
Chapter 6
Chord- and Note-Based Approaches
to Voice Separation

Tillman Weyde and Reinier de Valk

Abstract Voice separation is the process of assigning notes to musical voices. A

fundamental question when applying machine learning to this task is the architecture

of the learning model. Most existing approaches make decisions in note-to-note

steps (N2N) and use heuristics to resolve conflicts arising in the process. We present

here a new approach of processing in chord-to-chord steps (C2C), where a solution

for a complete chord is calculated. The C2C approach has the advantage of being

cognitively more plausible but it leads to feature modelling problems, while the N2N

approach is computationally more efficient.

We evaluate a new C2C model in comparison to an N2N model using all 19

four-voice fugues from J. S. Bach’s Well-Tempered Clavier. The overall accuracy

for the C2C model turned out slightly higher but without statistical significance in

our experiment. From a musical as well as a perceptual and cognitive perspective,

this result indicates that feature design that makes use of the additional information

available in the C2C approach is a worthwhile topic for further research.

6.1 Introduction

Voice separation is the process of assigning notes to a musical voice. This is not only

an important feature of our auditory and specifically musical perception and cognition,

but also a practical problem when working with semi-structured musical data, such

as tablature, MIDI recordings, or automatically transcribed audio. When using any

of these forms of input data, automatic voice separation (AVS) is an important part

of creating musical scores together with pitch estimation and beat tracking. AVS has

not achieved as much attention as some other tasks in music information retrieval,

such as genre classification or melodic similarity estimation. This is possibly because
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polyphonic transcription from audio has not reached the level of accuracy needed for

practical software applications. However, in applications with MIDI and tablature

AVS can be useful immediately.

Several algorithmic methods have been developed, using different approaches.

Almost all existing voice separation models are based on the Gestalt principle of

proximity in pitch and time. This leads to a well-defined solution for simple cases, but

in practice the complexity of real music requires trade-offs between many different

factors such as time and pitch proximity. This creates two challenges. First, it is

not obvious how to weight different features to achieve decisions in situations with

conflicting cues. This problem can be addressed with machine learning by adapting

the weights to fit the data, e.g., using a neural network as in the work presented

in this chapter. Second, there are many possible assignments of notes to voices,

so that the implementation of an exhaustive search of all possible combinations of

note-to-voice assignments across all notes in a piece is computationally intractable.

Therefore, a localized modelling of the decision process is necessary. We describe

here a new chord-to-chord (C2C) approach to voice assignment, with two different

feature extraction methods, and compare it to the previously introduced note-to-

note (N2N) approach. From a computational perspective, the C2C approach has the

advantage over existing note-based models that notes can be assigned to voices even

where the individual assignment is not optimal (e.g., in terms of pitch distance), if it

leads to a better fit for the whole chord. The different approaches exhibit differences

in terms of their runtime complexity and performance and entail different trade-offs.

From a perceptual and cognitive perspective, the separation and integration pro-

cesses in forming multiple voices or streams of auditory events are an example of the

binding problem, i.e., the integration of stimuli, like notes, to percepts, like voices

(cf. Wrigley and Brown, 2004). These binding mechanisms in general and for music

in particular are not yet well understood, but it is clear that parallel processing is

involved. The C2C approach includes that aspect in the model, increasing its power

and cognitive plausibility. However, the C2C approach poses the problem of how to

model the relation between the notes and the voices and their combinations, both

from a perceptual and cognitive as well as from a machine learning perspective.

In the N2N approach, the concepts of pitch and time proximity can be modelled

directly, because only one note is treated per decision, so that the time and pitch

distance to notes in previous voices can be directly used as feature values. In the

C2C approach, however, the modelling of variable chord sizes with a vector of fixed

dimension is an open problem. Conversely, in the C2C approach the interaction

between notes in the same chord is naturally modelled in the voice assignment and

learning process, while the N2N approach requires the use of additional rules and

heuristics and cannot guarantee optimal results on the chord level. We have performed

experiments on the four-voice fugues in J. S. Bach’s Well-Tempered Clavier, testing

implementations of the N2N and C2C approaches in different variants.

In Sect. 6.2, we give an introduction to AVS and related work in this area. In

Sect. 6.3, the application of machine learning to voice separation, feature design,

and the implications of the C2C and N2N model are discussed. The experiments we
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conducted are described in Sect. 6.4 and the results are discussed in Sect. 6.5. The

final conclusions and directions for further work are presented in Sect. 6.6.

