
Chapter 8
Interactive Melodic Analysis

David Rizo, Plácido R. Illescas, and José M. Iñesta

Abstract In a harmonic analysis task, melodic analysis determines the importance

and role of each note in a particular harmonic context. Thus, a note is classified as a

harmonic tone when it belongs to the underlying chord, and as a non-harmonic tone

otherwise, with a number of categories in this latter case. Automatic systems for fully

solving this task without errors are still far from being available, so it must be assumed

that, in a practical scenario in which the melodic analysis is the system’s final output,

the human expert must make corrections to the output in order to achieve the final

result. Interactive systems allow for turning the user into a source of high-quality and

high-confidence ground-truth data, so online machine learning and interactive pattern

recognition provide tools that have proven to be very convenient in this context.

Experimental evidence will be presented showing that this seems to be a suitable way

to approach melodic analysis.
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8.1 Introduction

Musical analysis is the means to go into depth and truly understand a musical work.

A correct musical analysis is a proper tool to enable a musician to perform a rigorous

and reliable interpretation of a musical composition.

It is also very important for music teaching. In addition, the outcome of computer

music analysis algorithms is very relevant as a first step for a number of music in-

formation retrieval (MIR) applications, including similarity computation (de Haas,

2012; Raphael and Stoddard, 2004), reduction of songs to an intermediate repre-

sentation (Raphael and Stoddard, 2004), music summarization (Rizo, 2010), genre

classification (Pérez-Sancho et al., 2009), automatic accompaniment (Chuan and

Chew, 2007; Simon et al., 2008), pitch spelling in symbolic formats (Meredith, 2007),

algorithmic composition (Ulrich, 1977), harmonization (Ebcioğlu, 1986; Feng et al.,

2011; Kaliakatsos-Papakostas, 2014; Pachet and Roy, 2000; Raczyński et al., 2013;

Suzuki and Kitahara, 2014), performance rendering (Ramı́rez et al., 2010), preparing

data for Schenkerian analysis (Kirlin, 2009; Marsden, 2010), key finding (Temperley,

2004), metre analysis (Temperley and Sleator, 1999), and others.

From the artificial intelligence perspective, the interest in studying how a machine

is able to perform an intrinsically human activity is a motivation by itself (Raphael and

Stoddard, 2004). Furthermore, from a psychological point of view, the comparison

of analyses by a computer with those made by a human expert may yield interesting

insights into the process of listening to musical works (Temperley and Sleator, 1999).

The first written evidence of a musical analysis dates from 1563 and appears in a

manuscript entitled ‘Praecepta Musicae Poeticae’ by Dressler (Forgács, 2007). In

1722, Jean-Philippe Rameau, in his ‘Traité de l’harmonie réduite à ses principes

naturels’, established the basis of harmonic analysis (Rameau, 1722). However, music

analysis enjoyed a significant growth in the 19th century.

From the computational point of view, the various aspects of musical analysis

have all been addressed since the 1960s (Forte, 1967; Rothgeb, 1968; Winograd,

1968), and there has been a sustained interest in the area up to the present day. In the

last few years, several theses (bachelor, master and Ph.D.) have been published from

this point of view (de Haas, 2012; Granroth-Wilding, 2013; Mearns, 2013; Sapp,

2011; Tracy, 2013; Willingham, 2013), which underlines the importance of this area

of study.

The relevance of a melodic analysis depends on its ultimate purpose: in composi-

tion it helps the author to study the different harmonization options, or in the reverse

direction, given a chord sequence, to create melodic lines. In the case of analysing a

work for playing or conducting, it helps to establish the role each note plays regarding

stability or instability. For teaching, it is an indispensable tool for the student and the

teacher.

The analysis of a composition involves several interrelated aspects: aesthetic

analysis related to the environment of the composer that influences him or her when

creating the work, formal analysis to suitably identify the structure of the composition

and its constituent elements, and finally tonal analysis, which can be divided into

harmonic and melodic analysis. Harmonic analysis studies chords and tonal functions,
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to shed light on the tensions and relaxations throughout a work, while melodic

analysis establishes the importance and role of each note and its particular harmonic

context.

This chapter is focused on melodic analysis, specifically using a symbolic format

as input. Thus, as output, every note in a musical work is classified as a harmonic tone
when it belongs to the underlying chord, and as a non-harmonic tone otherwise, in

which case it should be further assigned to a category, such as passing tone, neighbour
tone, suspension, anticipation, echappée, appoggiatura and so on (see Willingham

(2013, p. 34) for a full description).

There is still no objective benchmark or standardized way of comparing results

between methods. Even if such a benchmark existed, very different analyses can be

correctly obtained from most musical works, a fact that reflects different analysts’

preferences (Hoffman and Birmingham, 2000).

Nonetheless, it is widely accepted that none of the computerized systems proposed

to date is able to make an analysis that totally satisfies the musicologist or musician;

and what is worse, it seems that no system can be built to totally solve the problem.

The case of melodic analysis is a good example of the variability between the different

interpretations that can be extracted from a piece of music, due to the fact that it

depends on harmony, which in turn is derived from parts (such as accompaniment

voices) that may not be available or that may not even exist when making the analysis.

Maxwell (1984) differentiated between “computer-implemented” analysis, where

the output of the system is the final analysis, and “computer-assisted” analysis, where

the output must be interpreted by the user. All systems found in the literature1

choose the “computer-implemented” analysis approach. In order to overcome the

limitation exposed above, we introduce a system that follows the “computer-assisted”

approach—that is, an interactive melodic analysis, integrating automatic methods

and interactions from the user. This is accomplished in the present work by using

the “Interactive Pattern Recognition” (IPR) framework, which has proven successful

in other similar tasks from the human action point of view, like the transcription of

hand-written text images, speech signals, machine translation or image retrieval (see

Toselli et al. (2011) for a review of IPR techniques and application domains). We

will present experimental evidence that shows that IPR seems to be a suitable way to

approach melodic analysis.

This chapter is structured as follows. First the main trends in harmonic analysis,

along with ways of dealing with melodic analysis, and the introduction of interactivity,

are reviewed in Sect. 8.2. The classical pattern matching classification paradigm, most

commonly used so far, is formulated in Sect. 8.3. The interactive pattern recognition

approach will then be introduced in Sect. 8.4.

