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Abstract. Continuous tracking in Augmented Reality (AR) applications is
essential for registering and augmenting the digital content on top of the real
world. However, tracking on handheld devices such as PDAs or mobile phones
enforces many restrictions and challenges in the form of efficiency and robustness
which are the standard performance measures of tracking. This work focuses on
the pre-analysis required for the development of an Accelero-Visual Markerless
Hybrid Tracking Technique. The technique combines visual feature based
tracking with the accelerometer sensor of the smartphones to make the process
of tracking more efficient and robust. Pre-Analysis is performed for the visual and
sensor based tracking approaches required to design the hybrid tracking tech‐
nique. For visual tracking, the best keypoint detector and descriptors are analyzed.
Careful selection of these visual tracking elements during the analysis stage helps
in achieving much efficient and robust markerless augmented reality tracking
results on a modern day smartphone.

Keywords: Markerless tracking · Mobile augmented reality · Keypoint detection ·
Computer vision

1 Introduction

Early Augmented Reality (AR) systems were based on desktop computer and custom
input output devices and backpacks with Head Mounted Displays (HMD). With the
passage of time, the trend of display in AR has switched from the backpack with HMD
to low cost small handheld device such as monitors, PDA’s, Smartphone. Augmented
Reality (AR) requires real-time tracking to track the users or device position in order to
register it in respect to the real world. Augmented Reality (AR) and Virtual Reality (VR)
require real-time and accurate 6DOF pose tracking of devices such as head-mounted
displays and tangible interface objects. Tracking on handheld devices such as PDAs or
mobile phones enforces many restrictions and challenges that are not present on
stationary or PC-based setups. In marker less AR applications, the challenges that
common users face are lack of memory and slow processing speed [1]. AR researchers
in recent years have been working hard in order to achieve efficiency and robustness in
the tracking environment of both; desktop systems and mobile systems. The process of
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tracking can be improved by using a markerless hybrid tracking technique. Such a
system makes use of more than one kind of tracking techniques and instruments such
as the sensors. Usage of inertial sensors such as accelerometer, gyroscopes and gravi‐
tational vectors can readily improve the efficiency of a feature based tracking system
which uses computer vision [2]. Though there are many existing methods available for
hybrid tracking in Augmented Reality, there also exist many issues on efficiency and
robustness of those tracking methods especially when implemented on mobile devices.
This work presents the details of the pre-analysis phase required for the development of
an efficient markerless hybrid tracking technique for mobile augmented reality systems.

2 Related Works

Mobile Augmented Reality differs in many aspects from traditional mobile Augmented
Reality [3]. Smartphones are inexpensive and attractive targets for the implementation
of Augmented Reality but they have very limited memory and processing power as
compared to PC’s. Markerless tracking or tracking from natural features is a complex
process and usually demands high computational power. It is therefore difficult to use
robust natural feature tracking in mobile applications of Augmented Reality (AR), which
runs with limited computational resources, such as on Tablet PCs [4]. Feature detection
is used for different purposes and therefore performance is evaluated in terms of location,
speed and accuracy. However, it is difficult to achieve the complete accuracy only
through algorithms because this increases the complexity of the system and demands
even higher computational power [5].

Different kinds of tracking techniques have presented by researchers can be catego‐
rized into sensor based, visual and hybrid tracking techniques. The process of tracking
can be improved by using a hybrid tracking system. Such a system makes use of more
than one kind of tracking techniques and instruments. The idea of combining a visual
tracking system and inertial sensors is not new in augmented reality. Even before [6]
came up with the idea of combining computer vision techniques with external sensors
for robust and accurate orientation using a HMD device, several works have already
been reported. According to [7], they successfully predicted marker position by
combining fiducial markers with inertial sensors. Later in 2004 [8] showed that their
work was robust enough to solve some of the matters which Azuma and Naimark were
working upon. In 2010, [9] also worked on increasing the accuracy of feature detection
where they found that GPS proved a good solution only in the large environments. He
suggested that accuracy of the initialization process can be improved by the use of
sensors.