6.2 Voice Separation

Voice separation has been approached both from the perspective of music perception

and cognition, in particular with respect to the underlying neural mechanisms, as

well as from a computational perspective, with a focus on practical problem solving.

6.2.1 Perception and Cognition of Polyphony

Several methods for voice separation in symbolic music formats have been suggested

in recent decades. Earlier work in the 1980s and 1990s focused on modelling cognitive

and perceptual phenomena relating to polyphonic structure. Specifically the work

of Huron (1989, 1991b) addressed the perception of polyphony, prevalence of voice

crossings, and inner-voice entries in corpora (Huron, 1991a; Huron and Fantini, 1989),

presenting a model for measuring pseudo-polyphony; Marsden (1992) developed

rule-based models for the perception of voices in polyphonic music. Gjerdingen

(1994) used a neural network to model the perception of ‘apparent motion’.

Auditory streaming, and more generally auditory scene analysis as defined by

(Bregman, 1994), i.e., the integration and separation of auditory stimuli into separate

streams, representing environmental properties (sounds originating from the same

source), is generally assumed to be the perceptual and cognitive basis for the de-

velopment of musical polyphony (e.g., Huron, 1991a; Wright and Bregman, 1987).

McCabe and Denham (1997) presented a model of the early stages of the process

of auditory streaming on the acoustic level, which is not directly applicable to sym-

bolic voice separation. Perception of separate voices has been shown to take place

in musically trained and untrained subjects, and to depend on sensory-driven and

attention-driven processes (Fujioka et al., 2008, 2005). Both the temporal processes

and concurrent stimulus processing in chord perception interact, and this interaction

is not fully understood (McDermott and Oxenham, 2008; Turgeon and Bregman,

2001). The neural mechanisms underlying these functions are the topic of current

research in auditory neuroscience (see, e.g., Ragert et al., 2014; Shamma et al., 2011).

Modelling the perception of multiple voices in polyphonic music poses an instance

of the binding problem, i.e., the segregation and combination of different stimuli

into a perceptual entity, and it is not fully understood how this is represented or

processed in the brain. In particular the combinatorial representation of auditory

features and objects (voices) poses modelling questions: assuming specific neurons

representing possible combinations would require many representation units, which

would have very sparse activations, and thus be ecologically implausible. Many
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researchers assume that temporal synchronization mechanisms play a role (Brown

et al., 1996; Shamma et al., 2011).

6.2.2 Automatic Voice Separation

Apart from being of importance for understanding underlying musical principles and

perceptual and cognitive aspects of polyphony, AVS is necessary for music transcrip-

tion and music information retrieval tasks on recorded MIDI data or automatically

transcribed audio, where no score is available. Therefore several practical approaches

have been proposed.

Over the past 15 years, several computational methods for voice separation have

been developed, most of them rule-based like the earlier work by Marsden (1992).

Temperley (2001) adopted an approach based on four ‘preference rules’, i.e., criteria

for evaluating a possible analysis. Two of these match the Pitch Proximity Principle

and the Principle of Temporal Continuity (Huron, 2001), which dictate that the closer

two notes are to one another in terms of pitch and time, the more likely they are per-

ceived as belonging to the same voice; the other two aim to minimize the number of

voices (New Stream Rule) and to avoid shared notes (Collision Rule). Cambouropou-

los (2000) briefly described an elementary version of a voice separation algorithm

based on path length minimization. Chew and Wu (2004), and an extended method

by Ishigaki et al. (2011), used a contig approach, in which the music is divided into

segments where a constant number of voices is active (the contigs). The voice frag-

ments in the segments are then connected on the basis of pitch proximity, disallowing

voice crossings. Szeto and Wong (2006) considered voices to be clusters containing

events proximal in the pitch and time dimensions, and model voice separation as a

clustering problem. The aim of their research, however, was to design a system for

pattern matching, not voice separation. In their method, voice separation is only a pre-

processing step that prevents “perceptually insignificant” (p. 111) stream-crossing

patterns from being returned by the system. Kilian and Hoos (2002) presented an

algorithm that is not intended primarily for correct voice separation, but rather for

creating “reasonable and flexible score-notation” (p. 2), so that their method allows

for complete chords in a single voice. Similarly, in the method presented by Karydis

et al. (2007), a voice is also not necessarily a monophonic sequence of notes. Rather,

they preferred to use the term ‘stream’ (see Cambouropoulos, 2008) as a perceptually

independent sequence of notes or multi-note sonorities. Hence, in addition to the

