
A Membrane Computing Model for Generation
of Picture Arrays

Pradeep Isawasan1, Ibrahim Venkat1, Ravie Chandren Muniyandi2,
and K.G. Subramanian3(B)

1 School of Computer Sciences, Universiti Sains Malaysia,
11800 Gelugor, Penang, Malaysia

2 Faculty of Information Science and Technology, School of Computer Science,
Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

3 Department of Mathematics and Computer Science, Faculty of Science,
Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK

kgsmani1948@gmail.com

Abstract. In the bio-inspired area of membrane computing, P system
is a versatile model providing a rich framework for many computational
problems. Array P system and its variant with parallel rewriting facili-
tate the study of picture languages within this area of membrane com-
puting. Here another variant of array P system, called tabled parallel
array P system (TPAP), is introduced, by endowing it with the features
of parallel rewriting and tables of array-rewriting rules. The generative
power of TPAP as well as the ability of this system in describing picture
patterns are investigated.

Keywords: Bio-inspired computing · Membrane computing · P sys-
tem · Picture language

1 Introduction

Membrane computing (MC) is an emerging area of natural computing, initiated
by Paun [6] around the year 2000. The novel computing model proposed in MC,
called membrane system (subsequently referred to as P system in honour of its
originator) was inspired from the structure and functioning of living cells. The
P system has proved to be a suitable framework for solving many computational
problems in different fields of research and investigation [3,7]. Several research
directions have emerged applying techniques of membrane computing [6,7]. One
such study is on problems related to digital images falling under the broad area
of computer vision [3].

On the other hand, motivated by problems arising in image processing and
pattern recognition, a variety of two-dimensional (2D) array grammars, as gener-
alizations of formal string grammars [9], have been introduced and investigated
[2,4,8,15]. These 2D grammars generating picture languages consisting of dig-
itized images or picture arrays, have also turned out to be potential tools for
c© Springer International Publishing Switzerland 2015
H. Badioze Zaman et al. (Eds.): IVIC 2015, LNCS 9429, pp. 155–165, 2015.
DOI: 10.1007/978-3-319-25939-0 14

156 P. Isawasan et al.

dealing with application problems [12,15]. The two areas of picture grammars
and P systems have been linked in [1], thus providing enriched techniques for
dealing with application problems in the broad area of computer vision (see, for
Example [3] p. 617).

A variant of array P system [1], known as parallel array P system was recently
introduced in [14] and a further improvement in this system was made in [5],
in terms of reduction in the number of membranes used in generating certain
picture languages. In formal language theory, one of the main studies is on the
language generating capability of the grammars, referred to as the generative
capacity, which depends on the types of rules. Also a standard technique to
increase the generative capacity is to endow the rules with additional features. In
this paper, the parallel array-rewriting P system is investigated by incorporating
in the regions of the P system, the feature of having tables of rules, well-known
in formal language theory, especially in Lindenmayer systems [10] and examine
the generative power. We also provide an application to generation of picture
patterns.

2 Preliminaries

We recall needed notions and results on array grammars [2,4] and array P sys-
tems [1]. We refer to [9] for concepts related to formal language theory.

Let V be a finite alphabet. In the two-dimensional plane Z2, a non-empty
finite array A over V, also called a picture array, is made of a finite number
of unit squares (also called cells or pixels) in the plane, with each square of
A being labelled by a symbol of V. An empty square in the plane is indicated
by labelling it with the blank symbol # /∈ V. The collection of all non-empty,
connected finite arrays over V is denoted by V ++. An array language is a sub-
set of V ++. More precisely, an array is a mapping A : Z2 → V ∪ {#} with
a finite support, given by supp(A) = {v ∈ Z2 | A(v) �= #}. We can spec-
ify an array by listing the pixels v of the support, along with the symbols
in the respective pixels. For example, Fig. 1 shows a picture representing the
English alphabetic letter Y that has its cells labeled by a. If we assume that
the cell having label a in the bottommost pixel of the vertical arm of the let-
ter Y has coordinates (0, 0), then the array in Fig. 1 is given by listing the
(cordinate, label) pairs of all the cells belonging to the picture array as fol-
lows: Y = {((0, 0), a), ((0, 1), a), ((0, 2), a), ((0, 3), a), ((−1, 4), a), ((−2, 5), a)} ∪
{((−3, 6), a), ((1, 4), a), ((2, 5), a), ((3, 6), a)}. Since only the relative positions of
the symbols in a picture are needed for describing a picture, we can use a pic-
torial method to denote a picture array indicating only the non-blank labels of
the cells, without mentioning their coordinates. For example, the array in Fig. 1
is shown in this manner, where the symbols a constitute the body of the picture
representing the letter Y. An array production or array rule r over V, written
as A → B is a triple r = (W,A,B), where W is a finite subset of Z2 and A,B
are arrays with their supports included in W . For two arrays C,D over V and a
production r as above, we write C ⇒r D if D can be obtained by replacing by