A number of different researches were led to accomplish real-time markerless
tracking on mobile phones. The most prominent of those were led by [10, 11]. The first
fully self-contained markerless natural feature tracking system capable of tracking full
6 degrees of freedom (6DOF) at real-time frame rates (30 Hz) from natural features
using solely the built-in camera of the phone of that time was developed [10]. He used
a heavily modified version of SIFT to enable marker-based natural feature tracking on
mobile phones in real-time which although allowed his system to run on real-time but
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with certain limitations, such as the fast motion movements and overall robustness of
the system. Another good example of hybrid tracking can be found in the work of [12].
He proposed the use of a hybrid system that employs both computer vision and integrated
sensors present in most new smartphones to facilitate pose estimation. Recent works of
[2, 13, 14] proved that efficiency and robustness of tracking can now be improved
tremendously with the help of strong inbuilt sensors available in almost every phone
sold in the market today. A recent work by [15] presented a system for real world objects
recognition and camera pose estimation from natural features for mobile AR. The system
recognizes real world objects in real-time directly without any marker and desktop server
by extracting natural features using optimized “Speed up Robust Features” SURF algo‐
rithm for mobile architecture.

Although hybrid tracking techniques are the most promising way to deal with the
challenges in indoor and outdoor mobile augmented reality environments, they certainly
face many challenges in terms of their applicability on today’s smartphones. They [14,
16, 17] worked on integrating sensors of the smartphones along with the visual tracking
proposed by [10] to develop AR interfaces and perform specific tasks of navigation. The
use of sensor was specific to the kind of tasks required to be accomplished by the users
and demanded intensive training. To improve the robustness of [10] work on visual
tracking, authors [12] estimated three of the six degrees of freedom of pose using inte‐
grated sensors and the remaining three using feature tracking. Although he used SURF
descriptor to attain real-time working system as suggested by Wagner, his system was
not very robust and was susceptible to losing track of the AR environment in different
tracking conditions. More importantly, the system barely met the minimum require‐
ments of 20–30 Hz set by [10] for real-time performance. This indicates the urgency for
a new markerless hybrid tracking technique for smartphones which is more efficient and
robust than previous works.

3 Development Analysis

Before a visual tracking approach is carefully designed and combined with sensors, a
detailed analysis of selection of suitable tracking dataset, keypoint detector, keypoint
descriptors, the type of sensors and the type of Platform and Hardware used is performed.
Following are the details of these analysis.

3.1 Mobile AR Tracking Dataset

For a long time, Quam’s [18] Yosemite sequence used to be the reference used for
evaluating optical flow algorithms. Today, the Middlebury [19] datasets are the refer‐
ence for optical flow. Theoretically, these images could be used to evaluate tracking
algorithms as well. However, due to the very limited number of frames/image pairs given
and the completely different goal set when creating these datasets, the result from an
evaluation using these datasets will be missing important factors such as e.g. motion
blur and the irregular movements coming from a human camera operator. Specifically
for markerless systems, some researchers have used Mikolajzyk and Zimmerman’s
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datasets however the problem with them is that they only considers a very limited
number of objects and factors influencing the tracking, e.g. the lighting conditions.
Following the Zimmerman’s approach, it is not possible to have reliable ground truth
in the case of blurry or noisy images. It is also not possible to recover the camera position
and orientation when the points used to determine the pose are not in the field of view
of the camera. Consequently, the performance of the tested algorithms could not be
evaluated in the presence of noise, motion blur or for some relative position between
the camera and the tracked objects.

In the last few years, markerless visual tracking reached the level where a large
variety of algorithms could be successfully used in a wide range of Augmented Reality
applications. However markerless visual tracking lacks benchmark datasets not allowing
a fair comparison between state-of-the-art computer vision algorithms. To fulfil the
growing need of common objective datasets with ground truth metaio has developed a
dataset that allow fast performance estimation in terms of speed and accuracy of a newly
designed algorithm and its fair comparison with the existing ones [20]. Metaio identified
four different types of tracking targets classified by texture richness and repeatability.
Each type is represented by two targets in the dataset. Metaio also determined five
standard factors that have the biggest influence on the performance of the tracking and
which are related to the camera motion, the size of the tracked object in the image and
the lighting conditions; one sequence per target is dedicated to each influence. Therefore,
in addition to metaio, the old Mikolajczyk datasets have also been used for fair compar‐
ison with previous works during the development of our markerless hybrid tracking
technique.

