quantification. It is obvious that when a formula at the program
point before the loop body contains the loop control variable, this formula actu-
ally describes some property that should be held by the set of elements which
are manipulated in the loop. For this reason, our framework universally quan-
tifies the weakest-precondition at the program point before the loop body with
respect to an intermediate assertion inside the loop body to generate a precondi-
tion candidate of the loop if this weakest-precondition contains the loop control
variable. We achieve this by introducing a fresh variable which does not appear
elsewhere in the program or in the weakest-precondition. The details of quanti-
fying for loops manipulating singly-linked lists and one-dimensional arrays are
given below. Doubly-linked lists and static lists are also dealt with in this paper,
but the details are omitted here because of space limitation.
(1) Acyclic Singly-Linked List. Suppose that first represents an acyclic singly-
linked list and cur represents the loop control variable used to access each list
node of first. The concrete expressions of first and cur are obtained through
a static analysis. Besides, we assume that the expression exp represents the
weakest-precondition at the program point before the loop body. Note that exp
contains the loop control variable cur. By universally quantifying over cur which
appears in exp, we get the following precondition candidate of the loop:

∀x ∈ Nodes(first).(exp[cur �−→ x])

Example 4. In Fig. 2, the weakest-precondition at program point 4 with respect
to the intermediate assertion

min ∈ (λx.x → d)[Nodes(sl)] (5)

at program point 6 is as follows:

(p → d < min) ⇒ (p → d ∈ (λx.x → d)[Nodes(sl)]) (6)

where p is the loop control variable used to access each list node. Our framework
universally quantifies the weakest-precondition (6) by introducing a new variable
y to substitute p. The quantified result is the following precondition candidate:

∀y ∈ Nodes(sl).((y → d < min) ⇒ (y → d ∈ (λx.x → d)[Nodes(sl)])) (7)

The precondition candidate (7) is proved to be strong enough to guarantee (6)
holds at program point 4. Thus the assertion (5) is verified to be true at program
point 6. ��
(2) One-Dimensional Arrays. Suppose that arr represents a one-dimensional
array, index represents the loop control variable used as the subscript to access
each element of arr, low and high respectively represent the lower/upper bound
expressions of index. The concrete expressions of arr, index, low and high are
obtained through a static analysis. Besides, we assume that the expression exp
represents the weakest-precondition at the program point before the loop body.

Assertion-Directed Precondition Synthesis for Loops over Data Structures 269

{1 : a 	= null , b 	= null , ∀x ∈ [0, 99].a[i] ≥ 0}
s i z e = 100 ;
{2 : a 	= null , b 	= null , ∀x ∈ [0, 99].a[i] ≥ 0 , size == 100}
i = 0 ;
{3 : a 	= null , b 	= null , ∀x ∈ [0, 99].a[i] ≥ 0 , size == 100 , i == 0}
while (i < s i z e){

{4 : i ≥ 0 , i < size , a 	= null , a[i] ≥ 0}
b [i] = a [i] ;
{5 : b 	= null , b[i] == a[i] , b[i] ≥ 0}
i = i + 1 ;
{6 : b[i − 1] ≥ 0}

}
{7 : ∀x ∈ [0, 99].b[x] == a[x] , (λx.a[x])[0, 99] == (λx.b[x])[0, 99]}

Fig. 5. Array Copy

Here exp contains the loop control variable index. By universally quantifying
over index, we get the following precondition candidate of the loop:

∀x ∈ [low, high].(exp[index �−→ x])

Example 5. We now illustrate the quantifying process for programs operating
one-dimensional arrays using the program arrayCopy in Fig. 5. This program
copies each element of the array a to the corresponding position of the array b.
The subscript expression i is the loop control variable. The lower bound expres-
sion of i is 0 while the upper bound of i is 99.

The weakest-precondition at program point 4 with respect to the interme-
diate assertion b[i − 1] ≥ 0 at program point 6 is a[i] ≥ 0. Our framework
universally quantifies a[i] ≥ 0 by introducing a new variable x to substitute i
and get the following quantified result:

∀x ∈ [0, 99].a[i] ≥ 0 (8)

The precondition candidate (8) is proved to be strong enough to guarantee a[i] ≥
0 holds at program point 4. Thus b[i − 1] ≥ 0 is verified to be true at program
point 6. ��

Generating Precondition Candidates from a Post-condition. Algorithm
2 illustrates the process of generating preconditions based on a post-condition
of a loop. The algorithm takes as arguments a loop program loop, a given post-
condition post of loop and the information info of loop. This algorithm returns
a set of precondition candidates with respect to post.

This algorithm divides post-conditions of loops into two distinct categories.
The classification criteria is whether the post-condition contains loop variables.

If the post-condition contains loop variables, the algorithm invokes the pro-
cedure gen equiv exps in line 3 to get a set of expressions which are equivalent
to post at the loop exit point. These expressions are regarded as precondition
candidates and they are added to set in line 4. The core idea of gen equiv exps

270 J. Zhai et al.

Algorithm 2. Generating Preconditions from a Post-condition
Input: a loop program loop; a post-condition post of loop; loop information info;
Output: a set of precondition candidates with respect to post;
1: set ← ∅;
2: if post contains loop variables then
3: exps = gen equiv exps(post, info);
4: set ← set ∪ exps;
5: else
6: set ← set ∪ post;
7: end if
8: return set;

is to substitute some sub-expressions of a given expression with some new sub-
expressions which equals to the original one at the loop exit point. The sub-
stitution follows the heuristics given in our previous paper [9]. Further details
of gen equiv exps can also be found in [9]. As stated in that paper, when the
argument of the procedure gen equiv exps is a post-condition of a loop, the
generated expressions are very likely to be loop invariants which can be used
to imply the post-condition. Consequently, these expressions can be regarded as
preconditions of the loop to guarantee that the post-condition holds at the loop
exit point.

Example 6. The post-condition

min ∈ (λx.x → d)[Nodes(sl)] (9)

at program point 11 of the loop in Fig. 2 contains a loop variable min. Algo-
rithm 2 generates some precondition candidates for it by invoking the procedure
gen equiv exps. One of the candidates is

(l �= p) ⇒ (min ∈ (λx.x → d)[NodesSeg(sl, p)]) (10)

and it is proved to be a loop invariant. The post-condition (9) can be implied
by (10) together with l �= null, p == null and Property 4 in Table 1. Thus (10)
is a precondition that is strong enough to prove the post-condition (9). ��
If the post-condition does not contain any loop variable, there is a great pos-
sibility that the execution of the loop has no influence on the post-condition.
Considering this, Algorithm 2 thinks of the post-condition itself as a precondi-
tion candidate and adds it to set in line 6.

Example 7. The post-condition

∀x ∈ Nodes(sl).x → d > 0 (11)

at program point 11 of the loop in Fig. 2 does not contain any loop variable.
Algorithm 2 regards (11) as a precondition. The candidate (11) is proved to be
a loop invariant and holds at program point 11. Apparently the post-condition
(11) can be proved with the presence of itself as the precondition of the loop. ��

Assertion-Directed Precondition Synthesis for Loops over Data Structures 271

4.4 Checking Precondition Candidates

After the precondition candidates are generated, we check their validity utiliz-
ing the SMT solver Z3 and the weakest-precondition calculator for non-loop
statements provided in the tool Accumulator.

Checking Precondition Candidates for an Intermediate Assertion.
Suppose that assertion is an intermediate assertion of a loop, wp is the weakest-
precondition of assertion at the program point before the loop body and pre
is the generated precondition of the loop. To guarantee assertion holds, wp at
the program point before the loop body must be true each time the program
runs into this point. If pre is a loop invariant and it is strong enough to imply
wp, then assertion can be proved. For pre to be our desired precondition of the
loop, it must satisfy the following conditions:

1. The known preconditions imply pre at the loop entry point;
2. pre holds at the points before/after the loop body;
3. pre holds at the loop exit point;
4. pre and the proven properties at the program point before the loop body

imply wp with respect to the intermediate assertion assertion.

If pre satisfies the first three conditions, it is a loop invariant. If the fourth con-
dition is also met, it means that pre is strong enough to ensure the intermediate
assertion assertion holds.

In our framework, the first condition and the last condition are checked using
the SMT solver Z3.

The correctness of pre at the point after the loop body is checked using the
following steps. Firstly, we use Z3 to check whether pre holds at the point after
the loop body. If not, we compute the weakest-precondition of the loop body
with respect to pre and check whether this weakest-precondition can be implied
by pre together with the proven properties at the point before the loop body
and the loop control condition. If so, it means pre holds at the point after the
loop body.

As long as pre holds at the loop entry point and the point after the loop
body, it surely holds at the point before the loop body and the loop exit point.
As a result, the condition 2 and the condition 3 are satisfied.

If pre passes all these validation steps, it is a suitable precondition of the
loop with respect to the given intermediate assertion.

Checking Precondition Candidates for a Post-condition. Suppose that
post is a post-condition of a loop and pre is the generated precondition of the
loop based on post. If pre is true both at the loop entry point and the loop exit
point, post is sure to hold. To ensure pre holds at the loop exit point, it must
be true at the program point after the loop body in addition to the loop entry
point. In this case, pre is actually a loop invariant according to the definition
of loop invariant. Thus if the precondition pre of the loop is a loop invariant

272 J. Zhai et al.

and it is strong enough to imply post, it is the desired precondition. To be more
specific, if the following conditions are satisfied, the generated precondition pre
is strong enough to ensure post holds at the loop exit point.

1. The preconditions imply pre at the loop entry point;
2. pre holds at the points before/after the loop body;
3. pre holds at the loop exit point;
4. pre and the proven properties at the loop exit point imply the given post-

condition of the loop.

Our framework checks these conditions similarly in the way it deals with the
precondition generated from an intermediate assertion.

5 Implementation and Application

We have implemented the proposed framework as part of the interactive code-
verification tool Accumulator. The framework has been evaluated using various
programs. The results show that by automatically generating suitable precondi-
tions of loops, our framework can be fully leveraged to help prove some assertions
of loops that manipulate commonly-used data structures. In this way, the tasks
of proving the partial correctness of programs can be greatly eased. For details
of these examples, please visit http://seg.nju.edu.cn/toolweb/casestudy.html.

6 Limitations

Our framework currently can deal with while-loops that manipulate commonly-
used data structures including one-dimensional arrays, two-dimensional arrays,
acyclic singly-linked lists and static lists. We plan to deal with more types of
loops to cover a greater variety of real-world programs, such as foreach loops and
loops that contain break and continue statements. Programs with nested loops
would be another interesting extension since we deeply believe that the same
techniques can be applied. In addition, it is possible that similar techniques can
be developed for loops that manipulate data structures like binary search trees,
heaps and multi-dimensional arrays.

Furthermore, the loops dealt with in our framework iterate over each element
without modifying their shapes, which limits the scope of programs that can be
handled. We will attempt to handle loops that modify the shape of singly-linked
lists, such as inserting or removing a node from the original list.

7 Related Work

As always, automatic inference of preconditions for loops is a critical challenge.
In recent years, there is a plenty of research on the automatic generation of
preconditions for loops.

Assertion-Directed Precondition Synthesis for Loops over Data Structures 273

The majority of the existing works compute preconditions for loops by trans-
forming loops into acyclic forms. In this way, they are able to use the techniques
for successive sequential statements to compute preconditions for loops. Some
works like [4,5] achieve transforming loops by bounding the number of loop iter-
ations. Other papers, such as [2,3], work by de-sugaring loops with loop invari-
ants. Some works attempt to automatically derive the necessary loop invariants
while others expect programmers to provide loop invariants. Although our work
uses the concept of loop invariant when we generate preconditions for loops, no
transformations of loops are needed in our work.

Another approach is proposed in [10] and this approach computes precondi-
tions for loops based on invariant relations [11]. Intuitively, an invariant relation
is a pair of states (s, s′) in which s′ can be derived from s by application of an
arbitrary number of iterations of the loop body. This work focuses on numeric
computations while our work can identify more types of preconditions, such as
the shape of a recursive data structure and quantifying information.

The works [9,12,13] share the similarities with our work in that user-defined
predicates and lemmas are used to allow programmers to describe a wide range of
data structures. The work [12] aims at generating post-conditions while our work
focuses on generating pre-conditions. The goals of the works [9,13] are to synthe-
size loop invariants which is different from our pre-condiiton generation goal.

8 Conclusion

An automatic framework of generating preconditions for loops is presented in
this paper, which deals with loops manipulating commonly-used data structures
by iterating over the elements. We first generate precondition candidates for a
loop by transforming a given assertion of the loop or the weakest-precondition of
the loop body with respect to a given assertion inside the loop. Then we check
the validity and the effectiveness of these precondition candidates via the SMT
solver Z3 and the weakest-precondition calculator for non-loop statements in
Accumulator. Whether the precondition generated is strong enough to imply the
given assertion is checked since it is the ultimate goal of generating preconditions.

The key novelty of our framework is that we focus on loops that manipulate
heavily-used data structures. This kind of loops appears frequently in real-world
programs according to our statistic analysis. Thus our framework is of great use
to boost automation and efficiency in the code verification of many practical
programs. Though in actual programs, some loops iterate over elements of a
container data structure via an iterator, this kind of loops is essentially the
same with the loops studied in this paper. When we can handle these interfaces
well, we will be able to generate preconditions for these kinds of complex loops
using the idea presented in this paper.

The framework has been implemented as part of the verification tool Accu-
mulator. Its effectiveness and practicability have been validated by several
programs. By generating useful preconditions for loops manipulating commonly-
used data structures, our framework significantly reduces the burden of providing
appropriate preconditions for loops manually.

