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Preface

The idea of putting together a book on computational music analysis emerged from a

discussion that I had with Ronan Nugent (Senior Editor at Springer) at the Fourth In-

ternational Conference on Mathematics and Computation in Music, held in Montreal

in June 2013.1 We talked about the fact that using mathematics and computing to

advance our understanding of music (and, indeed, our understanding of how music

is understood) would probably be considered a tiny niche area by most. However,

those of us who devote our lives to this activity find ourselves split up into even tinier

subdisciplines with names like “mathematical music theory”, “computer music”,

“systematic musicology”, “music information retrieval”, “computational musicol-

ogy”, “digital musicology”, “sound and music computing” and “music informatics”.

It must be almost incomprehensible to those working outside of the field that such

a relatively small research area has become splintered into so many even smaller

subdisciplines. What is more remarkable is how little communication and interaction

takes place between these subdisciplines and, indeed, how much disagreement can

arise when such interaction does occur.2

Ronan and I therefore agreed that the community would benefit from a book

that gathered together papers by researchers from as many of these subdisciplines

as possible, representing a wide range of current mathematical and computational

approaches aimed at advancing our understanding of music. Such a book could

showcase the technical and philosophical sophistication of these approaches, while

also providing in-depth introductions to particular topics.

Work on this book started in April 2014 and it has taken seventeen months to

get it into its final form. It consists of seventeen chapters, authored by thirty-two

researchers from Europe and Japan. Each of the chapters was single-blind reviewed

by at least two reviewers and the editor. The chapters are grouped into six parts:

methodology, chords and pitch class sets, parsing large-scale structure (form and

1 http://www.music.mcgill.ca/mcm2013
2 See, for example, the special issue of the Journal of Mathematics and Music (Volume 6, Issue 2,
July 2012), dedicated to a debate between leading figures in three of these subdisciplines.
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voice separation), grammars and hierarchical structure, motivic and thematic analysis,

and classification and distinctive patterns.

In the opening chapter, Alan Marsden explores the fundamental underpinnings

of computational music analysis. He examines the nature of what exactly it is that

we analyse, what the end result of an analysis should be and how one can evaluate

a musical analysis. These issues are relevant to all aspects of music analysis and

therefore prepare the ground for the remainder of the book.

Part II consists of three chapters focusing on chords, harmonic structure and

pitch class set analysis. This part begins with a chapter by Emilios Cambouropoulos

(Chap. 2), in which he challenges the usual assumption that the input to an analytical

method should be a representation of a piece in terms of notes. Cambouropoulos

argues that, from the perspective of music perception, it makes sense to start in-

stead with a musical surface that encodes chords or ‘vertical’ pitch collections that

are fused into Gestalts. Cambouropoulos proposes two novel, idiom-independent

encoding schemes that can help with achieving this. The second chapter in Part II

(Chap. 3), by Louis Bigo and Moreno Andreatta, also focuses on chords, but this

time from a neo-Riemannian perspective in which relations between chords are

represented geometrically and the chords themselves are modelled as pitch class

sets represented as simplices. More specifically, they represent sets of chords closed

under transposition and inversion (i.e., classes of T/I-invariant chords) as simplicial
complexes. Pieces can then be represented as trajectories through such complexes

and features of such trajectories can be used for analysis and classification. In the

final chapter in Part II (Chap. 4), Agustı́n Martorell and Emilia Gómez present a

complete method (implemented in software) for carrying out a multi-scale set-class

analysis of a piece of music. They consider the problems of segmentation, description

and representation, and introduce new data structures and visualization techniques to

support their method.

Part III of the book is devoted to the analysis of large-scale structure. The two

chapters in this part present methods for parsing whole pieces, on the one hand,

into streams or voices and, on the other, into large-scale sections. In the first of

these chapters (Chap. 5), Mathieu Giraud, Richard Groult and Florence Levé review

the work that has been done on the computational analysis of musical form. They

summarize the results they have obtained with systems designed for analysing fugues

and movements in sonata form and they discuss the challenges associated with

evaluating such systems. This is complemented by the second chapter in Part III

(Chap. 6), by Tillman Weyde and Reinier de Valk, which focuses on parsing music

into concurrent streams, that is, voice separation. Weyde and de Valk present and

evaluate two contrasting approaches to voice separation: the note-to-note approach,

where each note is assigned individually to a voice; and a chord-to-chord approach,

where chords are treated as the basic units to be processed (as they are in the approach

to harmonic analysis proposed by Cambouropoulos in Chap. 2).

Part IV consists of four chapters, presenting different aspects of and approaches to

the analysis of hierarchical structure in music. In Chap. 7, Samer Abdallah, Nicolas

Gold and Alan Marsden provide an in-depth introduction to the use of probabilistic

grammars for analysing melodic structure. They review previous grammar-based
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approaches to music analysis as well as the foundations of their work in generative

linguistics and information theory. They also present the results of experiments on

learning the probabilities for simple grammars from two kinds of symbolic music

corpora.

An important aspect of a reductive analysis of the hierarchical structure of a

piece of music is identifying the relative structural importance of notes and the ways

in which notes depend upon each other. The problem of designing an interactive

tool that allows an analyst to do this effectively is addressed in Chap. 8 by David

Rizo, Plácido Illescas and José Iñesta. Their proposed system learns from a user’s

corrections to an automatically generated analysis that classifies notes in a melody

as either harmonic or one of six different types of non-harmonic elaboration (e.g.,

‘passing note’ or ‘neighbour note’).

In the last two chapters of Part IV, Masatoshi Hamanaka, Keiji Hirata and Satoshi

Tojo review their work on implementing parts of Lerdahl and Jackendoff’s highly

influential Generative Theory of Tonal Music (MIT Press, 1983). In Chap. 9, they

present software implementations of Lerdahl and Jackendoff’s theories of grouping

structure and time-span reduction, that, like the system described by Rizo et al. in

Chap. 8, is capable of learning from user-feedback in response to automatically

generated analyses. In Chap. 10, the same authors present an algebraic formalization

of Lerdahl and Jackendoff’s theory of time-span reduction and develop a distance

measure for comparing time-span trees, which they then evaluate against human

judgements of similarity.

Part V of the book consists of three chapters presenting different approaches to

the automatic discovery of repeated patterns in music. In the first of these chapters

(Chap. 11), Olivier Lartillot presents an exhaustive approach to the discovery (or

‘mining’) of closed and cyclic patterns in sets of sequences representing melodies.

Lartillot’s system is capable of finding not only motives and themes in the conven-

tional sense, but also ‘heterogeneous’ patterns that consist of sequences of items in

several different musical dimensions (e.g., articulation, dynamics, pitch, rhythm).

In the second chapter in this part (Chap. 12), Gissel Velarde, Tillman Weyde and I

present a computational method for segmentation and clustering of segments, that

relates closely to paradigmatic analysis. The method uses the continuous wavelet

transform and self-similarity matrices. We also present and discuss the results ob-

tained when the method was used for classifying folk songs into tune families and

for identifying the parent pieces of excerpts from Bach’s two-part inventions. In

contrast to the essentially sequential approach adopted in Chaps. 11 and 12, the final

chapter in this part of the book presents a geometric approach in which the music

to be analysed is represented as a set of points in a multi-dimensional space. In

this chapter (Chap. 13), I describe and analyse a number of pattern discovery and

compression algorithms based on discovering maximal translatable patterns in such

point-set representations. I give examples of the output of these algorithms on a Bach

fugue and I also present the results of using the algorithms for folk song classification

and the discovery of repeated themes and sections in polyphonic music.

The final part of the book concentrates on classification and the discovery of

distinctive patterns. In the first chapter in this part (Chap. 14), Dorien Herremans,
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David Martens and Kenneth Sörensen develop five types of classification model

that can successfully distinguish between music by Bach, Haydn and Beethoven.

They consider both comprehensible models, such as decision trees and rulesets,

and black-box models such as support vector machines. The second chapter in this

part (Chap. 15), by Kerstin Neubarth and Darrell Conklin, introduces the task and

techniques of contrast pattern mining in the context of folk music analysis. Neubarth

and Conklin identify two types of contrast patterns: sequential patterns and global

feature patterns. They then recast previous work in quantitative folk music analysis

as contrast pattern mining and show how subsumption applies equally to global

feature and sequential patterns. In the third chapter in this part (Chap. 16), Darrell

Conklin and Stéphanie Weisser report on a study of both frequent and rare motifs in

Ethiopian bagana songs. They show that both over- and under-represented patterns

can be discovered in a corpus of such songs that correspond with high significance to

motifs that are well known within bagana performance practice. Finally, in Chap. 17,

Tom Collins, Andreas Arzt, Harald Frostel and Gerhard Widmer present a method

that uses geometric pattern discovery in combination with the viewpoint approach,

symbolic fingerprinting and techniques from sequential pattern mining to discover

patterns in polyphonic music that are distinctive of a particular composer and that

are used across many works.

In September 2014, I had the pleasure of organizing a two-day special session on

computational music analysis at the European Music Analysis Conference (Euro-

MAC), at which many of the authors of chapters in this book gave presentations.3

This proved to be a highly enjoyable event at which researchers from widely dif-

ferent backgrounds were able to interact constructively. My hope is that this book

and events like the EuroMAC special session will help to establish computational

music analysis as a recognized research area that intersects with many of the existing

subdisciplines of computational and mathematical music research, and that possibly

even assists in gluing these “sherds” back together. I would like to see computational

music analysis become a sandbox, where researchers from different backgrounds can

collaborate effectively with each other, united by the common goal of achieving a

better understanding of music itself and how it is experienced and understood.

Aalborg, Denmark, David Meredith
September 2015

3 http://www.euromac2014.eu/programme/9a
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Methodology



Chapter 1
Music Analysis by Computer: Ontology and
Epistemology

Alan Marsden

Abstract This chapter examines questions of what is to be analysed in computa-

tional music analysis, what is to be produced, and how one can have confidence in

the results. These are not new issues for music analysis, but their consequences are

here considered explicitly from the perspective of computational analysis. Music

analysis without computers is able to operate with multiple or even indistinct con-

ceptions of the material to be analysed because it can use multiple references whose

meanings shift from context to context. Computational analysis, by contrast, must

operate with definite inputs and produce definite outputs. Computational analysts

must therefore face the issues of error and approximation explicitly. While computa-

tional analysis must retain contact with music analysis as it is generally practised,

I argue that the most promising approach for the development of computational

analysis is not systems to mimic human analysis, but instead systems to answer

specific music-analytical questions. The chapter concludes with several consequent

recommendations for future directions in computational music analysis.

1.1 Introduction

The nature of music analysis, as a discipline, if not as a practice, has been a topic

of debate on several occasions (e.g., Nattiez, 1990; Pople, 1994; Samson, 1999).

Researchers in computational music analysis, on the other hand, tend to take music

analysis as a kind of ‘given’. My aim here is to revisit this ontological and epistemo-

logical debate, with two objectives: first, to draw conclusions useful for those who

would use computers for analysis or who write analytical software; and second, to

explore what insights follow from taking an explicitly computational approach to the

debate.

Alan Marsden
Lancaster Institute for the Contemporary Arts, Lancaster University, Lancaster, UK
e-mail: a.marsden@lancaster.ac.uk

© Springer International Publishing Switzerland 2016
D. Meredith (ed.), Computational Music Analysis,
DOI 10.1007/978-3-319-25931-4_1

3
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Fig. 1.1 Analysis as a map-
ping from piece to analysis
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From a computational perspective, the simplest way of thinking of music analysis

is as analogous to the working of a computer program. A piece of music is presented

as input to a program, and this produces as output an analysis (Fig. 1.1). Music

analysis, in this simple perspective, is effectively mapping from a piece to an analysis.

As we will see below, this is too simplistic an account, but it will serve as a basis for

the present. ‘Mapping’ here means there is a distinct relation between the piece and

the analysis, involving also distinct relations between parts of the piece and parts of

the analysis (see Sect. 1.4.1). It need not be a mapping in the mathematical sense,

though it can often be expressed in that way. Different analyses of the same piece

can exist because there can be different mappings, each corresponding to different

programs. Any one program should always produce the same output for a given

piece as input, unless it also takes input from some other, variable, source (such as

a random-number generator). Human experts similarly map a piece to an analysis,

and different experts produce different analyses. Different analyses arise through the

application of different analytical approaches, whether these are gross differences

between, say, analysis based on Schenkerian and Riemannian theories, or minor

differences resulting from different interpretations of theory.

The following discussion will therefore be framed around three loci: the input

or music, the output or analysis, and the mapping. Debates about analysis often go

beyond discussion of the nature of music and analysis to also discuss the epistemology

of the enterprise: how one comes to know what the mapping between music and

analysis should be. In fact, although I say that the debate often goes beyond ontology,

in writing about music analysis it often slips almost imperceptibly into epistemology.

In what follows, I hope to make the move from one to the other more explicit, and also

to draw out some definite conclusions and recommendations from the examination

of ontological and epistemological questions.

1.2 Ontology of Pieces of Music

Questions of the ontology of music, of what it actually is, have generally focused on

two issues. The first is whether music, or pieces of music, can properly be considered

to have a distinct existence or not. At one extreme, a piece of music is considered to

be a distinct ‘object’ with an abstract existence made manifest in various ways in the

scores, recordings and performances of the piece, not to say also in the imagination

of its composer and the memories of those who read the scores or hear the recordings

and performances. At the other extreme, pieces of music are a kind of cultural fiction
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and music is ultimately an activity of which scores, recordings and performances are

merely traces which exist only in certain cultural contexts (for discussion, see Goehr,

2007; Goodman, 1976; Levinson, 1980). Indeed, cultural context is of considerable

importance in this debate, and it seems clear that different positions with respect to the

nature of music, or at least the nature of pieces of music, are appropriate for different

cultures and different periods of history. There are musical cultures in the world

which have no scores, for example, and in which the notion of ‘a piece’, if it exists at

all, is clearly something quite different from a symphony from nineteenth-century

Europe.

The debate about the ontology of music, or of pieces of music, need not concern

music analysts too deeply, though. Provided they show some due concern for the

nature of the materials they use, they are able to proceed with their activities, and to

produce useful insights, without having to commit themselves on the finer points of

ontological debate. The computational music analyst, on the other hand, is not so free

to use diffuse conceptions of a piece of music. The input to analytical software must

be, ultimately, a binary code, in which every bit is unequivocally 0 or 1. Furthermore,

every bit must be determined before the analysis begins, unless the analytical software

is embedded in an interactive system which takes inputs from the user or other sources

in the course of analysis, which is not typically the case for computational music

analysis (see, however, Chap. 8, this volume, for an example of an interactive analysis

system along these lines). The computational analyst is therefore effectively placed

in a position at one extreme pole of the ontological debate, where pieces of music, or

at least their manifestations used for analysis, are entities of which every feature is

fixed. A human analyst can delay commitment about some features until part-way

through the analysis. A curved line in a score, for example, might be interpreted as a

slur or as a tie depending on the results of earlier stages of an analysis. One might

object that the input to the analysis is then neither a slur nor a tie but a curved line,

which is fixed in advance, but the example can then be moved down a level: is the

curved line a proper part of the score or a printing error? There is no fixed boundary

for the human analyst separating the information which can be used in the analysis

from the information which cannot (see Sect. 1.2.1 below).

The upshot of this for computational analysis is that those who analyse pieces of

music which clearly do not exist as fixed entities (e.g., from cultures without scores

in which pieces are highly variable) should recognize that they do not analyse ‘the

piece’, but rather some particular version or manifestation of it.

1.2.1 The Music Itself?

The classic contrast between music analysis and other areas of musicology used to be

that analysis concerned itself with ‘the music itself’ rather than the music’s context:

historical, social, etc. This changed in the late twentieth century with the advent of

‘new musicology’ which questioned the entire notion that music could be extracted

from its context. Whether or not this is always the case need not concern us here, but
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it is clear that at least the boundary between what one must include in ‘the music

itself’ and what one can leave out is far from clear. In some music, from Europe in

the early 18th century for example, it is clear that performers would regularly add

ornaments. In some cases, especially later in that century, ornaments are written in

scores. When analysing a piece of music, should one take into account the ornaments

or not? And if one takes into account the written ornaments from later in the century,

why not the unwritten ones from earlier? If the ornaments are not written in the score,

how can one be sure what they are?

Even once such issues have been settled, there is still uncertainty over what

properly constitutes the ‘input’ to analysis. Here the issue is not so much what is in

the music itself, but whether analysis really considers just the music itself. One would

normally analyse a piece from the twentieth century differently from the way one

would analyse a piece of music from the Renaissance, but the date of composition

of a piece is not normally considered to be part of ‘the music’. Even if the focus of

analysis is ‘the music itself’, it is clear that other information forms part of the input

to the process.

Thus the boundaries for the input to the analytical process are indistinct in at least

two ways:

• There is no clear definition of what information is included in ‘the music itself’

and what is excluded.

• It is not clear what additional information is required for proper analysis of a

piece.

The simple diagram used in the introduction above should therefore be revised to

show that the input to the analytical process, as traditionally conceived, has indistinct

boundaries (Fig. 1.2). (Discussion of what a ‘proper’ analysis might be follows in

later sections.)

As an example, consider the case of the ‘371 Bach chorales’, which were consid-

ered a kind of dataset of good practice in harmony long before ‘dataset’ became a

word. It has been known for some time that (a) there are not 371 distinct chorales

(some are duplicates, with varying degrees of similarity), (b) they are not all by

J. S. Bach, (c) independent instrumental parts are missing from some, and (d) the

precise details of some are uncertain (sources differ). It has nevertheless been com-

mon for computational analysts to use the version available in ‘Humdrum kern’

format (Sapp, 2014) without questioning its validity.1 When a source is large in size

Fig. 1.2 Indistinct piece
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1 It must be acknowledged that the fault here is not Craig Sapp’s. He clearly states the source used
in compiling the version (down to the precise print and edition) and states its nature as a collection
made by C. P. E. Bach and Kirnberger.
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and easily available, it tends to be used in several studies, presumably because the

researchers want to put time into analysis rather than into encoding sources. For a

discussion of the adverse consequences of unquestioning use of such sources, see

Sturm (2014).

1.2.2 Differences and Indeterminacy in Digital Data

While computational analysis must, because it deals with digital representations, take

a definitive input, this does not mean that it deals with single definitive representations

of pieces of music. An audio file in WAV format does not contain the same stream of

digital data as the same audio in FLAC format. Yet we are right to say it contains

the same audio because exactly the same information is encoded in both files: a

rendition of both into streams of digital samples would produce identical streams.

Such differences between input data are merely differences of format and have an

effect only at an operational level; there is no reason to expect any difference in the

analyses produced. We might consider the two representations to be two different

‘projections’ of the same data by analogy with the projection of graphical data

from one co-ordinate space to another: the data is not changed but it is represented

differently.

Other differences in input to computational analyses are more significant, and even

when the word ‘format’ is used in connection with these, the differences constitute

genuine differences in the information represented. An audio recording in a lossy

compressed format such as MP3 is different from a recording in a non-compressed

format because some of the information in the latter has been lost. A representation

of a piece in a MIDI file and a representation of the same piece in a MusicXML file

contain different information. For example, the MIDI file does not contain information

about the location of barlines relative to the notes, whereas this information is

essential in the MusicXML file. Differences of this kind are not so much ones of

projection but ones of selection of data. Choosing to use one ‘format’ or another as

input to the analytical process is tantamount to selecting some information about

the piece and ignoring other information. Of course the data has to be present in the

source which is being represented in order to be selected, so while one can take a

MIDI file direct from the playing of a musician on a keyboard, one cannot directly

derive a MusicXML file from that source. The location of barlines is not explicit in

the musician’s playing on the keyboard, but it is explicit in the score, and one can

derive a MusicXML file from a score.

This difference with respect to sources underlines another kind of difference in

different ‘formats’. This is clearest with respect to the representation of pitch. A

score shows the pitch of a note in a particular spelling (e.g., C� or D�), and formats

such as MusicXML contain similar information. A MIDI file, by contrast, contains

pitch information only in relation to which key on a keyboard is pressed (so C�
and D� are represented as the same pitch). On the other hand, a MIDI file contains

information about precise timings, whereas a MusicXML file represents timings only
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by the notated durations of the notes and a generally imprecise indication of tempo.

One can unequivocally derive the pitch information necessary for a MIDI file from

a score, but one cannot derive the precise timing information required (unless the

score indicates a precise tempo) without making a guess at an appropriate tempo, and

using that as a basis for timings in the MIDI representation. Such an interpretative

step is often required even when creating a MusicXML representation from a score,

despite the fact that MusicXML was created precisely to represent score information

(Good, 2001). When simultaneous notes occur, the format requires a distinction

to be made between chords and simultaneous notes in different voices. Different

people are likely to make different decisions about which is appropriate in some

cases. We might use a single notated source as a guide to aim at definitive decisions,

representing simultaneous notes as chords when they are attached to the same stem

but in different voices when they are not. This does not overcome the problem of

ambiguities in the assignment of notes to voices, however, and most obviously does

not help in cases of simultaneous notes without stems such as semibreves (whole

notes). Ideally, there would be conventions for making such decisions in a regular

fashion, and so allowing the formation of canonical MusicXML files, but I am not

aware of any such conventions.

In the cases of some computational music data, there is no evident interpreting

agent. When scanning a score to generate a digital image, for example, the user places

the score on the scanner and presses a button rather than taking a set of decisions

on how to represent the information in the score. However, the resulting digital data

is still contingent on factors which, like the decisions of an interpreting agent, are

specific to the manner in which the scan is made rather than dependent solely on

the score itself. The score might be placed at an angle, for example, so that the staff

lines do not appear horizontal in the image. In the case of audio recordings, it is

well recognized that factors like the placement of microphones and the acoustics

of the recording space have a profound effect on the resulting data. Microphones

and scanners, and indeed any sensing device, have an inevitable element of noise

in their outputs, constituting another source of information effectively added to the

original music data. Often one can go some way towards removing such unwanted

data (often called noise or distortion)—a scan can be de-skewed, for example, or

noise-reduction applied to a recording—but to do so relies on assumptions about the

original data (e.g., that the staff lines are horizontal). There is no generalized way for

distinguishing between original and introduced data on the basis of the data alone,

and, perhaps more importantly, no way of distinguishing between introduced data

which is possibly legitimate interpretation and introduced data which is spurious. In

a recording, for example, how could one know if the sound of a particular instrument

is prominent because the recording engineer has legitimately placed the microphone

to best pick up the lead instrument, or because the resonance of the recording space

happened to make it prominent?

There are thus three ways in which computational representations which form the

input to computational analysis, while fixed in the sense that they have a definitive

digital form, are nevertheless indefinite in the sense that there is not a single definitive

form for the data representing a single piece:
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• the projection of the data to a particular format,

• the selection of the data which is represented in that format, and

• some unavoidable element of extrinsically introduced information, or at least

uncertainty about whether or not there is extrinsically introduced information.

The diagram of music analysis therefore needs revising once again, to reflect the

varieties of possible inputs, even for a single, indistinct, piece of music. Unlike the

indeterminacy discussed in Sect. 1.2.1 above, these are inputs which have distinct

boundaries, but the indeterminacy arises from the impossibility of determining which

is the proper input (Fig. 1.3).

In practical terms, the indeterminacy might be very low. We might, for example,

decide to represent only the pitch and timing information from a score which we

consider to be unequivocally given by the unambiguous placing of the notes vertically

on the stave and horizontally in relation to barlines and each other. Of course we have

selected information from the score, and we have implicitly assumed that the ignored

information (articulation, for example) is not relevant to the analytical distinctions

we aim to make, but at least we have not introduced anything which is not in the

score. Or so we suppose, because while we might be confident that nothing has

been introduced, we cannot be certain. Mistakes happen, and if we are using data

generated by someone else, what information do we have about how likely it is to

contain mistakes? More importantly, we cannot be certain that what is unequivocal

in one musical source is unequivocal in another, so we cannot be confident that our

procedure will generalize to all cases. For example, Don Byrd has given examples

of standard music notation (by well known composers) where the timing of notes is

ambiguous and some in which even the pitch is questionable (Byrd, 1984, 2013).

1.2.3 Error and Approximation

The solution to these issues is for computational music analysts to recognize that

they operate with approximations. In the natural sciences, researchers are well used

to dealing with input which contains noise and error. Every measurement is regarded

as an approximation of the real value. Extremely reliable results can nevertheless

be derived because researchers quantify the error in their measurements, take multi-

ple measurements, and take these into account in calculating their conclusions. In

the social sciences, too, the idea of multiple measurements to increase accuracy is

common. To take an opinion poll, one asks not just one person their view, but many

people, and one is careful to ask a variety of people so that the answers are not biased

Fig. 1.3 Selected but definite
input for analysis
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to one point of view. The essential idea is that the overall properties of the sample
one uses should match, within an acceptable degree of error, the overall properties

one would find in the entire population if one were to actually measure everyone or

everything in the domain.

In music analysis, one is generally concerned with the properties of a particular

piece (sometimes even of a particular performance) and so some of the most obvious

analogies of sampling from a population do not apply. However, a useful strategy

might still be to consider different editions of a piece of music as sources, and perhaps

performances as well as scores. It would be possible, too, to perform similar analyses

on different formats of data, but since analytical software is usually specific to a

particular format, and since it is not clear how ‘the same’ analysis can be ensured

given data in different formats, this too is problematic.

The notion of error, however, is eminently applicable. In Fig. 1.3, error corresponds

to the region within the fuzzy boundary of ‘the piece’ but outside the definite boundary

of the particular digital representation used as input to the analytical process. Just as

a natural scientist aims to minimize error, the computational analyst should aim to

minimize the area of this region of the diagram. Of course, this cannot be done with

certainty because the boundary of ‘the piece’ is indistinct. Furthermore, there is no

definitive way of even estimating the area of the region. How much ‘space’ in the

input domain is taken up by the pitch-spelling information which is not included in a

MIDI representation, for example? The answer, if there is an answer, depends on the

one hand on the nature of analysis undertaken, and on the other on the viewpoint,

implicit or explicit, of the person judging its validity. A MusicXML file gives no

information about the layout of a score on the page, and in many cases it is not

regarded as significant: the area, in the sense of ‘quantity of significant information’

in the piece-as-score, which corresponds to the layout information missing from the

MusicXML file will be close to zero. If the piece in question is Eight Songs for a Mad
King by Peter Maxwell Davies, in which the staves of the third movement are arranged

on the page in the shape of a birdcage, the area for information corresponding to

layout will be greater.

A more effective way of quantifying error is to consider the effect on the anal-

ysis produced. How different are the analyses arising from different selections or

interpretations of data from the piece? As indicated above, actually using different

input formats will not always be realistic. However, one could simulate these dif-

ferences to some degree. For example, as stated above, a MusicXML file, or indeed

any input derived from a score, does not contain precise timing information. (Even

if the score gives a metronome marking for the tempo, this is generally regarded as

a suggestion for the tempo rather than a strict instruction to the performer.) When

using analytical software such as Melisma (Sleator and Temperley, 2003) which

requires timing information for input, it would be easy to make multiple runs of the

software with variations in the timings in the input, made with the aim of producing

a distribution of different timings similar to the distribution occurring in different

likely interpretations of the information in the score. Comparison of the resultant

outputs would then give good data on which to quantify the significance of error
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in the input. If the difference in the outputs is small, the error in the input can be

considered to be small also.2

In some other cases, such as the Bach chorales mentioned above (Sect. 1.2.1), one

can have some confidence in the smallness of the error even without this kind of

testing. One could argue that (a) the number of duplicates is small in comparison to

the number of chorales (371), (b) the number of known mis-attributions to J. S. Bach

is tiny in comparison to the number of cases where J. S. Bach is confirmed as the

composer, (c) very few chorales have missing instrumental parts which differ from

the vocal parts, and (d) there are few differences between sources. However, even this

kind of reasoning is usually absent from computational analyses, and researchers have

tended to perform analyses as if there were no error in the input. The consequences

of this oversight in the domain of genre recognition have been set out by Bob Sturm

(2014). While researchers have claimed that their computational systems recognize

the genre of audio recordings with a high degree of accuracy, an examination of the

errors and inconsistencies in the dataset used and the effect of these on the measures

of accuracy led Sturm to conclude that these claims are not supportable.

1.3 Ontology of Analysis as a Kind of Writing

The question of the ontology of an analysis is in some ways simpler and in some

more complex than the ontology of a piece of music. It is simpler because the form

is more distinct: analyses are pieces of writing or some other kind of discourse.

They are communicated from one human being to another. (Or at least they were

until computational analysis came along. It is entirely possible for the object of

computational analysis to involve no human reading of the analytical outputs, but

discussion of this will be left for later. For the present, it will be assumed that

the objectives of computational analysis are the same as those of analysis without

computers.)

The question of the ontology of an analysis is more complex because analyses are

not surrounded by the same richness of data from patterns of use and context as are

pieces of music. We have a clear idea of the situations in which music is typically

created and listened to, we have information about what music is valued in which

situations, and we have a large body of commentary to draw on. For music analyses,

we know that these are published in books and journals, and discussed in conferences

and classrooms, but clear information on the role of this activity within wider culture

is not clear. Analysis has regularly been used as a tool in the teaching of composition,

and analysts claim that their work can inform performance of a piece (Mawer, 1999),

but there is precious little evidence of such influence in everyday practice.

2 David Meredith followed a procedure somewhat like this to test the impact of tempo on pitch-
spelling using Melisma, finding the effect to be quite large (Meredith, 2007, p. 205). This was over
a range larger than the tempo variations one would typically find in performance, however.
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1.3.1 Description and Explanation

Analysis is typically distinguished from other kinds of writing about pieces of music—

commentary, criticism, hermeneutic exegesis, etc.—by claiming that it considers the

piece itself (which as we have seen above is not entirely true), that it eschews the

value judgements inherent in criticism, that it avoids the subjective perspective of

hermeneutics, and that above all it provides not just a description of a piece of music

but an explanation. The distinction between description and explanation, however, is

not so easy to make, and might be only one of degree: if we can describe something

very succinctly, then we can thereby, in a sense, explain it. (Applications of this

idea using minimum-description-length coding, information theory and Kolmogorov

complexity will be briefly reviewed in Sect. 1.5.1.)

In the domain of the natural sciences, a phenomenon is explained by demonstrating

how general principles apply in a specific case. The characteristics of a species, for

example, might be explained by demonstrating how the principles of the theory of

evolution apply to the species in its particular environment. This kind of thing exists

in music analysis also, where a piece is explained through a demonstration that it

follows a particular model, e.g., Sonata Form. Herein lies a paradox, though. Music

analysis is generally distinguished from music theory, and the distinction is that

analysis is concerned with particular pieces of music whereas theory is concerned

with generalities. An analysis, from this perspective, seeks not just to explain a piece

by reference to a general model, but by reference also to its particular properties.

While apparently seeking to explain, then, an analysis of a piece of music often takes

a great deal of space to describe the particular and distinctive characteristics of that

piece. Although I stated above that analysis eschews value judgement, value is rarely

far from the surface. The apparent objective of many analyses (and in some cases,

such as in some of the analyses of Schenker, the explicit objective) is to demonstrate

how a piece of music is a masterwork. To do so requires pointing out its special

characteristics, not just the ways in which it follows general models.

One response to this is for analysis to seek how a piece establishes its own

explanatory principles, or it might seek to build an explanation either on scrutiny

of listening experiences (one’s own or others’) or on information concerning the

piece’s creation. Nattiez famously distinguishes three levels for analysis: the poietic,

which involves consideration of the process of creation; the esthesic, which involves

consideration of the process of hearing; and between them a neutral level (Nattiez,

1990). Analysis at the neutral level examines the divisions and patterns in the neutral

code, which in practice for most music analysis means the notes written in the score.

An important component of the method of ‘paradigmatic analysis’ advocated by

Nattiez is the discovery of ‘paradigms’ within the piece. These paradigms are, at

first, based on evident similarities in the configuration of notes; but later, they take

on a more generative role in determining which configurations count as occurrences

of a particular pattern and which do not (for a large-scale example, see Nattiez,

1982). The basis for organization of the piece is thus established in the course of
analysis. On the other hand, one does not start an analysis (and perhaps cannot start)

from a blank, theory-free position and follow only the leadings of the information
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at the neutral level. Certain principles, usually unstated, govern the establishment

of paradigms in the course of the analysis. The same thing can be seen in a simpler

fashion in the manner of motivic analysis as practised by Réti, Keller, and others

(Keller, 1965, 1985; Réti, 1962, 1967). They start from an underlying principle that

pieces of music are organized by the use of melodic material which derives from a

single basic motive. The nature of the motive and the methods of derivation will vary

from piece to piece, and ad hoc arguments are presented in the course of the analysis

to justify the analyst’s decisions. Essentially, motivic analysis and paradigmatic

analysis operate with a meta-theory which governs the generation, in the course of

analysis, of a specific theory to explain the piece of music in question. Those familiar

with machine learning, genetic programming and other inductive systems might see

a similarity here: an overarching principle (the minimization of a particular error

function, for example) is used to guide the development of the analytical process,

the details of which are contingent on the properties of the actual data. (Other points

of contact between machine learning and computational analysis will be explored

further in Sect. 1.5.2.) In the case of motivic and paradigmatic analysis, however, the

meta-theory is usually only vaguely expressed at the outset and is subject to revision

in the course of making the analysis.

1.3.2 Limitations of Mechanistic Analysis

Nattiez (1990, p. 32), though, claims that analysis at the neutral level is descriptive,

and that it is poietic and esthesic analyses which are explicative. Exactly why this

should be so is not clear. One possibility is that explanation requires reference to

wider realms of human meaning, and this is not possible without consideration of

either the poietic or esthesic level. Another possibility (though probably not one

Nattiez would endorse, for reasons set out below) is that analysis at the neutral

level is mechanistic, and explanation by a mechanism is not possible, perhaps again

because explanation requires some human reference.

Nattiez does consider the possibility of mechanistic analysis, but in the earlier

article he goes beyond the assignation of mere description to call the result of

a mechanistic operation an inventory, which he contrasts with an analysis. For

Nattiez, analysis requires a step of deciding which relationships between musical

units are to be considered transformations, placing the musical units into the same

‘paradigm’, and which relationships are to be considered distant enough to distinguish

one paradigm from another.

Given that not all possible forms of transformation are foreseeable, as soon as relationships
are established between units that are not strictly identical we enter the realms of analysis.
[. . . ] The difference between an inventory and an actual analysis is that it does not appear to
be possible to deduce the latter from the sum of the information provided by the former.

(Nattiez, 1982, p. 256)

This is quite a strong challenge to computational analysis. Some will take heart from

the fact that Nattiez’s claim was made when computational analysis was in its infancy,
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and that Nattiez did not have a clear idea of what it was possible to do with a computer.

Decisions on whether relationships count as class membership or not are now made

many, many times a day by search engines. However, there is one further aspect of

Nattiez’s argument which will be readily recognizable to computer scientists. Later

on in the same article, Nattiez acknowledges that mechanistic accounting can treat

not just identity but any kind of relationship between musical units, expanding the

inventory to accommodate these by adding extra ‘columns’ in a table to record the

occurrence of particular units or transformed units. Extending the point quoted above

that “not all possible forms of transformation are foreseeable”, Nattiez points out

that “[t]here is, therefore, no limit to the number of possible columns” (Nattiez, 1982,

p. 257). Since every real computing machine has finite resources, we therefore can

never be certain that the relationships required to make a proper analysis of the piece

will be in the table.

There are, however, two flaws in this argument.3 First, it is only true that the

table of possible transformations will be infinite if the set of units to be related is

itself infinite. If the representation of the piece at the neutral level is finite (e.g., a

finite sequence of notes described in terms of pitch and duration), then the set of all

possible relations between notes or sets of notes is finite (though large).4 It would be

possible for a computer with sufficient resources to make an inventory of all these

relations and, given a mechanism for deciding which relations were of significance,

to derive an analysis from this inventory, in Nattiez’s terms. In most cases, however,

the inventory would be impossibly large for this to be a realistic method of analysis.

The second flaw is not one which renders the argument invalid, but one which

blunts its force. It was argued above (Sect. 1.2.3) that the fact that one cannot be

certain that the input to computational analysis covers all the necessary information

about the piece does not render analysis impossible. By a similar argument, the fact

that one cannot be certain that all significant relations can be recognized by the

analysing computer does not render analysis impossible. Once again it is a matter of

statistics. How confident can one be that the significant relations can be taken account

of? The fact that the same kinds of relationship seem to be regularly reported in

music analyses suggests that it is possible to design analytical software a priori which

is likely to encompass the significant relations. To extend this argument to quantify

the degree of confidence would require some idea of what makes a relationship

significant, which is moving towards questions of epistemology to be discussed

below. As with the inputs, though, it would be possible to estimate confidence in

the analysis on the basis of experiments using different sets of relationships in the

early stages of analysis (the ‘inventory’ stage in Nattiez’s terms). If the analysis

3 It has to be acknowledged that Nattiez adumbrates rather than explicitly states this argument, so
my interpretation of his meaning might be incorrect.
4 Note that a relation in this sense is defined purely by the set of sets of notes which show that
relation. There does not need to be a definition of the relation in terms which would allow us to
determine, for any arbitrary set of notes which do not actually occur in the piece, whether they are
in that relation or not. For example, if in a particular piece there is a relation consisting of the two
pairs of notes with pitches (A, B) and (B, A), there is no necessity to define whether this relation is
defined as ‘transpose the first note up one step and the second down one step’ or ‘swap the first and
second notes’, or indeed in any other possible way.
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uses pitch intervals as a basis for segmenting a sequence of notes, for example, one

could experiment with runs of the software which use absolute intervals expressed in

semitones or key-dependent intervals expressed in scale steps and investigate how

much variation there is in the resulting segmentation.5

1.4 Ontology of Analysis: What Is It About?

An analysis is not adequately defined as a piece of writing; we want crucially to

know what it is writing about when it describes or explains, and what kinds of things

it says. Just as there are multiple answers to the question of the ontological nature of

a piece of music, there are multiple perspectives on the ontology of an analysis.

1.4.1 Temporal Basis of Analysis

Before embarking on discussion of ontology proper, it is worth clarifying certain

general characteristics of an analysis. As discussed above, an analysis contains

information derived from a piece of music. This is not typically a single piece of

information, or a piece of information which applies to the entire piece. There are

other kinds of derivation of information from pieces which are not analyses, as for

example determining who wrote a piece where there are disputed attributions, or

determining the genre of a piece of music. Analysis can contribute to making this kind

of determination, but the determination itself is not analysis. Even to say something

like ‘piece X is in Sonata Form’ does not constitute an analysis, though it is a kind of

analytical statement. The analysis would show us how the piece is in Sonata Form.

The distinguishing characteristic of an analysis is that, like the piece of music,

it has a temporal structure (or at least a structure which maps onto time), and the

mapping shown in Figs. 1.1–1.3 is not just from the piece to the analysis but from

parts of the piece to parts of the analysis, and the temporal relations between the

parts of the piece are reflected in some way in the relations between the parts of the

analysis.

1.4.2 Information Content of Analysis

A second characteristic of analyses is that they contain, in a technical sense, less

information than the piece analysed. An analysis does add information in the sense

5 This resembles the approach of testing the effect of selecting different combinations of multiple
viewpoints (Whorley et al., 2013) or of parameters (van Kranenburg, 2008), but generally this has
been done in order to optimize the accuracy or efficiency of the result rather than in order to estimate
its degree of error.
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that someone reading an analysis will gain knowledge about the piece which they

did not have before, but this is a gain for the reader brought about by directing his or

her attention to aspects of the piece or derivations made from the information in the

piece. Nothing is added which was not already latent in the piece, and a lot is left out

because many alternative ways of structuring the piece have been excluded. On the

other hand, whether one regards an analysis as always containing less information

than the piece depends on one’s view about what information is contained in ‘the

piece’ in the first place and requires the questions about the ontology of a piece of

music from Sect. 1.2 to be revisited.

As mentioned above (Sect. 1.2.2), the input to an analysis is already a selection
from the information in the piece, but, as was also indicated above, analysis generally

goes beyond this to reduce the quantity of information further. This is most obvious

in a Schenkerian analysis, where the term ‘reduction’ is used explicitly, but it is

evident in other kinds of analysis also, such as those which explain a piece in terms of

a small set of melodic motives. Indeed, it can be argued that a necessary consequence

of giving an explanation of the piece rather than merely a description will involve

reduction in information. The discussion of significant relations in Sect. 1.3.2 is of

relevance also: selection of significant relations will entail a reduction in information.

This topic will be revisited in the discussion of epistemology below.

1.4.3 Analysis as Inherent Within the Piece

Analysis is often presented by its practitioners as demonstrating how a piece of music

‘works’ (Bent, 1987). Analogies are sometimes made to architecture (in phrases such

as the ‘plan’ or ‘structure’ of a piece), to anatomy (the ‘skeleton’ of a piece) or to

growth (the ‘germ’ of a piece). The analyst is like a surgeon dissecting a body to

reveal its skeleton, ligaments and organs. Indeed, some find music analysis distasteful

on similar grounds to dissection: to them the uncaring cutting and poking of a living

thing, or at least a once-living thing, is a kind of violence. The common riposte is

that, unlike dissection, the act of analysis does no damage to the piece which can,

as it were, arise from the operating table and walk again. If music analysis does do

damage to a piece, to my mind that is because some erroneously believe it prescribes

a way of hearing. There is an important distinction between the act of analysis and

the act of listening.

In the perspective of analysis as revealing structure, the analysis reveals what is

already inherent in a piece, in the same way as a skeleton is inherent in a body. This

follows also from the perspective of analysis as demonstrating how a piece ‘works’,

which is not inconsistent with different analyses of a piece. We might encounter

different descriptions of how a piece of machinery works, for example explanation

of a hydraulic jack in terms of the incompressibility of the fluid and the volumes

displaced or in terms of the conservation of energy, and we can see the correctness

of both while still believing that there is one way in which the machine works. The

different explanations offer different ways of accounting for how the machine works.
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An analysis, in this perspective, has a relation to ‘the piece’ similar to scores or

performances of the piece. There is a single entity which is ‘the piece’, and multiple

manifestations which serve particular purposes, selecting information inherent in ‘the

piece’ and projecting it to be presented in a particular way. These acts of selection

and projection are themselves determined by other information, such as the date of

composition of a piece, or a theory of tonal structure, but the information which the

analysis presents is, essentially, information inherent in ‘the piece’ (Fig. 1.4).

1.4.4 Analysis and Cognitive Structures

Just as the objective existence of a piece of music is questionable, so too is the

existence of a non-contingent analysis. The analysis itself might be a kind of docu-

ment, which can have an existence as objective as a score, but the ‘analysis’ which

this document conveys, the significant information, exists, perhaps, only in minds

(Fig. 1.5).

There is a kind of analysis which tries to explain a piece by reference to the real

or supposed processes and structures in the mind of its composer. This is Nattiez’s

poietic analysis, and we find analyses which take as supporting information such

documents as composers’ sketches. In recent decades we have set less store by

the authority of composers, and so analysis which relates explicitly to cognitive

structures more commonly now refers to the minds of listeners. This is like Nattiez’s

esthesic analysis, but the referents, at least for computational analysts, are generally

not semiological but psychological. The approach of Lerdahl and Jackendoff, for

example, explicitly aims to examine “the musical intuitions of a listener who is

experienced in a musical idiom” (Lerdahl and Jackendoff, 1983, p. 1).

1.4.5 Analysis as Interpretation

One danger with the conception of analysis as revealing something of the cognitive

structures engendered in listening to a piece of music is that it assumes that there

is something fixed to reveal. The boundaries of ‘the piece’ in the listener’s mind

are likely to be even more fuzzy than those of an objective ‘piece’, and we have to

contend also with multiple ‘pieces’ in the minds of multiple listeners.

Fig. 1.4 Analysis reveals
structure inherent in the piece
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Fig. 1.5 Analysis as cognitive
structure
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Several commentators, therefore, have abandoned any idea of analysis presenting

an authoritative explanation of how a piece ‘works’, and replaced this with either a

subjective ‘works for me’ or a shared or inter-subjective ‘could work’. The analysis is

explicitly not the analysis of the piece, but one possible analysis. If we retain a stance

that the analysis shows structure in the piece, then we must abandon the analogies

of architecture and anatomy. The structure is no longer something definite in the

piece, but something which is constructed by the process of analysis. The relation

to listening persists, because listening too, in this perspective, constructs a structure,

and the structure in the analysis might match this one. A relation with the structure

latent or inherent in ‘the piece’ is not abandoned either: the configurations of notes

and sounds which convey the music to the listener, and which are the raw material

for the analyst, enable certain structures to be constructed, and hinder others.

One of the most eloquent advocates of this approach to analysis is Jim Samson,

who states that the reduction from ‘surface’ to ‘structure’ (the analytical process

under discussion here)

far from providing an empirical explanation of a work, can only offer an interpretation of it,
albeit one which may be constrained by something akin to a rule-governed system.

(Samson, 1999, p. 45)

The resulting analysis depends on

the role of observer, who [. . . ] creates a theoretical predetermined and pre-analytic concept
of the object to be analysed.

(Samson, 1999, p. 46)

Samson goes on to relate this to the loss of faith within the natural sciences in ‘the

stability of object description’. Some might therefore justifiably regard the difference

between theory-based ‘explanation’ offered by the natural sciences and theory-based

‘interpretation’ offered by music analysis to be just one of degree. There are several

important contrasts, however, that suggest that the difference lies not just in the degree

of impact of the observer’s role, but also in a real divergence in method and focus.

1. The natural sciences generally examine many instances of a phenomenon; music

analysis typically examines a single item.

2. The natural sciences derive principles to be applied in an objective and formulaic

fashion; music analysis always presumes some degree of prior experience and

understanding in the analyst and reader.
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3. The principles of the natural sciences are tested by experiment in the real world;

the principles of music analysis are generally tested against the agreement of

other musicians.

