
Chapter 13
Analysing Music with Point-Set Compression
Algorithms

David Meredith

Abstract Several point-set pattern-discovery and compression algorithms designed

for analysing music are reviewed and evaluated. Each algorithm takes as input a

point-set representation of a score in which each note is represented as a point in

pitch-time space. Each algorithm computes the maximal translatable patterns (MTPs)

in this input and the translational equivalence classes (TECs) of these MTPs, where

each TEC contains all the occurrences of a given MTP. Each TEC is encoded as a

〈pattern,vector set〉 pair, in which the vector set gives all the vectors by which the

pattern can be translated in pitch-time space to give other patterns in the input dataset.

Encoding TECs in this way leads, in general, to compression, since each occurrence

of a pattern within a TEC (apart from one) is encoded by a single vector, that has

the same information content as one point. The algorithms reviewed here adopt

different strategies aimed at selecting a set of MTP TECs that collectively cover (or

almost cover) the input dataset in a way that maximizes compression. The algorithms

are evaluated on two musicological tasks: classifying folk song melodies into tune

families and discovering repeated themes and sections in pieces of classical music.

On the first task, the best-performing algorithms achieved success rates of around

84%. In the second task, the best algorithms achieved mean F1 scores of around 0.49,

with scores for individual pieces rising as high as 0.71.

13.1 Music Analysis and Data Compression

A musical analysis represents a particular way of understanding certain structural

aspects of a musical object, where such an object may be any quantity of music,

ranging from a motive, chord or even a single note through to a complete work or

even an entire corpus of works (cf. Bent, 1987, p. 1). In the spirit of the theory of
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Kolmogorov complexity (Chaitin, 1966; Kolmogorov, 1965; Li and Vitányi, 2008;

Solomonoff, 1964a,b) and the minimum description length principle (Rissanen, 1978),

a musical analysis is conceived of here as being a compact or compressed encoding

of an in extenso description of a musical object. An in extenso description is one in

which the properties of each atomic component of the object are explicitly specified,

without encoding any structural groupings of these components into higher-level

constituents, and without encoding any relationships between atomic components

(see Simon and Sumner (1968, 1993) for a similar use of the term, “in extenso”).

Music theorists and analysts often refer to such in extenso descriptions as “musical

surfaces” (Lerdahl and Jackendoff, 1983, pp. 3,10–11) (see also Chap. 2, this volume).

The atomic components themselves might be, for example, notes in a score or events

in a MIDI file or sample values in a PCM audio file. Their nature thus depends on

both the nature of the object being described (e.g., a specification of what to play or

a recording of an actual performance) and the level of detail or “granularity” of the

description.

In contrast, while a musical analysis is itself a description of a musical object,

it will typically differ from an in extenso description by representing the object as

being constructed from sets of atomic components that form larger-scale constituents,

such as motives, phrases, chords, voices and sections. An analysis will also typi-

cally encode relationships between such constituents (e.g., repetition, transposition,

inversion, elaboration, augmentation and diminution).

The Kolmogorov complexity of an object is, roughly speaking, the length in bits

of the shortest possible program that generates the object as its only output. In the

spirit of Kolmogorov complexity, in this chapter, an analysis is thus conceived of as

a program that outputs the in extenso description of a musical object that we want

to analyse and explain. The precise way in which such a program generates the in

extenso surface description of the object constitutes an hypothesis as to how that

surface might have come about. Equivalently, we can thus consider an analysis to be

a losslessly compressed encoding of an in extenso description of a musical object. In

this way, an analysis is an explanation for or a way of understanding certain aspects

of the structure of the musical object that it describes.

Suppose X and Y are two constituent sets of atomic components of a musical

object (e.g., two sets of notes forming two occurrences of the subject in a fugue) and

that the transformation, T , maps X onto Y (e.g., T could be “shift in time by x quarter

notes and transpose by y semitones”). If T can be described more parsimoniously

than Y , then the part of the musical surface consisting of X and Y (i.e., X ∪Y , or the

union of the atomic components in X and Y ) can be described more parsimoniously

by giving an in extenso description of X together with a description of T , than it

can by giving in extenso descriptions of both X and Y . In this way, by identifying

structural relationships between constituents of a musical object, a musical analysis

can convey at least as much information about that object as an in extenso description

on the same level of detail, but may manage to do so more parsimoniously. A musical

analysis can thus take the form of a compact description or compressed encoding of a

musical object. Of course, a musical analysis usually conveys more information than

an in extenso description on the same level of detail, since it also typically describes
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groupings of atomic components into larger constituents and structural relationships

between these constituents.

Kolmogorov complexity (Chaitin, 1966; Kolmogorov, 1965; Li and Vitányi, 2008;

Solomonoff, 1964a,b) (also known as algorithmic information theory, see also

Chap. 7, this volume) suggests that the length of a program, whose output is an

in extenso description of an object, can be used as a measure of the complexity of its

corresponding explanation for the structure of that object: if we have two programs

in the same programming language that generate the same output, then the shorter of

the two will typically represent the simpler explanation for that output.

The level of structural detail on which an analysis (encoded as a program) explains

the structure of a musical object is determined by the granularity of the in extenso

description that it generates. Typically, much of the detailed structure of an object

will not be encoded in the in extenso description generated by an analysis and this

omitted structure will therefore go unexplained.

In the work presented in this chapter, I assume that the music analyst’s goal is

to find the best possible explanations for the structures of musical objects, which

raises the question of how we are supposed to decide, given a pair of alternative

explanations for the same musical object, which of these explanations is “better”. In

my view, we can only meaningfully claim that one analysis is “better than” another if

it allows us to more successfully carry out some objectively evaluable task; and even

then, we can only claim that the analysis is superior for that task. Such tasks might

include, for example, detecting errors, memorizing pieces, identifying composers

(or dates of composition, forms or genres), and predicting how incomplete pieces

might be completed. It is possible that the best analysis for carrying out one such

task might be different from the best analysis for carrying out another. However, the

algorithms and experiments described in this chapter are founded on the hypothesis

that the best possible explanations for a musical object (i.e., the best analyses for all
objectively evaluable tasks) are those that are represented by that object’s shortest

possible descriptions—that is, the descriptions of the object whose lengths are equal

to the Kolmogorov complexity of that object.

In general, the Kolmogorov complexity of an object is not computable.1 This

means that, if we have some in extenso description of an object and a compressed

encoding of that description, then typically we cannot be sure that the compressed

encoding is the shortest one possible. We can, of course, often prove that an encoding

is not the shortest possible, simply by finding a shorter one. However, in the current

context, the non-computability of Kolmogorov complexity does not pose a problem,

as we will only use the relative lengths (i.e., information content) of analyses to

predict which analyses will serve us better for carrying out musicological tasks. That

is, in order to be able to evaluate whether we are making progress, we never really

need to know if an analysis is the best possible (although, of course, that would be

nice), we only need to be able to predict (at least some of the time) whether or not it

will be better than another one.

1 Actually prefix complexity, K, is upper semicomputable, but it cannot be approximated in general
in a practically useful sense (Li and Vitányi, 2008, p. 216).
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If we adopt the approach outlined above, then the music analyst’s goal becomes

that of finding the shortest possible “programs” (i.e., encodings, analyses) that gener-

ate the most detailed representations of as much music as possible. In other words,

our ultimate goal may be considered to be to compress as detailed a description as

possible of as much music as possible into as short an encoding as possible.

With this goal in mind, the main purpose of this chapter is to present, analyse and

evaluate a number of compression algorithms that have been specifically designed

for analysing music (see Sect. 13.3). Each of these algorithms takes an in extenso

description of a musical object as input and generates a losslessly compressed en-

coding of this description as output. All of the algorithms examined in this study are

based on Meredith et al.’s (2002) “Structure Induction Algorithm” (SIA) which takes

as input a multidimensional point set (in this context, representing a musical object)

and computes all the maximal repeated patterns in the point set.

The results of evaluating these compression algorithms on two musicological

tasks will also be presented (see Sect. 13.4). In the first task, the algorithms were

used as compressors to compute the normalized compression distance (NCD) (Li

et al., 2004) between each pair of melodies in the Annotated Corpus of Dutch folk

songs from the collection Onder de groene linde (Grijp, 2008; van Kranenburg et al.,

2013; Volk and van Kranenburg, 2012). The NCD between two objects, x and y, is

defined as follows:

NCD(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)} , (13.1)

where Z(x) is the length of a compressed encoding of x and Z(xy) is the length of a

compressed encoding of a concatenation of x and y. The NCD between two objects is

designed to be a practical alternative to the normalized information distance (NID),

a universal similarity metric based on Kolmogorov complexity. These calculated

NCDs were then used to classify the melodies into tune families and the classifi-

cations generated were compared with “ground-truth” classifications provided by

musicologists (van Kranenburg et al., 2013; Volk and van Kranenburg, 2012).