Our proposal to solve the problem of melodic analysis using various approaches

based on manual, classical pattern matching and IPR methods will be described

in Sect. 8.5. A graphical user interface (GUI) has been developed to assert the

expectations presented theoretically, and it is described in Sect. 8.6. The experimental

1 Except the study by Taube and Burnson (2008), but that work focuses on the correction of analyses
rather than on assisting the analyst’s task.
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results are then presented in Sect. 8.7, and finally, some conclusions are drawn in

Sect. 8.8.

8.2 State of the Art

Several non-comprehensive reviews of computational harmonic analysis can be found

in the recent literature (de Haas, 2012; Kröger et al., 2010; Mearns, 2013).

Two main tasks in harmonic analysis are recurrent in most of the approaches:

first the partition of the piece into segments with harmonic significance, then the

assignment of each segment to a chord in a key context using either a Roman numeral

academic approach (e.g., V7 dominant chord) or a modern notation (e.g., a chord

like GMaj7). From a human perspective, an analysis cannot be made as a sequence

of independent tasks (e.g., first a key analysis, then a chordal analysis, then a melodic

analysis and so on). However, the simultaneity in the execution of these phases may

depend on the particular musical work. In some cases all the tasks are computed

simultaneously, while in others, for each phase, several possibilities are generated

and the best solution has to be selected using an optimization technique. For exam-

ple, melodic analysis conditions the other tasks, helping in discarding ornamental

notes that do not belong to the harmonic structure, in order to make decisions on

segmentation and chord identification.

8.2.1 Segmentation

The partition of a piece of music into segments with different harmonic properties

(i.e., key, chord, tonal function), referred to as “one of the most daunting problems of

harmonic detection” by Sapp (2007, p. 102), has been tackled so far using two related

approaches: one that may be named blind, because it does not use any prior tonal

information, and another that takes into account some computed tonal information

from the beginning, that Mouton and Pachet (1995) have called island growing.

The blind approach is based only on timing information and involves chopping the

input into short slices (Barthélemy and Bonardi, 2001; Illescas et al., 2007; Pardo

and Birmingham, 2000), using either points of note onset and offset, a given fixed

duration, or the duration of the shortest note in a bar or in the whole piece. Then,

once the key and chord information are available after the initial segmentation, these

slices are combined, if they are contiguous and share the same chord and key, to build

meaningful segments (usually in a left-to-right manner).

The island-growing method finds tonal centres based on evident chords, cadences

or any clue that allows a chord to be attached to a given segment in a key context.

Once these tonal centres are obtained, they are grown in a similar way to the blind
approach. This is a more usual approach in the literature (Meredith, 1993; Sapp,

2007; Scholz et al., 2005; Ulrich, 1977). Note that this method also needs to split the
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work horizontally in order to assign these tonal centres, so distinguishing between

blind and island growing in some cases is difficult or not totally clear.

Finally, as Pardo and Birmingham (2002) state, there are approaches that receive

an already segmented input (e.g., Winograd, 1968) or where it is not clear how the

segmentation is obtained.

8.2.2 Knowledge-Based and Statistical Approaches

The identification of chords and keys alone, given the already computed segments

or simultaneously with the calculation of these segments, has been performed using

two very different approaches: one based on rules established by experts, sometimes

referred to as knowledge-based, and the other built on top of statistical machine

learning systems, which Chuan and Chew (2011) properly refer to as data-driven.

There is no sound experimental evidence on which approach yields the best ana-

lysis results, but currently it seems to be assumed that machine learning systems

are more adequate than knowledge-based systems (Chuan and Chew, 2011). Some

systems use a hybrid solution. Nevertheless, even the less knowledge-based systems

incorporate at least some a priori information in the intermediate music representation

itself or in the learning strategy designed from a preconceived guided solution. Some

of them even include some rules that restrict or direct the statistical methods (Raphael

and Stoddard, 2004).

Of the two approaches, knowledge-based systems were the first to be used to tackle

the problem. They were formulated using preference-rule systems (Temperley, 1997,

2001; Temperley and Sleator, 1999), using a classical forward-chaining approach

or other typical solutions in expert systems (Maxwell, 1984; Pachet, 1991; Scholz

et al., 2005), as constraint-satisfaction problems (Hoffman and Birmingham, 2000),

embedded in the form of grammars (de Haas, 2012; Rohrmeier, 2007; Tojo et al.,

2006; Winograd, 1968) or using numerical methods based on template matching.

The latter methods work by matching the input set of pitches that comes from the

segmentation process to a list of possible chord templates. By using a similarity

measure between chords, the list of templates is ordered, and the algorithm either

selects the most similar template or passes the list to a later process that uses either

some kind of algorithm (Prather, 1996; Taube, 1999) or an optimization technique

to find the best sequence of chords by means of a graph (Barthélemy and Bonardi,

2001; Choi, 2011; Illescas et al., 2007; Kirlin, 2009; Pardo and Birmingham, 2002).

Passos et al. (2009) use a k-nearest neighbours technique to perform the matching

process.

The main advantage of statistical machine learning systems is their ability to

learn from examples, either supervised from tagged corpora or unsupervised, thus,

theoretically overcoming the problem of the variability of the myriad of applicable

rules. There are in the literature almost as many proposals for this approach as there

are machine learning techniques: HMPerceptron to solve a supervised sequential

learning (SSL) problem, like those used in part-of-speech tagging (Radicioni and
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Esposito, 2007), hidden Markov models (Mearns, 2013; Passos et al., 2009; Raphael

and Stoddard, 2004) or neural networks (Scarborough et al., 1989; Tsui, 2002).

Both approaches have advantages and disadvantages, as noted in various stu-

dies (Mouton and Pachet, 1995). The main disadvantage of rule-based systems is the

impossibility for any system to include rules for every possible situation, able to cope,

for example, with any genre or composer. In fact, in many situations, composers

try to break established rules in a creative manner. Another disadvantage of rule-

based approaches is the fact that, in many cases, two different rules may conflict. This

situation has often been solved by using preference rules (meta-rules) that solve those

conflicts. Raphael and Stoddard (2004) highlight another problem, namely, that, as the

rule systems work by ordering a sequence of decisions, the propagation of errors from

an early decision may compromise the final result. The main advantage of rule-based

systems is their capacity for explanation, which may be used to guide the user action in

an interactive approach or educational environment. In the case of numerically based

methods, Raphael and Stoddard (2004) point out that the numerical values returned

by their chord similarity algorithm are difficult to justify and must be found just by

empirically tuning the system. To overcome this problem, statistical procedures have

been applied that automatically optimize parameter values by methods like linear

dynamic programming (Raphael and Nichols, 2008) or genetic algorithms (Illescas

et al., 2011).