274 J. Zhai et al.

References

1. Berghammer, R.: Soundness of a purely syntactical formalization of weakest pre-
conditions. Electronic Notes in Theoretical Computer Science 35 (2000)

2. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact
verification conditions. In: ACM SIGPLAN Notices. Volume 36, ACM (2001)

3. Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
ACM SIGSOFT Software Engineering Notes. Volume 31, ACM (2005)

4. Leino, K.R.M.: Efficient weakest preconditions. Information Processing Letters
93(6), 281–288 (2005)

5. Jager, I., Brumley, D.: Efficient directionless weakest preconditions. Technical
report, CMU-CyLab-10-002, CMU, CyLab (2010)

6. Jianhua, Z., Xuandong, L.: Scope logic: an extension to hoare logic for pointers
and recursive data structures. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC
2013. LNCS, vol. 8049, pp. 409–426. Springer, Heidelberg (2013)

7. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

9. Zhai, J., Wang, H., Zhao, J.: Post-condition-directed invariant inference for loops
over data structures. In: 2014 IEEE Eighth International Conference on Software
Security and Reliability-Companion (SERE-C), IEEE (2014)

10. Mraihi, O., Ghardallou, W., Louhichi, A., Labed Jilani, L., Bsaies, K., Mili, A.:
Computing preconditions and postconditions of while loops. In: Cerone, A.,
Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 173–193. Springer,
Heidelberg (2011)

11. Mraihi, O., Louhichi, A., Jilani, L.L., Desharnais, J., Mili, A.: Invariant assertions,
invariant relations, and invariant functions. Volume 78, 1212–1239 Elsevier (2013)

12. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

13. Qin, S., He, G., Luo, C., Chin, W.N., Chen, X.: Loop invariant synthesis in a
combined abstract domain. Journal of Symbolic Computation 50, 386–408 (2013)

Verification and Case Studies

Automatic Fault Localization for BIP

Wang Qiang1(B), Lei Yan2, Simon Bliudze1, and Mao Xiaoguang3,4

1 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
wenjunwang.nudt@gmail.com

2 Logistical Engineering University of PLA, Chongqing, China
3 College of Computer, National University of Defense Technology, Changsha, China

4 Laboratory of Science and Technology on Integrated Logistics Support,
National University of Defense Technology, Changsha, China

Abstract. This paper presents a novel idea of automatic fault localiza-
tion by exploiting counterexamples generated by a model checker. The
key insight is that, if a candidate statement is faulty, it is possible to
modify (i.e. correct) this statement so that the counterexample is elim-
inated. We have implemented the proposed fault localization algorithm
for component-based systems modelled in the BIP (Behaviour, Interac-
tion and Priority) language, and conducted the first experimental eval-
uation on a set of benchmarks with injected faults, showing that our
approach is promising and capable of quickly and precisely localizing
faults.

1 Introduction

The rigorous system design process in BIP starts with the high-level modelling
of application software. The final system implementation is then derived from
the high-level system model by a series of property preserving model transfor-
mations, taking into account the architectural features of execution platform.
Thus, correctness of the system implementation with respect to essential safety
properties follows from the correctness of high-level system models, which can be
guaranteed by applying verification techniques [2,12]. When a counterexample is
found, showing that the system model violates the required properties, designers
manually investigate it in order to fix the model. However, the counterexample
generated by a model checker can be large, requiring considerable effort to local-
ize the fault. It is thus desirable to provide a method for automatic localization
of faults to streamline the rigorous system design process.

Existing fault localization techniques [10] are mostly statistical. They are gen-
erally referred to as Spectrum-based Fault Localization (SFL) [11]. In order to
identify suspicious locations, they require a considerable number of test cases,
including both passed and failed ones. When only a few tests are available,
these techniques become imprecise. In [1], the authors exploit the difference
between counterexamples and successful traces to localize faults in the program.

This work was partially funded by National Natural Science Foundation of China
(61379054).

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 277–283, 2015.
DOI: 10.1007/978-3-319-25942-0 18

278 W. Qiang et al.

The faults are those transitions that do not appear in the correct traces. In [7],
the authors propose to instrument the program with additional diagnosis vari-
ables and perform model checking on this modified program. The valuation of
diagnosis variables indicates the location of a fault, when a counterexample is
found. In [8], the authors propose a reduction of the fault localization problem to
the maximum Boolean satisfiability problem extracted from the counterexample
trace. The solution of the satisfiability problem provides a set of locations that
are potentially responsible for the fault.

In this paper, we focus on component-based systems modelled in BIP. In
contrast with the work cited above, our approach does not require neither test
inputs, nor instrumentation of the model. Instead, it exploits the counterexample
generated by a model checker. It reports the exact location, where the fault could
be corrected instead of a set of suspicious locations.

The key insight of our approach stems from the observation that a statement
in the counterexample is faulty if it is possible to modify (i.e. correct) this state-
ment so that the counterexample is eliminated. Given a counterexample—that is
an execution trace that violates the desired property—we first assume that this
counterexample is spurious, meaning that its postcondition is false.1 Our algo-
rithm then proceeds by propagating this postcondition backwards, computing
the weakest preconditions of the statements that form the execution trace, until
it reaches a statement that interferes with the propagated postcondition. We
mark this statement as a candidate fault location. In the second phase, the algo-
rithm symbolically executes the counterexample trace from the initial state to
the candidate faulty statement, which results in a symbolic state. This symbolic
state, together with the candidate faulty statement and the propagated post-
condition form a Hoare triple. We say that the candidate faulty statement is a
fault if this statement can be modified to make the Hoare triple valid. Since the
postcondition of the resulting trace is false, the counterexample is eliminated.

We remark that BIP is an expressive intermediate modelling language for
component-based software. Industrial languages, used, for instance, for the
design of Programmable Logic Controller software [5], can be encoded into BIP.
This opens the possibility of applying our fault localisation approach to real-life
industrial programs.

2 The BIP Language

The BIP framework advocates strong separation of computation and coordina-
tion concerns. To this end, the BIP language provides a modelling formalism
based on three layers: Behaviour, Interaction and Priority. Behaviour is char-
acterised by a set of atomic components, modelled by automata extended with
linear arithmetic. Transitions are labelled by ports, used for synchronization and
data transfer with other components. Coordination is specified by interaction
and priority models. An interaction model is a set of interactions, representing
1 We assume the readers to be familiar with the notions of Hoare triple and weakest
precondition.

Automatic Fault Localization for BIP 279

guarded strong synchronizations of transitions of atomic components. An inter-
action is a triple, consisting of a sets of ports to be synchronized, a Boolean
guard and an assignment statement updating the variables of the participating
components. When several interactions are enabled simultaneously, priority can
be used to reduce non-determinism and decide which interaction will be exe-
cuted. We refer to [2,4] for the formal presentation of the BIP framework and
operational semantics.

Example 1. We model in BIP the ticket mutual exclusion algorithm [9] with
two processes. A graphical representation is shown in Fig. 1. Each process gets
a ticket from the controller by taking its corresponding request transition (e.g.
request1 in the leftmost component in Fig. 1), and stores it in its buffer variable
(e.g. buffer1). When the ticket held by the process is equal to the number to be
served (represented by the guards [ticketN = next], with N = 1, 2, on the
interactions in Fig. 1), the process can enter the critical location (i.e. S3) by
taking the enter transition. The controller keeps track of the latest ticket it
issues in the number variable and the next ticket to be served in the next variable.
These variables are increased by one when a process requests a ticket or leaves
the critical location, respectively. The mutual exclusion property requires that
the two processes never be in the critical locations simultaneously.

S1

S2

S3

S1

S2

S3

request(number) 2evael)2reffub(2tseuqerevael

enter2

enter(next)

request1(buffer1) leave1

enter1

leave1

buffer1:=number buffer2:=number

controllerprocess1 process2

ticket1:=buffer1
request1

enter1(ticket1)

[ticket1=next] [ticket2=next]

enter2(ticket2)

leave2

ticket2:=buffer2
request2

S1 enter

leave
next++

number++
request

Fig. 1. Ticket mutual exclusion algorithm in BIP

For the sake of conciseness, in Section 3, we will denote the request ports
of the controller and the two process components r, r1 and r2, respectively.
Similarly, we will use e, e1, e2 for the enter ports; t1, b1, t2, b2 for the variables
of the two process components; n and x for the number and next variables of the
controller component.

3 Overview of the Algorithm

We inject a fault in the model presented in Example 1 by modifying the assign-
ment of transition r2 to be t2 := b2 − 1. The mutual exclusion property

280 W. Qiang et al.

is then violated by the sequence of interactions 〈γ1, γ2, γ3, γ4〉, where γ1 =
({r, r1}, true, b1 := n), γ2 = ({r, r2}, true, b2 := n), γ3 = ({e, e1}, t1 = x, skip),
γ4 = ({e, e2}, t2 = x, skip). We first build a sequential execution of this coun-
terexample by serializing the statements associated with interactions and their
participating transitions: cex = 〈b1 := n; t1 := b1; n := n + 1; b2 := n; t2 :=
b2 − 1; n := n + 1; assume(t1 = x ∧ t2 = x)〉.

Our first observation is that if a statement is faulty, it is possible to modify it
so that the counterexample is eliminated. However, this can also be the case for
a correct statement: e.g. replacing n := n+1 in the transition r of the controller
component by n := n eliminates the above counterexample. To avoid this, we
use the following characterisation of faults. We say that a statement s interferes
with a predicate ϕ if the Hoare triple {ϕ}s{ϕ} is invalid. Given a counterexample
cex, we call a statement s faulty, if 1) it interferes with the predicate ϕ obtained
by backward propagation of false along cex through the computation of weakest
preconditions and 2) it is possible to eliminate cex by modifying s. We explain
the idea by applying our algorithm to the counterexample above.

We start by computing the weakest precondition of false for the assume
statement: wp(false, assume(t1 = x ∧ t2 = x)) = (t1 �= x ∨ t2 �= x). According
to our fault model for BIP (Section 4), an assume statement cannot be a fault
candidate. Therefore, we proceed to the statement n := n + 1, which is a fault
candidate. Since wp(t1 �= x ∨ t2 �= x, n := n + 1) = (t1 �= x ∨ t2 �= x), n := n + 1
does not interfere with the predicate (t1 �= x∨ t2 �= x). Hence it is not faulty and
we proceed to the next statement. Since wp(t1 �= x∨ t2 �= x, t2 := b2−1) = (t1 �=
x ∨ b2 − 1 �= x) is not implied by t1 �= x ∨ t2 �= x, we conclude that t2 := b2 − 1
interferes with this latter predicate.

To check if this statement is the fault, we replace it by t2 := v, where v
is a fresh variable, and compute its precondition by symbolically executing the
fragment preceding t2 := b2 − 1, (i.e. 〈b1 := n; t1 := b1; n := n + 1; b2 := n〉),
which results in b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 = 2 ∧ t2 = 0. We now
have to check whether there exists a valuation of v that makes the Hoare triple
{b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 = 2 ∧ t2 = 0} t2 := v {t1 �= x ∨ t2 �= x}
valid, which would ensure the elimination of the counterexample cex. This is,
indeed, the case, since the implication b1 = 1 ∧ t1 = 1 ∧ n = 2 ∧ x = 1 ∧ b2 =
2∧t2 = 0 → wp(t1 �= x∨t2 �= x, t2 := v) is satisfiable. Thus we conclude that the
statement t2 := b2 − 1 associated with the transition r2 is the fault responsible
for the counterexample cex.

4 Fault Localization Algorithm for BIP

Since the synchronization aspect of interaction models is memoryless and can
be synthesized from high-level properties [3], it is reasonable to assume that
coordination is correct and focus on the faults in the assignment statements. We
assume that there is at most one fault, which can occur in the right-hand side
of an assignment, and we do not consider missing-code faults. Although these
assumptions are quite strong, they are satisfied by a considerable number of

Automatic Fault Localization for BIP 281

Algorithm 1. Automatic fault localization algorithm
Input: A BIP model B with the encoding of safety property
Output: Either no counterexample is found or potential fault is suggested
1: cex ← CounterexampleDetection(B)
2: if cex is Null then
3: return ‘No counterexamples found’
4: else
5: tr ← SequentialExecution(cex)
6: post ← false
7: for each s in tr do
8: pre ← WeakestPrecondition(post, s)
9: if s is suspicious and post → pre is invalid then
10: s′ ← Modify(s)
11: prefix ← PrefixExecution(tr, s)
12: st ← SymbolicExecute(prefix , s)
13: pre′ ← WeakestPrecondition(post, s′)
14: if st → pre′ is satisfiable then
15: return ‘s is the fault location’
16: else
17: post ← pre

18: else
19: post ← pre

realistic models. In fact, our fault model is quite similar to the faulty expression
model widely used for fault localization in C programs [7], where the control flow
of the program is assumed to be correct, but the expressions may be wrong.

Our algorithm (Algorithm 1) utilizes a model checker or a symbolic executor
as a subroutine to detect a counterexample (line 1). When a counterexample
is generated, a sequential execution trace tr is constructed (line 5). Then for
each statement s in tr, we compute the weakest precondition pre of s with
respect to post, initially set to false (lines 6, 8, 17, 19). If s is suspicious (i.e. it
is admitted by our fault model) and interferes with its postcondition (line 9),
we check whether it is possible to modify it to eliminate cex. To this end, we
compute s′ = Modify(s) (line 10), which replaces the right-hand side of s by a
fresh variable. We symbolically execute the counterexample until s (lines 11–12).
Notice that the same statement may appear in the prefix due to the presence
of a loop. Finally, we check whether the symbolic state st implies the weakest
precondition pre′ of s′ (lines 13–14). If the implication is satisfiable, there exists
a replacement s′ of s that eliminates cex and s is the fault (line 16). Otherwise,
we propagate the postcondition backwards and proceed to the next statement.

5 Experimental Evaluation

We have implemented the proposed algorithm based on an existing model
checker [2], and adopted several benchmarks from the same work for the exper-
imental evaluation. We also used industrial benchmarks [5] and the TCAS test
suite [6], which is widely used by the fault localization community. Faults are

282 W. Qiang et al.

injected into all benchmarks by modifying some assignments in the transitions
of atomic components. Due to the space limitation, we refer the reader to our
website2 for further detail.

All the experiments have been performed on a 64-bit Linux PC with a 2.8
Ghz Intel i7-2640M CPU, with a memory limit of 4Gb and a time limit of
300 seconds. The results are listed in Table 1, which shows that our algorithm
has quickly and precisely localized the faults in all considered benchmarks. The
second column of Table 1 shows the number of lines of the BIP model; the third
shows the exact location (i.e. line number) of the fault in the program; in the
forth,

√
indicates that our algorithm has localized the fault successfully; the fifth

shows the time of performing fault localization, which remains stable with the
size of the benchmarks. This can be explained by the fact that our algorithm uses
counterexamples, rather than the models themselves. The last column shows the
total time of detecting and localizing the fault.