In the second task, the algorithms were used to find repeated themes and sections

in five pieces of Western classical music in various genres and from various historical

periods (Collins, 2013a). The analyses generated by the algorithms were, again,

compared with “ground-truth” analyses provided by expert analysts (Collins, 2013b).

Before presenting the algorithms, however, it is first necessary to review some

basic concepts and terminology relating to representing music with point sets.

13.2 Representing Music with Point Sets

In the algorithms considered in this chapter, it is assumed that the music to be

analysed is represented in the form of a multi-dimensional point set called a dataset,
as described by Meredith et al. (2002). Most of these algorithms work with datasets

of any dimensionality. However, it will be assumed here that each dataset is a set of
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Fig. 13.1 An example of a dataset. A two-dimensional point-set representing the fugue from
J. S. Bach’s Prelude and Fugue in C minor, BWV 846. The horizontal axis represents onset time in
tatums; the vertical axis represents morphetic pitch. Each point represents a note or a sequence of
tied notes

two-dimensional points, 〈t, p〉, where t and p are integers representing, respectively,

the onset time in tatums and the chromatic or morphetic pitch (Meredith, 2006b,

2007; Meredith et al., 2002) of a note or sequence of tied notes in a score. Assuming

the musical object to be analysed is the score of a single movement, then the tatum

for that score is defined to be the largest common divisor of every note onset and

duration in the score. The chromatic pitch of a note is an integer indicating the key on

a normal piano keyboard that would need to be pressed to play the note. For example,

if we define the chromatic pitch of A0 to be 0, then the chromatic pitches of B�3, C4

and C�4 are 39, 39 and 40, respectively. The morphetic pitch of a note is an integer

that depends on the position of the head of a note on the staff and the clef in operation

on that staff. It indicates pitch height while ignoring accidental. For example, if we

define the morphetic pitch of A0 to be 0, then the morphetic pitches of B�3, C4 and

C�4 are 22, 23 and 23, respectively. For a more extensive and in-depth discussion of

these and other pitch representations, see Meredith (2006b, pp. 126–130).

Figure 13.1 shows an example of such a dataset. When the music to be analysed is

modal or uses the major–minor tonal system, the output of the algorithms described

below is typically better when morphetic pitch is used. If morphetic pitch information

is not available (e.g., because the data is only available in MIDI format), then, for

modal or tonal music, it can be computed with usually very high accuracy from a

representation that provides the chromatic pitch (or MIDI note number) of each note,

by using an algorithm such as PS13s1 (Meredith, 2006b, 2007). For pieces of music

not based on the modal or major–minor tonal system, using chromatic pitch may give

better results than using morphetic pitch.

13.2.1 Maximal Translatable Patterns (MTPs)

If D is a dataset (as just defined), then any subset of D may be called a pattern. If

P1,P2 ⊆ D, then P1,P2, are said to be translationally equivalent, denoted by P1≡T P2,

if and only if there exists a vector v, such that P1 translated by v is equal to P2. That

is,
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Fig. 13.2 Examples of maximal translatable patterns (MTPs). In each graph, the pattern of circles is
the maximal translatable pattern (MTP) for the vector indicated by the arrow. The pattern of crosses
in each graph is the pattern onto which the pattern of circles is mapped by the vector indicated by
the arrow

P1≡T P2 ⇐⇒ (∃v | P2 = P1 + v) , (13.2)

where P1 +v denotes the pattern that results when P1 is translated by the vector v. For

example, in each of the graphs in Fig. 13.2, the pattern of circles is translationally

equivalent to the pattern of crosses. A pattern, P⊆D, is said to be translatable within

a dataset, D, if and only if there exists a vector, v, such that P+v⊆D. Given a vector,

v, then the maximal translatable pattern (MTP) for v in the dataset, D, is defined and

denoted as follows:

MTP(v,D) = {p | p ∈ D∧ p+ v ∈ D} , (13.3)

where p+ v is the point that results when p is translated by the vector, v. In other

words, the MTP for a vector, v, in a dataset, D, is the set of points in D that can

be translated by v to give other points that are also in D. Figure 13.2 shows some

examples of maximal translatable patterns.

13.2.2 Translational Equivalence Classes (TECs)

When analysing a piece of music, we typically want to find all the occurrences of an

interesting pattern, not just one occurrence. Thus, if we believe that MTPs are related

in some way to the patterns that listeners and analysts find interesting, then we want

to be able to find all the occurrences of each MTP. Given a pattern, P, in a dataset,

D, the translational equivalence class (TEC) of P in D is defined and denoted as

follows:

TEC(P,D) = {Q | Q≡T P∧Q⊆ D} . (13.4)

That is, the TEC of a pattern, P, in a dataset contains all and only those patterns in the

dataset that are translationally equivalent to P. Note that P≡T P, so P ∈ TEC(P,D).
Figure 13.3 shows some examples of TECs.
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Fig. 13.3 Examples of translational equivalence classes (TECs). In each graph, the pattern of circles
is translatable by the vectors indicated by the arrows. The TEC of each pattern of circles is the set
of patterns containing the circle pattern itself along with the other patterns generated by translating
the circle pattern by the vectors indicated. The covered set of each TEC is the set of points denoted
by icons other than filled black dots

The covered set of a TEC, T , denoted by COV(T ), is defined to be the union of

the patterns in the TEC, T . That is,

COV(T ) =
⋃

P∈T

P . (13.5)

Here, we will be particularly concerned with MTP TECs—that is, the translational

equivalence classes of the maximal translatable patterns in a dataset.

Suppose we have a TEC, T = TEC(P,D), in a k-dimensional dataset, D. T con-

tains the patterns in D that are translationally equivalent to P. Suppose T contains n
translationally equivalent occurrences of the pattern, P, and that P contains m points.

There are at least two ways in which one can specify T . First, one can explicitly

define each of the n patterns in T by listing the m points in each pattern. This requires

one to write down mn, k-dimensional points or kmn numbers. Alternatively, one can

explicitly list the m points in just one of the patterns in T (e.g., P) and then give the

n−1 vectors required to translate this pattern onto its other occurrences in the dataset.

This requires one to write down m, k-dimensional points and n−1, k-dimensional

vectors—that is, k(m+n−1) numbers. If n and m are both greater than one, then

k(m+n−1) is less than kmn, implying that the second method of specifying a TEC

gives us a compressed encoding of the TEC. Thus, if a dataset contains at least two

non-intersecting occurrences of a pattern containing at least two points, it will be

possible to encode the dataset in a compact manner by representing it as the union of

the covered sets of a set of TECs, where each TEC, T , is encoded as an ordered pair,

〈P,V 〉, where P is a pattern in the dataset, and V is the set of vectors that translate P
onto its other occurrences in the dataset. When a TEC, T = 〈P,V 〉, is represented in

this way, we call V the set of translators for the TEC and P the TEC’s pattern. We

also denote and define the compression factor of a TEC, T = 〈P,V 〉, as follows:

CF(T ) =
|COV(T )|
|P|+ |V | , (13.6)
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where |X | denotes the cardinality of set, X .2 In this chapter, the pattern, P, of a TEC,

used to encode it as a 〈P,V 〉 pair, will be assumed to be the lexicographically earliest

occurring member of the TEC (i.e., the one that contains the lexicographically earliest

point).3

13.2.3 Approximate Versus Exact Matching

Each of the algorithms described in the next section takes a dataset as input, computes

the MTPs in this dataset and may then go on to compute the TECs of these MTPs.