Besides segmentation and chord identification, there are important details that

differentiate the depth of the different studies reported in the literature. One is the

handling of modulations and tonicizations. Modulation is the process by which one

tonal centre is substituted by another. Usually, the tonality may change throughout

a piece. In many cases, it starts with a key, modulates to other keys and eventually

returns to the initial tonality. The concept of tonicization (Piston, 1987) is used to

describe the cadence of a secondary dominant onto its tonic, in such a way that, in

a given tonality, when there is a perfect cadence onto any degree, this degree acts

as the tonic of the secondary dominant that precedes it. More detailed explanations

are provided by Tsui (2002, pp. 7–8) and Mearns (2013, pp. 20–22). Some methods

consider tonicization to be just a key change, ignoring this temporal key context

change (Illescas et al., 2007), others reinterpret the result in a post-process to adapt it

to the correct interpretation (Kirlin, 2009). There are, however, plenty of approaches

that explicitly include this concept in their models (Hoffman and Birmingham, 2000;

Rohrmeier, 2011; Sapp, 2011; Scholz et al., 2005; Taube, 1999).

8.2.3 Melodic Analysis

The other aspect that is central to the present work is melodic analysis. No work

has focused in depth just on melodic tagging in a harmonic analysis task from a

computational point of view. A first attempt was made by Illescas et al. (2011) and

a musicological study was presented by Willingham (2013). Nevertheless, in many

studies, melodic analysis has received the attention it deserves (e.g., Chuan and
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Chew, 2011; Mearns, 2013; Sapp, 2007) or, at least, it has been acknowledged that

a better understanding of melodic analysis would improve the chord identification

process (Pardo and Birmingham, 2002; Raphael and Stoddard, 2004). In some meth-

ods, ornamental notes are removed in an a priori manual preprocess, in order to

avoid the melodic analysis task (Winograd, 1968). In many studies, notes are chosen

just using their metrical position: that is, strong notes, or using a regular span (Yi

and Goldsmith, 2007). Others use very simple rules: for example, Barthélemy and

Bonardi (2001) and Kirlin (2009) assume that non-chord notes are followed by a

joint movement. In rule-based systems, there are usually rules that deal specifically

with melodic analysis, e.g., Temperley’s (2001) “Ornamental Dissonance Rule” or

rules 10 to 20 in Maxwell’s (1984) model. Template matching was used by Taube

(1999).

From a machine learning perspective, two contemporary approaches have been

proposed that work in virtually the same way: one proposed by the authors of the

current work (Illescas et al., 2011) that will be extended here, and Chuan and Chew’s

(2011) “Chord-Tone Determination” module. In both cases, notes are passed as a

vector of features (up to 73 in Chuan and Chew’s (2011) model; whereas Illescas

et al. (2011) use a smaller but similar set) to a decision tree learner that learns rules

to classify either harmonic tones vs. non-harmonic tones (Chuan and Chew, 2011) or

harmonic tones vs. each different kind of non-harmonic tone (Illescas et al., 2011).

8.2.4 Interactivity

One of the aspects of this work that has received less attention in the literature is the

opportunity for interaction between potential users and such a system. Some authors

have expressed in some cases the need for interactivity (Scholz et al., 2005) that is

implicit in the concept of “computer-assisted” analysis suggested by Maxwell (1984).

Sapp (2011) reviews errors generated by his algorithm, finding that sometimes the

obtained key was wrong but closely related to the actual tonic key. From a classical

standpoint, this is an error, but maybe it could be considered a minor mistake. In

an interactive approach, this could easily be solved by presenting a ranking of keys

to the user. Phon-Amnuaisuk et al. (2006) present their system as a “platform for

music knowledge representation including harmonization rules to enable the user

to control the system’s harmonization behaviour”. This “user control” is indeed an

interactive process. Something similar is asserted by Taube (1999): “The user may

directly control many aspects of the analytical process”.

Some authors have expressed their intention to add an interactive user interface; for

example, Chuan and Chew (2010) present a preliminary design. For a harmonization

task, Simon et al. (2008) add some possible interaction that allows the user to choose

the kind of chords generated. In the teaching environment, the system “Choral

Composer” (Taube and Burnson, 2008) allows the students to see their mistakes as

they do each exercise (guided completion).
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Other software tools for visualizing musical analyses include Chew and

François’ (2003) “MuSA.RT, Opus 1”, which represents a work using the Spiral

Array model; and the graphical user interface tool, “T2G”, cited by Choi (2011).2

There is also the “Impro-Visor” software,3 which is a music notation program

designed to help jazz musicians compose and hear solos similar to ones that might

be improvised. The system, built on top of grammars learned from transcriptions,

shows improvisation advice in the form of visual hints.

Finally, though not interactive, the “Rameau” system (Passos et al., 2009) allows

users to experiment with musicological ideas in a graphical visualization interface,

and Sapp’s (2011) “keyscapes” also provide visual analyses of works.

The interactive pattern recognition paradigm has not been applied to the tonal

analysis task so far. However, many of the problems uncovered when analysing the

analyses performed by computer tools (see for example the manual analysis of errors

by Pardo and Birmingham (2002)) could be addressed in an interactive model. Any

data-driven approach can directly benefit from the IPR approach as well. It would

not be straightforward, but adding user decisions as specific rules to a model, in a

similar manner to that used in a case-based-reasoning system (Sabater et al., 1998),

could be a way to take advantage of user feedback.

The lack of standardized ground truth or evaluation techniques has been mentioned

above. Some methods compare their results using very isolated works. Nevertheless,

it seems that J. S. Bach’s harmonized chorales have been frequently used as a corpus

(Illescas et al., 2007, 2008, 2011; Maxwell, 1984; Radicioni and Esposito, 2007; Tsui,

2002), perhaps because they form the most scholastic corpus available and because

most analysts agree upon how these pieces should be analysed.

Regarding evaluation techniques, there is no agreement on a quantitative evalua-

tion measure to use in order to compare the performance of different proposals. In

any case, as will be detailed below, under the interactive pattern recognition approach

introduced here, systems are not assumed to be fully automatic but rather to require

user supervision. Here, quantitative evaluation is therefore less oriented to perfor-

mance accuracy and more to the workload (e.g., number of user interactions) that is

required in order to achieve the correct output.