4. Explanations in the natural sciences are acknowledged as imperfect, but the im-

perfections, embodied in differences between the outcomes of different plausible

explanations, are minimized to a level where they can be safely ignored (to use

Newtonian mechanics in the design of an aircraft is acceptable, for example, even

though it is known that quantum mechanics is a more accurate explanation of

physical phenomena); in music analysis, the differences between the outcomes

of different plausible explanations are often the focus of debate, whose objective

is not revision of principles to minimize error but rather to see one explanation

prevail over another or, in more co-operative forums, to explore the different

aspects of a piece explained by different analyses.

In music analysis, the analyst and reader are, or perhaps should be, always aware of

what is not said, how the analysis might have been different, a point made strongly by

Jonathan Dunsby in the editorial of the inaugural edition of Music Analysis (Dunsby,

1982).

In the conception of music analysis as interpretation, the structures shown are

not simply ‘discovered’ in the piece but constructed, and the input to the process

of analysis which is not part of the piece becomes crucial. (Note that, in practice,

this input may not be recognized strictly as ‘input’ to the analytical process but may

instead be embodied in the adaptation or design of the process itself prior to or in

the course of analysis. It is nevertheless a kind of input, analogous in computation

to the setting or modification of parameters.) Other perspectives on analysis do not

deny that factors which are extrinsic to the piece are involved (as discussed above in

Sect. 1.2.1), but these factors are regarded variously as a definite context or as the

‘proper’ environment of the piece. In the perspective of interpretation, the extrinsic

factors are explicitly variable, and particular to the analysis: ‘this is the way I hear

this piece’, or ‘if we compare this piece to X (some other piece, or some theory of

structure), the following pattern emerges’. To display this conception of analysis in

graphical form, an additional arrow is required to show the crucial additional input

to the analytical process, input which generally comes from the analyst herself or

himself (Fig. 1.6).

I suspect most analysts follow this interpretative conception of analysis, even

when they write as if they are revealing a structure intrinsic to the piece. (Perhaps

Fig. 1.6 Analysis as interpre-
tation
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they write in such a tone partly to imbue their writing with an aura of authority

rather than because they believe other analyses are wrong.) Certainly this is how

most analyses are used by their readers. Only students, I suspect, read an analysis

to find the ‘right’ answers about the structure of a piece. Other analysts continually

test their own conception of the piece’s structure against what they read (at least,

that is how I read analyses), and performing musicians seem to approach analyses

with the same kind of curious but provisional approach taken to the performances of

other musicians. Effectively, the analysis acts not to inform its readers of the piece’s

structure, but to propose a structure with which the readers may concur, often going

so far as to seek to persuade readers to concur.

1.4.6 Computational Perspectives

Computational analysis, at first sight, seems most obviously to follow an ontology

of analysis revealing the structure within a piece (Fig. 1.4). The input is data taken

from the piece, and the analytical process generally finds specific structures (e.g.,

harmonies) or patterns (e.g., recurrences) within that data. Provided we accept the

body of data as in some sense representing the piece, there is no reason to place the

analysis in a locus different from the piece itself. On the other hand, there is also

not necessarily any reason to believe that the particular structure in the output of the

analytical process has a privileged status among the myriad other possible ways in

which the input data could be structured. In other words, what authority does the

computational process have to claim that the output is the structure of the piece or

even that it is a significant, interesting or useful way of structuring the piece? (For

some possible answers to the second half of this question, see Sect. 1.5.1.)

In the case of analysis by a human expert, the claim for a privileged, if not

authoritative, status for the structure shown is implicit in the human’s expertise. We

tend not to ascribe expertise to computers, especially not in matters to do with the

arts, so we are unlikely to regard computational analyses as carrying any particular

authority. On the other hand, it is absolutely clear that the analysis which is the output

of a computational analytical process does have a particular and unique status in the

universe of possible analyses of the piece: it is the output of that particular analytical

program when given that particular piece as input. If we know we want to find the

structure which follows from a particular process, then a computational analysis,

because it is free from bias, is more authoritative than a human one (provided the

software properly implements the process). (In this regard, see also my analogy of

computational analysis and forensic science in Sect. 1.5.2 below.)

Computational analysis can also sit comfortably with an ontology of analysis

as revealing the structures of human musical cognition, though the epistemological

issues around the correctness of the analysis are different from those arising from

an ontology of analysis as revealing the structure in the piece (Sect. 1.5.1). The

ontology with which computational analysis seems to sit least comfortably is that of

analysis as interpretation. As discussed in Sect. 1.4.5, this kind of analysis places
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emphasis on the inputs to the process which are extrinsic to the piece and which

cause one analysis to be different from another, even when the two share common

music-theoretical bases. In the case of human expert analysis, these inputs come

from multiple sources: the analyst’s experience of listening to the piece, knowledge

of other pieces and analyses, etc. To include all such possible inputs in a process of

computational analysis would require modelling the entire human expert in all his or

her aspects.

1.5 Epistemology

Some slippage from ontology to epistemology, which I remarked at the outset was a

characteristic of writing on music analysis, can be detected also in the paragraphs

above. From consideration of what an analysis is, one naturally and perhaps unavoid-

ably moves to what it contains and why it contains what it does: from considering

the nature of knowledge constituted by an analysis, one moves to considering the

bases of that knowledge. The epistemology of music analysis in general is extremely

fraught, so I will concentrate on some aspects of the epistemology of computational

musical analysis only.

1.5.1 Correctness of Analysis

How do we know when a computational procedure produces a correct analysis? In one

sense the analysis is always correct (provided the computer has not malfunctioned).

That particular analytical procedure is not capable of producing any other output

given the same input (remembering, in the case of stochastic procedures, that a

random-number generator constitutes a kind of input). We are hardly likely, however,

to set great store by the analysis of a piece produced by software which finds the

structure of a melody in an entirely arbitrary manner such as to take every third

note of the melody. The structures we want to find, as discussed above, have some

special status which might be determined on one of several different bases. A more

creditable analysis is likely to result from a procedure with a more sophisticated

basis, and especially one where there are good grounds for believing that the basis

implies musical significance also. A particularly promising approach involves a

group of concepts around compression, minimum description length, information

theory, and Kolmogorov complexity. As mentioned above (Sect. 1.3.1), there are

good grounds for taking a parsimonious description of any phenomenon, including a

piece of music, to be an explanation of it, and the more parsimonious the description

the better the explanation. Software can find the description or ‘analysis’ of a piece

which is the most parsimonious or at least close to the most parsimonious, and is

therefore, in those theoretical terms, ‘correct’. For applications of these ideas in
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computational music-analytical research, see Pearce and Wiggins (2012), Meredith

(2012) and Chaps. 7 and 13 in this volume.

One way we might know if a computational analysis is correct is if its output

matches analyses produced by human analysts. This is a path taken by several

projects in computational analysis, for example (Anglade et al., 2010; Marsden,

2010; McVicar et al., 2011; Pauwels and Martens, 2014). In such cases, though,

nothing is added by the computational analysis to explanation of the pieces analysed.

An analytical dividend would come only from application of the same computational

procedures to other pieces, and this step is rarely taken. The objective of this kind

of research is not so much music analysis as the development of music theory, or at

least of computational music theory.

Similar arguments apply if the objective of analysis is to reveal the structure of

cognition of a piece. Here the comparator which the computer output is to match

is not a ready-made analysis, but structures in the minds of listeners, and direct

comparison is not possible. Instead some kind of indirect test is applied: listeners

are asked to respond in a specific way; researchers infer what response would be

expected if the cognitive structure matched the computational one, and determine a

degree of match between the two accordingly. (An example can be seen in Pearce

and Wiggins, 2012.)

One needs to be aware that a perfect match is almost certainly unobtainable in

either case, if for no other reason than that the human-made analyses often do not

match each other and human perceptions differ. Again we are faced with a question

of approximation: how close to human analyses and perception do computational

analyses need to be in order to be confident that the computational procedure can

be applied to as-yet unanalysed pieces and produce useful results? To answer this

question we need some way of quantifying the divergence between human analyses

or perception and computational analyses, and we need to know how good is good

enough. Solutions to the first of these—means of measuring divergence—are com-

monly proposed, and form the basis of the annual MIREX competitions (Downie,

2008) (in which the topics are by no means all strictly music-analytical) where

program outputs are compared with a “ground truth” (i.e., pre-existing data which

is taken to be correct). The second desideratum, however—knowing how good is

good enough—is rarely addressed and cannot be, at least not without some better

understanding of how analyses are to be used.

1.5.2 Usefulness of Analysis

If we follow the reasoning of Nattiez outlined above (Sect. 1.3.2), questions of the

‘correctness’ of computational analysis seem irrelevant. The computational step

produces only an ‘inventory’ and the real analytical step follows from the application

of other factors to select from the inventory and interpret what it shows. In this

case the question is not so much whether the inventory is correct, but whether it is

sufficiently complete: does it contain the information required to make a correct



1 Music Analysis by Computer: Ontology and Epistemology 23

analysis of the piece? Even if the answer is affirmative, we cannot be confident of a

good analytical outcome because that does not depend on the completeness alone.

One way to maximize the completeness of the inventory is to maximize its size,

but this also increases the quantity of useless information and makes finding the

useful information more problematic. More realistically, we must ask how much

useful information is present in comparison to how much useless information. A

perfect outcome would be for the inventory to contain only the information which the

analyst selects to construct the analysis (in which case the analytical step of selection

becomes trivial and redundant, and we effectively return to the situation discussed

above where an analysis is judged ‘correct’ by the degree to which it matches an

analyst’s conception). However, this perfection is unlikely to be achievable, and

cannot reasonably be taken as a goal. Instead, if our objective is to use computer

software as an aid in creating a ‘good’ analysis of a piece, and we will use our own

judgement or that of some other expert to eventually determine a ‘good’ outcome,

then our goal in software development should be a system which presents the user

with an optimum which balances the risk of leaving out useful analytical information

against the risk of obscuring the useful information by a heap of useless information.

If, on the other hand, we follow a conception of analysis as interpretation then

we do not want the computational analysis to match a human analysis. Analyses are

valued for their difference and for what is new that they can bring to our understanding

of the piece analysed. It is highly unlikely, though, that any enriched understanding

could come from merely random analyses. What bases are there for distinguishing a

good analysis, meaning one capable of enriching understanding of a piece, from a

poor analysis? (Indeed, how can we know whether or not someone’s understanding

of a piece has been enriched?) Would the understanding-enriching principles be

different from the music-theoretic principles used in finding ‘the structure’ of a piece,

as envisaged in Sect. 1.4.3 above?

One possibility is that there are principles which we can apply to determine

whether or not an analysis is useful, but there is no known procedure which is

guaranteed to produce an analysis which is useful. Certainly this is the case if the

principle is whether or not a human reader finds the analysis useful. We might

perhaps be able to predict this with some degree of accuracy, but we can never be

certain. This is not a reason to discount such a course of development though. On

the contrary, I suspect that in the long run the manner of computational analysis

which will prove most profitable for analysis (rather than for the development of

music theory) is one which is interactive, presenting a human user with the results of

computational analysis and allowing that user to modify or intervene in the procedure

to arrive at an acceptable or interesting result. An example of such an approach is the

‘Automatic Timespan Tree Analyser’ which implements Lerdahl and Jackendoff’s

method of analysis in interactive software (Hamanaka et al., 2006) (see also Chap. 9,

this volume).

This and several earlier observations point to a potentially significant role in com-

putational music analysis for machine learning, which could be applied in three ways.

First, software might learn principles or parameter values from existing analyses

(e.g., Pauwels and Martens, 2014). Second, following the idea that analysis seeks to
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uncover how a piece may be explained on principles which develop over the course

of making the analysis (Sect. 1.3.1), the software might ‘learn’ the organization of

the piece as it proceeds (see, e.g., Pearce and Wiggins, 2012). Third, the software

might learn from the interactive input of the user. Fourth, the software might learn the

probabilities of different musical configurations for use in an information-theoretic or

minimum-description-length model of musical structure (see Chap. 7, this volume).

It was pointed out above (Sect. 1.4.6) that the authority of an analysis often derives

from the expertise of the analyst. Machine learning has now advanced to the stage

when computers can, within restricted domains, be more expert than humans. (In

chess, for example, Garry Kasparov was beaten by IBM’s Deep Blue computer in

1997, and more convincing computer victories against chess grand masters have

followed.) This raises the intriguing prospect of computational music analysis which

is, in some restricted sense, better than human analysis. Indeed, this appears to be

the case already with software such as COSIATEC and SIATECCompress by David

Meredith who presents evidence of the software finding patterns in pieces by Bach,

Mozart and Chopin which can reasonably be claimed to be just as ‘important’ as

other patterns in the same pieces identified by human analysts (Meredith, 2015).

Even in cases of super-human analysis, though, the extent to which the computer is

doing ‘music analysis’ (as understood by musicologists) is uncertain. As suggested by

the discussion above, we should probably re-imagine the objectives of the enterprise

of computational music analysis. Instead of seeking a machine which analyses music

automatically, we should think of computational music analysis as more like forensic

science. Scientific examination of evidence can answer very specific questions, such

as the likelihood that substances (e.g., DNA) found on the handle of a murder weapon

came from the accused, with much greater accuracy than is possible without the

application of scientific method. These answers can have a very significant role in

court, but the scientific method does not ultimately determine the guilt or innocence

of the accused; that continues to depend on the application of human judgement to the

full range of evidence presented. Music-analytical computer software has advanced

far beyond the stage of merely compiling an inventory of features or relations, as

Nattiez envisaged, and can now answer complex questions about pieces of music.

These answers are important and relevant for music analysis, but the final musical
judgements, which determine how musicians might behave differently in future, will

be made by people.

1.6 Conclusions

Music analysis is not a monolithic enterprise: different analysts do different things on

different bases. Computational analysis therefore should also be multifarious. Most

importantly, it should not and cannot be simply a machine reflection of the human

activity. I conclude here with some reflections and recommendations about the ways

in which computational analysis might profitably be used, and some recommendations

on building software tools for music analysis.
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1.6.1 Value of Computational Analysis

Computational music analysis needs to carve out a place for itself where it is not

simply mimicry of human analysis, but a place which is not so distant from the

human activity to prevent useful communication with musicians. We need to recall

the potential value of computational analysis, the reasons we embark on this enterprise

at all.

• Computational analyses have definite explicit bases, embodied in the analytical

software used, whereas the bases for human analyses are, even when ostensibly

explicit, subject to revision and reinterpretation.

• Computational analyses can handle large quantities of data, whether from within

a single piece of music or from a large body of pieces of music.

• Computational analyses can formally test, try out or explore different hypotheses

about musical structuring, without the risk of bias inherent in human analysis.

• Through techniques such as search and machine learning, computational analysis

can find an ‘explanation’ for a piece which has a particular status among a well

defined universe of alternative explanations, such as that it is the shortest possible,

or most likely, description of the piece under certain assumptions.

The evidence that these can take music analysis into fruitful areas out of reach of

human analysis has been emerging over the past decade or so. A clear sign is the

two special issues of Music Perception dedicated to Corpus Methods (Temperley

and VanHandel, 2013). In many of the papers in these two issues, conclusions were

reported which would not have been possible without computational analysis. The

level of sophistication in the analytical software used, however, was often at a much

lower level than discussed in the contributions to this book. It would appear that

we are still in the early stages of development of sophisticated analytical software

capable of application to a large body of music to yield results in which we can have

confidence. I suspect again that the reason is to do with error and approximation:

research on a corpus usually involves conclusions based on statistics, and valid

inference requires knowledge of the degree of error.

A second area in which computational analysis would show its distinctive value

is by being embedded in other musical systems. As pointed out above (Sect. 1.4.5),

music analysis rarely currently informs other musical activities. If an analysis really

shows how a piece ‘works’, then could we not use that information to, for example,

build a music recommendation system which offers us pieces of music which work

well, or a system which adapts the music in a computer game to present coherently

working segments of music aligned to the events in the game?

These possibilities might seem rather distant, but something similar is definitely

within reach: the linking of analytical software to systems for rich visual display and

sound output. Listening to music and reading an analysis are different activities, yet

we do the second because we value the first. If we conceive of analysis as offering

interesting interpretations of a piece of music (Sect. 1.4.5), then we should believe that

analysis can influence our hearing of a piece, but for it to do so we have to somehow

connect the analysis to the experience of listening. It is not at all self-evident how
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this should happen. To read something like ‘bars 72 to 96 are dominant preparation’

does not immediately translate to a way of hearing the piece. In illustration of this, I

recount an event when I witnessed a visiting speaker at the university where I was

a student. One of the staff of that university disagreed with the visiting speaker’s

interpretation of the harmony of a passage, and in response the speaker did not use

logical argument to persuade his adversary but instead played the passage again,

playing some of the chords louder. To cause someone to hear a passage in a particular

way, one needs to give them a listening experience. One of the potential values of

computational analysis is that its outputs can be readily rendered in sound or in many

kinds of visual analogy using the same computational resources as in the making of

the analysis.

1.6.2 Analytical Tool-Building

Those who make analytical software come up against the ontological and episte-

mological issues of music analysis much more forcefully than do human analysts.

The music expert can shift the analytical activity, select the material to consider

and the conclusions to report, each in ways to soften the impact with ontological

and epistemological problems. The computational researcher, by contrast, sets the

software to work and cannot prevent it or its outputs from damage by such impact,

except by once again rewriting the software, running it again and facing the same

risks. It is for this reason that I believe computational researchers need to give these

issues more explicit consideration than do human analysts.

• What is the input to the analytical software, and what is its status? Quantify, so far

as possible, the differences between different possible inputs and the error inherent

in them. What information comes from ‘the piece’ and what from elsewhere?

• What claim is being made about the analysis? Is it a structure with a particular

status or property ‘within the piece’ (in which case be explicit about that status

or property), or is it an image of the cognitive structures of the listener (in which

case test it against psychological data), or is it some other kind of object?

• If the aim is to mimic some human analytical procedure, consider the degree of

variance in human analysis. A perfect analysis from software of this kind is an

impossibility if analysts do not agree in their analyses. Again, quantify error, and

stop ‘improving’ the software when the error is close to the variance.

• If the aim is to offer possible interpretations of a piece, consider how the analyses

will be presented to the user so that they can be usefully assessed. In particular, if

the aim is to persuade the user of the benefit of hearing the piece in a particular

way, use the computational resources to present the information in such a way as

to make the transition from conceptual understanding to hearing more likely.

Finally, the objective of computational music analysis should probably not be to gen-

erate ‘an analysis’ but rather, like forensic science, to answer specific music-analytical
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questions with a degree of complexity, speed and accuracy which is impossible by

other means.
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Chapter 2
The Harmonic Musical Surface
and Two Novel Chord Representation Schemes

Emilios Cambouropoulos

Abstract Selecting an appropriate representation for chords is important for encoding

pertinent harmonic aspects of the musical surface, and, at the same time, is crucial

for building effective computational models for music analysis. This chapter, initially,

addresses musicological, perceptual and computational aspects of the harmonic

musical surface. Then, two novel general chord representations are presented: the

first, the General Chord Type (GCT) representation, is inspired by the standard Roman

numeral chord type labelling, but is more general and flexible so as to be applicable

to any idiom; the second, the Directed Interval Class (DIC) vector, captures the

intervallic content of a transition between two chords in a transposition-invariant

idiom-independent manner. Musical examples and preliminary evaluations of both

encoding schemes are given, illustrating their potential to form a basis for harmonic

processing in the domain of computational musicology.

2.1 Introduction

Research in computational musicology and, more specifically, computational music

analysis commonly assumes the fundamental concept of the musical surface, i.e., a

minimal discrete representation of the musical sound continuum in terms of note-

like events (each note described by pitch, onset, duration, and possibly dynamic

markings and timbre/instrumentation). The musical surface is assumed to be merely

an unstructured sequence of atomic note events, such as score notes or a piano-roll

representation. Taking as a starting point this elementary musical surface, abstract

structures may be determined, such as grouping/segmentation, metre, chords and

motivic categories.
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In this chapter we will focus on aspects of the musical surface that pertain to

musical harmony. Challenging the ‘standard’ understanding (at least in the domain

of computational musicology) of the musical surface as being the note level of a

musical piece, it will be maintained that chords as wholes should be considered as

an integral part of the musical surface. The emergence of this harmonic musical

surface involves rather complex mechanisms that require, among other things, conso-

nance/dissonance discrimination, chord-type abstraction, root-finding and function

categorization (leaving aside non-harmonic factors such as rhythm, melody and voice

separation).

A novel general representation of chord types is proposed that is appropriate for

encoding tone simultaneities in any harmonic context whether it be tonal, modal,

jazz, octatonic or even atonal. This General Chord Type (GCT) representation allows

for the rearrangement of the notes of a harmonic simultaneity or pitch set, such that

abstract, idiom-specific types of chords may be derived. The GCT algorithm finds

the maximal subset of notes of a given note set that contains only consonant intervals,

employing a user-specified consonance/dissonance classification; this maximal subset

forms the base upon which the chord type is built. The proposed representation

is ideal for hierarchic harmonic systems such as the tonal system and its many

variations (actually the GCT is designed such that properties of the standard Roman-

numeral encoding scheme are naturally accommodated), but adjusts to any other

harmonic system such as post-tonal, atonal music, or traditional polyphonic systems.

It thus allows for automatic chord-type labelling (resembling traditional Roman

numeral encoding) in diverse musical idioms. The application of the GCT algorithm

is illustrated on a small set of examples from a variety of idioms and tested on the

Kostka–Payne harmonic dataset (Temperley, 2001b).

A proposal for representing chord transitions in an idiom-independent manner

is also introduced. A harmonic transition between two chords can be represented

by a Directed Interval Class (DIC) vector (this is an adaptation of Lewin’s interval
function between two collections of notes—see Sect. 2.4). This representation allows

for the encoding of chord transitions at a level higher than individual notes that

is transposition-invariant and idiom-independent (analogous to pitch intervals that

represent transitions between notes). The proposed 12-dimensional vector encodes

the frequency of occurrence of each distinct directional interval class (from 0 to 6

with +/− for direction) between a pair of notes in two successive chords. Apart from

octave equivalence and interval inversion equivalence, this representation preserves

directionality of intervals (up or down). The proposed DIC representation has been

evaluated on a harmonic recognition task (specifically, the identification of harmonic

queries in a small database consisting of pieces from diverse idioms). The DIC

vector representation is very general and may be useful in tasks such as chord pattern

recognition tasks, but is rather too abstract to be used in tasks such as sophisticated

harmonic analysis or melodic harmonization (for which the GCT representation is

more appropriate).

In the following sections, the notion of musical surface will first be discussed in

perceptual, musicological and computational terms. Then the GCT representation

will be described. Finally, the DIC vector chord transition encoding will be presented.
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2.2 The Harmonic Music Surface and Chord Representation
Schemes

In this section, it is maintained that note simultaneities are perceived as chord types

(e.g., major, minor, dominant seventh, etc.) prior to establishing more elementary

aspects such as individual pitch octave information, note doubling, note omission

and chord inversion. This intuition is reflected in established musicological theoret-

ical typologies such as the standard guitar-like chord encoding or Roman numeral

analytic labels or even pc-set categories. Advantages and shortcomings of such

chord formalisms will be discussed primarily in relation to computational music

analysis. A more extended discussion on representing the musical surface is given

by Cambouropoulos (2010).

Jackendoff (1987), by analogy with the linguistic surface of phonemes, defines

the musical surface as being the “lowest level of representation that has musical

significance” (p. 219) and suggests that “standard musical notation represents the

pitch-events of the musical surface by means of symbols for discrete pitch and

duration” (p. 218). Sloboda (1985) suggests that the “basic ‘phoneme’ of music

is a ‘note”’ (p. 24) and presents empirical evidence for categorical perception of

pitch and duration. Should the note, however, be considered as the lowest level of

representation that has musical significance and perceptual relevance?

In terms of co-sounding events, there is evidence that pitch intervals and chords are

commonly perceived by listeners in a holistic manner, prior to their being perceived

in terms of their constituent parts. Over eighty years ago, Vernon (1934), a Gestalt

psychologist, suggested that ordinary listeners frequently perceive holistically a more

or less complex auditory figure, such as a complex tone or a chord, without knowing

or being able to analyse its constituent elements. Empirical research has shown that

listeners perceive musical intervals categorically (see Burns, 1999; Handel, 1989;

Smith et al., 1994). Categorical perception applies to chords as well, as has been

shown by Locke and Kellar (1973). It is suggested that pitch intervals or chords

are actually closer to the categorically perceived phonemic units of language than

isolated notes.

Due to octave equivalence and transpositional pitch interval equivalence, harmonic

pitch intervals and chords are considered ‘equivalent’ even though their constituent

pitches may be placed in different octaves. Empirical research has shown that listeners

confuse pairs of tones that are related by inversion (Deutsch, 2012) and that chord

positioning does not affect recognizing components of a chord—i.e., that chords in

different positions are essentially equivalent (Hubbard and Datteri, 2001).

Parncutt (1989) provides a psychoacoustic explanation of how chords are heard.

Just as our perceptual mechanisms analyse a complex periodic sound into partials

and then re-integrate them into a single percept, so chords can be heard as a single

entity with a single perceived root, rather than three or more individual co-sounding

tones. Parncutt suggests that the same factors that govern the perception of individual

pitches govern the perception of chords. Parncutt (1997) proposes an extended model

that calculates the perceptual root of a chord from its pitch classes, voicing, and
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the prevailing tonality. Parncutt’s approach to chord perception is in line with the

suggestion in this chapter that chords are perceived at the surface level as single

integrated entities rather than sets of constituent atomic notes.

Identifying a set of co-sounding partials or notes as, for instance, a major, minor or

diminished chord involves additional culture-specific knowledge that is acquired via

exposure to a certain idiom. “Chord recognition is the result of a successful memory

search in which a tone series is recognized as a pattern stored in long-term memory”

(Povel and Jansen, 2001, p. 185). Template-matching models (Parncutt, 1994) are

integrated in cognitive mechanisms of musical listening and are responsible for the

extraction of musically pertinent entities from sound at the surface level (the musical

surface is specific to a musical idiom in a similar way to that in which phonological

structure is language-specific). The above discussion supports the idea that chords

tend to be perceived at the surface level as single integrated entities, rather than

agglomerates of independent atomic notes.

The reduction of the sound continuum into more abstract (symbolic) entities such

as notes, chords, trills, and so on, may be attributed to general human cognitive

mechanisms that aim to reduce sensory information into smaller more manageable

discrete quantities (categorical perception). What are the grounding principles that

enable this reduction? More specifically, what are the principles that allow the

integration/segregation of distinct harmonics/tones into single entities or coherent

‘wholes’? The basic perceptual mechanisms that enable the breaking down of the

acoustic signal into more manageable units and successions of units (streams) have

been investigated extensively in the field of auditory scene analysis (Bregman, 1994).

These principles can be applied or adapted to account for musical practices of voice

separation/integration and voice leading (Huron, 2001). For instance, principles such

as tonal fusion, onset synchrony and pitch co-modulation (Huron, 2001) may play

an important role in the fusion of co-sounding entities into larger percepts such as

chords (e.g., greatest fusion in parallel motion of octave-related tones).

In recent years, a number of voice separation algorithms have emerged; these

algorithms mostly attempt to separate polyphonic unstructured note complexes into a

number of monophonic voices (see, e.g., Jordanous, 2008, and Chap. 6, this volume).

Cambouropoulos (2008) adopts a different approach in which multi-note sonorities

are allowed within individual ‘voices’. Allowing both horizontal and vertical integra-

tion allows the algorithm to perform well not only in polyphonic music that has a

fixed number of ‘monophonic’ lines, but in the general case where both polyphonic

and homophonic elements are mixed together. In this sense, the musical surface is

considered as consisting of both simple notes organized in melodic streams, and

chords organized in chordal streams (such streams may appear independently, or in

parallel, or may overlap).

A common underlying assumption in much cognitive and computational mod-

elling of musical understanding is that musical structural processing starts at the

musical surface and proceeds towards higher structural levels, such as metre, rhythmic

patterns, melodic motives, harmonic structure and so on. Lerdahl and Jackendoff’s

(1983) influential theory is grounded on this assumption:
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The musical surface, basically a sequence of notes, is only the first stage of musical cognition.
Beyond the musical surface, structure is built out of the confluence of two independent
hierarchical dimensions of organization: rhythm and pitch.

(Jackendoff and Lerdahl, 2006, p. 37)

It is often an underlying assumption in computational research that from audio the

score may be extracted and then higher-level processing is possible.

However, as Cemgil et al. (2006) have pointed out,

one of the hard problems in musical scene analysis is automatic music transcription, that is,
the extraction of a human readable and interpretable description from a recording of a music
performance.

Indeed, research in automated music transcription has shown that a purely bottom-up

approach (from audio to score) is not possible; higher-level music processing is

necessary to assist basic multi-pitch and onset extraction techniques so as to reach

acceptable transcription results. Ryynänen and Klapuri (2008, p. 73) have observed

that

nowadays the concept of automatic music transcription includes several topics such as
multipitch analysis, beat tracking and rhythm analysis, transcription of percussive instruments,
instrument recognition, harmonic analysis and chord transcription, and music structure
analysis.

Some of the ‘higher level’ musical processes that are necessary for transcription are

addressed by Cambouropoulos (2010). It is suggested, not only that higher-level

processing influences the formation of the musical surface, but that some processes

that are considered ‘higher-level’ are actually necessary for the formation of the

surface per se, which means, essentially, that they are at or below the musical surface.

It is maintained that, for instance, beat structure, chord simultaneities and voice

separation are internal ‘primitive’ processes of the musical surface, that are necessary

for the surface to emerge.

For the sake of simplicity, in this chapter, we deal solely with purely symbolic,

isorhythmic, homophonic textures (i.e., sequences of chords without secondary em-

bellishment notes). Harmonic reduction (i.e., the abstraction of main chord notes

from a musical work) is anything but a trivial task. Reduction relies not only on

rhythm, metric position and melodic qualities (e.g., passing or neighbour notes), but

also on harmony per se. That is, harmonic knowledge is paramount in establishing

which notes are secondary and can be omitted. For instance, access to previously

learned harmonic context in a given idiom (chord patterns) may assist the selection

of appropriate chords that give rise to acceptable chord progressions (Mauch et al.,

2010). The representation schemes presented in the following sections (especially the

GCT) can be extended in the future so as to facilitate the recognition of harmonies in

an unreduced collection of notes or unreduced stream of sounds (this is beyond the

scope of the current chapter).

Researchers that work on symbolic music data (e.g., quantized MIDI or encodings

of scores) commonly assume that the formation of the musical surface (i.e., the

notes) from audio requires a potentially large amount of processing; once, however,
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the surface is formed, the road to higher-level processing (such as beat tracking,

metre induction, chord analysis, pattern extraction, and so on) is open. On the other

hand, researchers that work on music audio often leave aside the whole question

of musical surface and attempt to extract high-level information (e.g., harmonic

patterns, structural segmentation, music similarity, cover song identification) directly

from audio. We suggest that the whole discussion on the musical surface, apart from

being of theoretical interest, may make researchers more aware of the need to think

more carefully when deciding which primitive starting representation to use for their

systems (audio, expressive or quantized MIDI, pitch classes, notes, chords, etc.); how

much processing is already implicitly ‘embodied’ in this primitive representation;

and what kind of information can be extracted ‘naturally’ from the selected starting

representation.

Computational systems developed for harmonic analysis and/or harmonic gen-

eration (e.g., melodic harmonization), rely on chord labelling that is relevant and

characteristic of particular idioms. There exist different typologies for encoding note

simultaneities that embody different levels of harmonic information/abstraction and

cover different harmonic idioms. For instance, for tonal musics, chord notations such

as the following are commonly used: figured bass (pitch classes denoted above a bass

note—no concept of ‘chord’); popular music guitar-style notation or jazz notation (ab-

solute chord); and Roman numeral encoding (chord function relative to a key) (Laitz,

2012). For atonal and other non-tonal systems, pc-set theoretic encodings (Forte,

1973) may be employed.

For computational models of tonal music, Harte et al.’s (2005) representation

provides a systematic, context-independent syntax for representing chord symbols

which can easily be written and understood by musicians, and, at the same time, is

simple and unambiguous to parse with computer programs. This chord representation

is very useful for manually annotating tonal music—mostly genres such as pop, rock

and jazz that use guitar-style notation. However, it cannot be automatically extracted

from chord reductions and is not designed to be used in non-tonal musics.

Two question are raised and addressed in the remainder of this chapter. First,

is it possible to devise a ‘universal’ chord representation that captures features of

hierarchic pitch systems and adapts to different harmonic idioms? Is it possible to

determine a mechanism that, given some fundamental idiom features, such as pitch

hierarchy and consonance/dissonance classification, can automatically abstract chord

types and encode pitch simultaneities in a pertinent manner for the idiom at hand?

A second question regards chord transitions: is a relative pitch encoding of chords

possible such that chord transitions (i.e., intervallic content) are captured without

recourse to constituent chords? The first question will be addressed in the next section,

the second in Sect. 2.4.

It should be noted that the representations and processes reported in the following

sections do not explicitly deal with the issue of harmonic surface, but rather with

two relatively simple schemes of chord encoding that capture different aspects of the

harmonic surface. No explicit cognitive claims are made; however, it is suggested

that these representations may capture some properties of chords that are cognitively

relevant and are potentially linked to the notion of the harmonic surface. The main
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objective of the proposed representations is to provide appropriate, general encodings

of aspects of the harmonic surface that may be useful in various computational music-

analytic tasks, such as harmonic analysis, chord sequence similarity, and harmonic

recognition. Hopefully, the proposed representations may be incorporated in more

sophisticated music surface extraction and processing schemes, providing a useful

step that links the sub-symbolic domain with higher-level musical structure.

2.3 The General Chord Type (GCT) Representation

Harmonic analysis focuses on describing the harmonic content of pitch collections

and patterns within a given music context in terms of harmonic labels, classes,

functions and so on. Harmonic analysis is a rather complex musical task that involves

not only finding roots and labelling chords within a key, but also segmentation (points

of chord change), identification of non-chord notes, metric information and other

aspects of musical context (Temperley, 2001a, 2012). In this section, we focus on

the core problem of labelling chords within a given pitch hierarchy (e.g., key). We

assume, for simplicity, that a full harmonic reduction, identifying the main harmonic

notes, is available as input to the model along with key and modulation annotations.

In trying to tackle issues of tonal hierarchy, a novel representation of chord types

is proposed that is appropriate for encoding tone simultaneities (or more generally

pitch sets) in any harmonic context (whether it be tonal, modal, jazz, octatonic or even

atonal). The General Chord Type (GCT) representation, allows the rearrangement

of the notes of a harmonic simultaneity such that abstract, idiom-specific types of

chords may be derived; this encoding is inspired by the standard Roman numeral

chord type labelling, but is more general and flexible. Given a consonance/dissonance

classification of intervals (that reflects sensory and/or culturally-dependent notions of

consonance and dissonance), and a scale, the GCT algorithm finds the maximal subset

of notes of a given note simultaneity that contains only consonant intervals; this

maximal subset forms the base upon which the chord type is built. The lowest note

of the base is the root of the chord. The proposed chord type representation, takes as

its starting point the common-practice tonal chord representation (for a tonal context,

it is equivalent to the standard Roman-numeral harmonic encoding), but is more

general as it can be applied to other non-standard tonal systems such as modal and

even atonal harmony. This representation is based on notions drawn primarily from

the domain of psychoacoustics and music cognition (such as octave equivalence, root,

relative root, consonance, parsimony), and, at the same time, ‘adjusts’ to different

culture-specific contexts of scales, tonal hierarchies and rankings of consonance and

dissonance. Cambouropoulos et al. (2014) provide a more extended discussion on

the background concepts underlying the GCT model.

At the heart of the GCT representation is the idea that the base of a note simul-

taneity should be ‘consonant’ (within some particular musical idiom). The GCT

algorithm tries to find a maximal subset that is consonant; the rest of the notes that

create dissonant intervals to one or more notes of the chord base form the chord



38 Emilios Cambouropoulos

extension. The GCT representation has common characteristics with the stack-of-

thirds and the virtual pitch root-finding methods for tonal music, but has differences

as well (see Cambouropoulos et al., 2014). Moreover, the user can define which

intervals are considered consonant; thus giving rise to different encodings. As will be

shown in the following subsections, the GCT representation naturally encapsulates

the structure of tonal chords and, at the same time, is very flexible and can readily be

adapted to different harmonic systems.

2.3.1 Description of the GCT Algorithm

Given a classification of intervals into the categories consonant and dissonant (i.e.,

binary values) and an appropriate scale background (i.e., scale with tonic), the GCT

algorithm computes, for a given multi-tone simultaneity, the ‘optimal’ ordering of

pitches such that a maximal subset of consonant intervals appears at the base of the

ordering (left-hand side) in the most compact form. Since a tonal centre (key) is

given, the position within the given scale is automatically calculated.

The input to the algorithm is the following:

Consonance vector The user defines which intervals are consonant/dissonant.

A 12-dimensional vector is employed in which each value

corresponds to a pitch interval from 0 to 11 (in the cur-

rent version of the algorithm, Boolean values are used

(i.e., consonant=1, dissonant=0).1 For instance, the vector

[1,0,0,1,1,1,0,1,1,1,0,0] means that the unison, minor

and major third, perfect fourth and fifth, minor and major

sixth intervals are consonant; dissonant intervals are the

seconds, sevenths and the tritone; this specific vector is re-

ferred to in this text as the ‘common-practice’ or ‘tonal

consonance’ vector.

Pitch Scale Hierarchy The pitch hierarchy (if any) is given in the form of scale

tones and a tonic. For instance, a D major scale is given

as 2, [0,2,4,5,7,9,11] and an A minor pentatonic scale

as 9, [0,3,5,7,10]. Other more sophisticated encodings of

1 The current version of the GCT algorithm requires a symmetric consonance vector for complemen-
tary intervals; for instance, if interval 2 is dissonant so is interval 10 (i.e., major second and minor
seventh are both dissonant). This means, essentially, that the vector can be shortened to correspond
to intervals from 0 (unison) to 6 (tritone). However, in principle, one may adjust the algorithm so as
to allow different consonance values for complementary intervals (e.g., major seventh less dissonant
than minor second). For this reason, the full 12-interval vector is retained. Additionally, non-binary
consonance/dissonance values may be used, allowing for a more refined consonance vector. Instead
of filling in the consonance vector with 0s and 1s, it can be filled with fractional values that reflect
degrees of consonance derived from perceptual experiments (see, e.g., Hutchinson and Knopoff,
1978) or values that reflect culturally-specific preferences. Such values may improve the algorithm’s
performance and resolve some ambiguities in certain cases.



2 The Harmonic Musical Surface and Two Chord Representation Schemes 39

pitch hierarchies are possible, but this simple encoding suf-

fices for the purposes of this study.

Input chord A list of pitch classes (MIDI pitch numbers modulo 12).

The GCT algorithm, shown in Fig. 2.1, encodes most chord types ‘correctly’ in

the standard tonal system. For instance, the note simultaneity [C,D,F�,A] or [0,2,6,9]
in a G major key is interpreted as [7, [0,4,7,10]], i.e., as a dominant seventh chord.

Figure 2.2 shows an example of how the GCT algorithm labels a chord.

The algorithm successfully labels most tonal chords (see Sect. 2.3.2 and Cam-

bouropoulos et al., 2014 for examples). However, it is undecided in some cases, and

even makes ‘mistakes’ in other cases. In most instances of multiple encodings, it

is suggested that these ideally should be resolved by taking into account other har-

monic factors (e.g., bass line, harmonic functions, tonal context, etc.). For instance,

the algorithm gives two possible encodings for a [0,2,5,9] pc-set, namely minor

seventh chord or major chord with added sixth (i.e., [2, [0,3,7,10]] and [5, [0,4,7,9]],
respectively); such ambiguity may be resolved if tonal context is taken into account.

For the [0,3,4,7] pc-set with root 0, the algorithm produces two answers: a major

chord with extension [0, [0,4,7,15]] and a minor chord with extension [0, [0,3,7,16]].
This ambiguity may be resolved if key context is taken into account. For instance,

[0,4,7,15] would be selected in a C major or G major context and [0,3,7,16] in a C

minor or F minor context. Symmetric chords, such as the augmented chord or the

diminished seventh chord, are inherently ambiguous; the algorithm suggests multiple

encodings which can be resolved only by taking into account the broader harmonic

Algorithm 1 GCT algorithm (core)

Input: (i) the pitch scale (tonality), (ii) a vector of the intervals considered consonant,

(iii) the pitch class set (pc–set) of a note simultaneity

Output: The roots and types of the possible chords describing the simultaneity

1: find all maximal subsets of pairwise consonant tones

2: select maximal subsets of maximum length

3: for all selected maximal subsets do
4: order the pitch classes of each maximal subset in the most compact form

(chord ‘base’)

5: add remaining pcs (‘extensions’) above highest element of chord base (add

octave, if needed)

6: the lowest tone of the chord is the ‘root’

7: transpose the tones of the chord so that the lowest becomes 0

8: find position of the ‘root’ with respect to the given tonal centre (pitch scale)

9: end for

Fig. 2.1 The GCT algorithm
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Input: G major scale: [7, [0,2,4,5,7,9,11]]
Input: Consonance vector: [1,0,0,1,1,1,0,1,1,1,0,0]

– Input [50,60,66,69,74]

– Input converted to pc-set: [0,2,6,9]
– Maximal consonant subset: [2,6,9]
– Rewrite in narrowest range: [2,6,9]
– Dissonant tone 0 goes to the end (i.e., by adding an octave): [2,6,9,12]
– Lowest tone is root, i.e., 2 (note D)

– Chord in root position: [2, [0,4,7,10]] (i.e., major chord with minor seventh)

– Relative position in key: root is 7 semitones above the tonic G

– Chord in relative position: [7, [0,4,7,10]]
– No other maximal subset exists.

Output: [7, [0,4,7,10]] (i.e., dominant seventh chord)

Fig. 2.2 GCT chord labelling example

context (primarily the next chord). A half-diminished seventh chord [0,3,6,10], is

incorrectly encoded as [0,3,7,9], i.e., minor chord with added 6th, since the base

chord of the half-diminished chord is a diminished fifth interval (i.e., tritone) which

is dissonant and should be avoided. A preliminary evaluation of the GCT algorithm

was also carried out on the Kostka–Payne dataset (see Sect. 2.3.2).

Since the aim of this algorithm is not to perform sophisticated harmonic analysis,

but rather to find a practical and efficient encoding for tone simultaneities (to be

used, for instance, in creative, computer-assisted, harmonic generation that employs

combination of harmonic components from diverse idioms—see Sect. 2.3.2), we

decided to extend the algorithm by adding the additional steps shown in Fig. 2.3, so

that it outputs in every case a single chord type for each simultaneity (no ambiguity).

The additional steps select chord type [2, [0,3,7,10]] over [5, [0,4,7,9]] for the

[0,2,5,9] pc-set (see above), as this encoding has maximal overlapping between the

two maximal subsets. The maximal overlapping step of the GCT algorithm, in the

case of the ‘standard’ tonal consonance vector, amounts to a preference for the ‘stack

of thirds’ principle of common tonal chord labelling. The second additional step (if

the first step gives more than one option) prefers a chord encoding where non-scale

notes are at the end (this rule is not robust and requires further examination). The

last step for finding a unique solution is just a simple temporary fix; ideally, the GCT

algorithm should be extended to include other factors such as bass note, next chord

and, more generally, harmonic context to resolve ambiguity.

2.3.2 Examples of Harmonic Analysis with GCT

An example harmonic analysis of a Bach Chorale phrase illustrates the proposed

GCT chord representation (Fig. 2.4). For a tonal context, chord types are optimized
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Algorithm 2 GCT Algorithm (additional steps)—for unique encoding

1: if more than one maximal subset then
2: Overlapping of maximal subsets: create a sequence of maximal subsets by

ordering them so as to have maximal overlapping between them and keep the

maximal subset that appears first in the sequence as base of the chord.

3: Avoid non-scale notes in the base: if more than one merged sequence, prefer

maximal subset at the base that contains only pcs that appear in the given scale

(tonal context).

4: If the above do not give a unique solution, choose the consonant maximal

subset that was calculated first as base.

5: end if
Additional adjustment: for dyads, in a tonal context, prefer perfect fifth over

perfect fourth, and prefer seventh to second intervals.

Fig. 2.3 The GCT algorithm: additional steps to generate unique encodings

such that pcs at the left-hand side of chords contain only consonant intervals (i.e.,

thirds and sixths, and perfect fourth and fifths). For instance, the dominant 7th chord

is written as [0,4,7,10] since set [0,4,7] contains only consonant intervals whereas

10, which introduces dissonances, is placed on the right-hand side—this way the

relationship between major chords and dominant seventh chords remains rather

transparent and is easily detectable (Kaliakatsos-Papakostas et al., 2015). Within the

given D major key context, it is simple to determine the position of a chord type with

respect to the tonic. For example, [7, [0,4,7,10]] means a dominant seventh chord

whose root is 7 semitones above the tonic. This way we have an encoding that is

analogous to the standard Roman numeral encoding (Fig. 2.4, top row). If the tonal

context is changed, and we have a chromatic scale context (arbitrary ‘tonic’ is 0, i.e.,

note C) and we consider all intervals equally ‘consonant’, we get the second GCT

analysis in Fig. 2.4, which amounts to normal orders (not prime forms) in a standard

pc-set analysis. For tonal music, this pc-set-like analysis is weak as it misses out

or obscures important tonal hierarchical relationships. Note that relative ‘roots’ to

the ‘tonic’ 0 are preserved as they can be used in harmonic generation tasks (see

comment on transposition values in the Messiaen example in Fig. 2.7 below).

Three further examples are presented below that illustrate the application of

the GCT algorithm on diverse harmonic textures. The first example (Fig. 2.5) is

taken from Beethoven’s Andante Favori. In this example, GCT encodes classical

harmony in a straightforward manner. All instances of the tonic chord are tagged

as 0, [0,4,7]; the dominant seventh (inverted or not) is 7, [0,4,7,10] and it appears

once without the fifth [7]; the third-from-last chord is a minor seventh on the second

degree encoded as 2, [0,3,7,10]; the second and fourth chords are Neapolitan chords
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Fig. 2.4 Chord analysis of a Bach chorale phrase by means of traditional Roman numeral analysis,
pc-sets and two versions of the GCT algorithm

encoded as 1, [0,4,7] (which means a major chord on the lowered second degree)

with a secondary dominant in between.