Several of the algorithms generate compact encodings of the input dataset in the

form of sets of selected TECs that collectively cover the input dataset. Two of

these algorithms, COSIATEC (see Sect. 13.3.3) and SIATECCOMPRESS (see

Sect. 13.3.7), generate losslessly compressed encodings from which the input dataset

can be perfectly reconstructed. These encodings can therefore be interpreted as

explanations for the input dataset that offer an account for every note, reflecting

the assumption that, in a well-composed piece of music, notes will not be selected

at random by the composer, but rather chosen carefully on the grounds of various

aesthetic, expressive and structural reasons. Consequently, if one is interested in

learning how to compose music in the style of some master composer, then one aims

to understand the reasoning underlying the selection of every note in pieces in the

form and style that one wishes to imitate. To do this, merely identifying instances in

these pieces where patterns approximately resemble each other is not enough. One

must also attempt to formulate precise explanations for the differences (however

small) between these approximately matching patterns, so that one understands

exactly how and why the patterns are transformed in the way they are. In other words,

one needs to exactly characterize the transformations that map a pattern onto its

various occurrences—even when the transformation is not simply a shift in time

accompanied by a modal or chromatic transposition. This implies that, if one’s goal

is to achieve an understanding of a set of pieces that is complete and detailed enough

to allow for high-quality novel pieces to be composed in the same style and form,

then one requires losslessly compressed encodings of the existing pieces, based on

exact matches (or, more generally, exactly characterized transformations) between

pattern occurrences.

Nevertheless, if one’s goal is only to produce an analysis that informs the listening

process, or if one only needs to be able to classify existing pieces by genre, composer,

2 In order to conform to standard usage in the data compression literature (see, e.g., Salomon and
Motta, 2010, p. 12), in this chapter, the term “compression factor” is used to signify the quantity
that I and other authors in this area have referred to as “compression ratio” in previous publications
(e.g., Collins et al., 2011; Meredith et al., 2002).
3 A collection of strings or tuples is sorted into lexicographical order, when the elements are sorted
as they would be in a dictionary, with higher priority being given to elements occurring earlier. For
example, if we lexicographically sort the set of points {〈1,0〉,〈0,1〉,〈1,1〉,〈0,0〉}, then we get the
ordered set, 〈〈0,0〉,〈0,1〉,〈1,0〉,〈1,1〉〉.
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period, etc., then approximate matching and lossily compressed encodings may

suffice. In such cases, there are a number of ways in which the algorithms considered

in this chapter can be adapted to account for occurrences of a pattern that are not

exact transpositions in chromatic-pitch-time space. That is, there are a number of

ways in which we might address what Collins et al. (2013) call the “inexactness

problem” with the SIA-based algorithms. First, instead of using a chromatic-pitch

vs. time representation as input, one can use some other point-set representation of

a piece, such as morphetic-pitch vs. time, where translationally equivalent patterns

correspond to sets of notes related by modal rather than chromatic transposition

(e.g., C-D-E would match with D-E-F). Second, one can replace each occurrence

of an MTP in the output of one of the algorithms described below with either the

shortest segment in the music or bounding box in pitch-time space that contains the

MTP (as was done in the experiment reported in Sect. 13.4.2 below). Third, Collins

et al. (2013) address this “inexactness problem” in their SIARCT-CFP algorithm

by combining their SIACT and SIAR algorithms (see Sects. 13.3.5 and 13.3.6,

respectively) with a fingerprinting technique that computes a time-stamped hash key

for each triple of notes in a dataset and then matches these keys (see Chap. 17, this

volume).

13.3 The Algorithms

In this section, the algorithms evaluated in this study will be briefly described and

reviewed.

13.3.1 SIA

SIA stands for “Structure Induction Algorithm” (Meredith, 2006a; Meredith et al.,

2002, 2003, 2001). SIA finds all the maximal translatable patterns in a dataset

containing n, k-dimensional points in Θ(kn2 lgn) time and Θ(kn2) space.4 SIA

computes the vector from each point in the dataset to each lexicographically later

point. Each of these vectors is stored in a list together with a pointer back to the

origin point (see Fig. 13.4 (a) and (b)). This list of 〈vector,point〉 pairs is then sorted

into lexicographical order, giving priority to the vector in each pair (see Fig. 13.4

(c)). The resulting sorted list is segmented at the points at which the vector changes

(as indicated by the boxes in the column headed “Datapoint” in Fig. 13.4 (c)). The

set of points in the entries within a segment in this list form the MTP for the vector

for that segment. This means that all the MTPs can be obtained simply by scanning

this list once (i.e., in Θ(kn2) time, since the list has length n(n−1)/2).

4 By using hashing instead of sorting to partition the inter-point vectors, the average running time
can be reduced to Θ(kn2). For an explanation of asymptotic notation, see Cormen et al. (2009,
pp. 43–53)
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(a) (b)

(c)

Fig. 13.4 The SIA algorithm. (a) A small dataset that could be provided as input to SIA. (b) The
vector table computed by SIA for the dataset in (a). Each entry in the table gives the vector from a
point to a lexicographically later point. Each entry has a pointer back to the origin point used to
compute the vector. (c) The list of 〈vector,point〉 pairs that results when the entries in the vector
table in (b) are sorted into lexicographical order. If this list is segmented at points at which the
vector changes, then the set of points in the entries within a segment form the MTP for the vector
for that segment. (Reproduced from Meredith et al. (2003))

Figure 13.5 gives pseudocode for a straightforward implementation of SIA. The

pseudocode used in this chapter is based on that used by Meredith (2006b, 2007).

In this pseudocode, unordered sets are denoted by italic upper-case letters (e.g., D
in Fig. 13.5). Ordered sets are denoted by boldface upper-case letters (e.g., V, D
and M in Fig. 13.5). When written out in full, ordered sets are listed between angle

brackets, “〈·〉”. Concatenation is denoted by “⊕” and the assignment operator is

“←”. A[i] denotes the (i+1)th element of the ordered set (or one-dimensional array),

A, (i.e., zero-based indexing is used). If B is an ordered set of ordered sets (or a

two-dimensional array), then B[i][ j] denotes the ( j+ 1)th element in the (i+ 1)th
element of B. Elements in arrays of higher dimension are indexed analogously. Block

structure is indicated by indentation alone.

The SIA algorithm in Fig. 13.5 takes a single argument, D, which is assumed to

be an unordered set of n, k-dimensional points. The first step is to sort the points

in D into lexicographical order (line 1) to give an ordered set of points, D. This

takes Θ(kn lgn) time in the worst case using a comparison sort. In lines 2–5, the

vector, D[ j]−D[i], from each point, D[i], to each lexicographically later point, D[ j],
is calculated and stored with the index, i, of the origin point in a pair, 〈D[ j]−D[i], i〉.
Each of these pairs is added to an ordered set, V, in line 5. In line 6, the pairs in V are

sorted lexicographically (i.e., by assigning higher priority to the vector in each pair,

and by sorting the vectors themselves lexicographically). This produces a list, V′,
such as the one shown in Fig. 13.4 (c), in which all pairs with a given vector occur in

a contiguous segment. Line 6 takes Θ(kn2 lgn) time and is asymptotically the most
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SIA(D)
1 D← SORTLex(D)
2 V← 〈〉
3 for i← 0 to |D|−2
4 for j ← i+1 to |D|−1
5 V← V⊕〈〈D[ j]−D[i], i〉〉
6 V′ ← SORTLex(V)
7 M← 〈〉
8 v← V′[0][0]
9 P← 〈D[V′[0][1]]〉
10 for i← 1 to |V′|−1
11 if V′[i][0] = v
12 P← P⊕〈D[V′[i][1]]〉
13 else
14 M←M⊕〈〈P,v〉〉
15 v← V′[i][0]
16 P← 〈D[V′[i][1]]〉
17 M←M⊕〈〈P,v〉〉
18 return M

Fig. 13.5 The SIA algorithm

expensive step in the algorithm. In line 7, an empty ordered set, M, is initialized. This

ordered set will be used to hold the 〈MTP,vector〉 pairs computed in lines 8–17. As

described above, the MTPs and their associated vectors are found simply by scanning

V′ once, starting a new MTP (stored in P) each time the vector (stored in v) changes.

This scan can be accomplished in Θ(kn2) time.

The algorithm can easily be modified so that it only generates MTPs whose sizes

lie within a particular user-specified range. It is also possible for the same pattern to

be the MTP for more than one vector. If this is the case, there will be two or more

〈pattern,vector〉 pairs in the output of SIA that have the same pattern. This can be

avoided and the output can be made more compact by generating instead a list of

〈pattern,vector set〉 pairs, such that the vector set in each pair contains all the vectors

for which the pattern is an MTP. In order to accomplish this, the vectors for which

a given pattern is the MTP are merged into a single vector set which is then paired

with the pattern in the output.

Finally, it is possible to reduce the average running time of SIA to Θ(kn2) by

using hashing instead of sorting to partition the vector table into MTPs.

