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Abstract. This study addresses the problem of reconstructing 3D face shapes
from a small set of 2D facial points. By using Maximum Posterior Probability
estimation, prior information modeled by PCA is connected to Tikhonov regu-
larization method in order to solve the ill-posed problem of 3D face reconstruc-
tion. The prior information is learned from 3D faces of a standard 3D database.
However, the optimal value of the regularization parameter A is usually not avail-
able in advance. To overcome this problem, we restrict the distance between the
reconstructed 3D face and the average 3D face close to the average of the distances
between sample 3D faces and the average 3D face. This is due to the fact that the
sample data are mostly located at the boundary of the data space for high dimen-
sional and low sample size problems, which is the case for 3D faces. The optimal
regularization parameter is then obtained to reconstruct the 3D face shape of a
given 2D near frontal image using limited number of feature. The solution is
plausible while not over-smoothing. By warping the 2D texture to the recon-
structed face shape, 3D face reconstruction is achieved. Our experimental results
justify the robustness of the proposed approach with respect to the reconstruction
of realistic 3D face shapes from a small set of 2D facial coordinates.

Keywords: Tikhonov regularization - 3D face reconstruction - PCA - High
dimension low sample size

1 Introduction

The objective of 3D facial reconstruction systems is to recover the three dimensional
shape of individuals from their 2D pictures or video sequences. Until now, in most
popular commercially available tools, the 3D facial models are obtained not directly
from images but by laser-scanning of the people’s faces [1]. The problem of 3D facial
modeling remains as a partially solved problem in the field of computer vision in terms
of the accuracy and speed of reconstruction algorithms.
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In this paper we present an approach for reconstructing the 3D face of an individual
given the 2D face image, in which prior knowledge based on exemplar 3D faces is
acquired. With help of the prior knowledge, the 3D face shape is estimated using a set
of 2D control points while the 2D texture is registered with the texture model and warped
to the reconstructed 3D face shape. Example based modeling allows more realistic face
reconstruction than other methods [2, 3]. In the simplest form, example-based 3D face
reconstruction methods have two main stages: The model building stage and the model
fitting stage. In this paper, Principal Component Analysis (PCA) based 3D face model
is used for model building and the regularized algorithm is used for model fitting. For
texture, similar to [4], the 2D image texture has been registered to the reference texture
model using Thin Plate Splines (TPS) [5] and then warped on the reconstructed shape.
We therefore focus on shape modeling.

When shapes are considered, the reconstruction of 3D face from 2D images using
shape models is relatively simple. One of the reconstruction methods that uses prior
knowledge to estimate the shape coefficients from a set of facial points is regularization
[4]. In [4], Jiang et al. use a regularization equation that estimate the geometry coefficient
in an iterative procedure. Alternatively regularization method has also been presented
in [6]. Figure 1 shows how a given input face is reconstructed via 3D face shape esti-
mation using a prior shape model. It also shows the process of warping 2D texture to
the reconstructed 3D face shape.
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Fig. 1. Proposed scheme for 3D face reconstruction from single 2D image

Our 3D shape learning model relies on examples of 3D scans which mean that
missing information can be inferred using correlation between the model shape
vectors. For robust, plausible and stable results, the regularization mechanism needs
to find a tradeoff between fitting 3D shape to the given 2D facial landmarks and
producing plausible solution in terms of prior knowledge [7]. The Standard Tikhonov
Regularization method (STR), which uses the identity matrix as a regularization
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matrix, is used to estimate the model parameters by solving the inverse problem and
preventing the overfitting. However, the quality of the reconstructed face shapes is
very similar to the mean face shape (excessive smoothness) which leads to loss of
information about the reconstructed images [8]. Eigenvalue Tikhonov Regulariza-
tion (ETR) [9] replaces the identity matrix with the eigenvalue matrix in order to
utilize the prior information that is modeled by PCA. It has been shown that using
ETR reduces the reconstruction error significantly when compared with STR.
Furthermore, by using Tikhonov regularization, the problem of choosing an appro-
priate regularization parameter arises. Choosing too large regularization parameter
causes the solution to be over-smoothed. Otherwise, too small regularization param-
eter leads to overfitting. In other words, the regularization parameter balances the
tradeoff between the excessive smoothing of the reconstruction and the data misfit.

There are numerous strategies for determining the regularization parameter [10].
Some mathematical methods such as the discrepancy principle, the Tikhonov prior
estimation, the Engl criteria, and Arcangeli criteria method need prior information
about the data noise [8]. In practice, however, such prior information cannot be
easily acquired and it is highly impractical to obtain the noise characteristic in real
time [11]. Other methods including L-curve and generalized Cross Validation need
less prior information but are time consuming. In addition, some factors can influ-
ence the parameter selection. These factors include e.g. diffusion of errors in the
process of numerical computation, and the random fluctuation of errors in the input
data [8]. Furthermore, these methods have also its limitations. For example, although
in the last decade, L-curve gained attention for determining optimal regularization
parameters, yet, however, its limitation is of having asymptotic property which
means it is non convergent [12].