8.3 Classical Pattern Recognition Approach

The computational methods utilized in the present work for solving the problem of

melodic analysis are related to the application of pattern recognition and matching

techniques to the classification of the notes in a score into seven categories: harmonic

and six classes of non-harmonic tone. This way, we can consider this task as a

classical seven-class classification problem in pattern recognition. For that, we can

consider that every note is an input sample, xi. From the sample and its context

2 http://members.shaw.ca/akochoi-T2/jazz-harmonic-analysis/index.html
3 http://www.cs.hmc.edu/ keller/jazz/improvisor/
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(xi−1,xi,xi+1), a number of features can be computed that are expressed as a feature

vector, xi, that can be regarded as evidence for categorizing the note i. From this

information, the system’s underlying model M should be able to output a hypothesis

ĥi, classifying the input sample into one of the seven classes.

Usually, M is inferred from example pairs (x,h) ∈ X provided to the system in

the training phase. For learning, a strategy for minimizing the error due to incorrect

h is followed. Once the system is trained by achieving an acceptable error measure,

the model is applied to new, previously unseen, samples. In this operation phase, the

decision on each sample is the hypothesis ĥi that maximizes the posterior probability

value estimated Pr(hi | xi), considering that this value is provided by the model learnt:

ĥi = argmax
h∈H

Pr(h | xi)≈ argmax
h∈H

PM(h | xi) . (8.1)

The input to the classification system is a series of vectors x = x1, ...,x|M|, where

|M| is the number of notes of the melody. The output is a sequence of decisions

h = h1, ...,h|M| ∈ H = {H,P,N,S,AP,AN,ES} (see Sect. 8.5 for a definition of these

classes).

8.4 Interactive Pattern Recognition Approach

Multimodal human interaction has become an increasingly important field that aims

at solving challenging application problems in multiple domains. Computer mu-

sic systems have all the potential features for this kind of technique to be applied:

multimodal nature of the information (Lidy et al., 2007), need for cognitive mod-

els (Temperley, 2001), time dependency (Iñesta and Pérez-Sancho, 2013), adaptation

from human interaction (Pérez-Garcı́a et al., 2011) and so on.

Assuming that state-of-the-art systems are still far from being perfect, not only in

terms of accuracy, but also with respect to their applicability to any kind of music

data, it seems necessary to assume that human intervention is required, at least for

a correction stage after the automatic system output. It could also be interesting to

take advantage of this expert knowledge during the correction process and to work

on techniques for efficiently exploiting the information provided (that relies on the

user’s expertise) in the context of adaptive systems. Therefore, the pattern recognition

(PR) system accuracy is just a starting point, but not the main issue to assess. In IPR

systems, evaluation tries to measure how efficiently the system is taking advantage

of this human feedback and to work on techniques towards better adaptive schemes

able to reduce the user’s workload.

Placing the human in the IPR framework requires changes in the way we look at

problems in these areas. Classical PR is intrinsically grounded on error-minimization

algorithms, so they need to be revised and adapted to the new, minimum-human-effort

performance criterion (Toselli et al., 2011). This new paradigm entails important

research opportunities involving issues related to managing the feedback information

provided by the user in each interaction step to improve raw performance, and the
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use of feedback-derived data to adaptively re-train the system and tune it to the user

behaviour and the specific data at hand.

We shall now analyse these aspects of research in IPR in more detail in the context

of our research.

8.4.1 Exploiting Feedback

We have described the solution to our problem as a hypothesis ĥ coding the classes

of every note in our problem score. These hypotheses were those that maximize the

posterior probabilities among all possible hypotheses for every note. Now, in the

interactive scheme, the user observes the input x and the hypothesis ĥ and provides a

feedback signal, f , in the form of a local hypothesis that constrains the hypothesis

domain H, so we can straightforwardly say that f ∈H. Therefore, by including this

new information in the system, the best system hypothesis now corresponds to the

one that maximizes the posterior probability, but given the data and the feedback:

ĥ = argmax
h∈H

PM(h | x, f ) , (8.2)

and this can be done with or without varying the model M. After the new hypothesis

is computed, the system may prompt the user to provide further feedback information

in a new interaction step, k. This process continues until the system output, ĥ, is

acceptable to the user.

Constructing the new probability distribution and solving the corresponding maxi-

mization, may be more difficult than the corresponding problems with feedback-free

posterior distributions. The idea is to perform the analysis again after each feedback

input, fk, taking this information as a constraint on the new hypothesis in such a way

that the new ĥ(k+1) ∈ H(k+1) =H(k)− ĥ ⊂ H(k).4 This way, the space of possible

solutions is restricted by the user’s corrections, because the user is telling the system

that the hypothesis ĥ is not valid. Clearly, the more feedback-derived constraints can

be added, the greater the opportunity to obtain better hypotheses.

This iterative procedure can make available a history of hypotheses, h′ = ĥ(0)
, ĥ(1)

,

..., ĥ(k)
, from previous interaction steps that lead eventually to a solution that is

acceptable to the user. Taking this into account explicitly as

ĥk+1 = argmax
h∈H

PM(h | x,h′, f ) , (8.3)

may improve the prediction accuracy gradually throughout the correction process.

4 In order to simplify the notation we have omitted that vector ĥ is actually a member of the
Cartesian product H|M|.
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Fig. 8.1 Performance and evaluation based on an interactive pattern recognition (IPR) approach

8.4.2 System’s Adaptation from Feedback

Human interaction offers a unique opportunity to improve a system’s behaviour by

tuning the underlying model. Everything discussed in the preceding section can be

applied without varying the model M, restricting the solution space through the

feedback and thus approximating the solution.

We can go one step further using the feedback data obtained in each step of the

interaction process fk, which can be converted into new, valid training information,

(xi,h = fk). This way, after each correction we get a new training set X (k+1) =
X (k) ∪{(xi,h = fk)}, allowing for the model to be re-trained or adapted. After a

number of iterations the initial training set X (0) has been completed with ground-

truth training pairs.

The application of these ideas in our musical analysis framework will require

establishing adequate evaluation criteria. These criteria should allow the assess-

ment of how adaptive training algorithms are taking the maximum advantage of the

interaction-derived data to ultimately minimize the overall human effort.

The evaluation issue in this interactive framework is different from classical PR

algorithms (see Fig 8.1). In those systems, performance is typically assessed in

terms of elementary hypothesis errors; i.e., by counting how many local hypotheses

hi differ from the vector of correct labels (non-interactive evaluation in Fig. 8.1).

For that, the assessment is based on labelled training and test corpora that can be

easily, objectively, and automatically tested and compared, without requiring human

intervention in the assessment procedures.