The second example, in an extended chromatic style, is from Richard Strauss’

Till Eulenspiegel. Piston (1978) provides a tentative partial analysis (Fig. 2.6). He

suggests that “any generalized appearance of tonality breaks down under the weight

of the rapid harmonic rhythm and distantly related harmonic functions” (p. 522). The

GCT algorithm was applied to this excerpt for the standard tonal consonance vector,

and for the key of F major (5, [0,2,4,5,7,9,11]). The algorithm assigns chord types

correctly to all chords (in agreement with Piston’s analysis) except for the seventh

chord, which is a symmetric diminished seventh, for which the algorithm selects the

wrong root. Additionally, the algorithm assigns chord types to all chords that have

been left unanalysed by Piston. Of course, excluding some chords is an integral part

of the analytic process (the analyst decides which chords are structurally important

and should be labelled); the algorithm is not sophisticated enough to make such

decisions. However, the chord types the GCT algorithm assigns to these chords are

not arbitrary and may be potentially useful for an automated harmonic reasoning

system.

In the third example, from a piece by Messiaen (Fig. 2.7), the second half of

the excerpt is a transposed repetition (lowered by three semitones) of the first half.

Fig. 2.5 Reduction of bars 189–198 of Beethoven’s Andante Favori. Top row: manual Roman
numeral harmonic analysis; bottom row: GCT analysis. GCT successfully encodes all chords,
including the Neapolitan sixth chord (the pedal G flat note in the third chord is omitted)
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Fig. 2.6 Bars 1–3 of R. Strauss’ Till Eulenspiegel. Partial harmonic analysis by W. Piston and chord
types determined by the GCT algorithm (condensed GCT encoding—without commas)

The GCT can be used to capture transposition-invariant matching, if the ‘roots’

of chords are replaced by intervals between ‘roots’. This way the representation

becomes transposition-invariant. In this instance, the interval pattern between ‘roots’

of the first and second parts is [+6,−3,+3,+3,−3] for the ‘tonal’ version, and

[−4,−3,+3,−2,−3] for the ‘atonal’ version. This is a reason for preserving the

‘roots’ (relative to an arbitrary reference pitch class: pc 0) in the atonal version.

In pitch class set theory, normal orders do not have ‘roots’; however, they have

transposition values (T0-T11) in relation to a reference pc (normally pc 0). The

normal orders with transposition values of pc-set theory are equivalent to the GCT

for the ‘atonal’ consonance vector.

We tested the GCT algorithm on the Kostka–Payne dataset (Temperley, 2001b).

This dataset consists of the 46 excerpts that are longer than 8 measures from the

workbook accompanying Kostka and Payne’s (1995) theory textbook. Given the local

tonality (key), the GCT algorithm was applied to all the Kostka–Payne excerpts. Then,

the resulting GCTs were compared to the Kostka–Payne ground truth (i.e., the Roman

numeral analysis not taking into account inversions). From the 919 chords of the

dataset, GCT encodes fully in compliance with the human analysis 846 chords, and

72 chords are labelled differently. This means that the algorithm labels correctly 92%

of all the chords. Twenty-three mislabelled chords were diminished seventh chords—

these symmetric chords can have as their root any of the four constituent notes;

twenty-two half-diminished chords [0,3,6,10] were labelled as minor chords with

added sixth [0,3,7,9]; seventeen cases had a salient note missing (e.g., diminished

chord without root, dominant seventh without third, half-diminished seventh without

Fig. 2.7 Reduction of the first six bars of O. Messiaen’s Quartet for the End of Time, Quartet VII.
The piece is based on the octatonic scale: [0,1,3,4,6,7,9,10]. Top row: GCT encoding for standard
common-practice consonance vector; bottom row: GCT encoding for atonal harmony—all intervals
‘consonant’ (this amounts to pc-set ‘normal orders’). See text for further details
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third) and this resulted in finding a wrong root; eight chords were misspelled because

they appeared over a pedal note (the pedal note was included in the chord); two

sus4 chords [0,5,7] were written incorrectly as [0,5,10] (e.g., [C,F,G] contains the

dissonant interval [F,G] and is erroneously re-ordered as [G,C,F]).

In the context of tonal music, for the standard tonal consonance vector, the GCT

algorithm makes primarily the following types of mistake: first, it is undecided

with regard to the root of symmetric chords such as diminished seventh chords and

augmented triads; second, it assigns the wrong root to chords that have ‘dissonant’

intervals at their base, such as diminished fifths in half-diminished chords or major

second in sus4 chords; and, finally, tertian chords that have notes missing from their

base (e.g., missing third in seventh chords) are misinterpreted as their upper denser

part is taken as the chord’s base and the lower root as an extension.

In order to correct such cases, a more sophisticated model for harmonic analysis is

required. Such a model should take into account voicing (e.g., the bass note), chord

functions (see Kaliakatsos-Papakostas et al.’s (2015) proposal for organizing GCTs

into functional tonal categories), and, even, higher-level domain-specific harmonic

knowledge (e.g., specific types of chords used in particular idioms). However, the

aim of the current proposal is not a tool for tonal analysis, but a general chord

representation that can be applied to different harmonic systems (including the tonal

system).

The GCT algorithm captures reasonably well the common-practice Roman-nu-

meral harmonic analysis encoding scheme (for the ‘standard’ consonance vector).

Additionally, it adapts to non-tonal systems, such as atonal, octatonic or traditional

polyphonic music. The question is whether the GCT representation works well on

such non-tonal systems. The GCT representation has been employed in the case

of traditional polyphonic music from Epirus (Kaliakatsos-Papakostas et al., 2014).

In this study, song transcriptions were first converted to the GCT encoding, then a

learning HMM scheme was employed to learn chord transitions and, finally, this

knowledge was used to create new harmonizations in the polyphonic style of Epirus.

Ongoing research is currently studying the application of GCT to various harmonic

idioms, from mediaeval music to 20th century music, and various pop and folk

traditions.

What might such ‘universal’ harmonic encoding systems be useful for? Apart

from music-theoretic interest and cognitive considerations and implications, a general

chord encoding representation may allow generic harmonic systems to be developed

that may be adapted to diverse harmonic idioms, rather than designing ad hoc systems

for individual harmonic spaces. This was the primary aim for devising the General

Chord Type (GCT) representation. In the case of the project COINVENT (Schor-

lemmer et al., 2014) a creative melodic harmonization system is required that relies

on conceptual blending between diverse harmonic spaces in order to generate novel

harmonic constructions; mapping between such different spaces is facilitated when

the shared generic space is defined with clarity, its generic concepts are expressed in

a general and idiom-independent manner, and a common general representation is

available (Kaliakatsos-Papakostas and Cambouropoulos, 2014).
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Overall, the GCT representation and algorithm are an attempt to create a flexible

and adaptable representation, capable of encoding different harmonic idioms. Clearly,

the algorithm can be extended and improved in different ways, depending on the task

at hand. Using it, for instance, for learning chord transition probabilities from different

corpora, unambiguous results are handy (each chord receiving a unique encoding).

On the other hand, if one wants to study human harmonic analysis or perception, it

may be useful to retain ambiguity and compare results with human empirical data.

The GCT representation attempts to capture commonly used properties of chords

(root, basic type, extension) in diverse styles (giving, however, a privileged vantage

point to hierarchic tonal systems). Various refinements of the algorithm are possible

depending on the context of the particular music-analytic or creative task to which it

is being applied.

2.4 Pitch Class Chord Transition Representation

Is it possible to devise a chord sequence representation that ‘captures’ the intervallic

content of chord transitions in a transposition-invariant and idiom-independent way

without recourse to the concept of a chord? Is it possible to define a harmonic

equivalent to the idiom-independent transposition-invariant ‘pitch interval’? In this

section a proposal is made for a chord transition representation that encodes chord

transitions independently of the absolute pitches of actual chords, or any other

representation of the notion of a chord.

Chords are usually represented either as collections of pitch-related values (e.g.,

note names, MIDI pitch numbers, pitch class sets, chroma vectors, etc.) or as chord

root transitions within a given tonality following traditional harmonic analysis (e.g.,

Roman numeral analysis, guitar chords, etc.). In the case of an absolute pitch rep-

resentation (such as chroma vectors, i.e., pitch class profiles) transpositions are not

accounted for (e.g., twelve transpositions of a given query are necessary to find

all possible occurrences of the query in a dataset). On the other hand, if harmonic

analytic models are used to derive harmonic descriptions of pieces (e.g., chords as

degrees within keys or tonal functions), more sophisticated processing is possible;

in this case, however, models rely on complicated harmonic analytic systems, and,

additionally, are limited to the tonal idiom.

One obvious way to represent chord sequences in a transposition-invariant and

idiom-independent way is to encode chord transitions as intervals between the first

pitch classes in the prime forms of the transpositional equivalence classes of the pitch

class sets of two chords (e.g., for transition C–F: [5, [0,4,7], [0,4,7]]). This works

well but it relies on the conversion of chords into pitch class sets (prime forms)—that

is, it requires encoding the two chords in some abstract form which implies various

assumptions and processing steps (see discussion in Sect. 2.3.2 above, relating to

Fig. 2.7, for a GCT example in the same vein). Another possible way is to employ

voice-leading intervals following, for instance, Tymoczko’s (2011) pitch-class voice-

leading formalism. For example, for transition C–F, the voice-leading is represented
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by (C,E,G)
0,1,2−−→ (C,F,A). This representation relies on coupling the first chord

(i.e., the notion of chord is necessary) with voice-leading paths describing thus a

chord transition; this formalism gets more complicated when successive chords

do not contain the same number of notes, as this results in a non-bijective relation

between pitch sets. All of the above encoding schemes require encoding one or both

chords delimiting a chord transition. Is it possible to represent a chord transition

solely in terms of pitch intervals? The proposed DIC vector representation provides

one possible solution. This can be seen as a music-theoretic exercise per se, or as a

practical encoding scheme that may be useful for certain tasks.

Most computational models of harmonic processing rely on some representation of

individual chords. There are very few attempts, however, to represent chord transitions.

For instance, de Haas et al. (2008, 2013) represent chord transitions as chord distance

values, adapting a distance metric from Lerdahl’s tonal pitch space (Lerdahl, 2001).

This representation is geared towards the tonal system; additionally, a chord transition

being represented by a single distance value may capture certain important properties

of the transition but may abstract out other important information.

2.4.1 The Directed Interval Class (DIC) Vector Representation

A proposal for representing chord transitions in an idiom-independent manner is pre-

sented in this section. A harmonic transition between two chords can be represented

by a Directed Interval Class (DIC) vector (Cambouropoulos, 2012; Cambouropoulos

et al., 2013). This representation allows the encoding of chord transitions at a level

higher than individual notes that is transposition-invariant and idiom-independent

(analogous to pitch intervals that represent transitions between notes).

The proposed 12-dimensional vector is an adaptation of Lewin’s (1959) interval

function (see also Lewin, 2001, 2007). Lewin’s function encodes the frequencies of

occurrence of the pitch intervals (from 0 to 11) that occur between the notes in one

pitch class set and the notes in another. In the current proposal, Lewin’s function

is modified such that the proposed vector encodes all pitch intervals (from 0 to 6

including +/− for direction; 0 and 6 are always positive) between all the pairs of

notes of two successive chords. The DIC vector is equivalent to Lewin’s interval

function; it is simply a re-ordering of Lewin’s intervals using directed pitch interval

classes. The proposed representation attempts to capture the fact that voice-leading

practice involves mostly small intervals (e.g., unison, step-wise motion) connecting

notes from one chord to another (cf. Tymoczko’s (2011) pitch-class voice leading).

From the left-hand side to the right of the proposed interval vector, we move from

unison to small (up or down) intervals up to the tritone. The DIC vector simply makes

the ‘voice leading’ character of a chord transition more apparent. As will be proposed

toward the end of this section, it may be possible to shorten the proposed vector by

keeping only the smaller intervals at the left-hand side of the vector without losing

its expressivity.
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The 12-dimensional DIC vector features the following directed interval classes

in its twelve positions: 0 (unison), +1, −1, +2, −2, +3, −3, +4, −4, +5, −5, 6

(tritone). The reason for opting for this ordering is that the absolute size of intervals

increases from left to right, and this places small intervals, that are thought to be

most strongly connected with voice-leading, at the ‘privileged’ beginning of the

vector. The proposed vector encodes the frequency of occurrence of all directional

interval classes between all the pairs of notes of two successive chords. That is, from

each note of the first chord, all intervals to all the notes of the second chord are

calculated. Direction of intervals is preserved (+, −), except for the unison (0) and

the tritone (6) that are undirected. Interval size takes values from 0 to 6 (interval

class). If an interval X is greater than 6, then its complement 12−X in the opposite

direction is retained (e.g., ascending minor seventh ‘+10’ is replaced by its equivalent

complement descending major second ‘−2’).

As an example, the transition vector for the progression I–V is given by the DIC

vector: Q = < 1,0,1,1,1,1,0,1,0,0,3,0 > (which means: 1 unison, 0 ascending

minor seconds, 1 descending minor second, 1 ascending major second, etc.)—see

Fig. 2.8, and further examples in Fig. 2.9.

Fig. 2.8 The DIC vector, < 1,0,1,1,1,1,0,1,0,0,3,0 >, for the chord transition I–V, depicted as a
bar graph

Fig. 2.9 DIC vectors for four standard tonal chord transitions: V–I, IV–V, ii–V, I–V7
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For a given harmonic (e.g., tonal) context, the DIC vector is unique for many chord

transitions. However, there are a number of cases where different tonal transitions

have the same vector. For instance, the transitions I–V and IV–I share the same

DIC vector as their directed interval content is the same; it should be noted, that,

heard in isolation (without a tonal centre reference), a human listener cannot tell the

difference between these two transitions. Another case is when one of the two chords

is symmetric (e.g., an augmented triad or diminished seventh chord); this is actually

an interesting case that agrees with music theory and intuition in the sense that, say,

diminished seventh chords are considered ambiguous and can resolve to different

chords leading to different tonal regions or keys.

In addition to the above cases of ambiguity (that are musically meaningful), the

DIC vector encodes identically a chord transition and its retrograde inversion, i.e.,

any specific chord transition has the same DIC vector as its retrograde inversion. For

instance, the retrograde inversion of a major triad progressing to a major triad by an

interval X is a minor triad progressing to a minor triad by the same interval X ; these

two transitions share the same DIC vector. This is an inherent property of the DIC

vector which reduces its descriptive power, and may have serious ramifications for

certain tasks (see below).

Cambouropoulos et al. (2013) evaluated the proposed DIC representation on

a harmonic recognition task, in which the accuracy of recognition of harmonic

queries was tested in a small database of chord sequences (harmonic reductions)

derived from diverse musical idioms and styles. More specifically, standard chord

progressions were included from Bach chorales, along with harmonic progressions

from modal Greek rebetiko songs, polyphonic songs from Epirus, Beatles songs

and non-tonal pieces by Béla Bartók, Olivier Messiaen, Claude Debussy, and Erik

Satie (31 chord reductions of pieces, collectively containing 957 chords in all).

Both the query sequence and the chord progressions in the dataset were converted

to DIC vectors and exact matching for recognition was employed (approximate

matching was also considered using wildcards—see below). The results obtained

with the algorithm were judged by human music analysis experts. For this small

dataset, relatively longer sequences consisting of four or more chords were uniquely

identified in the correct positions in the pieces where they originated. For instance,

we examined exhaustively queries drawn from J. S. Bach’s chorale, “Ein feste Burg

ist unser Gott” (BWV 302), consisting of three or four chords; the longest sequence

found in at least one other piece was a 4-chord sequence (the first four chords

identified in position 26 of Strawberry Fields by The Beatles). Obviously, if the

dataset is significantly extended we expect to find more occurrences of relatively

longer harmonic queries. Many examples of harmonic queries and matches are

reported and discussed by Cambouropoulos et al. (2013).

Overall, the harmonic recognition model behaves as expected, and has sufficient

distinctive power to discern the harmonic individualities of these different harmonic

languages. Almost all of the harmonic queries were correctly detected (see one

problem below) and all queries containing at least three chords were identified without

mistakes. Apparently the model is capable of finding repeating harmonic patterns

even though pieces are in different keys (transposition invariance). Additionally,
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recall that the system has no knowledge of the different kinds of harmonic systems

(tonal, modal, chromatic, atonal, etc.), and it is therefore interesting that it detects

correctly any kind of harmonic query in diverse harmonic idioms.

Interestingly, the harmonic recognition model is equally successful and accurate

when only the first five vector components are used. We tested all the above queries

using only the first five vector entries [0,1,−1,2,−2] (out of the 12) which corre-

spond to unison (i.e., common pitches between two chords) and steps (i.e., ascending

and descending semitones and tones); the resulting matches were the same in every

case. These small intervals may be thought of as being mostly related to voice-leading

as it is standard practice to try to connect chords avoiding larger intervals (using com-

mon notes and step movements). The reduction of the DIC vector to a 5-component

subvector, enhances the cognitive plausibility of the proposed representation. Even

though no cognitive claims are made in this chapter, we just mention that representing

the transition between two chords as the small intervals that link adjacent pitches

(being potentially part of individual harmonic voices) affords this representation

potential cognitive validity. Finally, a mathematical analysis of the redundancy con-

tained in the full DIC vector is needed; it is likely that, for example, for tertian chords,

the larger pitch intervals can be recovered from the smaller ones. Both cognitive and

mathematical properties of such a representation should be explored further in future

studies. In any case, this reduced vector results in better computational efficiency.

As mentioned above, a chord sequence shares a DIC vector with its retrograde

inversion. In the case of harmonic matching, this is not a serious problem if the

sequences sought are relatively long (say, at least 3 chords). The reason is that the

additional context of neighbouring chords often disambiguates the overall sequence.

For instance, a query of two major chords an ascending fourth apart returns one

hundred instances in our small dataset, some of which erroneously consist of two

minor chords an ascending fourth apart; if, however, our query is preceded by a

major chord one tone lower than the first chord, then we find only 12 instances of

the sequence (corresponding to IV–V–I). In another example, the transition between

two major chords an ascending tone apart returned 23 instances that correspond

most likely to a IV–V chord progression (even though it may correspond to a ii–iii

transition between minor chords). If the first chord is preceded by a diminished chord

a semitone lower, then the whole sequence of three chords is found only once (in

chorale BWV 302—the sequence is vii◦–I–V/V). The specific context restrains the

search drastically. Longer sequences are more unambiguous.

Finally, an important issue not explored sufficiently in this study is chord pro-

gression similarity, i.e., how similar two chord sequences are. As it stands, a IV–I

transition and a V7–I transition are different (not matched) because their DIC vectors

are not identical. Similarly, a V–I transition is not matched to another V–I transition

if a note is missing such as the fifth of the first or second chord. Such relations can

be captured if certain tolerances are allowed (approximate matching). For instance,

if all entries of one vector are smaller than the corresponding entries of the other

vector, and the sum of the differences is three or less, then sequences such as V–I

and V7–I would be matched. This is a kind of approximate matching where the

difference between individual DIC vector entries is less than or equal to δ and the
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sum of all differences less than γ (see Cambouropoulos et al. (2002) for another

study of (δ ,γ)-matching in music). The similarity relations between vectors is an

open issue for further research.

In the current implementation, wild cards can be inserted in order to allow a

certain tolerance in the matching. Disabling entries 6–12 in the vector, i.e., using

only the first five components, did not seem to make a difference as mentioned

earlier in this section. Trying out a more radical example, we queried the system

with the vector < 0,∗,∗,∗,∗,∗,∗,∗,∗,∗,∗,2 >; this means we are looking for a chord

succession that contains no common notes but in which there exist two distinct tritone

relations between different notes of the chords. The system returned 7 instances:

4 in the rebetiko songs; one in Michelle by The Beatles that corresponds to the

transition of major chord to minor chord a tone lower (or the reverse); one in Bartók’s

fourth Romanian Folk Dance that corresponds to the transition of minor chord 7th

to major chord a tone higher; and one in the first measures of Debussy’s Nuages
that corresponds to the transition of a perfect fourth harmonic interval to a perfect

fifth a semitone lower. Such experiments allow the investigation of broader similarity

relations.

Cambouropoulos (2012) attempted to test the effectiveness of the DIC vector

representation in a harmonic progression similarity task. The main assumption there

was that, if this representation encodes aspects of the harmonic content of chord

progressions sufficiently well, then, given an appropriate distance metric, similarity

between different chord progressions can be calculated and chord progressions can

be clustered together in meaningful classes. We use the DIC vector representation

as a basis for calculating the distance between simple chord progressions in two

preliminary tests. In one case, we calculate the distances between 12 simple tonal

triadic progressions; whereas in the second case, we have 11 jazz progressions. For

this preliminary testing, we employed a very simple distance metric between the

DIC vector sequences, namely the city block distance. In this initial experiment

we employed phylogenetic trees (branching diagrams) to visualize the distance or

similarity relations between the given chord sequences.

In the first preliminary test, we constructed a set of twelve triadic tonal chord pro-

gressions, each consisting of four chords (Fig. 2.10). The twelve chord progressions

were constructed such that they were organized into three groups of four instances

each, corresponding to the following harmonic function progressions: T–S–D–T,

T–S–T–D, and S–T–D–T (T=tonic, S=subdominant, D=dominant). The simple simi-

larity method employed in this study resulted in a phylogenetic tree branching that

splits the twelve progressions into three groups that correspond with the expected har-

monic function progressions (Fig. 2.10). This very simple method manages to group

together successfully these chord progressions without any knowledge of tonality,

keys, chord roots, scales or any other sophisticated harmonic concepts. Even if we

transpose these progressions to various keys the proposed method would give exactly

the same result. The mere intervallic content of these progressions is sufficient for

finding similarities between them and organizing them into groups. It should be

noted, however, that, if in this example more extensive substitutions of chords are

introduced, the resulting tree is less successful, possibly because the distance metric
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Fig. 2.10 The triadic chord progressions are organized into a phylogenetic tree that illustrates their
similarities and grouping based on their DIC vector distances

is extremely elementary. The similarity relations between vectors is an open issue for

further research.

In a second preliminary test, we asked an experienced jazz piano performer to

write down some jazz chord progressions (same length) and, also, to let us know how

she thought they related to each other. The jazz pianist prepared eleven jazz chord

progressions, each consisting of 4 chords. As in the previous test, these were orga-

nized into an 11×11 distance matrix and, then, a phylogenetic tree was constructed

(Fig. 2.11). The jazz musician examined the resulting phylogenetic tree and gave the

following feedback:

I think it is very nice and I agree with the main parts. The point on which I would disagree is
placing 6 far away from 5, 7, 8; I would place them in [the] same class. Secondly, group 1, 3
is closer to 2 in my opinion; the rest of the tree is very convincing.
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The harmonic similarity between these jazz chord progressions seems to be captured

reasonably well, despite the simplicity of the proposed model and its total ignorance

of jazz harmony. This is encouraging; however, more systematic research is necessary

to improve the model and to test it more extensively (e.g., empirical data for the 11

progressions could be gathered from a larger number of jazz musicians).

One might argue that all the above harmonic recognition and classification tasks

can be modelled equally well by employing a simple pc-set-based representation (e.g.,

chord transitions as intervals between the first pitch classes of the transpositional pitch

class sets of two chords). This is true. Why, then, use the DIC vector representation

at all? First, the DIC vector is very simple to compute (easier than normal orders and

prime forms of pc-set theory). Second, it may allow more general distance metrics

to be developed for the calculation of distances between chord sequences. Third,

jazz_chords01

jazz_chords03

jazz_chords06

jazz_chords11

jazz_chords09

jazz_chords10

jazz_chords02

jazz_chords04

jazz_chords05

jazz_chords07
jazz_chords08

Fig. 2.11 The jazz chord progressions are organized into a phylogenetic tree that illustrates their
similarities and grouping based on their DIC vector distances. See text for more details
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it can be applied even in cases where it is not straightforward to compute prime

forms. For example, it is not straightforward to convert chroma vectors extracted

from audio into pitch class sets so that transitions between them may be represented

in a transposition-invariant manner; whereas successive chroma vectors can readily

be converted into weighted DIC vectors. Finally, the DIC vector (especially some

abbreviated form containing, for instance, only small intervals) may afford cognitive

relevance in the sense that, in some cases at least, listeners may abstract and categorize

directly intervallic content of chord progressions (instead of applying more advanced

processing that involves identifying pc-set classes and intervals between them).

Further research is necessary to substantiate such claims. Herein only preliminary

hints are given as to the potential of the proposed representation.

2.5 Conclusions

This chapter addresses issues of harmonic representation at the level of the musical

surface. It is argued that selecting an appropriate representation for chords is crucial

for encoding aspects of the musical surface that have perceptual pertinence, and at

the same time is paramount for building efficient and meaningful computational

models for music analysis. In the course of the chapter, two novel general chord

representations were presented and their potential was discussed. The first, the GCT

representation, generalizes the standard Roman-numeral representation in such a way

as to apply to any idiom; whereas the second, the DIC vector, captures the intervallic

content of a transition between two chords. The former is algorithmically more com-

plex but embodies more structured harmonic information (consonance/dissonance,

‘root’, chord type, position in scale) and is thus adequate for music analytic/synthetic

tasks in more sophisticated hierarchical musical idioms. It is suggested that both of

the proposed chord representations may be used for representing harmonic relations

in music from diverse musical idioms (i.e., they are not confined to tonal music) and,

therefore, may provide a most appropriate framework for harmonic processing in the

domain of computational musicology.
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Chapter 3
Topological Structures
in Computer-Aided Music Analysis

Louis Bigo and Moreno Andreatta

Abstract We propose a spatial approach to musical analysis based on the notion of a

chord complex. A chord complex is a labelled simplicial complex which represents a

set of chords. The dimension of the elements of the complex and their neighbourhood

relationships highlight the size of the chords and their intersections. Following a

well-established tradition in set-theoretical and neo-Riemannian music analysis,

we present the family of T/I complexes which represent classes of chords which

are transpositionally and inversionally equivalent and which relate to the notion of

Generalized Tonnetze. A musical piece is represented by a trajectory within a given

chord complex. We propose a method to compute the compactness of a trajectory

in any chord complex. Calculating the trajectory compactness of a piece in T/I
complexes provides valuable information for music analysis and classification. We

introduce different geometrical transformations on trajectories that correspond to

different musical transformations. Finally, we present HexaChord, a software package

dedicated to computer-aided music analysis with chord complexes, which implements

most of the concepts discussed in this chapter.
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Fig. 3.1 Three symbolic spaces dedicated to musical representations: the spiral array (left), the
Tonnetz (centre) and a voice leading space (right)

3.1 Introduction

This work concentrates on the harmonic aspect of musical sequences and introduces

a spatial approach for its analysis. Musical analysis often requires specific tools

when it focuses on a particular musical layer. For example, some theorists represent

musical objects and their harmonic properties by (or in) symbolic spaces. When used

in an analytic context, these spatial representations can reveal some strategies used

to compose a piece. The spiral array (Chew, 2002), the Tonnetz (Cohn, 1997) and

voice-leading spaces (Callender et al., 2008) are examples of such spaces. Among

their numerous properties, they are well adapted for determining key boundaries,

representing neo-Riemannian operations and voice-leading motions, respectively.

Such spaces typically represent pitches or chords by vertices in a graph.

The chord spaces presented in this study include elements of higher dimension than

vertices and edges. We represent n-note chords by geometrical objects of dimension

(n−1), called simplices. The faces of a simplex represent all sub-chords contained

in the chord. Chord sets are represented by simplicial complexes. The possibly high

dimension of a complex highlights specific neighbourhood relationships between

chords and allows the space to represent more advanced musical properties.

A strong motivation of this work is the general desire to represent a collection of

musical objects by a symbolic space governed by a set of neighbourhood relationships

that reflect how represented objects interact. This general idea is inspired by the MGS

project (Giavitto and Michel, 2001), which aims to provide tools for the modelling

and simulation of (not necessarily musical) dynamical systems exhibiting dynamical

structures.

Section 3.2 begins by briefly presenting the historical background of music repre-

sentations, including a discussion of Pousseur’s pioneering attempt to capture musical

logic with geometric representations. We then present the notions of T/I class and

Generalized Tonnetze. Section 3.3 introduces the notion of simplicial complex and

explains how this concept allows for any set of chords to be represented by a symbolic

space called a chord complex. This section finally introduces T/I complexes which

are chord complexes representing chords of a T/I class. Section 3.4 introduces the idea

of representing musical sequences as trajectories in chord complexes. We introduce
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the notion of the d-compactness of such a trajectory as a heuristic for selecting chord

complexes for analysis or classification. We finally present a method to transform

a musical sequence by applying some geometric transformations on its trajectory.

Chord complexes and trajectories have been implemented in the HexaChord music

analysis software, which is presented and discussed in Sect. 3.5.

3.2 Background in Musical Representations

We present two well-known notions in music theory: the Tonnetz and T/I classes.

The first is a spatial organization of pitches that constitutes a well-established analyt-

ical tool in the so-called neo-Riemannian music-theoretical tradition (Cohn, 2012;

Tymoczko, 2012). The second provides a classification of musical chords based on

their equivalence up to transposition and inversion. These two representation tools

constitute the musical starting point of this work.

3.2.1 The Tonnetz

One of the strongest motivations of this work is the wish to formalize a widely

used tool in music theory, analysis and composition: the Tonnetz. The Tonnetz is

a symbolic organization of pitches in the Euclidean space defined by infinite axes

associated with particular musical intervals. It was first investigated by Euler (1739)

for acoustical as well as graph-theoretical purposes1 and rediscovered later by the

musicologists A. von Oettingen and H. Riemann and by the composer and music-

theorist H. Pousseur. More recently, music theorists have shown a strong interest in

this model, in particular to represent typical post-romantic chord progressions (Cohn,

2012) currently called neo-Riemannian transformations. This model has also been

used in musical composition, not only in contemporary musical styles (Chouvel,

2009) but also in more popular styles (Bigo and Andreatta, 2014).

The neo-Riemannian Tonnetz (on the left in Fig. 3.2) is a graph in which pitches

are organized along the intervals of the perfect fifth (horizontal axis), major and

minor thirds (diagonal axes). This representation has the interesting property that

major and minor triads appear as triangles. Many theorists have investigated different

derivations of the Tonnetz, often referred to as generalized Tonnetze. For instance,

the three-dimensional Tonnetz introduced by Gollin (1998) is shown on the right in

Fig. 3.2. This model corresponds to the one on the left side of Fig. 3.2 with some

1 Euler’s Tonnetz (Speculum Musicum) organizes pitches in just intonation along horizontal and
vertical axes associated with the pure fifth and pure major third, respectively. Interestingly, the
kind of music-theoretical problems he suggested could be approached via his Speculum Musicum
deeply resonate with purely mathematical problems, such as the Königsberg Bridge Problem. This
fact supports the idea that not only does mathematics apply to music but, conversely, music often
anticipates some developments of mathematics (Andreatta, 2008).
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Fig. 3.2 On the left, a region of the neo-Riemannian Tonnetz. On the right, a three-dimensional
derivation of the Tonnetz by Gollin (1998)

additional interval axes. Tetrahedra represent dominant seventh and half-diminished

chords. Three-dimensional models are well adapted to the study of 4-note chord

progressions. Similar structures can be built by associating axes with intervals that

are diatonic instead of chromatic. In these diatonic Tonnetze, investigated by Cohn

(2012), vertices and shapes only represent notes and chords belonging to a unique

diatonic scale.

In this work, we limit ourselves to the context of equal temperament and octave

equivalence, i.e., we are dealing with pitch classes. For example, the pitches C�3, C�4
and D�4 are all members of the same pitch class. In particular, what we call Tonnetz
more exactly refers to the pitch-class Tonnetz. In this context, the graph on the left of

Fig. 3.2 repeats infinitely the 12 pitch classes along its axes. The pitch-class Tonnetz
is frequently represented as a toroidal structure by merging the nodes representing

the same pitch classes (Cohn, 1997).

Interestingly, this geometrical structure has also been rediscovered independently

from the neo-Riemannian music-analytical tradition by the composer and music

theorist H. Pousseur, one of the leading figures, with P. Boulez and K. Stockhausen,

of European integral Serialism. Although Pousseur’s model is much less well-known

and rarely cited in neo-Riemannian music analysis, it contains the roots of the spatial

approach that we present in this chapter. The point of departure of Pousseur’s network

theory is Rameau’s (1722) Traité de l’harmonie, in which the latter introduces a

bidimensional representation of the tone-space in just intonation as generated by the

pure fifths (horizontal axis) and pure major thirds (descending vertical axis). This

representation is equivalent to the Speculum Musicum which was introduced by Euler

a few years later. Pousseur first presented his Rameau-inspired geometrical model in

1968 (Pousseur, 1968), but he provides several analytical examples of what he calls

his “Network technique” in a more recent paper (Pousseur, 1998). In this analytical

essay he goes back to the definition of a Network as a spatial distribution of pitches

(and pitch classes) according to at least two axes which are characterized as a chain
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Fig. 3.3 The pitch network introduced by H. Pousseur in the late 1960s and accompanied by a
triangulation showing its equivalence to the traditional Tonnetz

of a single interval. It is easy to show that his pitch distribution is equivalent to

the traditional Tonnetz structure as generated by the fifths and minor thirds axes, as

shown in Fig. 3.3. As clearly pointed out by Pousseur, this geometrical representation

is one of the possible network configurations which can be utilized in music analysis.

The basic principle of the Network technique, as he claims, resides in choosing the

generating axes, and hence constructing the triangulations of the space, in such a

way that the musical relations between adjacent pitches (both harmonic and melodic)

produce the most compact configuration within the given space. This clearly suggests

that his Network technique is deeply rooted in a spatial approach to music analysis,

which we can properly formalize in terms of simplicial complexes as presented

in Sect. 3.3. Moreover, as Pousseur suggests, the music analyst can transform the

underlying geometrical space and move from a given network to a different one by

simply changing the generating axes, which modifies the hierarchy of intervallic

relations as well as the structural proximity between the pitches (or pitch classes).

The next two sections will show how to transform this original compositional and

music-theoretical intuition into a computational analytical model.
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3.2.2 Generalized Tonnetze and T/I Classes

The highlighting of particular chords (minor/major chords as triangles in the neo-

Riemannian Tonnetz and dominant seventh/half diminished chords as tetrahedra

in the three-dimensional Tonnetz) suggests the idea that the starting point of the

construction of a Tonnetz could be a set of chords rather than a set of interval axes. In

the two examples above, the represented chords in a Tonnetz are all transpositionally

and inversionally equivalent—that is, they belong to the same T/I class (Forte, 1973).

This property comes from the repetition and the invertibility of the intervals on the

axes.

It is common to identify a T/I class by the intervallic structure which is shared by

all the chords of the class. For instance, the 24 major and minor chords all share the

intervallic structure [3,4,5] because the row of intervals between the pitch classes

they are resulting from is composed of a minor third (3 semitones), a major third (4

semitones) and a fourth (5 semitones). This notation of the intervallic structure is

defined up to reflection and circular permutation. Intervals are ordered in the opposite

direction (up to a cyclic permutation) for major ([4,3,5]) and minor chords ([3,4,5]).
Intervallic structures can be diatonic as well. In this case, the intervals add up to

7 instead of 12. For example, the triads on the seven degrees of the diatonic scale

belong to the class identified by the intervallic structure [2,2,3]. Even though T/I

classes can be enumerated for any division of the octave (i.e., for any N), we focus in

this work on the diatonic (N = 7) and chromatic (N = 12) systems.2

There exist 224 such classes in the chromatic system, also known as Forte
classes (Forte, 1973). In the diatonic system, which divides the octave into seven

(non-equal) parts, there exist 18 such classes. Following this line, we are interested

in building the generalized Tonnetze associated with the 224 T/I chromatic classes

and 18 T/I diatonic classes.

3.3 Generalized Tonnetze as Chord Complexes

This section presents a method to represent any arbitrary set of chords by a multi-

dimensional structure called a chord complex. Figure 3.7 illustrates an example of

a chord complex representing a set of four chords. A chord complex is a simplicial
complex whose components, called simplices, are labelled by chords.3 In a chord com-

plex, the dimension of the simplices represents the size of the chords. Furthermore,

the intersections of the simplices represent the common pitch classes of the chords.

Chord complexes representing the chords of a T/I class are called T/I complexes and

relate to Generalized Tonnetze.

2 For enumeration and classification purpose, T/I classes can be associated with the orbits of the
action of the dihedral group DN on the subsets of ZN , as described by Andreatta and Agon (2003).
3 Simplicial complexes belong to a more general family of spaces called cellular complexes, which
have already proved to be useful in music theory (Bigo et al., 2011).
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Fig. 3.4 From left to right: a 0-simplex, a 1-simplex, a 2-simplex and a 3-simplex represented with
their closure

3.3.1 Simplicial Complexes

A simplicial complex is a multidimensional space built by gluing together more

elementary spaces called simplices. A simplex (more precisely a d-simplex) is the

abstraction of a space of dimension d. As illustrated in Fig. 3.4, a 0-simplex corre-

sponds to a vertex, a 1-simplex corresponds to an edge, a 2-simplex to a triangle, a

3-simplex to a tetrahedron, etc. In a simplicial complex, a d-simplex is necessarily

incident to d + 1 simplices of dimension d− 1. For instance, a 1-simplex (i.e., an

edge) is incident to two 0-simplices (i.e., 2 vertices), a 2-simplex (i.e., a triangle) is

incident to three 1-simplices (i.e., 3 edges), etc. This recursive property defines the

closure of a simplex, consisting of all its incident simplices of lower dimension. In a

simplicial complex, a subset of simplices that itself constitutes a simplicial complex

is called a sub-complex.

A simplicial d-complex is a simplicial complex where the highest dimension of

any simplex is d. A graph is a simplicial 1-complex. For any natural number n, the

n-skeleton of a simplicial complex K is defined by the sub-complex Sn(K) of this

complex formed by its simplices of dimension n or less. Figure 3.5 illustrates a

simplicial 3-complex and its 1-skeleton.

The f -vector of a simplicial d-complex corresponds to the finite sequence

( f1, . . . , fd+1) where fp+1 is the number of p-simplices included in the complex.

The f -vector of the complex in Fig. 3.5 is (11,17,7,1) because it includes 11 ver-

Fig. 3.5 A simplicial 3-complex (on the left) and its 1-skeleton (on the right)
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Fig. 3.6 On the left, the 2-simplex S(C) representing the chord C = {D,A,B�} and all sub-chords
and notes included in it. On the right, the identification of boundaries illustrating the self-assembly
process on the 2-simplices representing the chords {C,A,B} and {D,A,B}

tices, 17 edges, 7 triangles and one tetrahedron. The term fp of the f -vector of a

complex K is denoted by fp(K).
Simplicial collections are simplicial complexes in which every simplex is labelled

by an arbitrary value. The left side of Fig. 3.6 illustrates a simplicial collection of

dimension 2. A simplicial collection can be built from a set of labelled simplices

by applying a self-assembly process (Giavitto and Spicher, 2008). This process is

based on the identification of the simplex boundaries that share the same labels. This

topological operation holds in all dimensions. The right side of Fig. 3.6 illustrates

the process on two 2-simplices. In step 1, nodes A and B are merged. Then, in step

2, the resulting edges {A,B} are merged. The final structure is a connected, two-

dimensional, simplicial collection in which every simplex is labelled with its own

value (step 3).

3.3.2 Chord Complexes

We use a method described by Bigo et al. (2011) to represent a set of chords by a

simplicial collection that we call a chord complex. In this representation, chords are

reduced to pitch class sets. This requires some abstraction since some properties of

chords as they actually occur within a musical context (e.g., the octave and duration

of each note) are not represented. An n-pitch class set (i.e., a set of n pitch classes) is

represented by an (n−1)-simplex. In particular, a 0-simplex represents a single pitch

class, a 1-simplex a 2-pitch class set, etc. We denote by S(A) the simplex representing

the pitch class set A. The simplices constituting the closure of S(A) represent all

the sub-chords of A. The 2-simplex representing the pitch class set {D,A,B�} is

illustrated on the left of Fig. 3.6. A chord complex is built by:

1. representing each chord of the collection by a simplex as described above,
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Fig. 3.7 First measures of Metamorphosis by Philip Glass (left) represented by a chord complex
(right). The three arrows provide the order in which the four chords are played

2. applying the self-assembly process to the resulting collection of simplices.

This method ensures that a given chord cannot be represented more than once in the

simplicial complex. As an example, on the right in Fig. 3.7 is shown the complex

resulting from the assembly of the four introductory chords of the piano piece

Metamorphosis by Philip Glass, shown on the left in the same figure. The four chords

are respectively associated with the pitch class sets {E,G,B}, {D,G,B}, {C,G,B}
and {C,E,B�}. Each chord includes three pitch classes and is represented by a 2-

simplex, that is, a triangle. The whole complex exhibits the intersections between the

four pitch class sets.

This representation method provides a topological signature for any chord se-

quence. The musical interpretation of topological properties of chord complexes

(dimension, size, connectedness, morphisms, etc.) is discussed by Bigo (2013). In

the following, we will focus on chord complexes representing sets of chords related

by some theoretic properties (for example chords belonging to the same T/I class)

rather than sets of chords included in a given musical sequence as illustrated by the

example in Fig. 3.7.

3.3.3 T/I Complexes

We represent a generalized Tonnetz as a chord complex composed of n-simplices

representing the chords of a given T/I class. In the following, we consider in particular

KTI [a1, . . . ,ai], the complex associated with the T/I class identified by the intervallic

structure [a1, . . . ,ai]. To build such a complex, we first enumerate all the chords

belonging to the T/I class, we then build the corresponding complex, as explained in

Sect. 3.3.2. As a consequence, the dimension of a T/I complex corresponds to the

size of its intervallic structure minus one.

Figure 3.8 illustrates the diatonic complexes KTI [2,5], KTI [2,2,3] and

KTI [1,2,2,2] associated with the scale of C major. These complexes were described

by Mazzola et al. (2002) as interpretations of the diatonic scale. They have the

topology of a circle, a Möbius strip and a torus, respectively. An alternative represen-
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Fig. 3.8 Construction of the diatonic complexes KTI [2,5], KTI [2,2,3] and KTI [1,2,2,2] by assem-
bling degrees of the tonality of C major (Mazzola et al., 2002)

tation of the complex KTI [1,2,4] in which all pitch classes of the diatonic scale are

neighbours has been used for music analysis by Hook (2014).

Figure 3.9 illustrates the chromatic complexes KTI [2,5,5] and KTI [3,4,5] which

result from the assembly of suspended chords (Sus4 chords) and major/minor chords

respectively. The organization of pitch classes in KTI [2,5,5] corresponds to the well-

known Wicki–Hayden note layout, which is used for the key layout on some keyboard

instruments, such as the bandoneon. The 1-skeleton of KTI [3,4,5] corresponds to

the Tonnetz. Topological properties of T/I chord complexes of dimension 2 were

studied by Catanzaro (2011). Although the present study focuses on T/I complexes

(i.e., KT I [·]) due to their relation with Generalized Tonnetze, this approach can be

generalized to enumerate chord complexes defined by any equivalence relation, not

C
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Fig. 3.9 On the left, the complex of the suspended chords (KTI [2,5,5]) of size 12. On the right, the
complex of major and minor chords (KTI [3,4,5]) of size 24, whose 1-skeleton corresponds to the
Tonnetz. The first complex is a strip and the second is a torus
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just transposition and inversion. For example, complexes of chords equivalent up

to transposition only (KT [·]), up to transposition and interval permutation (KT P[·])
and up to affine transformation (KM[·]) have been enumerated and classified in a

catalogue (Bigo, 2013).4

3.3.4 Unfolded Representations of T/I Complexes

The neo-Riemannian Tonnetz was originally designed as a triangular graph embedded

within a two-dimensional Euclidean space, as illustrated on the left in Fig. 3.2.

One may imagine the triangulation as being generated by the choice of three axes

representing three privileged intervallic directions starting from a referential initial

point. In the case of Fig. 3.2 (left), we start from the note C and we consider three

axes corresponding to the minor third, perfect fifth and major third intervals. Note

that two axes suffice to generate the triangulation of the plane, since the interval

corresponding to one of the axes is simply the sum of the intervals corresponding

to the two remaining axes. In our case, for example, the horizontal axis, going from

left to right, represents a fifth interval which is the sum of a minor third and a major

third, corresponding, respectively, to the two diagonal directions within the graph.

This property is easily generalized to the case of the three-dimensional Tonnetz, as

represented on the right side of Fig. 3.2. In this case, three axes are necessary to

generate the three-dimensional model and they correspond to the minor third, major

sixth and perfect fifth intervals. Note that, in this case, the reference point is G, as

indicated on the right side of Fig. 3.2. In both representations, pitch classes are

replicated infinitely along the axes by applying successive transpositions of the same

interval.

These spaces can equivalently be thought of as the result of two T/I chord com-

plexes which have been unfolded in a Euclidean space. Starting from a given

n-note chord considered as belonging to a T/I class, one can first represent it by

an (n−1)-simplex. The simplex is then embedded in an equilateral manner in the

(n−1)-dimensional Euclidean space. For a 3-note chord, this space is the Euclidean

plane and the chord is embedded as an equilateral triangle. The directions given to

the 1-simplices (i.e., edges) define axes associated with particular intervals, as in

the Tonnetz. Then, simplices are naturally replicated along these axes, in such a way

that the represented chords respect the transpositions induced by the intervals of

the axes. By starting with a major chord and a dominant seventh chord, one obtains

the complexes KTI [3,4,5] and KTI [2,3,3,4] which are then unfolded as shown in

Fig. 3.10. A consequence of this generic method of construction is that two com-

plexes associated with chord classes of the same size are represented by identical

structures (they are said to be isomorphic). Figure 3.10 shows the unfolding of the

4 This “paradigmatic approach”, where groups act as “paradigms” in the enumeration and clas-
sification of musical structures, corresponds to well-known catalogues of chords (respectively,
the Vieru–Zalewsky catalogue of transpositional chord classes, Forte’s pitch class sets catalogue,
Estrada’s permutohedron and Morris–Mazzola’s affine orbits catalogue).
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Fig. 3.10 Unfolded representations of 2-dimensional chord complexes KTI [3,4,5] (left) and
KTI [2,3,7] (centre) as isomorphic structures. On the right, the unfolded representation of the
3-dimensional chord complex KTI [2,3,3,4] composed of dominant seventh and half-diminished
chords

complexes KTI [3,4,5] and KTI [2,3,7], both corresponding to a two-dimensional

infinite triangular tessellation.