Table 1. Experimental results

Benchmark LOC Fault Location Result FaultLoc Time (s) Total Time (s)

atm transaction system 90 L57
√

0.004 0.036

ticket algorithm 89 L54
√

0.008 0.024

gate control system 80 L51
√

0.004 0.244

bakery algorithm 77 L41
√

0.004 0.048

plc code1 162 L98
√

0.004 0.040

plc code2 76 L46
√

0.004 0.016

plc code3 133 L96
√

0.008 1.144

simple c code 68 L32
√

0.004 0.020

tcas 197 L140
√

0.008 0.700

6 Conclusion

Fault localization techniques based on formal methods are attracting attention.
In this short paper, we have presented a novel automatic fault-localization algo-
rithm for single assignment faults in BIP models. Our first experimental evalu-
ation shows that the algorithm is promising: under some admittedly strong, but
realistic assumptions, it is capable of quickly and precisely localizing faults. In
the future work, we are planning to explore the possibilities of relaxing these
assumptions, perform further experimental evaluation, and investigate the pos-
sibilities of automatically repairing the detected faults.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in
counterexample traces. In: POPL (2003)

2. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.:
Formal verification of infinite-state BIP models. In: ATVA (2015, to appear)

2 http://risd.epfl.ch/fault-localisation

http://risd.epfl.ch/fault-localisation

Automatic Fault Localization for BIP 283

3. Bliudze, S., Sifakis, J.: Synthesizing glue operators from glue constraints for the
construction of component-based systems. In: Apel, S., Jackson, E. (eds.) SC 2011.
LNCS, vol. 6708, pp. 51–67. Springer, Heidelberg (2011)

4. Bliudze, S., Sifakis, J., Bozga, M.D., Jaber, M.: Architecture internalisation in BIP.
In: Proceedings of the 17th International ACM Sigsoft Symposium on Component-
based Software Engineering, CBSE 2014, pp. 169–178. ACM, New York (2014)

5. Darvas, D., Fernández Adiego, B., Vörös, A., Bartha, T., Blanco Viñuela, E.,
González Suárez, V.M.: Formal verification of complex properties on PLC pro-
grams. In: Formal Techniques for Distributed Objects, Components and Systems
(2014)

6. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software
Engineering (2005)

7. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Electron. Notes Theor. Comput, Sci (2007)

8. Jose, M., Majumdar, R.: Cause clue clauses: Error localization using maximum
satisfiability. In: PLDI (2011)

9. Lynch, N.A.: Distributed Algorithms (1996)
10. Mao, X., Lei, Y., Dai, Z., Qi, Y., Wang, C.: Slice-based statistical fault localization.

Journal of Systems and Software (2014)
11. Naish, L., Lee, H., Ramamohanarao, K.: A model for spectra-based software diag-

nosis. ACM Transactions on Software Engineering and Methodology (2011)
12. Sifakis, J.: Rigorous system design. Foundations and Trends in Electronic Design

Automation (2013)

Formal Verification of the Pastry Protocol
Using TLA+

Tianxiang Lu(B)

Department of Computer Science,
Technische Universität Darmstadt, Darmstadt, Germany

contact@tiit.lu

Abstract. As a consequence of the rise of cloud computing, the reliabil-
ity of network protocols is gaining increasing attention. However, formal
methods have revealed inconsistencies in some of these protocols, e.g.,
Chord, where all published versions of the protocol have been discovered
to be incorrect. Pastry is a protocol similar to Chord. Using TLA+, a
formal specification language, we show that LuPastry, a formal model of
Pastry with some improvements, provides correct delivery service. This
is the first formal proof of Pastry where concurrent joins and lookups are
simultaneously allowed. In particular, this article relaxes the assumption
from previous publication to allow arbitrary concurrent joins of nodes,
which reveals new insights into Pastry through a final formal model in
TLA+, LuPastry. Besides, this article also illustrates the methodol-
ogy for the discovery and proof of its invariant. The proof in TLA+ is
mechanically verified using the interactive theorem prover TLAPS.

Keywords: Formal verification · Interactive theorem proving · Network
protocols

1 Introduction

1.1 The Pastry Protocol

Pastry ([16], [3], [4]) is a structured P2P algorithm realizing a Distributed Hash
Table (DHT , by [5]) over an underlying virtual ring. The network nodes are
assigned logical identifiers from an ID space of naturals in the interval [0, 2M −1]
for some M . The ID space is considered as a ring1 as shown in Fig. 1, i.e. 2M −1
is the neighbor of 0.

The IDs are also used as object keys, such that an overlay node is respon-
sible for keys that are numerically close to its ID, i.e. it provides the primary
storage for the hash table entries associated with these keys. Key responsibility
is divided equally according to the distance between two adjacent nodes. If a
node is responsible for a key we say it covers the key.

The most important sub-protocols of Pastry are join and lookup. The join
protocol eventually adds a new node with an unused network ID to the ring.
1 The ring here does not refer to algebraic group structure with operation.

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 284–299, 2015.
DOI: 10.1007/978-3-319-25942-0 19

Formal Verification of the Pastry Protocol 285

Fig. 1. Pastry ring.

The lookup protocol delivers the hash table entry for a given key. This paper
focuses on the correctness property CorrectDelivery (mentioned as dependability
in algorithm paper [3]), requiring that there is always at most one node respon-
sible for a given key. This property is non-trivial to obtain in the presence of
concurrent join or departure of nodes, i.e., churn. To cope with that, each Pastry
node maintains a local state of a set of nodes called leaf sets, as shown in Fig. 1,
consisting of a left set and a right set of the same length, which is a parameter of
the algorithm. The nodes in leaf sets are updated when new nodes join or failed
nodes are detected using a maintenance protocol. A Pastry node also maintains
a routing table to store more distant nodes, in order to achieve efficient routing.

In the example of Fig. 1, node a received a lookup message for key k. The
key is outside node a’s coverage. Moreover, it doesn’t lie between the leftmost
node and the rightmost node of its leaf sets. Querying its routing table, node
a finds node b, whose identifier matches the longest prefix with the destination
key and then forwards the message to that node. Node b repeats the process and
finally, the lookup message is answered by node c, which covers the key k. In
this case, we say that node c delivers the lookup request for key k.

1.2 The Methodology

TLA+ by [6], is a formal specification language based on untyped Zermelo-
Fraenkel (ZF) set theory with choice for specifying data structures, and on the
Temporal Logic of Actions (TLA) for describing system behavior. It is chosen
to analyze and verify the correct delivering and routing functionality of Pastry,
because it provides a uniform logic framework for specification, model-checking
and theorem proving. It fits protocol verification quite nicely, because its concept
of actions matches the rule/message-based definition of protocols. In addition,

286 T. Lu

Informal Description

Modeling in TLA+

Static
model

Properties Dynamic
model

Counter
Examples

Model Checking
using TLC

Valid in
small instances

Theorem Proving
using TLAPS

Relax
Assumptions

Proof

Fig. 2. Verification approach using TLA+.

the specification language is straightforward to understand with basic mathemat-
ics and classical first-order logic. Furthermore, the convenient toolbox available
in [7] includes now both the TLC model checker and the TLAPS proof system.

Fig. 2 illustrates the complete process of this framework which includes mod-
eling, model checking and theorem proving.

Starting with an informal description of Pastry in [3], the first task is to model
the requirements of the system using TLA+. This paper distinguishes different
kinds of TLA+ model as properties that specify requirements using logic formulas
(e.g. CorrectDelivery), the static model that defines the data structures (e.g. the
virtual ring of IDs, the leaf sets etc.), and the dynamic model that describes the
behavior using actions of TLA+.

The challenges here include modeling Pastry on an appropriate level of
abstraction, filling in needed details in the formal model that are not contained in
the published description of Pastry, and formulating the correctness property of
Pastry. These challenges motivate a deeper understanding of the protocol using
the model checker TLC.

The model is validated using TLC in an iterative process, which helped
to discover unexpected corner cases to improve the model and to ensure that
the system has at least some useful executions. For example, accessibility prop-
erties are model-checked by checking that the negation is false. To avoid the
state explosion problem, only a restricted number of instances are verified using
TLC. Upon finding counterexamples, the model is analyzed and reformulated.

Formal Verification of the Pastry Protocol 287

Upon successful validation or in the absence of counterexamples after running
it for a considerable long time, the model is then verified by TLA+ proofs.

Since the previous publications [11] and [12] have already included the model
checking result, we omit it here to save space for illustrating theorem proving
details.

The proof of the Pastry join protocol contains an induction part, where invari-
ants need to be found and formulated. Discovering the invariants is the most
subtle part of the theorem proving approach. On the one hand, it should be gen-
eral enough to imply the target property CorrectDelivery . On the other hand,
it should be specific enough to be provable using itself as induction hypothesis.
In order to prove the safety property CorrectDelivery , we assume no departure
of nodes and that an active node can help at most one node to join at a time,
which relaxes the previous assumption we made in [13].

The model checker TLC is applied again to debug the formulation errors
or discover invalid hypothetical invariants at an early stage. The invariant is
extended during the process of being proved. TLAPS is used to write the proof
manually and sometimes to break it down into small enough pieces so that it
can be checked automatically using the back-end prover. The final verification
result is a TLA+ proof, in which each proof step is automatically verified using
TLAPS.

2 Modelling the Concurrent Join Protocol of Pastry

As illustrated in Fig. 2, the formal model of Pastry consists of a static part speci-
fying the underlying data structures and a dynamic part specifying the behaviour
of the nodes. Due to the page limit for this paper, the formal description of all
the dynamic actions [10] are omitted here.

2.1 Static Model

The static model of Pastry consists of definitions of data structures and opera-
tions on them. A data structure is always a boolean value, a natural number, a
set, a function or a complex composition of them. An operation on a data struc-
ture is always a functional mapping from a given signature of data structures to
a returned value, which is again a data structure.

The static model of Pastry remains the same as in [12]. The distance between
two nodes on the ring is modeled with clockwise distance CwDist(x, y), which
returns how many identifiers lie within the region from node x to y in the clock-
wise direction. The absolute value AbsDist(x, y) gives the length of the shortest
path along the ring from x to y. The routing table has a rather complex data
structure, which is used for efficient routing. Since this article focuses on the
safety property, details of the routing table are omitted here. The simplified
routing table is a set of nodes (RTable Δ= [I → subset I]) and the initial
routing table InitRTable is an empty set.

288 T. Lu

Leaf Set. The leaf set data structure ls of a node is modeled as a record (using
syntax [component1, component2]) with three components: ls.node, ls.left and
ls.right (a dot is used to access a component of a record in TLA+). The first
component contains the identifier of the node maintaining the leaf sets, the other
two components are the two leaf sets to either side of the node. The following
operations access or manipulate leaf sets. Here we reuse the arithmetic operations
(e.g. ≥, ÷) on natural numbers (I ⊆ N).

The operation AddToLSet(delta, ls) adds the set of nodes d into left and right
sides of the leaf sets ls. Due to the space restriction, its complex formal definition
is omitted here and can be found in [10].

Definition 1 (Operations on leaf sets (ls ∈ LSet, delta ∈ SUBSET I))

LSet Δ= [node ∈ I, left ∈ subset I, right ∈ subset I]
GetLSetContent(ls) Δ= ls.left ∪ ls.right ∪ {ls.node}

EmptyLS (i) Δ= [node �→ i, left �→ {}, right �→ {}]
LeftNeighbor(ls) Δ= if ls.left = {} then ls.node

else choose n ∈ ls.left : ∀p ∈ ls.left :
CwDist(p, ls.node) ≥ CwDist(n, ls.node)

RightNeighbor(ls) Δ= if ls.right = {} then ls.node
else choose n ∈ ls.right : ∀q ∈ ls.right :

CwDist(ls.node, q) ≥ CwDist(ls.node,n)

LeftCover(ls) Δ= (ls.node + CwDist(LeftNeighbor(ls), ls.node) ÷ 2)%2M

RightCover(ls) Δ= (RightNeighbor(ls) +
CwDist(ls.node,RightNeighbor(ls)) ÷ 2 + 1)%2M

Covers(ls, k) Δ= CwDist(LeftCover(ls), k)
≤ CwDist(LeftCover(ls),RightCover(ls))

Messages. Messages are defined as records consisting of their destinations and
the message content: DMsg Δ= [destination ∈ I,mreq ∈ MReq]. The message
content (MReq) consists of different types. The actions in the dynamic model
are mainly designed to handle these messages. Therefore, the different message
types are formally defined here to provide better understanding of the dynamic
models explained later in Section 2.2.

Definition 2 (Message Types)

Look Δ= [type ∈ {“Lookup”},node ∈ I]
JReq Δ= [type ∈ {“JoinRequest”}, rtable ∈ RTable,node ∈ I]
JRpl Δ= [type ∈ {“JoinReply”}, rtable ∈ RTable, lset ∈ LSet]
Prb Δ= [type ∈ {“Probe”},node ∈ I, lset ∈ LSet , failed ∈ subset I)]

PRpl Δ= [type ∈ {“ProbeReply”},node ∈ I, lset ∈ LSet , failed ∈ subset I)]
LReq Δ= [type ∈ {“LeaseRequest”},node ∈ I]

LReply Δ= [type ∈ {“LeaseReply”}, lset ∈ LSet , grant ∈ {true, false}]

Formal Verification of the Pastry Protocol 289

Statuses. Together with the message types above, a brief introduction of the
statuses of a node helps the understanding of the dynamic model.

status ∈ [I → {“ready”, “ok”, “waiting”, “dead”}]

A node is initially either “ready” or “dead”. As soon as a “dead” node sends
the “JoinRequest” message, it turns to the status “waiting”, which means it is
waiting to become “ok”. After it has completed its leaf sets and received all the
“ProbeReply” messages, it will become “ok”. Once it has obtained both leases
from its left and right neighbors, it will become “ready”. Only “ready” nodes
can deliver “Lookup” messages or reply to “JoinRequest” messages.

2.2 Dynamic Model

The overall system specification Spec is defined as Init ∧ �[Next]vars , which
is the standard form of TLA+ system specifications. � stands for temporal
operator always. The whole expression requires that all runs start with a state
that satisfies the initial condition Init , and that every transition either does not
change vars (defined as the tuple of all state variables) or corresponds to a system
transition as defined by Next . This form of system specification is sufficient for
proving safety properties. Since liveness properties are beyond the verification
interest of this paper, no fairness hypotheses are asserted, claiming that certain
actions eventually occur.

Definition 3 (Overall Structure of the TLA+ Specification of Pastry)

vars
Δ= 〈receivedMsgs, status, lset, probing, failed, rtable, lease, grant, toj〉

Init
Δ= ∧ receivedMsgs = {}

∧ status = [i ∈ I �→ if i ∈ A then “ready” else “dead”]
∧ toj = [i ∈ I �→ i]
∧ probing = [i ∈ I �→ {}]
∧ failed = [i ∈ I �→ {}]
∧ lease = [i ∈ I �→ if i ∈ A then A else {i}]
∧ grant = [i ∈ I �→ if i ∈ A then A else {i}]
∧ lset = [i ∈ I �→ if i ∈ A

then AddToLSet(A,EmptyLS(i))
else EmptyLS(i)]

∧ rtable = [i ∈ I �→ if i ∈ A
then AddToTable(A, InitRTable, i)
else AddToTable({i}, InitRTable, i)]

Next
Δ= ∃i, j ∈ I : ∨ Join(i, j) ∨ Lookup(i, j) ∨ Deliver(i, j)

∨ RouteJReq(i, j) ∨ RouteLookup(i, j)
∨ RecJReq(i) ∨ RecJReply(j)
∨ RecProbe(i) ∨ RecPReply(j)
∨ RecLReq(i) ∨ RecLReply(i)
∨ RequestLease(i)

Spec
Δ= Init ∧ �[Next]vars

290 T. Lu

The variable receivedMsgs holds the set of messages in transit. It is assumed
in the formal model that messages are never modified when they are on the way
to their destination, that is, no message is corrupted.