A Membrane Computing Model for Generation of Picture Arrays 157

Fig. 1. A picture array representing the letter Y

B, a subarray of C identical to A, in the sense that the subarray of C is geomet-
rically identical to A and the corresponding pixels in the subarray and A have
the same label. The reflexive and transitive closure of the relation ⇒ is denoted
by ⇒∗.

An array production r = (W,A,B) is called (i) context-free, if supp(A) ⊆
supp(B) and card(supp(A)) = 1, where card(Z) is the number of labelled cells
in the array Z and (ii) regular if it is in any one of the following forms: A # →
a B, # A → B a,

#
A

→ B
a

,
A
→ a

B
, A → B, A → a, where A,B are

nonterminals and a is a terminal.
An array grammar is a construct G = (N,T,#, {((0, 0), S)}, P), where N,T

are disjoint sets symbols, respectively called nonterminal symbols and terminal
symbols, # /∈ N ∪ T is the blank symbol, S ∈ N and P is a finite set of array
rewriting rules A → B such that at least one pixel of A is marked with an
element of N ; usually, the axiom array {((0, 0), S)} will be simply written as S.

An array grammar is context-free or regular if all its rules are context-free
(CF) or regular respectively. There is a unique non-blank pixel marked with
a nonterminal in the left hand array of each context-free or regular rule. The
array language generated by G is L(G) = {A ∈ T++ | {((0, 0), S)} ⇒∗ A}.
The families of array languages generated by context-free, and regular array
grammars are denoted by ACF and AREG respectively. The following strict
inclusion is known [1]: AREG ⊂ ACF .

Example 1. We give an illustration of derivation in an array grammar with rules

p1 :
#

S
#

→ A B
a
C

, p2 : #
A

→ A
a , p3 : #

B
→ B

a , p4 : C
→ a

C ,

p5 : A→a , p6 : B→a , p7 : C→a where S,A,B,C are nonterminals and a is a
terminal symbol. A sample derivation starting from the start symbol S with the
rules applied in the sequence p1, p2, p5, p3, p6, p7, is given below:

S ⇒ A B
a
C

⇒
A
a B
a
C

⇒
a
a B
a
C

⇒
a B
a a
a
C

⇒
a a
a a
a
C

⇒
a a
a a
a
a

.

We note that the rewriting is sequential with only one rule applied in a single
step of derivation and hence the picture array Y generated need not have all three
arms equal in length, where the length of an arm is the number of symbols a
along an arm, counting from the “centre” symbol a.

158 P. Isawasan et al.

In [14], a variant of the array P system of [1], called parallel array P system (PAP)
was introduced by incorporating the feature of parallel rewriting of arrays in the
regions. We now recall the parallel array P system.

Definition 1 [14]. A parallel array P system (PAP) is a construct Π = (V, T,
#, μ, F1, . . . , Fm, R1, . . . , Rm, io), where the components are defined as follows:
V is the alphabet of nonterminals and terminals, T ⊆ V is the terminal alphabet,
/∈ V is the blank symbol, μ is a membrane structure with m membranes labelled
in a one-to-one way with 1, 2, . . . , m; F1, . . . , Fm are finite sets of arrays over V
associated with the m regions of μ; R1, . . . , Rm are finite sets of array rewrit-
ing rules over V associated with the m regions of μ; the array-rewriting rules
(context-free or regular) of the form A → B(tar) have attached targets “here”,
“out” or “in” (The meaning of here is that the array remains in the same region,
out means that the array exits the current membrane, and in means that the array
is immediately sent to one of the directly lower membranes, nondeterministically
chosen if several exist; if no internal membrane exists, then a rule with the target
indication in cannot be used)(in general, we omit mentioning “here”); finally, io
is the label of an elementary membrane of μ which is the output membrane.

