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Abstract. This paper presents a new algorithm based on an analytical approach
for generating non-uniform cubic B-spline which has potential applications in
curve modeling. For a given set of data points, knot vectors are computed using
the centripetal approach. Next, number of data points is assimilated around the
high curvature areas and the parametrization aspect is computed by the inverse
chord length with the new set of data points. Second order derivatives are used
to determine the high curvature areas of the curves. The method proposed here
enables to construct the curves smoothly around high curvature areas by assigning
adequate number of data points for the B-splines. Experimental validations justify
the fact that the average curve fitting error yielded by the proposed approach is
the lowest when compared to other standard curve models.

Keywords: Non-uniform cubic B-spline - Centripetal method - Second order
derivative - Inverse chord length

1 Introduction

Curve modeling plays an important role in describing shapes. There are a few existing
techniques for describing boundary curves or analysis of shapes such as B-splines [1—
5], chain code [6-8], Fourier descriptors [9, 10], polygonal approximation [11-13], and
moments [14]. B-spline has attractive properties such as smoothness, continuity, invar-
iance transformation, and local influence [1]. Compared to the other techniques, its main
attraction is the piecewise polynomial characteristics which enable local controllability
of the curves by using only a few of the neighboring points. Also, in view of these
properties, the construction of a B-spline curve is always complex as it involves exces-
sive computational cost especially on the tuning of parameters. Parameters such as
control points, knot vectors and traveling nodes (parametrization) are required to be
precise enough in order to construct a smooth curve. Besides tuning of parameters,
interpolating a curve from a given diverse set of data points (an example is shown in
Fig. 1) imposes a major challenge in curve modeling. A new approach based on tangent
estimation for cubic B-spline has been proposed by Chen et al. [15]. Basically, the
tangent points which are computed using a heuristic method serve as seed points. These
seed points will define the seed segments and Bezier technique is used to construct the
approximation curves for these segments. Further, these approximation curves are
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sequentially extended to other tangent points by means of a curve unclamping technique
[16, 17]. Genetic Algorithm (GA) has been proposed by Bein et al. [18] to solve uniform
cubic B-splines using densely sampled curves. The knot points and sharpness informa-
tion of the input curve points are basically represented as genes (chromosomes) in the
GA approach.

Fig.1. Anexample curve showing high and low curvature areas. High curvature points (dots that
connect every line) are obviously detected on the high variation areas as indicated (circle). Notice
that, the points located around the convex and concave areas are also determined as high curvatures
points (circles and boxes).

Fig.2. Anexample of a poorly generated boundary curve. Shape of the curve is not well presented
especially at the high variation areas. The degree of bending around these areas is not satisfactory.

The fitness function is defined between the constructed B-spline curve and the given
input curve. Besides this, the fitness function has also been combined with a number of
control points. The fitness error tends to reduce when the number of control points is
increased. A serious limitation inherent in this GA-based interpolation method is the
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increased computational cost as a consequence of excessive tuning of parameters.
Without a good estimation of parameters, the curves will not be able to present the best
shape especially at the convex and concave areas. Hence, a new Analytical Curvature
(AC) B-spline algorithm here is proposed to solve the above mentioned potential prob-
lems. Initially, the sequence of the data points to generate a curve is arranged in sequen-
tial order. Next, curvature of the initially generated curve is estimated using second order
derivatives. The high curvature (convex and concave) areas are selected and recorded
into a list. Knot vectors are computed using the centripetal method. A new set of data
points is generated optimally by gradually increasing the number of points at the high
curvature areas based on the recorded list. Ultimately, the traveling nodes (parametri-
zation) are computed using inverse chord length with the new set of data points. This
paper is structured as follows. Section 2 briefly describes relevant related works
pertaining to curvature models and B-splines. Section 3 explains the methodology aspect
of the proposed AC B-spline algorithm. Section 4 presents experimental results and
discussions. Section 5 finally concludes the paper.