A different strategy is to select the regularization parameter in a straightforward way
and setting its value as constant for all images [13]. For example, in [8] the range of the
regularization parameter was determined empirically by solving typical cases in
advance. However, empirically determination of regularization parameter leads to an
unwanted bias in the solution. Furthermore, it varies for different problems and requires
prior information on the target images as well as the noise in the data.

In this paper, we use a different strategy for optimal selection of the regulariza-
tion parameter for 3D face shape estimation. A distance-based approach that utilizes
the distance from the average 3D face and the reconstructed face through an optimi-
zation function is proposed. The only prior knowledge required for the new strategy
is the average of training face shapes, which is very easy to obtain. The distance from
the average face is used to control the regularization process in order to obtain a
plausible 3D face shape for any given 2D face image. This method ensures that the
obtained 3D face shape is plausible and not over-soothing. The proposed method is
backed up by the fact that for high dimensional and low sample size problems, which
is the case for the 3D faces in this paper, most of the sample data are located at the
boundary of the data space [14]. The histogram of the distances between sample
faces and the average face in Fig. 2(b) has demonstrated this effect.
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Fig. 2. (a) A scheme representing the model boundary: The mean face (middle) and the training
faces with their distances D,,.. (b) Histogram for the distance between sample faces and the mean
face. For example, the first bin 0.0047 means the frequency >=0.0047 and <0.0066 and so on.

For the texture, we use TPS techniques to register the input image texture with the
model texture and then warp the interpolated texture to the reconstructed 3D shape face
[15]. Our reconstructed results from real 2D face images show good reconstruction and
retains real characteristic of the given 2D face images.

The rest of the paper is organized as follows: Sect. 2 demonstrates the modelling of
3F face shapes. Section 3 describes the fitting process of 3D shape model to new faces.
Section 4 deals with the experimental results and associated discussions. Section 5
concludes our research.

2 Modeling 3D Face Shape

The characteristic shape properties of the 3D face shape are derived from a dataset of
3D scans. The 3D shapes are aligned with each other in such a way that 3D-3D corre-
spondence for all vertices are obtained [16]. The p number of vertices corresponding to
each face is defined by concatenating the x, y, z coordinates of the face surface to a single
vector s; with the dimension n = 3 X p as:

_ T
i = (X1 Vi1 Zits -+ » Xips Vips Zip) - (D

where i = 1, ..., m (number of face shapes). The dimensions of the shape vectors are
very large compared to the sample size, whereas the number of vertices n is equal to
75972 and the sample size m comprises 100 face shapes. If we apply PCA on the data,
the covariance matrix will be n X n which is very huge. However, the same eigenvectors
and eigenvalues can be derived from a smaller m X m matrix.
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Let

m

1
So=7 zsi' @)
i=1

where sy be the average face shape of m exemplar face shapes and S = [s7, 55, ..., Syl €

R™. Each vector is centered around the mean in a new vector x such that

X;=s;,—-8, i=12..m 3)
Let the data matrix X = [x;,x,, ..., x,,] € R™". Then the covariance matrix C can
be written as
1 1 ¥
— Ty — T nxn
C—ZXX—;inxieR : 4)

i=1

The Covariance matrix C has only (m-1) eigenvectors v; with nonzero corresponding
eigenvalues w;, and all remaining eigenvectors of C have zero eigenvalues. It can be

shown that the vectors X"v; are all eigenvectors of C € R with corresponding eigen-
values w;. Let CT = XXT € R™™, then the matrix C” can be decomposed into:

c! =xx" = uwv'vwu' = Uw?U?!. 5)

where U and V are orthogonal matrices and W is the diagonal m X m matrix with
diagonal elements being the eigenvalues. C’ is symmetric, so it can be written as

cr=uw'u'. ©)
U = [uy,uy,__u,]is the set of orthonormal eigenvectors and W' = diag(w!) is a diag-
onal matrix containing the associated eigenvalues. The set of vectors X u, form an

orthogonal basis, where each vector has the length | /w!. The scaled basis vectors of the

covariance matrix C € R™" are derived as follows:

E=X"uww)". (M
where E = (e;, €3, ..., €,) is the matrix of scaled basis vectors of unit length