The other variables hold arrays that assign to every node i ∈ I its status,
leaf sets, routing table, the set of nodes it is currently probing, the set of nodes
it has determined to have dropped off the ring (failed), the node to which it has
sent a join reply and not yet got confirmation if it has become “ready” (toj), the
nodes from which it has already got the leases (lease) and the nodes to which it
has granted its leases (grant).

The predicate Init is defined as a conjunction that initializes all variables.
In particular, the model takes a parameter A indicating the set of nodes that
are initially “ready”.

The next-state relation Next is a disjunction of all possible system actions,
for all pairs of identifiers i, j ∈ I. Each action is defined as a TLA+ action
formula. Due to the page limit, we only show two formal definitions of the actions.
The action Deliver(i, k) (Definition 4) is referenced in the safety property and
formal proof. The action RecJReq(i) (Definition 5) is crucial of understanding
the improvement of LuPastry in allowing only one node to handle join requests
to avoid collisions caused by concurrent joins.

The action Deliver(i, k) is executable if node i is “ready”, if there exists
an unhandled “Lookup” message addressed to i, and if j, the identifier of the
requested key, falls within the coverage of node i (see Definition 1). Its effect is
simply defined as removing the message m from the network, due to the fact
that only the execution of the action is interesting, not the answer message that
it generates. Each time it receives a message, the node will remove the message
from the message pool receivedMsgs, so that it will not be received again. The
other variables are unchanged.

Definition 4 (Action: Deliver(i, j))

Deliver(i, j) Δ=
∧ status[i] = “ready”
∧ ∃m ∈ receivedMsgs : ∧ m.mreq.type = “Lookup”

∧ m.destination = i
∧ m.mreq.node = j
∧ Covers(lset[i], j)
∧ receivedMsgs′ = receivedMsgs \ {m}

∧ unchanged 〈status, rtable, lset, probing, failed, lease, grant, toj〉
The actions basically handle the different message types shown in Section 2.1.

In action Lookup(i, j), a node sends out a “Lookup” message, which contains
only the node j it is looking for. In action Join(i, j), a “JoinRequest” message
is sent to node i to join a new node j. Using the same routing algorithm, the
“Lookup” and “JoinRequest” messages are routed to the node which covers the
key j, through several nodes via execution of RouteJReq(i, j) or RouteLookup(i, j)
actions.

Formal Verification of the Pastry Protocol 291

Definition 5 (Action: RecJReq(i))

RecJReq(i) Δ=
∧ status[i] = “ready”
∧ toj[i] = i
∧ ∃m ∈ receivedMsgs :

∧ m.mreq.type = “JoinRequest”
∧ m.destination = i
∧ Covers(lset[i],m.mreq.node)
∧ toj′ = [except ![i] = m.mreq.node]
∧ lset′ = [except ![i] = AddToLSet({m.mreq.node}, lset[i])]
∧ receivedMsgs′ = (receivedMsgs \ {m})

∪{[destination �→ m.mreq.node, [type �→ “JoinReply”,
rtable �→ m.mreq.rtable, lset �→ lset[i]]]}

∧ unchanged 〈status, rtable, probing, failed, lease, grant〉

In action RecJReq(i) (Definition 5) a “ready” node i covers the joining node
in the “JoinRequest” message and has not yet started helping another node
to join (toj[i] = i), therefore it replies to the joining node with a “JoinReply”
message. It also sets toj to be that joining node to prevent other nodes to join
through it. This is the mechanism for avoiding collision of coverage caused by
concurrent join.

The “Probe” messages are handled in action RecProbe(i) by the receivers i.
As a reply to the probing message, the node i sends a “ProbeReply” message
containing the node replying to the probe (node), the replier’s leaf sets and a
set of failed nodes back to the probing node. In the action RecPReply(i), the
node i adds the sender of the “ProbeReply” message into its own leaf sets.
When all awaiting probe messages have been answered, the node becomes “ok”.
Consequently, it sends out “LeaseRequest” messages to update the leases of its
direct left neighbor and right neighbor.

As long as a node is “ok”, it can send “LeaseRequest” messages to request
leases from its direct neighbors using RequestLease(i). In action RecLReq(i),
the node i replies to the lease request with a “LeaseReply” message containing
its own leaf sets, where its own identifier is contained in lset.node. Instead of
only sending back the node identifier, the leaf sets were designed to provide
extra information, which, as in a “Probe” message, may serve to propagate and
exchange leaf sets among nodes. If the sender is its direct neighbor, it grants the
lease.

In action RecLReply(i), the node i updates its lease of the sender of a
“LeaseReply” message, if the sender is its direct neighbor. If the node i is of
status “ok” and completes leases both of its direct neighbors, then it becomes
“ready”. If the node i is helping the sender to join the network, it also sets the
toj to itself allowing it to help other nodes.

The formal model of LuPastry actions in TLA+ code can be found in [10].

292 T. Lu

2.3 The Correctness Properties

Since TLA+ does not have type, state variables should conform to their desired
data structures, so that accessing their components will always be successful. For
example, status[i] should access the state variable status of a particular node i
and it is supposed to be one of the states, not a node identifier. The correctness
of “types” are defined as state property TypeInvariant and then proved to be
an invariant for the system as shown in Theorem 1.

Property 1 (TypeInvariant)

TypeInvariant Δ= ∧ receivedMsgs ∈ subset DMsg
∧ status ∈ [I → {“ready”, “ok”, “waiting”, “dead”}]
∧ lease ∈ [I → subset I]
∧ grant ∈ [I → subset I]
∧ rtable ∈ [I → RTable]
∧ lset ∈ [I → LSet] ∧ ∀i ∈ I : lset[i].node = i
∧ probing ∈ [I → subset I]
∧ failed ∈ [I → subset I]
∧ toj ∈ [I → I]

Theorem 1 (Type Correctness) Spec ⇒ �TypeInvariant

The property CorrectDelivery asserts that whenever node i can execute the
action Deliver(i, k) for key k then both of the following statements are true:

– The node i has minimal absolute distance from the key k among all the
“ready” nodes in the network.

– The node i is the only node that may execute the action Deliver(i, k) for the
key k.

Property 2 (CorrectDelivery)

CorrectDelivery Δ= ∀i, k ∈ I :
enabled Deliver(i, k)
⇒ ∧ ∀n ∈ I \ {k} : status[n] = “ready” ⇒ AbsDist(i, k) ≤ AbsDist(n, k)

∧ ∀j ∈ I \ {i} : ¬enabled Deliver(j, k)

Observe that there can be two nodes with minimal distance from k, to either
side of the key. Therefore, the asymmetry in the definition of LeftCover(ls, k)
and RightCover(ls, k) in Definition 1 is designed to break the tie and ensure that
only one node is allowed to deliver. The major verification goal is formalised in
Theorem 2, that given the formulas defined for Pastry as Spec, it can be entailed
that the property
CorrectDelivery always holds.

Theorem 2 (Correctness of Pastry) Spec ⇒ �CorrectDelivery

Formal Verification of the Pastry Protocol 293

3 Theorem Proving

Model checking can only provide validation on four nodes. To get a generic
verification of the Pastry protocol on arbitrary number of nodes, we need to
use a theorem proving approach. Using the TLA+ theorem prover TLAPS, we
proved in [12] that the conjunction of HalfNeighbor and NeighborClosest implies
CorrectDelivery . The most subtle part left is the induction proof of invariants,
which extends these two properties. The proof is based on the assumption that
there are no departure of nodes and that an active node can help at most one
node to join at a time.

3.1 Inductive Proof of Invariant HalfNeighbor

The property HalfNeighbor (part of Invariant 1) is extended finally to a more
complex one: HalfNeighborExt, stating that if there is more than one member of
ReadyOK on the ring (a node is either “ready” or “ok”), then none of them will
have an empty leaf set.

For the special case that there is only one member of ReadyOK k on the
ring, the following statements hold:

– k has no neighbor;
– every “waiting” node (waiting to become “ok”) knows at most the node k

and itself;
– there is no “Probe” message to k;
– there is no “ProbeReply” message or “LeaseReply” message at all;
– the leaf set within a “JoinReply” message can only contain k.

Invariant 1 (HalfNeighborExt)

∨∀k ∈ ReadyOK : RightNeighbor(lset[k]) �= k ∧ LeftNeighbor(lset[k]) �= k
∨∃k ∈ ReadyOK :

∧ ReadyOK = {k}
∧ LeftNeighbor(lset[k]) = k
∧ RightNeighbor(lset[k]) = k
∧ ∀w ∈ NodesWait : GetLSetContent(lset[w]) ∈ subset {k,w}
∧ ¬∃ms ∈ receivedMsgs : ms.mreq.type = “ProbeReply”
∧ ¬∃mk ∈ receivedMsgs :∧ mk.mreq.type = “Probe”

∧ mk.destination �= k
∧ ∀mj ∈ receivedMsgs :mj.mreq.type = “JoinReply”

⇒ GetLSetContent(mj.mreq.lset) = k
∧ ¬∃mb ∈ receivedMsgs : mb.mreq.type = “LeaseReply”

The formal expression shown in Invariant 1 includes the original property
HalfNeighbor (the first 5 lines), and its extension (the remaining lines in bold).

This invariant is extended during the proof HalfNeighbor step by step. Firstly,
we check what is missing as prerequisites to prove HalfNeighbor′ on its inductive
proof at each action. Secondly, we strengthen HalfNeighbor by adding auxiliary

294 T. Lu

conjunctions in such a way that it provides exactly the prerequisite for the proof.
Each time the invariant is extended, the model checker TLC is employed on the
Pastry model to help check if the new invariant holds on the model of four nodes.
Upon violation of such a model checking approach, the formula derived from the
last state of the counterexample is used to reformulate the invariant.

3.2 Proof of NeighborClosest

The property NeighborClosest states that the left and right neighbors of any
“ready” node i lie closer to i than any other “ready” node j.

Property 3 (NeighborClosest)

NeighborClosest Δ= ∀i, j ∈ ReadyNodes :
i �= j ⇒ ∧ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(j, i)

∧ CwDist(i, RightNeighbor(lset[i])) ≤ CwDist(i, j)

The intuition of searching for the appropriate invariant for proving Neigh-
borClosest is backwards symbolic execution. The idea is to find a candidate
invariant whose violation trace, if it is not valid, can be shorter, such that the
model checker TLC can be used to help discover and improve such an invari-
ant. Based on the assumption that no nodes leave the network and the protocol
improvement in LuPastry that a “ready” node can handle at most one join-
ing node at a time, the property NeighborClosest can be further reduced to the
following properties: IRN and NRI (formally specified in Proerty 4).

The properties IRN and NRI together subsume the property NeighborClos-
est . The difference is that NeighborClosest guarantees that “ready” nodes do not
ignore other “ready” nodes between themselves and their neighbors, while IRN
and NRI states that every node does not ignore any “ready” nodes between
itself and its neighbor.

Property 4 (IRN and NRI)

IRN
Δ= ∀i ∈ I, r ∈ ReadyNodes : i �= r

⇒ CwDist(i, RightNeighbor(lset[i])) ≤ CwDist(i, r)
NRI

Δ= ∀i ∈ I, r ∈ ReadyNodes : i �= r
⇒ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(r, i)

The properties IRN and NRI state that there cannot be a “ready” node
closer to arbitrary node i, than its left and right neighbors. Since these two
properties are symmetrical, we only focus on one of them in this paper, IRN.

Induction Invariant. Due to the page limit, we only focus on the invariant
IRN and give intuition of the discovery of the relevant invariants used for proving
IRN. The formal description and proof of all invariants can be found in full in [10]
and are explained intuitively in [9].

Invariant 2 (InvLuPastry)

IRN ∧ TojNoReady ∧ SemToj ∧ TojClosestL ∧ GrantNeighbor ∧ GrantHistL ∧ . . .

Formal Verification of the Pastry Protocol 295

Proof Sketch of the Invariant IRN. The following proof sketch illustrates
the discovery and proof of the induction invariant for proving IRN, the most
interesting and subtle part of the formal verification approach.

Based on the definition of IRN, the modification of two variables lset and
status is critical. Regarding the change of leaf sets lset, adding nodes into leaf
sets preserves the validity of the invariant. Since no action in the new Pastry
model removes nodes from leaf sets, the changes of leaf sets always preserve the
invariant IRN.

Regarding the changes of status from “ok” to “ready” in the action
RecLReply(r), we construct the negation of IRN as shown in Fig. 3: assume
that a node r is turning from “ok” to “ready” in action RecLReply(r) and this
node lies exactly between an arbitrary node i and its direct right neighbor n.
The proof is to find the contradiction of this situation.

For this we need an invariant TojNoReady : if the leaf sets of some not yet
“ready” node i is not empty, then there must exist a “ready” node, through
which node i has joined the network.

TojNoReady
Δ= ∀i ∈ I : i /∈ ReadyNodes ∧ lset[i] �= EmtyLS(i)

⇒ ∃r ∈ ReadyNodes : toj[r] = i

Applying TojNoReady on the “ok” node r, there must be a “ready” node r2,
such that toj [r2] = r. The proof method is to refute the existence of such a node r2.
According to IRN, node r2 cannot be inside the range from r to its right neighbor.
Hence, 3 cases are possible for the position of node r2 as shown in Fig. 3.

“ok” to “ready”

CASE 1 n

r

r2 = i

“ok” to “ready”

CASE 2

r2

n

r

i

“ok” to “ready”

CASE 3 r2 = n

r

iln1/

ln2/

ln3/

Fig. 3. Case analysis of the node r2 w.r.t. node i and its right neighbor n.

CASE 1 : r2 = i. Let us introduce another invariant SemToj (the “semantic” of
variable toj): if a not yet “ready” node i has joined through the “ready” node r,
then node i must be r’s direct neighbor. We reuse r, i as binding variables here
because we can directly apply the invariant into our sub-goal.

SemToj
Δ= ∀r, i ∈ I : i /∈ ReadyNodes ∧ toj[r] = i ∧ r �= i

⇒ RightNeighbor(lset[r]) = i ∨ LeftNeighbor(lset[r]) = i

296 T. Lu

By SemToj and our assumption we know that r must be a direct neighbor
of r2.
(1) If r were the right neighbor of r2, which is now i, then r should be the right
neighbor of i, which contradicts with n (see Fig. 3). (2) If r were the left neighbor
of r2, then the left distance (counterclockwise) from i to its left neighbor r is
larger than the left distance from i to its right neighbor, which contradicts the
definitions of LeftNeighbor and RightNeighbor in Definition 1. Hence r2 cannot
be i.
CASE 2 : CwDist(i, RightNeighbor(lset[i])) < CwDist(i, r2). Given that the
node r is the direct neighbor of r2 (shown using SemToj), we perform case
analysis on the node r. Suppose r is the right neighbor of node r2 as illustrated
in Fig. 3 since the other case can be proved symmetrically.