3.4 Analysis and Transformation of Trajectories in T/I
Complexes

In this section, we represent musical sequences by trajectories in T/I complexes.

We first perform a harmony-based analysis and classification by studying the shape

of these trajectories. We then present a variety of spatial transformations on these

trajectories which result in musical transformations on the represented sequences.

3.4.1 Representation of a Piece in a Chord Complex

In this work, a trajectory corresponds to a temporal sequence of regions in a chord

complex. Each successive region represents a temporal segment of the piece. We

use a very simple segmentation method, based on appearance and disappearance of

pitch classes. Each time a pitch class enters or leaves the set of played notes, the

current segment stops and a new one begins. This principle is illustrated in Fig. 3.11.

Note that a musical sequence could be represented by a trajectory constructed using

any other segmentation process, including more sophisticated algorithms involving

automatic harmonic analysis. Each segment is characterized by its relative duration,

compared to the other segments. A musical sequence P is thus reduced to a sequence

of pitch class sets, each associated with a relative duration. We thus have P =
[(A0,d0), . . . ,(AN ,dN)] where Ai is the set of active pitch classes during a duration di.

We represent the chord A in the chord complex K by the sub-complex KA of K
consisting of all the simplices in K which are labelled by a pitch class set included in

A. A trajectory in a chord complex K is a sequence of sub-complexes of K, each of
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Fig. 3.11 Segmentation of a sequence depending on the set of played pitch classes. The duration of
a segment (grey box) is calculated with respect to the quarter note taken as a unit

which is associated with a duration. The musical sequence [(A0,d0), . . . ,(AN ,dN)] is

represented in a complex K by a trajectory [(K0,d0), . . . ,(KN ,dN)].
Figure 3.12 shows the sub-complexes constituting the trajectory of the sequence

in Fig. 3.11 in KTI [3,4,5]. For more clarity, the trajectory is represented in the

unfolded representation of the complex. Note that the 1-skeleton of this representation

corresponds to the Tonnetz depicted on the left of Fig. 3.2.

Figure 3.13 shows the representation of the chorale, BWV 326, by J. S. Bach, by

a trajectory in the T/I complexes KTI [3,4,5] and KTI [1,4,7]. The trajectory on the

left constitutes a shape that is more compact than the trajectory on the right. This

observation suggests the idea that the different T/I complexes might not be equally

C# Ab F# 

A E 

C F G 

D 

Bb 

C# Ab Eb 

B 

Bb 

B Eb 

D 

Fig. 3.12 Union (in dark grey) of the subcomplexes constituting a trajectory representing the
sequence illustrated in Fig. 3.11 in KTI [3,4,5]. Note that the edge between A and C is also included
in the union
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Fig. 3.13 First measures of the chorale, BWV 326, by J. S. Bach, represented as a trajectory in
KTI [3,4,5] (on the left) and in KTI [1,4,7] (on the right)

well adapted to representing and analysing a particular musical sequence. In the next

section, we propose a method for computing the compactness of a trajectory, in order

to estimate how well a complex is adapted to representing a given musical sequence.

3.4.2 Computing Trajectory Compactness

In this section, we propose a method for computing the compactness of a trajectory

representing a musical sequence in a chord complex.

3.4.2.1 Chord Compactness

Let K be a chord complex and KA the sub-complex of K representing a pitch class

set A. We define the compactness at the dimension d (or the d-compactness) of A in

K to be

Cd(K,A) = fd+1(KA)

fd+1(S(A)) .

In other words, the d-compactness corresponds to the number of d-simplices included

in the representation of A in K divided by the number of d-simplices included in

the simplicial representation of A.5 Note that the value of the d-compactness varies

between 0 and 1 whatever the dimension d is. The value chosen for the parameter

5 This ratio recalls the global clustering coefficient (Holland and Leinhardt, 1971) in graph theory,
which measures the degree to which nodes in a graph tend to cluster together. Our approach is more
general because it applies to a set of arbitrary elements of the space (not necessarily neighbours of



3 Topological Structures in Computer-Aided Music Analysis 71

C
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B

Fig. 3.14 The pitch class set A = {C,E,G,B} represented by the 3-simplex S(A) (left), by a sub-
complex of KTI [2,3,7] (centre) and by a sub-complex of KTI [3,4,5] (on the right)

d in the computation of the compactness depends on the type of study which is

being performed. 1-compactness will be calculated for a study based on intervals. If

the study relates to the inclusion of chords of size 3, one may prefer to work with

2-compactness.

As an example, let us compute the 1-compactness of the pitch class set

A = {C,E,G,B} in KTI [2,3,7] and KTI [3,4,5]. As explained in Sect. 3.3.2, a 4-

pitch class set is represented by a 3-simplex which includes six 1-simplices (i.e.,

f2(S(A)) = 6). As Fig. 3.14 shows, the representation of A in KTI [2,3,7] includes

three 1-simplices, whereas its representation in KTI [3,4,5] includes five 1-simplices.

We thus have C1(KTI [2,3,7],A) = 3/6 = 0.5 and C1(KTI [3,4,5],A) = 5/6 = 0.83.

Analogously, by focusing on 2-simplices, we have C2(KTI [2,3,7],A) = 0/4 = 0 and

C2(KTI [3,4,5],A) = 2/4 = 0.5. These results show that the representation of A in

KTI [3,4,5] is more compact than in KTI [2,3,7] (as can be seen in Fig. 3.14).

Figure 3.15 illustrates the 2-compactness of four types of chords commonly used

in tonal music: major, major seventh, dominant seventh and diminished seventh.

This diagram shows that the compactness of a chord can be more or less equally

distributed among a set of different complexes. For example, the equal compactness

of the dominant seventh chord in KTI [2,3,7], KTI [2,4,6], KTI [3,3,6] and KTI [3,4,5]
shows the harmonic diversity of this chord. On the other hand, the diminished seventh

chord is represented with strong compactness in KTI [3,3,6] only. This is due to the

fact that the 3-note sub-chords included in this chord all belong to the T/I class

[3,3,6].
This type of diagram provides an original description of the constitution of a

chord and can be exploited to represent Z-relations between chords (Mandereau et al.,

2011).

the same element) and in a simplicial complex of any dimension (graphs are simplicial complexes
of dimension 1).
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Fig. 3.15 2-compactness of diminished seventh, dominant seventh, major and major seventh chords
in the twelve two-dimensional T/I complexes

Figure 3.16 illustrates the average 2-compactness of the set of all 3-pitch class

sets. The compactness is computed in the twelve two-dimensional T/I complexes.

The irregularity of the histogram shows that T/I complexes do not tend to represent

arbitrary chords with the same compactness. This property depends on the size of the

complex. For example, the probability of a random chord being represented compactly

in KTI [3,4,5] (which includes twenty-four 2-simplices) is six times higher than in

KTI [4,4,4] (which includes only four 2-simplices). The average value E(Cd(K,A))
of the d-compactness Cd of chords of size greater than or equal to d in a complex

K is equal to the number of (d +1)-simplices in K divided by the total number of

chords of size d +1:
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Fig. 3.16 Average 2-compactness of the set of all 3-pitch class sets in the twelve T/I complexes of
dimension 2
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E(Cd(K,A)) = fd+1(K)( N
d+1

) .

3.4.2.2 Trajectory Compactness

The global d-compactness of a trajectory TP can be defined as the average of the

d-compactness of its successive chords weighted by their duration di:

Cd(K,TP) =
1

D
×

N

∑
i=0

diCd(K,Ki) ,

where D =
N
∑

i=0
di represents the duration of the whole piece.

In the following, the compactness of the trajectory of a piece in a complex will

systematically be displayed in comparison with the average compactness of chords

in that same complex.

3.4.3 Computing the Compactness of Trajectories for Musical
Analysis and Classification

We now analyse a number of pieces in terms of the compactness of their trajectories

in different T/I complexes.

3.4.3.1 Comparing Spaces Regarding a Piece

The histograms in Fig. 3.17 illustrate the 2-compactness of the trajectories of three

different pieces in the 12 chromatic T/I complexes of dimension 2. In each complex,

the compactness of the trajectory of the piece (in black) is compared to the average

compactness of its chords (in grey). The histograms have been generated with the

software HexaChord which will be described in Sect. 3.5.

The first piece is the chorale, BWV 328, by J. S. Bach . The high compactness of

the trajectory in KTI [3,4,5] results from the strong use of major and minor chords

which is typical of tonal music in general and Bach’s chorales in particular. The

high compactness of the trajectories in KTI [2,3,7] and KTI [2,5,5] is due to the

use of dominant seventh and suspended chords which have particular functions in

this style of music. The compactness in the complexes KTI [2,2,8], KTI [2,4,6] and

KTI [4,4,4] of Claude Debussy’s prelude, Voiles, highlights the predominant use of

the whole-tone scale in this piece. Finally, the piece Parodie from Schoenberg’s

Pierrot Lunaire illustrates for each complex a compactness relatively close to the

average compactness of chords. This results from an almost equally distributed use
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Claude Debussy - Voiles

Claude Debussy - Voiles random chords
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Schönberg - Pierrot Lunaire - Parodie
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Fig. 3.17 2-compactness of the trajectories of three pieces in the 12 chromatic T/I complexes. In
each complex, the compactness of the pieces (in black) is compared to the average compactness of
chords (in grey)
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of pitch class sets of size 3 or more throughout the piece, as one might expect in

twelve-tone or atonal music.

Three drastically different pieces have been chosen in this example in order to

illustrate how the compactness of trajectories can depend on the musical style in an

illuminating and informative way. However, this method can also be used to reveal

more refined nuances between pieces in the same style.

3.4.3.2 Distance and Classification

The previous examples show that calculating the compactness of a piece in a set

of complexes provides an abstract description that can highlight certain aspects of

its harmonic structure. This description can be used to compare pieces as well. We

propose a notion of distance between musical sequences based on compactness

regarding a set of complexes. For a set of complexes E = {K1,K2 . . .}, we define the

d-distance between two pieces P and P′ by the Euclidean distance:

DE,d(P,P′) =
√

∑
K∈E

(
Cd(K,TK)−Cd(K,T ′

K)
)2

,

where TK and T ′
K are the trajectories representing, respectively, P and P′ in K. The

d-distance is computed by only taking into account chords whose size is greater than

or equal to d +1.

The mean compactness of the pieces constituting a corpus allows us to calculate a

distance between any piece and this corpus. This notion of harmonic distance has

been used for music classification (Bigo, 2013).

3.4.4 Transformations on Trajectories

The method described above allows any musical sequence to be represented by a

trajectory within a given chord complex. Thanks to the symmetry properties of

some T/I complexes, it is sometimes easy to have an immediate intuition of the

musical interpretation of some geometrical transformations on trajectories or their

embedding in different support spaces. In the first case we can, for example, interpret

a transposition or an inversion operation as a translation or a rotation, respectively, of

a given trajectory.

Figure 3.18 displays the trajectory representing the first measures of Bach’s

chorale, BWV 332, which is rotated by 180◦. This operation transforms major chords

into minor chords (and vice versa). A second type of transformation consists of

the embedding of a given trajectory in a new support space. This corresponds to a

relabelling of the notes attached to a trajectory according to the pitch content of the

new underlying space. Although the trajectory remains the same, its embedding in a

new space dramatically changes the intervallic relations between the notes. As an
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Fig. 3.18 On the left, a trajectory representing the first measures of the chorale, BWV 332, by
J. S. Bach in KTI [3,4,5]. On the right, a point reflection is applied to this trajectory, producing a
new sequence

example, Fig. 3.19 shows the result of embedding the trajectory in KTI [3,4,5] of

the first measures of the chorale, BWV 332, in the new support space, KTI [2,3,7].
This embedding produces a new musical sequence which will sound more exotic,

due to the prominence of the pentatonic scale in the new support space. From a

mathematical point of view, transformations of trajectories within chord complexes

can be formalized as morphisms (Bigo et al., 2014).

3.5 The HexaChord Software

HexaChord is a freely available computer-aided music analysis software package

based on the spatial representations presented in this chapter.6 The software provides a

3-D visualization of the complex representing any arbitrary set of chords. To improve

intelligibility, chromatic and diatonic T/I complexes of dimension 2 (i.e., constituted

of 3-note chords) can be unfolded as infinite two-dimensional triangular tessellations,

in the same style as the planar representation of the Tonnetz (see Figs. 3.2 and 3.12).

The 12 chromatic T/I complexes together with the four diatonic T/I complexes, each

6 http://www.lacl.fr/ lbigo/hexachord



3 Topological Structures in Computer-Aided Music Analysis 77

embedding 

K[3,4,5] K[2,3,7] 

��
�
�

��
�
�

� �
��

�

�
�
� ��� � 


�
��

��
�
�

�
���

������ �
�� ��

��

�

�
�

�
���

���
���

�
�

� ��
�� �

��
��
��

�  

�  


� ��
���

���
���

��

Fig. 3.19 On the left, the first measures of Bach’s chorale, BWV 332, represented by a trajectory in
KTI [3,4,5]. On the right, the transformation of the sequence resulting from the embedding of the
trajectory in KTI [2,3,7]

available in the 12 diatonic scale, result in a total of 60 available planar organizations

of pitch classes.

In the unfolded representation, pitch-classes and chords are repeated multiple times

along interval axes in the complex. As a consequence, a piece can be represented by

an infinite number of trajectories. Different strategies can then be applied to build

a satisfying trajectory from a musical sequence (Bigo, 2013). An algorithm that

minimizes the distance between every pair of successive chords in the complex will

be more efficient for analysing chord progressions in time. On the other hand, an

algorithm maximizing the compactness of each chord (independently of the other

chords) will be more efficient for analysing the harmonic content of a piece.

Musical pieces are imported as MIDI files. A trajectory is automatically computed

for any given piece–complex pair. The trajectory is represented as a path which

evolves in real time within its complex while the piece is being played. The com-

pactness of the trajectory over time (and on average) is automatically computed

for any T/I complex and in any dimension. The calculation of compactness reveals

the complexes which are the most harmonically related to the piece. Following this

hypothesis, this functionality should suggest to the user which spaces can be used in

order to reveal some interesting harmonic properties of a piece via its visualization.

HexaChord also allows the geometrical transformations described in Sect. 3.4.4 to

be carried out on trajectories. A trajectory in a complex K can be translated, rotated,

or even embedded in an other chord complex K′. Every spatial transformation causes

the values labelling the sub-complexes constituting the trajectory to be refreshed. The

harmonic and melodic content of the original piece can be transformed according
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to the new labels of the selected trajectory, thus leading to a new musical piece

which can be exported in MIDI format or analysed and transformed using the spatial

techniques described in this chapter.

3.6 Conclusion

In this chapter, we have presented a method for identifying any set of chords by

a labelled simplicial complex. The family of T/I complexes relate to Generalized
Tonnetze and can be used as support spaces to represent musical pieces for analysis

and classification purposes.

The analysis method proposed here relates to the instantaneous verticality of

chords. However, studying harmonic properties within a piece requires a horizontal

approach as well (i.e., to study transitions between successive chords). In future work,

we intend to address this issue by investigating methods for computing distances

between sub-complexes within a complex.

We believe that the visual and intuitive aspects of this spatial approach constitute

a strong pedagogical advantage for the understanding of harmony. For example, T/I

complexes offer an original and intuitive reformulation of the notion of inversion-

ally/transpositionally related chord classes. Moreover, we believe that the spatial

reformulation of musical problems has a heuristic advantage. Thanks to its intuitive

Fig. 3.20 Graphical user interface of HexaChord
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aspects, spatial structures frequently suggest unexpected questions, thus opening new

research areas.

Finally, methods for automatically computing space-related descriptors (com-

pactness of sub-complexes, distances within complexes, etc.) should allow for the

construction of statistical models given a corpus of a particular style. Such models,

based so far on viewpoints without spatial considerations, have been shown to be use-

ful in various areas including music prediction and classification (Conklin and Witten,

1995). In future work we therefore intend to carry out an in-depth investigation of

some statistical models built from spatial descriptions of musical pieces.
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LACL - Université Paris-Est, Jean-Louis Giavitto from IRCAM - Université Pierre et Marie Curie,
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Chapter 4
Contextual Set-Class Analysis

Agustı́n Martorell and Emilia Gómez

Abstract In this chapter, we review and elaborate a methodology for contextual

multi-scale set-class analysis of pieces of music. The proposed method provides a

systematic approach to segmentation, description and representation in the analysis

of the musical surface. The introduction of a set-class description domain provides a

systematic, mid-level, and standard analytical lexicon, which allows for the descrip-

tion of any notated music based on a fixed temperament. The method benefits from

representation completeness, a balance between generalization and discrimination of

the set-class spaces, and access to hierarchical inclusion relations over time. Three

new data structures are derived from the method: class-scapes, class-matrices and

class-vectors. A class-scape represents, in a visual way, the set-class content of each

possible segment in a piece of music. The class-matrix represents the presence of

each possible set class over time, and is invariant to time scale and to several transfor-

mations of analytical interest. The class-vector summarizes a piece by quantifying

the temporal presence of each possible set class. The balance between dimensionality

and informativeness provided by these descriptors is discussed in relation to standard

content-based tonal descriptors and music information retrieval applications. The

interfacing possibilities of the method are also discussed.

4.1 Introduction

The representation of the musical surface is a fundamental element for analysis, as it

constitutes the raw material to be explained by the analyst. As for any information

representation problem, favouring the observation of some specific musical param-

eters comes at the price of misrepresenting others. The choice of an appropriate

surface characterization is not only a critical step that conditions the whole analysis,
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but it also often requires considerable effort from the analyst. Proper music infor-

mation representations and interfacing techniques can free analysts from the most

systematic, time-consuming and error-prone tasks, and assist them in finding and

testing material of analytical relevance. Human analysts can then exploit the prepro-

cessed data using their perception, intuition and inference abilities, in order to make

appropriate analytical decisions. The best processing capabilities of computers (good

systematization, poor inference) and humans (good inference, poor systematization)

can then complement each other in a constructive way.

In this chapter, we propose an approach to the musical surface, in terms of gen-

eralized contextual pitch-wise information. This way of conceiving of the surface

extends the usual application domain of analysis in terms of events (e.g., chords),

giving access to richer, multi-scale, hierarchical information about the music. We

propose that three aspects of the analytical process are particularly relevant for such

an endeavour: first, the segmentation of the music into analysable units; second, the

description of these units in adequate terms; and, third, the representation of the

results in ways that are manageable and provide insight. We consider each of these

three aspects from a systematic point of view. First, we present a comprehensive

segmentation policy that extracts every possible (different) segment of music. Second,

we propose that these segments be described in terms of pitch-class set theory. Third,

we propose usable data structures for representing the resulting data.

The remainder of this chapter is organized as follows. In Sect. 4.2, we present the

problems of segmentation, description and representation in the context of surface

analysis, and introduce basic set-theoretical concepts. In Sect. 4.3, we describe the

proposed computational approach. In Sect. 4.4, we introduce the basic set of data

structures, while in Sects. 4.5 and 4.6, we discuss these data structures in the context

of several music information retrieval (MIR) applications. Finally, in Sect. 4.7, we

consider the interfacing possibilities of the descriptors.

4.2 Background and Motivation

4.2.1 On Segmentation

A main concern for analysis is the grouping of musical elements into units of analyt-

ical pertinence, a complex process that we refer to here by the term segmentation.

According to Forte (1973, p. 83),

by segmentation is meant the procedure of determining which musical units of a composition
are to be regarded as analytical objects.

In the context of pitch-class set analysis, Cook (1987, p. 146) observes that

no set-theoretical analysis can be more objective, or more well-founded musically, than its
initial segmentation.
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Considering the joint problem of finding appropriate segments and assessing their

pertinence, a pursuit of systematization and neutrality in the surface characterization

arises as a convenient preprocessing stage.1 On the other hand, there is no such thing

as a truly neutral representation, as pointed out by Huron (1992, p. 38):

a representation system as a whole may be viewed as a signifier for a particular assumed or
explicit explanation. . .

In our work, we aim for neutral representations in order to allow for a wide range of

musical idioms to be analysed using only a limited set of assumptions. Our method

assumes the concept of a musical note, temporally limited between its onset and offset.

We also assume octave equivalence in a twelve-tone equal-tempered pitch system.

The general framework, however, can be adapted for any discrete pitch organization

of the octave. We do not, of course, claim that systematization and neutrality suffice

for analysis. Indeed, one could distinguish between a systematic segmentation (as a

preprocessing step), and an analytic (i.e., meaningful) segmentation

not as something imposed upon the work, but rather. . . as something to be discovered.

(Hasty, 1981, p. 59)

In our approach, the term segment is used formally to mean a temporal interval (i.e.,

chunk) of music, irrespective of its actual musical content. This content may be

analysed by subsequent processing stages.

Systematization can, of course, be conceived of in various ways. Conventional

segmentation strategies, such as those applied by human analysts working on scores,

rely on some prior rhythmic or metric knowledge of the music. For instance, the

analysis of chords benefits from a temporal segmentation into beats or bars. This

information, however, may not be explicitly available in computer-based music

encodings, such as a MIDI file generated from a live performances or automatically

transcribed from an audio file. Moreover, this kind of segmentation may not be

meaningful or appropriate for certain types of music (e.g., free rhythm, melismatic

or ad-libitum passages).

A useful, general-purpose, segmentation approach is to apply a sliding window
with an appropriate resolution. In this context, a window is a temporal frame, which

isolates a segment of music to be analysed. A window which is gradually displaced
over time is referred to as a sliding window, and allows sequential discrete obser-

vations. The resolution of a sliding window is given by its duration (time scale or

window size) and the amount of time displaced between consecutive frames (the hop
size). This resolution is obviously a critical parameter. It depends on the musical

parameter under inspection, as well as on the music itself, so adaptive methods may

be required in general. In this sense, a systematic segmentation may be thought of as

the problem of inspecting every possible (different) segment in the music, no matter

its position in time or its duration. By adopting the concept of note, it is possible

to reduce these infinitely many segments to a finite set of segments capturing every

distinct pitch aggregate in the piece.

1 For a discussion about neutrality and the risks of circular reasoning in the context of set-theoretical
analysis, see Deliège (1989), Forte (1989) and Nattiez (2003).
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Forte claimed that this kind of systematic segmentation (which he called ‘imbri-

cation’) would be impractical for analysis, as it would result in an unmanageable

number of overlapping segments, most of which would not be musically significant

(see Cook (1987, p. 147) for a discussion). Forte thus claims a need for ‘editing’

these segments according to criteria which would depend on the specific music, a pro-

cess unlikely to be systematized in any useful way (Forte, 1973, pp. 90–91). These

observations were made with the conventional methods and goals of (academic)

musical analysis in mind. For more general (and modest) analysis-related applica-

tions, however, one can take advantage of computational methods. In our work, we

adopt some interface-design strategies and filtering techniques that can handle such

a cumbersome amount of information, and we then apply them to specific music

information retrieval tasks.

Among the most systematic approaches to general pitch-class set analysis, Huovi-

nen and Tenkanen (2007) propose a segmentation algorithm based on a ‘tail-segment

array’, in which each note in a composition is associated with all the possible seg-

ments of a given cardinality that contain it.2 This segmentation is combined with

certain ‘detector functions’ to obtain summarized information from the piece. This

segmentation method has a number of shortcomings (see Martorell and Gómez,

2015). First, the note-based indexing in terms of ‘tail segments’ can result in many

segments that only contain some of the notes in a vertical chord. Second, considering

only segments of a specified cardinality undermines systematization by defining a

content-dependent segmentation. Moreover, it undermines neutrality, by defining

cardinality to be an analytical parameter, resulting in most of the possible segments

being ignored and, in some cases, absurd segmentations. Third, the non-uniqueness of

the tail-segment arrays associated with a given time point can result in an ill-defined

temporal continuity. For example, in their analysis of Bach’s Es ist genug (BWV 60),

Huovinen and Tenkanen (2007, p. 163) order the notes lexicographically, sorting

first by time and then by pitch height. This means that two ‘successive’ notes may

either have different onset times or they may be from the same chord and thus have

the same onset time. In such cases, the temporal ordering of the notes is therefore

ill-defined.

4.2.2 On Description

In our work, the description stage consists of associating each segment with some

content-based property of analytical interest. The descriptive value of such informa-

tion depends on both the property of the segment that we are interested in (e.g., pitch,

rhythm or timbre), and on the way in which the retrieved information is represented

(e.g., different ways of encoding or summarizing pitch information). The design of a

proper feature space requires some considerations and compromises, among which

we identify the following.

2 See Sect. 4.2.2.1 for a formal definition of cardinality.
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1. The trade-off between discrimination and generalization On the one hand, the

descriptive lexicon should be able to identify distinct musical realities. On the

other hand, such a lexicon should be able to connect segments related by some

analytical and/or perceptual criteria. A description for analysis should facilitate

the observation of relationships.

2. The trade-off between dimensionality and informativeness Related to the previ-

ous point, this involves maximizing the overall informativeness, using a reason-

able (i.e., manageable) lexicon of musical objects.

3. Completeness We want a system that is capable of describing any possible

segment in meaningful ways, covering a wide range of musical idioms.

4. Communicability The descriptive lexicon should not only be meaningful, but,

ideally, readily understandable by humans, so that analytical conclusions can be

derived and explained. This implies that some standard musical terminology is

desirable.

4.2.2.1 Pitch-Class Set Concepts

In this section, we will review some basic concepts from pitch-class set theory, as

they constitute the descriptive basis of our method. The pitch class (Babbitt, 1955) is

defined, for the twelve-tone equal-tempered (TET) system, as an integer representing

the residue class modulo 12 of some continuous integer representation of pitch, that

is, any pitch (represented as a single integer) is mapped to a pitch-class by removing

its octave information. A pitch-class set (henceforth pc-set) is an unordered set of

pitch classes (i.e., without repetitions). In the twelve-tone equal-tempered system,

there exist 212 = 4096 distinct pc-sets, so a vocabulary of 4096 symbols is required

for describing any possible segment of music. Any pc-set can also be represented

by its intervallic content (Hanson, 1960). Intervals considered regardless of their

direction are referred to as interval classes. There exist 6 different interval classes,

corresponding to 1, 2, 3, 4, 5 and 6 semitones respectively. The remaining intervals in

the octave are mapped to these 6 classes by inversion. For instance, the perfect fifth

(7 semitones up) is mapped to the perfect fourth (5 semitones down), and represented

by the interval class 5. The total count of interval classes in a pc-set can be arranged

as a 6-dimensional data structure called an interval vector (Forte, 1964). For instance,

the diatonic set {0,2,4,5,7,9,11} is represented by the interval vector 〈254361〉, as

the set contains 2 semitones, 5 whole-tones, 4 minor thirds, 3 major thirds, 6 perfect

fourths and 1 tritone.

Relevant relational concepts for analysis are the set-class equivalences, whereby

two pc-sets are considered equivalent if and only if they belong to the same set
class (defined below). Put differently, set-class spaces result from applying certain

equivalence relations among all the possible pc-sets. As pointed out by Straus (1990),

equivalence is not the same thing as identity, rather it is a link between musical

entities that have something in common.3 This commonality underlying the surface

3 In this sense, a class equivalence can be conceived of as an all-or-nothing similarity measure
between two pc-sets. Later on in this chapter, we will discuss similarity measures between different
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can potentially lend unity and/or coherence to musical works (Straus, 1990, pp. 1–2).

In the context of pc-sets, the number of pitch classes in a set is referred to as its

cardinality. This provides the basis for perhaps the coarsest measure of similarity

(Rahn, 1980). Despite its theoretical relevance, comparing pitch class sets on the

basis of their cardinalities provides too general a notion of similarity to be of use in

most analytical situations. Among the many kinds of similarity in the set-theoretical

literature, three are particularly useful:4

1. Interval vector equivalence (henceforth iv-equivalence), which groups all the

pc-sets sharing the same interval vector. There exist 197 different iv-types.

2. Transpositional equivalence (henceforth Tn-equivalence), which groups all the

pc-sets related to each other by transposition. There exist 348 distinct Tn-types.

3. Inversional and transpositional equivalence (henceforth TnI-equivalence), which

groups all the pc-sets related by transposition and/or inversion. There exist 220

different TnI-types (also referred to as Tn/TnI-types).

The compromise between discrimination and generalization of these equivalence

relations fits a wide range of descriptive needs, hence their extensive use in general-

purpose music analysis. Of these relations, iv-equivalence is the most general (197

classes). It shares most of its classes with TnI-equivalence (220 classes), with some

exceptions, known as Z-relations (Forte, 1964), for which the same interval vector

groups pitch-class sets which are not TnI-equivalent (Lewin, 1959). The most specific

of these three relations is Tn-equivalence (348 classes). Tn-equivalence satisfies two

of the most basic types of perceptual similarity between pitch configurations: octave

and transposition invariance. Two pc-sets related to each other by transposition only

belong to the same transpositional set class, and they share a similar sonority in

many musical contexts. For instance, it is clear that a pentatonic melody would

sound very similar to any of its transpositions. The set-class counterpart to this,

under Tn-equivalence, states that all pentatonic music, based on the same set or any

transposition of the set, would sound pentatonic.

More general class equivalences have also been proposed in the set-theoretical

and analysis literature, such as the K complexes and Kh sub-complexes (Forte, 1964),

or set genera (Forte, 1988). Despite their theoretical importance, their resulting

classes group together too distinct musical realities to be of practical use for our

general purposes. More specific class equivalences, such as pitch (invariant to timbral

transformations) or pitch-class (invariant to octave transformations), constitute the

usual descriptive lexicon in score-based descriptions and MIR applications alike.

However, despite their descriptive power, they cannot encode even basic analytical

relations or perceptual implications, without further processing.

We thus propose iv-, TnI- and Tn-equivalences as a convenient mid-level descrip-

tive domain, bridging the gap between (too specific) pitches or pitch-classes and (too

classes, which are used to quantify the distances between pc-sets beyond mere class-belonging
relations. In order to avoid misconceptions with the usage of the term ‘similarity’ in this work, the
reader is encouraged to attend to the proper contextualization.
4 See Forte (1964) for a comprehensive formalization or Straus (1990) for a pedagogical approach.
A worked example is given in Sect. 4.3.2.
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generic) higher-level concepts. Set-classes do not refer explicitly to other mid-level

musical objects, such as chords or keys. However, they encode an analytically im-

portant property of such pitch collections, with the additional benefit of covering the

complete set of possible pitch aggregates.

4.2.3 On Representation

Here, we use the term representation to mean the data structures serving as a substrate

of the descriptions—that is, the final descriptors as they will be processed, whether

by human analysts or by automatic algorithms. As discussed above in relation to

Huovinen and Tenkanen’s (2007) approach, the enormous number of overlapping

segments, together with the somewhat large lexicon of classes, gives rise to problems

of practical indexing and summarization of the data.

Summarization, in general, implies a loss of information. The time dimension is

usually the first parameter to be sacrificed when summarizing pitch information. Some

methods based on statistical averaging rarely retain usable time-related information.

For instance, Huovinen and Tenkanen (2007) characterize the interval content of a

given tail-segment array as a mean interval-class vector (MICV), by computing the

dimension-wise mean from the interval vectors of each segment belonging to the

array. A more compact summary computes the mean from all the MICVs in a piece

(Huovinen and Tenkanen, 2007, p. 172). This results in a single six-dimensional

vector, which is an indicator of the relative prevalence of the different intervals in the

music, but it is not straightforwardly interpretable—to a large extent, because most

of the intervals are accounted for several times in the tail-segment arrays, and this

number varies according to the polyphonic writing.

Another common method of summarization consists of quantifying the number of

occurrences of each class from some given lexicon of classes (e.g., the number of

instances of each chord type). While histograms from these event counting methods

may provide useful indicators of the relative importance of each class, they present an

inherent conceptual problem: they assume that the pitch content is to be understood

in terms of events, as instances that can be unambiguously segmented and counted

(for instance, beat-wise chords). Aside from requiring prior knowledge about how to

segment the music, this approach fails to take into consideration the description of

tonal contexts in a wider sense. For instance, a diatonic passage usually embeds sev-

eral overlapped diatonic subsegments, so counting the number of diatonic instances

in a piece may not be very informative. An alternative to this may be to quantify the

diatonicism by measuring its overall temporal existence in the piece.

Here, we propose alternative summarization and quantification strategies. We

avoid thinking in terms of events, by conceptualizing every segment as a context.
Each segment (context) can thus be embedded in larger contexts, and can embed

shorter ones. Quantification is not conceived of as the number of instances of the
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different classes, but as the amount of time these classes are active in the music.5

Deviating from other systematic approaches, this allows for the preservation of a

great deal of class-wise and temporal information through each reduction stage. An

additional goal is that the various scaled representations should complement each

other, in order to maximize overall informativeness when it comes to interface design

(see Sect. 4.7).

4.2.3.1 Visualization

In representation design, the final user of the information constitutes a major factor.

As humans have tremendous, innate capabilities for inferring useful information from

images, visualizing information effectively is often the best way of communicating

it to humans. Musical information is not an exception. When talking about music,

the use of terms related to space is ubiquitous (e.g., references to the height of a

pitch, a harmonic attraction, a modulation to a distant key, a vertical chord or a

horizontal interval between notes in a melody). Even time is often conceived of as a

spatial dimension, as reflected in many musical notations. Spatial representations and

associations seem to be an inherent part of human thinking, presumably related to

the fact that we live in a physical (three-dimensional) world with which we interact

through our senses (Leman, 2008).

Many visual representations have been proposed for capturing and revealing

pitch-related concepts, usually relying on mid-level musical concepts, such as chords

or keys.6 A variety of spaces, based on set-theoretical concepts, are at the core of

many mathematical music theories (see Chap. 3, this volume). Tymoczko (2011),

for instance, represents voice-leading relations between a given set of chord types

in geometric spaces. In those spaces, it is possible to represent somewhat abstract

relations as pictorial patterns, reinforcing the auditory phenomena with intuitive

visual cues.

The analysis of complete pieces of music in these spaces is challenging, however.

The time dimension in these representations can be conveniently introduced by

movement-in-space metaphors.7 When it comes to representing long passages, these

methods present visual problems relating to leaving traces of the past, compromising

any practical temporal indexing of the music. For instance, it may be difficult to

distinguish among different instances of the same recurring pattern, as they can

appear superimposed on each other in the space. However, it is often of interest to

analyse long segments of music, in order to observe far-reaching relationships over

time. The temporal dimension, thus, arises as a convenient (explicit) dimension to be

considered in the design of visual representations of music (Martorell, 2013).

5 A large number of event instances does not imply prevalence, as the events themselves can be
very short in duration, e.g., in tremolo passages.
6 See Lerdahl (2001, pp. 42–47) for a review.
7 In Tymoczko’s chordal spaces, this is more than a metaphor: while a sequence of states can
represent chord progressions, the representation of their voice-leading relations needs the actual
(continuous) paths followed by each individual voice (Tymoczko, 2011, pp. 43–44).
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4.2.3.2 Temporal Multi-scale Representation Methods

Sapp (2005) proposes a systematic, user-oriented approach to tonal analysis and

representation. After a comprehensive multi-scale (temporal multiresolution) seg-

mentation of the music, the tonal centre is estimated for each segment. The different

estimations are coded through a colourmap, and all the segments are plotted as a

two-dimensional image, called a keyscape, whose dimensions represent time on the

horizontal axis and, on the vertical axis, time-scale (i.e., time-scale of observation, or

window size, corresponding to the durations of the analysis segments). The method,

which gives access to hierarchical descriptions of tonality, has been adapted by Mar-

torell (2013) to form the basis of a general framework for tonal context analysis. This

method can operate in both the symbolic and audio domains, and extends the concept

of keyscape to tonal systems other than the major–minor system.

4.3 Hierarchical Multi-scale Set-Class Analysis

The method proposed here takes as its starting point the concept of a keyscape

and extends its systematization (with respect to segmentation and representation)

to the description stage. For that, the key estimation is substituted with a set-class

description. Figure 4.1 sketches the general framework proposed by Martorell (2013,

p. 26), here adapted for set-class analysis. A detailed description of each stage

(segmentation, description and representation) follows.8

4.3.1 Segmentation

The input to the system is a sequence of MIDI events, which can be of any rhythmic

or polyphonic complexity. Segmentation is implemented by two different algorithms:

a) an approximate technique, non-comprehensive but practical for interacting with

the data; and b) a fully systematic method, which exhausts all the segmentation

possibilities. Figure 4.2 illustrates both cases.

The approximate method consists of applying many overlapping sliding windows,

each of them scanning the music at a different time-scale (duration of observation).

The minimum window size and the number of time-scales are user parameters, and

can be fine tuned as a trade-off between resolution and computational cost. The actual

time-scales are defined by applying a logarithmic law covering the range between

the minimum window size and the whole duration of the piece.9 In order to provide

a regular grid for indexing, visualization and interfacing purposes, the same hop size

8 The method is explained following the same blocks of Sect. 4.2: segmentation, description
and representation. For computational convenience, the actual implementation differs slightly, as
depicted in Fig. 4.1.
9 Motivated by the fact that larger time-scales usually yield coarser changing information.
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Fig. 4.1 General framework: block diagram

is applied for all the time-scales. Each segment is thus indexed by its centre location

(time) and its duration (time-scale).

The fully systematic method is required for the quantitative descriptors in which

completeness of representation is necessary (see Sect. 4.4.2.2). The algorithm first

finds every change in the pc-set content over time, regardless of whether the change is

produced by the onset or the offset of a note. The piece is then segmented according

to every pairwise combination among these boundaries.
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4.3.2 Description

Denoting pitch-classes by the ordinal convention (C=0, C�=1, . . . , B=11), each seg-

ment is analysed as follows. Let bi = 1 if the pitch-class i is contained (totally or

partially) in the segment, or 0 otherwise. The pc-set of a segment is encoded as an

integer p =
11

∑
i=0

bi ·211−i ∈ [0,4095]. This integer serves as an index for a precom-

puted table of set classes,10 including the iv-, TnI- and Tn-equivalences (defined in

Sect. 4.2.2.1). For systematization completeness, the three class spaces are extended

to include the so-called trivial forms.11 With this, the total number of interval vectors

rises to 200, while the TnI- and Tn-equivalence classes sum to 223 and 351 categories

respectively. In this work, we use Forte’s cardinality-ordinal convention to name

the classes, as well as the usual A/B suffix for referring to the prime/inverted forms

under Tn-equivalence. We also follow the conventional notation to name the Z-related

classes, by inserting a ‘Z’ between the hyphen and the ordinal.

As an example, a segment containing the pitches {G5,C3,E4,C4} is mapped to the

pc-set {0,4,7} and coded as p = 2192 (100010010000 in binary). The precomputed

table is indexed by p, resulting in the interval vector 〈001110〉 (iv-equivalence,

grouping all the sets containing exactly 1 minor third, 1 major third, and 1 fourth),

the class 3-11 (TnI-equivalence, grouping all the major and minor trichords), and the

class 3-11B (Tn-equivalence, grouping all the major trichords). The discrimination

between major and minor trichords is thus possible under Tn-equivalence (no major

trichord can be transformed into any minor trichord by transposition only), but not

under iv- or TnI-equivalences (any major trichord can be transformed into any minor

trichord by transposition and inversion).

The beginning of Bach’s chorale Christus, der ist mein Leben (BWV 281), shown

in Fig. 4.2(a), illustrates the segmentation and description stages. Figure 4.2(b)

(bottom) depicts the pitch-class set content of the excerpt over time. Figure 4.2(b)

(top) sketches the approximate segmentation method at three different time scales,

using window sizes of 1, 3 and 7 quarter notes, respectively. The same hop size

(1 quarter note) is used in all three cases, providing a regular indexing grid. Three

sample points (in light grey) show the relation between the indexing and the actual

segments.

The set-class description of the corresponding segments under Tn-equivalence is

also provided. For example, the lowest sample segment contains the pitch classes

{C,F,A}={0,5,9}which belongs to the class 3-11B under Tn-equivalence: transposing

(mod12) the set {0,5,9} by 7 semitones up gives {0+7,5+7,9+7}={0,4,7},12 which is

10 As formalized by Forte (1964). See http://agustin-martorell.weebly.com/set-class-analysis.html
for a comprehensive table of set classes.
11 The null set and single pitches (cardinalities 0 and 1, containing no intervals), the undecachords
(cardinality 11) and the universal set (cardinality 12, also referred to as the aggregate). These classes
were not included in Forte’s formalization. However, any truly systematic formalization of the
set-class space should include them, as segments expressing these sets do occur in real music.
12 Pitch-class sets are, by definition, unordered sets, meaning that the ordering of the elements is
not of importance.
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(a)

(b)

(c)

Fig. 4.2 J. S. Bach’s Christus, der ist mein Leben (BWV 281) (excerpt). (a) Score. (b) Approximate
segmentation and description. (c) Fully systematic segmentation
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the standard form for all the major trichords under Tn-equivalence, and named 3-11B

in Forte’s convention.

This particular segmentation is only approximate, as it does not capture the pitch-

class-set content of every different segment. For that, the fully systematic segmen-

tation approach is required. The music is first segmented by finding every change

in the pitch-class set (vertical) content over time, as in Fig. 4.2(c) (bottom). Then,

a segment is defined for every pairwise combination of boundaries. As depicted in

Fig. 4.2(c) (top), this exhausts every possible (different) pitch-class aggregate in the

piece. In general, as for this example, this results in non-regular indexing grids.

4.3.3 Representation

The representation stage relies upon the general framework depicted in Fig. 4.1. The

substitution of the inter-key space used by Martorell (2013, p. 26) by a set-class

space is followed by a convenient colouring of the set-class space. The set-class

content (description) of each segment is thus mapped to position in the class space,

and associated with a colour. All the segments are then represented as coloured pixels

in a two-dimensional plot, called a class-scape, and indexed by time (x-axis) and

time-scale (y-axis). The designs of the class-space and the colouring strategy are ap-

plication specific, depending on the pitch-related properties of interest. Sections 4.4.1

and 4.4.1.1 describe the method for two application scenarios.

4.4 Basic Set-Class Multi-scale Descriptors

This section presents the basic set of data structures (henceforth, descriptors) obtained

by the proposed method. Each descriptor is explained and interpreted in the context

of analytical examples.

4.4.1 The Class-Scape

A simple but useful task is to localize all the segments in the music belonging to a

given class. This is illustrated in Fig. 4.3, where the main features of the multi-scale

representation are also introduced. The top figure shows the class-scape computed

for Debussy’s Voiles,13 filtered by the class 6-35 (pixels in black), which corresponds

to the predominant hexatonic (whole-tone) scale in the composition. As a visual

13 The example has been chosen for illustrative purposes. It has clearly distinctive sonorities and is
‘easy’ to listen to, however, it is barely describable using conventional tonal description methods.
As with any music not based on the major–minor paradigm, its description in terms of standard
(non-systematic) dictionaries of chords or keys is nonsensical.
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Fig. 4.3 Debussy’s Voiles. Class-scape filtered by 6-35, piano roll, and 3 sample segments

reference, a thin blue line delineates the boundary in time and time-scale of the

complete, non-filtered, class-scape information. At the bottom of Fig. 4.3 is shown an

aligned piano-roll representation of the score for visual indexing of the composition,

as used in our interactive analysis tool (see Sect. 4.7).

Each pixel in the class-scape, visible or not after the class filtering, represents a

unique segment of music. Its x-coordinate corresponds to the temporal position of

the segment’s centre, and its y-coordinate represents its duration in a logarithmic

scale. The higher a pixel is in the class-scape, the longer the duration of the repre-

sented segment. Three sample points (+ signs) and their corresponding segments are

sketched as an example. In the figure, three large-scale structural hexatonic contexts

are clearly revealed.

4.4.1.1 Multi-class Representation and Inter-class Distances

An alternative representation, allowing for the inspection of all segments and classes

simultaneously, consists of assigning colours to classes. Given the relatively large

number of classes, an absolute mapping of classes to colours is unlikely to be in-

formative in general, so a relative solution is adopted. The method is a set-class

adaptation of the concept of ‘distance-scape’, introduced by Martorell (2013, pp.

48–49). A distance-scape is a keyscape, in which each pixel (segment) is coloured

according to its distance in pitch-space to a chosen tonal centre (e.g., the tonic of the

home key of the piece).

The adaptation of the method to our set-class domain requires the definition of

a systematic inter-class measure, able to relate every possible segment with any

chosen reference. Among the many set-class distances proposed in the literature,

a number of them can handle any pair of classes.14 Lewin’s REL (Lewin, 1979),

Rahn’s AT MEMB (Rahn, 1979), and Castrén’s RECREL (Castrén, 1994) are among

14 Most measures require pairwise cardinality equality. Some very informative measures, such
as Tymoczko’s voice-leading spaces (Tymoczko, 2011), could operate with different cardinalities.
However, the class equivalences for capturing such sophistications are more specific than our set
classes (iv, Tn and TnI), and they even require the use of multisets (pc-sets with repetitions).
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(a)

(b)

Fig. 4.4 Debussy’s Voiles. (a) Class-scape relative (REL) to 7-35. (b) REL distances from 7-35

the so-called total measures. They are based on vector analysis, considering the

complete subset content of the classes under comparison, and exhausting all the

possible pc-set inclusion relations. For systematization completeness, these measures

are adapted in our method, in order to accommodate the trivial forms.15

Each pixel in the class-scape is coloured according to the distance between the

class it represents and any chosen reference class. Figure 4.4(a) shows the class-scape

computed for Debussy’s Voiles, in which the diatonic class 7-35 has been chosen as

the reference class,16 and REL as the inter-class measure. This piece does not have

a single diatonic segment, so it is clear that the basic all-or-nothing filtering would

result in a completely white image. We denote by REL(7-35,*) the REL distance

from any class (asterisk) to the reference class 7-35, and encode its value with a

greyscale (from black = 0 to white = 1), as depicted in Fig. 4.4(b). This way, every

segment of the music (every pixel in the class-scape) is represented according to its

REL-closeness to 7-35.