13.3.2 SIATEC

SIATEC (Meredith, 2006a; Meredith et al., 2002, 2003, 2001) computes all the MTP

TECs in a k-dimensional dataset of size n in O(kn3) time and Θ(kn2) space. In order

to find the MTPs in a dataset, SIA only needs to compute the vectors from each point
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to each lexicographically later point. However, to compute all occurrences of the

MTPs, it turns out to be beneficial in the SIATEC algorithm to compute the vectors

between all pairs of points, resulting in a vector table like the one shown in Fig. 13.6.

The SIATEC algorithm first finds all the MTPs using SIA. It then uses the vector

table to find all the vectors by which each MTP is translatable within the dataset. The

set of vectors by which a given pattern is translatable is equal to the intersection of

the columns in the vector table headed by the points in the pattern (see Fig. 13.6). In

a vector table computed by SIATEC each row descends lexicographically from left

to right and each column increases lexicographically from top to bottom. SIATEC

exploits these properties of the vector table to more efficiently find all the occurrences

of each MTP (Meredith et al., 2002, pp. 335–338).

Figure 13.7 shows pseudocode for a straightforward implementation of SIATEC.

The first step in the algorithm is to sort the points in the dataset, D, lexicographically,

to produce the ordered point set, D (line 1). In line 2, an ordered set, V is initialized

which serves the same purpose as it does in SIA (see Fig. 13.5). In line 3, the

|D|×|D| array, W, is initialized. This array will be used to hold a vector table like the

one in Fig. 13.6. Lines 4–9 compute the inter-point vectors that are stored in W and

V (cf. lines 3–5 in Fig. 13.5). Lines 10–24 compute the MTPs and closely resemble

lines 6–17 in Fig. 13.5. The difference is that, in SIATEC, each MTP is stored with

an ordered set, C, containing the indices into the sorted dataset, D, of the points in the

MTP. This sequence of indices is used in lines 25–48 to compute the translator set of

the TEC for each MTP. The ordered set of MTP TECs, T, is computed in lines 25–48

and returned in line 49. The for loop starting in line 26 iterates over the list of MTPs,

M. For each MTP, P (line 27), and its associated index set, C (line 28), the while
loop in lines 33–47 finds all the vectors by which P can be translated, by computing

the intersection of the columns in the vector table W indexed by the values in C.

This is done by descending the columns in the table and starting and stopping these

descents neither earlier nor later than necessary, respectively.

For a k-dimensional dataset of size n, the worst-case running time of line 1 of

SIATEC is Θ(kn lgn). Lines 2–9 run in Θ(kn2) time. Line 10 takes Θ(kn2 lgn) time

and lines 11–24 take Θ(kn2) time. Let mi be the cardinality of the (i+1)th MTP in

M at line 25. The (i+1)th iteration of the for loop that starts in line 26 computes the

intersection of the columns in the vector table, W, that are headed by the points in

mi. Each column has length n. Therefore the worst-case running time of lines 26–48

Fig. 13.6 The vector table computed by SIATEC for the dataset shown in Fig. 13.4 (a). (Reproduced
from Meredith et al. (2003))
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SIATEC(D)
1 D← SORTLex(D)
2 V← 〈〉
3 Allocate a |D|× |D| array, W
4 for i← 0 to |D|−1
5 for j ← 0 to |D|−1
6 w← 〈D[ j]−D[i], i〉
7 if j > i
8 V← V⊕〈w〉
9 W[i][ j]← w
10 V′ ← SORTLex(V)
11 M← 〈〉
12 v← V′[0][0]
13 P← 〈D[V′[0][1]]〉
14 C← 〈V′[0][1]〉
15 for i← 1 to |V′|−1
16 if V′[i][0] = v
17 P← P⊕〈D[V′[i][1]]〉
18 C← C⊕〈V′[i][1]〉
19 else
20 M←M⊕〈〈P,C,v〉〉
21 v← V′[i][0]
22 P← 〈D[V′[i][1]]〉
23 C← 〈V′[i][1]〉
24 M←M⊕〈〈P,C,v〉〉
25 T← 〈〉
26 for i← 0 to |M|−1
27 P←M[i][0]
28 C←M[i][1]
29 R← 〈0〉
30 for j ← 1 to |P|−1
31 R← R⊕〈0〉
32 X← 〈〉
33 while R[0]≤ |D|− |P|
34 for j ← 1 to |P|−1
35 R[ j]← R[0]+ j
36 v0 ←W[C[0]][R[0]][0]
37 found← false
38 for c← 1 to |P|−1
39 while R[c]< |D|∧W[C[c]][R[c]][0]< v0

40 R[c]← R[c]+1
41 if R[c]≥ |D|∨ v0 �= W[C[c]][R[c]][0]
42 break
43 if c = |P|−1
44 found← true
45 if found∨|P|= 1
46 X← X⊕〈v0〉
47 R[0]← R[0]+1
48 T← T⊕〈〈P,X〉〉
49 return T

Fig. 13.7 The SIATEC algorithm
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is given by

Θ

(|M|−1

∑
i=0

knmi

)
= Θ

(
kn

|M|−1

∑
i=0

mi

)
.

But we know that ∑|M|−1
i=0 mi = n(n− 1)/2, since the MTPs are computed in lines

10–24 by scanning the sorted list, V′. Therefore, the worst-case running time of lines

26–48 and the worst-case running time of SIATEC as a whole, is

Θ

(
kn

|M|−1

∑
i=0

mi

)
= Θ

(
kn

n(n−1)

2

)
= Θ(kn3) .

It is easy to see that the algorithm uses Θ(kn2) space.

13.3.3 COSIATEC

COSIATEC (Meredith, 2006a; Meredith et al., 2003) is a greedy point-set com-

pression algorithm, based on SIATEC (“COSIATEC” stands for “COmpression

with SIATEC”). COSIATEC takes a dataset, D, as input and computes a com-

pressed encoding of D in the form of an ordered set of MTP TECs, T, such

that D =
⋃

T∈T COV(T ) and COV(T1)∩ COV(T2) = /0 for all T1,T2 ∈ T where

T1 �= T2. In other words, COSIATEC strictly partitions a dataset, D, into the cov-

ered sets of a set of MTP TECs. If each of these MTP TECs is represented as a

〈pattern, translator set〉 pair, then this description of the dataset as a set of TECs is

typically shorter than an in extenso description in which the points in the dataset are

listed explicitly.

Figure 13.8 shows pseudocode for COSIATEC. The first step in the algorithm is

to make a copy of the input dataset which is stored in the variable D′ (line 1). Then,

on each iteration of the while loop (lines 3–6), the algorithm finds the “best” MTP

TEC in D′, stores this in T and adds T to T. It then removes the set of points covered

by T from D′ (line 6). When D′ is empty, the algorithm terminates, returning the list

of MTP TECs, T. The sum of the number of translators and the number of points in

COSIATEC(D)
1 D′ ← COPY(D)
2 T← 〈〉
3 while D′ �= /0
4 T ← GETBESTTEC(D′,D)
5 T← T⊕〈T 〉
6 D′ ← D′ \COV(T )
7 return T

Fig. 13.8 The COSIATEC algorithm
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Fig. 13.9 A visualization of the output generated by COSIATEC for the fugue from J. S. Bach’s
Prelude and Fugue in C major (BWV 846) from the first book of Das wohltemperirte Clavier. Note
that, for convenience, the time axis has been labelled in bars rather than tatums. See main text for
details

this output encoding is never more than the number of points in the input dataset and

can be much less than this, if there are many repeated patterns in the input dataset.

The GETBESTTEC function, called in line 4 of COSIATEC, computes the “best”

TEC in D′ by first finding all the MTPs using SIA, then iterating over these MTPs,

finding the TEC for each MTP, and storing it if it is the best TEC so far. In this process,

a TEC is considered “better” than another if it has a higher compression factor, as

defined in (13.6). If two TECs have the same compression factor, then the better TEC

is considered to be the one that has the higher bounding-box compactness (Meredith

et al., 2002), defined as the ratio of the number of points in the TEC’s pattern to the

number of dataset points in the bounding box of this pattern. Collins et al. (2011) have

provided empirical evidence that the compression factor and compactness of a TEC

are important factors in determining its perceived “importance” or “noticeability”. If

two distinct TECs have the same compression factor and compactness, then the TEC

with the larger covered set is considered superior.