Nevertheless, in an interactive framework, a human expert is embedded “in the

loop”, and system performance has to be gauged mainly in terms of how much

human effort is required to achieve the goals. Although the evaluation of the system

performance in this new scenario apparently requires human work and judgement, by

carefully specifying goals and ground truth, the corpus-based assessment paradigm

is still applicable in the music analysis task, just by counting how many interaction
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Fig. 8.2 Examples of non-harmonic notes in a melodic analysis. Only non-harmonic notes are
tagged

steps are needed to produce a fully correct hypothesis (see IPR-based evaluation in

Fig. 8.1).

8.5 Method

The problem we address here is the melodic analysis of a work in a tonal context—in

particular, to tag all notes as harmonic tone (H), passing tone (P), neighbour tone

(N), suspension (S), appoggiatura (AP), anticipation (AN), or echappée (ES) (see

Fig. 8.2). As described in Sect. 8.2, this process, embedded in a more general tonal

analysis problem, has been tackled so far using knowledge-based systems and ma-

chine learning techniques. In previous work, using the classical pattern recognition

paradigm (Illescas et al., 2011), similar success rates for both approaches were ob-

tained using some of Bach’s harmonized chorales, with better results using statistical

methods. The IPR paradigm will be applied to improve that result.

The model in IPR systems can be built using any of the classifiers employed in

classical PR approaches. In order to assess the improvement of IPR over PR, the

same classifier will be used in the experiments for both paradigms.

Machine learning systems are those that can benefit the most from the IPR improve-

ments highlighted above. In order to choose among the variety of machine learning

algorithms, only those capable of providing a full explanation of the decisions taken

are considered here, with the aim of offering the user a full and understandable

interactive experience. This is why a decision-tree learner has been chosen. Illescas

et al. (2011) used a RIPPER algorithm (Cohen, 1995) to overcome the imbalance

in the data (around 89% of the notes are harmonic tones). However, in agreement

with the results of Chuan and Chew (2011), a C4.5 decision tree algorithm (Quinlan,

2014) gave better results using a leave-one-out scheme on a training corpus of 10

Bach chorales (previously used by (Illescas et al., 2011)). We extend and provide

details of this corpus in Sect. 8.7.2.1.



8 Interactive Melodic Analysis 203

8.5.1 Features

The classifier receives as input a note xi represented by a vector of fea-

tures, xi, and yields as output a probability for each tag: P(hi | xi), hi ∈ H =

{H, P, N, S, AP, AN, ES} on which the classification decision will be made. We

shall now define these features.

Definition previousIntervalName(xi) ∈ N

The absolute interval of a note with its predecessor as defined in music theory, i.e.,

unison, minor 2nd, major 2nd, 3rd, etc.

Definition previousIntervalDir(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
undefined, i = 1

ascending, pitch(xi)> pitch(xi−1)

descending, pitch(xi)< pitch(xi−1)

equal, pitch(xi) = pitch(xi−1)

Definition previousIntervalMode(xi) ∈ {major,minor,perfect,augmented,
diminished,double augmented,double diminished}
This is computed using the music theory rules from the previousIntervalName and

the absolute semitones from xi−1 to xi.

Definition nextIntervalName, nextIntervalMode and nextIntervalDir are defined

similarly using the interval of the note xi+1 with respect to xi.

Definition tied(xi) ∈ B is true if the note xi is tied from the note xi−1.

Definition rd(xi) = duration(xi)/duration(beat)

The relative duration function determines the ratio between the duration of xi and the

duration of a beat.

Definition ratio(xi) =
rd(xi)

rd(xi−1)
× rd(xi)

rd(xi+1)

The ratio function is used to compare the relative duration of xi to its next and

previous notes.

Definition meterNumerator(xi) is the numerator of the active metre at onset(xi).
The value of onset(·) is defined locally for each measure, depending on the metre,

as the position in the measure in terms of sixteenth notes, counted from 0 to (16 ×
numerator / denominator) – 1.

Definition instability(xi): given onset(xi), and meterNumerator(xi), it returns a

value relative to the metrical weakness of xi.

The stronger the beat in which the onset of a note is, the lower its instability value

will be. See Table 8.1 for the list of values used.5

5 The instability values for the binary metres can be obtained directly using the method described
by Martin (1972). Ternary and compound metres need a straightforward extension of the method.
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Table 8.1 Instability values as a function of the onset position for the different metres used. The
resolution is one sixteenth note

Metre Instability values indexed by onset(xi)

4/4 (1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16)
2/4 (1, 5, 3, 7, 2, 6, 4, 8)
3/4 (1, 7, 4, 10, 2, 8, 5, 11, 3, 9, 6, 12)
6/8 (1, 5, 9, 3, 7, 11, 2, 6, 10, 4, 8, 12)
9/8 (1, 7, 13, 4, 10, 16, 2, 8, 14, 5, 11, 17, 3, 9, 15, 6, 12, 18)
12/8 (1, 9, 17, 5, 13, 21, 3, 11, 19, 7, 15, 23, 2, 10, 18, 6, 14, 22, 4, 12, 20, 8, 16, 24)

Definition nextInstability(xi) = instability(xi+1); refers to the instability of the next

note.

Definition belongsToChord(xi)∈B is true if, given the pitch class of the note pc(xi),
at onset(xi) there is an active chord made up of a set of notes C, and pc(xi) ∈ C.

Definition belongsToKey(xi) ∈ B is true if, given the pitch class pc(xi), at onset(xi)
there is a key using the scale made up of a series of notes S, and pc(xi) ∈ S.

The scale is the major diatonic for major keys, and the union of ascending, descending,

and harmonic scales for minor keys.

Definition prevNoteMelodicTag(xi) ∈ H is the melodic tag of the previous note,

hi−1, if already analysed.

Definition nextNoteMelodicTag(xi) is equivalent to the previous definition but re-

ferred to the next note, hi+1.

The information about key and chord needed in the definitions above depends

on the order in which the user carries out the different analysis stages. If, at a given

stage, any of this information is not available, a feature will remain undefined, and the

classifier will not yet be able to use it. During the interaction stage, this information

becomes increasingly available.

Note that this feature-extraction scheme is using a window size of 3 notes. In

some studies (e.g., Meredith, 2007) a wider window is used for determining the pitch

spelling of notes. However, in our case, our system is able to explain the decision

using the predecessor and successor notes, based on the underlying harmony, as

explained in most music theory books.

8.5.2 Constraint Rules

As we are just focusing on the baroque period, some rules have been manually added

that constrain the set of possible outputs by removing those that are invalid (e.g., two

consecutive anticipations). Moreover, these rules allow the system to take advantage



8 Interactive Melodic Analysis 205

of some additional information the user provides by using the system, as will be seen

below.