‘horizontal’ pitch and time proximity principles, they included two ‘vertical integra-

tion’ principles, based on principles suggested by Huron (2001), into their method:

the Synchronous Note Principle (based on Huron’s Onset Synchrony Principle) and

the Principle of Tonal Fusion (based on Huron’s Tonal Fusion Principle). A related

algorithm is described by Rafailidis et al. (2009). Madsen and Widmer (2006) present

an algorithm based fundamentally on the pitch proximity principle, which combines

rules, optimization, and heuristics.
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Both the rule-based and the machine learning algorithms that are described below

treat the music as a set of events in a two-dimensional pitch-time grid. To search the

full space of all possible voice assignments on this view would mean to explore all

possible combinations of assignments of notes to voices. Thus the total number of

combinations is V n, where V is the number of voices and n is the number of notes.

For example, for a relatively short piece with V = 4 and n = 150 this yields 4150 =
2300 ≈ 2× 1090, making a complete search intractable. One principled approach

to addressing this issue is the use of dynamic programming, which reduces the

search space to a series of individual decisions, such that the overall result is optimal.

However, in order to apply dynamic programming, the problem formulation must

conform to Bellman’s principle of optimality (Bellman, 2003) and decompose into

overlapping subproblems (Cormen et al., 2009). Dynamic programming is used, for

example, in Temperley’s voice separation system (Temperley, 2001). The Viterbi

algorithm is also based on dynamic programming and is used with hidden Markov

models, which we have applied to AVS in earlier work (De Valk et al., 2013). However,

the use of dynamic programming limits the modelling flexibility. Therefore the rule-

based methods listed above reduce the complexity by applying specifically designed

techniques that are based on decisions made per note or per note-pair within a limited

context. They use heuristics and conflict resolution techniques to make sure that

constraints are respected and some interaction between the note-level decisions is

realized.

Machine learning approaches, in contrast, normally use a reduced representation,

typically vectors of real numbers, that fits the requirements of the chosen learning

technique. Kirlin and Utgoff (2005) consider only pairs of notes within a window,

and use decision tree learning to determine whether or not they belong to the same

voice. Assigning notes to voices in order of their onsets, they use pitch proximity to

disambiguate between multiple voices. Within a chord (notes with common onset

time), only one note is considered at a time and all possible next notes within the

voice are evaluated. The complexity is further reduced by limiting the window size

and using the pitch proximity heuristic.

Jordanous (2008) also adopts a machine-learning approach. In her method, within

windows based on instances of the maximal number of voices present, every note is

compared to every possible next or previous note (the method starts from a marker,

which defines the middle of the window). Using learned pitch transition probabili-

ties and voice probabilities given a pitch, the most probable voice for each note is

determined. As in Kirlin and Utgoff’s algorithm, for each note within a chord, all

pairs that it forms with possible next and previous notes are considered, with conflict

resolution based on the highest probabilities.

In neither Kirlin and Utgoff’s (2005) nor Jordanous’ (2008) machine learning

approaches is there any optimization of the assignment of notes to voices for a chord

as a whole.
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6.3 Method

We approach the problem of AVS in a standard machine learning set-up. AVS on

symbolic music representations operates on a complex input consisting of a stream

of often synchronous note events, and machine learning offers the possibility for a

system to adapt its behaviour to data. By using given voice information, e.g., as given

by the composer or a human transcriber, the assignment of the events to voices can

be seen as a supervised machine learning problem. The given voice information, the

so-called ground-truth, defines the target output of the system.

Most machine learning models use a vector of numbers as input and output a

vector of numbers or symbols. An important question is how the properties of the

musical decision context can be encoded in a vector, so that the relevant aspects of

time and pitch structure are reflected and usable for the learning model (dynamics,

timbre and expressive timing are not included in the model at this point). In the case

of voice separation, a straightforward approach is the N2N model, where the context

is modelled for each note using a vector of features such as the pitch distances to the

previous notes in the voices (a detailed description follows in the next section). Based

on this feature vector, a decision to assign the current note to a voice is made and the

following steps are based on this decision—that is, we follow a greedy approach. The

advantage is that the system is conceptually straightforward and has a computational

complexity that is linear in the number of notes processed. The disadvantage is that

the solution may be sub-optimal, because decisions are not revised. For example, in

some cases, it may be better not to minimize the proximity of the current note within

its voice, but rather go for another option if that enables a better fit for the remaining

notes in the chord. In the N2N approach such a solution cannot be found. The N2N

approach has nevertheless been applied using neural networks with good results, but

also with potential for improvement by supporting chord-level optimization.