Figure 13.9 shows a visualization of the output generated by COSIATEC for the

fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first

book of Das wohltemperirte Clavier. In this figure, each TEC is drawn in a different

colour. For example, occurrences of the subject (minus the first note) are shown in red.

Points drawn in grey are elements of the residual point set. COSIATEC sometimes

generates such a point set on the final iteration of its while loop (see Fig. 13.8) when

it is left with a set of points that does not contain any MTPs of size greater than 1. In

such cases, the final TEC in the encoding contains just the single occurrence of the

residual point set. In the analysis shown in Fig. 13.9, the residual point set contains 26

notes (i.e., 3.57% of the notes in the piece). The overall compression factor achieved

by COSIATEC on this piece is 2.90 (or 3.12, if we exclude the residual point set).

13.3.4 Forth’s Algorithm

Forth (Forth and Wiggins, 2009; Forth, 2012) developed an algorithm, based on

SIATEC, that, like COSIATEC, computes a set of TECs that collectively cover the
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FORTHCOVER(D,C,W,cmin,σmin)
1 S← 〈〉
2 P← /0
3 found ← true
4 while P �= D∧ found
5 found ← false
6 γmax ← 0
7 Cbest ← nil
8 ibest ← nil
9 R← 〈〉
10 for i← 0 to |C|−1
11 c← |C[i]\P|
12 if c < cmin

13 R← R⊕〈i〉
14 continue
15 γ ← cW[i]
16 if γ > γmax

17 γmax ← γ
18 Cbest ← C[i]
19 ibest ← i
20 if Cbest �= nil
21 R← R⊕〈ibest〉
22 found ← true
23 P← P∪Cbest

24 i← 0
25 primaryFound ← false
26 while ¬primaryFound∧ i < |S|
27 if (|S[i][0]∩Cbest|)/|S[i][0]|> σmin

28 S[i]← S[i]⊕〈Cbest〉
29 primaryFound ← true
30 i← i+1
31 if ¬primaryFound
32 S← S⊕〈〈Cbest〉〉
33 for each i ∈ R
34 Remove W[i] from W and C[i] from C
35 return S

Fig. 13.10 An implementation of Forth’s method for selecting a cover for the input dataset, D, from
the set of TEC covered sets, C

input dataset. However, unlike COSIATEC, Forth’s algorithm runs SIATEC only

once and the covers it generates are not, in general, strict partitions—the TECs in

the list generated by Forth’s algorithm may share covered points and, collectively,

may not completely cover the input dataset. The first step in Forth’s algorithm is

to run SIATEC on the input dataset, D. This generates a sequence of MTP TECs,

T = 〈T1,T2, . . .Tn〉. The algorithm then computes the covered set, Ci =
⋃

P∈Ti
P, for

each TEC, Ti in T, to produce a sequence of TEC covered sets, C = 〈C1,C2, . . .Cn〉.
It then assigns a weight, Wi, to each covered set, Ci, to produce the sequence, W =
〈W1,W2, . . .Wn〉. Wi is intended to measure the “structural salience” (Forth, 2012,
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p. 41) of the patterns in the TEC, Ti, and it is defined as follows:

Wi = w′cr,iw
′
compV,i , (13.7)

where w′cr,i is a normalized value representing the compression factor of Ti and

w′compV,i is a normalized value representing compactness. The algorithm then attempts

to select a subset of C that covers the input dataset and maximizes the weights of the

TECs in this cover.

Figure 13.10 gives pseudocode for Forth’s cover selection algorithm. This algo-

rithm takes five arguments: D, C and W, as defined above, along with two numerical

parameters, cmin and σmin. On each iteration of the outer while loop (lines 4–34), the

algorithm selects the “best” remaining TEC covered set in C and adds this to the

cover, S, which is ultimately returned in line 35. The point set, P, initialized in line 2,

is used to store the set of points covered by the TEC covered sets selected. In order for

a TEC covered set to be added to the cover, the number of new points that it covers,

c, (i.e., that are not already in P) must be at least cmin (see line 12). The TEC covered

set that is added on a particular iteration of the while loop is then the one for which

cWi is a maximum (lines 15–19). If no TEC covered set is selected on a particular

iteration, then the algorithm terminates, even if the dataset has not been completely

covered. In lines 20–32, the algorithm determines whether the selected TEC covered

set, Cbest should be added as a “primary” or a “secondary” pattern: a pattern Cs is

defined to be secondary to another (primary) pattern, Cp, if the proportion of points

in Cp that are also in Cs is greater than the parameter, σmin (line 27) (Forth, 2012,

p. 38). On each iteration of the while loop, the best pattern and patterns that fail to

cover a sufficient number of new points are removed from C to improve efficiency

(lines 33–34).

Figure 13.11 shows the analysis generated by Forth’s algorithm for the fugue from

the Prelude and Fugue in C major (BWV 846) from the first book of J. S. Bach’s

Das wohltemperirte Clavier. Again, each TEC is drawn in a different colour. This

analysis was obtained with cmin set to 15 and σmin set to 0.5, as recommended by

Forth (2012, pp. 38, 42).

Fig. 13.11 A visualization of the output generated by Forth’s algorithm for the fugue from
J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first book of Das wohltemperirte
Clavier. For this analysis, cmin was set to 15 and σmin was set to 0.5
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13.3.5 SIACT

Collins et al. (2010) claim that all the algorithms described above can be affected by

what they call the “problem of isolated membership”. This ‘problem’ is defined to oc-

cur when “a musically important pattern is contained within an MTP, along with other

temporally isolated members that may or may not be musically important” (Collins

et al., 2010, p. 6). Collins et al. claim that “the larger the dataset, the more likely it is

that the problem will occur” and that it could prevent the SIA-based algorithms from

“discovering some translational patterns that a music analyst considers noticeable

or important” (Collins et al., 2010, p. 6). Collins et al. propose that this problem

can be solved by taking each MTP computed by SIA (sorted into lexicographical

order) and “trawling” inside this MTP “from beginning to end, returning subsets that

have a compactness greater than some threshold a and that contain at least b points”

(Collins et al., 2010, p. 6). This method is implemented in an algorithm that they

call SIACT, which first runs SIA on the dataset and then carries out “compactness

trawling” (hence “SIACT”) on each of the MTPs found by SIA.

Suppose P = 〈p1, p2, . . . pm〉 contains all and only the points in an MTP, sorted

into lexicographical order. Suppose further that iL(pi) is the index of pi in the lexi-

cographically sorted dataset and that IL(P) = 〈iL(p1), iL(p2), . . . iL(pm)〉. For each

MTP discovered by SIA, SIACT ‘trawls’ the MTP for lexicographically compact

subsets using the CT algorithm shown in Fig. 13.12. Given P, IL(P) and the thresh-

olds, a and b, as just defined, CT first sets up two variables, X and Q (lines 1–2 in

Fig. 13.12). X is used to store the compact subsets of P found by the algorithm and is

eventually returned in line 18. Q is used to store each of these subsets as it is found.

The algorithm then scans P in lexicographical order, considering a new point, P[i],
with dataset index IL(P)[i], on each iteration of the for loop in lines 3–15. On each

iteration of this for loop, if Q is empty, then P[i] is added to Q and the dataset index

of P[i] is stored in the variable iL,0 (lines 4–6). Otherwise, the compactness of the

pattern that would result if P[i] were added to Q is calculated and, if this compactness

is not less than a, then P[i] is added to Q (lines 8–10). If the compactness of the

resulting pattern would be less than a, then the algorithm checks whether Q holds

at least b points and, if it does, Q is added to X and reset to the empty set (lines

11–13). If |Q| is less than b, then it is discarded (lines 14–15). When the algorithm

has finished scanning all the points in P, it is possible that Q contains a pattern of at

least b points. If this is the case, then it is also added to X (lines 16–17) before the

latter is returned in line 18.

A problem with the CT algorithm is that the patterns found for a particular MTP

depend on the order in which points in the MTP are scanned, and there seems to

be no good musical or psychological reason why this should be so—why should

the decision as to whether a given member point is considered ‘isolated’ depend on

the order in which the points in the pattern are scanned? Suppose, for example, that

P = 〈q5,q8,q9,q10,q11〉, where qi is (lexicographically) the ith point in the dataset.