To refute this possibility, let us analyze the status of node i. If node i were a
“ready” node, then this would violate IRN for the node r. If not, we need to use
invariant TojNoReady to construct an arbitraryly positioned “ready” node r4,
through which node i is currently joining. Then we introduce another invariant
TojClosestL, which states that if node r is joined through some node r2, then
between these two nodes, there exists no further node such as i, which is currently
joining through another node r4. Hence, we can refute the existence of such a
node r4 and get the contradiction to close this case.

TojClosestL
Δ= ∀r1, r2, i, k ∈ I :

∧ i �= r1 ∧ i �= k ∧ toj[r1] = i ∧ toj[r2] = k ∧ r2 �= k
∧ RightNeighbor(lset[r1]) = i ∧ i /∈ ReadyNodes
⇒ CwDist(r1, i) ≤ CwDist(k, i)

CASE 3 : r2 = n (n refers to RightNeighbor(lset [i])). Here, we make a case
analysis on the position of ln = LeftNeighbor(lset [r]), and then close all the
cases by refuting the existence of such ln.

(i) The node ln cannot be the same node as i (ln1 in case 3 of Fig. 3),
because according to GrantNeighbor (introduced below), if node ln had granted
the node r, then r could not be closer than its right neighbor n.

GrantNeighbor
Δ= ∀k, i ∈ I : i �= k ∧ i ∈ grant[k]

⇒ CwDist(k,RightNeighbor(lset[k])) ≤ CwDist(k, i) ∧ . . .

(ii) The node ln cannot be to the left of i (ln2 in case 3 of Fig. 3). Since
the node i cannot be “ready” due to IRN, let us use invariant TojNoReady to
construct a node r3, through which node i is currently joining. It remains to
refute the existence of such a node r3. The node r3 cannot be r2, hence, node r3
must be the left neighbor of i.

Now we can do case analysis on the position of r3 as the left neighbor of i.
On the one hand, it must lie between i and ln, because if node ln is “ready”, it
cannot lie between a node i and its left neighbor r3 by NRI. But on the other
hand, node r3 cannot lie between i and ln, because r3 is “ready” and it should

Formal Verification of the Pastry Protocol 297

not lie between a node r and its left neighbor ln. Therefore, r3 can only be equal
to node ln.

To force contradiction, the further invariant GrantHistL is needed, which
takes the facts above as precondition and derives that r2 must be closer to i
than the other node r. GrantHistL states that if a not yet “ready” node i lies
between two other different nodes l and r, and node i is joined through one of
the nodes (e.g. l), whereas this node (i.e. l) has granted its lease to the other
node (i.e. r), then the direct neighbor of i must be closer to i than the other
node (i.e. r). Regarding the last case in Fig. 3, r2 is not closer to i than r. Hence
a contradiction is derived, concluding the proof of this case.

GrantHistL
Δ
= ∀l, i, r ∈ I :

toj[r] = i ∧ i �= l ∧ l ∈ grant[l] ∧ i /∈ ReadyNodes ∧ CwDist(l, i) < CwDist(l, r)
⇒ CwDist(LeftNeighbor(lset[i]), i) ≤ CwDist(l, i)

(iii) The node ln cannot exist between i and r (ln3 in case 3 of Fig. 3).
By IRN, ln cannot be “ready”, because it lies between a node i and its right
neighbor r2. Then again by TojNoReady, there exists a node r5, such that
toj[r5] = LeftNeighbor(lset[r]). The next step is to make a case analysis of the
position of r5. Because of IRN, it cannot be inside the range [i, rn(i)]. Because
of TojClosestL, r5 cannot be outside the range of (i, r). Hence, r5 cannot exist.
Hence, node ln cannot lie between i and r.

In conclusion, there is no possible position for such a node ln to exist, which
means that there exists no node to grant node r its lease to make it “ready”,
and therefore, the constructed assumption as violation of IRN is impossible,
completing the overall proof. ��

The invariants introduced in this proof are also proved using TLAPS, and
further invariants are introduced and proved. The final TLA+ proof for the
inductive invariant consists of more than 14,500 lines. Additionally, the type
correctness is also proved inductively in about 1,000 lines. These proofs with
more than 20,000 lines, corresponding to more than 10,000 proof steps, are all
automatically verified using the TLAPS proof manager, which launches different
back-end first-order theorem provers or an extension of ISABELLE to find the
proof.

4 Conclusion, Related Work and Future Work

This paper represented a formal verification of the Pastry protocol, a funda-
mental building block of P2P overlay networks. To the best of my knowledge,
this is the first formal verification of Pastry, although the application of formal
modeling and verification techniques to P2P protocols is not entirely new. For
example, Borgström et al. [2] present initial work towards the verification of a
distributed hash table in a P2P overlay network in a process calculus setting,
but only considered fixed configurations with perfect routing information. As we
have seen, the main challenge in verifying Pastry lies in the correct handling of
nodes joining the system on the fly.

298 T. Lu

Chord ([17]) is another virtual ring implementation of DHT . Being described
with a more formal specification, it is targeted by many verification approaches,
such as [14], [8], [15] and [1]. A recent approach is [18], which uses Alloy to model
Chord at a high level of abstraction where operations such as join or stabilize
are considered atomic and non-interfering. Focusing on eventual consistency, she
found a flaw in the original description of the algorithm and suggests a repair
that may be correct. However, Alloy is not supported by a theorem proving
language and tools like TLAPS to formally show an understandable proof of
invariants as shown in this paper.

Pastry is a reasonably complicated algorithm that mixes complex data struc-
tures, dynamic network protocols, and timed behavior for periodic node updates.
LuPastry abstracts from timing aspects, which are mainly important for per-
formance, but otherwise models the algorithm as faithfully as possible. Here a
“ready” node adds the joining node as soon as it receives the join request and
does not accept any new join request until it gets the confirmation that the cur-
rent joining node is “ready”. In fact, LuPastry has been modified iteratively
until the final proof of its invariants. LuPastry is verified against the property
CorrectDelivery through inductive proof of invariants, under the assumption
that no nodes leave the network. The proof serves at the same time as evidence
of correctness of the formal model with respect to the verified property Correct-
Delivery as well as a real world example demonstrating the possibility of using
TLAPS for a large scale proof consisting of more than 10,000 proof steps.

Future work will include weaker assumptions to allow some bounded depar-
ture of nodes and prove that under particular constraints, the CorrectDelivery
can still be ensured. Future work may also include formulating liveness properties
for proving availability of the system based on our validation approach; gener-
alizing the DHT model based on the static model of LuPastry; and increasing
the automation degree of the interactive theorem prover TLAPS based on the
similar patterns I have written as part of the formal proof.

Acknowledgments. I would like to thank my PhD supervisors ChristophWeidenbach
and Stephan Merz for their support on this research topic and all the thesis and paper
reviewers for their valuable comments.

References

1. Bakhshi, R., Gurov, D.: Verification of peer-to-peer algorithms: A case study.
Electr. Notes Theor. Comput. Sci. 181, 35–47 (2007)

2. Borgström, J., Nestmann, U., Onana, L., Gurov, D.: Verifying a structured peer-
to-peer overlay network: the static case. In: Priami, C., Quaglia, P. (eds.) GC 2004.
LNCS, vol. 3267, pp. 250–265. Springer, Heidelberg (2005)

3. Castro, M., Costa, M., Rowstron, A.I.T.: Performance and dependability of struc-
tured peer-to-peer overlays. In: International Conference on Dependable Systems
and Networks (DSN 2004), pp. 9–18. IEEE Computer Society, Florence (2004)

4. Haeberlen, A., Hoye, J., Mislove, A., Druschel, P.: Consistent key mapping in struc-
tured overlays. Tech. Rep. TR05-456, Rice University, Department of Computer
Science, August 2005

Formal Verification of the Pastry Protocol 299

5. Hellerstein, J.M.: Toward network data independence. ACM SIGMOD Record
32(3), 34–40 (2003)

6. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

7. Lamport, L.: TLA tools (2012). http://www.tlaplus.net/
8. Li, X., Misra, J., Plaxton, C.G.: Active and Concurrent Topology Maintenance. In:

Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 320–334. Springer, Heidelberg
(2004)

9. Lu, T.: Formal Verification of the Pastry Protocol. Ph.D. thesis, Universität des
Saarlandes, Saarbrücken (2013). urn:nbn:de:bsz:291-scidok-55878

10. Lu, T.: The TLA+ codes for the pastry model (2013). http://tiit.lu/fmPastry/
11. Lu, T., Merz, S., Weidenbach, C.: Model checking the Pastry routing protocol. In:

Bendisposto, J., Leuschel, M., Roggenbach, M. (eds.) 10th Intl. Workshop Auto-
matic Verification of Critical Systems (AVOCS), pp. 19–21. Universität Düseldorf,
Düsseldorf, Germany (2010)

12. Lu, T., Merz, S., Weidenbach, C.: Towards verification of the pastry protocol using
TLA+. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS 2011. LNCS,
vol. 6722, pp. 244–258. Springer, Heidelberg (2011)

13. Lu, T., Merz, S., Weidenbach, C.: Formal verification of the pastry protocol using
TLA+. 18th International Symposium on Formal Methods (2012)

14. Lynch, N., Stoica, I.: Multichord: A resilient namespace management protocol.
MIT CSAIL Technical Report (2004)

15. Risson, J., Robinson, K., Moors, T.: Fault tolerant active rings for structured peer-
to-peer overlays. In: The IEEE Conference on Local Computer Networks, 30th
Anniversary 2005, pp. 18–25. IEEE (2005)

16. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review 31(4), 149–160 (2001). ACM

18. Zave, P.: Using lightweight modeling to understand chord. Computer Communica-
tion Review 42(2), 49–57 (2012)

http://www.tlaplus.net/
http://scidok.sulb.uni-saarland.de/volltexte/2013/5587/
http://tiit.lu/fmPastry/

© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, pp. 300–315, 2015.
DOI: 10.1007/978-3-319-25942-0_20

Formal Modelling and Verification of IEC61499
Function Blocks with Abstract State Machines

and SMV - Execution Semantics

Sandeep Patil1(), Victor Dubinin2, and Valeriy Vyatkin1,3

1 Luleå University of Technology, Luleå, Sweden
sandeep.patil@ltu.se, vyatkin@ieee.org

2 Penza State University, Penza, Russia
victor_n_dubinin@yahoo.com

3 Aalto University, Espoo, Finland

Abstract. IEC 61499 Standard for Function Blocks Architecture is an executa-
ble component model for distributed embedded control system design that
combines block-diagrams and state machines. This paper proposes approach to
formal modelling of IEC61499 function block execution semantics for popular
model checking environment of SMV using Abstract State Machines. An op-
erational semantics of IEC 61499 application with two-stage synchronous exe-
cution model is presented using this framework. This paper first introduces the
importance of model checking function block applications in different execu-
tion semantics. It highlights the uses of formal verification, such as, verifying
portability (behavior) of component based control applications across different
implementation platforms compliant with the IEC 61499 standard. The formal
model is applied on an example IEC 61499 application. The paper compares the
verification results of this IEC 61499 application with two-stage synchronous
execution model and the same application with cyclic execution model present-
ed in the earlier work. With this comparison, we verify the portability of the
IEC61499 applications across different platforms.

Keywords: Formal semantics · Model checking · Formal verification · Abstract
state machines · IEC 61499 · Two-stage synchronous execution model

1 Introduction*

The IEC 61499 [1, 2] is an international standard that introduces an open reference
architecture for distributed control systems, which is an important class of embedded
systems with a strong legacy background. The standard is often nicknamed the func-
tion block architecture after its main design artifact that is an event driven (and event
activated) function block. If one would abstract out unnecessary details, the standard
introduces quite an elegant model of distributed application that is a network of func-
tion blocks connected via control and data flows. The control flow is modelled using
the concept of event that is emitted from an output of one function block and can be
received at one or several inputs of other function blocks.

An erratum to this chapter is available at DOI: 10.1007/978-3-319-25942-0_22

 Formal Modelling and Verification of IEC61499 Function Blocks 301

Over the past decade, the applicability of the IEC 61499 standard in distributed
control systems has been extensively studied in many projects, such as airport bag-
gage handling systems, manufacturing control, mechatronics, building automation
systems, machining, process control, and smart grid. These case studies [1] have con-
firmed many advantages of IEC 61499 over the mainstream PLC technology based on
the IEC 61131-3 standard in terms of design and re-design efficiency, and better in-
teroperability and reusability. However, these studies also revealed many pitfalls of
the first edition, which are primarily due to the non-exhaustive definition of FB’s
execution semantics. This, on one hand, gives software vendors sufficient freedom to
adapt the IEC 61499 standard into their existing tool frameworks, such as ISaGRAF
Workbench. However, on the other hand, different IEC 61499 implementations may
not be compatible with one another. Such incompatibility directly results in portabil-
ity and interoperability issues that are against the standard’s original intention. The
portability of a function block application A between platforms that comply with exe-
cution semantics s1 and s2 can be defined as equivalence of the behavior
B(A,s1)=B(A,s2). However, brute force check of the equivalence can have prohibitive
complexity. Instead, one can apply model-checking of A’s model under semantic s,
M(A,s), against the comprehensive set of requirements R (functional and non-
functional, including safety and liveness). Denoting the set of model-checking results
as C(M(A,s),R), we define the application A to be portable between semantics s1 and
s2 if the model-checking gives equivalent results, i.e.:

 (, s , s) ≜ ((, s),) = ((, s),)

In [3] we introduce a way of modeling function blocks that simplify parameteriza-
tion of the execution semantics, i.e. generation of model M(A,s) for cyclic semantics
s. In this paper we present synchronous semantics case. The modeling is based on the
Abstract State Machines (ASM), and SMV is assumed as a tool implementing model-
checking C(M(A,s),R). The main modelling approach used in this paper is fully
described in [4], the rest of the material presented in this paper is based on the model-
ling techniques described in [4]. In summary the main contributions of this paper are:
(1) An approach to define operational semantics of IEC 61499 function block applica-
tion on the basis of ASM; (2) ASM-based operational semantics of IEC 61499 appli-
cation using two-stage synchronous execution model; (3) Mapping Distributed ASM
– FB model (DASM-FB) to SMV; (4) Comparing the execution of an IEC 61499
application using two different execution semantics by means of model checking for
portability issues.