The application of context-free rules in processing an array in a region is
done in a parallel manner as described below: We require that context-free array
rules are applied to all the nonterminals in the array being processed in a region.
In other words for every nonterminal A in an array being processed in a region,
if there is a context-free array rule that can rewrite a subarray containing this
nonterminal A with other pixels, if any, in this subarray having the blank symbol
#, then a set of such rules is used to rewrite all such nonterminals in the array.
Since every rule in a region has one of the target indications “here”, “in”, “out”,
we require that all the context-free array rules applied to an array in a region
should have the same target indication. If in a region, no set of rules having
the same target indication is available for rewriting all the nonterminals in an
array in that region, then the array is not processed and remains in the same
region. Also, if two context-free array rules A → B, C → D when applied to an
array overlap in their application in the sense that arrays C and D have to use
some common pixels for successfully applying the rules, then the array is not
rewritten. In other words, we consider only the overlap-free case. The families
of all array languages generated by parallel array P systems as above, with at
most m membranes, with CF and regular array rules are respectively denoted by
PAPm(CF) and PAPm(REG).

Remark 1. (i) The situation of deadlock that might arise when a set of context-
free rules with different target indications are applied to an array, is avoided
in a parallel array P system by requiring that all the rules applied in parallel
to an array have the same target indication.

(ii) The feature of rewriting in a derivation step all nonterminals in an array in
parallel in a PAP is on the lines of the standard technique of parallel rewrit-
ing in Lindenmayer systems in the string case [10]. Recently, in [5], besides
this kind of parallelism, the feature of maximal parallelism in the style of

A Membrane Computing Model for Generation of Picture Arrays 159

membrane computing is also considered and results in [14] are improved in
terms of lesser number of membranes for the constructions involved.

We now illustrate derivation in a parallel array P system having the same rules
as given in Example 1.

Example 2. Consider the following parallel array P system with array context-
free rules: Π1 = ({A,B,C, a}, {a},#, [1 [2]2]1, { A B

a
C

}, ∅, R1, R2, 2), with R1

containing the rules p1, · · · , p7 as in Example 1 but the rules p5, p6, p7 having
the target indication in and R2 is empty.

Starting with the axiom array
A B
a
C

in region 1, all three arms are grown together,
one symbol at a time, by applying in parallel the rules p1, p2 and p3 as many
times as needed. Note that these rules have the same target indication (here,
which is understood if it is not mentioned). When the rules p5, p6 and p7 (having
the same target indication in) are used, the derivation halts and the array in the
shape of Y with equal arms enters region 2, where it is collected in the language
generated. Note that there are no rules in region 2 and hence no array in region
2 can evolve further.

3 Tabled Parallel Array P System

Wenow introduce a variant ofPAP, calledTabled parallel arrayP system (TPAP),
by employing a well-known technique, called tables of rules, of grouping rules, espe-
cially used in Lindenmayer systems [10]. This enables a specific collection of rules
being used at a time and enhances the generative power. This technique has been
adopted in array generating systems as well (see, for example, [13]).

Definition 2. A tabled parallel array P system (TPAP) is a construct

Π = (V, T,#, μ, F1, . . . , Fm, R1, . . . , Rm, i0),

where the components are as in PAP except that the finite sets of array rewriting
rules R1, . . . , Rm contain tables of array-rewriting rules (context-free or regular)
of the form t = {Ai → Bi | 1 ≤ i ≤ m, m ≥ 1} (tar) (Ai and Bi are arrays) with
an attached target indicated by tar, which can be “here”, “out”, “in” (in general,
we omit mentioning “here”), with the usual interpretation. The application of a
table of rules in processing an array in a region is done in a parallel manner in
the sense that all the nonterminals in the array being processed in a region, are
rewritten by the rules in a table. Also we consider as in the case of PAP only the
overlap-free case. The families of all array languages generated by tabled parallel
array P systems as above, with at most m membranes, with CF and regular array
rules are respectively denoted by TPAPm(CF) and TPAPm(REG).