Now suppose that a = 2/3 and b = 3, as Collins et al. (2010, p. 7) suggest. If P
is scanned from left to right, as it would be by the CT algorithm, then the only

compact pattern trawled is {q8,q9,q10,q11}, indicating that the first point, q5 is an
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CT(P,IL(P),a,b)
1 X ← /0
2 Q← /0
3 for i← 0 to |P|−1
4 if Q = /0
5 Q← Q∪{P[i]}
6 iL,0 ← IL(P)[i]
7 else
8 s← IL(P)[i]− iL,0 +1
9 if (|Q|+1)/s≥ a
10 Q← Q∪{P[i]}
11 else if |Q| ≥ b
12 X ← X ∪{Q}
13 Q← /0
14 else
15 Q← /0
16 if |Q| ≥ b
17 X ← X ∪{Q}
18 return X

Fig. 13.12 The SIACT compactness trawler

‘isolated member’. However, if P were scanned from right to left, then the found

pattern would be {q5,q8,q9,q10,q11}—that is, P would not be considered to suffer

from the ‘problem of isolated membership’. Similarly, if the pattern to be trawled

were P2 = 〈q8,q9,q10,q11,q14〉, then clearly q14 in this pattern is no less ‘isolated’

(lexicographically) than q5 in P. However, the CT algorithm would remove q5 from

P, but not q14 from P2. In other words, the CT algorithm would judge P but not P2

to suffer from the ‘problem of isolated membership’.

Figure 13.13 shows the output obtained with COSIATEC for the fugue from

BWV 846 when SIA is replaced by SIACT, with the parameters a and b set to 0.67

and 3, respectively, as suggested by Collins et al. (2010, p. 7). This modification

Fig. 13.13 A visualization of the output generated by the COSIATEC algorithm, with SIA replaced
by SIACT, for the fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first
book of Das wohltemperirte Clavier. This analysis was obtained with parameter a set to 0.67 and
parameter b set to 3
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reduces the overall compression factor achieved from 2.90 to 2.53 and increases the

size of the residual point set from 26 to 118 (16.19% of the dataset). With this residual

point set excluded, the compression factor achieved over the remaining points is

3.59. Note that, when modified in this way, the encoding generated by COSIATEC

includes the full subject, as opposed to the subject without the first note, discovered

by the unmodified version of COSIATEC (see Fig. 13.9). On the other hand, this

analysis using SIACT fails to find a pattern corresponding to the bass entry of the

subject that starts 3
4 of the way through bar 17.

13.3.6 SIAR

In an attempt to improve on the precision and running time of SIA, Collins (2011,

pp. 282–283) defines an SIA-based algorithm called SIAR (which stands for “SIA

for r superdiagonals”). Instead of computing the whole region below the leading

diagonal in the vector table for a dataset (as in Fig. 13.4(b)), SIAR only computes

the first r subdiagonals of this table. This is approximately equivalent to running SIA

with a sliding window of size r (Collins, 2011; Collins et al., 2010). Pseudocode for

SIAR is provided in Fig. 13.14, based on Collins’s (2013c) own implementation.

The first step in SIAR is to calculate the first r subdiagonals of SIA’s vector table

(lines 1–7). This results in a list, V, of 〈v, i〉 pairs, each representing the vector, v,

from point pi to p j, where pk is the (k+1)th point in D, the lexicographically sorted

input dataset. The next step in SIAR is to extract the (not necessarily maximal)

translatable patterns discoverable from V. This is done using the same technique as

used in SIA: V is first sorted into lexicographical order and then segmented at points

where the vector changes (lines 8–17). This produces an ordered set, E, of patterns.

SIA is then applied to each of the patterns in E. However, the MTPs found by SIA

are not required, so, for each pattern, e ∈ E, only the positive inter-point vectors for

e are computed and these are stored in a list, L (lines 18–23). SIAR then produces

a new list of vectors, M, by removing duplicates in L and sorting the vectors into

decreasing order by frequency of occurrence (lines 24–34). The final step in SIAR

is to find the MTP for each of the vectors in M, which, in Collins’s (2013c) own

implementation, is achieved using the method in lines 35–37 in Fig. 13.14. In line

37, the MTP for the vector M[i][0] is found by translating the input dataset, D, by the

inverse of this vector and then finding the intersection between the resulting point set

and the original dataset, D.

Figure 13.15 shows the analysis generated by COSIATEC for the fugue from

BWV 846 when SIA is replaced by SIAR, with the parameter r set to 3. This

modification reduces the overall compression factor from 2.90 to 2.41 and increases

the size of the residual point set from 26 to 38 (5.21% of the dataset). If we exclude

this residual point set, the compression factor over the remaining points is 2.61. Note

that, if compactness trawling is enabled in this modified version of COSIATEC,

then the output for this particular piece is identical to that shown in Fig. 13.13—that

is, when SIA is replaced by SIACT.



13 Analysing Music with Point-Set Compression Algorithms 355

SIAR(D,r)
� Sort the dataset into lexicographical order

1 D← SORTLex(D)
� Compute r subdiagonals of vector table and store in V

2 V← 〈〉
3 for i← 0 to |D|−2
4 j ← i+1
5 while j < |D|∧ j ≤ i+ r
6 V← V⊕〈〈D[ j]−D[i], i〉〉
7 j ← j+1

� Store patterns in E by sorting and segmenting V
8 V← SORTLex(V)
9 E← 〈〉
10 v← V[0][0]
11 e← 〈D[V[0][1]]〉
12 for i← 1 to |V|−1
13 if V[i][0] = v
14 e← e⊕〈D[V[i][1]]〉
15 else
16 E← E⊕〈e〉, e← 〈D[V[i][1]]〉, v← V[i][0]
17 E← E⊕〈e〉

� For each pattern in E, find +ve inter-point vectors and store in L
18 L← 〈〉
19 for i← 0 to |E|−1
20 e← E[i]
21 for j ← 0 to |e|−2
22 for k ← j+1 to |e|−1
23 L← L⊕〈e[k]− e[ j]〉

� Remove duplicates from L and order vectors by decreasing frequency of occurrence
24 L← SORTLex(L)
25 v← L[0]
26 f ← 1
27 M← 〈〉
28 for i← 1 to |L|−1
29 if L[i] = v
30 f ← f +1
31 else
32 M←M⊕〈〈v, f 〉〉, f ← 1, v← L[i]
33 M←M⊕〈〈v, f 〉〉
34 M← SORTDESCENDINGBYFREQ(M)

� Find the MTP for each vector in M, store it in S and return S
35 S← 〈〉
36 for i← 0 to |M|−1
37 S← S⊕〈D∩ (D−M[i][0])〉
38 return S

Fig. 13.14 Pseudocode for SIAR, based on Collins’s (2013c) own implementation
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Fig. 13.15 A visualization of the output generated by the COSIATEC algorithm, with SIA replaced
by SIAR, for the fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first
book of Das wohltemperirte Clavier. This analysis was obtained with the parameter r set to 3

13.3.7 SIATECCompress

One of the actions carried out by the GETBESTTEC function, called in line 4 of

COSIATEC (see Fig. 13.8), is to run SIATEC on the set, D′, which contains what

remains of the input dataset, D, on each iteration of the while loop. Since SIATEC

has worst-case running time Θ(n3) where n is the number of points in the input

dataset, running COSIATEC on large datasets can be time-consuming. On the other

hand, because COSIATEC strictly partitions the dataset into non-overlapping MTP

TEC covered sets, it tends to achieve high compression factors for many point-set

representations of musical pieces (typically between 2 and 4 for a piece of classical

or baroque music).

SIATECCOMPRESS(D)
1 T← SIATEC(D)
2 T← SORTTECSBYQUALITY(T)
3 D′ ← /0
4 E← 〈〉
5 for i← 0 to |T|−1
6 T ← T[i]
7 S ← COV(T )

� Recall that each TEC, T , is an ordered pair, 〈pattern, translator set〉
8 if |S\D′|> |T [0]|+ |T [1]|
9 E← E⊕〈T 〉
10 D′ ← D′ ∪S
11 if |D′|= |D|
12 break
13 R← D\D′
14 if |R|> 0
15 E← E⊕〈ASTEC(R)〉
16 return E

Fig. 13.16 The SIATECCOMPRESS algorithm
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Like COSIATEC, the SIATECCOMPRESS algorithm shown in Fig. 13.16 is a

greedy compression algorithm based on SIATEC that computes an encoding of a

dataset in the form of a union of TEC covered sets. Like Forth’s algorithm (but unlike

COSIATEC), SIATECCOMPRESS runs SIATEC only once (line 1) to get a list

of TECs. This list is then sorted into decreasing order by quality (line 2), where the

decision as to which of any two TECs is superior is made in the same way as in

COSIATEC (described above). The algorithm then finds a compact encoding, E, of

the dataset in the form of a set of TECs. It does this by iterating over the sorted list of

TECs (lines 5–12), adding a new TEC, T , to E if the number of new points covered

by T is greater than the size of its 〈pattern, translator set〉 representation (lines 8–12).