3.2 Sensor Tracking Analysis

Today’s smartphones are incredible little machines which comes along with various
sensors including the accelerometer, gyroscope, magnometer, proximity sensor, light
sensor, location sensor, barometer, thermometer, pedometer, heart rate monitor finger
print sensor and many more. The Android platform provides several of these sensors
that help monitor the motion of a device. Two of these sensors are usually hardware-
based such as the accelerometer and gyroscope, and many of the other sensors can be
either hardware-based or software-based (the gravity, linear acceleration, and rotation
vector sensors). The acceleration sensor measures the acceleration applied to the device,
including the force of gravity. This information can help in detection of the movement
of the device around its x, y and z directions and hence tell if the device is in stable
condition or not. This information gathered from the accelerometer sensor can therefore
control the amount of visual tracking cycles required for smooth and successful
augmented reality experience saving a tremendous amount of memory on the device. It
also makes the complete tracking process faster. The accelerometer provides the shake
and tilting values which are usually the cause of motion, and motion blur during the
process of tracking. Therefore this research relies on the usage of accelerometer to help
improve and speed up the tracking process.
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3.3 Platform and Hardware Analysis

For the purpose of this study, the two leading smartphone operating systems and four
popular smartphones were evaluated as potential development platform. Android is a
mobile operating system that is mostly open source. For Java developers, it offers a high-
level application framework called Android SDK. Android apps are modular insofar as they
have standard, high-level interfaces for launching each other and sharing data. Mobility, a
high level of abstraction, and video processing support are features which make android
devices the most suitable for mobile augmented reality applications. All the phones
compared during the analysis fulfilled the basic requirements for mobile AR implementa‐
tion. Although Samsung Galaxy Note’s hardware specs are not the best among its compet‐
itors Iphone 5S and Galaxy Note 3 and new smartphones, but they are sufficient enough to
test and run the proposed hybrid tracking technique. This especially helps in comparing the
results with the previous researches which have used similar lower specs smartphone
devices. Samsung Galxy Note has a Dual core, 1400 MHz, ARM Cortex-A9 processor,
1 GB RAM, a Mali-400 MP4 graphic processor. The device runs on Android OS 3.0. It has
a 5.7 in. Super AMOLED capacitive touchscreen support multi touch gesture.

3.4 Visual Tracking Analysis

The most crucial step in reducing the amount of data to process and make real-time
markerless tracking feasible is reliable detection and matching of features across consec‐
utive frames. To do this, we analyzed the most important visual tracking elements that
can be used. These elements include; keypoint detection, keypoint description and
matching.

(a) Preprocessing Analysis. This section examines the time it takes to prepare the video
frames that can be used for keypoint detection, description, matching and further
processes involved in the development of an augmented reality system. In order to
determine the average frame-rates and frame intervals for each camera mode a
simple android OpenCV application was developed that measured the frames per
second (fps) and the time between frames of a camera video feed in milliseconds.
It is evident from the reading generated from this test summarized in Table 1, that
the resolution of 640 × 480 is the most suitable resolution to work for this appli‐
cation since it yields the best frame rates at minimal frame intervals.

Table 1. Comparison of frame-rates and frame intervals.

Resolution Frame rate Frame interval

800 × 480 23 fps 43.47 ms

640 × 480 27 fps 36.8 ms

480 × 360 28 fps 35.71 ms

192 × 144 20 fps 50.8 ms
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The next step is to prepare incoming video frames before passing them for different
computer vision processes. One of the most important steps is converting incoming
video frames to greyscale, also known as calculating image intensity. In order to deter‐
mine the amount of time required to convert an incoming video frame, a simple appli‐
cation that measures the amount of time it takes for incoming video frames is developed.
Only focused, unprepared images and video sequences are used for this step instead of
prepared frames. Table 2 shows that it takes a minimal of 1.1 ms to convert a frame into
greyscale at the selected 640 × 480 resolution.

Table 2. Comparison of greyscale timings.