(le;ll, = 1) and 4 /w; represents the standard deviation within the face shapes along the

basis vectors X" U. A new shape vector s,,. € R" can be expressed as

rec

m

Spee = So T Ea =59+ Z ae; (®)
i=1

where e; represent the i™ scaled basis vector of the covariance matrix C and a; is the
coefficient of the scaled basis vector e;.
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Since E is an orthonormal matrix, the PCA-coefficients &t of a vector x = s — s, € R"
can be derived from Eq. (8). as

a=E"x ©)

2.1 Model Boundary

As mentioned in [17], the Representational Power (RP) of the PCA-based model is its
capability to depict a new 3D face of a given face image. It depends on the exemplar
faces in the training data set. The common factors that are generally concerned are the
size of the training dataset and the selection of different examples in the training set.
Even if a more powerful model, trained with more examples or a different dataset,
generates a better representation of the true face, the generated face remains within the
boundaries of the PCA-model. In this paper, the Euclidean distances between all training
face shapes and the average face were utilized to determine the mode boundary
(interval). The Euclidean distance weighted by the number of vertices can be computed
between the mean face vector s, and any other face vector s in the dataset as follows:

| n
D = - =5 ]
m n ; || sOl, Si. || (10)

Where D,, is the weighted Euclidean distance and n is the dimension of the face
shape vector. Accordingly, we assume that any new reconstructed face shape will have
a distance that does not goes beyond the model’s boundary. The assumption is backed
up by the fact that for the high dimensional and low sample size problem, which is the
case for the 3D faces in this paper, most of the sample data are located at the boundary
of the data space [9]. Figure 2(a) demonstrates some exemplar face shapes from the
training data set and their distances D,, from the mean face. Figure 2(b) is the distribution
of the distances between sample faces and the mean face. Accordingly any new recon-
structed face shape can be only plausible and not over-smoothing if it has a distance D,,
that locates in the model boundary (between the minimum and maximum D,, of all
training faces).

3 3D Shape Model Fitting to New Faces

Learning models are trained from a set of examples to reach a state where the model
will be able to predict the correct output for other examples. However, the available
training data set (number of 3D faces) is much smaller than the dimension (number of
vertices) and there are too many missing features in the testing data (real 2D face
images). Therefore, overfitting can easily occur [7]. The goal of robust fitting algorithms
is to reduce the chance of fitting noise and increase the accuracy in predicting new data.
Noise in such cases may occur due to intricacies in selecting input feature points, which
depends on the acquisition systems or the uncertainties imposed by the used alignment
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methods. Fitting the shape model to a given 2D image is formulated as an optimization
problem to solve the linear system in Eq. (9), which can be written as

x = Ea. 1r)

The goal of this inverse problem is to find the PCA-coefficients a, rapidly and
efficiently, given E and the shape vector x = s — s, where s is the given shape vector
and s, is the mean face shape. The direct solution of a is by the projection of the vector
x onto E using Eq. (9), whereas E is an orthonormal matrix with ETE = I, the identity
matrix. However, the inverse problem of Eq. (11) is ill-posed and ill-conditioned. It
causes the solution to be unstable and very sensitive to noise in the input data. Thus
constraints or prior information shall be employed to get a meaningful reconstruction
results. Given a number of feature points f << p, the problem is to find the 3D coordi-
nates of all other vertices. In case of limited feature points, overfitting may occur by
using approximation methods. In addition, using a holistic model such as PCA based
model, the model cannot be adapted to the particular set of feature points resulting in
overfitting. Therefore, regularization can be used to enforce the result to be plausible
according to the prior knowledge [18].

Assume that s, € R!(l = 2f) contains f feature points on a given 2D face image for
which a 3D shape will be estimated, sy is the corresponding points on s, (the average
3D face shape) and x; = 57 — s is related to r such that

X =Ar+e, A:R" — R, X € R, (12)

where A € R™" is the matrix of corresponding scaled basis vectors in ET € R™™, r is
the model parameter, and e € R!can be considered as measurement errors with unknown
properties.

Ultimately the goal is to estimate r as accurate as possible, given A and x;. Because
A is not a square matrix which leads to non-invertible matrix, the model cannot be solved
directly as an inverse problem. Instead, we consider the problem as an optimization
problem which has the following objective function:

@ =x —Arll;. (13)