2 Related Facts

2.1 Function Blocks

In IEC 61499, the basic design construct is called function block (FB). Each FB con-
sists of a graphical event-data interface and a set of executable functional specifica-
tions (algorithms), represented as a state machine (in basic FB), or as a network of
other FB instances (composite FB), or as a set of services (service interface FB). FBs

302 S. Patil et al.

can be interconnected into
entire control application. E
the events it receives. This
local data and control algori

There are several approa
[5]. In this paper, for the sa
tion blocks and systems bu
Fig. 1. (a): is designed to p
depending on its input even
interface (left hand side) an
Chart, or ECC, on the right
ECC states), definition of th
n initialized to the value 13

ALG1: n:=13; res:=n-10;

Fig. 1. (a): The basic FB ALU
(b): FB system of two ALUs d

A function block applica
As an example, let us consid
interacting with each other (
sively cover all FB artifacts
sists of two instances of the
loop (outputs of one BFB
firing of the initt input of al
tion enters an infinite sequ
operations - addition and su
that the variables do not ch
one subtracts it, as a result,
tion block (CFB) is defined
instances similar to the appl
systems differ in the discipl
and data passing between th
in an application is invoked
place in the order of invocat

In contrast to the cyclic
chronous execution model

a network using event and data connections to specify
Execution of an individual FB in the network is triggered

well-defined event-data interface and the encapsulation
ithms make each FB a reusable functional unit of software
aches to defining formal models of function blocks like
ake of brevity we present only informal examples of fu
uilt thereof. For example, the basic FB (BFB) ALU
perform arithmetic operations of addition and subtracti
nts. As seen from Fig. 1. (a): a basic FB is defined by sig
nd also its internal state machine (called Execution Con
t hand side). The BFB has three algorithms (executed in
hese is beneath the diagram. It also has an internal varia
.

(a) (b)

ALG2: res:=d1 + d2 + n; ALG3: res:=d1 - d2 – n;

U: interface (left), ECC diagram (right), algorithms (bottom ro
designed in the ISaGRAF development environment

ation is a network of FBs connected by event and data lin
der an application that consists of two ALU function blo
(Fig. 1. (b)). This example, of course, does not compreh
s and is used for illustrative purposes. The application c
arithmetic-logic unit (ALU) BFB type connected in clos
are connected to the inputs of other BFB). Following

lu1 (Fig. 1. (b)) (emitted by hardware interface), the appl
uence of computations consisting of alternating arithm
ubtraction. Moreover, the input parameters are chosen s
hange, i.e. when one FB adds a certain number, the sec
 the state space of the system is limited. A composite fu
by a signal interface and internal network of function bl

lication in Fig. 1. (b). The existing execution models of
lines of FB execution scheduling, and the methods of eve
he FBs. For example, in the cyclic execution model, each
d once between the update of environment variables, and
tions is predefined.

execution models, which is sequential in the nature, s
l is a parallel one. Execution of FBs in the synchron

the
d by
n of
e.
e in
unc-
U in
ion,
gnal
ntrol
n the
able

ow).

nks.
ocks
hen-
con-
sed-
the

ica-
metic
such
ond
unc-
lock
f FB
ents

h FB
d its

syn-
nous

 Formal Modelling and Verification of IEC61499 Function Blocks 303

model is performed in the abstract moments of the discrete time ..., t - 1, t, t + 1, ... At
one tick all enabled FBs are executed. In order to avoid the dependency of the result
on a FB execution order inside the front of connected FBs, a two-stage scheme with
intermediate buffering of output signals has been proposed. At the first stage, all FBs
from the front of enabled FBs are executed, but the transfer of output signals to FB-
consumers is postponed. At the second stage, delayed signals “come alive” and deliv-
ered to the target FBs.

2.2 Abstract State Machines

The Abstract State Machine (ASM) paradigm was introduced by Yuri Gurevich in
1988 [6] with basic definitions presented in [7] by the same author. The ASM meth-
odologies are practical in modeling and analyzing different sizes of systems and have
been applied in different research areas such as programing languages [8], hardware
and software architectures [9], algorithm verification and network protocols [10].
ASMs have also been successfully used in representing semantics of programming
languages such as Prolog, C, C#, and Java. In this research we use ASM (in the form
of function change rules) to mathematically represent the rules used for modelling
function blocks execution semantics in SMV.

2.3 Formal Modeling of IEC 61499 and Cross-Platform Portability

Formal verification is an act of proving or disproving an algorithm with respect to
some specification or property. Model-checking is one such formal verification ap-
proach introduced in early 1980s by Clarke and Emerson [11, 12]. Formal modeling
of IEC 61499 has more than a decade long history [13, 14]. There are two basic
approaches to formal modeling of FB systems using: 1) a direct representation of FB
in a language supported by a model-checking tool and 2) modeling of FB using an
intermediate formal model and its subsequent translation to a language supported by a
tool. The main disadvantage of the works in the first direction, such as [15, 16], is the
lack of a systematic approach to constructing models of FB. In particular, there is no
comprehensive pass-through formalization of FB models. Methods of constructing
them do not reflect the system hierarchy, composite FB, algorithms and execution of
FB models.

The most widely reported in the literature are the works representing the second
approach. In works [17] a method using net condition/event systems (NCES) as the
intermediate representation was proposed and [18, 19] presents a method of modeling
NCES in SMV. The main drawbacks of the majority of these works are limitations of
model-checkers, insufficient performance or limited support of arithmetic operations.
From that perspective, the SMV approach promises some breakthroughs. It should
also be noted that the SMV system has been used quite successfully in the industry,
e.g. in the verification of the Function Blocks of the IEC 61131-3 standard [20]. Some
of the authors of this paper have addressed the portability of FB applications by suggest-
ing semantic-robust design patterns [21] and analyzing the consequences of semantic
differences for portability [22]. However, the approach proposed in this paper has the
potential for becoming the backend of portability certification based on formal methods.

304 S. Patil et al.

3 Functional Structure of Operational Model

When defining the FB semantics, two constituent parts should be taken into account:

1) The proper functioning of FB described informally in IEC 61499 standard and
2) functioning of a system which schedules the FB execution on a resource to provide
a desired execution model.

Before the development of FB execution semantics, we should evaluate possible var-
iants of functional structural organization of FB formal model as a whole in order to:

1) Identify invariant and changeable parts in order to facilitate the description of a
set of FB semantics for different execution models by reusing invariant descriptions;

2) Use the functional structural organization by the implementation of runtime tools.

It should be noted that one can build several variants of functional structural organ-
ization of FB semantic models. One of the most convenient cases is based on the hier-
archically connected dispatchers (Fig. 2. (a)). In this figure fb0, fb1, fb11, fb12 are
operational models of composite FB or sub-applications; fb2 is an operational model
of basic FB; d0. d1, d11, and d12 are operational models of dispatchers (Note: Syno-
nym “scheduler” could be used as well). Model fb0 can also represent the whole ap-
plication. Wide arcs represent event and data flow between adjacent levels of FB, and
dashed lines stand for the information used in the execution control of FB.

(a) (b) (c)

Fig. 2. (a) Functional structural organization of FB semantic model using hierarchically con-
nected dispatchers. Structures of composite FB operational models for cyclic (b) and two-stage
synchronous (c) execution models. Here bfb1, … , bfbn are basic FB models; cfb1, … , cfbm are
composite FB models; disp is a dispatcher model.

In the two-stage synchronous execution model the first phase performs the sampling
of data from the external environment and the execution of component FBs. The second
phase carries out the transfer of signals and data between component FBs and issuing of
signals and data to the external environment. The sequence of actions in accordance
with the two-stage synchronous execution model is as follows (Fig. 2. (c)):

Phase 1 (on start signal): 1) the transfer of signals from inputs of the composite FB
module to input variables of component FBs; 2) start of the first execution phase in all
component FBs; 3) waiting for completion of the first execution phase in all compo-
nent FBs; 4) generating finish signal .

 Formal Modelling and Verification of IEC61499 Function Blocks 305

Phase 2 (on start signal): 5) start of the second execution phase in all component
composite FBs; 6) waiting for completion of the second execution phase in all
component composite FBs; 7) the transfer of signals between component FBs and
transmission signals from outputs of component FBs to outputs of the composite FB
module; 8) generating finish signal . In the model proposed above, the order of
inter-level transmissions in each composite FB can be varied by changing the execu-
tion order of the actions at the FB module level. In order to ensure a “correct” signal
transmission from the upper level FBs to the lower level FBs and vice-versa, in each
module the signal transfer from inputs of composite FB module should be performed
first while issuing signals to outputs of composite FB module should be performed at
finish of composite FB module execution.

4 Modular formalism for FB operational semantics –
Synchronous Execution

In the previous work we have proposed a modification of ASM for modeling FBs
system called Distributed ASM – FB model (DASM-FB) [3]. For representation of
the formal model of FB systems based on DASM-FB we choose the approach based
on SMV modules. In this case, the semantic gap between DASM-FB and SMV model
is minimal. Each module of DASM-FB (formal module) can be mapped to SMV
module. Both DASM-FB modules and SMV modules work against each other asyn-
chronously, while the rules for changing the functions of DASM-FB module and
next-operators of SMV module run synchronously. SMV module declaration has the
following syntax:

MODULE <module name> (<list of formal parameters>)

Table 1. below summarizes mapping of DASM-FB to SMV.

Table 1. The correspondence between elements of the formal module and SMV module

DASM-FB SMV Model
(Formal) module SMV module

A simple rule for changing the function of varia-
ble’s values (in the form of one production rule)

next statement with the assignment operator

A rule set for changing the function of variable’s
values

next statement with case operator

Actual variable Own variable of SMV module
Variable-representative Formal parameter of SMV module

Component FB Variables representing an instance of module of
the specified type with process (asynchronous)

descriptor

306 S. Patil et al.

Each rule (or set of rules) of the formal module related to changing a variable of a
type (for example, event input variables, OSM state, output variables, etc.) can be
mapped to SMV statement next (with the case statement on the right hand side of
assignment operator “=”) because of meta-model nature of DASM-FB. All SMV
variables in the next statements belong to the same type, like the type of the prototyp-
ing variable. The syntax of the next statement is as follows:

next (<name of variable>): = case
<condition 1 of changing of variable>: <expression 1 for new value>;
...
<condition N of changing of variable> <expression N for new value>;
esac;

If at certain conditions it is necessary to preserve the value of a variable, then the
following construction should be used in the case statement.

<condition of conservation of variable>: <name of variable>;

Example: 1: < name of variable>;
Each component FB of the formal model maps to a description (a call) of the corre-
sponding SMV module in the parent SMV module:

VAR <name of FB module instance>: process <name of FB module type>
(<parameters of FB module instance>);

Note that in this case the keyword process defines the execution of the FB module
instance as an asynchronous process.

4.1 Definition of Scheme for the Model

In the rest of this paper, we will formally define two state synchronous execution
model. A composite function block module (CFBM) for two stage synchronous exe-
cution model is defined as follows: = (,),
where is the syntactic part of the definition (same as the cyclic pattern pre-
sented in [3]) and = (, ,) is the semantic part where the tuple com-
ponents have the same meaning as the cyclic execution model but different definition
as explained below.

Run-time variables are defined as the following tuple: = (, , , , , , ,),
Where,

= { , , … , }
is a set of external buffers linked to the input
variables, | | = | |, ↔ , () =(set of integers);= { , , … , } is a set of external buffers linked to the output
variables, | | = | |, ↔ , () = ;

 Formal Modelling and Verification of IEC61499 Function Blocks 307

= { , , … , }
is a set of additional (semantic) descriptions of com-
ponent FBs, which are included in the composite FB;

Note: The given set is divided into two subsets: is a set of descriptions of
basic component FBs; is a set of descriptions of composite component FBs. = and = ∅.
If ∈ , = (,) where and are the start and end signals
for BFBM. If ∈ , = (, , ,) where () is a variable of
the start of the first (second) phase of execution of ith composite component FB; () is a variable of the termination of the first (second) phase of execution of ith
composite component FB; () is a variable of the start of the first (second) phase of execution of the mod-

ule. () = () = { , }; () is a variable of the termination of the first (second) phase of execution of
the module. () = () = { , };

 is a condition of the termination of signal transfers in composite FB.

The tuple of transition functions is given below: = , , , , , , , .
It is similar to cyclic execution model, but functions are modified. The function for

modification of output event variables , is as below: : [] × × × → []

This function sets output event variables of the module as a result of execution of
the second phase.

The function of the reset of output event variables of ith component FB is modified
by taking into account the conditions of the end of the second phase of FB execution: : × × →

The rest remain the same as in cyclic execution model [3].

4.2 Definition of Dynamics of the Model

The rules below are considered for change of functions from tuple (when using a
scheduler of an intermediate level).
Rule Set 1: Rules for changing the function of values of event input variables of jth
component FB:

a) For a case when inside the composite FB, there is at least one composite com-
ponent FB: { , , [,]: () ∧ () ∨ ()∈ ,, ∈ ∧
 () ∈ ,, ∈ ⇒ ← | ∈ , = 1, };

308 S. Patil et al.

According to this rule set, an event input variable of a component FB is set to
“true” if at least one event input or output variable connected to this event variable is
set to “true” as well as there is the start signal for the composite FB.

b) For a case when inside the composite FB only basic component FBs exist: { , , [,]: () ∧ () ∨ ()∈ ,, ∈ ∧
 () ∈ ,, ∈ ⇒ ← | ∈ , = 1, }.

Rule Set 2: Rules for changing the function of values of event output variables are
built on the basis of rule , , [3] by adding in it a check of variables and since signal transfer to the output is made only at the end of the second phase in all
component FBs:

a) For a case when in the composite FB there is at least one composite component
FB: { , , []: () ∨ ∈ ,(,)∈ () ∈ ,(,)∈ ∧ () ⇒ () ← | ∈ };

b) For a case when in the composite FB only basic component FBs exist: { , , []: () ∨ ∈ ,(,)∈ () ∧∈ ,(,)∈ () ⇒ () ← | ∈ }.

Since, in our case, the synchronous data sampling is used, all input signals are
dropped at the reception of the start signal . For these purposes, rule , , defined
for the cyclic model could be used [3].

Rule Set 3: The reset of output event variables of component FBs is made at the end
of the second phase:

a) For a case when in the composite FB there is at least one composite component
FB: { , , [,]: ∧ () ⇒ ← | ∈ , = 1, };

b) For a case when in the composite FB only basic component FBs exist: { , , [,]: ∧ () ⇒ ← | ∈ , = 1, }

Rule Set 4: The issue of output data is defined by the following rules:
a) For a case when in the composite FB there is at least one composite component

FB:

 Formal Modelling and Verification of IEC61499 Function Blocks 309

{ , , []: () ∧ (∨∈ ,, ∈(,)∈ () ∈ ,(,)∈) ⇒ () ← (()) | };

b) For a case when in the composite FB only basic component FBs exist: { , , []: () ∧ (∨ ∈ ,, ∈ () ∈ ,(,)∈) ⇒(,)∈ () ← (()) | }.

Here, the representative of a variable from set VO defined by function is
used as an argument of function ZVO. The purpose of this substitution is to minimize
the number of variables without loss of accuracy.