Example 3. Consider the following tabled parallel array P system with array
context-free rules: Π2 = ({A, B, C, D, X, W, Y, Z, a}, {a, b},#, [1 [2]2]1, { A D C

a a B
A D C

}, ∅,
R1 = {t1, t2(in)},R2 = ∅, 2), with

t1 = { A→A , D→D , C # → D C , B # → a B } , t2 = { A→X , B→a , C→Y , D→Z , }

160 P. Isawasan et al.

t3 =
{

X
X → a

, X a
→ X , # Z

Z → b
, Z b
→ Z , Y a

→ Y , # Y
Y → a

,
}

, t4 = { X→a , Y→a , Z→b }.

Starting with the axiom array
A D C
a a B
A D C

in region 1, if rules in table t1 are applied

in parallel, then a column is added to the array yielding
A D D C
a a a B
A D D C

and the process
can be repeated till t2 is applied which changes nonterminals A,C,D in X,Y,Z
and the array is sent to region 2. Here if the rules of table t3 are applied, then
a row above and a row below with reference to the middle row are added and
the process can be repeated any number of times, thus yielding an array of the
form shown in Fig. 2a. An application of the rules of the table t4 changes all the
nonterminals into corresponding terminals yielding arrays over {a, b} of the form
shown in Fig. 2b. These arrays are collected in the picture language generated
by the TPAP Π2. We note that if the symbol b is interpreted as blank, then
these arrays represent the letter H with equal length vertical arms made of the
symbol a, above and below the middle horizontal row also made of the symbol
a, one member of which is shown in Fig. 2c.

Fig. 2. (a): An array generated in an intermediate step of derivation in Example 3
(b): An array generated in a completed derivation in Example 3 (c) An array repre-
sentation of the letter H

The array productions we have so far considered are known as the isometric
variety in the sense that the arrays in the left and right sides of the rule are
geometrically identical in shape. In contrast to this, in the non-isometric variety,
the rules that rewrite or generate arrays are analogous to the string grammar
rules in the sense that application of a rule u → v, where u, v are either strings
or arrays, would mean that enough ‘space’ is created by ‘pushing’ symbols, if
needed, for v to replace u. There are many array grammar models of the non-
isometric variety generating m × n (m,n ≥ 1), rectangular arrays of symbols
with m number of rows and n number of columns and among these we consider
here the two-dimensional right-linear grammar with tables of rules [13], which
we call here as a tabled two-dimensional right-linear grammar, consistent with
the terminology used in [4].

Definition 3. A tabled two-dimensional right-linear grammar (2TRLG) [13] is
G = (Vh, Vv, Vi, T, S,Rh, Rv) where Vh, Vv, Vi are horizontal, vertical and inter-
mediate finite sets of nonterminals; Vi ⊂ Vv; T is a finite set of terminals;
S ∈ Vh is the start symbol; Rh is a finite set of horizontal rules of the form
X → AY,X → A X,Y ∈ Vv, A ∈ Vi; Rv is a finite set of tables of vertical rules
with a table consisting of either only rules of the form X → aY or only rules of
the form X → a, X, Y ∈ Vi, a ∈ T.

A Membrane Computing Model for Generation of Picture Arrays 161

There are two phases of derivation in a 2TRLG. In the first phase, starting with
S the horizontal rules are applied (as in a regular grammar) generating strings
over intermediates. In the second phase each intermediate in such a string serves
as the start symbol for the second phase. The vertical rules of a table are applied
in parallel in this phase for generating the columns of the rectangular arrays over
terminals. When the table with the terminating vertical rules of the form B → b
is applied the vertical generation halts, with the array obtained collected in
the picture language generated by the 2TRLG. Note that the picture language
generated by a 2TRLG consists of rectangular arrays of symbols. When there are
only two tables of vertical rules with one of these containing all the rules X → aY
and the other table containing all the rules of the form X → a, X, Y ∈ Vi, a ∈ T,
then the 2TRLG is simply called two-dimensional right-linear grammar (2RLG)
[4]. We denote by L(2RLG) and L(2TRLG) the corresponding families of array
languages generated by tabled two-dimensional right-linear grammars and two-
dimensional right-linear grammars. The following strict inclusion is known [13].

Lemma 1 [13]. L(2RLG) ⊂ L(2TRLG).

Lemma 2. L(2TRLG) ⊆ TPAP2(CF).