Minimizing ¢ is to minimize the difference between the original and the predicted
data. A simple least square technique can be used to minimize ¢ by solving the inverse
problem to

r=(ATA)'A"x; = A*x,, (14)

where AT is the Moore-Penrose Pseudoinverse of A. It is considered as an optimal solu-
tion of the L.2-optimization problem but not necessary the best solution. Moreover, in
addition to the measuring errors, the measured feature points x; captures only a small
portion of the original image x, which introduces errors in the recovered model. To solve
this ill-posed problem, regularization can be used as a constraint that utilizes the possible
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features in the holistic model to produce plausible results. One of the most popular
regularization methods for the linear least square problem is due to Tikhonov. A general
Tikhonov regularization with desirable properties has the following minimization

|| Ar = x; |15 + Al Lr |15, (15)

where || Lr ||§ is the stabilizing item with some suitably chosen L (Tikhonov matrix)
and A > Ois called the regularization parameter. This regularization enables a numerical
solution by improving the conditioning of the problem. If L is chosen to be the identity
matrix, the Tikhonov regularization has the following standard form

ATA+ AL"Lyr = A"x;. (16)

For each A > 0, and replacing LT L with I (identity matrix), the above equation has
the following unique solution

Frog = (ATA+ AN AT, (17)

The solution of Eq. (17) is influenced by the variety of A > 0, where 7., is more
sensitive to the error g, the smaller A > 01is. On the other hand, as A increases the solution
Ireg cONverges to 0. However, when 4 > 0, 7, is reduced to the least squares solution 7,
of Eq. (14) with no regularisation. Mathematically, this means that

M Tyeg = 7o 1M 1y = 0. (18)

These restrictions limit the possibility of obtaining a meaningful approximation of
r. Hence, it is essential to choose a suitable value of A > 0 which determines the sensi-
tivity of the solution 7, of Eq. (17) to the error € and how close r,, to the desired solution
a of Eq. (9).

In our case, the original data matrix X = § — S is a multivariate normal distribu-
tion whereas the means are zero and the principle components are independent and
have the same standard deviation. We also assume that the errors in x; are inde-
pendent with zero mean and same standard deviation of the original data. By Bayes’
theorem, under these assumptions, the Tikhonov-regularized solution is the most
probable solution [19].

According to the maximum posterior probability, the case in Eq. (17) can be refor-
mulated to minimize

Il Ar=x 113+ 411 77 Clr 113, (19)

where C, is the covariance matrix of the coefficient r. Equation (19) amounts to the
Maximum-A-Posterior (MAP) estimation.
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3.1 Generalized Tikhonov Regularization

The Tikhonov regularization (Eq. (15)) of the linear system of Eq. (12) is

min || Ar = x; {13+ Al 7 113, (20)

Compared with the MAP estimation (Eq. (19)) of our linear problem, the second
term is A|| r ||§ rather than ﬂrTCr‘lr. Cr‘1 is the inverse covariance matrix of r which

can be factorized as CV‘1 = LTL. Thus, the optimal solution 7" can be estimated by
Tikhonov as

r=ATA+ iC ) A, 1)

Moreover, the covariance matrix C, of the model coefficients is equivalent to the
diagonal eigenvalue matrix W’ of C = XX". Let L be the matrix containing all model
coefficient vectors, and according to Eq. (7) E = XTU(\/W’)~!, then

L=XE=XxxX"uwwH" (22)
Since XXT = UW'UT(Eq. (6)) and W'is a diagonal matrix, we see that
L=UwWUuTu(vwhH ! =uw'wHt=uvyw. (23)

Let C, = LTL be the covariance matrix of the model coefficient vectors, then

C, =VwuTuvw = w'. 24)

Since W’ = C,, which means that the coefficient r has variance that follows eigen-
values, the stabilizing item can be chosen to be the inverse of the diagonal eigenvalue
matrix W’ to solve the minimization problem of Eq. (19). This ensures that the solution
will be in the boundary of the learning model. Hence, the model parameter o can be
estimated as

a=ATA+ WA (25)

Then, a new face shape s, can be obtained by applying a to Eq. (8) Jiang et al. [4]
have used the same regularization equation in an iterative procedure in order to converge

to a stable solution. In this work, the shape coefficients are calculated directly using
Eq. (29).

3.2 Distance Based Reconstruction

Usually, a good value of the regularization parameter A cannot be known in advance and
the optimal 4 can be only found if the original 3D face is available. The case for real 2D
face images does not exist. On the other hand, increasing 4 makes the solution more stable
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but may result in over-smoothing when 4 is increased excessively. Conversely, when 4 is
too small, unstable behaviour of the solution occurs resulting in a huge variation of the
trained model. Hence, to avoid this problem, the distance between the reconstructed face
and the mean face (sy) is used to compute the face parameter a. The Euclidean distance was
computed between the reconstructed face shape and the mean face (Eq. (10)) to determine
how close the solution is to the mean face.