We therefore propose our new C2C approach for modelling voice separation as a

machine learning problem on the level of chords rather than notes, where a non-linear

rating function that maps notes to voices per chord is learned. The C2C approach is

still local in time but global in the vertical dimension—that is, we evaluate all possible

assignments of notes to voices. This approach is cognitively and perceptually more

plausible, as it addresses the concurrent processing that takes place in the human

auditory system. The binding problem, however, also applies in this context, as the

machine learning process requires a compact representation, which also helps to

keep the model plausible. This approach requires the design of features representing

complete chords rather than just notes, for which we use two approaches.

The first is to represent each voice separately with a set of features, raising the

problem of how to represent voices without notes with a fixed-size vector. The second

is to average the feature values over the notes in the chord, avoiding the problem of

missing notes and leading to a compact representation with fixed dimensions, but

also to a loss of information. Within this framework we are not aware of a solution

that would avoid these problems.
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6.3.1 Representation

As discussed above, most methods for voice separation focus on features of the music

that represent the proximity of notes in pitch and time. This can be measured, for

example, as the pitch difference from the note to be assigned to the previous note in

each voice. Similarly we can measure the time from the end of the previous note in

each voice to the beginning of the current note. We can then choose the voice that

minimizes one of these distances or a combined distance, but that may not be the

optimal solution for a whole chord, which requires the definition of a global measure.

Before we discuss the question of how to determine the best trade-off for a given

chord and mapping, we present the feature definitions that we use in the C2C and the

N2N approaches.

6.3.1.1 Features

We define an n-dimensional feature vector as a numerical representation of the notes

in a chord in their polyphonic context. n is fixed within a learning and application

model, but depends on the maximum number of voices V the model supports. Pitches

are represented as MIDI note numbers, pitch intervals as semitones, and durations as

whole notes. When using a model designed for V voices, a chord can contain 1 to V
notes.

The feature vector has three parts:

1. note-specific features are different for the individual notes in the chord. Each of

these gets a default value of −1 for each note the chord is short of V , that is, for

notes c to V −1, where c is the number of notes in the chord (using zero-based

indexing);

2. chord-level features are calculated per chord;

3. polyphonic embedding features depend on the mapping of notes to voices for the

chord; each mapping results in a different polyphonic embedding.

Let nv
t be the chord note mapped to voice v under the current mapping, nv

t−1 the

previous note in v, p(n) a note’s pitch, on(n) its onset time, and off(n) its offset

time. For each voice v we calculate

• the pitch proximity of nv
t to nv

t−1:

pitchProx(v) =
1

|p(nv
t )−p(nv

t−1)|+1
; (6.1)

• the inter-onset time proximity of nv
t to nv

t−1:

intOnProx(v) =
1

(on(nv
t )−on(nv

t−1))+1
; (6.2)

• the offset-onset time proximity nv
t to nv

t−1:
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offOnProx(v) =

⎧⎨⎩
1

(on(nv
t )−off(nv

t−1))+1
, ifoff(nv

t−1)≤ on(nv
t ) ,

1
(on(nv

t )−off(nv
t−1))−1

, ifoff(nv
t−1)> on(nv

t ) ;
(6.3)

• the pitch movements—that is, for each voice v, the difference p(nv
t )− p(nv

t−1), in

semitones;

• the pitch–voice correlation ρ between the chord’s pitch ordering and voice order-

ing, as measured by the Pearson correlation coefficient:

ρpv(C) =
∑ pivi − cp̄v̄

spsv
=

∑ pivi −∑ pi ∑vi√
∑ p2

i − (∑ pi)2

√
∑v2

i − (∑vi)2
, (6.4)

where c is the number of notes in the chord C, pi the pitch of note i, and vi the

voice assigned to note i. If there is only one note, 0 is returned.

The decision to model proximity as 1/distance rather than using distance was

taken in order to emphasize differences between smaller distances.

The whole feature vector is described in Table 6.1 for the C2C model and in Table

6.2 for the N2N model. Features marked with an asterisk (*) are assigned a value of

−1 for every note the chord is short of V .