Resolution Greyscale
time

800 × 480 1.3 ms

640 × 480 0.92 ms

480 × 360 0.95 ms

192 × 144 0.6 ms

(b) Keypoint Detection Analysis. Feature detection initiates the whole process of tracking
by detecting the keypoints from the reference images and the scenes. These keypoints
are later used by the feature descriptors to further the tracking process. The seminal
work of [21] presented a comprehensive evaluation of the most competent detection
methods at the time, which revealed no single all-purpose detector but rather the
complementary properties of the different approaches depending on the context of the
application. Many keypoint detectors include an orientation operator (SIFT and SURF
are two prominent examples), but FAST does not. There are various ways to describe
the orientation of a keypoint; many of these involve histograms of gradient computa‐
tions, for example in [22] and the approximation by block patterns in SURF [23].
These methods are either computationally demanding, or in the case of SURF, yield
poor approximations. FAST and its variants are efficient and finds reasonable corner
keypoints, although it must be augmented with pyramid schemes for providing scale
invariance, therefore is the best suitable option for keypoint detection for this research.
FAST and its variants are the method of choice by most researchers for finding
keypoints in real-time systems that match visual features [2, 10, 11]. These conclu‐
sions are further acknowledged by the practical analysis of keypoint detectors and
descriptors performed on a real mobile device in the next subsection.

To configure these tests, a simple application is developed that determines the total
number of keypoints found and the processing time required for the above mentioned
set of keypoint detectors respectively. For most of the tests, the normal texture dataset
image “ISETTA” is used because it has the best distribution of keypoints and performs
best among all the other metaio dataset images. Vienna image is often used as additional
dataset image for comparison with [10] work (Fig. 1). During the analysis, Pyramid
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FAST and FAST finds a huge number of keypoints compared to other methods in all
the four different images of the dataset. Unfortunately the keypoints found by Pyramid
FAST and FAST contain a lot of noise and hence may not be suitable for further tracking.
HARRIS, ORB, STAR and BRISK found respectively less but noise free keypoints.
Naturally all the keypoints detectors found more number of keypoints in “WALL” and
“LUCENT” images which are of High Texture and Repetitive Texture respectively.

Fig. 1. Number of keypoint detected by various keypoint detectors

The speed of feature detection is tested using two criteria’s; by total amount of time
spent for the detection of keypoints on the whole frame (Fig. 2). As expected, FAST
detector provides best detection time per feature. When compared for the time consumed
to detect the number of keypoints on the “ISETTA” image, unsurprisingly FAST and
its variants such as Pyramid FAST, ORB and BRISK performed better than HARRIS
and STAR detectors. As seen in the Fig. 2 HARRIS and STAR are multiple times slower
than FAST and its variants. STAR took the most time to compute the keypoints and
hence is not a suitable choice for the development of a real-time augmented reality
application’s efficiency.

Fig. 2. Total time taken to detect all keypoints
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Though FAST spent the least time to compute the keypoints, but detected hundreds
of noisy scale variant keypoints which makes it unsuitable for AR. Pure Pyramid FAST
does provide scale invariance by calculating FAST at different scales but it found even
more keypoints than FAST and hence can make tracking unstable. However when
Pyramid FAST is used in ORB, the keypoints produced are very few in number, consis‐
tent and noise free. By using Pyramid FAST and retaining only the top N matches, ORB
takes slightly more time to compute the keypoints than FAST but finds more stable
keypoints. BRISK is made up of AGAST detector which is another variant of FAST but
consumes more than 50 ms to compute the keypoints. BRISK takes longer than other
FAST variants and can hinder the tracking speed. The minimum frame rate required for
the development of the proposed mobile augmented reality application is 10 fps which
means 100 ms per frame [24]. Therefore the best choice among all the tested detectors
PyramidFast which computes scale invariance keypoints in less than 9 ms and provides
enough room for other computer vision processes such as feature description, matching
and pose estimation to take place within the designated 100 ms.

(c) Keypoint Description Analysis. In order to identify and match keypoints across
images, descriptors of the keypoints must be built. The description must be distinc‐
tive for each keypoint, but also consistent under all viewpoints. A straightforward
approach is the derivation of intensity or color histogram of the local patch followed
by some normalization to make it invariant to illumination changes. However, these
simple descriptors are not invariant to scale, rotation and illumination. The most
well-known descriptor is SIFT [25]. A 128-dimensional vector is obtained from a
grid of histograms of oriented gradient. Its high descriptive power and robustness
to illumination change have ranked it as the reference keypoint descriptor for the
past decade. SIFT and SURF are based on histograms of gradients. These compu‐
tations cost time. Even though SURF speeds up the computation using integral
images, it isn’t fast enough for most AR applications running on smartphones.