By calculating D,,, we can avoid the over-smoothing of the solution (the highly
closeness to the mean face) whereas D,, can be considered as a measure of the smooth-
ness. D, has to be not close to 0 to avoid successive smoothness and not so large to
avoid overfitting. Furthermore, D,, was used to control the regularization through the
assumed model’s boundary (Sect. 3.1). First, the average distance D, for all training
face shapes was computed as follows:

n
1 m 1
Dvag = Z Zj=l <; 1_21 I 8ji.0 ~ Sji,reconst ||> (26)

With reference to Sect. 3.1, new reconstructed faces have a distance which is similar
to training face distances, as any new reconstructed face is assumed to be within model’s
boundary. In this situation, the distance of the new reconstructed face can be selected
to be equal to D,,,. Depending on D,,,,, the minimization problem can be represented
as follows:

Recall that (Egs. (11) and (25))

x = Ea. 27
a=ATA+ W) ATy, 28)
Xpew = EATA+ AW ™) ATy (29)

The problem is simplified to find A that satisfy the following equation
Sy =11 EATA+ W' AT — 5o 11, (30)

where D,,,, — € <f(4) < D,,, + € and ¢ is a very small value. Choosing /(1) to be close
to D,,, guarantees that the solution is in the model’s boundary and therefore is plausible

and not over-smooth.

4 Experiments and Discussion

This paper aims at reconstructing 3D faces from their 2D source images using a distance
based approach. By reconstructing 3D faces from real 2D images using Tikhonov regula-
rization, the quality of reconstruction depends on selecting the regularization parameter 1
which works as tradeoff between the prior probability and the accurate selection of feature
points. The proposed method automatically determines the regularization parameter by
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using a predefined value of the distance from the prior average face. The experimental
evaluation aspects of the proposed methods are reported in comparison with reconstructed
testing faces produced by optimal A which has the smallest reconstruction error. In addi-
tion, reconstructed 3D face shapes from input 2D face images were visualized for different
values of D,,. The experiments were categorized in terms of the following three phases:

1. Evaluating the reconstruction of 3D faces through different values of A. At the same
time, D,, was computed for every testing face. The interval of distance D,, that meets
the best interval of A-values was determined.

2. Visualizing reconstructed 3D faces for input 2D face images through different
values D,,.

3. Reconstructing 3D faces from real 2D images for D,, = D,,,, using the proposed
method.

Noticeably, D,, is the distance between the reconstructed face and the mean face.

In the first phase, as reported in our previous work [9], the interval of D,, that meets
the best interval of 1 was determined. This interval was compared with the training face
distances D,, to justify our assumption of this study that every new reconstructed face
shape will have a distance from the mean face that is similar to the training face distances.
In order to test the proposed approach, 3D faces were randomly selected from the testing
set to visualize the reconstructed faces through different values of A including the optimal
A. In the second phase, three examples of 2D face images were randomly selected from
the CMU-PIE database to visualize the reconstruction results among different value of
D,,. In the third phase, the proposed method is qualitatively evaluated through recon-
structing 3D faces from their 2D faces images for D, = D,,,.

The USF Human ID 3D Face database [16] which contains 100 3D faces has been
used. The proposed model has been trained with the 100 3D face shapes. Each face shape
has coordinates of 75972 vertices. They are aligned with each other as explained by [3].
Figure 3 shows 3D face examples from the 3D database including shape and texture.

Face Nr. Facel Face2 Face3 Face4 FaceS Face6

3D face

e
BC@®

Face shape

=

Face texture

BEce

€

Fig. 3. 3D face examples from the USF Human ID 3D database [15].

To evaluate the proposed Distance-based reconstruction method on 3D face recon-
struction, the current 100 face shapes were divided into a training set of m = 80 faces
and a testing set of 20 faces. The testing set was used to evaluate the performance of the
proposed method through different distances from the mean face. From the vertices of
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each test face vector, 25 XY feature point coordinates were selected. The 25 points are
salient points such as nose, eye corners, eyebrows, mouth corners, and face contours.
Similar to Eq. (10), the evaluation was based on determining the average distance
between the points of the original and the reconstructed face shape vectors

n
1
Er = ; Z || Siorig. — Si,reconst. ” (31
=1

In order to qualitatively evaluate the distance-based approach, 3D face shapes were
reconstructed from real 2D face images where the PCA-based model was trained with
the 100 3D face shapes. The evaluation was achieved pertaining to the visualization
aspect of the reconstructed faces using two sets of feature points with different sizes.