6.3.1.2 Variable Chord Sizes

A central problem in the C2C approach is that chords are of variable size, and standard

neural networks, like most machine learning algorithms, use fixed-size vectors. We

consider two approaches here for pitch and time proximity:

1) representing each voice separately, using default values when there are no notes

in a voice;

2) averaging values over notes.

Approach 1 has the advantage of capturing all information in the voice assignment.

However, when not all voices are present, the voice features are filled with default

values. These values are outside the regular range of values, but this information is

not explicit to the neural network (or any other vector-based learning system used).

Therefore the learning system needs to learn the relation between the appearance of

the default values and the rating of the mapping in context.

6.3.2 Learning Model

We have previously addressed the task of AVS with the N2N approach. The N2N

approach models the task as a classification problem, where each note is assigned to

a voice (a class). For each note in the dataset, a training example is created consisting

of a feature vector and a ground-truth label (a one-of-n representation of the note’s
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Table 6.1 The feature vector for the C2C model, assuming V = 4

Position Name Description

Note-specific features

1, 5, 9, 13 indexInMapping* index (based on pitch) in the chord, excluding sus-

tained previous notes

2, 6, 10, 14 indexInChord* index (based on pitch) in the chord; including any

sustained previous notes

3, 7, 11, 15 pitch* pitch

4, 8, 12, 16 duration* duration

Chord-level features

17 chordSize number of notes in the chord; including any sus-

tained previous notes

18 isOrnamentation true (1) if a sixteenth note or smaller and the only

new note in the chord

19 metricPosition metric position within the bar

20–22 intervals* intervals in the chord; including any sustained pre-

vious notes

Polyphonic embedding features

23–26 pitchProx for each voice v: the pitch proximity of nv
t to nv

t−1

27–30 intOnProx for each voice v: the inter-onset time proximity of

nv
t to nv

t−1

31–34 offOnProx for each voice v: the offset-onset time proximity of

nv
t to nv

t−1

35–38 pitchMovements for each voice v: the pitch movement of nv
t with

respect to nv
t−1

39–42 voicesAlreadyOccupied binary vector encoding all voices already occupied

in the chord

43 pitchVoiceRelation correlation coefficient between pitches and voices;

including any sustained previous notes

44 numberOfVoiceCrossingPairs number of voice crossing pairs; including any sus-

tained previous notes

45 summedDistOfVoiceCrossingPairs total distance of all voice crossing pairs; including

any sustained previous notes

46 avgDistOfVoiceCrossingPairs average distance of all voice crossing pairs; includ-

ing any sustained previous notes

47–50 mapping vectorial representation of the mapping of notes to

voices

voice). Given the feature vectors as input, the network is trained so that its output

approximates the labels. The trained network is then applied to unseen data to predict

voices; the predictions are determined by the output neuron with the highest activation.

More details on this approach are provided by De Valk and Weyde (2015).

In the C2C approach, the task is modelled as a regression problem, where the

ratings for the mappings of notes to voices are learned with the aim of giving the

ground-truth mapping the highest rating. Each chord in the dataset is represented as

a set of m n-dimensional feature vectors, where n depends on the selected feature

set, voice number and use of averaging. Each vector encodes properties of that chord

in its polyphonic context under one of m possible mappings of the chord notes to

voices. The goal is to have a model that, for each chord in a piece, takes as input a

set of feature vectors representing that chord in its context for all possible mappings

of notes to voices, and that rates the correct mapping highest. We use a three-layer
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Table 6.2 The feature vector for the N2N model, assuming V = 5

Position Name Description

Note-specific features

0 pitch pitch

1 duration duration

2 isOrnamentation true (1) if a sixteenth note or smaller and the only new

note in the chord

3 metricPosition metric position within the bar

Chord-level features

4 chordSize number of notes in the chord; including any sustained

previous notes

5 indexInChord index (based on pitch) in the chord; including any sus-

tained previous notes

6 pitchDistTo NoteBelow pitch distance to the note below in the chord; including

any sustained previous notes

7 pitchDistTo NoteAbove pitch distance to the note above in the chord; including

any sustained previous notes

8–12 intervals intervals in the chord; including any sustained previous

notes

Polyphonic embedding features

13–17 pitchProx proximities in pitch to the previous note in each voice

18–22 intOnProx proximities in time (inter-onset) to the previous note in

each voice

23–27 offOnProx proximities in time (offset-onset) to the previous note in

each voice

28–32 voicesAlready Occupied binary vector encoding all voices already occupied in the

chord

feed-forward neural network model with an output layer containing only a single

neuron. The activation value of this neuron ranges between 0 and 1, and represents

the rating for a mapping given a chord and context. We use a sigmoid activation

function and resilient backpropagation (RPROP) as the learning algorithm (Igel and

Hüsken, 2003; Riedmiller and Braun, 1993).