In Fig. 4.4, it is straightforward to visualize the darkest areas in the class-scape,

corresponding to a brief pentatonic (5-35) passage, and its closest vicinity. It is

also clear that the large whole-tone (6-35) passages depicted in Fig. 4.3, as well

as their component subsets, are represented as being far from 7-35. Figure 4.4

clearly reveals the overall structure, while evidencing the radical analytical and

perceptual differences between symmetric (whole-tone) and asymmetric (diatonic-

based, here the pentatonic subset) scalar contexts.17 Incidentally, there exist some

15 See Harley (2014) for a comprehensive survey of set-class measures, formalized according to
their suitability for tonal analysis. Harley also discusses the accommodation of the trivial forms.
16 The diatonic class has been chosen for illustration purposes, as a common and well-known set.
17 By symmetric, in this work we refer to maximally even sets (Clough and Douthett, 1991) fea-
turing a reduced number of distinct transpositions, often known as Messiaen’s modes of limited
transposition. These sets present highly symmetric distributions in the chromatic circle. For in-
stance, the whole-tone-scale set (6-35) has 2 different transpositions and 6 symmetry axes in the
chromatic circle, in contrast with the anhemitonic pentatonic set (5-35), which features 12 distinct
transpositions and 1 symmetry axis.
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isolated segments (just two pixels in the class-scape) belonging to the scalar formation

set 6-33B,18 which are the closest ones to 7-35 in the composition.

This points to an interpretative aspect of the class-scapes: the analytical relevance

of what is shown is often related to the accumulation of evidence in time and time-

scale. A significantly large area of the class-scape showing the same material is

probably representative of a section of music in which such evidence is of analytical

and/or perceptual relevance, in the sense that it accounts for a passage in which the

inspected properties are stable (i.e., a stable context). Smaller patches, even single

isolated pixels, capture the class content of their corresponding segments as well.

However, they could just be pitch-aggregate by-products lacking analytical interest,

such as the spurious 6-33B in Voiles. Human cognitive (visual) abilities play an

important role here in focusing the viewer’s attention on the areas where homoge-

neous evidence accumulates, an important feature of multi-scale representations for

assisting pattern recognition tasks.19 On the other hand, localized spots of residual

evidence may be worth closer inspection, and so interaction with the class-scape is

facilitated.

A relevant benefit of pc-set-based spaces, as opposed to continuous ones,20 is that

music can be analysed in terms of different class systems at no extra computational

cost. Being finite and discrete spaces (4096 classes at most for the TET system),

the whole equivalence systems, including their inner metrics, can be precomputed.

The mapping from pc-sets to set-classes, as well as the distances between any pair

of music segments, can thus be implemented by table indexing. Once the pc-set of

each possible segment has been computed (which constitutes the actual bottleneck

of the method), the rest of the process is inexpensive, and multiple set-class lenses
can be changed in real time, allowing fast interactive explorations of the massive

data. This alleviates part of Forte’s concerns about the unfeasibility of systematic

segmentation and filtering decisions (Sect. 4.2.1). This feature, along with a variety

of filtering options for visual exploration, can be tested with our proof-of-concept

set-class analysis tool (see Sect. 4.7).

4.4.2 Piecewise Summarization: Class-Matrix and Class-Vector

The class-scape provides a comprehensive bird’s-eye view of the piece, well adapted

for visual exploration. However, other applications would require more compact and

manageable, yet informative, data structures. As discussed in Sect. 4.2.3, it is of

interest to preserve the class integrity and as much temporal information as possible.

In this subsection, we present two such dimensional reductions, derived from the

class-scape: the class-matrix and the class-vector.

18 The class 6-33B results from removing the third degree from a major diatonic set.
19 In his classic work on visualization, Tufte (2001, pp. 16–20) discusses similar cognitive implica-
tions to demonstrate the usefulness of his massive ‘data maps’ as instruments for reasoning about
quantitative information.
20 Such as those accommodating the so-called chroma features, which are finite but continuous.
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(a)

(b)

(c)

Fig. 4.5 Debussy’s Voiles. (a) Class-scape as a sparse 3-D matrix. (b) Class-matrix. (c) Class-vector

4.4.2.1 The Class-Matrix

As a data structure, the 2-dimensional class-scape presented above can be thought of

as a sparse 3-dimensional binary matrix, in which each segment is indexed by the

temporal location of its centre (x-axis), its duration (y-axis), and its class content

(z-axis). In Fig. 4.5(a), such an arrangement is shown for Debussy’s Voiles, with

the classes 5-35 (pentatonic) and 6-35 (whole-tone) annotated as reference. The

first reduction process consists of projecting this information into the time–class
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plane. Given the special meaning of the lost dimension (time-scale), this implies

growing each point to the actual duration of the segment it represents. The resulting

data structure, referred to as a class-matrix, is a multi-dimensional time series of

a special kind, which requires a proper interpretation. It represents the N classes

as N rows, arranged from bottom to top according to Forte’s cardinality-ordinal

convention (Forte, 1964). An activated position (t,c) in the class matrix (black

pixels) means that at least one segment belonging to the class c includes the time

position t. A position on the time axis of the class-matrix is not associated with

a unique segment, but with all the segments containing that time point. The class-

matrix, thus, summarizes information from all the time-scales simultaneously. Unlike

the approach of Huovinen and Tenkanen (2007), which also accounts for several

time-scales in a single tail-segment array, the class-matrix preserves a strict separation

of classes. This feature can be exploited in more subtle descriptive tasks, as discussed

in Sect. 4.5.2.

Figure 4.5(b) shows the class-matrix for Debussy’s Voiles under iv-equivalence,

revealing the prelude’s economy of sonorities, characteristic of works mostly based

upon symmetric scalar formations. Even with the loss of information, it helps to

visualize the contribution of each individual class, since colouring is no longer

required. The individual duration of each frame from the initial segmentation may

not be appreciated in the class-matrix, since overlapped segments belonging to the

same class are projected as their union in the time domain, which has interpretative

consequences when looking at individual classes. However, the strict separation of

classes allows one to capture relational details of certain structural relevance, by

analysing the inclusion relations down the hierarchy of classes, as will be discussed

below in Sect. 4.5.2.

4.4.2.2 The Class-Vector

An even more compact representation provides a means for quantification. For each

row in the class-matrix, the activated positions are accumulated and expressed as a

percentage of the total duration of the piece. This data structure, henceforth class-
vector, has a dimension equal to the number of classes, and quantifies the temporal

presence of each possible class in a piece. Figure 4.5(c) shows the class-vector

computed for Debussy’s Voiles. The potential of class-vectors for comparing different

pieces of music, however, raises the problem of resolution. The segmentation used so

far was convenient for visualization and fast interaction with the data, but it is clear

that the same segmentation parameters may not resolve equally the class content of

different pieces, compromising any quantitative comparison. However, class-vectors

can be computed with absolute precision, by substituting the multi-scale policy by

a truly systematic approach, which captures all the possible different segments, as

described in Sect. 4.3.1 (see also the worked example in Sect. 4.3.2). Such exhaustive

computation is thus performed for any application involving quantification.21

21 Class-matrices are also suitable for precise quantitative applications. Our method relies upon lists
of temporal segments for each class.
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4.5 Mining Class-Matrices

This section presents two applications of the information conveyed by the class-

matrices.

4.5.1 Case Study: Structural Analysis

Self-similarity matrices (SSMs) are simple tools commonly used for finding recur-

rences in time series (Foote, 1999). In music-related applications, the typical inputs to

an SSM are spectral or chroma feature time series. Some of the SSM-based methods

can handle different time-scales, and some of the chroma methods allow for transposi-

tional invariance (Müller, 2007). These functionalities are usually implemented at the

SSM computation stage,22 or as a post-processing step. In the class-matrices, both the

equivalence mappings (including their inherent hierarchies) and the multi-scale nature

of the information are already embedded in the feature time-series, so a plain SSM

can be used for finding sophisticated recurrences. For instance, a passage comprised

of a chord sequence can be recognized as similar to a restatement of the passage with

different arpeggiations and/or inversions of the chord intervals (e.g., from major to

minor triads). A vertical chord and its arpeggiated version may not be recognized as

very similar at the lowest cardinalities, but their common TnI-sonority will certainly

emerge at their corresponding time-scales. Moreover, any sonority containing the

chords (i.e., supersets) will also be captured at their proper time-scales, climbing

up the hierarchy until we reach the whole-piece segment, everything indexed by a

common temporal axis. A quantification of similarity between variations may thus

be possible at the level of embedded sonorities.

We now consider the application of the above method to the analysis of large-scale

recurrence in Webern’s Variations for piano op.27/I, as an example of a challenging

musical work, barely describable by standard tonal features (such as chroma, chords

or keys). This dodecaphonic (early serialism) piece presents an A–B–A′ structure,

built upon several instantiations of the main twelve-tone row under different transfor-

mations, involving transpositions, inversions and distinct harmonizations. Figure 4.6

(top) depicts the class-scape of the piece, filtered by the prominent hexachordal

iv-sonority 〈332232〉, and Fig. 4.6 (bottom) shows the well-known structure of the

row instantiations (extensively analysed in the literature), annotated according to

Cook (1987).23 The large-scale A–B–A′ structure can be observed with the naked eye

in Fig. 4.6 (top).

22 For instance, transpositional invariance is often achieved by computing twelve SSMs, accounting
for each of the twelve ring-shifted versions of the chroma features.
23 The standard terminology in row analysis is followed: P stands for the prime form of a row, R
for a row’s retrograde, I for its inversion, and the ordinal number indicates the transposition. For
instance, RI-6 refers to a row instantiation, which appears transposed 6 semitones above the original
row, with all its intervals inverted, and retrograded. The double labelling stands for the simultaneous
occurrence of each row instantiation with its own retrograde version throughout the piece. For a
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Fig. 4.6 Webern’s op.27/I. Top: class-scape filtered by 〈332232〉; Bottom: structure

(a)

(b)

(c)

Fig. 4.7 SSMs for Webern’s op.27/I. (a) pc-equivalence. (b) Tn-equivalence. (c) TnI-equivalence
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Finding this large-scale A–B–A′ form thus requires us to look for transformed

repetitions. This can be done with an SSM, fed with an input time-series that is

invariant to those transformations. Figure 4.7 depicts the output of a plain SSM,

computed from three different inputs: a) the pc-set time series;24 b) the class-matrix

under Tn; and c) the class-matrix under TnI. The pc-equivalence does not capture any

large-scale recurrence. The restatement of the first two phrases in A is captured by the

Tn-equivalence, as these phrases are mainly related by transposition in A′. Finally, the

TnI-equivalence reveals the complete recapitulation, including the last two phrases of

A, which are restated in A′ in both transposed and inverted transformations.

It is worth noting that the method is agnostic with respect to the general sonor-

ity, the ubiquitous 〈332232〉 that reveals the large-scale structure (as in Fig. 4.6).

Moreover, it is not necessary for the recurrences to be exact transformations (e.g.,

exact transpositions). This is because, by using class-matrices as input to the SSM,

similarity is conceived of as a construction down the subclass (hierarchical) inclusion

relations.25 This allows for the discrimination of the B section, built upon the same

iv-hexachordal sonority and the same kind of row instantiations as A and A′, but

presented in distinct harmonizations.

4.5.2 Case Study: Hierarchical Subclass Analysis

Class-matrices can also be exploited to describe the subclass content under any

class, revealing the building blocks of particular class instantiations. The next case

study analyses two corpora in terms of pure diatonicism, by characterizing the subset

content of only the diatonic segments.

The computation process for the Agnus Dei from Victoria’s Ascendens Christus
mass is depicted in Fig. 4.8. The diatonic-related subclass content is isolated by

considering only the information below the activated 7-35 positions in the class-

matrix, as shown in Fig. 4.8(a). The result of this process is a subclass-matrix,

in Fig. 4.8(b), with a number of rows equal to the number of subset classes (up to

cardinality 6 here). Partially overlapped classes which are not a subset of 7-35 are then

removed from the subclass-matrix. Following the same method as for class-vectors,

a subclass-vector is then computed from the subclass-matrix. The subclass-vector, in

Fig. 4.8(c), quantifies the total subclass content contributing to the reference class,

describing what (and how much of it) the particular diatonicism consists of. The

most prominent subclasses at 3-11, 5-27 and 6-Z25 stand out in the subclass-vector,

which also reveals other common scalar formation classes of cardinalities 4 to 6.

The method can be extended for characterizing a corpus, according to some spe-

cific sonorities, by taking a class-wise average across the subclass-vectors extracted

detailed analytical discussion of the piece, in terms of this hexachordal sonority under different
equivalences, see Martorell and Gómez (2015).
24 In a sense, the discrete equivalent of the chroma features.
25 The SSM compares multi-dimensional (vertical) views of the class-matrix, each of them account-
ing for all the embedded contexts around its corresponding temporal location.
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Fig. 4.8 Victoria’s Ascendens Christus, Agnus Dei. (a) Filtering under 7-35. (b) Subclass-matrix.
(c) Subclass-vector
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Fig. 4.9 Diatonicism in Victoria and Bach. Mean subclass-vectors under 7-35

from all the pieces. Figure 4.9 depicts the mean subclass-vector under 7-35 computed

for two contrasting corpora: a) Victoria’s parody masses in Ionian mode;26 and b)

the preludes and fugues in major mode from Bach’s Well-Tempered Clavier. The

selection of the corpora is based on the close relationship between the major and the

Ionian modes, the comparable number of voices and movements in both corpora, and

the (loose) assumption of homogeneity in the usage of contrapuntal resources by each

composer. For clarity of comparison including standard deviations, only the actual

subclasses of 7-35 are represented. The prominent use of major and minor triads

(3-11) in Victoria’s diatonicism relative to Bach’s stands out. Similarly predominant

is the class 5-27, a far more recurrent cadential resource in Victoria.27 On the other

hand, the Locrian hexachord 6-Z25 is far more prevalent in Bach. Apart from its

instantiations as perfect cadences28 in both corpora, 6-Z25 appears consistently in

many motivic progressions in Bach, which are not idiomatic in Victoria’s contrapuntal

writing.29

4.6 Mining Class-Vectors

This section elaborates upon the information conveyed by the class-vectors. As

mentioned, a class-vector quantifies the temporal presence of every class sonority,

relative to the duration of the piece. Finding specific sonorities in large datasets can

be combined with the extraction of the actual segments from the MIDI files. This can

be exploited in various applications, ranging from the analysis of corpora to music

26 Including Alma Redemptoris Mater, Ave Regina Caelorum, Laetatus Sum, Pro Victoria, Quam
Pulchri Sunt, and Trahe Me Post Te. See Rive (1969) for a modal classification.
27 The class 5-27 results from the combination of the dominant and tonic major triads.
28 The class 6-Z25 results from the combination of a major triad and its dominant seventh chord.
29 By interfacing class-vectors with class-scapes, the content of particular class instantiations can
be easily explored and listened to with our interactive analysis tool (see Sect. 4.7).
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education. For this work, a dataset of class-vectors was computed from more than

16000 MIDI tracks.30

4.6.1 Case Study: Query by Set-Class

A simple but useful application is querying a database of pieces for a given set-class.

It can be used for finding pieces with a relevant presence of any chordal or scalar

sonority, such as exotic scales. This kind of task is problematic using standard tonal

features, which (usually) support neither contextual descriptions nor tonal systems

other than the common-practice harmonic idioms. Table 4.1 shows 10 retrieved pieces

with a notable presence (relative duration) of the sonority 7-22, usually referred to

as the Hungarian minor set-class.31 Both monophonic and polyphonic pieces are

retrieved, ranging over different styles and historic periods, as the unique requisite for

capturing a given sonority was its existence as a temporal segment. The instantiations

of 7-22 in the retrieved pieces are also varied, ranging from passages using an actual

Hungarian minor modality, to short but frequent (colouring) deviations from the

minor mode, including some non-relevant pitch concatenation by-products.

Table 4.1 Retrieved pieces: 7-22

Retrieved piece 7-22 (%)

Scriabin - Prelude op.33 n.3 68.61

Busoni - 6 etudes op.16 n.4 63.22

Essen - 6478 62.50

Liszt - Nuages gris 42.41

Essen - 531 36.67

Scriabin - Prelude op.51 n.2 31.74

Lully - Persee act-iv-scene-iv-28 29.73

Alkan - Esquisses op.63 n.19 28.87

Satie - Gnossienne n.1 28.15

Scriabin - Mazurka op.3 n.9 24.61

30 Including works by: Albeniz, Albinoni, Alkan, Bach, Bartók, Beethoven, Berlioz, Bizet, Brahms,
Bruckner, Busoni, Buxtehude, Byrd, Chopin, Clementi, Corelli, Couperin, Debussy, Dowland, Dufay,
Dvořák, Fauré, Franck, Frescobaldi, Gesualdo, Guerrero, Handel, Haydn, Josquin, Lasso, Liszt, Lully,
Mahler, Mendelssohn, Messiaen, Monteverdi, Morales, Mozart, Mussorgsky, Pachelbel, Paganini,
Palestrina, Prokofiev, Rachmaninoff, Rameau, Ravel, Reger, Saint-Saëns, Satie, Scarlatti, Schoenberg,
Schubert, Schütz, Schumann, Scriabin, Shostakovich, Soler, Stravinsky, Tchaikovsky, Telemann,
Victoria and Vivaldi. It also includes anonymous medieval pieces, church hymns, and the Essen
folksong collection.
31 Sometimes also called Persian, major gypsy, or double harmonic scale, among other denomina-
tions. Its prime form is {0,1,2,5,6,8,9}.
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4.6.2 Case Study: Query by Combined Set-Classes

The strict separation of classes in the class-vectors allows for the exploration of any

class combination, whether common or unusual. For instance, the first movement

of Stravinsky’s Symphony of Psalms is retrieved by querying for music containing

substantial diatonic (7-35) and octatonic (8-28) material, certainly an uncommon mu-

sical combination. The class-vector also reveals the balance between both sonorities,

as 30.18 % and 29.25 % of the piece duration, respectively.

As discussed in Sect. 4.5.2, the class-matrices allow for the hierarchical analysis of

specific sonorities. The class-vectors, on the other hand, summarize the information

in a way that does not, in general, elucidate the subclass content under a given class.

However, if the queried sonorities have a substantial presence (or absence) in the

piece, the class-vectors alone can often account for some hierarchical evidence. One

can, for instance, query the dataset for pieces with a notable presence of the so-

called suspended trichord (3-9),32 constrained to cases of mostly diatonic contexts

(7-35). This situation is likely to be found in folk songs, medieval melodies, early

counterpoint, or works composed as reminiscent of them. It is worth noting that the

3-9 instantiations may appear as a result of a variety of pitch aggregates, such as in

monophonic melodies, as a combination of melody and tonic-dominant drones, as a

combination of tenor and parallel motion in fifths and octaves, and as actual (voiced)

suspensions.

Similarly, as non-existing sonorities may also reveal important characteristics of

music, the dataset can be queried for combinations of present and absent classes.

For instance, the sonority of purely diatonic (7-35) pieces depends on whether they

contain major or minor trichords (3-11) or not. If we constrain the query to polyphonic

music, the retrieved pieces in the latter case (diatonic, not triadic) belong mostly to

early polyphony, prior to the establishment of the triad as a common sonority.

These results point to interesting applications related to music similarity, such as

music education or recommendation systems. Music similarity is, to a great extent,

a human construct, as it depends upon cultural factors and musical background. Of

particular interest is the possibility of retrieving pieces sharing relevant tonal-related

properties, but pertaining to different styles, composers, or historical periods. Music

discovery or recommendation systems could thus serve as music appreciation or

ear-training tools, by suggesting pieces across standard taxonomies (e.g., composer or

style) subjected to musically relevant similarity criteria. This would help to reinforce

listening skills for specific sonorities, while enriching the contextual situations in

which they appear in real music. Recommender systems able to explain the basis of

their recommendations, using some standard musicological lexicon (e.g., as provided

by the set-classes), would be a particularly useful application for such purposes.

32 A major or minor trichord with the third degree substituted by the fourth or the second.
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4.6.3 On Dimensionality and Informativeness

As pointed out in Sect. 4.2.2, the compromise between the dimensionality of the

feature space and the informativeness of a description is a relevant factor in feature

design. The class content of a piece, as described by its class-vector, has 200, 223

or 351 dimensions, depending on the chosen equivalence (iv, TnI or Tn). Compared

with other tonal feature spaces, these dimensions may seem quite large. However,

the benefits of class vectors are the systematicity, specificity and precision of the de-

scription. Several relevant differences with respect to other tonal-related features are

to be noticed. A single class-vector, computed after a fully systematic segmentation,

1. accounts for every distinct segment in a piece, regardless of its time position or

duration;

2. accounts for every possible sonority in the set-class space, which is complete;

3. provides an objective and precise description of the set-class sonority;

4. provides a description in music-theoretical terms, readable and interpretable by

humans;

5. provides an objective quantification of every possible sonority in terms of time;

6. provides a content-based, model-free, description of the piece; and,

7. in some cases, provides an approximation to the hierarchical inclusion relations.

In contrast, the most common tonal piecewise and labelwise feature (global key

estimation) provides

1. a single label for the whole piece;

2. 24 different labels, but only two different sonorities (major and minor);

3. an estimation of the key, which is often misleading;

4. a description in music-theoretical terms, but of little compositional relevance;

5. quantification (sometimes) by key strength, but with no temporal information at

all;

6. a description based on specific and biased models (e.g., profiling methods); and

7. no access to the hierarchical relations of the piece’s tonality.

With this in mind, it seems to us that a piecewise description in 200 dimensions

provides a reasonable trade-off between size and informativeness. Considering the

somewhat sophisticated tonal information conveyed by the class-vectors, they may

constitute a useful complementary feature for existing content-based descriptors.

4.7 Interfacing Representations

As pointed out in Sect. 4.2.3, the design of the proposed descriptors aims to maximize

the overall informativeness of the method. This is proposed through interaction with
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the user, in our proof-of-concept set-class analysis tool. In this section, we briefly

describe the basic functionalities of the tool.33

Figure 4.10 depicts a screenshot of the interface, in which the basic descriptors

(class-scape, class-matrix and class-vector) are readily accessible. Debussy’s Voiles
serves again as an analytical example. Both the class-scape and the class-vector can be

navigated with a cursor. Any class can be chosen from the class-vector, establishing a

reference sonority which affects the visualization of the class-scape. The class-scape

has two visualization modalities (single-class and multi-class), corresponding to

those described in Sects. 4.4.1 and 4.4.1.1, both controlled by the reference class

chosen from the class-vector. The equivalence system as a whole can be changed

(iv, Tn and TnI are supported), as well as the inter-class measure (REL, RECREL
and ATMEMB are supported). The class-scape can also be filtered by any set of

cardinalities. Any segment can be selected from the class-scape, in order to inspect its

properties, and it can be played for auditory testing. All the information is interactively

updated according to the user actions, allowing a fast exploration of different filtering

possibilities. This facilitates the analysis loop, understood as the process whereby

an analyst refines the observation parameters according to his or her findings and

intuitions.

Fig. 4.10 Interfacing set-class analysis

33 See http://agustin-martorell.weebly.com/set-class-analysis.html for details.
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4.8 Conclusions

This work presents a systematic approach to segmentation, description and represen-

tation of pieces of music. The methodology is designed for analysing the musical

surface in terms of embedded contexts, as an alternative to the usual event-based

approaches. A set-class description domain provides a mid-level lexicon, which

encodes useful tonal properties of pitch aggregates of any kind, allowing the de-

scription of any chordal or scalar sonority. The class-scapes provide a bird’s-eye

view of a complete piece of music, furnishing information about the class content

of every possible segment, whether in absolute terms or relative to any reference

class. The class-matrices are multi-dimensional time series, invariant to time-scale

and to several transformations, representing the existence of every possible class over

time. They can be combined with the simplest pattern finding methods for capturing

complex tonal recurrences, and they can provide information about the hierarchical

construction of any class sonority. The class-vectors are piecewise tonal summaries,

quantifying the temporal presence of every possible class in a piece. They can be ex-

ploited in querying tasks of certain sophistication, beyond the possibilities of standard

tonal features, while providing a means for describing (and explaining) similarity

in alternative and insightful ways. The compromise between dimensionality and

informativeness of the class-vectors may constitute a useful complement to existing

content-based features. The insights provided by the class-scape visualizations can

be interfaced with class-vectors, different class-spaces, inter-class measures, and

standard pitchwise filters, in order to provide fast interactive assistance to the analyst.

The examples in this chapter show that these descriptors can provide information

about very different musical idioms, ranging from monophonic folk tunes and early

polyphony to pieces that use exotic scales as well as atonal music.

Acknowledgements This work was supported by the EU 7th Framework Programme FP7/2007-
2013 through PHENICX project [grant no. 601166].

Supplementary Material The interactive potential of the methods discussed in this work can
be tested with our multi-scale set-class analysis prototype for Matlab, freely available from
http://agustin-martorell.weebly.com/set-class-analysis.html. A detailed manual of the tool, a com-
prehensive table of set-classes, and a (growing) dataset of class-vectors, are also available at this
site.
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Chapter 5
Computational Analysis of Musical Form

Mathieu Giraud, Richard Groult, and Florence Levé

Abstract Can a computer understand musical forms? Musical forms describe how a

piece of music is structured. They explain how the sections work together through

repetition, contrast, and variation: repetition brings unity, and variation brings interest.

Learning how to hear, to analyse, to play, or even to write music in various forms is

part of music education. In this chapter, we briefly review some theories of musical

form, and discuss the challenges of computational analysis of musical form. We

discuss two sets of problems, segmentation and form analysis. We present studies

in music information retrieval (MIR) related to both problems. Thinking about

codification and automatic analysis of musical forms will help the development of

better MIR algorithms.

5.1 Introduction

Can a computer understand musical forms? Musical forms structure the musical

discourse through repetitions and contrasts. The forms of the Western common

practice era (e.g., binary, ternary, rondo, sonata form, fugue, variations) have been

studied in depth by music theorists, and often formalized and codified centuries after

their emergence in practice. Musical forms are used for pedagogical purposes, in

composition as in music analysis, and some of these forms (such as variations or

fugues) are also principles of composition that can be found inside large-scale works.
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Lille 1, Villeneuve d’Ascq, France
e-mail: mathieu@algomus.fr

Richard Groult · Florence Levé
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For computer scientists working in music information retrieval (MIR) on symbolic

scores, computational analysis of musical forms is challenging. On the one hand,

very constrained music structures or forms can have rather consensual analyses,

such as in an ABA form, and can therefore constitute good benchmarks for MIR

algorithms. On the other hand, even if it seems difficult to automatically analyse

more elaborate forms, where musicological or aesthetic considerations would seem

to demand human expertise, an MIR analysis could provide a valuable time or

computation gain towards systematic study and comparison of big musical data sets.

More generally, symbolic MIR methods on musical forms are in their infancy and

are a long way from the analysis done by performers, listeners, or music theorists:

research into the codification and automatic analysis of musical forms will help the

development of better MIR algorithms.

We begin this chapter by briefly reviewing some theories of musical form

(Sect. 5.2). Two sets of MIR problems arise from these notions of musical structure:

segmentation, which may be studied in all genres of music, and form analysis. We

then present studies in MIR related to both problems (Sect. 5.3) as well as evaluation

datasets and methods (Sect. 5.4). We conclude by discussing some perspectives as

well as the usefulness of form analysis in MIR.

5.2 Musicological Motivation and MIR Challenges

5.2.1 Theories of Form

Musical forms describe how pieces of music are structured. Such forms explain how

the sections work together through repetition, contrast, and variation: repetition brings

unity, and variation brings interest. The study of musical forms is fundamental in

musical education as, among other benefits, the comprehension of musical structures

leads to a better knowledge of composition rules, and is the essential first approach

for a good interpretation of musical pieces. Not every musical piece can be put into a

formal restrictive scheme. However, forms do exist and are often an important aspect

of what one expects when listening to music (Cook, 1987).

Even if musical forms have been discussed for several centuries, there are still

debates between musicologists on their exact nature. The formalization of many

musical forms was done in nineteenth century textbooks aimed at teaching composi-

tion to music students (Czerny, 1848; Marx, 1847; Reicha, 1824). Many theories of

musical form and how to analyse form have arisen since (Nattiez, 1987; Ratner, 1980;

Ratz, 1973; Schoenberg, 1967). Systematic methods for music analysis generally

include some formalization of large-scale structure or form, such as the fundamental

structure and more superficial structural levels (Schichten) of Schenkerian analysis

(Schenker, 1935), the growth category of LaRue (1970), or the grouping structures

and reductions of Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal Music
(see also Chaps. 9 and 10, this volume).
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Table 5.1 Musical forms from a thematic point of view. Letters designate contrasting sections

Form Structure Further details

Fugue Contrapuntal form

Variations A A′ A′′ A′′′
Binary AA′, AB, AAB, ABB, AA′BB′
Ternary ABA, ABA′
Rondo ABACADA... A: ‘chorus’, B, C, D: ‘verse’

Sonata form AB–Dev–AB A: ‘principal’ theme/zone

Rondo-Sonata form AB–AC–AB B: ‘secondary’ theme/zone

Cyclic form

Free forms

Musical form is still an active field of research in musicology. Contemporary

approaches to musical form include the “theory of formal functions”, describing the

role played by each section and formal processes inside and between them; “dialogic

form”, that is, form in dialogue with historically conditioned compositional options;

and “multivalent analysis”, which consists of form analysis along several independent

elements (Caplin, 2000; Caplin et al., 2009).

5.2.2 Usual Forms

Table 5.1 lists the most common forms, taking the usual segmentation point of view:

forms are here given as a succession of sections denoted by labels. Binary form

consists of two sections, where one or both sections can be repeated, usually with

some variation (as for the Bar form, AAB). The sections can use the same or different

thematic material. They usually have a comparable length, but the second section can

sometimes be longer. In ternary forms, a contrasting section comes between the two

statements of the first section. A ternary form can be simple (as in the aria da capo or

lied form), or compounded of binary forms (as in trio forms, such as Minuet/Scherzo)

or even of ternary forms. Sonata form consists of an exposition, a development, and

a recapitulation, and is generally built on two thematic areas.

One should note that the segmentation is only an element of the form analysis.

The proper understanding of a ternary form often requires that one explains in which

aspects (tonality, texture, rhythm, etc.) the contrasting section B differs from, or

complements, the initial section A. Many forms also include high-level tension and

dynamics that should be explained. Sonata forms combine these principles, including

a tonal path: the piece goes to a secondary key, often the dominant, and then comes

back to the tonic. A segmentation is thus a very partial view on a form.

More generally, there are many free forms that are more difficult to classify

according to a section-based view. Baroque preludes and inventions are often viewed

as free forms. However, this does not mean that they are not structured, but rather
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that their organization depends on other components, such as texture or tension. An

extreme case is some open forms, where the order of execution of the sections is not

fixed by the composer, but where some components can still be conceived of in terms

of form.

A full musical analysis that reveals a musical form should thus include considera-

tion of all organizational principles, not just a simple segmentation. Note that there

are typically many possible analyses, focusing on different aspects of a score. One

may even start from different musicological hypotheses. For example, the conception

of sonata form has evolved over time. Originally defined in two parts from a thematic

perspective (Reicha, 1824), it was then theorized as a ternary form by A. B. Marx,

who first named it, and C. Czerny (Czerny, 1848; Marx, 1847). Then Rosen returned

to the view that this form derived from binary form, and that the most critical feature

is the tonal and harmonic path followed (Rosen, 1980). The recent theory of Hep-

okoski and Darcy (2006) further emphasizes the importance of the medial caesura

and rotations. Depending on the underlying musicological assumptions, an analysis

of such a form will thus focus on different organizational principles.

5.2.3 Challenges for MIR

Based on these conceptions of musical form, we see two sets of challenges related to

structure and form in MIR:

• Segmentation consists of taking a piece—either a score, or an audio file—and

chunking it into sections, possibly labelled, as in Table 5.1. There are several MIR

challenges involved in segmentation, such as identifying correct phrase or section

boundaries and assessing the similarity between sections.

• Form analysis consists of predicting a segmentation together with semantics on

this segmentation and on the global layout of the piece. The provided semantics

can be both internal, indicating the formal function of a section and how the

sections relate to each other and to the global layout (“B is a variation of A”); or

external, explaining how the sections are organized with respect to some historical

corpus or analytical practice (“A is in dialogic form”, “A and B are the two

thematic zones of a sonata form”). Finally, it has to build upon several elements

(multivalent analysis): a thematic segmentation is one of these elements, but not

the only one. For example, evolution of tension and tonal path are elements that

should be included in a complete form analysis.

Even if the term “musical form” is often applied to baroque, classical and romantic

music analysed within traditional musicology, form analysis can be carried out on

any genre of music, and many of the studies that will be discussed in this chapter

focused on popular music.

Of course, segmentation and form analysis are related: segmentation is an essential

component of an analysis of a musical form; and to assign labels to segments (A,

A1, A′, B, etc.) requires knowledge about the relations between sections and their
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semantics. Segmentation problems can (partially) be formalized and evaluated against

reference analyses (see Sect. 5.4.2), and are an important set of challenges for the

MIR community.

Nevertheless, we believe that the computational music analysis (CMA) commu-

nity should aim at solving full “form analysis” problems, trying to have a better

understanding of musical structure, beyond mere segmentation. Unfortunately, for-

malization of these tasks—and thus of their evaluation—is even more challenging

than it is for segmentation. One may believe that some tasks inevitably resist com-

puter formalization, as research in CMA should be linked to musicological practice,

including subjectivity in the description of forms. However, this subjectivity might

be modelled in some ways. Ideally, a model should be able to predict where there

might be a disagreement about the form of a piece, and even predict several different

formal analyses of the same piece where ambiguity exists.

5.3 Methods for Segmentation and Form Analysis

In this section, we review existing algorithmic methods for segmentation and form

analysis.

5.3.1 Musical Structure and Segmentation

5.3.1.1 Phrase-Structure Analysis and Melodic Segmentation

Even if the aim of melodic segmentation is not to give a large-scale structure for

a musical piece, it allows us to chunk music into phrases, which can provide clues

about boundaries between structural sections.

A common way to handle monophonic data is to observe the differences between

successive intervals or durations. It is not simply a large interval or a large duration

that marks the end of a phrase, but the variation in these quantities. One reference

algorithm here is Cambouropoulos’ (2001, 2006) local boundary detection model
(LBDM) which is a simple algorithm that achieves good results. This algorithm con-

siders both melodic intervals, durations and rests, and detects points of segmentation

as the maxima of some profile function. More recent work on melodic segmentation

includes that of Muellensiefen et al. (2008), Wiering et al. (2009) and Rodrı́guez-

López et al. (2014). Phrase segmentation can also be done on polyphonic data: for

example, Rafailidis et al. (2008) proposed a method to infer stream segments, based

on an n-nearest-neighbour clustering from grouping criteria.

Note that pattern inference and matching algorithms (see Chaps. 11–17, this

volume) can also be used to detect repeating sections and predict their boundaries.
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5.3.1.2 Global Segmentation

We focus here on algorithms that aim to provide a high-level segmentation of a

musical piece. Structural music segmentation consists of dividing a musical piece into

several parts or sections and then assigning to those parts identical or distinct labels

according to their similarity. The founding principles of structural segmentation,

whether it be from audio or symbolic sources, are homogeneity, novelty, and/or

repetition.

Audio Sources Many methods for segmenting audio files are based on auto-

correlation matrices (Foote, 1999). Some methods focus on the detection of repeated

sections (Chai, 2006; Dannenberg and Goto, 2009; Dannenberg and Hu, 2002) possi-

bly after the extraction of features from a signal (Peeters, 2007). Other methods are

based on probabilistic approaches (Paulus and Klapuri, 2008), or on timbre charac-

teristics (Levy et al., 2007). Maddage et al. (2009), Paulus et al. (2010) and Klapuri

(2011) provide recent surveys. Some systems and algorithms can be applied to both

audio and symbolic sources, such as that of Sargent et al. (2011), where a Viterbi

algorithm predicts the segments, taking into account both a content-based cost, based

on similarity between segments, and a “regularity cost” favouring segments of similar

lengths. This regularity cost improves the segmentation on Western popular songs.

Symbolic Sources There is less work to date that focuses on segmentation of sym-

bolic scores. On monophonic data, Chen et al. (2004) segments the musical piece

into sections called “sentences”. The phrases predicted by the LBDM algorithm are

compared (using their first pitch and the subsequent contour) and clustered. The score

is then processed another time to obtain a sequence of labels and to predict the actual

starts of each section. For track-separated polyphonic data, Rafael and Oertl (2010)

propose combining segmentations from different tracks into a global fragmentation.

In each track, a set of repeated patterns is computed by a modified version of the

algorithm proposed by Hsu et al. (1998) allowing transpositions. Then these sets are

cleaned and further processed to obtain non-overlapping patterns. The segmentations

are then clustered into a global segmentation by maximizing a score function that

favours compatible segments from several tracks. However, besides some examples,

the authors do not report any evaluation of this method.

Several authors have proposed systems for generating analyses at larger scales in

accordance with well-established theories of tonal musical structure, such as Schenke-

rian analysis (Schenker, 1935) or Lerdahl and Jackendoff’s (1983) Generative Theory
of Tonal Music (GTTM) (e.g., Hamanaka and Tojo, 2009; Hirata and Matsuda, 2002;

Kirlin and Jensen, 2011; Marsden, 2010; see also Chaps. 9 and 10, this volume).

This is very challenging and still an open problem: in both Schenkerian analysis

and GTTM theory, carrying out a musically relevant analysis requires the making

of analytical choices that rely on a great deal of musical information. Other work

has also tried to model specific large-scale features, such as tonal tension (Farbood,

2010; Lerdahl and Krumhansl, 2007), that may also result in a global segmentation

of a piece.
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5.3.1.3 Discussion

Are such methods able to analyse classical musical forms? As discussed earlier,

segmentation is an important step towards the analysis of a musical structure, but to

be satisfactory, a musical analysis cannot just provide a segmentation into similar or

distinct parts. It is also necessary to identify the formal function of each segment of

the piece, and ideally to indicate the evolution of the compositional material when it

is used differently in several segments. Indeed, a segmentation ABABCAB could

just as well correspond to a popular song with verses and chorus with a transition (a

bridge), as to a classical sonata form where A and B are the principal and secondary

themes, played twice, followed by a development and a recapitulation.

5.3.2 Systems for Analysing Specific Musical Forms

In this chapter, we present computational systems tailored for the analysis of classical
musical forms, focusing on two particular cases: fugues and sonata form. In both

cases, we start from a score in which all voices are separated, and we compute

some local features using discrete tools (based on string comparison) and statistical

approaches. These local features can be gathered into a global analysis.

Note that other methods have been designed to check whether a piece follows a

given structure. For example, Weng and Chen (2005) built a tool to decide whether

a piece is a fugue, a rondo, or none of these, with a method to find occurrences of

thematic materials.

5.3.2.1 Fugue

Elements of Fugal Structure A fugue is a contrapuntal polyphonic piece built on

several melodic themes, including a subject (S) and, in most cases, one or several

countersubjects (CS1, CS2). A fugue is structured as a set of voices, where each

voice is mostly a monophonic sequence of notes. In the first section, the exposition,

the patterns are played by each voice in turn. First, the subject is stated in one voice

until a second voice enters. The subject is then repeated in the second voice, generally

transposed, while the first voice continues with the first countersubject, combining

with the subject. Bruhn (1993, p. 43) states that

the perfect little musical entity we call subject is in fact at the origin of the fugue. [...] The
subject is responsible for the feelings of density and relaxation in the fugue, and it is the
main force in creating structure.

The fugue alternates between other instances of the subject and the countersubjects

(either in their initial form, altered or transposed), and developments on these patterns

called episodes (E). The episodes can contain cadential passages, and are often

composed with harmonic sequences, which are passages where a pattern is consecu-

tively repeated starting on a different pitch, possibly modulating from one tonality
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to another. At the end of the fugue, one often finds stretti (shorter and narrower

statements of the head of the subject) and bass pedals.

Algorithms for Fugue Analysis Many MIR studies take examples from corpora

of fugues, for pattern extraction or grammar inference (e.g., Sidorov et al., 2014),

but few studies have been specifically devoted to fugue analysis. Browles (2005)

proposed several heuristics to aid in the selection of candidate fugue subjects using

the repeated pattern extraction algorithms of Hsu et al. (1998). These algorithms

maximize the number of occurrences of repeating patterns.

We have proposed several tools in a system for automated fugue analysis (Giraud

et al., 2015, 2012). Starting from a symbolic score that is separated into voices,

we compute the end of the subject and its occurrences (including augmentations or

inversions), and then retrieve CS1 and possibly CS2. Harmonic sequences, cadences,

and pedals are detected. Some of these elements are then combined to sketch the

global structure of the fugue. Figure 5.1 shows an example of the output of the system

on a fugue in B� major by J. S. Bach.

S/CS1/CS2 Patterns All the occurrences of S/CS1/CS2, as well as the patterns

that form harmonic sequences in episodes, are not necessarily identical, but can

be transposed or altered. The similarity score between a pattern and the rest of

the fugue can be computed via dynamic programming using equations similar to

the ones proposed by Mongeau and Sankoff (1990), and the alignment is retrieved

through backtracking in the dynamic programming table. A threshold determines

whether an occurrence is retained or discarded. Various methods have been proposed

for measuring similarity between pitch intervals. These include directly computing

intervals between diatonic pitches, strict pitch equality, “up/down” classes (Ghias

et al., 1995), “step/leap intervals” (Cambouropoulos et al., 2005) and “quantized

partially overlapping intervals” (QPI) (Lemström and Laine, 1998). We use very

conservative substitution functions: repeated patterns are detected using a substitution

function by considering the diatonic similarity of pitch intervals, and forcing the

duration of all except the first and the last notes to take the same value.

The subject is first heard alone by a unique voice until the second voice enters, but

the end of the subject is generally not exactly at the start of the second voice—in all

but one of 36 fugues by Bach or Shostakovich, the opening statement of the subject

ends between eight notes before and six notes after the start of the second entry. In

the first voice, we thus test patterns that finish between eight notes before and six

notes after the start of the second voice: each of these candidates is matched against

all the voices, and the candidate having the best total score on all its occurrences

is then selected. The subject can appear augmented (all durations are doubled) or

inverted (all pitch intervals are reversed), and once the subject is known, the same

matching algorithm retrieves the inversions or the augmentations of the subject.

The countersubject starts right after the subject (or very infrequently, after some

additional notes), and ends (in the majority of cases) exactly at the same position as

the subject. The second countersubject (when it exists) starts and ends approximately

at the start and end, respectively, of the third occurrence of the subject. We use the
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same matching algorithm to retrieve CS1/CS2. We allow a CS1 only when there is a

concurrent S, and a CS2 only when there is a CS1 in a “compatible” position.

Other Analytical Elements and Global Structure Using the substitution function,

we look for partial harmonic sequences—that is, consecutive transposed occurrences

of the same pattern across at least two voices (Giraud et al., 2012). Every bass note

that lasts strictly more than four beats (for binary metres) is labelled “bass pedal” (or

six beats for ternary metres). We try to identify a perfect authentic cadence (V–I in

root position) by detecting a dominant chord followed by a complete or partial tonic

chord with the root in the bass.

Finally, we use a hidden Markov model to combine previous elements to discover

the sequence of states that structure the fugue (exposition, codetta, further exposition,

further episodes). The observed symbols are the elements output by the preceding

analysis steps (entries of subjects and countersubjects, harmonic sequences).

Results Our aim with this system was to provide algorithms with high precision
rather than high recall. As all the content of a fugue is somewhat derived from the

base patterns, what is interesting is not to locate as many approximate occurrences

as possible or to infer very short patterns, but to provide an analysis with some

semantics: the occurrences of the patterns and of other analytical elements should

be organized into a meaningful analysis. The system has been tested on 36 fugues

of Bach and Shostakovich, and was successful in finding the main patterns and the

global structure in at least half of the fugues (Giraud et al., 2015). In both the Bach

and Shostakovich corpora, the precision of pattern detection is more than 85% for

S, CS1, and CS2. For example, false positive subjects were found in only three of

Bach’s fugues and four of Shostakovich’s fugues. Most of the time, false positive

subjects detected by the system are in fact relevant to the analysis, because they

correspond to incomplete thematic patterns. Finally, the analysis of some fugues

yielded poor results, especially when the subject detection failed. Some noteworthy

cases were the double and triple fugues, where additional subjects have their own

expositions in the middle of a fugue, as in Bach’s Fugue in C� minor (BWV 849).

Because the detection of subjects is done at the beginning of a fugue, our system was

not able to detect these other subjects and their occurrences.

5.3.2.2 Sonata Form

A movement in sonata form is built on a tonal progression and on two thematic zones

(primary, P, and secondary, S) (Hepokoski and Darcy, 2006). A first step towards

computing an analysis of such a movement is to be able to detect the global structure

(exposition–development–recapitulation).