Each time a TEC, T , is added to E, its covered set is added to the set D′, which

therefore maintains the set of points covered so far after each iteration. When D′ is

equal to D or all the TECs have been scanned, the for loop terminates. Any remaining

uncovered points are aggregated into a residual point set, R, (line 13) which is re-

expressed as a TEC with an empty translator set (line 15) and added to the encoding,

E. SIATECCOMPRESS does not generally produce as compact an encoding as

COSIATEC, since the TECs in its output may share points. However, it is faster

than COSIATEC and can therefore be used practically on much larger datasets. Like

COSIATEC, but unlike Forth’s algorithm, SIATECCOMPRESS always produces

a complete cover of the input dataset (although the last TEC in the encoding may

consist of just a single residual point set).

Figure 13.17 shows the analysis generated by SIATECCOMPRESS for the fugue

from BWV 846. The overall compression factor for this analysis is 1.94 compared

with the value of 2.90 obtained using COSIATEC. The residual point set in this

case contains 82 notes (11.25%) (cf. 26 notes, 3.57% for COSIATEC) and the

compression factor excluding this residual point set is 2.20 (compared with 3.12 for

COSIATEC).

Fig. 13.17 A visualization of the output generated by the SIATECCOMPRESS algorithm, for the
fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first book of Das
wohltemperirte Clavier
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13.4 Evaluation

The algorithms described above were evaluated on two musicological tasks: clas-

sifying folk song melodies into tune families and discovering repeated themes and

sections in polyphonic classical works. The results obtained will now be presented

and discussed.

13.4.1 Task 1: Classifying Folk Song Melodies into Tune Families

For over a century, musicologists have been interested in measuring similarity be-

tween folk song melodies (Scheurleer, 1900; van Kranenburg et al., 2013), primarily

with the purpose of classifying such melodies into tune families (Bayard, 1950),

consisting of tunes that have a common ancestor in the tree of oral transmission. In

the first evaluation task, COSIATEC, Forth’s algorithm and SIATECCOMPRESS

were used to classify a collection of folk song melodies into tune families. The

collection used was the Annotated Corpus (van Kranenburg et al., 2013; Volk and

van Kranenburg, 2012) of 360 melodies from the Dutch folk song collection, On-
der de groene linde (Grijp, 2008), hosted by the Meertens Institute and accessible

through the website of the Dutch Song Database (http://www.liederenbank.nl). The

algorithms were used as compressors to calculate the normalized compression dis-
tance (NCD) (Li et al., 2004) between each pair of melodies in the collection (see

(13.1)). Each melody was then classified using the 1-nearest-neighbour algorithm

with leave-one-out cross-validation. The classifications obtained were compared with

a ground-truth classification of the melodies provided by expert musicologists. Four

versions of each algorithm were tested: the basic algorithm as described above, a

version incorporating the CT algorithm (Fig. 13.12), a version using SIAR instead

of SIA and a version using both SIAR and CT. As a baseline, one of the best

general-purpose compression algorithms, BZIP2, was also used to calculate NCDs

between the melodies.

Table 13.1 shows the results obtained in this task. In this table, algorithms with

names containing “R” employed the SIAR algorithm with r = 3 in place of SIA. The

value of 3 for r was chosen so as to be small, as the higher the value of r, the more

SIAR approximates to SIA. Collins et al. (2013) ran SIAR with r = 1. Algorithms

with names containing “CT” used Collins et al.’s (2010) compactness trawler, with

parameters a = 0.66 and b = 3, chosen because these were the values suggested by

Collins et al. (2010, p. 7). Forth’s algorithm was run with cmin = 15 and σmin = 0.5,

as suggested by Forth (2012, pp. 38, 42). No attempt was made to find optimal

values for these parameters, so overfitting is very unlikely. On the other hand, this

also means that the chosen parameters are probably suboptimal. The column headed

“SR” gives the classification success rate—i.e., the proportion of songs in the corpus

correctly classified. The third and fourth columns give the mean compression factor

achieved by each algorithm over, respectively, the corpus and the file-pairs used to

compute the compression distances.
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Table 13.1 Results on Task 1. SR is the classification success rate, CRAC is the average compression
factor over the melodies in the Annotated Corpus. CRpairs is the average compression factor over
the pairs of files used to obtain the NCD values

Algorithm SR CRAC CRpairs

COSIATEC 0.8389 1.5791 1.6670

COSIARTEC 0.8361 1.5726 1.6569

COSIARCTTEC 0.7917 1.4547 1.5135

COSIACTTEC 0.7694 1.4556 1.5138

ForthCT 0.6417 1.1861 1.2428

ForthRCT 0.6417 1.1861 1.2428

Forth 0.6111 1.2643 1.2663

ForthR 0.6028 1.2555 1.2655

SIARCTTECCompress 0.5750 1.3213 1.3389

SIATECCompress 0.5694 1.3360 1.3256

SIACTTECCompress 0.5250 1.3197 1.3381

SIARTECCompress 0.5222 1.3283 1.3216

BZIP2 0.1250 2.7678 3.5061

The highest success rate of 84% was obtained using COSIATEC. Table 13.1

suggests that algorithms based on COSIATEC performed markedly better on this

song classification task than those based on SIATECCOMPRESS or Forth’s algorithm.

Using SIAR instead of SIA and/or incorporating compactness trawling reduced the

performance of COSIATEC. However, using both together, slightly improved the

performance of SIATECCOMPRESS. Forth’s algorithm performed slightly better

than SIATECCOMPRESS. The performance of Forth’s algorithm on this task was

improved by incorporating compactness trawling; using SIAR instead of SIA in

Forth’s algorithm slightly reduced the performance of the basic algorithm and had

no effect when compactness trawling was used. The results obtained using BZIP2

were much poorer than those obtained using the SIA-based algorithms, which may

suggest that general-purpose compressors fail to capture certain musical structure

that is important for this task. However, using an appropriate string-based input

representation, where repeated substrings correspond to repeated segments of music,

instead of a point set representation as was used here, may improve the performance

of compressors such as BZIP2 that are designed primarily for text compression. Of

the SIA-based algorithms, COSIATEC achieved the best compression on average,

followed by SIATECCOMPRESS and then Forth’s algorithm. COSIATEC also

achieved the best success rate. However, since Forth’s algorithm performed slightly

better than SIATECCOMPRESS, it seems that compression factor alone was not a

reliable indicator of classification accuracy on this task—indeed, the best compressor,

BZIP2, produced the worst classifier. None of the algorithms achieved a success rate

as high as the 99% obtained by van Kranenburg et al. (2013) on this corpus using

several local features and an alignment-based approach. The success rate achieved

by COSIATEC is within the 83–86% accuracy range obtained by Velarde et al.
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(2013, p. 336) on this database using a wavelet-based representation, with similarity

measured using Euclidean or city-block distance.

13.4.2 Task 2: Discovering Repeated Themes and Sections

In the second task, each of the SIA-based algorithms tested in Task 1 was used

to discover repeated themes and sections in the five pieces in the JKU Patterns

Development Database (JKU-PDD) (Collins, 2013a). This database contains Orlando

Gibbons’ madrigal, “Silver Swan” (1612); the fugue from J. S. Bach’s Prelude and

Fugue in A minor (BWV 889) from Book 2 of Das wohltemperirte Clavier (1742);

the second movement of Mozart’s Piano Sonata in E flat major (K. 282) (1774); the

third movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795); and

Chopin’s Mazurka in B flat minor, Op. 24, No. 4 (1836). The database also contains

encodings of ground-truth analyses by expert analysts that identify important patterns

in the pieces. For each of these patterns, a ground-truth analysis encodes one or more

occurrences, constituting an occurrence set for each of the ground-truth patterns. It

is important to note, however, that each of these ground-truth occurrence sets does

not necessarily contain all the occurrences within a piece of a particular pattern. For

example, the ground-truth analyses fail to recognize that, in both of the minuet-and-

trio movements by Beethoven and Mozart, the first section of the trio is recapitulated

at the end of the second section in a slightly varied form. Why such occurrences have

been omitted from the ground-truth is not clear.