4.3 Model of the Dispatcher for Synchronous Execution Model

In order to demonstrate various schemes of construction of systems of co-operating
FB modules and dispatchers, we will consider a case of implementation of a scheduler
for two stage synchronous FB execution model in the form of an asynchronous mod-
ule. It should be noted that the main principles of construction of “synchronous” and
“asynchronous” schedulers remain the same. However, in the latter case, it is neces-
sary to watch explicitly, the appearances of some events, for example, the termination
of all signals and data transfers in the parent FB.

A dispatcher for the synchronous execution model is defined as tuple: = (, , ,0),

where VСD is s set of dispatcher variables; TS
D is a set of dispatcher transitions func-

tions; ,0 is a set of functions of initial values of the variables.
A set of variables of an intermediate level scheduler for the synchronous execution

model is defined by the following tuple: = , , , , () , , () , , () , , () , , ,

where and are variables of the start of the first and the second phases of execu-
tion of the subsystem accordingly (Note: the term “subsystem” means “subsystem of
FBs”. In other words, it represents a composite FB or a sub-application). and
are variables of the termination of the first and the second phases of execution of the
subsystem accordingly. () , , () , are sets of variables of the start of
the first and the second phases of execution of component FBs accordingly. () , , () , are sets of variables of the end of the first and the second
phase of execution of component FBs accordingly. is a flag of the end of transfers
in the parent composite FB. Here is the number of component FBs in a subsys-
tem, is the number of component composite FBs in a subsystem. For simplicity,

310 S. Patil et al.

we assume that at the enumeration of component FBs in a subsystem, composite
component FBs are referred first, and basic component FBs follow second.

Rules of functioning of an intermediate level dispatcher are given below.

Rule Set 5: Rules for resetting variable and setting variable accordingly are
as follows: , , : () ⇒ () ← , , : () ⇒ () ←

According to the given rules, resetting and setting are performed when all
component FBs included in the subsystem, have completed their execution of the first
phase.

Rule Set 6: Rules for resetting variable and setting variable are distinguished
for the next cases:

a) The subsystem contains one or more composite component FBs: , , : () ⇒ () ← , , : () ∧ () ⇒ () ←
b) The subsystem contains only basic component FBs: , , : () ∧ () ⇒ () ← , , : () ∧ () ⇒ () ←

Rule Set 7:
a) A rule for setting variables () , is represented below: , , : () ∧ () ⇒ () ←
According to the given rules, the first phase of execution of ith component FB is

started (in the next clock tick) at the presence of signal of the start of the subsys-
tem as a whole. At that, all signals transfers in the composite FB (from event inputs of
this block) should be completed. As it can be seen, all component FBs are started
simultaneously. The start of the component FBs will occur correctly under the follow-
ing conditions: at the presence of ready signals and the data on the inputs. Note that
launch of the component FBs is behind by one tick, relative to actions for data sam-
pling and signals transfer from event inputs of the parent composite FB to the inputs
of the inner component FBs.

b) A rule for resetting variables() , is represented below , , : () ⇒ () ←
As it can be seen, variables are dropped simultaneously with setting variable .
c) A rule for setting variables () , for the launch of the second phase of

execution of component FBs is represented below: , , : () ⇒ () ←
The given rule is structurally similar to rule , , , but waiting for the end of signal

transfers (from inputs) is not required.

 Formal Modelling and Verification of IEC61499 Function Blocks 311

d) A rule for resetting variables () , of the termination of the second
phase of execution of component FBs is represented below: , , : () ∧ () ⇒ () ←

The given rule is structurally similar to rule , , , but in this case waiting for the
end of signal transfers to outputs is required. It should be emphasized, the second
phase is defined only for component composite FBs. If there are no composite com-
ponent FBs in the subsystem, then FB execution of the second phase is reduced only
to transfer of signals inside the subsystem.

The difference of a main dispatcher (in other words, a top-level one, denoted as
D`) from an intermediate level scheduler is that it is completely independent of other
dispatchers and there are no external control signals for handling of FB execution
phases. The main dispatcher is defined for FB network of the uppermost level; as a
rule, it is an FB network located on a resource.

Completeness of the above rule sets is confirmed by the correct use of the formal
notation, a software implementation of FB model in accordance with proposed se-
mantic description [23] and application of these FB models in some R&D projects.

5 Model of the Dispatcher in SMV

For the example shown in Fig. 1. (b), the dispatcher in SMV is given below. To save
space it is depicted in a tabular form.

MODULE schedulerSynch(alpha1,alpha2,beta1,beta2,omega)

ASSIGN

next(alpha1):= case

 (omega & beta1 & beta2): 1;

 1: alpha1;

esac;

next(alpha2):= case

 (omega & beta1 & beta2): 1;

 1: alpha2;

esac;

next(beta1):= case

 (omega & beta1 & beta2): 0;

 1: beta1;

esac;

next(beta2):= case

 (omega & beta1 & beta2): 0;

 1: beta2;

esac;

6 Verification Results

This section presents results of the model checking as applied to the composite block
in Fig. 1. (b). For the benefit of comparison, we show the results for both the cyclic
execution model [3] and synchronous execution model presented in this paper. Result
(A) column shows the cyclic execution model and Result (B) shows the synchronous
execution model.

312 S. Patil et al.

Table 2. CTL Properties and verification results

CTL Result(A) Result(B) CTL Result(B) Result(A)

SPEC EF beta1 true true SPEC EF
(alu1.n=13) true true

SPEC EF
alpha1 true true SPEC EF

(alu1.d2=5) true true

SPEC EF
!initt1 true true SPEC EF

(alu1.res=3) true true

SPEC EF inito1 true true SPEC EF
(alu1.res=8) false false

SPEC EF cnf1 true true SPEC EF
(alu1.res=18) true true

SPEC EF
(alu1.S=s0) true true SPEC EF

(alu1.res>18) false false

SPEC EF
(alu1.S=s1) true true SPEC EF

(alu2.res>0) true true

SPEC EF
(alu1.S=s2) true true SPEC EF

(res1Buf=3) false false

SPEC EF
(alu1.Q=q0) true true SPEC EF

(res1Buf=18) true true

SPEC EF
(alu1.Q=q1) true true SPEC EF

(res1Buf>0) true true

SPEC EF
(alu1.Q=q2) true true SPEC AG(EF sub2) true true

SPEC EF
(alu1.Q=q3) false false SPEC AG(EF

(alu1.Q=q2)) true true

SPEC EF
(alu2.Q=q0) true true SPEC AG (EF

alpha1) true true

SPEC EF
(alu2.Q=q1) true true SPEC AG (EF

alpha2) true true

SPEC EF
(alu2.Q=q2) false false SPEC AG (alpha1 -

> AF alpha2) true true

SPEC EF
(alu2.Q=q3) true true SPEC AG (alpha2 -

> AF alpha1) true true

SPEC EF ((alu1.NI=2) &
(alu1.NA=1)) true true

We can conclude that verification results for both cyclic and synchronous execu-
tion models for the given set of properties are same. Table 3. below shows the sec-
ondary results related to a better understanding of the synchronous execution model.
The results are false, but that is what we want.

Table 3. Specific results for synchronous execution model

CTL
 Result

SPEC AG (EF alu1.AbsentsEnabledECTran & alu2.AbsentsEnabledECTran) false
SPEC EF (AG alu1.AbsentsEnabledECTran & alu2.AbsentsEnabledECTran) false
SPEC EF (AG alu1.S=s0 & alu2.S=s0) false
SPEC EF (alu1.S=s1 & alu2.S=s1) false
SPEC EF (alu1.S=s1 & alu2.S=s2) false
SPEC EF (alu1.S=s2 & alu2.S=s1) false

 Formal Modelling and Verification of IEC61499 Function Blocks 313

Property AG(EF sub2) = true says that the signal on input sub2 cannot be lost for-
ever and FB alu2 will be invoked at some point. Property AG(EF (alu1.Q=q2)) =
true says FB alu1 can reach state q2 (adding) always. It means FB alu1 will be trig-
gered sometime in the future. Properties EF(AG alu1.AbsentsEnabledECTran &
alu2.AbsentsEnabledECTran) = false and EF(AG alu1.S=s0 & alu2.S=s0) = false
indicate that FB system is live and there is no deadlock. Properties EF (alu1.S=s1 &
alu2.S=s1) = false and EF (alu1.S=s1 & alu2.S=s2) = false and EF (alu1.S=s2 &
alu2.S=s1) = false indicate that FB’s alu1 and alu2 cannot work simultaneously
while the synchronous execution model assumes usually the simultaneous execution
of FBs. It is due to specificity of the FB system functioning. Here, the two instances
of the FB system work alternatively (addition-subtraction-addition-etc.). However the
FBs start simultaneously. The simple example such as the one presented in this paper
took a maximum of 90 seconds (verify 43 CTL properties) to complete model check-
ing. But as is the case with model checking, with increase in complexity, there is an
increase in verification time and state space. Addressing state space explosion prob-
lem and verification is not in the scope of this paper and hence would like the reader
to refer to [24] that presents some techniques to address these issues specifically
targeting the methodology presented in this paper.

7 Conclusion and Future Work

In this paper, we presented a formal model for one of the execution semantics of IEC
61499 Function Blocks based on a “customized” distributed ASM, which is well suit-
ed for verification and simulation purposes, using SMV. One can note the following
features of our formal notation: 1) the use of state variables and functions of their
values in determining the system state; 2) an asynchronous and distributed nature,
where one SMV module models one FB module; 3) the presence of shared variables
for modules, 4) determinacy of modules; 5) the use of explicit production rules when
presenting the ASM programs; 6) a special restriction on the execution of the distrib-
uted ASM. This paper explained one of the execution semantics (synchronous). The
test results were compared with the those from cyclic execution [3] and we showed
that the example system works well in two different environments (tools). In follow
up works other semantics (asynchronous and sequential) and their comparison will be
covered. This paper presented a simple example, however a more advanced example
is presented in [25] that verifies a smart grid system presented in [26].

Acknowledgments. This work was partially supported by the program “Fundamental research
and exploratory research involving young researchers” (2015-2017) of the Russian Science
Foundation (project number 15-11-10010), and by Luleå Tekniska Universitet, grants 381119,
381940, 381121 and Wallenberg Foundation “Jubileumsanslaget” - Travel grants.

314 S. Patil et al.

References

1. Vyatkin, V.: IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-
the-Art Review. IEEE Transactions on Industrial Informatics 7, 768–781 (2011)

2. Function blocks — Part 1: Architecture, IEC Standard 61499-1, Second ed. (2012)
3. Patil, S., Dubinin, V., Pang, C.,Vyatkin, V.: Neutralizing semantic ambiguities of function

block architecture by modeling with ASM. In: 9th International Andrei Ershov Memorial
Conference, PSI 2014 PeterhofSt. Petersburg, Russia (2014)

4. Patil, S.,Dubinin, V.,yatkin, VV.: Formal verification of IEC61499 function blocks with
abstract state machines and smv – modelling. In: The 13th IEEE International Symposium
on Parallel and Distributed Processing with Applications (IEEE ISPA-15) Helsinki,
Finland (2015)

5. Dubinin, V., Vyatkin, V.: On definition of a formal model for IEC 61499 function blocks.
EURASIP Journal on Embedded Systems 2008, 1–10 (2008)

6. Gurevich, Y.: Logic and the Challenge of Computer Science. Current Trends in Theoreti-
cal Computer Science, pp. 1–57 (1988)

7. Gurevich, Y.: Evolving algebras 1993: lipari guide. In: Egon, B. (ed.) Specification and
validation methods, pp. 9–36. Oxford University Press, Inc. (1995)

8. Börger, E., Fruja, N.G., Gervasi, V., Stärk, R.F.: A high-level modular definition of the
semantics of C#. Theoretical Computer Science 336, 235–284 (2005)

9. Börger, E., Glässer, U., Muller, W.: A formal definition of an abstract VHDL1993 simu-
lator by EA-machines. In: Kloos, C., Breuer, P. (eds.) Formal Semantics for VHDL,
pp. 107–139. Springer, US (1995)

10. Glässer, U., Gurevich, Y., Veanes, M.: High-Level Executable Specification of the Uni-
versal Plug and Play Architecture, presented at the HICSS (2002)

11. Emerson, E.A., Clarke, E.: Characterizing correctness properties of parallel programs us-
ing fixpoints. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85.
Springer, Heidelberg (1980)

12. Clarke, E.M., Emerson, E.A.: Design and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logic, presented at the Logic of Programs, Workshop (1982)

13. Hanisch, H.-M., Hirsch, M., Missal, D., Preuße, S., Gerber, C.: One decade of IEC 61499
modeling and verification-results and open issues. In: 13th IFAC Symposium on Infor-
mation Control Problems in Manufacturing. V.A. Trapeznikov Institute of Control Sci-
ences, Russia (2009)

14. Vyatkin, V., Hanisch, H.M.: Formal modeling and verification in the software engineer-
ing framework of IEC 61499: a way to self-verifying systems. In: 2001 Proceedings of
8th IEEE International Conference on Emerging Technologies and Factory Automation,
vol. 2, pp. 113–118 (2001)

15. Bonfe, M., Fantuzzi, C.: Design and verification of mechatronic object-oriented models
for industrial control systems. In: ETFA ‘03, IEEE Conference on Emerging Technolo-
gies and Factory Automation, vol. 2, pp. 253–260 (2003)

16. Dimitrova, D., Frey, G., Bachkova, I.: Formal approach for modeling and verification of
IEC 61499 function blocks. In: Advanced Manufacturing Technologies (AMTECH 2005),
Russe, Bulgaria, pp. 731–736 (2005)

17. Patil, S., Bhadra, S., Vyatkin, V.: Closed-loop formal verification framework with non-
determinism, configurable by meta-modelling. In: IECON 2011 - 37th Annual Confer-
ence on IEEE Industrial Electronics Society, pp. 3770–3775 (2011)

 Formal Modelling and Verification of IEC61499 Function Blocks 315

18. Vyatkin, V., Hanisch, H.M.: A modeling approach for verification of IEC1499 function
blocks using net condition/event systems. In: 1999 Proceedings of 7th IEEE International
Conference on Emerging Technologies and Factory Automation. ETFA ‘99, vol. 1,
pp. 261–270 (1999)

19. Dubinin, V., Hanisch, H.M., Vyatkin, V., Shestakov, S.: Analysis of extended net condi-
tion/event systems on the basis of model checking. presented at the Proc. Int. Conf. New
Information Technologies and Systems (Originally published in Russian), Penza (2010)

20. Junbeom, Y., Sungdeok, C., Eunkyung, J.: A verification framework for FBD based soft-
ware in nuclear power plants. In: Software Engineering Conference, 2008. APSEC ‘08.
15th Asia-Pacific, pp. 385–392 (2008)

21. Dubinin, V.N., Vyatkin, V.: Semantics-Robust Design Patterns for IEC 61499. IEEE
Transactions on Industrial Informatics 8, 279–290 (2012)

22. Patil, S., Yan, J., Vyatkin, V., Pang, C.: On composition of mechatronic components ena-
bled by interoperability and portability provisions of IEC 61499: A case study. In: 2013
IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA),
pp. 1–4 (2013)

23. Drozdov, D.: FB2SMV: IEC 61499 Function blocks XML code to SMV converter (2015).
https://github.com/dmitrydrozdov/fb2smv

24. Patil, S., Drozdov, D., Dubinin, V., Vyatkin, V.: Cloud-Based Framework for Practical
Model-Checking of Industrial Automation Applications. In: Camarinha-Matos, L.M.,
Baldissera, T.A., Di Orio, G., Marques, F. (eds.) DoCEIS 2015. IFIP AICT, vol. 450,
pp. 73–81. Springer, Heidelberg (2015)

25. Patil, S., Zahabelova, G., Vyatkin, V., McMillin, B.: Towards formal verification of smart
grid distributed intelligence: FREEDM case. In: Industrial Electronics Society, IECON
2015 - 41st Annual Conference of the IEEE, Yokohama, Japan (2015)

26. Patil, S., Vyatkin, V., McMillin, B.: Implementation of FREEDM smart grid distributed
load balancing using IEC 61499 function blocks. In: Industrial Electronics Society,
IECON 2013 - 39th Annual Conference of the IEEE, pp. 8154–8159 (2013)

Erratum to: Pareto Optimal Scheduling of
Synchronous Data Flow Graphs via Parallel

Methods

Yu-Lei Gu1,2(B), Xue-Yang Zhu2, and Guangquan Zhang1

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{guyl,zxy}@ios.ac.cn
2 School of Computer Science and Technology, Soochow University, Suzhou, China

gqzhang@suda.edu.cn

Erratum to:
Chapter 14 in: X. Li et al. (Eds.)
Dependable Software Engineering

DOI: 10.1007/978-3-319-25942-0 14

In the original version, the affiliations of the second and third author are
incorrect.
Instead of Xue-Yang Zhu2 and Guangquan Zhang1 it should be read as
Xue-Yang Zhu1 and Guangquan Zhang2.