A study on audio signals managed to find these approximate boundaries (Jiang

and Müller, 2013). We presented preliminary results on identifying such global

structure in symbolic signals (David et al., 2014). After detecting putative phrase

endings, we try to locate a P zone, from the start to a phrase ending, that is repeated

in the recapitulation. Then we try to locate, after P, an S zone, under the constraint
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Fig. 5.1 Reference annotations on Fugue in B� major (BWV 866) from the first book of the Well-
Tempered Clavier by J. S. Bach (top), and computed analysis (bottom). The computed analysis
detects thematic patterns (S/CS1) with scale degrees, harmonic sequences (1/2/3), and the two ca-
dences (rIAC and PAC). Here the algorithms find a good structure, even if the second countersubject
(CS2) and some incomplete patterns at measures 35 and 36 are undetected

of a transposition from the dominant in the recapitulation. In a corpus of eleven

first movements from string quartets by Mozart, Haydn or Schubert, this method

allows for the retrieval of the majority of exposition/recapitulation pairs. The starting

boundary of P in the recapitulation is often precise, but not the P/S separation. The

predicted S zone can be detected before the start of the actual S, because the end of

the transition is often already transposed in the recapitulation. An objective could be

to precisely locate the medial caesura, when it exists, marking the end of the P zone

and the beginning of the S zone (Hepokoski and Darcy, 2006).

5.4 Benchmark Data and Evaluation

In this section, we discuss how to evaluate and compare algorithms for segmentation

and form analysis. As computer scientists, we would like to have computer-readable

reference datasets that may be used as a “ground truth” to evaluate algorithms. But

as music theorists, we know that there is rarely one correct analysis of a given piece:

listeners, players, or analysts often disagree or at least propose several points of view.

We now discuss the possibility of having reference datasets, present datasets for

segmentation and form analysis, and finally discuss evaluation methods.

5.4.1 Can We Have a Reference Segmentation or a Reference
Music Form Analysis?

A music theorist performing an analysis focuses on particular aspects of a score with

respect to what she wants to reveal. The relevant observations are not necessarily the

same as the ones perceived by a listener or by a player. When one wants to evaluate

computational analysis methods, one thus needs to ask which specific task one needs
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to evaluate, and one has to use an adapted ground truth. Which analytical points to

consider is not so straightforward and depends on the studied piece and on some

musicological assumptions.

Different opinions exist regarding the definition of basic analytical elements, the

placement of section boundaries, and the functional labelling of sections. In the

following, we will see how different datasets encode the same popular song (Figs. 5.3

and 5.4). In classical music, there are also many points where different people may

have different answers. Considering different analyses of fugues from the first book

of Bach’s Well-Tempered Clavier, for 8 out of 24 fugues, at least two musicological

sources disagree on defining the end of the subject, that is the main theme of a

fugue (Fig. 5.2). Indeed, in fugues, whereas the starting points of subjects are notable

cognitive events, their endings are not always important and may be constructs arising

from music theory. More radically, considering that the ambiguity can be part of the

music, Tovey (1924) writes about J. S. Bach’s Fugue in E major (BWV 854) from

the first book of the Well-Tempered Clavier: “It is not worthwhile settling where the

subject ends and where the countersubject begins”.

On the other hand, there is consensus among many music theorists, players and

listeners about some analytical elements. The fact that reaching consensus may be

difficult on some points should not prevent us from trying to formalize some elements.

Ideally we should have a collection of reference analyses highlighting different points

of view on the same piece by different musicologists. This could be achieved either

by having several annotators agree on a reference annotation, or, even better, by

having analyses or alternative solutions by several annotators. Finally, dealing with

ambiguities does not exclude the possibility of having an “exact” symbolic approach:

one can indicate in the dataset that one may consider two or more boundaries for a

section, but the precise position of each boundary can be specified.

5.4.2 Datasets on Music Segmentation

Several reference datasets exist for segmentation/structuration purposes, trying to

take into account multiple dimensions of music (Peeters and Deruty, 2009). The

four datasets presented below are plain-text files describing the structure of audio

files as annotations at some offsets (measured in seconds). These datasets consist

mostly of popular music, although some “classical” works can be found in them

too. Annotations have been produced manually, often using a platform such as Sonic

Visualiser.1

SALAMI The SALAMI dataset (Structural Analysis of Large Amounts of Music

Information) (Smith et al., 2011), version 2.0 (March 2015), contains the structure of

1164 audio files, each one analysed by one or two listeners, totalling 1933 annotation

files, and 75191 segments.2 The annotation format can describe “musical similar-

1 http://www.sonicvisualiser.org/
2 http://ddmal.music.mcgill.ca/research/salami/annotations
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Fig. 5.2 The eight subjects in the first book of Bach’s Well-Tempered Clavier where at least two
sources disagree on the end of the subject (Giraud et al., 2015). Circled notes show the proposed
endings of the subjects. For example, in Fugue number 7, Prout (1910) and Bruhn (1993) state that
the subject ends on the B� (tonic), with a cadential move that is strengthened by the trill. Keller
(1965) states that the subject ends after the sixteenth notes, favouring a longer subject that ends on
the start of the countersubject. Charlier (2009) has a motivic approach, resulting in shorter subjects
in some fugues

ity, function, and instrumentation”. Musical similarity is described on two levels:

lowercase letters indicate small-scale similar segments, whereas uppercase letters

indicate sections. Functions are described by a controlled vocabulary of 20 labels

(“intro”, “verse”, etc.). Some of these labels are specific to a genre or a form (“head”,

“main theme”, “exposition”, “development”, etc.). The leading instruments are also

described—instruments are delimited by opening and closing parentheses (Fig. 5.3,

right, and Fig. 5.4, right). The fact that some files are encoded by two listeners allows

for some ambiguities to be included, coming from different annotators.

IRISA Semiotic Annotations The Semiotic Annotations dataset (Bimbot et al.,

2012, 2014), version 2012, describes the structure of 383 audio files in 6725 seg-
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ments, produced and cross-checked by two annotators.3 Authors identified segments
respecting a “System-and-Contrast” model, a segment being usually a sequel of

four elements where the last element has some contrast within a logical progression.

This enables traditional antecedent/consequent abac periods to be modelled. Further

extensions can model shorter or longer periods such as ab or abaac. Segments are

clustered according to the similarity of their logical progression and are labelled

according to some functional properties (for instance I for an introduction and C for

a central part, often the chorus). Composite labels are also used, such as A B for an

overlap between two segments. The method usually requires a limited number of

symbols to model a piece, providing a high-level view of its structure (Fig. 5.3, left).

These annotations rely on a methodology that is well-defined in the guidelines for

this dataset—ideally, they should be independent of the annotator.

AIST Annotations AIST Annotations (Goto, 2006) (National Institute of Advanced

Industrial Science and Technology) describe the structure of 276 files of the RWC

database (Goto, 2004),4 in 4485 segments (Fig. 5.3, middle). Some annotations

also include other elements such as beats or melody line. Synchronized MIDI files,

obtained by the procedure described by Ewert et al. (2009), are available for the

Popular Music database and Classical Music database, allowing this dataset to be

used for symbolic MIR studies.

Isophonics The C4DM (Centre for Digital Music) provides segmentation for 301

files (Mauch et al., 2010) (Fig. 5.4, left). Some of these files also have other annota-

tions (chords, keys, and beats).5

Do These Datasets Agree? Figures 5.3 and 5.4 show examples of these annota-

tions on the same files. Staying at the segmentation level, one can observe that the

boundaries of these manual annotations generally coincide (with slight differences

in the offsets) and that the clustering of labels is also generally done in the same

way. However, several differences are found when one goes to functional labelling,

getting closer to what could be a form analysis. Even in popular songs, identifying

the formal function of a chorus, a verse or a bridge is sometimes ambiguous.

5.4.3 Datasets with Reference Analyses of Musical Forms

The datasets described above are well adapted to popular music. On the other hand,

large musical forms, such as sonata form, feature complex relationships between

parts that cannot be satisfactorily modelled simply by labelled sections. Moreover,

the musical score, when it exists, contains many details that can be analysed beyond

a raw segmentation. We argue for the need for specific reference datasets for musical
forms adapted to computational music analysis.

3 http://metissannotation.irisa.fr/
4 https://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/
5 http://www.isophonics.net/content/reference-annotations
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IRISA AIST SALAMI
0.0000000 0.0625000 # 0.000000000 Silence
0.0625000 22.3629358 I-|I/C 0 2233 ’’intro’’ 0.081269841 a, A, Intro, (synthesizer
22.3629358 44.6824407 C 2233 4466 ’’bridge A’’ 5.665668934 b, synthesizer)
44.6824407 55.8520639 D/2 4466 5582 ’’bridge B’’ 11.276757369 a, (guitar
55.8520639 78.1794653 A 5582 7815 ’’verse A’’ 16.867596371 b, guitar)
78.1794653 100.5029185 B 7815 10047 ’’verse B’’ 22.437596371 a, B, Chorus, (voice)
100.5029185 122.8303200 C 10047 12280 ’’chorus A’’ 27.972766439 b, (synthesizer)
122.8303200 134.0038914 D/2 12280 13396 ’’bridge B’’ 33.568571428 a, (voice
134.0038914 156.3273446 A 13396 15629 ’’verse A’’ 39.137959183 b, voice)
156.3273446 178.6507978 B 15629 17861 ’’verse B’’ 44.715374149 c, C, Solo, (synthesizer
178.6507978 200.9703027 C 17861 20094 ’’chorus A’’ 50.311360544 c, synthesizer)
200.9703027 212.1359776 D/2 20094 21210 ’’bridge B’’ 55.902448979 d, D, Verse, (voice
212.1359776 234.4752238 C0 21210 23443 ’’bridge A’’ 61.462131519 d’
234.4752238 239.2091857 - 23443 24046 ’’ending’’ 67.063356009 d
239.2091857 242.5652248 # ...

Fig. 5.3 Reference annotations from IRISA, AIST and SALAMI for “Spice of Life”, sung by
Hisayoshi Kazato (track 4 of RWC-MDB-P-2001). The three annotations generally agree on
the segmentation even though their onsets differ slightly. Note that the four sections labelled
B, Chorus by SALAMI are labelled C, C, C, and C0 by IRISA and bridge A, chorus A,
chorus A, and bridge A by AIST. The SALAMI annotation has several levels, giving both
functions (1), sections (2) and small-scale segments (3)

Isophonics SALAMI

0.000 0.980 silence | 0.000000000 Silence
0.980 18.709 verse | 0.505034013 A, a, Verse, (voice
18.709 35.988 verse | 9.912834467 a
35.988 53.174 refrain | 18.702879818 a
53.174 70.518 verse | 27.498321995 a
70.518 87.667 refrain | 36.109433106 B, b, Chorus
87.667 105.349 verse_(instrumental) | 44.602471655 b
105.349 122.596 verse | 53.247551020 A, a, Verse
122.596 155.139 refrain_with_ending | 61.883242630 a’, voice)
155.139 160.400 silence | 66.161360544 c

| 70.657346938 B, b, Chorus, (voice
| 79.133197278 b, voice)
| 87.652335600 C, c, Interlude
| 96.556575963 c
| 105.326258503 A, a, Verse, (voice
| 113.987437641 a
| 123.241791383 B, b, Chorus
| 131.276349206 b
| 139.812698412 b, Fade-out, voice)
| 160.474172335 End

Fig. 5.4 Reference annotations from Isophonics and SALAMI on the Beatles song “Yellow Sub-
marine”. The annotations mainly agree on the segmentation even if the onsets differ slightly,
and the segments are different: the first two segments labelled verse by Isophonics correspond
to only one segment, labelled A (aaaa) by SALAMI: verse corresponds to the sub-segments
aa or aa’c, with a’ and c having half the length of the other sub-segments. The last Chorus
(refrain with ending for Isophonics) has three small-scale segments, bbb, instead of only
two



5 Computational Analysis of Musical Form 127

== S [length 4 start +1/8] == CS1 [length 3 start -1/4]
S 1, 13, 37 S 6, 23, 42
A 5, 22, 41 A 10, 27, 38
T 9, 26 T 14

== S-inc [base S length 2] == CS1-inc [base CS1 length 1]
A 35 S 36

== cadences == CS2 [length 3 start -3/16]

* 17 (V:rIAC) S 10, 27

* 48 (I:PAC) A 14
T 23, 38, 42

== CS2-inc [base CS2 length 1]
T 36

Fig. 5.5 Reference annotations from the Algomus group on Fugue in B� major (BWV 866) by
J. S. Bach, obtained from several sources including the books by Bruhn (1993) and Prout (1910).
These annotations show the entries of the subject (S), countersubjects (CS1 and CS2) in soprano (S),
alto (A), and tenor (T) voices, as well as incomplete entries (S-inc, CS1-inc, CS2-inc). The position
of each occurrence is denoted by measure numbers (1 is the first beat of measure 1), but the actual
start is shifted from this logical position (one eighth note forward for S, one quarter note backward
for CS1, three sixteenth notes backward for CS2). This fugue also contains perfect and root position
imperfect authentic cadences (PAC and rIAC) in the tonic (I) and dominant (V) keys. A graphical
representation of this annotation can be found at the top of Fig. 5.1

As we saw in the introduction, there are different conceptions of musical forms.

So the nature of a specific “musical form analysis” depends on the musicological

assumptions on which it is based. There are many “correct” or at least “pertinent”

ways to analyse musical forms. The points of view will not be the same when one

focuses on a particular piece, on the evolution of the techniques used by a composer,

or on a corpus including works of other composers.

In any case, one needs to annotate both features occurring in all parts or voices

(cadences, sequences, texture, global segmentation) and at the voice or instrument

level (e.g., melodic themes). This latter level is still valid when the voices are not

explicitly separated, such as in piano or guitar music. The annotations should rely

on one or several musicological reference analyses indicating the locations and

the durations of precise elements (e.g., for sonata form, the thematic zones in the

exposition and recapitulation or thematic elements in the development). Offsets can

be exact symbolic values (measure numbers and positions within the measure).

For annotators, a problem is that even a detailed musicological analysis does not

always provide the level of precision required in a formalized dataset. For example,

the books of Bruhn (1993) on Bach’s fugues detail the list of occurrences of the S

and CS patterns, including complementary details for the strongly varied occurrences.

However, very slight variations are not always described, and an annotator transcrib-

ing this analysis has to encode the precise location to report the exact offset value in

the reference dataset. Moreover, since human language itself can be ambiguous, the



128 Mathieu Giraud, Richard Groult, and Florence Levé

encoder of the reference analysis may sometimes have to make some interpretations,

even if the intended meaning is obvious most of the time. Such interpretations should

be recorded in the formalized dataset.

Finally, to provide subtle analyses of musical pieces closer to human interpre-

tations, algorithms should also model ambiguities, ideally by predicting several

solutions with their associated likelihoods.

Algomus Fugue Reference Analysis We released a reference analysis for the 24

fugues of the first book of Bach’s Well-Tempered Clavier and the first 12 fugues of

Shostakovich (Op. 87) (Giraud et al., 2015), totalling about 1,000 segments.6 The

dataset is built on several musicological references, such as the analysis of Bruhn

(1993), and was produced and cross-checked by several annotators. The annotations

give the symbolic positions of the occurrences of subjects and countersubjects, as

well as cadences and pedals (Fig. 5.5). Slight modifications of the thematic patterns,

such as varied start or ending or delayed resolutions, are also reported. Our dataset

differs from the ones presented in Sect. 5.4.2: the length and the position of each

pattern in each voice are given, in terms of the number of measures and beats, and

several analytical elements beyond patterns are specified.

The purpose of this dataset is to give “correct” analytical elements for evaluable

tasks, that should be part of a more complete analysis. In most of the fugues, there

is consensus between theorists on some very technical points. Indeed, considering

again Fig. 5.2, all our sources perfectly agree on the definition of the subject in 16

out of the 24 fugues. There may be also agreements on modulations, some cadences,

and so on. The algorithms can thus be evaluated on all these points. We also reported

ambiguous definitions of the subject. Further work should be done to encode even

more ambiguities concerning the exact boundaries of other elements constituting the

analysis.

5.4.4 Evaluating Segmentation and Form Analysis Algorithms

Even once a reference dataset is established, there are several ways to assess the

efficiency of a segmentation algorithm or of a form analysis system against this

dataset taken as a “ground truth”: one can focus on a segmentation, on some precise

borders, on a more semantic segmentation with relations between the sections, or on

a subjective assessment of the quality of the algorithm.

Frame-Based Evaluation—How Often Does the Algorithm Predict the Right
Section? On audio files, segmentation can be seen as a prediction of a label for every

audio “frame”, for example with a prediction every 40 milliseconds. On symbolic

data, algorithms may also predict sections at the resolution of the smallest symbolic

duration, or at another resolution, such as one quarter note or one measure. The most

simple evaluation is then to consider frames one by one and to compute the ratio

6 http://www.algomus.fr/datasets
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Fig. 5.6 Comparing segmentation labels from a reference analysis (top) against several algorithm
predictions on a piece with 24 measures

of correctly predicted frames over the total number of frames. This is equivalent to

comparing the length of the predicted sections in the computed analysis and in the

ground truth: what is the proportion of section A that is found by the algorithm? For

example, in Fig. 5.6, considering the measures as frames, 22 out of 24 frames are

“correctly” predicted by both algorithms 1 and 2.

However, these evaluations need to assert which label in one analysis is equivalent

to another label in the other analysis. When the predicted labels are different from

those of the ground truth (such as for algorithms 3 and 4 in Fig. 5.6), one solution can

be to link each computed segment with the largest overlapping segment in the ground

truth (T with A, U with B and W with C), giving here 21 out of 24 frames for both

algorithms 3 and 4. These evaluations may not behave correctly when a ground truth

section is mapped to several predicted sections. Here algorithm 3 can be considered

to have a better result than algorithm 4, because section B is segmented into only

two sections, U and X. A solution is to measure the mutual information between the

algorithm output and the ground truth. Extending the ideas of Abdallah et al. (2005),

Lukashevich (2008) defines scores reporting how an algorithm may over-segment

(So) or under-segment (Su) a piece compared to the ground truth. These scores are

based on normalized entropies.

On algorithms segmenting audio signals, all these evaluation measures, and other

ones, were compared in a meta-analysis of the MIREX 2012 structural segmentation

task results (Smith and Chew, 2013). On symbolic data, one can also consider the

number of notes in each section—“How many notes are correctly put into section

A?”—thus preventing biases that might arise from assigning greater weight to long

notes than to short notes.

Boundary-Based Evaluation—How Many Section Boundaries Are Correctly
Predicted? Frame-based evaluations ignore the actual boundaries of the segmenta-

tion. In particular, they do not take into account the fact that an algorithm may make

too many transitions between sections. In Fig. 5.6, all the methods presented above

give the same evaluation for algorithms 1 and 2, but algorithm 1 may be preferable

because it predicts longer sections.

An evaluation can thus focus on section boundaries. One can compute the usual

precision (ratio of correct predictions to all predictions) and recall (ratio of correct

predictions to all ground-truth annotations). For example, in Fig. 5.6, there are 2

boundaries in the ground truth (A/B, B/C). Algorithm 1 successfully predicts the

B/C boundary; it thus has a recall of 1/2 and a precision 1/2 (2 predicted boundaries,



130 Mathieu Giraud, Richard Groult, and Florence Levé

including the false boundary A/B). Algorithm 2 successfully predicts the two ground

truth boundaries: it has a perfect 2/2 recall. However, as it predicts 4 other false

boundaries, its precision is only 2/6.

These evaluations are well adapted to melodic segmentation. Again, one has to

decide which boundary in one analysis is equivalent to another boundary in the other

analysis. In symbolic data, one can require that the boundaries exactly coincide: most

of the time, a phrase, a section, or even some events such as a modulation, starts on a

precise note or chord, and the goal of segmentation could be to retrieve this exact

point. One can also allow some flexibility with a tolerance window, either in audio

time (0.5 seconds, 3 seconds) (Sargent et al., 2011), or, for symbolic data, in terms

of notated duration (“two quarter notes”, “one measure”) or in number of notes in a

monophonic sequence (“one note”, “two notes”).

Section-Based Evaluation—How Many Sections Are Correctly Predicted?
One can also choose to focus on whole sections, evaluating the proportion of sec-

tions correctly predicted. Again, thresholds can be added to this detection; should

the start and the end exactly coincide? In Fig. 5.6, depending on the threshold, the

performance of algorithm 1 will be evaluated to either 1/3 (only section C) or 3/3 (all

sections).

Evaluating Form Analysis—Is My Computer a Good Music Analyst? Imple-

menting frame-based, boundary-based and section-based evaluations allow us to

quantify different aspects of the segmentation task. But these procedures do not

evaluate other elements such as structural labelling. As we mentioned in Sect. 5.2.3,

the challenge of form analysis needs to go beyond segmentation. In Fig. 5.6, are the

A/B/C and T/U/W labels only symbols, or do they have some semantics? To evaluate

an algorithm aiming to analyse a pop song, a fugue, or a sonata form movement, an

evaluation should be conducted on the segmentation elements but also on the global

output, including the semantics of the proposed analysis.

The results given by the computer should be compared to a reference analysis,

when it exists, or, better, evaluated by musicologists, asserting how close a particular

analysis is to a “musically pertinent” analysis, keeping in mind that there may be

several pertinent analyses. Along with specific comments, some subjective notations

such as “bad”, “correct” or “good” can be used. Such an evaluation can pinpoint the

strengths and the weaknesses of an algorithm on different pieces in the same corpus.

Ideally, such an evaluation should be done by several experts.

Of course, as there is no absolute “musicologically correct” analysis, even this

expert evaluation cannot be considered final and only evaluates what is expected

according to a particular analysis model. Nevertheless, students in music analysis

are evaluated on their homework, both on technical formal points (harmonic pro-

gressions, cadences, segmentations, etc.) and even on the aesthetic aspects of their

work. Algorithms need to be evaluated too, and the difficulty of developing sound

methodologies for carrying out such evaluation should not deter us from attempting

to do so.
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5.5 Discussion and Perspectives

There are many MIR and CMA challenges in segmentation and form analysis, in

designing new algorithms, establishing reference datasets and conducting evaluations.

Segmentation has been studied more extensively on audio signals than it has on

symbolic representations, and some evaluation datasets are already available. Some

studies have now begun to specifically address form analysis challenges, but more

work is needed in this field of research.

One should remember that musical forms evolved (and perhaps were even de-

signed) for pedagogical purposes in composition, as well as in music analysis and

performance. The student who follows a lecture on music analysis learns to take a

score and to recognize and analyse a fugue, a variation, or a sonata form. The student

in harmony or composition learns how to write something that should sound like a

fugue by Bach, respecting some rules or not. This is also true of performers: the artist

playing a fugue has in some way to play with this special form, choosing between

several plausible interpretations.

All these forms are also building blocks or techniques that one can find inside

large-scale works. If you know how to hear, how to analyse, how to perform, or

perhaps how to write a fugue, you will be able to hear, to analyse, to perform, or

to write a fugato passage in some larger work. A further MIR/CMA challenge is

to detect fragments of forms inside large works, or, more generally, to describe an

unknown score with more elements than a segmentation. A solution is to test several

known forms and take the best matched form, but further research should be done to

propose better pipelines that predict the musical form on-the-fly.

Returning to the original question, “Can a computer understand musical forms?”,

we are not even sure that, as casual or experienced listeners, or even as music theorists,

we ourselves hear and understand a fugue or a sonata form correctly. However, we all

know that there is not a unique way to hear or to understand any musical piece—and

it is not the relation to the form that makes a piece a pleasure to listen to. What we

do know is that the process of learning to hear, to analyse, to play, and even to write

such forms is important in musical education. Knowledge of these forms is one of

the key ingredients for a better understanding of repertoires and genres.

We believe that algorithms in computational musical analysis are in their infancy:

they are like students in a first-year music analysis classroom. They learn or they

infer rules. They need to be evaluated—even if there are many different analyses

that can be done, some are definitely more correct than others. Perhaps these student

algorithms do not understand the big picture with respect to musical form, but they are

learning how to handle some analytical concepts—thematic analysis, segmentation,

and other musical parameters—that can also be useful for other MIR applications.

One day, algorithms may perhaps manage to do more complete analyses, breaking

the rules and including aesthetic and comparative elements.
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Ratz, E. (1973). Einführung in die musikalische Formenlehre. Universal Edition.

Second edition.

Reicha, A. (1824). Traité de haute composition musicale. A. Diabelli.
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Chapter 6
Chord- and Note-Based Approaches
to Voice Separation

Tillman Weyde and Reinier de Valk

Abstract Voice separation is the process of assigning notes to musical voices. A

fundamental question when applying machine learning to this task is the architecture

of the learning model. Most existing approaches make decisions in note-to-note

steps (N2N) and use heuristics to resolve conflicts arising in the process. We present

here a new approach of processing in chord-to-chord steps (C2C), where a solution

for a complete chord is calculated. The C2C approach has the advantage of being

cognitively more plausible but it leads to feature modelling problems, while the N2N

approach is computationally more efficient.

We evaluate a new C2C model in comparison to an N2N model using all 19

four-voice fugues from J. S. Bach’s Well-Tempered Clavier. The overall accuracy

for the C2C model turned out slightly higher but without statistical significance in

our experiment. From a musical as well as a perceptual and cognitive perspective,

this result indicates that feature design that makes use of the additional information

available in the C2C approach is a worthwhile topic for further research.

6.1 Introduction

Voice separation is the process of assigning notes to a musical voice. This is not only

an important feature of our auditory and specifically musical perception and cognition,

but also a practical problem when working with semi-structured musical data, such

as tablature, MIDI recordings, or automatically transcribed audio. When using any

of these forms of input data, automatic voice separation (AVS) is an important part

of creating musical scores together with pitch estimation and beat tracking. AVS has

not achieved as much attention as some other tasks in music information retrieval,

such as genre classification or melodic similarity estimation. This is possibly because
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polyphonic transcription from audio has not reached the level of accuracy needed for

practical software applications. However, in applications with MIDI and tablature

AVS can be useful immediately.

Several algorithmic methods have been developed, using different approaches.

Almost all existing voice separation models are based on the Gestalt principle of

proximity in pitch and time. This leads to a well-defined solution for simple cases, but

in practice the complexity of real music requires trade-offs between many different

factors such as time and pitch proximity. This creates two challenges. First, it is

not obvious how to weight different features to achieve decisions in situations with

conflicting cues. This problem can be addressed with machine learning by adapting

the weights to fit the data, e.g., using a neural network as in the work presented

in this chapter. Second, there are many possible assignments of notes to voices,

so that the implementation of an exhaustive search of all possible combinations of

note-to-voice assignments across all notes in a piece is computationally intractable.

Therefore, a localized modelling of the decision process is necessary. We describe

here a new chord-to-chord (C2C) approach to voice assignment, with two different

feature extraction methods, and compare it to the previously introduced note-to-

note (N2N) approach. From a computational perspective, the C2C approach has the

advantage over existing note-based models that notes can be assigned to voices even

where the individual assignment is not optimal (e.g., in terms of pitch distance), if it

leads to a better fit for the whole chord. The different approaches exhibit differences

in terms of their runtime complexity and performance and entail different trade-offs.

From a perceptual and cognitive perspective, the separation and integration pro-

cesses in forming multiple voices or streams of auditory events are an example of the

binding problem, i.e., the integration of stimuli, like notes, to percepts, like voices

(cf. Wrigley and Brown, 2004). These binding mechanisms in general and for music

in particular are not yet well understood, but it is clear that parallel processing is

involved. The C2C approach includes that aspect in the model, increasing its power

and cognitive plausibility. However, the C2C approach poses the problem of how to

model the relation between the notes and the voices and their combinations, both

from a perceptual and cognitive as well as from a machine learning perspective.

In the N2N approach, the concepts of pitch and time proximity can be modelled

directly, because only one note is treated per decision, so that the time and pitch

distance to notes in previous voices can be directly used as feature values. In the

C2C approach, however, the modelling of variable chord sizes with a vector of fixed

dimension is an open problem. Conversely, in the C2C approach the interaction

between notes in the same chord is naturally modelled in the voice assignment and

learning process, while the N2N approach requires the use of additional rules and

heuristics and cannot guarantee optimal results on the chord level. We have performed

experiments on the four-voice fugues in J. S. Bach’s Well-Tempered Clavier, testing

implementations of the N2N and C2C approaches in different variants.

In Sect. 6.2, we give an introduction to AVS and related work in this area. In

Sect. 6.3, the application of machine learning to voice separation, feature design,

and the implications of the C2C and N2N model are discussed. The experiments we
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conducted are described in Sect. 6.4 and the results are discussed in Sect. 6.5. The

final conclusions and directions for further work are presented in Sect. 6.6.

6.2 Voice Separation

Voice separation has been approached both from the perspective of music perception

and cognition, in particular with respect to the underlying neural mechanisms, as

well as from a computational perspective, with a focus on practical problem solving.

6.2.1 Perception and Cognition of Polyphony

Several methods for voice separation in symbolic music formats have been suggested

in recent decades. Earlier work in the 1980s and 1990s focused on modelling cognitive

and perceptual phenomena relating to polyphonic structure. Specifically the work

of Huron (1989, 1991b) addressed the perception of polyphony, prevalence of voice

crossings, and inner-voice entries in corpora (Huron, 1991a; Huron and Fantini, 1989),

presenting a model for measuring pseudo-polyphony; Marsden (1992) developed

rule-based models for the perception of voices in polyphonic music. Gjerdingen

(1994) used a neural network to model the perception of ‘apparent motion’.

Auditory streaming, and more generally auditory scene analysis as defined by

(Bregman, 1994), i.e., the integration and separation of auditory stimuli into separate

streams, representing environmental properties (sounds originating from the same

source), is generally assumed to be the perceptual and cognitive basis for the de-

velopment of musical polyphony (e.g., Huron, 1991a; Wright and Bregman, 1987).

McCabe and Denham (1997) presented a model of the early stages of the process

of auditory streaming on the acoustic level, which is not directly applicable to sym-

bolic voice separation. Perception of separate voices has been shown to take place

in musically trained and untrained subjects, and to depend on sensory-driven and

attention-driven processes (Fujioka et al., 2008, 2005). Both the temporal processes

and concurrent stimulus processing in chord perception interact, and this interaction

is not fully understood (McDermott and Oxenham, 2008; Turgeon and Bregman,

2001). The neural mechanisms underlying these functions are the topic of current

research in auditory neuroscience (see, e.g., Ragert et al., 2014; Shamma et al., 2011).

Modelling the perception of multiple voices in polyphonic music poses an instance

of the binding problem, i.e., the segregation and combination of different stimuli

into a perceptual entity, and it is not fully understood how this is represented or

processed in the brain. In particular the combinatorial representation of auditory

features and objects (voices) poses modelling questions: assuming specific neurons

representing possible combinations would require many representation units, which

would have very sparse activations, and thus be ecologically implausible. Many
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researchers assume that temporal synchronization mechanisms play a role (Brown

et al., 1996; Shamma et al., 2011).

6.2.2 Automatic Voice Separation

Apart from being of importance for understanding underlying musical principles and

perceptual and cognitive aspects of polyphony, AVS is necessary for music transcrip-

tion and music information retrieval tasks on recorded MIDI data or automatically

transcribed audio, where no score is available. Therefore several practical approaches

have been proposed.

Over the past 15 years, several computational methods for voice separation have

been developed, most of them rule-based like the earlier work by Marsden (1992).

Temperley (2001) adopted an approach based on four ‘preference rules’, i.e., criteria

for evaluating a possible analysis. Two of these match the Pitch Proximity Principle

and the Principle of Temporal Continuity (Huron, 2001), which dictate that the closer

two notes are to one another in terms of pitch and time, the more likely they are per-

ceived as belonging to the same voice; the other two aim to minimize the number of

voices (New Stream Rule) and to avoid shared notes (Collision Rule). Cambouropou-

los (2000) briefly described an elementary version of a voice separation algorithm

based on path length minimization. Chew and Wu (2004), and an extended method

by Ishigaki et al. (2011), used a contig approach, in which the music is divided into

segments where a constant number of voices is active (the contigs). The voice frag-

ments in the segments are then connected on the basis of pitch proximity, disallowing

voice crossings. Szeto and Wong (2006) considered voices to be clusters containing

events proximal in the pitch and time dimensions, and model voice separation as a

clustering problem. The aim of their research, however, was to design a system for

pattern matching, not voice separation. In their method, voice separation is only a pre-

processing step that prevents “perceptually insignificant” (p. 111) stream-crossing

patterns from being returned by the system. Kilian and Hoos (2002) presented an

algorithm that is not intended primarily for correct voice separation, but rather for

creating “reasonable and flexible score-notation” (p. 2), so that their method allows

for complete chords in a single voice. Similarly, in the method presented by Karydis

et al. (2007), a voice is also not necessarily a monophonic sequence of notes. Rather,

they preferred to use the term ‘stream’ (see Cambouropoulos, 2008) as a perceptually

independent sequence of notes or multi-note sonorities. Hence, in addition to the

‘horizontal’ pitch and time proximity principles, they included two ‘vertical integra-

tion’ principles, based on principles suggested by Huron (2001), into their method:

the Synchronous Note Principle (based on Huron’s Onset Synchrony Principle) and

the Principle of Tonal Fusion (based on Huron’s Tonal Fusion Principle). A related

algorithm is described by Rafailidis et al. (2009). Madsen and Widmer (2006) present

an algorithm based fundamentally on the pitch proximity principle, which combines

rules, optimization, and heuristics.
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Both the rule-based and the machine learning algorithms that are described below

treat the music as a set of events in a two-dimensional pitch-time grid. To search the

full space of all possible voice assignments on this view would mean to explore all

possible combinations of assignments of notes to voices. Thus the total number of

combinations is V n, where V is the number of voices and n is the number of notes.

For example, for a relatively short piece with V = 4 and n = 150 this yields 4150 =
2300 ≈ 2× 1090, making a complete search intractable. One principled approach

to addressing this issue is the use of dynamic programming, which reduces the

search space to a series of individual decisions, such that the overall result is optimal.

However, in order to apply dynamic programming, the problem formulation must

conform to Bellman’s principle of optimality (Bellman, 2003) and decompose into

overlapping subproblems (Cormen et al., 2009). Dynamic programming is used, for

example, in Temperley’s voice separation system (Temperley, 2001). The Viterbi

algorithm is also based on dynamic programming and is used with hidden Markov

models, which we have applied to AVS in earlier work (De Valk et al., 2013). However,

the use of dynamic programming limits the modelling flexibility. Therefore the rule-

based methods listed above reduce the complexity by applying specifically designed

techniques that are based on decisions made per note or per note-pair within a limited

context. They use heuristics and conflict resolution techniques to make sure that

constraints are respected and some interaction between the note-level decisions is

realized.

Machine learning approaches, in contrast, normally use a reduced representation,

typically vectors of real numbers, that fits the requirements of the chosen learning

technique. Kirlin and Utgoff (2005) consider only pairs of notes within a window,

and use decision tree learning to determine whether or not they belong to the same

voice. Assigning notes to voices in order of their onsets, they use pitch proximity to

disambiguate between multiple voices. Within a chord (notes with common onset

time), only one note is considered at a time and all possible next notes within the

voice are evaluated. The complexity is further reduced by limiting the window size

and using the pitch proximity heuristic.

Jordanous (2008) also adopts a machine-learning approach. In her method, within

windows based on instances of the maximal number of voices present, every note is

compared to every possible next or previous note (the method starts from a marker,

which defines the middle of the window). Using learned pitch transition probabili-

ties and voice probabilities given a pitch, the most probable voice for each note is

determined. As in Kirlin and Utgoff’s algorithm, for each note within a chord, all

pairs that it forms with possible next and previous notes are considered, with conflict

resolution based on the highest probabilities.

In neither Kirlin and Utgoff’s (2005) nor Jordanous’ (2008) machine learning

approaches is there any optimization of the assignment of notes to voices for a chord

as a whole.
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6.3 Method

We approach the problem of AVS in a standard machine learning set-up. AVS on

symbolic music representations operates on a complex input consisting of a stream

of often synchronous note events, and machine learning offers the possibility for a

system to adapt its behaviour to data. By using given voice information, e.g., as given

by the composer or a human transcriber, the assignment of the events to voices can

be seen as a supervised machine learning problem. The given voice information, the

so-called ground-truth, defines the target output of the system.

Most machine learning models use a vector of numbers as input and output a

vector of numbers or symbols. An important question is how the properties of the

musical decision context can be encoded in a vector, so that the relevant aspects of

time and pitch structure are reflected and usable for the learning model (dynamics,

timbre and expressive timing are not included in the model at this point). In the case

of voice separation, a straightforward approach is the N2N model, where the context

is modelled for each note using a vector of features such as the pitch distances to the

previous notes in the voices (a detailed description follows in the next section). Based

on this feature vector, a decision to assign the current note to a voice is made and the

following steps are based on this decision—that is, we follow a greedy approach. The

advantage is that the system is conceptually straightforward and has a computational

complexity that is linear in the number of notes processed. The disadvantage is that

the solution may be sub-optimal, because decisions are not revised. For example, in

some cases, it may be better not to minimize the proximity of the current note within

its voice, but rather go for another option if that enables a better fit for the remaining

notes in the chord. In the N2N approach such a solution cannot be found. The N2N

approach has nevertheless been applied using neural networks with good results, but

also with potential for improvement by supporting chord-level optimization.

We therefore propose our new C2C approach for modelling voice separation as a

machine learning problem on the level of chords rather than notes, where a non-linear

rating function that maps notes to voices per chord is learned. The C2C approach is

still local in time but global in the vertical dimension—that is, we evaluate all possible

assignments of notes to voices. This approach is cognitively and perceptually more

plausible, as it addresses the concurrent processing that takes place in the human

auditory system. The binding problem, however, also applies in this context, as the

machine learning process requires a compact representation, which also helps to

keep the model plausible. This approach requires the design of features representing

complete chords rather than just notes, for which we use two approaches.

The first is to represent each voice separately with a set of features, raising the

problem of how to represent voices without notes with a fixed-size vector. The second

is to average the feature values over the notes in the chord, avoiding the problem of

missing notes and leading to a compact representation with fixed dimensions, but

also to a loss of information. Within this framework we are not aware of a solution

that would avoid these problems.
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6.3.1 Representation

As discussed above, most methods for voice separation focus on features of the music

that represent the proximity of notes in pitch and time. This can be measured, for

example, as the pitch difference from the note to be assigned to the previous note in

each voice. Similarly we can measure the time from the end of the previous note in

each voice to the beginning of the current note. We can then choose the voice that

minimizes one of these distances or a combined distance, but that may not be the

optimal solution for a whole chord, which requires the definition of a global measure.

Before we discuss the question of how to determine the best trade-off for a given

chord and mapping, we present the feature definitions that we use in the C2C and the

N2N approaches.

6.3.1.1 Features

We define an n-dimensional feature vector as a numerical representation of the notes

in a chord in their polyphonic context. n is fixed within a learning and application

model, but depends on the maximum number of voices V the model supports. Pitches

are represented as MIDI note numbers, pitch intervals as semitones, and durations as

whole notes. When using a model designed for V voices, a chord can contain 1 to V
notes.

The feature vector has three parts:

1. note-specific features are different for the individual notes in the chord. Each of

these gets a default value of −1 for each note the chord is short of V , that is, for

notes c to V −1, where c is the number of notes in the chord (using zero-based

indexing);

2. chord-level features are calculated per chord;

3. polyphonic embedding features depend on the mapping of notes to voices for the

chord; each mapping results in a different polyphonic embedding.

Let nv
t be the chord note mapped to voice v under the current mapping, nv

t−1 the

previous note in v, p(n) a note’s pitch, on(n) its onset time, and off(n) its offset

time. For each voice v we calculate

• the pitch proximity of nv
t to nv

t−1:

pitchProx(v) =
1

|p(nv
t )−p(nv

t−1)|+1
; (6.1)

• the inter-onset time proximity of nv
t to nv

t−1:

intOnProx(v) =
1

(on(nv
t )−on(nv

t−1))+1
; (6.2)

• the offset-onset time proximity nv
t to nv

t−1:
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offOnProx(v) =

⎧⎨⎩
1

(on(nv
t )−off(nv

t−1))+1
, ifoff(nv

t−1)≤ on(nv
t ) ,

1
(on(nv

t )−off(nv
t−1))−1

, ifoff(nv
t−1)> on(nv

t ) ;
(6.3)

• the pitch movements—that is, for each voice v, the difference p(nv
t )− p(nv

t−1), in

semitones;

• the pitch–voice correlation ρ between the chord’s pitch ordering and voice order-

ing, as measured by the Pearson correlation coefficient:

ρpv(C) =
∑ pivi− cp̄v̄

spsv
=

∑ pivi−∑ pi ∑vi√
∑ p2

i − (∑ pi)2

√
∑v2

i − (∑vi)2
, (6.4)

where c is the number of notes in the chord C, pi the pitch of note i, and vi the

voice assigned to note i. If there is only one note, 0 is returned.

The decision to model proximity as 1/distance rather than using distance was

taken in order to emphasize differences between smaller distances.

The whole feature vector is described in Table 6.1 for the C2C model and in Table

6.2 for the N2N model. Features marked with an asterisk (*) are assigned a value of

−1 for every note the chord is short of V .

6.3.1.2 Variable Chord Sizes

A central problem in the C2C approach is that chords are of variable size, and standard

neural networks, like most machine learning algorithms, use fixed-size vectors. We

consider two approaches here for pitch and time proximity:

1) representing each voice separately, using default values when there are no notes

in a voice;

2) averaging values over notes.

Approach 1 has the advantage of capturing all information in the voice assignment.

However, when not all voices are present, the voice features are filled with default

values. These values are outside the regular range of values, but this information is

not explicit to the neural network (or any other vector-based learning system used).

Therefore the learning system needs to learn the relation between the appearance of

the default values and the rating of the mapping in context.

6.3.2 Learning Model

We have previously addressed the task of AVS with the N2N approach. The N2N

approach models the task as a classification problem, where each note is assigned to

a voice (a class). For each note in the dataset, a training example is created consisting

of a feature vector and a ground-truth label (a one-of-n representation of the note’s
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Table 6.1 The feature vector for the C2C model, assuming V = 4

Position Name Description

Note-specific features

1, 5, 9, 13 indexInMapping* index (based on pitch) in the chord, excluding sus-

tained previous notes

2, 6, 10, 14 indexInChord* index (based on pitch) in the chord; including any

sustained previous notes

3, 7, 11, 15 pitch* pitch

4, 8, 12, 16 duration* duration

Chord-level features

17 chordSize number of notes in the chord; including any sus-

tained previous notes

18 isOrnamentation true (1) if a sixteenth note or smaller and the only

new note in the chord

19 metricPosition metric position within the bar

20–22 intervals* intervals in the chord; including any sustained pre-

vious notes

Polyphonic embedding features

23–26 pitchProx for each voice v: the pitch proximity of nv
t to nv

t−1

27–30 intOnProx for each voice v: the inter-onset time proximity of

nv
t to nv

t−1

31–34 offOnProx for each voice v: the offset-onset time proximity of

nv
t to nv

t−1

35–38 pitchMovements for each voice v: the pitch movement of nv
t with

respect to nv
t−1

39–42 voicesAlreadyOccupied binary vector encoding all voices already occupied

in the chord

43 pitchVoiceRelation correlation coefficient between pitches and voices;

including any sustained previous notes

44 numberOfVoiceCrossingPairs number of voice crossing pairs; including any sus-

tained previous notes

45 summedDistOfVoiceCrossingPairs total distance of all voice crossing pairs; including

any sustained previous notes

46 avgDistOfVoiceCrossingPairs average distance of all voice crossing pairs; includ-

ing any sustained previous notes

47–50 mapping vectorial representation of the mapping of notes to

voices

voice). Given the feature vectors as input, the network is trained so that its output

approximates the labels. The trained network is then applied to unseen data to predict

voices; the predictions are determined by the output neuron with the highest activation.

More details on this approach are provided by De Valk and Weyde (2015).

In the C2C approach, the task is modelled as a regression problem, where the

ratings for the mappings of notes to voices are learned with the aim of giving the

ground-truth mapping the highest rating. Each chord in the dataset is represented as

a set of m n-dimensional feature vectors, where n depends on the selected feature

set, voice number and use of averaging. Each vector encodes properties of that chord

in its polyphonic context under one of m possible mappings of the chord notes to

voices. The goal is to have a model that, for each chord in a piece, takes as input a

set of feature vectors representing that chord in its context for all possible mappings

of notes to voices, and that rates the correct mapping highest. We use a three-layer
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Table 6.2 The feature vector for the N2N model, assuming V = 5

Position Name Description

Note-specific features

0 pitch pitch

1 duration duration

2 isOrnamentation true (1) if a sixteenth note or smaller and the only new

note in the chord

3 metricPosition metric position within the bar

Chord-level features

4 chordSize number of notes in the chord; including any sustained

previous notes

5 indexInChord index (based on pitch) in the chord; including any sus-

tained previous notes

6 pitchDistTo NoteBelow pitch distance to the note below in the chord; including

any sustained previous notes

7 pitchDistTo NoteAbove pitch distance to the note above in the chord; including

any sustained previous notes

8–12 intervals intervals in the chord; including any sustained previous

notes

Polyphonic embedding features

13–17 pitchProx proximities in pitch to the previous note in each voice

18–22 intOnProx proximities in time (inter-onset) to the previous note in

each voice

23–27 offOnProx proximities in time (offset-onset) to the previous note in

each voice

28–32 voicesAlready Occupied binary vector encoding all voices already occupied in the

chord

feed-forward neural network model with an output layer containing only a single

neuron. The activation value of this neuron ranges between 0 and 1, and represents

the rating for a mapping given a chord and context. We use a sigmoid activation

function and resilient backpropagation (RPROP) as the learning algorithm (Igel and

Hüsken, 2003; Riedmiller and Braun, 1993).

6.3.3 Mappings: Enumeration and Pruning

In the C2C approach, the input to the neural network depends on the mapping of the

chord notes to the voices. For each chord, given the number of notes in the chord

and the number of voices in the dataset, all possible mappings of notes to voices

are enumerated. A mapping is encoded as a V -dimensional vector, where V is the

maximum number of voices and the ith element is an integer from −1 to (N−1),
where N is the maximum number of concurrent notes, which is normally equal to

V . The element indicating the (zero-based) index into the chord of the note assigned

to the ith voice (with the voices ordered from top to bottom and sustained previous

notes excluded). A value of −1 at the ith position indicates that no note in the chord
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is mapped to the ith voice. Note that the vectorial representation used does not allow

for more than one note to be mapped to one voice (in which case the voice would no

longer be monophonic). Thus there are initially V N+1 possible mappings of notes to

voices.