4.1 Reconstruction of Testing 3D Face Shapes

Similar to our previous work in [9], the testing faces were reconstructed from 25 feature
points through different values of A. Then, the average reconstruction error of all recon-
structed testing faces was determined. The reconstruction error for every testing face
was determined by using the weighted Euclidean distance in Eq. (31). The reconstruction
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Fig. 4. The effect of A on the average reconstruction errors E,. and the distance from the mean
face for 20 test faces for a given set of 25 feature points, left: noise free feature points and right:
noisy feature points [9].
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error was calculated for f = 25 as the ultimate goal of this study is to reconstruct 3D
faces from a limited number of feature points. To see the effect of noise on the proposed
method, random noises in the range (-5, 5) were added to the 2D point coordinates.
Figure 4 shows the average reconstruction error and average distance D,, of 20 testing
3D face shapes at different values of 4.

The best interval of A that produces the best solution in terms of minimum E, were
observed from Fig. 4(left) and (right) for noise and noise free respectively. Furthermore,
as shown in Fig. 4, the opposite interval of D,, to the best interval of 1 was determined.
Regarding the noise free feature points, the values of A in the interval (10, 1000) produce
the best average of values for all 20 test faces with slight convergence to the average
face as A increases (Fig. 4, left). However, with regard to noisy feature points, the best
interval was (100, 10000) whereas the average reconstruction errors has the minimum
values and D,, is large enough for non-successive smooth solution (Fig. 4, right). For
both noisy and noise free feature points, a value of D,, was located between 0.006 and
0.011 produced an appropriate A that belonged to the best interval. Furthermore, the
interval (0.006, 0.01) was also included in the interval of all training face distances which
is (0.0050, 0.0210). This justified the assumption that any new reconstructed face shape
will be in the model’s boundary. Figure 5 visualizes six reconstructed face shapes for
the same four testing face shapes with different values of 1.

Opt. A
Original i ’ i ’ ‘ ’ € ’ ( , ( ’
@ A 001 1 10 100 1000 2000
Dowoo7; Ef 00139 00114 00082 00066 0.0062  0.0061
im0 Dm 00155 0.0130 0.0096  0.078  0.0070  0.0065
Opt. A
A 001 1 10 250 1000 10000
S E: 0.0057 0.0055 0.0053 0.0051 0.0052 0.0068
Dmi0.0080 1, . 00094 0.0090 0.0084 0.0071  0.0057  0.0022
Opt. A
> QO E
A 001 1 10 100 1000 10000
Do, Ef 00092 00065 00041 00055 00066  0.0082
mi0- Dm 0.0135 0.0117 0.0094 00084 0.0067  0.0039
Opt. A
= = =
=
A 001 1 10 100 1000 10000
E: 0.0091 0.0088 00083 0.0084 0.0087 0.0106

Dm0.0138 1 00118 00112 0.0101 00095 0.0087  0.0050
Fig.5. Reconstructed testing face shapes from 25 feature points. Every testing face has 6 different
reconstructed shapes through different A and different distances D,,. The bolded 4 shows optimal
distance from the ground truth and the bolded D,, shows the nearest distance to D,,.
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For smaller values of 4, the face shape became far from the original shape, D,, is
large, and the face was distorted when A converged to 0. In contract, D,, decreased, the
shape becomes smoother and closer to the mean face, when A converged to infinity. It
was clear that the reconstructed faces with distances close to the average distance D,,,,

were closer to the ground truth. This is illustrated in Fig. 5 where D, for the optimal A

is equal to 0.0096, 0.0094, 0.0094 and 0.0101 for the four visualized testing faces.
To statistically test if the value of D, can be used to determine an appropriate A for

all new faces, the Chi Square (X?) test was applied on the all 100 face distances. The
Chi Square is a statistical test used to test if there are differences between the observations
and the expected value. According to the Chi Square test results in Table 1, there are no
differences between the training set distances and the average distance D,,,, where Chi

P-value is greater than o = 0.05. It was, thus, concluded that D, is appropriate choice

vag
to find an appropriate A for any new input face.

Table 1. Chi Square result

Mean 0.010002513
std 0.002891964
o (Level of Significant) 0.05
Degree of Freedom (DF) 99
Chi Square (X2) 0.082798302
Critical Value (from the Chi | 124.3

Table)
Chi (P-value) 1

4.2 Reconstruction of 3D Face Shapes from 2D Face Images for Variety
of Distances D,,

The visual effects of the proposed model have been tested using the CMU-PIE database
[18]. 3D models for the 2D images have been reconstructed through different distances
D,,. Two sets of 25 and 78 of 2D facial landmarks were used for reconstruction. Using
different sizes of landmarks sets helped to test the robustness of the proposed technique
against variety in landmark number. The input 2D images are in near frontal pose with
most of their expression being neutral. The selected feature points were aligned with the
reference 3D model using Procrustes Analysis, which is the usual preliminary step
before the reconstruction stage. The aligned feature points were used through the opti-
mization function (Eq. (30)) to compute an optimal regularization parameter A for
different distances D,, including D .. Then, 4 was used to compute the face coefficient
o through Eq. (28). Finally, o was used to reconstruct the 3D shape using Eq. (27).
Figure 6 shows reconstructed faces from 25 feature points selected from real 2D
images through different values of Dy,. As shown by the values of D,, = D,,,, = 0.0100

avg*
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and those close to D,,,, such as 0.0080 and 0.0120, the reconstructed face is plausible

and not over-smoothmg. However, the reconstructed faces with distances much less than
D,,, are very smooth (e.g., Dy, = 0.0040) and those with distances much greater that