6.3.3 Mappings: Enumeration and Pruning

In the C2C approach, the input to the neural network depends on the mapping of the

chord notes to the voices. For each chord, given the number of notes in the chord

and the number of voices in the dataset, all possible mappings of notes to voices

are enumerated. A mapping is encoded as a V -dimensional vector, where V is the

maximum number of voices and the ith element is an integer from −1 to (N −1),
where N is the maximum number of concurrent notes, which is normally equal to

V . The element indicating the (zero-based) index into the chord of the note assigned

to the ith voice (with the voices ordered from top to bottom and sustained previous

notes excluded). A value of −1 at the ith position indicates that no note in the chord
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is mapped to the ith voice. Note that the vectorial representation used does not allow

for more than one note to be mapped to one voice (in which case the voice would no

longer be monophonic). Thus there are initially V N+1 possible mappings of notes to

voices.

The enumeration of mappings per chord is restricted according to the following

constraints:

1. all chord notes are mapped to a voice;

2. each chord note is mapped to only one voice;

3. no chord note is mapped to a voice that is already taken by a sustained note from

a previous chord.

We then prune the enumerations, both to avoid the method becoming computationally

too expensive and to improve the model’s performance. All mappings that contain

more than two voice crossing pairs are removed, where voice crossing pairs are

instances of voice crossings within a chord. If, for example, the tenor voice (T)

moves above both the soprano (S) and the alto (A) in a chord (and the soprano is

above the alto), this chord contains two voice crossing pairs: TS and TA. When

counting voice crossing pairs, sustained notes from previous chords (if applicable)

are included, and unisons are not considered to be voice crossings. The limit of two

was chosen as this is the maximum number of voice crossing pairs encountered

in our dataset. This is an ad hoc choice which matches the difficulty that listeners

experience in perceiving voice crossings. However, whether this can be generalized

and whether a more flexible solution can be found are questions that are worth

exploring more thoroughly. Pruning can be very effective in reducing the number of

mapping possibilities, as shown in Table 6.3, which gives the number of possibilities

for a chord of c notes in a context of V voices before and after pruning (all numbers

provided are for the case where there are no sustained notes from a previous chord).

The table shows that the effect increases as the number of notes in a chord grows, and

that it is stronger when there are more voices. When the number of notes approaches

the number of voices, there are fewer options left within the given limit of voice

crossings, leading to lower numbers of mappings (e.g., in the case V = 5, c = 5). In

our experiments we used values of 4 and 5 for V , and we can read from the table the

relative increase of computation compared to the N2N model. In the N2N model,

c feature vectors need to be calculated and evaluated with the neural network. For

the C2C model, the number in column P describes the number of feature vector

calculations and neural network evaluations per chord after pruning. We can see that

the increase for chords with more notes (i.e., P/c) is bounded by a constant factor of

7 for V = 4 and of 17 for V = 5. The feature vectors are larger for the C2C model,

which adds additional processing, but in practice the overall increase was lower than

predicted and below 11 (see Table 6.4), which is substantial but not prohibitive on

modern computers.

As mentioned above, we used a neural network to calculate the gain function

for each mapping, i.e., a rating of the quality of the mapping in the context. For

learning from data we train the neural network to rate the mapping output (as in the

ground-truth) better than any other mapping. For this we use relative training as used
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Table 6.3 Number of mapping possibilities for a chord of c notes in a context of V voices, with no
restrictions (N), meeting enumeration constraints (C) and after pruning (P) of mappings containing
more than two voice crossing pairs

V = 3 V = 4 V = 5

N C P N C P N C P
c = 1 3 3 3 4 4 4 5 5 5

c = 2 9 6 6 16 12 12 25 20 20

c = 3 27 6 5 64 24 20 125 60 50

c = 4 256 24 9 625 120 45

c = 5 3125 120 20

by Weyde and Dalinghaus (2003), which is based on Braun et al. (1991). Unlike a

standard regression approach, where desired outputs—i.e., the ratings—are given

directly, we train the model by comparing the output for the ground-truth mapping

with the outputs for all other mappings, the goal being that, for each chord, the

ground-truth mapping should lead to higher network output than the other mappings.