Binary descriptors come in handy as one can encode most of the information of
a patch as a binary string using only comparison of intensity images. This can be
done very fast, as only intensity comparisons need to be made. In general, binary
descriptors are composed of three parts: A sampling pattern, orientation compensa‐
tion and sampling pairs. Every binary descriptor has its own sampling pattern, own
method of orientation calculation and its own set of sampling pairs. The authors [26]
showed that it is possible to shortcut the dimensionality reduction step by directly
building a short binary descriptor in which each bits are independent. BRISK and
FREAK are other binary descriptors which unlike BRIEF and ORB also contain a
sampling pattern. The most recent descriptor is called FREAK and it is based on a
nuero-scientific research. It uses Gaussian kernels with different sizes to smooth the
intensities of each sampling point.

Since many evaluation of popular descriptors such as SIFT, PCASIFT, SURF and
USURF can already be found in the literature [21, 23, 27, 28], testing these descriptors
would lie out of the scope for this research. Moreover as discussed in new binary descrip‐
tors such as BRIEF, ORB, BRISK and FREAK have already been proven to be much
faster than SIFT and SURF and most suitable kind of descriptors for real-time image
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recognition applications. Hence, only binary descriptors are tested based on their descrip‐
tion and matching time for the keypoints detected by using PyramidFAST detector. All the
descriptors are matched using Brute-Force matcher.

To configure this test, a sample video at the resolution of 640 × 480 pixels is used.
During the tests, only feature description and matching times are measured. Five
different datasets (Isetta, Bump, Wall, Lucent, Vienna) are used to test the efficiency of
binary descriptors; BRIEF, ORB, BRISK and FREAK respectively. Kruskal-Wallis test
has also been performed in order to find the overall variance in terms of efficiency of
the descriptors (Figs. 3 and 4).

BRIEF ORB BRIS FREAK

Fig. 3. Keypoint description and matching time

Fig. 4. Readings of Kruskal-Wallis test

The graph clearly shows that descriptor matching is an instantaneous process and
consumes less than 1.5 ms in most cases. The fastest matching keypoints are extracted
using FREAK descriptor which unsurprisingly, also clocks the least time for keypoint
description. BRIEF also performs well in the test but unfortunately is not stable and
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loses tracking due to its weak rotation invariance. Kruskal-Wallis test performed on
different descriptors clearly shows that there is significant timing difference between
them. FREAK outperforms ORB and BRISK in most of the viewpoint and photometric
performance tests except of blurring. It also performs better than others during the rota‐
tion and zoom tests. FREAK outperforms all the recent state-of-the-art keypoint descrip‐
tors while remaining simple and faster with lower memory load, hence proving the most
suitable choice for real-time image matching performance required for this research.

4 Results

A tracking technique would not be very effective if it detects and computes the keypoints
that can be tracked only either at a fixed angle, scale or lighting. One of the most impor‐
tant aspects of a Visual Tracking Technique is that it must track the same points over
different views of the same scene. The elements identified during the Development
Analysis help us achieve both; robustness and efficiency. The technique was imple‐
mented and tested inside a mobile augmented reality application which detected marker‐
less planar targets and rendered a cube on top of it (Fig. 5).

Fig. 5. Hybrid tracking technique

The Hybrid Tracking Technique allowed visual tracking to take place less frequently
during a given time by allowing the sensors to take over for the remaining time. The
results of the conducted efficiency and the robustness tests proved the tracking perform‐
ance has been improved after the implementation of the suitable visual tracking and
markerless hybrid tracking techniques. The hybrid tracking produced at least 19 Hz
faster frame rates than previous researches. Moreover the robustness tests showed great
improvements in all the tested sequences and overcame the limitations of rotation and
scale invariance found in previous works of [10, 12, 24].

5 Conclusion

Majority of this work explores the potential of a Markerless Hybrid Tracking Technique
pre-developmental analysis and tests. Achieving real-time performance, efficiency and
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robustness in AR are found to be the biggest challenges faced by mobile augmented
reality. The technique is specially designed to cater the needs of a more efficient and
robust mobile augmented reality system Therefore, the main goals and objectives of this
research revolved around the study of Tracking and Mobile Augmented Reality
concepts. The results at the end of the research proved that the tracking performance has
been significantly improved after the implementation of the suitable visual tracking
elements identified during the developmental or pre-analysis phase detailed in this work.
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