D,,, are damaged (e.g., Figure 6 the right most column, D,, = 0.0160). This finding is
also consistent with the results shown in Fig. 7 where the 3D faces were reconstructed
from a different number of feature points equal to 78.

2Dimages Dy: 0.0040 0.0060 0.0080 0.0100  0.0120  0.0140  0.0160

 RYRYRAYRIRVA AR 7

A 3402 1331 Avarage

fubbboEY
'@@@@@@E

A 4344 1802

Fig. 6. Given 25 feature points of 2D images (left), 3D face shapes among different distances D,,
were reconstructed. The fifth columns (D,, = 0.0100) shows reconstructed face shapes that have
the distance Dy, which is equal to D,,.

2Dimages Dy 0.0040 0.0060 0.0080  0.0100  0.0120  0.0140  0.0160

R UYYBVBY.

14619 5654

fLLLLLBEY

A 11881 4470 1660 590 165

| RORYRAYL Lo

A: 26905 11625 5040 2154 966

Fig. 7. Reconstructed face shapes from 78 feature points of 2D images (left). Every 2D image
has 7 different reconstructed shapes among different distances D,. The fifth columns
(D,, = 0.0100) shows reconstructed face shapes that has the distance D,, which is equal to D,,,,,.

This indicates that the distance D,, between the reconstructed face shape and the
mean face shape can be used as guidance for a new reconstruction from real 2D face
images. Furthermore, the finding in Figs. 6 and 7 show that the best solutions are those
which have a distance D,, equal or closer to D,,,, = 0.0100.

On the other hand, A can be affected by some factors such as the input face and the
number of feature points. For example, optimal A becomes smaller if the number of
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feature points increases. However, using D,, instead of A for regularization shows
stability against the number of feature points and the different input faces. Figures 6
and 7 show that while the reconstructed face shapes can be affected by using similar 1
among the two sets of feature points, the solution is plausible by the same D,, for the
two sets of feature points, i.e., 25 in Fig. 6 and 78 in Fig. 7.

4.3 Reconstruction of 3D Face Shapes from Real 2D Face Images for D,,,

The results in Sects. 4.1 and 4.2 show that setting Dy, = 0.0100 (D,,,) or any close value to
D,,, is reliable and can produce a good solution for all input faces with different selection
of feature points. An appropriate A was automatically determined using Eq. (30) for
D,,=D,,,. Moreover, the original 2D texture was registered with the reference texture and
warped on the reconstructed 3D face shapes. Figure 8 shows reconstructed faces for three
different input faces by Dy, = D,,,,.. It can be seen that, interestingly the proposed model is
capable of reconstructing 3D face shapes and warp the original texture of the input image
on the reconstructed 3D face shape by retaining realistic facial features.

Input 2D

images
'

Reconstructed faces with Dy, = D,y

Fig. 8. From real near frontal images, the 3D shapes have been reconstructed from 78 feature
points for distance Dy, = 0.0100 (D,,,). The 2D input textures are first mapped on the model
textures and then warped on the reconstructed shapes [15].

5 Conclusion

In this contribution, the standard Tikhonov regularization method has been extended by
replacing the identity matrix with the eigenvalue matrix in order to solve the ill-posed
problem of reconstructing complete 3D face shapes from 2D face images. The proposed
approach has been used to reconstruct the 3D face shape for the given input 2D near
frontal image. However, by using Tikhonov regularization, it is unattainable to identify
an optimal value of the regularization parameter A in advance, and solving the linear
system for every A is time consuming. Hence, we have proposed an approach that auto-
matically determines an appropriate regularization parameter, which is based on the
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distance from the average face due to the fact that sample faces are mostly located at
the boundary of the data space for high dimensional low sample size problems. The
proposed method has been evaluated using appropriate training and testing 3D faces and
real 2D face images by visualizing the reconstructed results. Our reconstruction results
clearly demonstrate the effectiveness of the proposed method. Further we have shown
that the proposed method is able to intuitively retain real characteristic of the given 2D
face images. However, the experiments were carried out on near frontal 2D face images.
In future, we plan to investigate the approach by considering face images that are
subjected to pose and expression variations. Also a good future direction could be to
explore the possibility of applying bio-inspired approaches to tackle the problem under
consideration.
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awarded by Universiti Sains Malaysia.