2 Related Work

Curvature is basically computed using tangent angles [19, 20]. For example,
suppose that there are two points A and B with a fixed chord length on the curve.
Tangents are calculated for A and B and the angle between positive directions of
both tangents are estimated. Then, the limit of the angle between the tangents at
both the points yields the curvature. Arc-chord distance [21] was proposed to deter-
mine the peak points of the curve. First, a chord is chosen based on a point and its
perpendicular arc. Then, along the chord, local maximum is computed to determine
the local point. These two methods can determine curvatures to a reasonable preci-
sion. However, they involve the tedious process of estimating the curvature for the
whole curve. Second order polynomial [22] is simpler compared to the above
methods. It uses second order derivatives and neighboring points to calculate the
curvature. There are techniques [23, 24] using second order derivatives and B-spline
curves to detect corners and represent the curve. But, these approaches are different
from the method proposed here. The curvature model proposed by Abbas et al. [23]
focusses on uniform cubic B-spline curves instead of non-uniform curves. B-spline
curve heavily depends on knot vectors and parametrization, which can also be
defined as a set of traveling nodes. The traveling nodes tend to move between the
knot intervals in order to compose the B-spline curve using the data points. Hence,
it is important to clearly understand the relationship between the knot vectors and
the parametrization. The estimation of knot vectors plays an important role in B-
spline based curve modeling approaches. Genetic algorithms (GA) has been
proposed to estimate the knot vectors by Rony and Michel [25]. Knot vectors are
assigned as the control variables (chromosomes) in the GA approach. This method
requires excessive tuning of parameters in order to obtain good results. Gaussian
mixture model (GMM) [26] is used to construct the best knot vectors.
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Initial location of the knot vectors is determined using the Monte Carlo approach.
Next, GMM is used to determine the probability distribution of all knots based on
the data points. The drawback of this method is the size of the data points. It is more
suitable to estimate the knot vectors for large scale data. Uniform [27], chord length
[28], centripetal [29], inverse chord length [3] and Foley and Nielson [30] are the
well-known parametrization techniques which have been widely implemented.
Haron et al. [31] proposed a new methodology to overcome the drawback of the
hybrid parametrization technique which will produce a singular matrix when the
distance between the traveling nodes is equal to zero. The traveling nodes are
computed using an exponential approach and a new parameter which is associated
with the maximum value of the B-spline function is calculated. The difference
values between the traveling nodes and the new parameter are calculated. Finally, a
new set of traveling nodes is estimated using the difference values. A refined centri-
petal [32] is proposed to improve the traveling nodes. The parametrization is carried
out using osculating circle at each point. Besides, a fine wiggle validation method
is also proposed to determine the performance of all the methods. Precise paramet-
rization is obtained from the refined centripetal, but it involves a considerable
computational cost when compared to the conventional methods.

3 Analytical Curvature (AC) B-Spline Interpolation Method

3.1 Analytical Curvature

Analytical curvature is used to determine the high variation (bending) areas on the
curves. The curvature values that are estimated in these areas are mainly higher
compared to the low variation areas. A corner regardless of being convex or concave is
defined as a high curvature point [33]. In the AC B-spline, one of the main goals is to
identify the set of high curvature points on the curves so as to increase the number of
data points within these areas. Basically, the curvature is calculated with the parame-
terized curve, C(s) = (x(s), y(s)), using the second order derivatives method [33] with
the equations below:

x(s) = a3s2 +a,s+a @)

¥($) = bys> + bys + b, 2
with s € [—q,, g,]. Parameter, s, is the coverage range of C within —g; and g, in deter-
mining the curvatures. When s is equal to —¢,, 0, and ¢,,

asq; — arq, + ay = Xim, 3)
dy =4 @

2
azq, — dxq, +ay = Xipy, 5)
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X and x are the left and right side of x; data point. The number of selected

neighboring points is determined based on m where m = 0.02n and 7 is the total number
of data points. The selection is more flexible when the neighboring points are increased
according to the number of data points. This adjustment is able to reduce certain amount
of noise while generating appropriate high curvature points. The parameter g is usually
assigned as 1. However, in this method, g is determined based on the distance between
the neighboring points. g, is the Euclidean distance between x;_,, and x; where g, is the

i—my, i+my

m

Euclidean distance between x; and x,,,, . Coefficients by, b, and b3 can be computed

. g
using,
byq; — byg; + by = Yicm, (6)
by =y, @
byq> — byg, + by =Yy, 8)

Hence, a,, as, b, and b; are computed using Egs. (3)—(8). Then, the curvature is
calculated as follows:
i = 2(aybs — azb,)
B 3 ©)
(a% + b%)Z

It is constructed based on the formula:

X’ yl |
X” /!
k= - (10)
(xIZ + y/Z)E

Positive and negative curvature values are generated from the set P of data points
based on Eq. (9). The negative values are ignored because the values only indicate the
concave points whereas positive values indicate the convex points. Hence, absolute
curvature values, |k;l, are computed, in order to select high curvature points

K={ 1 if || > ¢ an

0 otherwise i=1,...n

where

|max(k) — min(k)|
¢= 3
n
£ is the threshold value in Eq. (11). Then, a list, L, which defines the high curvature areas
is sorted out from K. For example, if the high curvature points in P are from K;h point

12)

till Kl‘f_l point, then L; € [K;,K;,,], i =1,...v and v represents the number of high
curvature areas. In the AC B-spline, in order to join the high and low curvature areas
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smoothly, two neighboring points for both sides are included into L where
L; € [K; - 2,K;,; + 2]as shown in Fig. 1. The neighboring points are indicated with the
triangles.