Proof. Given a 2TRLG G = (Vh, Vv, Vi, T, S,Rh, Rv), we construct a TPAP Π3

with two membranes and CF array rules as follows:
Π3 = (Vh ∪Vv ∪{A′ |A ∈ Vi}∪T, T,#, [1[2]2]1, ∅, {S}, R1, R2, 2). R2 consists

of two tables of rules t1, t2 with target (out) for t2, given by

t1 = {X # → A′ Y , A′ → A′ |X → AY ∈ Rh, X, Y ∈ Vh, A ∈ Vi},

t2 = {X→A |X → A ∈ Rh, X ∈ Vh, A ∈ Vi} ∪ {A′ → A |A ∈ Vi}(out)

For each table t in Rv with rules of the form B → aD, B,D ∈ Vv, a ∈ T, R1

consists of a corresponding table with rules of the form B
→ a

D while for each
table t′ in Rv with rules of the form B → a, B ∈ Vv, a ∈ T, R1 consists of a
corresponding table with target (in) and rules of the form B → a. We note that
the tables of rules of R2 simulate the derivations in the horizontal phase of G
generating strings of intermediates. In fact, the rules with target indication out
terminate a derivation whenever termination happens in the first phase of G and
the string is sent to region 1. In this region 1, the tables of rules of R1 simulate
the parallel derivation of the second vertical phase of G generating rectangular
arrays of the picture array language of G which are sent to region 2. �
Lemma 3. TPAP2(CF)\L(2TRLG) �= ∅.

Proof. Consider the picture language Lc consisting of rectangular arrays with a
middle row of symbol c and an equal number of rows above and below this row,
with each of these rows made of symbol a. This language is generated by the
tabled parallel array P system Π4 = (V, T,#, [1[2]2]1, ∅, {S}, R1, R2, 2), with
V = {S,A,B, a, c}, T = {a, c}; R2 consists of tables of rules t1, t2(out) and R1

consists of tables t3, t4(in); t1 = { S → AS , S → A , A → A }, t2 =
{

#
A
#

→ B
c
B

}

162 P. Isawasan et al.

t3 =
{

B
→ a

B , #
B

→ B
a

}
, t4 = { B → a }. In region 1, there is no initial array but

in region 2, starting with the initial symbol S, the rules of table t1 generate
arrays with one row of the symbol A (of any desired length). This is followed by
the application of the rules of table t2 generating an array of the form

B B ... B B
c c ... c c
B B ... B B

which is then sent to region 1. Here the application of the rules of table t3
as many times as we need, add rows made of the symbol a, equal in number,
above and below the rewritten array, with the rewriting finally terminated by
an application of the rule of table t4. The arrays generated are sent back to
region 2, where they are collected in the picture array language generated by
Π3, constituting the language Lc. But this language cannot be generated by any
2TRLG, since the tables of rules in such a grammar are regular array rules and
hence there is no ability for the grammar to check the equality of the number of
rows made of a, above and below the middle row of c, although a row of c can
be generated. �
The following Theorem is a consequence of Lemmas 1, 2 and 3.

Theorem 1. L(2RLG) ⊂ L(2TRLG) ⊂ TPAP2(CF).

4 Application to Generation of Picture Patterns

Generation of picture patterns, referred to as “kolam” patterns (also called “floor
designs”) (Fig. 3), using array grammars is well-known [11].

The approach is to encode the picture pattern as an array over certain termi-
nal symbols, usually rectangular array with certain number of rows and columns,
and generate the array with the rules of an array grammar. Then substitute for
each symbol some suitable basic unit of the picture pattern to be generated,
yielding the picture pattern. This kind of picture pattern generation has been
done using certain P systems also [13,14].

Here we construct a TPAP πp with only one membrane, generating a
language Lp of picture arrays which can be interpreted to represent picture
patterns, one member of which is shown in Fig. 3. The compound patterns cor-
responding to the terminal symbols are shown in Fig. 4b, while the primitive
patterns involved in the compound pattern are shown in Fig. 4a. The TPAP
system πp is given by πp = (V, T, [1]1, F1, R1, 1) where V = {A,B,C,D}, T =

{a, bud, blr, cud, clr, pu, pd, pr, pl}, F1 =
{

A
D a B
C

}
;