6.3.4 Relative Training

The relative training technique can be thought of as instantiating the network twice,

sharing the structure and the weight values, with the ground-truth mapping input to

one network and a generated mapping to the other. For training, both networks feed

into a single comparator neuron through connections with fixed weights, −1 and

+1, as shown in Fig. 6.1. In this structure, the feature vector of the ground-truth data

is applied to ‘net 1’ and the feature vector of the other examples to ‘net 2’. If net 1

with the ground-truth input has a higher output than net 2 (i.e., the relative rating

is correct), then the input to the comparator becomes negative, otherwise the input

value is positive, or zero if the networks produce equal outputs.

We used a rectified linear unit for the comparator neuron—that is, we used

max(x,0) as the activation function and set the target output of the comparator

to 0, so that for all correct relative ratings (where out(net 1) > out(net 2)) the

comparator output error (actual− target)2 is 0. This network can be trained with

standard backpropagation or any other gradient descent algorithm to avoid or reduce

incorrect relative ratings. It is helpful for new data to aim for an output difference that

is not just negative, but below some threshold −ε . In neural network terminology,

this means setting a bias for the comparator neuron. This introduces some robustness

against variations in the input data and improves the performance on new data. An

alternative, that was used by Hörnel (2004), is to use a logistic activation function
1

1+e−x , which leads to a positive error signal of varying size for all inputs. We did

preliminary experiments with both approaches, and found that both approaches lead
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a)

b)

Fig. 6.1 (a) The neural network structure for relative learning, the comparator neuron is labelled
‘comp’. (b) Activation functions for the comparator neuron: rectified linear (max(x,0)) and logistic
( 1

1+e−x )

to similar results. We chose the rectified linear units for the final experiments as they

are computationally more efficient and lead to slightly better results on the test data.

6.4 Experiments

We evaluated the performance of the C2C model with the proximity features rep-

resented per-voice (C2C) and averaged (C2CA). We also evaluated the effect of

additional—unused—voice features, by testing a five-voice version. For evaluation

of the two approaches, the 19 four-voice fugues of J. S. Bach’s Well-Tempered
Clavier (BWV 846–893) were used. The MIDI encodings for the pieces from

www.musedata.org were used and all notes beyond four simultaneous voices were

removed (this is typically the final chord and a few notes just before the final chord).

This decision was taken to enable comparison with the N2N model, which in its

current implementation does not allow more than one note per voice at any given

time. The models were trained and evaluated using 19-fold cross-validation, where

each piece is one fold. We did not use random division of training samples, as sam-

ples from the same piece would contain regularities, possibly verbatim repetitions,
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which would make the results unrepresentative for new music. By using piece-wise

cross-validation we can use the results as estimates for results on unseen data of the

same style.

Two modes of evaluation were used:

1. test mode, where the context features are calculated on the basis of the ground

truth. This mode is useful for assessing the effectiveness of learning and gener-

alization of the neural network to new data, without the effect of propagating

errors; and

2. application mode, where the context features are calculated on the basis of the

predicted voice assignments. This mode is like the intended use case, where no

ground truth, i.e., no score, exists.

We used preliminary experiments to determine the values of the rating margin

ε as 0.05 and weight decay λ as 0.00001 (C2C) and 0.00003 (N2N). The method

showed little sensitivity to variations in these parameters, as long as ε was not much

smaller and λ not much larger than the chosen values.

Five models were tested overall. The N2N model (see De Valk and Weyde, 2015),

the C2C4 and C2C5 models without averaging of the proximity features, which have

four and five voices, respectively, and the C2CA4 and C2CA5 with averaging and

four and five voices, respectively.

6.5 Results and Discussion

Accuracy (number of notes correctly assigned, divided by total number of notes) was

chosen as the evaluation metric. The accuracy of the C2C, N2N and C2CA models is

shown in Table 6.4. The differences between the models’ accuracies are not vast, but

several differences are statistically significant. We used the Wilcoxon signed-rank test,

a non-parametric test for different medians, to calculate significance. The test was

applied to the accuracies per piece, thus with 19 samples per condition. As opposed

to the frequently used Student’s t-test, the signed-rank test does not assume the values

to be normally distributed, and for the majority of the combinations in Table 6.4 the

values’ distributions are significantly non-normal according to a Jarque–Bera test.

Overall, the results are similar to previously reported results for the N2N model

(De Valk et al., 2013), although somewhat lower, as this dataset contains no three-

voice fugues. The test results are in a similar range to the training results, indicating

no overfitting. The results in application mode are substantially lower than those in

test mode, which is due to error propagation.