As introduced above, the system avoids invalid outputs by checking the following

conditions. Let xi be the note to be analysed, pc(xi) its pitch class, c the active chord

at onset(xi), and C the pitches in chord c:

1. xi cannot be tagged as H (harmonic tone) if its onset occurs on a weak beat, i.e.,

instability(xi)> meterNumerator(xi), and pc(xi) /∈ C.

2. hi = H always if pc(xi) ∈ C.

3. xi cannot be tagged as passing tone (P) if hi−1 ∈ {AP,S,AN,N} (appoggiatura,

suspension, anticipation or neighbour tone).

4. xi cannot be tagged as N if hi−1 ∈ {AP,S,AN,P}.

5. xi cannot be tagged as {A,AP,S} if hi−1 ∈ {AP,S,AN,N,P}.

These rules involving key and chord information, as well as the tagging of sur-

rounding notes, are only available to the system through the interactive action of

the user. The computing of key and chord information would imply the full tonal

analysis process, and this work focuses only the melodic analysis task, the rest of the

process is performed manually by the user.

8.5.3 IPR Feedback and Propagation

The underlying classification model was required to provide a readable explanation of

the decision mechanism, so we focus on decision trees, as discussed at the beginning

of Sect. 8.5. The C4.5 decision tree algorithm, using the same features both for

the classical PR approach and the IPR system, was utilized. The C4.5 algorithm

provides the a posteriori probability P(hi | xi) as the proportion of samples in the

leaf that belongs to each class (Margineantu and Dietterich, 2003) using a Laplacian

correction to smooth the probability estimations. Although it cannot be incrementally

updated, it trains in a very short time. In this way, in our case, it is fully re-trained

after each interaction using the new information provided by the user. This fact does

not limit its usability for melodic analysis, since the re-training is perceived as a

real-time update by the user. Moreover, the size of the data set will never be too large,

because analysis rules are specific to each genre, so the need for scalability is not an

issue.

As introduced in Sect. 8.4.1, each time the user provides a feedback f ∈H, the

model is rebuilt as if the pair (xi,h′i = f ) was in the training set. Furthermore, this

means that, if the user amends the analysis of a note xi with features xi to be h′i �= ĥi,

the analysis ĥ j of further notes x j with features x j = xi should be the same, i.e., the

analysis of them will be modified accordingly as h′j = h′i. This is called propagation
and it is performed for the rest of notes x j,∀ j �= i after each user interaction on note

xi.
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8.6 Application Prototype

In order to prove the validity of the IPR approach for the melodic analysis task

in a real user scenario and in order to study how it leverages users’ effort using

the assistant system, an interactive prototype has been developed in JavaFX 8,6 a

graphical user interface developer framework built on top of the Java language.

The application allows not only the melodic analysis, but also helps in the task

of key and chord analysis, because chord identification and melodic analysis cannot

be done as isolated tasks, but need to be done in a coordinated fashion. The reason

is that the decision as to which notes have to be included to form a chord depends

on which ones have been tagged as harmonic; but in order to tag a note as harmonic,

one has to predict which chord will be formed (as well as other considerations).

In order to perform the analysis, the prototype has the following features:

• It reads and writes from and to MusicXML. Chords are encoded using the cor-

responding schema elements, the remaining analyses, such as tonal functions,

tonicizations, and so on, are encoded/decoded using lyrics.

• It reads from **kern format including the harmonic spines.

• It renders the score visually allowing for the selection of individual elements.

• It helps the user select the most probable chord and key at each moment.

• It permits the introduction and editing by the user of all the tonal analysis: melodic

tags, chords, key changes, tonicizations, and secondary dominants.

• It logs all the user actions for later study.

In order to compare the user’s actions using the three approaches considered

(manual, automatic PR-based automatic, and IPR-assisted), the user can select the

operation mode in the application.

8.6.1 Manual Mode

Not too different from employing a sheet of paper and a pencil, one computer-aided

way of doing an analysis is to use any kind of score editor like Finale or Musescore,

adding the melodic tags as lyrics under each note. This approach, which was adopted

by the authors in their creation of the first ground truth (Illescas et al., 2007), is tedious,

and the effort required to analyse a work, measured as number of interactions, is

at least equal to the number of notes. That method is not taken into account in this

experimentation.

The use of the prototype in manual mode allows the user to manually introduce

the melodic tag of each note. It acts as a helping tool to annotate the key and chord of

the selected sonority in an assisted way. The only logged user actions will be those

related to the melodic tagging, with those referring to chord and key being discarded.

In a typical scenario, the user proceeds as follows:

6 http://www.oracle.com/technetwork/es/java/javafx/overview/index.html
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Fig. 8.3 Highlight of sonority and application of selected key and chord

1. A note is selected. The corresponding sonority is highlighted accordingly by

including all the notes that are simultaneously active at any time during the

selected note (Fig. 8.3(a)). For them, a list of possible keys and chords in each

key is displayed hierarchically. The details of how this list is constructed are

given below.

2. A chord is selected from the list of valid keys and chords and is applied to the

current sonority (Fig. 8.3(b)). If the user prefers to apply another chord and key

not present in the proposed list (such as tonicizations or secondary dominants,

not included in it), it can be done using a dialogue as shown in Fig. 8.4. Once

the context is established, as a help to the user, notes not belonging to the active

chord are highlighted.

3. Finally, using a set of predefined keyboard keys, the user selects the suitable

melodic tag for each note. The system just logs this last action, because it is the

only one that corresponds strictly to the melodic analysis task.

This process is repeated for each note in the musical work. Note that the user may

backtrack on a decision and the same note could be tagged several times.

In most musical works, at least in the baroque period, almost all notes are harmonic

tones, not ornamental. This implies that the note tags follow a highly imbalanced

distribution in favour of class H. In order to avoid the user having to carry out

unnecessary actions, the prototype includes a button that tags all previously untagged

notes as harmonic (see Fig. 8.5). This allows the user to tag only non-harmonic tones,

reducing considerably the number of interactions.
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Fig. 8.4 Dialogue box that allows the user to apply a chord not present in the proposed chords list.
Used for assigning tonicizations and secondary dominants

8.6.1.1 Chord and Key List Construction

The valid keys added to the list are those whose associated scale includes all the

notes in the selected sonority.