References

1. Zhenqiu, Z., Yuxiao, H., Tianli, Y., Huang, T.: Minimum variance estimation of 3D face
shape from multi-view. In: 7th International Conference on Automatic Face and Gesture
Recognition, FGR 2006, pp. 547-552 (2006)

2. Widanagamaachchi, W.N., Dharmaratne, A.T.: 3D face reconstruction from 2D images. In:
Digital Image Computing: Techniques and Applications, DICTA 2008, pp. 365-371. IEEE
(2008)

3. Martin, D.L., Yingfeng, Y.: State-of-the-art of 3D facial reconstruction methods for face
recognition based on a single 2D training image per person. Pattern Recogn. Lett. 30, 908—
913 (2009)

4. Dalong, J., Yuxiao, H., Shuicheng, Y., Lei, Z., Hongjiang, Z., Wen, G.: Efficient 3D
reconstruction for face recognition. Pattern Recogn. 38, 787-798 (2005)

5. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia (1990)

6. Blanz, V., Vetter, T.: Reconstructing the Complete 3D Shape of Faces from Partial
Information (Rekonstruktion der dreidimensionalen Form von Gesichtern aus partieller
Information. it + ti - Informationstechnik und Technische Informatik, 295-302 (2002)

7. Blanz, V., Mehl, A., Vetter, T., Seidel, H.-P.: A statistical method for robust 3D surface
reconstruction from sparse data. In: 2nd International Symposium Proceedings of the 3D Data
Processing, Visualization, and Transmission. IEEE Computer Society (2004)

8. Jing, L., Liu, S., Zhihong, L., Meng, S.: An image reconstruction algorithm based on the
extended Tikhonov regularization method for electrical capacitance tomography.
Measurement 42, 368-376 (2009)

9. Maghari, A.Y., Venkat, 1., Liao, 1.Y., Belaton, B.: PCA-based Reconstruction of 3D Face
shapes using Tikhonov Regularization. Int. J. Adv. Soft Comput. Appl. 5, 1-15 (2013)

10. Honerkamp, J., Weese, J.: Tikhonovs regularization method for ill-posed problems.
Continuum Mech. Thermodyn. 2, 17-30 (1990)

11. Jagannath, R.P.K., Yalavarthy, P.K.: Minimal residual method provides optimal
regularization parameter for diffuse optical tomography. J. Biomed. Opt. 17, 106015 (2012)

12. Agarwal, V.: Total Variation Regularization and L-curve method for the selection of
regularization parameter. ECE599 (2003)



13.

14.

15.

16.

17.

18.

19.

Distance-Based 3D Face Reconstruction Using Regularization 493

Ying, L., Xu,D., Liang, Z.-P.: On Tikhonov regularization for image reconstruction in parallel
MRI. In: 26th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, IEMBS 2004, pp. 1056-1059. IEEE (2004)

Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, New York (2009)

Maghari, A.Y., Venkat, 1., Belaton, B.: Reconstruction of 3D faces by shape estimation and
texture interpolation. Asia-Pacific J. Inf. Technol. Multimedia 3, 15-21 (2013)

Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187-194.
ACM Press/Addison-Wesley Publishing Co. (1999)

Maghari, A., Venkat, I., Liao, I.Y., Belaton, B.: Adaptive face modelling for reconstructing
3D face shapes from single 2D images. IET Comput. Vis. 8, 441-454 (2014)

Knothe, R., Romdhani, S., Vetter, T.: Combining PCA and LFA for surface reconstruction
from a sparse set of control points. In: Proceedings of the Seventh International Conference
on Automatic Face and Gesture Recognition - Proceedings of the Seventh International
Conference, pp. 637-642 (2006)

Vogel, C.R.: Computational Methods for Inverse Problems. Society for Industrial and
Applied Mathematics, Philadelphia (2002)



	Distance-Based 3D Face Reconstruction Using Regularization
	Abstract
	1 Introduction
	2 Modeling 3D Face Shape
	2.1 Model Boundary

	3 3D Shape Model Fitting to New Faces
	3.1 Generalized Tikhonov Regularization
	3.2 Distance Based Reconstruction

	4 Experiments and Discussion
	4.1 Reconstruction of Testing 3D Face Shapes
	4.2 Reconstruction of 3D Face Shapes from 2D Face Images for Variety of Distances Dm
	4.3 Reconstruction of 3D Face Shapes from Real 2D Face Images for Davg

	5 Conclusion
	References