R1 consists of tables of rules t1, t2, t3;

t1 =
{

#
A

→ A
bud

, B # → blr B , C
→ bud

C
, # D → D blr

}

t2 =
{

#
A

→ A
cud

, B # → clr B , C
→ cud

C , # D → D clr
}

t3 = {A → pu , B → pr , C → pd , D → pl }

Starting with the axiom array
A

D a B
C

the rules of the table t1 could be applied
any number of times and likewise the rules of table t2 could also be applied any
number of times and there is no preference in the order of application of these

A Membrane Computing Model for Generation of Picture Arrays 163

Fig. 3. Picture pattern corresponding to a member of Lp

Fig. 4. (a) Primitive Patterns (b) Compound patterns

two tables. Once the rules of table t3 are applied, the derivation ends generating
a picture array over T which is collected in the language Lp. For example, the
picture array in Fig. 5 is an element of Lp and the picture pattern corresponding
to this picture array is given in Fig. 3. We note that in a picture array of Lp,
the compound pattern blr will occur as many times as bud while clr will occur
as many times as cud but bud and cud need not be in equal number.

Remark 2. The picture language of the TPAP Πp cannot be generated by any
parallel array P system with just one membrane since the feature of grouping
of rules is absent in PAP and hence the rules of tables t1, t2 cannot be applied
independent of each other if only one membrane is used but with two membranes
it is possible to generate the language Lp. It is straightforward to construct such
a PAP and the details are omitted here.

164 P. Isawasan et al.

Fig. 5. Picture array of the pattern in Fig. 3

5 Conclusion

In this paper, tabled parallel array P system is introduced and the generative
power examined. An application in generating picture patterns is given. It will
be interesting to find picture patterns generated by a TPAP which will require
m ≥ 2 membranes but at the same time not able to generate by any PAP with
m membranes.

Acknowledgements. The first author would like to thank Ministry of Higher Educa-
tion for the award of MyPhD under which this research was jointly carried out by him.
The second author gratefully acknowledges support for this research from an RUI grant
1001/PKOMP/811290 awarded by Universiti Sains Malaysia. The third author grate-
fully acknowledges support for this research from Science Fund of Ministry of Science,
Technology and Innovation (MOSTI), Malaysia with grant code: 01-01-02-SF1104.

References

1. Ceterchi, R., Mutyam, M., Pǎun, G., Subramanian, K.G.: Array-rewriting P sys-
tems. Nat. Comput. 2, 229–249 (2003)

2. Freund, R.: Array Grammars. Technical report 15/00, Research Group on Mathe-
matical Linguistics, Rovira i Virgili University, Tarragona, p. 164 (2000)

3. Gheorghe, M., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Research frontiers of
membrane computing: open problem and research topics. Int. J. Found. Comput.
Sci. 24(05), 547–623 (2013)

4. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
New York (1997)

5. Pan, L., Păun, G.: On parallel array P systems. In: Adamatzky, A. (ed.) Automata,
Universality, Computation. Emergence, Complexity and Computation, vol. 12, pp.
171–181. Springer, Switzerland (2015)

6. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
7. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, Inc., New York (2010)
8. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1, 229–245

(1993)
9. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.

Springer, Berlin (1997)

A Membrane Computing Model for Generation of Picture Arrays 165

10. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, New York (1980)

11. Siromoney, G., Siromoney, R., Krithivasan, K.: Array grammars and kolam. Com-
put. Graph. Image Process. 3, 6382 (1974)

12. Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.): Formal Models, Lan-
guages and Applications. Series in Machine Perception and Artificial Intelligence,
vol. 66. World Scientific Publishing, Singapore (2006)

13. Subramanian, K.G., Saravanan, R., Robinson, T.: P system for array generation
and application to kolam patterns. Forma 22, 47–54 (2007)

14. Subramanian, K.G., Isawasan, P., Venkat, I., Pan, L.: Parallel array-rewriting P
systems. Rom. J. Inf. Sci. Technol. 17(1), 103–116 (2014)

15. Wang, P.S.P. (ed.): Array Grammars, Patterns and Recognizers. Series in Com-
puter Science, vol. 18. World Scientific, Singapore (1989)

	A Membrane Computing Model for Generation of Picture Arrays
	1 Introduction
	2 Preliminaries
	3 Tabled Parallel Array P System
	4 Application to Generation of Picture Patterns
	5 Conclusion
	References