The enumeration of mappings per chord is restricted according to the following

constraints:

1. all chord notes are mapped to a voice;

2. each chord note is mapped to only one voice;

3. no chord note is mapped to a voice that is already taken by a sustained note from

a previous chord.

We then prune the enumerations, both to avoid the method becoming computationally

too expensive and to improve the model’s performance. All mappings that contain

more than two voice crossing pairs are removed, where voice crossing pairs are

instances of voice crossings within a chord. If, for example, the tenor voice (T)

moves above both the soprano (S) and the alto (A) in a chord (and the soprano is

above the alto), this chord contains two voice crossing pairs: TS and TA. When

counting voice crossing pairs, sustained notes from previous chords (if applicable)

are included, and unisons are not considered to be voice crossings. The limit of two

was chosen as this is the maximum number of voice crossing pairs encountered

in our dataset. This is an ad hoc choice which matches the difficulty that listeners

experience in perceiving voice crossings. However, whether this can be generalized

and whether a more flexible solution can be found are questions that are worth

exploring more thoroughly. Pruning can be very effective in reducing the number of

mapping possibilities, as shown in Table 6.3, which gives the number of possibilities

for a chord of c notes in a context of V voices before and after pruning (all numbers

provided are for the case where there are no sustained notes from a previous chord).

The table shows that the effect increases as the number of notes in a chord grows, and

that it is stronger when there are more voices. When the number of notes approaches

the number of voices, there are fewer options left within the given limit of voice

crossings, leading to lower numbers of mappings (e.g., in the case V = 5, c = 5). In

our experiments we used values of 4 and 5 for V , and we can read from the table the

relative increase of computation compared to the N2N model. In the N2N model,

c feature vectors need to be calculated and evaluated with the neural network. For

the C2C model, the number in column P describes the number of feature vector

calculations and neural network evaluations per chord after pruning. We can see that

the increase for chords with more notes (i.e., P/c) is bounded by a constant factor of

7 for V = 4 and of 17 for V = 5. The feature vectors are larger for the C2C model,

which adds additional processing, but in practice the overall increase was lower than

predicted and below 11 (see Table 6.4), which is substantial but not prohibitive on

modern computers.

As mentioned above, we used a neural network to calculate the gain function

for each mapping, i.e., a rating of the quality of the mapping in the context. For

learning from data we train the neural network to rate the mapping output (as in the

ground-truth) better than any other mapping. For this we use relative training as used
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Table 6.3 Number of mapping possibilities for a chord of c notes in a context of V voices, with no
restrictions (N), meeting enumeration constraints (C) and after pruning (P) of mappings containing
more than two voice crossing pairs

V = 3 V = 4 V = 5

N C P N C P N C P
c = 1 3 3 3 4 4 4 5 5 5

c = 2 9 6 6 16 12 12 25 20 20

c = 3 27 6 5 64 24 20 125 60 50

c = 4 256 24 9 625 120 45

c = 5 3125 120 20

by Weyde and Dalinghaus (2003), which is based on Braun et al. (1991). Unlike a

standard regression approach, where desired outputs—i.e., the ratings—are given

directly, we train the model by comparing the output for the ground-truth mapping

with the outputs for all other mappings, the goal being that, for each chord, the

ground-truth mapping should lead to higher network output than the other mappings.

6.3.4 Relative Training

The relative training technique can be thought of as instantiating the network twice,

sharing the structure and the weight values, with the ground-truth mapping input to

one network and a generated mapping to the other. For training, both networks feed

into a single comparator neuron through connections with fixed weights, −1 and

+1, as shown in Fig. 6.1. In this structure, the feature vector of the ground-truth data

is applied to ‘net 1’ and the feature vector of the other examples to ‘net 2’. If net 1

with the ground-truth input has a higher output than net 2 (i.e., the relative rating

is correct), then the input to the comparator becomes negative, otherwise the input

value is positive, or zero if the networks produce equal outputs.

We used a rectified linear unit for the comparator neuron—that is, we used

max(x,0) as the activation function and set the target output of the comparator

to 0, so that for all correct relative ratings (where out(net 1) > out(net 2)) the

comparator output error (actual− target)2 is 0. This network can be trained with

standard backpropagation or any other gradient descent algorithm to avoid or reduce

incorrect relative ratings. It is helpful for new data to aim for an output difference that

is not just negative, but below some threshold −ε . In neural network terminology,

this means setting a bias for the comparator neuron. This introduces some robustness

against variations in the input data and improves the performance on new data. An

alternative, that was used by Hörnel (2004), is to use a logistic activation function
1

1+e−x , which leads to a positive error signal of varying size for all inputs. We did

preliminary experiments with both approaches, and found that both approaches lead
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a)

b)

Fig. 6.1 (a) The neural network structure for relative learning, the comparator neuron is labelled
‘comp’. (b) Activation functions for the comparator neuron: rectified linear (max(x,0)) and logistic
( 1

1+e−x )

to similar results. We chose the rectified linear units for the final experiments as they

are computationally more efficient and lead to slightly better results on the test data.

6.4 Experiments

We evaluated the performance of the C2C model with the proximity features rep-

resented per-voice (C2C) and averaged (C2CA). We also evaluated the effect of

additional—unused—voice features, by testing a five-voice version. For evaluation

of the two approaches, the 19 four-voice fugues of J. S. Bach’s Well-Tempered
Clavier (BWV 846–893) were used. The MIDI encodings for the pieces from

www.musedata.org were used and all notes beyond four simultaneous voices were

removed (this is typically the final chord and a few notes just before the final chord).

This decision was taken to enable comparison with the N2N model, which in its

current implementation does not allow more than one note per voice at any given

time. The models were trained and evaluated using 19-fold cross-validation, where

each piece is one fold. We did not use random division of training samples, as sam-

ples from the same piece would contain regularities, possibly verbatim repetitions,
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which would make the results unrepresentative for new music. By using piece-wise

cross-validation we can use the results as estimates for results on unseen data of the

same style.

Two modes of evaluation were used:

1. test mode, where the context features are calculated on the basis of the ground

truth. This mode is useful for assessing the effectiveness of learning and gener-

alization of the neural network to new data, without the effect of propagating

errors; and

2. application mode, where the context features are calculated on the basis of the

predicted voice assignments. This mode is like the intended use case, where no

ground truth, i.e., no score, exists.

We used preliminary experiments to determine the values of the rating margin

ε as 0.05 and weight decay λ as 0.00001 (C2C) and 0.00003 (N2N). The method

showed little sensitivity to variations in these parameters, as long as ε was not much

smaller and λ not much larger than the chosen values.

Five models were tested overall. The N2N model (see De Valk and Weyde, 2015),

the C2C4 and C2C5 models without averaging of the proximity features, which have

four and five voices, respectively, and the C2CA4 and C2CA5 with averaging and

four and five voices, respectively.

6.5 Results and Discussion

Accuracy (number of notes correctly assigned, divided by total number of notes) was

chosen as the evaluation metric. The accuracy of the C2C, N2N and C2CA models is

shown in Table 6.4. The differences between the models’ accuracies are not vast, but

several differences are statistically significant. We used the Wilcoxon signed-rank test,

a non-parametric test for different medians, to calculate significance. The test was

applied to the accuracies per piece, thus with 19 samples per condition. As opposed

to the frequently used Student’s t-test, the signed-rank test does not assume the values

to be normally distributed, and for the majority of the combinations in Table 6.4 the

values’ distributions are significantly non-normal according to a Jarque–Bera test.

Overall, the results are similar to previously reported results for the N2N model

(De Valk et al., 2013), although somewhat lower, as this dataset contains no three-

voice fugues. The test results are in a similar range to the training results, indicating

no overfitting. The results in application mode are substantially lower than those in

test mode, which is due to error propagation.

In the application mode, which represents the intended use case, the C2CA4

model is most accurate, improving over the N2N model by over 2 percentage points,

but, as the standard deviation is high, the difference is not significant (p = 0.11). A

general observation in the results is that the four- and five-voice versions of the C2C

models perform similarly (as expected) and the differences between corresponding

four- and five-voice models are not significant in the test and application modes.
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Table 6.4 Voice assignment accuracy per model (columns) and mode (rows) with averages and
standard deviations over 19 folds in cross-validation. The best average accuracies per mode are
shown in bold. The running times on a four-core system are shown in the lower part of the table

N2N C2C4 C2C5 C2CA4 C2CA5

Training
Mean 97.89% 96.51% 96.20% 97.17% 97.03%

Std-Dev 0.13 0.24 0.42 0.15 0.16

Test
Mean 97.54% 96.19% 96.17% 96.90% 96.79%

Std-Dev 0.79 1.52 1.06 1.16 1.24

Application
Mean 77.70% 78.50% 76.91% 80.24% 78.31%

Std-Dev 7.74 10.09 9.86 9.55 11.22

Running times (sec)

Training 1,498 11,579 12,608 11,005 11,777

Test 48 485 503 493 507

Application 55 306 313 308 320

The N2N model shows the highest accuracy in the training and test modes, which

is significantly higher than the values for the C2C models. In test mode, the results

are similar to training mode, but the standard deviation is greater and the difference

between the N2N and C2CA models is not significant.

The averaging of the proximity features has a positive effect on the accuracy of

the C2CA models compared to the standard C2C models. The difference between the

different C2C and C2CA models is mostly significant for training and test mode, while

in application mode only the difference between C2CA4 and C2C5 is significant.

Overall, the C2CA models perform slightly better than the N2N model in the

application mode. In the training and test mode, the accuracy of the C2CA models

is slightly lower than that of the N2N model, indicating that these models are not

as flexible. This could be related to the loss of information due to averaging the

proximity values, but the default values used in the C2C4 and C2C5 models seem to

have an even worse effect and lead to lower accuracy in all cases.

Table 6.5 The significance p-values of differences between models according to a Wilcoxon signed-
rank test. Above the diagonal is the test mode and below the application mode. Values shown in
bold indicate significance at the 5% level. In the training mode, all models are significantly different
from each other

N2N C2C4 C2C5 C2CA4 C2CA5

N2N .0001 .0000 .0008 .0004
C2C4 .8596 .5412 .0082 .0258
C2C5 .4413 .1819 .0003 .0039
C2CA4 .1134 .4653 .0062 0.2753

C2CA5 .6507 .3736 .1336 .4180
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6.6 Conclusions

We introduced a new chord-to-chord (C2C) approach to automatic voice separation

(AVS) in symbolic music representations. The C2C approach is based on processing

the voice assignments for one chord as a whole, and calculating all possible assign-

ments. This approach has the advantage of modelling interactions between notes in

a chord and being perceptually and cognitively more plausible. Its disadvantage is

that it is difficult to define the features effectively, where there is a trade-off between

the problematic use of default values and the loss of information by averaging. In

the presented evaluation, the differences in performance are small and vary between

modes. The C2C model performs better than the N2N model when averaging the

proximity features in application mode, which represents the use case. However, due

to high variability, this result is not significant in our experiment. Given that the C2C

model is clearly slower than the N2N model, the latter may be preferable for practical

applications at the moment.

However, the results show that a C2C approach to voice separation can be suc-

cessful. There is a need to understand better how to design effective chord-wise

features for AVS. The temporal dynamics of the auditory scene analysis are only

rudimentarily modelled here, and there may be better solutions to the representation

and processing problem, for example using a time-based modelling approach (e.g.,

one based on synchronous activation of neurons). The development of better fea-

ture representations and effective global optimization techniques are thus relevant

research topics for musical voice separation, which could help realize the potential

of the C2C approach more fully in the future.
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Chapter 7
Analysing Symbolic Music
with Probabilistic Grammars

Samer Abdallah, Nicolas Gold, and Alan Marsden

Abstract Recent developments in computational linguistics offer ways to approach

the analysis of musical structure by inducing probabilistic models (in the form of

grammars) over a corpus of music. These can produce idiomatic sentences from a

probabilistic model of the musical language and thus offer explanations of the musical

structures they model. This chapter surveys historical and current work in musical

analysis using grammars, based on computational linguistic approaches. We outline

the theory of probabilistic grammars and illustrate their implementation in Prolog

using PRISM. Our experiments on learning the probabilities for simple grammars

from pitch sequences in two kinds of symbolic musical corpora are summarized. The

results support our claim that probabilistic grammars are a promising framework

for computational music analysis, but also indicate that further work is required to

establish their superiority over Markov models.

7.1 Introduction

Music is, arguably and amongst other things, structured sound. Music analysis is

that branch of musicology which aims to explain the structure of pieces of music,

in the sense of giving an account both of the relationships between different parts

of the same piece, and the relationships between the piece and patterns common to

other pieces of music. Theories of music analysis thus typically identify, classify,

and relate musically meaningful parts of a work or works. These structural aspects of

a piece of music, on the small and large scales, are crucial to its impact.
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Music analysis, whether formal or informal, thus relies on “data”: this includes

the piece itself in sonic and/or symbolic form, but also, in most cases, a wealth of

background knowledge and experience to make both the structure of a piece of music

and the derivation of that structure explicit and so open to scrutiny.

We observe that listeners come to be able to perceive structure in pieces of music

through mere exposure, though they might not be able to give an account of how they

have come to perceive this structure, nor might they be able to justify it. In both these

respects, music resembles language: speakers are able to understand and construct

grammatical sentences, but they often require training to be able to explain what

makes a sentence grammatical.

Shannon’s (1948) work on information theory perhaps offers some explanation

for this, in short, indicating that structure exists in any departure from complete
randomness (this is explored further in the next section). Humans learn probabilities

implicitly from exposure, and so effectively learn to perceive structure. This suggests

that probabilistic modelling may offer a fruitful approach to music analysis (and one

that likely demands a computational approach).

The field of computational linguistics has recently developed techniques that can

be applied in the analysis of musical structure. These can induce models over a

corpus of music. Such models take the form of probabilistic grammars from which

idiomatic sentences can be produced. The derivation and application of the grammar

rules thus offers an explanation of the musical structures modelled by them.

This chapter surveys historical and current research in computational linguistics

applied to symbolic music analysis (by which we mean analysis of music in the form

of symbolic, score-like data). The principles and operation of key developments are

discussed, and we summarize our recent feasibility studies in using probabilistic

programming techniques to provide tractable computation in this framework.

7.2 Information and Structure

Information theory provides a number of concepts that can help us to understand and

quantify what we mean by ‘structure’. Shannon’s (1948) information theory is, to a

large degree, concerned with the notion of uncertainty, quantified as entropy, and

how the reduction of uncertainty can be considered a gain in information. Entropy

is a function of probability distributions, and probability distributions can represent

subjective beliefs, that is, the degrees of belief that an intelligent agent (whether

biological like ourselves or artificial like our computers) places in a set of mutually

exclusive propositions.1 These degrees of belief can be based on any knowledge

currently possessed by the agent in combination with any prior or innate dispositions

it may have.

1 Indeed, this subjectivist view of probability was espoused by, among others, de Finetti (1975),
while Cox (1946) showed that, given certain reasonable assumptions, any system for reasoning
consistently with numerical degrees of belief must be equivalent to probability theory.



7 Analysing Symbolic Music with Probabilistic Grammars 159

Psychologists such as Attneave (1954) and Barlow (1961) proposed that percep-

tual systems in animals are attuned to the detection of redundancy in sensory signals,

which means, essentially, the ability to predict one part of the sensory field from

another. Often, the reason for such sensory regularities is the presence of coherent

objects and processes in the outside world, so detecting and accounting for redun-

dancy can enable the mind to see beyond the mass of sensory signals to relevant

phenomena in the world. Redundancy of this sort ensues whenever different parts of

the sensory field depart from complete statistical independence. This can be taken as

a definition of what ‘structure’ is, and perceptual learning can be seen as a process

of detecting statistical regularities on exposure to structured objects, and thereby

making inferences about events in the world. This idea has successfully accounted

for many features of perceptual processing (Knill and Pouget, 2004).

Thus, the use of probabilistic models, an approach on which we shall elaborate

further in Sect. 7.4, is not merely a computational device: it is at the heart of our

current understanding of human perception and cognition (Knill and Richards, 1996)

and also addresses ideas about the role of uncertainty and expectation in music

(Meyer, 1956).

A distinct, but related branch of information theory is algorithmic information
theory, which is built on the idea that any object which can be represented as a

sequence of symbols can also be represented by a computer program which outputs

those symbols when run. Sometimes, a very short computer program can output a

very long sequence of symbols, and hence, an ostensibly large object may be specified

by a much smaller program. The Kolmogorov complexity (Li and Vitányi, 2009) of

such an object is defined as the length of the smallest program that outputs the object

when run, and can be considered a measure of the amount of information in the

original object. As such, it is related to the minimum description length principle

(Rissanen, 1978). Kolmogorov complexity also forms the basis of Martin-Löf’s

(1966) definition of a random object as one which does not admit of any smaller

description and therefore cannot be compressed; this corresponds loosely with the

notion of redundancy described above.

Given the close connection between predictability and compressibility (Cover

and Thomas, 1991), and the probabilistic basis of optimal compression algorithms,

we observe that in both theoretical frameworks (Shannon’s information theory and

algorithmic information theory), structure can be defined as that which enables an

apparently large object to be represented more efficiently by a smaller description.

The probabilistic approach and its subjectivist interpretation also emphasize that

predictability (and hence compressibility) depend on the expectations of the observer,

and thus can accommodate the subjectivity of perception in a natural manner. In

addition, while the Kolmogorov complexity of an object is claimed to be an objective
measure, in practice, it must be approximated by using compression programs that

encode implicit or explicit assumptions about the data to be compressed and that are

usually based on probabilistic models.
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7.3 Theories of Structural Music Analysis

There are various established approaches to structure in music analysis, each of which

gives quite a different account of what a musical structure is. A Schenkerian analysis

(Schenker, 1935), for example, reveals the structure of a piece of music in hierarchical

layers of reduction, resulting in something like a tree or some other kind of restricted

directed graph (Fig. 7.1).2 A paradigmatic and syntagmatic analysis in the manner of

Nattiez (1975), on the other hand, divides the piece into units (syntagms) and groups

those units by recurrence or resemblance into paradigms. At a higher level, then, the

structure of the piece can be shown as a sequence of syntagms, each of which is an

instance of a particular paradigm (Fig. 7.2). Theories of form, dating back to the

nineteenth century, identified themes and other kinds of segments of music, assigning

each to a role within one of a number of established formal patterns such as Sonata

Form, Rondo or Binary.

Each of these analytical approaches has three common factors:

Segmentation The music is divided into meaningful units.

Classification Segments are assigned to classes.

Relation Segments are related to each other according to their role in forming

patterns of significance with other segments.

In the case of syntagmatic and paradigmatic analysis, the first two factors are clear,

and the third often follows in a later stage of the analysis where patterns in sequences

of instances of paradigms are identified, or a pattern in the occurrence of particular

paradigms, or in their evolution. In the case of Schenkerian analysis, the first two

factors work together, as groups of notes are identified as prolongations of notes at a

Fig. 7.1 An example Schenkerian analysis of the opening of Mozart’s piano sonata in A major,
K. 331. Notes on lower staves are considered to elaborate the structural notes with which they
align or between which they occur on the staff above. Notes on the upper two staves with smaller
noteheads are considered to elaborate notes with larger noteheads, and ones with solid noteheads
to elaborate ones with open noteheads. The beam links the three notes forming the Urlinie which
Schenker considered to constitute the fundamental line of every proper piece of tonal music

2 For an explanation of the relation of Schenkerian analyses to trees and graphs, see Marsden (2005).
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Fig. 7.2 An example syn-
tagmatic and paradigmatic
analysis of the opening of
Mozart’s piano sonata in A
major, K. 331. The melody
is divided into six syntagms,
identified as 1–6, and orga-
nized into two paradigms, a
and b

higher level. The patterns of those higher-level notes in turn govern the relations of

the lower-level units. Even such an apparently different approach to musical structure

as set theory (Forte, 1973) employs these three factors: groups of adjacent notes

are separated from other notes (segmentation); the pitch-class set of each group is

identified (classification); and the structure of the piece is considered to be determined

in part by the relations between the pitch-class sets.

These three are also factors in language, and grammars exist to explain how a

sentence falls into a relational structure of words (segments) according to the parts

of speech (classes). We therefore consider the idea of grammar to be applicable to

the analysis of musical structure not only because of the oft-remarked correspon-

dence between Schenkerian reduction and parsing a sentence, but also because of a

deeper correspondence between the factors determining structure in both music and

language.

This is not to deny that there are also obvious and significant differences between

language and music, in particular the often multidimensional (in the sense that a

musical event can usually be characterized in multiple ways, such as pitch, duration,

loudness, timbre, etc.) and polyphonic nature of music. These characteristics may

necessitate the development of grammars that go beyond those commonly used in

linguistics, though we note that even natural language can sometimes be described in

a multidimensional way (Bilmes and Kirchhoff, 2003).

Furthermore, we find grammars particularly suited to computational analysis of

music because (a) they are liable to implementation in computer software, and (b)

they can be learned or derived from examples of sentences or pieces of music. The

latter consideration is important, first, because it is evident that most people come to

be able to perceive structure in music simply by exposure to it,3 and second, because

crafting a grammar ‘by hand’ is not always practical for music (as we discuss below).

3 We do not claim, however, that people will necessarily come to be able to produce musical
structures simply by exposure.
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7.3.1 Links to Linguistics

It is in the field of computational linguistics that grammars have been best developed,

and so we will briefly review some of the important developments in linguistics

before narrowing our focus to grammars in music later in this section.

Languages and Grammars A language is, in theoretical terms, defined as follows:

given a well-defined set of symbols, or alphabet, a sentence is a finite sequence of

such symbols, and a language is a set of sentences. This set may be finite or infinite;

for example, if we take as our alphabet the set of lower-case latin letters a,b,c etc.,

then

{pat, pet, pit, pot, put} (L1)

is a finite language, while the languages

{ab,abab,ababab,abababab, . . .} (L2)

{ab,aabb,aaabbb,aaaabbbb, . . .} , (L3)

continued in the obvious way, are both infinite. A grammar specifies, by means

of rewrite or production rules, a recursive generative process which produces such

sentences and therefore defines a language. More formally, a grammar consists of a

set of terminal symbols that will form the alphabet of the language, a disjoint set of

non-terminal symbols, a set of production rules describing how certain sequences of

symbols may be re-written, and a distinguished non-terminal called the start symbol

(conventionally S). For example the language (L1) results from the following rules

for non-terminals S and V :

S → pVt,

V → a | e | i | o | u ,
(G1)

where V → a | e | . . . is shorthand for the multiple rules V → a,V → e, etc. Similarly,

language (L2), sometimes referred to as (ab)n, results from

S → ab | abS (G2)

and (L3) (or anbn) from

S → ab | aSb . (G3)

Note that the two infinite languages involve recursive production rules, that is, non-

terminals that can expand to a sequence containing themselves.

As well as providing a recipe for generating strings from the language, a grammar

also defines a way to analyse a given sentence in terms of the sequence of rule

applications that could have been used to generate it, a process known as parsing.

Thus, parsing seeks an explanation of the observed sequence in terms of possible

generative structures and their semantic implications.



7 Analysing Symbolic Music with Probabilistic Grammars 163

A particularly important class of grammars is that of the context-free grammars.

A context-free grammar (or CFG) is a grammar in which only single non-terminal

symbols appear on the left-hand side of production rules. All of the examples above

are context-free grammars. Parsing a sequence using a CFG results in a syntax tree;

for example, the sentences abab and aabb can be parsed using grammars (G2) and

(G3) respectively as follows:

S

S

ba

ba

S

bS

ba

a

grammar (G2) grammar (G3)

Hierarchy of Grammars Chomsky (1957) classified grammars on the basis of their

production rules into a hierarchy, with simple “regular” grammars at the bottom,

followed by “context-free”, “context-sensitive”, and finally “unrestricted” grammars

at the top. Each level up is more general than the level below. For example, gram-

mars (G1) and (G2), as well as being context-free, are also members of the more

restricted class of regular grammars. There is an intimate relationship between the

levels of the hierarchy and the complexity of the computing machine, or automaton,

that is required to judge whether or not a given sequence is grammatical. Grammars

higher in the hierarchy can produce languages with more complex structures, but

require more computational resources (time and memory) to process. For example,

regular grammars require only a finite state automaton for recognition of grammati-

cal sequences; CFGs require a push-down automaton, which essentially means an

automaton with an arbitrarily deep stack in order to keep track of arbitrarily deep

recursive structures; while unrestricted grammars require a Turing tape for recogni-

tion, or a Turing machine, which is the most general type of computing machine, for

further processing. Given that natural languages are for human consumption, this

places limits on the complexity of the grammars that might describe them, especially

when the situation demands real-time production or understanding (e.g., during con-

versation). For this reason, the consensus seems to be that natural languages are

“mildly” context-sensitive. Whether or not the same applies to music is an interesting

question. Johnson-Laird (1991) suggests that, during jazz improvisation, limitations

on working memory demand that improvised structures can be described by at most

a regular grammar, whereas precomposed structures, like the chord sequence, may be

described by a context-free grammar (CFG) or higher. Similarly, we might posit that,

on a first listening, only structures describable by a regular grammar are accessible,

but repeated listening (and analysis) might reveal more complex structures, the utility

of which is to explain surface features which may have seemed surprising or arbitrary

when analysed using the simpler grammar.

Formalisms A variety of grammar formalisms have been proposed in order to deal

with linguistic structures that cannot be described simply in a context-free way; these

include tree adjoining grammars (Joshi et al., 1975), definite clause grammars or
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DCGs (Pereira and Warren, 1980), extraposition grammars (Pereira, 1981), a variety

of unification based grammars (Shieber, 1985), and type-theoretical grammars such

as Lambek calculus (Lambek, 1958) and combinatory categorical grammars or CCGs

(Steedman, 2001; Steedman and Baldridge, 2011). A unifying idea behind all these

grammar formalisms is that they attempt to provide a system, or meta-language, for

specifying grammars, that is just powerful enough to describe linguistic structures in

the domain of interest, but not so powerful that it leads to intractable computations.

In the case of both natural languages and music, this seems to require something

more than a (finite) CFG, but less than an unrestricted grammar. With the exception

of the DCG formalism, which is Turing complete (i.e., capable of performing any

computation performable by a Turing machine), the carefully limited complexity of

these meta-languages means that generation and parsing is computationally tractable

and so practically usable. Thus we may think of the grammar formalism as a kind of

special purpose programming language, which is, in the terminology of programming

language design, a high-level, declarative, domain specific language (DSL) designed

to make sentence structure easy to describe.

Parsing A wide variety of parsing technologies have been studied. DCGs written in

Prolog can be translated directly into an executable program that can both generate

and recognize sentences from the language: Prolog’s execution strategy results in top

down (recursive descent) parsing; however, this can be inefficient for very ambigu-

ous grammars. More efficient parsers can be written using dynamic programming

techniques to avoid redundant computations; these chart parsers include the bottom-

up CKY algorithm (Younger, 1967) and Earley’s top-down parser (Earley, 1970).

The close relationship between Earley’s algorithm and tabling or memoization in

general purpose logic programming (also known as Earley deduction) is well-known

(Pereira and Warren, 1983; Porter, 1986), and can be carried over very elegantly to

functional programming languages such as Scheme and Haskell using memoizing
parser combinators (Frost and Hafiz, 2006; Johnson, 1995; Norvig, 1991).

Probabilistic Grammars When a grammar is extended to cover a wide corpus,

then the number of production rules and/or the size of the lexical database means that

parsing can become very expensive due to the resulting high degree of ambiguity. It

was recognized that a majority of these alternative parses would be nonsensical, and

that this notion could be characterized by noticing that certain words or constructs

are much more likely to occur than others. Thus, though it is conceivable that “[the

man] [saw [the dog with a telescope]]”, it is much more likely that “[the man] [[saw

[the dog]] [with a telescope]]”. A grammar augmented with probabilities becomes a

probabilistic language model, capable of being used in either direction: assigning

probabilities to sentences and their syntax trees, or generating idiomatic as opposed

to merely grammatical sentences.

Perhaps the simplest examples are probabilistic context-free grammars (PCFGs),

which consist of a CFG supplemented with, for each non-terminal, a probability dis-

tribution over the possible expansions of that non-terminal. The inside-out algorithm
(Baker, 1979) can compute the probabilities of alternative parses. Efficient algorithms

for probabilistic parsing were developed during the 1990s (Abney, 1997; Collins,
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1999; Goodman, 1998; Stolcke, 1995) and have gone on to revolutionize compu-

tational linguistics, resulting in the current state-of-the-art in parsing and natural

language understanding.

Probabilistic grammars can support grammar induction, which is a form of in-

ductive learning where the grammar rules are not given, but must be inferred from a

collection of sample sentences. This is analogous to the situation in which a child

finds itself in the first few years of life: beginning with no knowledge of nouns, verbs,

etc., the child gains enough implicit grammar to produce (more or less) grammatical

utterances simply from hearing spoken language. This process has been modelled in

several ways; for example, Kurihara and Sato (2006) used rule splitting to explore

the space of grammar rules and Bayesian model selection criteria to choose from the

resulting grammars; Bod (2006) applied his data oriented parsing method, which

builds a collection of commonly occurring syntactic sub-trees, to both language and

music; and O’Donnell et al. (2009) used Bayesian nonparametric models to achieve

a similar goal.

One family of probabilistic grammars is based on so-called ‘log-linear’ or ‘undi-

rected’ models, which involve assigning numerical likelihoods to grammatical fea-

tures in such a way that they need not sum to one, as probabilities are required to

do (Abney, 1997; Charniak, 2000; Collins, 1997, 2003). These can yield flexible

probability models, but, due to this lack of normalization, suffer from some technical

difficulties in learning their parameters from a corpus. Goodman’s (1998) probabilis-
tic feature grammars retain much of the flexibility but avoid these problems by using

directed dependencies to obtain a properly normalized probability model. Probabilis-

tic extensions of CCG have been developed (Hockenmaier, 2001; Hockenmaier and

Steedman, 2002), also using log-linear models, with statistical parsing and parameter

learning algorithms (Clark and Curran, 2003, 2007).

7.3.2 Grammars in Musicology

While the parallels between music and linguistics go back much further (Powers,

1980), the application of formal grammars in music began in the 1960s. Winograd

(1968) used a grammar formalism called “systemic grammar” to define a grammar

for music, covering cadential and harmonic progression, chord voicing and voice

leading, and presented a LISP implementation to parse a given fragment. Despite the

use of heuristics to guide the search, high computational complexity meant that the

system was limited to analysing relatively small fragments.

Kassler (1967) made steps toward formalizing Schenker’s theory , encoding recur-

sive functions to describe the process of elaboration from Ursatz to middleground for

the top and bass voices in a polyphonic score, showing that the resulting grammar

was decidable, meaning there exists an algorithm (given in the paper) which can

determine in a finite number of steps whether or not a given musical sequence is

a member of the language defined by the grammar. Software, using backtracking

search and written in APL, was presented in later work (Kassler, 1976, 1987).
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Another system notable for its wide scope and technological sophistication was

Ebcioğlu’s (1987) CHORAL, which was implemented in a custom logic program-

ming language and included nondeterminism and heuristically-guided “best-first”

backtracking search. It was applied to harmonizing chorales in the style of J. S. Bach.

Other researchers have focused on narrower goals, such as melody analysis (Baroni

et al., 1983; Lindblom and Sundberg, 1970), jazz chord analysis (Pachet, 2000; Pachet

et al., 1996; Steedman, 1984; Ulrich, 1977) and grammars for melodic improvisation

(Johnson-Laird, 1991). Smoliar’s (1980) system was notable in that it did not attempt

to do Schenkerian analysis automatically, but instead provided the analyst with a

collection of tools to facilitate the process.

The Generative Theory of Tonal Music (GTTM) of Lerdahl and Jackendoff (1983)

was perhaps one of the more complete attempts to account for structure in music,

including melodic phrase structure, metrical structure, and hierarchical reduction

similar to that described by Schenker. Lerdahl and Jackendoff expressed their theory

in generative rules, but their approach was not computational. Subsequent attempts

to implement the theory (e.g., Hamanaka et al., 2006, 2007, see also Chaps. 9 and 10,

this volume) have encountered difficulty with their ‘preference rule’ concept.

More recent years have seen developments in computational linguistics, espe-

cially probabilistic grammars, filtering back into musicological work. For example,

Steedman’s chord grammar has inspired a number of researchers to apply more sophis-

ticated grammar formalisms to more general harmonic models (Granroth-Wilding,

2013; Granroth-Wilding and Steedman, 2012; Rohrmeier, 2006, 2011; Steedman,

2003).

On the melodic side, Mavromatis and Brown (2004) reported that they had been

able to design a grammar for Schenkerian analysis as a Prolog DCG. Schenker’s

melodic elaborations are similar to grammar production rules but because some of

them, such as the introduction of neighbour notes or passing notes, depend on two
adjacent notes, they cannot be written as a context-free grammar if the melody is

represented as a sequence of pitches. Instead, Mavromatis and Brown represented

melodic sequences as sequences of pitch intervals and were thus able to devise a

CFG to embody melodic elaborations. However, practical obstacles to a working

implementation were encountered, due to the large number of rules required.

Gilbert and Conklin (2007) also adopted this approach and designed a PCFG to

model both melodic and rhythmic elaborations. Their grammar included five basic

melodic elaborations (including the repeat, neighbour, passing, and escape types of

ornamentation used in our experiments, described in Sect. 7.5). Figure 7.3 shows

how a short melodic sequence can be represented as a sequence of pitch intervals and

described in terms of a syntax tree using two of the elaboration rules (the term rule

simply emits a terminal symbol). We will build on this grammar later in Sect. 7.5.

Issues of how to represent tree-like elaboration structures to enable a grammar-

based analysis were examined by Marsden (2005), who showed that adopting an

interval-based encoding, though sufficient to allow a context-free description for

some types of melodic elaboration, is not sufficient in general to cope with other

musical structures such as suspensions and anticipations which are (locally) context-

dependent in a fundamental way. He went on to develop software for the analysis of
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Fig. 7.3 An example of a syntax tree for a short sequence of melodic intervals. The grid below is a
piano-roll representation of the notes with the arrows showing the pitch (in semitones) and time
intervals between successive notes

short fragments based on bottom-up chart parsing, heuristics for ranking the quality

of analyses, and pruning (similar to beam search) to limit the search space (Marsden,

2007, 2010, 2011).

Kirlin and Jensen (2011) and Kirlin (2014) also base their probabilistic model of

musical hierarchies on the elaboration of intervals, adopting Yust’s (2009) triangu-

lated graphs as their structured representation, rather than the trees of conventional

grammatical analysis. Another recent grammar-based approach to music analysis is

that of Sidorov et al. (2014), who implement a non-probabilistic form of grammar

induction.

In the literature on music theory, Temperley (2007) is the most prominent appli-

cation of a probabilistic approach. Most of the book is concerned with recognition

of high-level features such as metre and key rather than structures at the level of

phrases and notes, but it does include a discussion of a possible approach to modelling

Schenkerian analysis through a probabilistic grammar (pp. 172–179). This chapter

could be seen in part as a response to Temperley’s challenge to Schenkerian theorists

to demonstrate how the theory ‘reduces the uncertainty of tonal music’ (p. 179).

7.4 Probabilistic Models

A probabilistic model (henceforth, simply ‘model’) of a domain is essentially an

assignment of probabilities to things in that domain. It is these probabilities which

determine how surprising a thing is and, in the case of a partially observed temporally

unfolding object such as a piece of music, how it might continue.

Although models and data may seem rather abstracted from issues of music, if one

considers ‘data’ to be one or many musical works in symbolic form and a ‘model’

as, for example, a structural analysis of a single piece, or a music theory for a large

corpus of works, the application of these concepts becomes clearer.
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7.4.1 Model Selection Criteria

The most effective models are adaptable to new situations (such as new musical

styles) on the basis of observations. Even when listening to an individual piece, our

expectations are fluid and adaptable: a theme or motif is less surprising when heard a

second time or in some subsequent variation.

In all practical cases, the data is finite. Unless we have very specific information

about how the data was generated, it will not be possible to determine a single

‘correct’ probabilistic model. For one thing, it is not possible to extract the infinite

amount of information required to determine real-valued parameters from data that

contains only a finite amount of information about them; for example, neither the

mean and variance of a Gaussian distribution, nor the probability of a biased die

rolling a six can be determined with certainty from a finite sequence of observations.

In another, deeper sense, if the amount if data is limited in an essential way, such that

there cannot be any more data (for example, the set of pieces composed by Ravel)

then it can be argued that an objective probability distribution describing this set

does not exist. To give another example, in a certain literal sense, the only pieces

in the style of Mozart are the ones he actually wrote. However, musicians regularly

use this concept, and broadly mean ‘if Mozart had written another piece, then it

might have been like this’. This of course is contrafactual, making clear why an

objectively ‘correct’ model is not possible. Thus candidate models must be evaluated

to determine which is the most plausible given the data available.

A number of familiar machine-learning issues arise in this problem of ‘model

selection’. One is over-fitting, where an overly complex model becomes too tightly

coupled to incidental rather than essential features of the data, leading to poor gener-
alization. Conversely, an overly simple model may under-fit, and not capture enough

of the regularities that are in the data.

Bayesian model selection criteria offer a theoretically and philosophically ap-

pealing approach to addressing these issues (Dowe et al., 2007; Kass and Raftery,

1995). Bayesian inference is underpinned by the consistent use of probability to

capture the inferrer’s uncertainty about everything under consideration, including

the models themselves (and their parameters). An inferring agent with model M
with parameters θ ∈Θ (where Θ is the parameter space) can initially only set those

parameters as an uncertain probability distribution (the prior distribution P(θ |M)).
After observing some data D, the agent will update the state of its belief, giving a

posterior distribution:

P(θ |D,M) =
P(D|θ ,M)P(θ |M)

P(D|M)
, (7.1)

This accounts for the prior and the likelihood that the model with parameters θ could

have produced the data. To best predict a new item of data d, given the model and

observations so far, the agent needs to compute
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P(d|D,M) =
∫

Θ
P(d|θ ,M)P(θ |D,M) dθ .

As long as the agent remembers the posterior distribution P(θ |D,M), the data is no

longer needed. The evidence (the denominator in (7.1)) is computed thus

P(D|M) =
∫

Θ
P(D|θ ,M)P(θ |M) dθ . (7.2)

With multiple candidate models, inference takes place on distributions over those

models (rather than parameters) with prior P(Mi) and posterior

P(Mi|D) =
P(D|Mi)P(Mi)

P(D)
. (7.3)

If the prior over models P(Mi) is relatively flat (i.e., no model is distinctly more

probable than others), then the evidence is the key determinant of the relative plausi-

bility of each model after data observation. The posterior distribution can be used

to make predictions and decisions (model averaging) and if a decision is required,

the model with the greatest evidence can be selected. While it is clear that the evi-

dence P(D|M) rewards models that are able to fit the data well in some part of their

parameter space—since P(D|θ ,M) will be large in this region—it also penalizes

models that are more complex than the data can support.

To see why this is so, consider that, for a given size of dataset, P(D|M) is a

probability distribution over the space of complete datasets and therefore only has

a finite amount of probability mass to spread out over that space. Simple models

are only able to assign significant probability mass to a small set of datasets, while

complex models betray their complexity by being able to assign probability mass to a

much larger space of datasets. Figure 7.4 shows how this results in trade-off when we

wish to choose a model for a particular observed dataset D1. In short, model M1 is

too inflexible and a poor fit, while M3 is flexible enough but unnecessarily complex.

Model M2 out-performs both.

This automatic penalty for overly-complex models gives us a formal expression of

Ockham’s razor, the philosophical principle that, other things being equal, we should

choose the simplest explanation for observations.

Simplicity can also be expressed in terms of the minimum message length principle

(Wallace and Boulton, 1968) and the related minimum description length principle

(Rissanen, 1978). These state that models that produce the shortest possible descrip-

tion of the data (including the description of any necessary model parameters) should

be selected. The close relationship between compression and probabilistic structure

means that this is essentially the same as the Bayesian approach (MacKay, 2003),

with some minor differences (Baxter and Oliver, 1994).

The relationship between message length, the Bayesian evidence, and model

complexity can be illuminated further by recalling that, for optimal compression,

an object x should be encoded by a message of length �− logP(x) bits (assuming

logarithms to the base 2), where P(x) is the probability that both sender and receiver

assign to x and �· is the operation of rounding-up to an integer value. If the ob-
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Fig. 7.4 An illustration of how model complexity and data-fit interact to determine the Bayesian
evidence. The x-axis represents the space of all possible datasets of a given size (in most cases this
will be a very high-dimensional space, but one dimension is sufficient to illustrate the principle).
The curves are the probability distributions over datasets assigned by each of three models, so the
total area under each curve is the same. M1 is not flexible enough to assign much probability to
the observed dataset D1, while M3 is flexible enough to assign probability to a great variety of
datasets, including D1. In doing so, however, it must spread out its probability mass more thinly. By
being just flexible enough, M2 receives greater evidence than either M1 or M3

ject to be transmitted is a dataset D, then clearly, the model Mi with the greatest

evidence P(D|Mi) will yield the shortest message, encoding the entire dataset in

approximately − logP(D|Mi) bits.

Looking more closely at how the evidence relates to the model parameters θ ,

we can reason that a well-fitting model would assign a high probability to the data

for a certain optimal value of θ , say θ̂ . Given that P(D|θ̂ ,M) is relatively high, a

relatively short message of length approximately − logP(D|θ̂ ,M) bits could be sent

to describe the dataset, but only if sender and receiver had agreed on θ̂ beforehand.

Since θ̂ depends on the data that only the sender has access to, this is not possible, so

the sender must send a message approximately − logP(θ̂ |M) bits long describing

θ̂ first. If the model is complex in the sense of having a large parameter space, this

message may be large enough to offset any gains obtained from using a complex

model to increase P(D|θ̂ ,M).
The above considerations mean that the length of the message describing a dataset

D will be approximately

− logP(D|θ̂ ,M)− logP(θ̂ |M) =− logP(D, θ̂ |M) . (7.4)

This is not the same as the − logP(D|M) bits we estimated before considering the

parameters. How can we resolve this discrepancy?

Bits Back Coding Let us look again at the length of the message required to send

D and θ : this depends on P(D,θ |M) which, for a fixed dataset, is proportional

to P(θ |D,M), the posterior distribution over the parameters given the data. If this

distribution is relatively broad, it defines a region of Θ over which the total coding

cost is approximately minimal. If, instead of sending the optimal value θ̂ , the sender

sends a value chosen at random from the posterior distribution, the coding cost will

remain about the same, but this extra freedom of choice can allow an additional

message to be sent at no extra cost. This is the basis of the ‘bits back’ coding scheme,
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first described by Wallace (1990), but so named by Hinton and van Camp (1993). We

can see how this accounts for the discrepancy noted above as follows:

P(D,θ |M) = P(θ |D,M)P(D|M) ,

logP(D,θ |M) = logP(θ |D,M)+ logP(D|M) ,

logP(D|M) = 〈logP(D,θ |M)〉−〈logP(θ |D,M)〉 ,
− logP(D|M) = 〈− logP(D,θ |M)〉−H(Pθ |D,M) ,

(7.5)

where 〈·〉 denotes an expectation with respect to the posterior P(θ |D,M), and H(·)
is the entropy of the given probability distribution. Thus, the difference between

the theoretical message length − logP(D|M) and the average message length for

sending both D and θ when θ is chosen randomly from the posterior P(θ |D,M) is

the entropy of the posterior.

Variational Free Energy Representing uncertainty about model parameters, com-

puting the evidence and doing model averaging can be expensive operations computa-

tionally and approximations are often needed. For some models, variational Bayesian
learning (Jordan et al., 1998; MacKay, 1997) can be a good solution, combining

an efficient representation of uncertainty about parameters with a tractable learning

algorithm, delivering an estimate of the evidence as a function of the variational free
energy F . As with the bits back coding scheme, it too is defined by focusing on the

posterior distribution P(θ |D,M). However, instead of trying to work with the exact

posterior, we choose to approximate it with a distribution Q(θ) chosen from a more

tractable class of distributions. The free energy is then defined as a function of this

variational distribution Q:

F(Q) =−〈logP(D,θ |M)〉Q + 〈logQ(θ)〉Q (7.6)

where 〈·〉Q denotes an expectation with respect to θ drawn from the variational

distribution Q(θ). Note that this is the same, except for the reversal of sign, as the

third line of (7.5) with Q replacing the true posterior Pθ |D,M. This tells us that F(Q)
is the effective number of bits required to transmit the dataset after using the bits

back coding scheme to recover an extra H(Q) bits encoded in a random choice of θ
from Q(θ). It can be shown that F is an upper bound on − logP(D|M), minimized

when Q is as close as possible to the true posterior in a certain sense:

F(Q) =− logP(D|M)+D(Q||Pθ |D,M), (7.7)

where D(·||·) is the Kullback–Leibler divergence, a measure of distance between two

probability distributions, and non-negative. Variational Bayesian methods search the

chosen space of variational distributions to find a Q that minimizes the free energy,

and so, after the procedure is complete, we can use F(Q) instead of the true evidence

for model comparisons.

Thus, we come to the methodology we adopt for our subsequent modelling ex-

periments: given a dataset and a number of candidate models, we fit each model
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using variational Bayesian learning and use the variational free energy to compare

them—the lower the free energy, the better the model. The variational free energy

itself indicates how much information is needed to transmit the dataset using the bits

back coding scheme with the optimal variational distribution Q.

7.4.2 Probabilistic Programming

While probabilistic modelling is a powerful technique for solving problems involving

uncertainty, the translation of a model into a working computer program can become

laborious if all the mathematical machinery has to be implemented from scratch.

The development of graphical models or Bayesian networks (Pearl, 1988) made it

possible to provide software libraries that require only a high level description of the

model as a network of nodes and edges. However, the graph notation has limitations

when it comes to models with an unknown or unbounded number of objects in

the domain of interest. This motivated the development of more flexible languages

for specifying and working with a broad class of probabilistic models, including

grammars, Bayesian networks and probabilistic process models. The differences

between language and music suggest that we will need such flexibility to go beyond

the capabilities of linguistic grammar formalisms to model musical structure.