3.2 B-Splines
The piecewise polynomial function of B-spline is given below:
N )= pByw), i=1,...n (13)
i=1

The piecewise polynomial function can be defined recursively:

_ 1 i fu<ty,
By _{ 0 otherwise (14

(u—1)B; 1 () + (T — WB 1y 4o ()
livk—1 — livk = lin

where p is the control points of the B-splines, k is the (d + 1) order, d is the degree of

the basis function polynomial, ¢ represents the knot vectors, and u is the traveling node

(parametrization). A smooth B-spline curve can be constructed with the following char-
acteristics:

B (u) = 15)

1. Control points p that are especially located at high variation areas are allocated within
the same knot interval, [#;, 7, ;]

2. When the control points are close to each other, the speed of the traveling node u is
decreased.

3. When the control points are far from each other, the speed of the traveling node u is
increased.

A new constructive scheme to define all the parameters to construct a B-spline curve
are proposed as follows:

1. Non-uniform cubic B-splines d = 3 are used to represent the curve;

2. Centripetal method using the set P of data points is used to estimate the knot vectors;

3. Increase the number of data points on the high curvature areas; A new set P’ of data
points is generated.

4. uis computed using the inverse chord length [3] with the aid of P’.

Next the proposed AC B-spline interpolation algorithm is described, which consists
of the following steps:
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1. Calculate the knot vectors ¢ using the centripetal method with P
1
Aty =Py — F|%, i=1,...,n and a=g (16)

2. for(i=1;i<100;¢++) {
for(j=1Lj<m+1lm++){

3. A new interval list, ¢ € [Pk, 2, Px;,,+2]. containing 4 points is
generated.
4. % is inserted into P starting PKJ. _o till PK]. 12 }
7
A new set of data points, P, is generated where b =1,...,w and w is
the size of the new data points.
. . ’
6. Inverse Chord Length is used to compute u with P
u max 1

a7

A’ll.,‘ = Ujt1 +

w1
YIB - Pyl 2= fimr—mry

wherei=1,...,w, ¥ max = W — 2(for cubic B-spline) and y > 100.
The estimation of parameter 7y (refer Fig. 3) has an impact on the curve
fitting error.

7. The B-spline curve, N, with control points, p, knot vectors, ¢, and traveling
node, u are identified. The data points, P, are assigned as the control

points.
8. Curve fitting error, €, between N and P is calculated using the formula:

=Y [|[B-Ni|, i=1,...,n (18)
i=1

where IV is the nearest neighboring point set with P.
9. If(e; — &;—1) < 0.005, stop the iteration. }

Most of the knot vectors are estimated uniformly. However, it may not be suitable
when the distribution of the data points is in irregular form as shown in Fig. 3b.

e Jea
— V=100
Data Points

— ——  Inverse Chord Length
Analytical Curvature B-spline

Curve Fitting Error, ||, - N, ||

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 o 2 0 Py a0 100 120

7
X-Axis

Fig. 3. Identification and empirical experiment of y value. (a) Identification of y value. The y
value is sequentially increased and the curve fitting error is calculated simultaneously. Two
methods are implemented in order to observe the variation of the y. The error values gradually
become constant as the value of y is increasing for both methods. (b) y =4 and y = 100. The shape
model yielded by the proposed AC B-spline algorithm for a given input. The curve with y = 100
is smoother compared to y = 4.
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(a) Foley (b) Chord Length (c) AC B-Spline

(d) Apple (e) Hand (f) Rabbit

(g) Heart (h) Alphabet ‘e’ (1) Number ‘5’

Fig. 4. Some sample results from various datasets are shown, where the ‘cross’ signs represent
the data points and also the control points. Figure 4a—c represent some example results generated
by the Foley, chord length and the proposed AC B-spline approaches. It can be seen that the
proposed AC B-spline approach fits smoother curves when compared to the Foley and chord length
approach especially at the convex and concave areas. Figure 4d—f represent three sample shapes
that have been extracted using the Harris corner detector. We can observe that the shapes of these
images are fitted reasonably well using the AC B-spline. Figure 4g—i represent three sample results
(randomly chosen) fitted by selecting the least number of data points from the images. The purpose
is to test the effectiveness of the proposed AC B-spline approach when less number of control
points is being considered. It can be observed that, the shape of the heart, the alphabet ‘¢’ and
numerical ‘5’ are all constructed smoothly as well.