The chords are chosen using a template-based approach: given the set of notes,

all possible combinations of groups of at least two notes are matched with the list of

chord types shown in Table 8.2. Finally, the list of keys is ranked using the following

ordering: the current key first (or the major mode of the key present in the key

signature if no previous key was found), then the next key up and down in the circle

of fifths and the relative minor or major. The rest of the keys are ordered inversely,

proportional to the distance along the circle of fifths. In the minor key, the relative

major key is located at the second position of the list.

Inside each key, the chords with more notes in the sonority are ordered first.

When having the same number of notes, those containing the root are located in

upper positions, and when comparing chords containing the root and having the

same number of notes, the tonal functions are ordered this way: tonal, dominant, and

subdominant. Figure 8.3(b) shows an example.

Fig. 8.5 Button that tags all non previously tagged notes as “harmonic tone”
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Table 8.2 Chord templates. The semitones of the first pitch correspond to the semitones from the
tonic of the chord

Chord type Semitones from previous pitch

Major triad (4,3)

Minor triad (3,4)

Augmented triad (4,4)

Diminished triad (3,3)

Major with minor seventh (4,3,3)

Augmented with major seventh (4,4,3)

Diminished with minor seventh (3,3,4)

Diminished with diminished seventh (3,3,3)

Major seventh with major seventh (4,3,4)

Minor seventh with minor seventh (3,4,3)

8.6.2 Automatic Mode

In automatic mode, previously introduced as “computer-implemented” by Maxwell

(1984) and described under the classical pattern recognition paradigm (Sect. 8.3), the

user proceeds using this protocol:

1. First, the system analyses the score automatically. The Weka (Hall et al., 2009)

implementation of the C4.5 algorithm (Quinlan, 2014) has been embedded in the

prototype and it is fed using the features described in Sect. 8.5.1, excluding the

chord- and key-related features (belongsToChord and belongsToKey) because

they are not available when the work is analysed automatically the first and only

time.

2. All notes have now an analysis tag, that may be correct or not. Now, the user

proceeds just like the manual mode explained above, by choosing chords and

keys, and, instead of setting the melodic tag for each note, just changing those

tags that the C4.5 classifier has misclassified (see Fig. 8.6).

The system has been trained using a bootstrap set of 10 Bach chorales manually

tagged (see list of works below in Sect. 8.7.2.1).

Fig. 8.6 Highlight of sonority and application of selected key and chord



210 David Rizo, Plácido R. Illescas, and José M. Iñesta

8.6.3 Assisted Mode

The assisted mode corresponds to the introduced IPR approach, named by Maxwell

(1984) as “computer-assisted” analysis. Here the system reacts against all the user

actions. The loop of actions is described next:

1. As in the manual mode, the user selects a note and a sonority is highlighted, for

which the user identifies and assigns key and chord.

2. The prototype performs a melodic analysis of the work using the C4.5 classifier.

Now the features belongsToChord and belongsToKey already have a value for

all the notes located from the selected sonority and forwards. Moreover, all the

constraint rules (Sect. 8.5.2) can now be applied.

3. As in the automatic mode, the user may amend (feedback) any melodic analysis

tag, which fires the propagation of that decision to all notes with the same

features, and runs again the C4.5 classifier, now re-trained with the new corrected

sample. A user-amended tag is never modified by the new classifier decision.

4. The process is repeated until all notes are melodically tagged.

This process is not a mere repetition of the automatic mode process for each note,

it has several important implications:

• In order to show the valid chords in the help list, notes tagged as any of the

non-harmonic tones are not used. This method narrows the search of the desired

chord, but also forces the user to tag as harmonic the notes the system had tagged

incorrectly as non-harmonic. It may seem that the correct chord and key identifi-

cation can slow down the melodic tagging. However, as the belongsToChord and

belongsToKey features use the key information, the classifier has more informa-

tion about the harmonic context after each interaction, which boosts the melodic

tagging.

• The change of a melodic tag affects the surrounding notes, that may be modified

by the constraining rules after a user interaction, leading to a correction of a

possibly incorrect tagging.

This process may not be done sequentially from left to right because the user

could proceed in an “island-growing” way, by first locating tonal centres and then

browsing back and forth.

8.6.4 User Interaction Analysis

The prototype logs each action carried out by the user. In this study, only the actions

relating to the melodic analysis itself have been taken into account. So, in order not

to block the user interaction at any moment, the Java logging framework has been

customized to export the kind of information shown in Table 8.3, printing the user

actions to a file, using a separate thread. This file has been parsed in order to extract
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Table 8.3 Example of log entries

Action
time stamp

Session
time stamp Action type Action

· · ·
1417009922812 1417009922796 actionloggersystem started

1417010341734 1417009922796 MELODICANALYSIS.CHANGE PASSING TONE

1417010390390 1417009922796 MELODICANALYSIS.CHANGE PASSING TONE

1417010550375 1417009922796 MELODICANALYSIS.CHANGE SUSPENSION

1417010665140 1417009922796 MELODICANALYSIS.CHANGE HARMONIC

· · ·

times and number of user interactions. The system records session information in

order that the user may close the prototype and continue the analysis task in a later

session.

8.7 Experiments

8.7.1 Proof of Concept: Ability to Learn Interactively

In order to assess the ability of the interactive system to learn online from the

interaction of the user, a simulation has been built in which the system receives

a musical work whose notes have been manually tagged with their corresponding

melodic analysis labels. It simulates the user actions as follows:

1. The work is automatically analysed using a (possibly untrained) classifier. After

this step, both the correct tag for each note obtained from the manual analysis

and the tag assigned by the classifier are available for every note.

2. The interaction system now proceeds as a human would: it looks for an error

in the analysis (at random to simulate the back-and-forth action by a real user),

then it replaces the incorrect label (assigned by the classifier) with the correct

tag (obtained from the previous manual analysis).

3. This interaction fires the interactive pattern-matching loop, i.e., the feedback

decision is propagated to all notes not previously corrected, and the classifier

model is updated including this new sample.

4. The process is repeated until no errors remain. The number of changes performed

(equal to the number of times the process has been carried out) is the actual

system performance evaluation value.

Using this setup, the complete collection of Bach’s harmonized chorales (see

Sect. 8.7.2.1) has been used. The system has been fed sequentially with the set of

chorales, starting with an untrained C4.5 classifier that learns after each user action
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Fig. 8.7 Evolution of the error rate as the user analyses works. The x axis represents the order in
which a work is analysed. The plot shows the average (thick line) of the results of 100 different
orderings of the input corpus. The standard deviations are also shown. The error rate is measured as
the number of interactions required to correct a piece divided by the number of notes it contains

on each musical piece. Not all chorales have the same level of complexity, so the

presentation order may affect the evolution of the error rate. In order to avoid any

bias, the process has been repeated 100 times in different random orderings of the

pieces. Figure 8.7 shows how the error rate becomes lower as the system analyses

more and more works. This provides evidence that the system is able to learn from

the interaction of the user.