In the application mode, which represents the intended use case, the C2CA4

model is most accurate, improving over the N2N model by over 2 percentage points,

but, as the standard deviation is high, the difference is not significant (p = 0.11). A

general observation in the results is that the four- and five-voice versions of the C2C

models perform similarly (as expected) and the differences between corresponding

four- and five-voice models are not significant in the test and application modes.
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Table 6.4 Voice assignment accuracy per model (columns) and mode (rows) with averages and
standard deviations over 19 folds in cross-validation. The best average accuracies per mode are
shown in bold. The running times on a four-core system are shown in the lower part of the table

N2N C2C4 C2C5 C2CA4 C2CA5

Training
Mean 97.89% 96.51% 96.20% 97.17% 97.03%

Std-Dev 0.13 0.24 0.42 0.15 0.16

Test
Mean 97.54% 96.19% 96.17% 96.90% 96.79%

Std-Dev 0.79 1.52 1.06 1.16 1.24

Application
Mean 77.70% 78.50% 76.91% 80.24% 78.31%

Std-Dev 7.74 10.09 9.86 9.55 11.22

Running times (sec)

Training 1,498 11,579 12,608 11,005 11,777

Test 48 485 503 493 507

Application 55 306 313 308 320

The N2N model shows the highest accuracy in the training and test modes, which

is significantly higher than the values for the C2C models. In test mode, the results

are similar to training mode, but the standard deviation is greater and the difference

between the N2N and C2CA models is not significant.

The averaging of the proximity features has a positive effect on the accuracy of

the C2CA models compared to the standard C2C models. The difference between the

different C2C and C2CA models is mostly significant for training and test mode, while

in application mode only the difference between C2CA4 and C2C5 is significant.

Overall, the C2CA models perform slightly better than the N2N model in the

application mode. In the training and test mode, the accuracy of the C2CA models

is slightly lower than that of the N2N model, indicating that these models are not

as flexible. This could be related to the loss of information due to averaging the

proximity values, but the default values used in the C2C4 and C2C5 models seem to

have an even worse effect and lead to lower accuracy in all cases.

Table 6.5 The significance p-values of differences between models according to a Wilcoxon signed-
rank test. Above the diagonal is the test mode and below the application mode. Values shown in
bold indicate significance at the 5% level. In the training mode, all models are significantly different
from each other

N2N C2C4 C2C5 C2CA4 C2CA5

N2N .0001 .0000 .0008 .0004
C2C4 .8596 .5412 .0082 .0258
C2C5 .4413 .1819 .0003 .0039
C2CA4 .1134 .4653 .0062 0.2753

C2CA5 .6507 .3736 .1336 .4180
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6.6 Conclusions

We introduced a new chord-to-chord (C2C) approach to automatic voice separation

(AVS) in symbolic music representations. The C2C approach is based on processing

the voice assignments for one chord as a whole, and calculating all possible assign-

ments. This approach has the advantage of modelling interactions between notes in

a chord and being perceptually and cognitively more plausible. Its disadvantage is

that it is difficult to define the features effectively, where there is a trade-off between

the problematic use of default values and the loss of information by averaging. In

the presented evaluation, the differences in performance are small and vary between

modes. The C2C model performs better than the N2N model when averaging the

proximity features in application mode, which represents the use case. However, due

to high variability, this result is not significant in our experiment. Given that the C2C

model is clearly slower than the N2N model, the latter may be preferable for practical

applications at the moment.

However, the results show that a C2C approach to voice separation can be suc-

cessful. There is a need to understand better how to design effective chord-wise

features for AVS. The temporal dynamics of the auditory scene analysis are only

rudimentarily modelled here, and there may be better solutions to the representation

and processing problem, for example using a time-based modelling approach (e.g.,

one based on synchronous activation of neurons). The development of better fea-

ture representations and effective global optimization techniques are thus relevant

research topics for musical voice separation, which could help realize the potential

of the C2C approach more fully in the future.
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Igel, C. and Hüsken, M. (2003). Empirical evaluation of the improved RPROP

learning algorithms. Neurocomputing, 50:105–123.

Ishigaki, A., Matsubara, M., and Saito, H. (2011). Prioritized contig combining to

segregate voices in polyphonic music. In Proceedings of the Sound and Music
Computing Conference. Università di Padova.
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