Hence, non-uniform estimation for knot vectors is considered. By considering the
traveling nodes along the curve where the distance of each two adjacent points is
proportional to u, the control points, especially those located at high variation areas or
complex turning points must be allocated into the same knot interval. Hence, centripetal
method (Eq. (16)) is chosen to estimate . The knot vectors must be a non-decreasing
sequence of real numbers. In our case, it is a periodic B-spline which closes on itself.
The high variation areas are usually difficult to handle in boundary curve or shape
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analysis as shown in Fig. 2. The number of data points is increased on the high curvature
areas, so that smooth shapes are obtained. The number of points for the insertion is
decided automatically (step 3 and step 4 of the method) by estimating the curve fitting
error between P and N.

Inverse chord length is proposed in this method because it is able to fulfill the char-
acteristics that have been described earlier. The traveling nodes that are computed using
inverse chord length are able to control the shape of a given input object based on the
distance between the control points. The parameter y is estimated empirically as shown
in Fig. 3a. Figure 3b illustrates the construction of the shape of a rabbit (input object)
when different values of y are applied. y with 4 is the value that was suggested by [3].

4 Results and Discussions

For experimental evaluations, Chui-Rangarajan synthesized dataset [34], SIID silhou-
ette dataset [35] and some randomly created shapes are used for testing purposes. Feature
extraction is carried out on SIID dataset using Harris corner detector [36] because only
images are provided instead of data points. B-splines curve generated using uniform,
centripetal, chord length, inverse chord length, Foley and Deboor [37] parametrization
techniques with the uniform knot vectors are compared with the AC B-spline in this
experiment. One hundred of fish shapes from the synthesized dataset are tested with all
of the methods and the average of the curve fitting error is estimated for every method.
The average error values of the fish shapes are presented in Table 1.

Table 1. Comparison of the proposed AC B-spline approach with other standard curve models
in terms of average curve fitting error. One hundred fish shapes from the Chui-Rangarajan synthe-
sized dataset [34] have been used for this experimental evaluation.

Standard methods Average curve
fitting error
Uniform 0.3223
Centripetal 0.3330
Chord length 0.5227
Inverse chord length | 0.2898
Foley 0.5645
Deboor algorithm 0.2902
AC B-spline 0.2749

Overall, the lowest curve fitting error is achieved by the AC B-spline and highest
error is yielded by the Foley parametrization approach. The effectiveness of these
methods is also evaluated when the number of data points is gradually increased in order
to produce a smoother curve. In general, we observe that as the number of the data points
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increases, the shape of the curve gets smoother and the curve fitting error tend to
decrease. The graph shown in Fig. 5 compares the performance of the proposed AC B-
spline with some standard curve modeling approaches. The average curve fitting error
for all the methods tends to reach a constant when the number of data points is gradually
increased. AC B-spline shows good results with the lowest error values.

1.2
S — Uniform
_____ Centripetal
io 4 | Chord length
. \\ —_— Inverse chord length
= \\| —_———— — Foley
Z. _ Deboor Algorithm
o 058 - \\b\ — — ACB-spline
= \
S
T 0.6
o)
£
=
L 04 -
)
2
S
@)
0.2 1
0.0 T T T T T T ! '

0 10 20 30 40 50 60 70 80

Number of Data Points

Fig. 5. Graph showing the variations of the average curve fitting error number when the data
points are being gradually incremented. The graph shows that the proposed AC B-spline approach
has the lowest error when compared to other standard curve models.

Inverse chord length and De Boor algorithm also exhibit satisfactory results
compared to other methods. Foley and chord length become constant, however, the error
values are always higher than the other methods. Figure 4a—c represent some fish shapes
taken from the Chui-Rangarajan synthesized dataset. We can observe that the shape of
the fish fitted by the AC B-spline approach is better when compared to Foley and chord
length parametrization which use uniform knot vectors. In particular, Fig. 4c witnesses
the fact that the shape of the curve formed is smoother at the high convex and concave
curvature areas. Some more example shapes fitted using the AC B-spline approach have
been shown in Fig. 4d—i.

5 Conclusion

In this work, it is shown that the analytical curvature (AC) B-spline method proposed
here is able to provide effective results in curve modeling. The method is proposed based
on the understanding of: (1) control points especially on high curvature areas must be
allocated within a knot interval, (2) the traveling nodes (parametrization) must be



An Analytical Curvature B-Spline Algorithm 293

controlled carefully in order to model a curve. Hence, a second order derivative based
method is used to determine the high curvature points and the number of data points is
increased within these areas. Next, the new set of data points can be used to estimate
the parametrization using inverse chord length in order to produce a smooth curve. AC
B-spline shows better results when compared with the other methods. For future work,
improvement on the proposed method can be explored by manipulating the control
points, besides extending the approach to 3D curve modeling.
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