The online version of the original chapter can be found under
DOI: 10.1007/978-3-319-25942-0 14

c© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, p. E1, 2015.
DOI: 10.1007/978-3-319-25942-0 21

© Springer International Publishing Switzerland 2015
X. Li et al. (Eds.): SETTA 2015, LNCS 9409, p. E2, 2015.
DOI: 10.1007/978-3-319-25942-0_22

Erratum to: Formal Modelling and Verification of
IEC61499 Function Blocks with Abstract State Machines

and SMV - Execution Semantics

Sandeep Patil1(), Victor Dubinin2, and Victor Vyatkin1,3

1 Luleå University of Technology, Luleå, Sweden
sandeep.patil@ltu.se, vyatkin@ieee.org

2 Penza State University, Penza, Russia
victor_n_dubinin@yahoo.com

3 Aalto University, Espoo, Finland

Erratum to:
Chapter 20 in:* X. Li et al. (Eds.)
Dependable Software Engineering
DOI: 10.1007/978-3-319-25942-0_20

In the original version, the name of the last author is incorrect. Instead of
“Victor Vyatkin” it should be read as “Valeriy Vyatkin”.

The online version of the original chapter can be found under
DOI: 10.1007/978-3-319-25942-0_20

Author Index

Aїt-Ameur, Yamine 55
Artho, Cyrille 120

Babin, Guillaume 55
Becker, Bernd 19
Bliudze, Simon 277
Bochmann, Gregor v. 71
Braitling, Bettina 19

Clarke, Dave 168

Dubinin, Victor 300

Faitelson, David 185
Fioriti, Luis María Ferrer 19

Ghezzi, Carlo 135
Gu, Yu-Lei 217
Guck, Dennis 3
Guelev, Dimitar P. 153

Hagiya, Masami 120
Hahn, Ernst Moritz 35
Hatefi, Hassan 19
He, Fei 135
Hermanns, Holger 19
Hilscher, Martin 71

Iliasov, Alexei 201

Jansen, David N. 35
Joloboff, Vania 105
Junges, Sebastian 3
Jun-xian, Zhang 227

Katoen, Joost-Pieter 3

Laibinis, Linas 201
Larmuseau, Adriaan 168
Li, Yong 35
Linker, Sven 71
Lu, Tianxiang 284
Luo, Chen 135

Monin, Jean-François 105
Moszkowski, Ben 153

Nakajima, Shin 55
Neele, Thomas 35

Olderog, Ernst-Rüdiger 71

Pantel, Marc 55
Patil, Sandeep 300
Patrignani, Marco 168
Peng, Yu 87
Prokhorova, Yuliya 201

Qiang, Wang 277

Rensink, Arend 3
Romanovsky, Alexander 201

Sebih, Nazim 120
Shi, Xiaomu 105
Stoelinga, Mariëlle 3, 35

Tanabe, Yoshinori 120
Troubitsyna, Elena 201
Turrini, Andrea 35
Tyszberowicz, Shmuel 185

van Dijk, Tom 35
Vyatkin, Valeriy 300

Wang, Hanfei 258
Wang, Shuling 87
Wasser, Nathan 243
Weitl, Franz 120
Wimmer, Ralf 19

Xian-chen, Zheng 227
Xiaoguang, Mao 277

Yamagata, Yoriyuki 120
Yamamoto, Mitsuharu 120
Yan, Lei 277

Zhai, Juan 258
Zhan, Naijun 87
Zhang, Guangquan 217
Zhang, Lijun 35, 87
Zhao, Jianhua 258
Zhou-jun, Li 227
Zhu, Xue-Yang 217

	Preface
	Organization
	Invited Talks
	Criticality-Cognizant Modeling and Analysis of Mixed-Criticality Systems (Extended Abstract)
	Wise Computing (Abstract of Invited Lecture)
	The Myth of Linearization Points

	Contents
	Probabilistic Systems
	Fault Trees on a Diet
	1 Introduction
	2 Dynamic Fault Trees
	3 Rewrite Rules for Dynamic Fault Trees
	4 Rewriting DFTs via Graph Transformation
	5 Experiments
	6 Conclusions and Future Work

	Cost vs. Time in Stochastic Games and Markov Automata
	1 Introduction
	2 Foundations
	3 Transformation of Stochastic Games
	4 Case Studies and Experimental Results
	5 Conclusion
	References

	A Comparative Study of BDD Packages for Probabilistic Symbolic Model Checking
	1 Introduction
	2 Probabilistic Model Checking
	2.1 Markov Decision Processes
	2.2 PCTL Model Checking
	2.3 BDD-Based Probabilistic Symbolic Model Checking
	2.4 BDD Packages

	3 Experimental Results
	4 Conclusion
	References

	Hybrid and Cyber-Physical Systems
	Refinement and Proof Based Development of Systems Characterized by Continuous Functions
	1 Introduction
	2 Discretization of Continuous Functions
	3 The Event-B Method
	4 Refinement Strategy
	4.1 The Illustrating System
	4.2 Continuous Controller
	4.3 Discrete Controller
	4.4 Top-Down Refinement
	4.5 About Modeling of Time

	5 A Formal Development of a Discrete Controller with Event-B
	5.1 Abstract Machine: The Top-Level Specification
	5.2 The First Refinement: Introducing Continuous Functions
	5.3 The Second Refinement: Introducing Discrete Representation
	5.4 Proofs Statistics

	6 Related Works and Applications
	7 Conclusion
	References

	Synthesizing Controllers for Multi-lane Traffic Maneuvers
	1 Introduction
	2 Car Traffic Modeling
	2.1 The Multi-lane Highway
	2.2 A Hybrid Model of a Car
	2.3 Highway Traffic with Lane Change

	3 Controller Synthesis for Multi-lane Traffic Maneuvers
	3.1 Overview of Controller Synthesis
	3.2 A Simple Algorithm for Lane Change
	3.3 Interleaving Semantics or Synchronous Models?
	3.4 Lane Change Algorithm Allowing for Parallel Transitions
	3.5 Using a Helper Car

	4 Conclusion
	References

	Extending Hybrid CSP with Probability and Stochasticity
	1 Introduction
	2 Background and Notations
	3 Stochastic HCSP
	3.1 A Running Example

	4 Operational Semantics
	4.1 Operational Semantics

	5 Assertions and Specifications
	5.1 Assertion Language
	5.2 Specifications

	6 Proof System
	7 Conclusion
	References

	Testing, Simulation and Inference
	Towards Verified Faithful Simulation
	1 Introduction
	2 Related Work
	3 Background
	3.1 Coq
	3.2 Compert-C
	3.3 SimSoC

	4 Verified Simulation
	4.1 Constructing the Formal Model
	4.2 Proof Structure
	4.3 Projection
	4.4 Lemmas Library
	4.5 Inversion
	4.6 Instruction Proofs

	5 Conclusion
	References

	Cardinality of UDP Transmission Outcomes
	1 Introduction
	2 Background
	3 Formal Analysis of Unreliable UDP Behavior
	3.1 Unreliable UDP Transmissions
	3.2 Cardinality of Unreliable UDP Transmissions

	4 Generating UDP Transmission Outcomes
	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Inferring Software Behavioral Models with MapReduce
	1 Introduction
	2 Approach Overview
	2.1 MapReduce
	2.2 Behavioral Model Inference
	2.3 Our Approach

	3 Formal Definitions
	4 Distributed Trace Slicing with MapReduce
	4.1 Data Encoding
	4.2 Mapper
	4.3 Reducer

	5 Distributed Model Synthesis with MapReduce
	5.1 Data Encoding
	5.2 Mapper and Reducer

	6 Experimental Evaluation
	7 Related Works
	8 Conclusion
	References

	Bisimulation and Correctness
	An Application of Temporal Projection to Interleaving Concurrency
	1 Introduction
	2 Propositional Interval Temporal Logic
	3 Temporal Projection
	4 Formalisation of Imperative Concurrent Programs
	4.1 Formalising Interleaving without Projection
	4.2 Comparison of State Projection with Time-Step Projection

	5 Related Work
	References

	A High-Level Model for an Assembly Language Attacker by Means of Reflection
	1 Introduction
	2 Security Overview
	2.1 PMA and the Assembly Language Attacker
	2.2 Contextual Equivalence
	2.3 The High-Level Attacker Model La

	3 A Bisimulation over the High-Level Attacker
	3.1 The Source Language MiniML
	3.2 The High-Level Attacker Model MiniMLa
	3.3 MiniML+: Interoperation Between MiniMLa and MiniML
	3.4 Ba: A Bisimulation over the MiniMLa Attacker

	4 A Bisimulation over the Assembly Language Attacker
	4.1 A Trace Semantics for the Assembly Language Attacker
	4.2 Bl: A Bisimulation over the Assembly Language Attacker

	5 Full Abstraction
	6 Related Work
	7 Conclusions
	References

	Design and Implementation
	Improving Design Decomposition
	1 Introduction
	2 A Relational Model of Software Systems
	3 Subsystem Decomposition
	4 Case Studies
	5 Related Work
	6 Summary
	References

	From Requirements Engineering to Safety Assurance: Refinement Approach
	1 Introduction
	2 Modelling and Verification of Safety-Critical Systems in Event-B
	3 From Event-B Models to Safety Cases
	4 Case Study: A Steam Boiler System
	5 Integrated Automated Tool Support
	6 Related Work and Conclusions
	References

	Pareto Optimal Scheduling of Synchronous Data Flow Graphs via Parallel Methods
	1 Introduction and Related Work
	2 System Model and Problem Formulation
	3 Pareto Optimal Scheduling and Mapping
	4 Experiments
	5 Conclusion
	References

	Symbolic Execution and Invariants
	PathWalker: A Dynamic Symbolic Execution Tool Basedon LLVM Byte Code Instrumentation
	1 Introduction
	1.1 Background
	1.2 Overview
	1.3 Contributions
	1.4 Structure of the Paper

	2 Example
	3 Our Approach
	3.1 Concolic Execution
	3.2 Splitting Complex Type Variable
	3.3 Generation of Test Driver
	3.4 Program Instrumentation Based on LLVM Byte Code

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

	Generating Specifications for Recursive Methods by Abstracting Program States
	1 Introduction
	2 Methodology
	3 Application Scenarios
	4 Background
	4.1 Program Logic
	4.2 Integrating Abstraction

	5 Generation of Method Contracts
	5.1 Example
	5.2 Gathering Partial Method Contracts
	5.3 Dealing with Other Method Calls, Mutual Recursion

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Assertion-Directed Precondition Synthesis for Loops over Data Structures
	1 Introduction
	2 Preliminary
	2.1 Scope Logic
	2.2 Weakest-Precondition Calculus in Scope Logic

	3 Motivating Example
	4 Design
	4.1 Information Extractor
	4.2 Pre-processor
	4.3 Pre-condition Generator
	4.4 Checking Precondition Candidates

	5 Implementation and Application
	6 Limitations
	7 Related Work
	8 Conclusion
	References

	Verification and Case Studies
	Automatic Fault Localization for BIP
	1 Introduction
	2 The BIP Language
	3 Overview of the Algorithm
	4 Fault Localization Algorithm for BIP
	5 Experimental Evaluation
	6 Conclusion
	References

	Formal Verification of the Pastry Protocol Using TLA+
	1 Introduction
	1.1 The Pastry Protocol
	1.2 The Methodology

	2 Modelling the Concurrent Join Protocol of Pastry
	2.1 Static Model
	Leaf Set.
	Messages.
	Statuses.

	2.2 Dynamic Model
	2.3 The Correctness Properties

	3 Theorem Proving
	3.1 Inductive Proof of Invariant HalfNeighbor
	3.2 Proof of NeighborClosest
	Induction Invariant.
	Proof Sketch of the Invariant IRN.

	4 Conclusion, Related Work and Future Work
	References

	Formal Modelling and Verification of IEC61499Function Blocks with Abstract State Machinesand SMV - Execution Semantics
	1 Introduction
	2 Related Facts
	2.1 Function Blocks
	2.2 Abstract State Machines
	2.3 Formal Modeling of IEC 61499 and Cross-Platform Portability

	3 Functional Structure of Operational Model
	4 Modular formalism for FB operational semantics –Synchronous Execution
	4.1 Definition of Scheme for the Model
	4.2 Definition of Dynamics of the Model
	4.3 Model of the Dispatcher for Synchronous Execution Model

	5 Model of the Dispatcher in SMV
	6 Verification Results
	7 Conclusion and Future Work
	References

	Erratum to: Pareto Optimal Scheduling of Synchronous Data Flow Graphs via Parallel Methods
	Erratum to: Formal Modelling and Verification of IEC61499 Function Blocks with Abstract State Machines and SMV - Execution Semantics
	Author Index