It can also be argued that the ground-truth analyses in the JKU-PDD omit certain

patterns that might reasonably be considered important or noticeable. For example,

Figure 13.18 shows two patterns discovered by COSIATEC that help to account

for the structure of the lyrical fourth section of the Chopin Mazurka, yet this section

of the piece is completely ignored in the JKU-PDD ground truth. Again, why the
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Fig. 13.18 Examples of noticeable and/or important patterns in Chopin’s Mazurka in B flat minor,
Op. 24, No. 4, that were discovered by COSIATEC, but are not recorded in the ground truth. Pattern
(a) occurs independently of pattern (b) at bars 73 and 89
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analysts whose work was used as a basis for the ground-truth should have ignored

such patterns is not clear.

Each of the algorithms tested generates a set of TECs which is intended to contain

all the occurrences of a particular pattern. That is, each TEC is intended to corre-

spond to a ground-truth occurrence set. In general, in the ground-truth analyses, an

“occurrence” of a pattern is not necessarily exactly translationally equivalent to it

in pitch-time space. For example, it is common in the ground-truth analyses of the

JKU-PDD for patterns to be specified by just the segments of the music that span

them; or, if the pattern occurs entirely within a single voice, by the segment of that

voice that spans the pattern. On the other hand, it is not uncommon for an MTP to

contain only some of the notes within the shortest segment of the music or smallest

rectangle in pitch-time space that contains it, resulting in it having a compactness

less than 1. In such cases, a ground-truth pattern may be equal to the shortest segment

containing an MTP or an MTP’s bounding-box, rather than equal to the MTP itself.

In this task, therefore, each of the 12 algorithms was tested on the JKU-PDD in

three different “modes”: “Raw” mode, “Segment” mode and “BB” mode. In “Raw”

mode, the pattern occurrence sets generated are simply the “raw” TECs computed

by the algorithm (see Fig. 13.19(a)). In “BB” mode, each raw pattern occurrence is

replaced in the output with the pattern containing all the points in the bounding-box

of the pattern (Fig. 13.19(b)). In “Segment” mode, each raw pattern occurrence is

replaced with the pattern containing all the points in the temporal segment spanning

the pattern (Fig. 13.19(c)). The results of this task are given in Table 13.2. The values

in this table are three-layer F1 scores (TLF1), as defined by Meredith (2013). Each

value gives the harmonic mean of the precision and recall of the algorithm on a given

piece. Three-layer F1 score is a modification of the standard F1 score that gives credit

to an algorithm for discovering a pattern or an occurrence that is very similar but

not identical to a ground-truth pattern. If the standard definition of F1 score is used

in this task, then an algorithm may score 0 even if each pattern that it generates

differs from a ground-truth pattern by only one note. Three-layer F1 score overcomes

(a) Raw (b) BB (c) Segment

Fig. 13.19 (a) The pattern consisting of two black dots is a “raw” pattern, as might be output by
one of the SIA-based algorithms. This pattern is the MTP for the vector indicated by the arrow. The
pattern of crosses is the image of the black dot pattern after translation by this vector. (b) The shaded
area indicates the corresponding bounding-box pattern output by the algorithm when operating
in “BB” mode. (c) The shaded area indicates the corresponding segment pattern output when the
algorithm operates in “Segment” mode
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this problem by using F1 score (or, equivalently, the Sørensen–Dice index (Dice,

1945; Sørensen, 1948)) to measure similarity on three levels of structure: between

individual occurrences, between occurrence sets and between sets of occurrence sets.

In Table 13.2, the highest values for each piece are in bold. The last column gives

the mean TLF1 value over all the pieces for a given algorithm. The algorithms are

named using the same convention as used in Table 13.1, except that, in addition, the

mode (Raw, Segment or BB) is appended to the name.

Overall, the best performing algorithms on this task were COSIATEC and SIATE-

CCOMPRESS in “Segment” mode. These were the best-performing algorithms on

the Chopin, Gibbons and Beethoven pieces. Using SIAR instead of SIA in these

algorithms in “Segment” mode did not change the overall mean performance, but

Table 13.2 Results on Task 2. Values are “three-layer F1” values, as defined by Meredith (2013)

Algorithm Chopin Gibbons Beethoven Mozart Bach Mean

COSIACTTEC 0.09 0.16 0.22 0.29 0.23 0.20

COSIACTTECBB 0.18 0.24 0.42 0.40 0.22 0.29

COSIACTTECSegment 0.25 0.31 0.56 0.45 0.19 0.35

COSIARCTTEC 0.09 0.16 0.22 0.29 0.23 0.20

COSIARCTTECBB 0.18 0.24 0.42 0.40 0.22 0.29

COSIARCTTECSegment 0.25 0.31 0.56 0.45 0.19 0.35

COSIARTEC 0.05 0.12 0.14 0.18 0.20 0.14

COSIARTECBB 0.22 0.31 0.49 0.38 0.22 0.32

COSIARTECSegment 0.44 0.39 0.69 0.55 0.19 0.45
COSIATEC 0.05 0.11 0.18 0.23 0.19 0.15

COSIATECBB 0.17 0.23 0.51 0.46 0.21 0.32

COSIATECSegment 0.37 0.37 0.71 0.60 0.18 0.45
Forth 0.12 0.33 0.32 0.21 0.17 0.23

ForthBB 0.18 0.27 0.32 0.27 0.17 0.24

ForthCT 0.23 0.35 0.56 0.56 0.40 0.42

ForthCTBB 0.27 0.34 0.57 0.58 0.39 0.43

ForthCTSegment 0.29 0.35 0.58 0.59 0.31 0.42

ForthR 0.12 0.30 0.20 0.25 0.30 0.23

ForthRBB 0.18 0.25 0.29 0.31 0.28 0.26

ForthRCT 0.23 0.35 0.56 0.56 0.40 0.42

ForthRCTBB 0.27 0.34 0.57 0.58 0.39 0.43

ForthRCTSegment 0.29 0.35 0.58 0.59 0.31 0.42

ForthRSegment 0.28 0.25 0.35 0.38 0.27 0.31

ForthSegment 0.33 0.26 0.35 0.33 0.19 0.29

SIACTTECCompress 0.12 0.20 0.23 0.30 0.27 0.22

SIACTTECCompressBB 0.17 0.27 0.30 0.35 0.27 0.27

SIACTTECCompressSegment 0.20 0.26 0.33 0.38 0.22 0.28

SIARCTTECCompress 0.12 0.20 0.23 0.30 0.27 0.22

SIARCTTECCompressBB 0.17 0.27 0.30 0.35 0.27 0.27

SIARCTTECCompressSegment 0.20 0.26 0.33 0.38 0.22 0.28

SIARTECCompress 0.10 0.18 0.19 0.18 0.25 0.18

SIARTECCompressBB 0.39 0.32 0.53 0.45 0.26 0.39

SIARTECCompressSegment 0.60 0.39 0.65 0.57 0.25 0.49
SIATECCompress 0.11 0.16 0.19 0.25 0.26 0.19

SIATECCompressBB 0.37 0.30 0.51 0.51 0.29 0.40

SIATECCompressSegment 0.56 0.40 0.63 0.59 0.29 0.49
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did change the performance on individual pieces. The highest score obtained on any

single piece was 0.71 by COSIATECSEGMENT on the Beethoven sonata movement.

Interestingly, Forth’s algorithm was the best-performing algorithm on the Bach fugue

by a considerable margin. This suggests that there may be some feature of this

algorithm that makes it particularly suited to analysing imitative contrapuntal music.

13.5 Conclusions

Each of the algorithms considered in this study takes a point-set representation of

a piece of music as input and computes a set of TECs that collectively cover (or

almost cover) this point set. All the algorithms attempt to select TECs in a way that

maximizes compression factor and compactness. The results obtained on two quite

different evaluation tasks suggest that this geometric, compression-based approach

has the potential to lead to versatile algorithms that derive analyses from in extenso

music representations that can profitably be used in a variety of musicological tasks.

However, the results also indicate that certain variants of the algorithms may be

more suited to some tasks than to others. The results do not unambiguously support

the hypothesis that the best analyses of a piece correspond to the shortest possible

descriptions of it. However, COSIATEC, the SIA-based algorithm that achieves

the best compression in general, was the best-performing algorithm on Task 1 and

achieved the second-best score overall on Task 2.
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