Considering the possibility of using a decision-tree classifier able to update the

model online without having to train it for each new feedback sample, the simulation

has also been carried out using a Hoeffding tree (VFDT) (Hulten et al., 2001).

However, the results obtained, both with the classical PR approach and with the

setup just described were worse than those using the C4.5 classifier. Moreover, there

was no perceptible improvement in the training speed for the online VFDT learning

compared to the full re-training of the C4.5.

8.7.2 Experimental Setup and Data

In order to test the prototype, the following process has been followed:
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1. A musicologist7 has manually tagged the training set.

2. Students of the final course of a music degree analysed the test set using the

three modes of the prototype: manual, automatic, and interactive. The analysis

of the same work using different modes by the same user was avoided.

3. In all analyses, the system was bootstrapped using the same trained model.

8.7.2.1 Corpora

The system was assessed using some of Bach’s chorales, encoded using MusicXML

files. These pieces are widely accepted as a scholastic tonal harmony ground truth,

as mentioned in Sect. 8.2 above. Furthermore, they contain monodic lines for each

voice that help in the construction of features for the classifier.

For the training phase, the following chorales were used: catalogue BWV numbers

89/6, 148/6, 253, 272, 274, 275, 280, 437, 438.

For the test, the following were used: catalogue BWV numbers 255, 256, 257,

259, 260, 281, 282, 285, 286, 287, 288, 290, 292, 293, 294, 295, 296, 420, 421, 423,

424, 426, 427, 429, 431.

BWV 257, 260, 420 were analysed by several students, thus, a total of 30 pieces

were utilized for test.

8.7.3 Results

Figure 8.8 shows the results of the melodic analysis using the test set described

above. The percentage of less than 15% of non-harmonic tones (NHT) on average,

gives an indication of the minimum number of interactions the user has to complete

when using the “Tag all as harmonic tones” button first, and then tagging just the

non-harmonic tones. This assumes that no note is tagged twice due to a user changing

his or her mind.

The results show that the best performance is obtained using the proposed IPR

approach. The graph demonstrates what could be expected. The results for the

manual approach are worse than the theoretical minimum number of interactions

(i.e., ≈ 15%), expected to be equal to the number of non-harmonic tones plus one

for the action of pushing the “tag all as harmonic” button. This is caused by the fact

that the user, solving the problem heuristically, provides several possible solutions

leading to different taggings of the same note. The automatic, classical PR approach,

leverages the user’s effort, who takes advantage of some of the correctly classified

melodic tags that, in turn, help with the correct selection of keys and chords, thus

narrowing the user’s heuristic search for the solution. Finally, in the proposed IPR

system the advantages found in the PR approach are used, and they are improved in

two ways by the use of the feedback from the user. First, this feedback enriches the

7 The author Plácido R. Illescas.
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Fig. 8.8 Results in terms of number of user interactions required to solve the melodic analysis. The
percentages are obtained as the number of interactions divided by the number of notes

input features to the classifier after each interaction. Second, the feedback re-trains

the model, incorporating the corrected analyses as new examples in the training set.

Moreover, these examples are very probably found in the same work several times,

reducing in this way the number of interactions required to get a correct final analysis.

It is important to stress the fact that the IPR approach in this task has a competitive

advantage over a single PR one, due to the fact that the harmonic information (key

context and chords) cannot be analysed before doing the melodic analysis. This is

because each of the three aspects depends on the other two. Thus, the PR approach

cannot use the harmonic information that the user provides with his or her interactive

use of the tool.

In the current setup of the experiment, the most important improvement from the

user feedback comes from the use of contextual information added after each user

interaction, which is not available for the classical PR paradigm. The propagation,

which is the same as incorporating new samples in the model, that can be used to

solve similar situations in the future, constitutes a second enhancement. Finally, the

experiments have not really taken full advantage of the on-line training and tuning of

the model, as the model is not incrementally maintained from analysis to analysis.

Indeed, it is reset for each experiment in order to be compared with the manual and

PR approaches under similar conditions.

8.8 Conclusions

The tonal analysis of musical works in a computational environment is a problem

that has been addressed since the 1960s. Many different approaches have been

proposed since that time that roughly fall into two categories belonging to the pattern

recognition discipline: knowledge-based and machine learning methods. Although
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interesting results have been obtained in several studies, a full solution to the problem

has still not been found.

In this work, a different approach, called Interactive Pattern Recognition (IPR), has

been applied, that focuses on trying to reduce the final effort made by the user, rather

than minimizing the errors initially made by the system in an automatic analysis.

Using well-known techniques from the classical Pattern Recognition paradigm,

IPR improves their performance by incorporating user feedback into the model after

each interaction, which helps the system to be refined as the user works with it.

In order to explore the suitability of the method, this IPR approach has been

applied to one part of the tonal analysis task: melodic analysis, leaving aside the

key and chord computation to be done manually. The proposal has been assessed

by means of a prototype software application that, besides performing this melodic

analysis using IPR, helps the user to annotate the tonal context of the work.

Using a widely-used corpus, a subset of Bach’s harmonized chorales, the IPR

paradigm has been proven to provide a suitable approach for finally obtaining a

satisfactory solution to the problem of tonal analysis, assisted by computer from the

user’s point of view.

Acknowledgements This work has been funded by the Spanish Ministry project TIMuL (TIN2013-
48152-C2-1-R). Additional support was provided by European FEDER funds. Thanks to Craig Sapp
and David Meredith for their valuable aid and advice.

References
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Forgács, R. (2007). Gallus Dressler’s Praecepta Musicae Poeticae. University of

Illinois Press.

Forte, A. (1967). Music and computing: The present situation. In AFIPS Proceedings
of the Fall Joint Computer Conference, pages 327–329, Anaheim, CA.

Granroth-Wilding, M. (2013). Harmonic analysis of music using combinatory
categorial grammar. PhD thesis, University of Edinburgh, UK.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009).

The WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–18.

Hoffman, T. and Birmingham, W. (2000). A constraint satisfaction approach to tonal

harmonic analysis. Technical report, Electrical Engineering and Computer Science

Department, University of Michigan.

Hulten, G., Spencer, L., and Domingos, P. (2001). Mining time-changing data streams.

In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 97–106. ACM Press.
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