The idea behind probabilistic programming is to simplify this process by com-

bining the flexibility of general purpose programming constructs (such as structured

data types, recursion, functions, etc.) with probabilistic primitives in a high-level

programming language, allowing the description of probabilistic models at a high

level of abstraction and having the underlying framework provide the appropriate

inference and learning functions automatically.

This is ideal for problems where some unobserved underlying structure is thought

to give rise to observable consequences and an estimate of the underlying structure is

desired. The probabilistic expression of the problem implies a resulting ‘posterior’

probability distribution over underlying structures and well-known general methods

such as Markov chain Monte Carlo algorithms can be used to direct and give structure

to the search over the solution space. It also means there is a clear separation between

the exact statement of the problem and any approximations invoked to solve it.

Probabilistic programming is currently an active research topic in both artificial

intelligence and cognitive modelling and marries the power of Bayesian methods with

the flexibility and computational completeness of general programming languages.

Many probabilistic programming languages have been proposed and developed,

including probabilistic Horn abduction (Poole, 1991, 1993), stochastic logic program-

ming (Muggleton, 1996), PRISM (Sato and Kameya, 1997), Markov logic (Domingos

and Richardson, 2007), IBAL (Pfeffer, 2001), Church (Goodman et al., 2008), and

Hansei (Kiselyov and Shan, 2009).

PRISM (Sato and Kameya, 1997) supports efficient exact inference for a wide

class of discrete-valued models, with PRISM equivalents of standard models such as

hidden Markov models and PCFGs resulting in the equivalent of efficient standard
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inference and learning algorithms for these models. PRISM also supports a limited

form of Bayesian learning for a wide class of discrete-valued models including hidden

Markov models and probabilistic context-free grammars (PCFGs), resulting in the

equivalent of efficient standard inference and learning algorithms for these models.

PRISM has been used to implement probabilistic grammars for natural languages

and estimate their parameters (Sato et al., 2001) and for grammar induction using

Variational Bayes for model selection (Kurihara and Sato, 2006). It has already been

used for music modelling (Sneyers et al., 2006), and as the basis for a probabilistic

constraint logic programming (CLP) system which was also used for music modelling

(Sneyers et al., 2009).

MIT Church (Goodman et al., 2008) on the other hand, uses approximate, random-

sampling based inference mechanisms and can support a wider class of models, at

the expense of greater computational requirements as compared with exact inference

algorithms when these exist. Alternative implementations of Church have also been

developed that address exact inference for some programs (Stuhlmüller and Goodman,

2012; Wingate et al., 2011a,b).

Hansei (Kiselyov and Shan, 2009) is an example of the embedded DSL approach,

where an existing language (OCaml) is augmented with probabilistic primitives. It

inherits from the host language a sophisticated type system, higher order program-

ming facilities, a module system and libraries, all of which aid in the development of

robust and flexible models.

7.4.3 Building Probabilistic Grammars in PRISM

PRISM (PRogramming In Statistical Modelling) (Sato and Kameya, 1997) is an

attractive approach for the development of probabilistic grammars for several reasons:

grammars and interpreters can be encoded very simply by virtue of its inheritance of

Prolog’s definite clause grammar (DCG) notation and meta-programming facilities, it

can mimic Earley’s efficient chart parsing without work from the programmer (using

tabling provided by the underlying B-Prolog implementation), and it includes an

efficient implementation of variational Bayesian inference (Kurihara and Sato, 2006;

Sato et al., 2008).

To give a flavour of how PRISM can be used to encode probabilistic grammars,

we will implement the grammar (G3) from Sect. 7.3.1. The non-probabilistic form of

the grammar can be implemented trivially in Prolog using the DCG notation as:

ab −→ [a,b].

ab −→ [a], ab, [b].

The non-terminal S is represented by the DCG goal named ab with zero arguments,

referred to as ab//0. (Some notes about Prolog syntax are provided in the appendix.)

Given this program, Prolog environments are capable of answering queries about

whether or not a given string is grammatical, and of generating strings from the

language:
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?- phrase(ab,[a,a,b,b]).
yes
?- phrase(ab,[a,a,a,b]).
no
?- phrase(ab,X).
X = [a,b] ?;
X = [a,a,b,b] ?;
% etc...

To develop this into a PCFG, we must use a PRISM ‘switch’ to encode probability

distributions over the alternative expansions of each non-terminal. This can be done in

more than one way, but in this example, we will assign a label to each expansion rule.

Then we will define a switch with the same name as the associated non-terminal and

ranging over the labels of the expansion rules of that non-terminal. Finally, we modify

the definition of ab to include an explicit random choice using the msw/2 PRISM

primitive, followed by a call to DCG goal (::)//2 (written without parentheses using ::

as a binary operator) which takes two parameters: the name of the non-terminal and

the name of the chosen rule. The complete program is

:− op(500,xfx,::).

values(ab, [stop, recurse]).

ab −→ {msw(ab,Label)}, ab::Label.
ab :: stop −→ [a, b].

ab :: recurse −→ [a], ab, [b].

Once loaded, the grammar can be used in several ways: (a) for generatively sam-

pling from the implied probability distribution over sentences; (b) for analytically

computing the probability of observing a given sentence; and (c) for estimating the

parameters from a list of samples using variational Bayesian learning (note that the

variational free energy quoted by PRISM is the negative of the free energy as usually

defined):

?- sample(ab(X)).
X = [a,a,b,b]
yes
?- prob(ab([a,a,b,b]),P).
P = 0.25
yes
?- set_prism_flag(learn_model,vb).
yes
?- get_samples(50,ab(X),Data), learn(Data).

% ...various statistics about learning...
Final variational free energy: -78.533991360
% ...more statistics about learning...

Data = [ab([a,a,b,b]),ab([a,b]),ab([a,a,b,b])|...]
yes

Now that the grammar is embedded in a Turing complete probabilistic programming

language, extending it beyond what is possible using a CFG is relatively straightfor-

ward. For example, we can write a probabilistic DCG for the language anbncn by
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using a parameterized non-terminal ab//1 similar to ab//0, but returning the number4

of repeats of a and b, and then adding a parameterized recursive non-terminal c//1 to

produce that many copies of c:

values(ab, [stop, recurse]).

abc −→ ab(N), c(N).

ab(N) −→ {msw(ab,Label)}, ab(N) :: Label.
ab(zero) :: stop −→ [].

ab(succ(N)) :: recurse −→ [a], ab(N), [b].

c(zero) −→ [].

c(succ(N)) −→ [c].

This example demonstrates the ‘bidirectional’ nature of Prolog logic variables: the

argument to ab//1 is an output value, while the argument to c//1 is an input. How-

ever, if an output argument is partially or fully instantiated on input (representing a

constraint on its value) sampling execution of the program may fail, resulting in a

form of rejection sampling: the sequence of random choices involved in sampling

a sentence from the grammar can result in the violation of a constraint, requiring

that that sample be thrown away and a new one started. This example was written

carefully to avoid such an eventuality, but in general, when creating a probabilistic

version of a DCG, the possibility of failure results in a significant complication of

the algorithms required for learning and inference (Sato et al., 2005).

For our purposes, failure can be avoided by structuring the process of rule ex-

pansion to prevent any probabilistic choice resulting in failure. Instead of using

B-Prolog’s built-in DCG compiler, we wrote a DCG meta-interpreter (in PRISM)

taking production rules written in one of two forms:

Head :: Label =⇒ Body.

Head :: Label =⇒ Guard |Body.

Guard is an ordinary Prolog goal, which, combined with pattern matching against ar-

guments in Head, determines the rule’s applicability given a particular Head. Body is

not allowed to fail if the rule is selected, meaning that during non-terminal expansion

a label (from the collection of applicable rules) is sampled from its associated switch

(defined automatically by the interpreter). The body of the selected rule is interpreted

as an ordinary DCG (with the exception of using +X instead of [X] for the emission

of terminal symbols and nil instead of [] for empty productions). Non-failing Pro-

log/PRISM goals can be included in braces and X ∼ S (equivalent to {msw(S,X)})

can be used to sample a PRISM switch S.

Consider the program in Fig. 7.7. neigh denotes the neighbour note rule which

expands a non-terminal i(P) (where P is a pitch interval in semitones, but only when

P=0). The random switch step provides a sample (between −4 and 4) resulting in the

deviation P1 to the neighbour note. term defines how the non-terminal i(P) produces

the integer P: a terminal symbol.

4 Represented algebraically where zero is zero, one is succ(zero), two is succ(succ(zero)), etc.
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7.5 Experiments with Probabilistic Music Models

The techniques described above can be used to develop a range of probabilistic

models on various corpora of music. We summarize our experiments (Abdallah

and Gold, 2014a,b) to compare the performance of several models on a corpus of

monophonic melodies in Humdrum/Kern format. This comprised four datasets from

the KernScores website at http://kern.humdrum.org: 185 Bach chorales (BWV 253–

438 excluding BWV 279), which is the same dataset used by Gilbert and Conklin

(2007), a larger set of 370 Bach chorales, and two 1000-element random subsets of

the Essen folk song collection. In the description below, these datasets are referred to

as chorales, chorales371, essen1000a and essen1000b respectively.

Several probabilistic models were implemented as PDCGs, of which six are

described here. The models, with their short names, are:

p1gram 0th order Markov model over pitches

p2gram 1st order Markov model over pitches

phmm 1st order hidden Markov model over pitches

i1gram 0th order Markov model over intervals

i2gram 1st order Markov model over intervals

gilbert2 Modified Gilbert and Conklin grammar

DCG rules for these models are presented in Fig. 7.5 (p1gram, p2gram and phmm),

Fig. 7.6 (i1gram and i2gram), and Fig. 7.7 (gilbert2).

values(nnum, X) :− numlist(40,100,X).

values(mc( ), X) :− values(nnum,X).

values(hmc( ), X) :− num states(N), numlist(1,N,X).

values(obs( ), X) :− values(nnum,X).

% start symbol for p1gram
s0 :: tail =⇒ nil.
s0 :: cons =⇒ X∼ nnum, +X, s0.

% start symbol for p2gram
s1( ) :: tail =⇒ nil.
s1(Y) :: cons =⇒ X∼ mc(Y), +X, s1(X).

% start symbol for phmm
sh( ) :: tail =⇒ nil.
sh(Y) :: cons =⇒ X∼ hmc(Y), Z∼ obs(X), +Z, sh(X).

Fig. 7.5 PDCGs for zeroth- and first-order Markov chains and first-order HMMs over pitch (encoded
as MIDI note number). The number of states in the HMM is a parameter of the model
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values(ival, X) :− numlist(−20,20,X).

values(mc( ), X) :− get values(ival,X).

% start symbol for i1gram
s0 :: tail =⇒ +end.

s0 :: cons =⇒ X∼ ival, +X, s0.

% start symbol for i2gram
s1( ) :: tail =⇒ +end.

s1(Y) :: cons =⇒ X∼ mc(Y), +X, s1(X).

Fig. 7.6 PDCG for zeroth- and first-order Markov chains over pitch interval to next note in semitones

We encode pitch using MIDI note numbers and intervals as integers, in a sequence

terminated by a Prolog end atom (notes are represented as a pitch interval in semitones

to the following note, but the final note element has no subsequent pitch to encode).

In richer models including other musical attributes such as duration or metrical stress,

the attributes of the final note could be associated with the terminating symbol.

We modify Gilbert and Conklin’s (2007) original grammar in two ways. Firstly,

a different mechanism is used for introducing new intervals not captured by the

elaboration rules: the s non-terminal, instead of being parameterized by the interval

covered by the entire sequence, simply expands into a sequence of i(P) non-terminals

with the P sampled independently from the leap distribution. Secondly, because a

note is represented by the pitch interval to the following note, the i(P) :: rep rule

has i(0), i(P) on the right-hand side instead of i(P), i(0) as in Gilbert and Conklin’s

grammar (see Fig. 7.3 for an illustration of this). Additionally, we chose the numerical

ranges of the various operations (steps, leaps, and limits for passing and escape note

introduction) as these were not specified by Gilbert and Conklin.

7.5.1 Results

The models obtained in the first part of the experiment can be used to obtain proba-

bilistic parses of melodic sequences. Examples of these are shown in Figs. 7.8 and

7.9, illustrating two analyses of individual phrases from one of the Bach chorales

(BWV 270) in the chorales dataset. In the first example, note that the high values of

relative probability (RP) on the first two parses show that this is a relatively unam-

biguous parse. Note also that all four parses share the same first and last subtrees

below the s non-terminal. In the second example, the lower values of RP indicate that

this parse is much more ambiguous than that of the first phrase. Still, there is much

common structure between these parses, so we may conclude that this grammar is

fairly confident in its analysis of, for example, the final repeated note.
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values(step, X) :− numlist(−4,4,X).

values(leap, X) :− numlist(−16,16,X).

values(passing(N), Vals) :−
( N>0 → M is N−1, numlist(1,M,I1)

; N<0 → M is N+1, numlist(M,−1,I1)

),

maplist(N1, (N1,N2),N2 is N−N1,I1,Vals).

values(escape(N), Vals) :−
( N<0 → I1 = [1,2,3,4]

; N>0 → I1 = [−1,−2,−3,−4]

),

maplist(N1,(N1,N2),N2 is N−N1,I1,Vals).

% start symbol
s :: last =⇒ i(end).

s :: grow =⇒ P∼ leap, i(P), s.

i(P) :: term =⇒ +P.

i(P) :: rep =⇒ i(0), i(P).

i(P) :: neigh =⇒ P=0 |
P1∼ step, {P2 is −P1}, i(P1), i(P2).

i(P) :: pass =⇒ abs between(2,5,P) |
(P1,P2)∼ passing(P), i(P1), i(P2).

i(P) :: esc =⇒ abs between(1,16,P) |
(P1,P2)∼ escape(P), i(P1), i(P2).

abs between(L,U,X) :− Y is abs(X), between(L,U,Y).

Fig. 7.7 Extract from a grammar (Abdallah and Gold, 2014b) modelled on Gilbert and Con-
klin’s (Gilbert and Conklin, 2007), written in a DCG language defined in PRISM. maplist/5 and
between/3 are standard B-Prolog predicates and numlist(L,U,X) is true when X is a list of consecutive
integers from L to U. Code to initialize the switch probabilities and perform ancillary tasks is omitted

Figure 7.10 summarizes the performance of all the models per dataset over a range

of parameter values. To normalize the comparison of differently-sized datasets, the

variational free energy was divided by the total number of notes in the dataset to give

the ‘bits per note’ (bpn), offering a sense of the amount of information required to

encode each note under that model using the ‘bits back’ coding scheme (Honkela

and Valpola, 2004)—the lower this is, the better the model. Data for p1gram (the

zeroth-order Markov model over pitches) is not shown as its best-case performance

(3.7 bpn on the chorales) was consistently lower than all the other models.

We observe that the relative performance of i1gram and p2gram is what we would

expect, since a pair of consecutive pitches (a 2-gram) contains information about

both pitch interval and absolute pitch, while the latter is not available to i1gram.
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Fig. 7.8 Bach chorale BWV 270 (‘Befiehl du deine Wege’), phrase #1, top 4 parses. Nodes rep-
resenting non-terminals of the form i(N) are labelled with N and name of the rule used to expand
them, while the terminal symbols are written in boldface aligned on the bottom row. Also, the top
level sequence of i( ) non-terminals produced by recursive expansion of s using the grow rule have
been collapsed into a single level below the s node, as suggested by Gilbert and Conklin (2007).
The values labelled ‘RP’ are the posterior probabilities of each of the parses relative to that of the
most likely parse not displayed, in this case, the 5th one
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Fig. 7.9 Bach chorale BWV 270, phrase #3, top 3 parses. See Fig. 7.8 for an explanation of the RP
values—here, the values are relative to the probability of the 4th most probable parse
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Fig. 7.10 Chart showing the overall performance of each model against each dataset (Abdallah and
Gold, 2014b), measured in bits per note (lower bpn means better performance). For each model and
dataset pair, the bar shows the range of values obtained using various parameter combinations. The
chorales data extends beyond the top of the chart. Bars labelled as phmmN represent the HMMs
with N states

We also note that the HMMs have the widest range of results, most likely due to

the learning algorithm getting stuck in local optima (if this is the case, standard

techniques (multiple restarts, simulated annealing) available within PRISM might be

used to alleviate the problem).

Across all the datasets, the gilbert2 and i2gram models perform consistently well,

with the larger HMMs also performing competitively on the Essen collection. The

i2gram model achieves approximately 2.68 bpn on the chorales dataset with its best

parameter settings, comparable with the 2.67 bpn reported by Gilbert and Conklin

(2007).

The grammar-based model gives the best fit on both chorales datasets, although it

is beaten by the Markov model on the larger Essen datasets. The causes of this are

unclear from the current data but investigation of the learned parameters would likely

offer some explanation (some of these are illustrated in Fig. 7.11). One possibility

is that the Essen dataset is relying proportionately more on the s::grow rule of the

grammar to introduce new intervals. In the limit, this would reduce to a zeroth-

order Markov model equivalent to i1gram, which, as we have seen, performs much

worse than i2gram. Considering that higher-order Markov models would be likely to
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(a) gilbert2 – chorales

(b) gilbert2 – essen1000a

Fig. 7.11 Some of the switch distributions learned by fitting the gilbert2 model to the chorales and
essen1000a datasets. The leap distribution is used when introducing a new interval with the s::grow
rule. The step distribution is used when introducing a neighbour note. The intervals greyscale
images show the probability distributions over expansions of the non-terminal i(N) for different
values of N, bearing in mind that some rules are inapplicable for certain values. The Essen-fitted
model appears to have a higher entropy leap distribution, makes less use of the neigh and pass rules,
and has some curious structure in the term and esc probabilities for large intervals, all of which
suggest that the grammar as designed is not such a good fit for it

perform better still, we might also conclude that designing by hand a probabilistic

grammar (that is, the structure of the rules rather than the numerical probabilities

which have been optimized in this experiment) capable of out-performing variable

order Markov models would be a non-trivial task. Inducing grammar models over

a corpus of works using probabilistic methods like those explored here is likely to

make this more tractable and is desirable since variable-order Markov models cannot

offer the explanatory power of a grammatical analysis.
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7.6 Conclusions

This chapter has reviewed the principles, implementation, and application of grammar-

based models in structural music analysis. It presented relevant aspects of the under-

pinning principles of information theory and probabilistic inference, showing how

these can be applied to music.

The chapter concluded by showing that various probabilistic models of symbolic

music can be implemented and applied to collections of Bach chorales and the Essen

folk song collection (Abdallah and Gold, 2014b). A probabilistic grammar based on

that of Gilbert and Conklin (2007) performed best (in the sense of allowing efficient

representation of the collections) on the Bach chorales, but a more parsimonious

parameterization of the same grammar performed worse than a first-order Markov

model over pitch intervals.

In contrast to Markov models, however, grammars effect in a simple fashion the

three factors identified above as common in music analysis: segmentation, classi-

fication and relation. Segmentation is embodied in the sequences of symbols on

the right-hand side of rules, classification in the left-hand sides, and relation in the

structure of the resultant parse tree. Putting this with the results of our experiments

leads us to conclude that probabilistic grammars are a promising foundation for

further developments in computational music analysis.
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Appendix

Notes on Prolog Syntax Prolog code and data consist of terms built from a functor
and a number of arguments; e.g., a(10,b,X) is a term with a head functor a/3 (because

it has three arguments), and arguments 10 (an integer), b (an atom or symbol), and

X (a logic variable). Atoms and functor names start with a lower-case letter, while

variable names start with an upper-case letter or underscore. A solitary underscore ( )

stands for a variable whose value is not needed. Functors can be declared as prefix,

infix, or suffix operators, for example, we declare ∼ to be an infix operator, so the

head functor of P∼ leap is ∼ /2. The definite clause grammar (DCG) notation allows

grammar rules to be defined using clauses of the form Head −→ Body, where Head
is a term and Body is a list of one or more comma separated DCG goals. Within
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the body, a list [X,Y,...] represents a sequence of terminals, while a term enclosed in

braces {Goal} is interpreted as an ordinary Prolog goal.
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Chapter 8
Interactive Melodic Analysis

David Rizo, Plácido R. Illescas, and José M. Iñesta

Abstract In a harmonic analysis task, melodic analysis determines the importance

and role of each note in a particular harmonic context. Thus, a note is classified as a

harmonic tone when it belongs to the underlying chord, and as a non-harmonic tone

otherwise, with a number of categories in this latter case. Automatic systems for fully

solving this task without errors are still far from being available, so it must be assumed

that, in a practical scenario in which the melodic analysis is the system’s final output,

the human expert must make corrections to the output in order to achieve the final

result. Interactive systems allow for turning the user into a source of high-quality and

high-confidence ground-truth data, so online machine learning and interactive pattern

recognition provide tools that have proven to be very convenient in this context.

Experimental evidence will be presented showing that this seems to be a suitable way

to approach melodic analysis.
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Universidad de Alicante, Alicante, Spain
e-mail: inesta@dlsi.ua.es

© Springer International Publishing Switzerland 2016
D. Meredith (ed.), Computational Music Analysis,
DOI 10.1007/978-3-319-25931-4_8

191



192 David Rizo, Plácido R. Illescas, and José M. Iñesta

8.1 Introduction

Musical analysis is the means to go into depth and truly understand a musical work.

A correct musical analysis is a proper tool to enable a musician to perform a rigorous

and reliable interpretation of a musical composition.

It is also very important for music teaching. In addition, the outcome of computer

music analysis algorithms is very relevant as a first step for a number of music in-

formation retrieval (MIR) applications, including similarity computation (de Haas,

2012; Raphael and Stoddard, 2004), reduction of songs to an intermediate repre-

sentation (Raphael and Stoddard, 2004), music summarization (Rizo, 2010), genre

classification (Pérez-Sancho et al., 2009), automatic accompaniment (Chuan and

Chew, 2007; Simon et al., 2008), pitch spelling in symbolic formats (Meredith, 2007),

algorithmic composition (Ulrich, 1977), harmonization (Ebcioğlu, 1986; Feng et al.,

2011; Kaliakatsos-Papakostas, 2014; Pachet and Roy, 2000; Raczyński et al., 2013;

Suzuki and Kitahara, 2014), performance rendering (Ramı́rez et al., 2010), preparing

data for Schenkerian analysis (Kirlin, 2009; Marsden, 2010), key finding (Temperley,

2004), metre analysis (Temperley and Sleator, 1999), and others.

From the artificial intelligence perspective, the interest in studying how a machine

is able to perform an intrinsically human activity is a motivation by itself (Raphael and

Stoddard, 2004). Furthermore, from a psychological point of view, the comparison

of analyses by a computer with those made by a human expert may yield interesting

insights into the process of listening to musical works (Temperley and Sleator, 1999).

The first written evidence of a musical analysis dates from 1563 and appears in a

manuscript entitled ‘Praecepta Musicae Poeticae’ by Dressler (Forgács, 2007). In

1722, Jean-Philippe Rameau, in his ‘Traité de l’harmonie réduite à ses principes

naturels’, established the basis of harmonic analysis (Rameau, 1722). However, music

analysis enjoyed a significant growth in the 19th century.

From the computational point of view, the various aspects of musical analysis

have all been addressed since the 1960s (Forte, 1967; Rothgeb, 1968; Winograd,

1968), and there has been a sustained interest in the area up to the present day. In the

last few years, several theses (bachelor, master and Ph.D.) have been published from

this point of view (de Haas, 2012; Granroth-Wilding, 2013; Mearns, 2013; Sapp,

2011; Tracy, 2013; Willingham, 2013), which underlines the importance of this area

of study.

The relevance of a melodic analysis depends on its ultimate purpose: in composi-

tion it helps the author to study the different harmonization options, or in the reverse

direction, given a chord sequence, to create melodic lines. In the case of analysing a

work for playing or conducting, it helps to establish the role each note plays regarding

stability or instability. For teaching, it is an indispensable tool for the student and the

teacher.

The analysis of a composition involves several interrelated aspects: aesthetic

analysis related to the environment of the composer that influences him or her when

creating the work, formal analysis to suitably identify the structure of the composition

and its constituent elements, and finally tonal analysis, which can be divided into

harmonic and melodic analysis. Harmonic analysis studies chords and tonal functions,



8 Interactive Melodic Analysis 193

to shed light on the tensions and relaxations throughout a work, while melodic

analysis establishes the importance and role of each note and its particular harmonic

context.

This chapter is focused on melodic analysis, specifically using a symbolic format

as input. Thus, as output, every note in a musical work is classified as a harmonic tone
when it belongs to the underlying chord, and as a non-harmonic tone otherwise, in

which case it should be further assigned to a category, such as passing tone, neighbour
tone, suspension, anticipation, echappée, appoggiatura and so on (see Willingham

(2013, p. 34) for a full description).

There is still no objective benchmark or standardized way of comparing results

between methods. Even if such a benchmark existed, very different analyses can be

correctly obtained from most musical works, a fact that reflects different analysts’

preferences (Hoffman and Birmingham, 2000).

Nonetheless, it is widely accepted that none of the computerized systems proposed

to date is able to make an analysis that totally satisfies the musicologist or musician;

and what is worse, it seems that no system can be built to totally solve the problem.

The case of melodic analysis is a good example of the variability between the different

interpretations that can be extracted from a piece of music, due to the fact that it

depends on harmony, which in turn is derived from parts (such as accompaniment

voices) that may not be available or that may not even exist when making the analysis.

Maxwell (1984) differentiated between “computer-implemented” analysis, where

the output of the system is the final analysis, and “computer-assisted” analysis, where

the output must be interpreted by the user. All systems found in the literature1

choose the “computer-implemented” analysis approach. In order to overcome the

limitation exposed above, we introduce a system that follows the “computer-assisted”

approach—that is, an interactive melodic analysis, integrating automatic methods

and interactions from the user. This is accomplished in the present work by using

the “Interactive Pattern Recognition” (IPR) framework, which has proven successful

in other similar tasks from the human action point of view, like the transcription of

hand-written text images, speech signals, machine translation or image retrieval (see

Toselli et al. (2011) for a review of IPR techniques and application domains). We

will present experimental evidence that shows that IPR seems to be a suitable way to

approach melodic analysis.

This chapter is structured as follows. First the main trends in harmonic analysis,

along with ways of dealing with melodic analysis, and the introduction of interactivity,

are reviewed in Sect. 8.2. The classical pattern matching classification paradigm, most

commonly used so far, is formulated in Sect. 8.3. The interactive pattern recognition

approach will then be introduced in Sect. 8.4.

Our proposal to solve the problem of melodic analysis using various approaches

based on manual, classical pattern matching and IPR methods will be described

in Sect. 8.5. A graphical user interface (GUI) has been developed to assert the

expectations presented theoretically, and it is described in Sect. 8.6. The experimental

1 Except the study by Taube and Burnson (2008), but that work focuses on the correction of analyses
rather than on assisting the analyst’s task.
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results are then presented in Sect. 8.7, and finally, some conclusions are drawn in

Sect. 8.8.

8.2 State of the Art

Several non-comprehensive reviews of computational harmonic analysis can be found

in the recent literature (de Haas, 2012; Kröger et al., 2010; Mearns, 2013).

Two main tasks in harmonic analysis are recurrent in most of the approaches:

first the partition of the piece into segments with harmonic significance, then the

assignment of each segment to a chord in a key context using either a Roman numeral

academic approach (e.g., V7 dominant chord) or a modern notation (e.g., a chord

like GMaj7). From a human perspective, an analysis cannot be made as a sequence

of independent tasks (e.g., first a key analysis, then a chordal analysis, then a melodic

analysis and so on). However, the simultaneity in the execution of these phases may

depend on the particular musical work. In some cases all the tasks are computed

simultaneously, while in others, for each phase, several possibilities are generated

and the best solution has to be selected using an optimization technique. For exam-

ple, melodic analysis conditions the other tasks, helping in discarding ornamental

notes that do not belong to the harmonic structure, in order to make decisions on

segmentation and chord identification.

8.2.1 Segmentation

The partition of a piece of music into segments with different harmonic properties

(i.e., key, chord, tonal function), referred to as “one of the most daunting problems of

harmonic detection” by Sapp (2007, p. 102), has been tackled so far using two related

approaches: one that may be named blind, because it does not use any prior tonal

information, and another that takes into account some computed tonal information

from the beginning, that Mouton and Pachet (1995) have called island growing.

The blind approach is based only on timing information and involves chopping the

input into short slices (Barthélemy and Bonardi, 2001; Illescas et al., 2007; Pardo

and Birmingham, 2000), using either points of note onset and offset, a given fixed

duration, or the duration of the shortest note in a bar or in the whole piece. Then,

once the key and chord information are available after the initial segmentation, these

slices are combined, if they are contiguous and share the same chord and key, to build

meaningful segments (usually in a left-to-right manner).

The island-growing method finds tonal centres based on evident chords, cadences

or any clue that allows a chord to be attached to a given segment in a key context.

Once these tonal centres are obtained, they are grown in a similar way to the blind
approach. This is a more usual approach in the literature (Meredith, 1993; Sapp,

2007; Scholz et al., 2005; Ulrich, 1977). Note that this method also needs to split the
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work horizontally in order to assign these tonal centres, so distinguishing between

blind and island growing in some cases is difficult or not totally clear.

Finally, as Pardo and Birmingham (2002) state, there are approaches that receive

an already segmented input (e.g., Winograd, 1968) or where it is not clear how the

segmentation is obtained.

8.2.2 Knowledge-Based and Statistical Approaches

The identification of chords and keys alone, given the already computed segments

or simultaneously with the calculation of these segments, has been performed using

two very different approaches: one based on rules established by experts, sometimes

referred to as knowledge-based, and the other built on top of statistical machine

learning systems, which Chuan and Chew (2011) properly refer to as data-driven.

There is no sound experimental evidence on which approach yields the best ana-

lysis results, but currently it seems to be assumed that machine learning systems

are more adequate than knowledge-based systems (Chuan and Chew, 2011). Some

systems use a hybrid solution. Nevertheless, even the less knowledge-based systems

incorporate at least some a priori information in the intermediate music representation

itself or in the learning strategy designed from a preconceived guided solution. Some

of them even include some rules that restrict or direct the statistical methods (Raphael

and Stoddard, 2004).

Of the two approaches, knowledge-based systems were the first to be used to tackle

the problem. They were formulated using preference-rule systems (Temperley, 1997,

2001; Temperley and Sleator, 1999), using a classical forward-chaining approach

or other typical solutions in expert systems (Maxwell, 1984; Pachet, 1991; Scholz

et al., 2005), as constraint-satisfaction problems (Hoffman and Birmingham, 2000),

embedded in the form of grammars (de Haas, 2012; Rohrmeier, 2007; Tojo et al.,

2006; Winograd, 1968) or using numerical methods based on template matching.

The latter methods work by matching the input set of pitches that comes from the

segmentation process to a list of possible chord templates. By using a similarity

measure between chords, the list of templates is ordered, and the algorithm either

selects the most similar template or passes the list to a later process that uses either

some kind of algorithm (Prather, 1996; Taube, 1999) or an optimization technique

to find the best sequence of chords by means of a graph (Barthélemy and Bonardi,

2001; Choi, 2011; Illescas et al., 2007; Kirlin, 2009; Pardo and Birmingham, 2002).

Passos et al. (2009) use a k-nearest neighbours technique to perform the matching

process.

The main advantage of statistical machine learning systems is their ability to

learn from examples, either supervised from tagged corpora or unsupervised, thus,

theoretically overcoming the problem of the variability of the myriad of applicable

rules. There are in the literature almost as many proposals for this approach as there

are machine learning techniques: HMPerceptron to solve a supervised sequential

learning (SSL) problem, like those used in part-of-speech tagging (Radicioni and
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Esposito, 2007), hidden Markov models (Mearns, 2013; Passos et al., 2009; Raphael

and Stoddard, 2004) or neural networks (Scarborough et al., 1989; Tsui, 2002).

Both approaches have advantages and disadvantages, as noted in various stu-

dies (Mouton and Pachet, 1995). The main disadvantage of rule-based systems is the

impossibility for any system to include rules for every possible situation, able to cope,

for example, with any genre or composer. In fact, in many situations, composers

try to break established rules in a creative manner. Another disadvantage of rule-

based approaches is the fact that, in many cases, two different rules may conflict. This

situation has often been solved by using preference rules (meta-rules) that solve those

conflicts. Raphael and Stoddard (2004) highlight another problem, namely, that, as the

rule systems work by ordering a sequence of decisions, the propagation of errors from

an early decision may compromise the final result. The main advantage of rule-based

systems is their capacity for explanation, which may be used to guide the user action in

an interactive approach or educational environment. In the case of numerically based

methods, Raphael and Stoddard (2004) point out that the numerical values returned

by their chord similarity algorithm are difficult to justify and must be found just by

empirically tuning the system. To overcome this problem, statistical procedures have

been applied that automatically optimize parameter values by methods like linear

dynamic programming (Raphael and Nichols, 2008) or genetic algorithms (Illescas

et al., 2011).

Besides segmentation and chord identification, there are important details that

differentiate the depth of the different studies reported in the literature. One is the

handling of modulations and tonicizations. Modulation is the process by which one

tonal centre is substituted by another. Usually, the tonality may change throughout

a piece. In many cases, it starts with a key, modulates to other keys and eventually

returns to the initial tonality. The concept of tonicization (Piston, 1987) is used to

describe the cadence of a secondary dominant onto its tonic, in such a way that, in

a given tonality, when there is a perfect cadence onto any degree, this degree acts

as the tonic of the secondary dominant that precedes it. More detailed explanations

are provided by Tsui (2002, pp. 7–8) and Mearns (2013, pp. 20–22). Some methods

consider tonicization to be just a key change, ignoring this temporal key context

change (Illescas et al., 2007), others reinterpret the result in a post-process to adapt it

to the correct interpretation (Kirlin, 2009). There are, however, plenty of approaches

that explicitly include this concept in their models (Hoffman and Birmingham, 2000;

Rohrmeier, 2011; Sapp, 2011; Scholz et al., 2005; Taube, 1999).

8.2.3 Melodic Analysis

The other aspect that is central to the present work is melodic analysis. No work

has focused in depth just on melodic tagging in a harmonic analysis task from a

computational point of view. A first attempt was made by Illescas et al. (2011) and

a musicological study was presented by Willingham (2013). Nevertheless, in many

studies, melodic analysis has received the attention it deserves (e.g., Chuan and
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Chew, 2011; Mearns, 2013; Sapp, 2007) or, at least, it has been acknowledged that

a better understanding of melodic analysis would improve the chord identification

process (Pardo and Birmingham, 2002; Raphael and Stoddard, 2004). In some meth-

ods, ornamental notes are removed in an a priori manual preprocess, in order to

avoid the melodic analysis task (Winograd, 1968). In many studies, notes are chosen

just using their metrical position: that is, strong notes, or using a regular span (Yi

and Goldsmith, 2007). Others use very simple rules: for example, Barthélemy and

Bonardi (2001) and Kirlin (2009) assume that non-chord notes are followed by a

joint movement. In rule-based systems, there are usually rules that deal specifically

with melodic analysis, e.g., Temperley’s (2001) “Ornamental Dissonance Rule” or

rules 10 to 20 in Maxwell’s (1984) model. Template matching was used by Taube

(1999).

From a machine learning perspective, two contemporary approaches have been

proposed that work in virtually the same way: one proposed by the authors of the

current work (Illescas et al., 2011) that will be extended here, and Chuan and Chew’s

(2011) “Chord-Tone Determination” module. In both cases, notes are passed as a

vector of features (up to 73 in Chuan and Chew’s (2011) model; whereas Illescas

et al. (2011) use a smaller but similar set) to a decision tree learner that learns rules

to classify either harmonic tones vs. non-harmonic tones (Chuan and Chew, 2011) or

harmonic tones vs. each different kind of non-harmonic tone (Illescas et al., 2011).

8.2.4 Interactivity

One of the aspects of this work that has received less attention in the literature is the

opportunity for interaction between potential users and such a system. Some authors

have expressed in some cases the need for interactivity (Scholz et al., 2005) that is

implicit in the concept of “computer-assisted” analysis suggested by Maxwell (1984).

Sapp (2011) reviews errors generated by his algorithm, finding that sometimes the

obtained key was wrong but closely related to the actual tonic key. From a classical

standpoint, this is an error, but maybe it could be considered a minor mistake. In

an interactive approach, this could easily be solved by presenting a ranking of keys

to the user. Phon-Amnuaisuk et al. (2006) present their system as a “platform for

music knowledge representation including harmonization rules to enable the user

to control the system’s harmonization behaviour”. This “user control” is indeed an

interactive process. Something similar is asserted by Taube (1999): “The user may

directly control many aspects of the analytical process”.

Some authors have expressed their intention to add an interactive user interface; for

example, Chuan and Chew (2010) present a preliminary design. For a harmonization

task, Simon et al. (2008) add some possible interaction that allows the user to choose

the kind of chords generated. In the teaching environment, the system “Choral

Composer” (Taube and Burnson, 2008) allows the students to see their mistakes as

they do each exercise (guided completion).
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Other software tools for visualizing musical analyses include Chew and

François’ (2003) “MuSA.RT, Opus 1”, which represents a work using the Spiral

Array model; and the graphical user interface tool, “T2G”, cited by Choi (2011).2

There is also the “Impro-Visor” software,3 which is a music notation program

designed to help jazz musicians compose and hear solos similar to ones that might

be improvised. The system, built on top of grammars learned from transcriptions,

shows improvisation advice in the form of visual hints.

Finally, though not interactive, the “Rameau” system (Passos et al., 2009) allows

users to experiment with musicological ideas in a graphical visualization interface,

and Sapp’s (2011) “keyscapes” also provide visual analyses of works.

The interactive pattern recognition paradigm has not been applied to the tonal

analysis task so far. However, many of the problems uncovered when analysing the

analyses performed by computer tools (see for example the manual analysis of errors

by Pardo and Birmingham (2002)) could be addressed in an interactive model. Any

data-driven approach can directly benefit from the IPR approach as well. It would

not be straightforward, but adding user decisions as specific rules to a model, in a

similar manner to that used in a case-based-reasoning system (Sabater et al., 1998),

could be a way to take advantage of user feedback.

The lack of standardized ground truth or evaluation techniques has been mentioned

above. Some methods compare their results using very isolated works. Nevertheless,

it seems that J. S. Bach’s harmonized chorales have been frequently used as a corpus

(Illescas et al., 2007, 2008, 2011; Maxwell, 1984; Radicioni and Esposito, 2007; Tsui,

2002), perhaps because they form the most scholastic corpus available and because

most analysts agree upon how these pieces should be analysed.

Regarding evaluation techniques, there is no agreement on a quantitative evalua-

tion measure to use in order to compare the performance of different proposals. In

any case, as will be detailed below, under the interactive pattern recognition approach

introduced here, systems are not assumed to be fully automatic but rather to require

user supervision. Here, quantitative evaluation is therefore less oriented to perfor-

mance accuracy and more to the workload (e.g., number of user interactions) that is

required in order to achieve the correct output.

8.3 Classical Pattern Recognition Approach

The computational methods utilized in the present work for solving the problem of

melodic analysis are related to the application of pattern recognition and matching

techniques to the classification of the notes in a score into seven categories: harmonic

and six classes of non-harmonic tone. This way, we can consider this task as a

classical seven-class classification problem in pattern recognition. For that, we can

consider that every note is an input sample, xi. From the sample and its context

2 http://members.shaw.ca/akochoi-T2/jazz-harmonic-analysis/index.html
3 http://www.cs.hmc.edu/ keller/jazz/improvisor/
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(xi−1,xi,xi+1), a number of features can be computed that are expressed as a feature

vector, xi, that can be regarded as evidence for categorizing the note i. From this

information, the system’s underlying model M should be able to output a hypothesis

ĥi, classifying the input sample into one of the seven classes.

Usually, M is inferred from example pairs (x,h) ∈ X provided to the system in

the training phase. For learning, a strategy for minimizing the error due to incorrect

h is followed. Once the system is trained by achieving an acceptable error measure,

the model is applied to new, previously unseen, samples. In this operation phase, the

decision on each sample is the hypothesis ĥi that maximizes the posterior probability

value estimated Pr(hi | xi), considering that this value is provided by the model learnt:

ĥi = argmax
h∈H

Pr(h | xi)≈ argmax
h∈H

PM(h | xi) . (8.1)

The input to the classification system is a series of vectors x = x1, ...,x|M|, where

|M| is the number of notes of the melody. The output is a sequence of decisions

h = h1, ...,h|M| ∈ H = {H,P,N,S,AP,AN,ES} (see Sect. 8.5 for a definition of these

classes).

8.4 Interactive Pattern Recognition Approach

Multimodal human interaction has become an increasingly important field that aims

at solving challenging application problems in multiple domains. Computer mu-

sic systems have all the potential features for this kind of technique to be applied:

multimodal nature of the information (Lidy et al., 2007), need for cognitive mod-

els (Temperley, 2001), time dependency (Iñesta and Pérez-Sancho, 2013), adaptation

from human interaction (Pérez-Garcı́a et al., 2011) and so on.

Assuming that state-of-the-art systems are still far from being perfect, not only in

terms of accuracy, but also with respect to their applicability to any kind of music

data, it seems necessary to assume that human intervention is required, at least for

a correction stage after the automatic system output. It could also be interesting to

take advantage of this expert knowledge during the correction process and to work

on techniques for efficiently exploiting the information provided (that relies on the

user’s expertise) in the context of adaptive systems. Therefore, the pattern recognition

(PR) system accuracy is just a starting point, but not the main issue to assess. In IPR

systems, evaluation tries to measure how efficiently the system is taking advantage

of this human feedback and to work on techniques towards better adaptive schemes

able to reduce the user’s workload.

Placing the human in the IPR framework requires changes in the way we look at

problems in these areas. Classical PR is intrinsically grounded on error-minimization

algorithms, so they need to be revised and adapted to the new, minimum-human-effort

performance criterion (Toselli et al., 2011). This new paradigm entails important

research opportunities involving issues related to managing the feedback information

provided by the user in each interaction step to improve raw performance, and the
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use of feedback-derived data to adaptively re-train the system and tune it to the user

behaviour and the specific data at hand.

We shall now analyse these aspects of research in IPR in more detail in the context

of our research.

8.4.1 Exploiting Feedback

We have described the solution to our problem as a hypothesis ĥ coding the classes

of every note in our problem score. These hypotheses were those that maximize the

posterior probabilities among all possible hypotheses for every note. Now, in the

interactive scheme, the user observes the input x and the hypothesis ĥ and provides a

feedback signal, f , in the form of a local hypothesis that constrains the hypothesis

domain H, so we can straightforwardly say that f ∈H. Therefore, by including this

new information in the system, the best system hypothesis now corresponds to the

one that maximizes the posterior probability, but given the data and the feedback:

ĥ = argmax
h∈H

PM(h | x, f ) , (8.2)

and this can be done with or without varying the model M. After the new hypothesis

is computed, the system may prompt the user to provide further feedback information

in a new interaction step, k. This process continues until the system output, ĥ, is

acceptable to the user.

Constructing the new probability distribution and solving the corresponding maxi-

mization, may be more difficult than the corresponding problems with feedback-free

posterior distributions. The idea is to perform the analysis again after each feedback

input, fk, taking this information as a constraint on the new hypothesis in such a way

that the new ĥ(k+1) ∈ H(k+1) =H(k)− ĥ ⊂ H(k).4 This way, the space of possible

solutions is restricted by the user’s corrections, because the user is telling the system

that the hypothesis ĥ is not valid. Clearly, the more feedback-derived constraints can

be added, the greater the opportunity to obtain better hypotheses.

This iterative procedure can make available a history of hypotheses, h′ = ĥ(0)
, ĥ(1)

,

..., ĥ(k)
, from previous interaction steps that lead eventually to a solution that is

acceptable to the user. Taking this into account explicitly as

ĥk+1 = argmax
h∈H

PM(h | x,h′, f ) , (8.3)

may improve the prediction accuracy gradually throughout the correction process.

4 In order to simplify the notation we have omitted that vector ĥ is actually a member of the
Cartesian product H|M|.
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Fig. 8.1 Performance and evaluation based on an interactive pattern recognition (IPR) approach

8.4.2 System’s Adaptation from Feedback

Human interaction offers a unique opportunity to improve a system’s behaviour by

tuning the underlying model. Everything discussed in the preceding section can be

applied without varying the model M, restricting the solution space through the

feedback and thus approximating the solution.

We can go one step further using the feedback data obtained in each step of the

interaction process fk, which can be converted into new, valid training information,

(xi,h = fk). This way, after each correction we get a new training set X (k+1) =
X (k) ∪{(xi,h = fk)}, allowing for the model to be re-trained or adapted. After a

number of iterations the initial training set X (0) has been completed with ground-

truth training pairs.

The application of these ideas in our musical analysis framework will require

establishing adequate evaluation criteria. These criteria should allow the assess-

ment of how adaptive training algorithms are taking the maximum advantage of the

interaction-derived data to ultimately minimize the overall human effort.

The evaluation issue in this interactive framework is different from classical PR

algorithms (see Fig 8.1). In those systems, performance is typically assessed in

terms of elementary hypothesis errors; i.e., by counting how many local hypotheses

hi differ from the vector of correct labels (non-interactive evaluation in Fig. 8.1).

For that, the assessment is based on labelled training and test corpora that can be

easily, objectively, and automatically tested and compared, without requiring human

intervention in the assessment procedures.

Nevertheless, in an interactive framework, a human expert is embedded “in the

loop”, and system performance has to be gauged mainly in terms of how much

human effort is required to achieve the goals. Although the evaluation of the system

performance in this new scenario apparently requires human work and judgement, by

carefully specifying goals and ground truth, the corpus-based assessment paradigm

is still applicable in the music analysis task, just by counting how many interaction
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Fig. 8.2 Examples of non-harmonic notes in a melodic analysis. Only non-harmonic notes are
tagged

steps are needed to produce a fully correct hypothesis (see IPR-based evaluation in

Fig. 8.1).

8.5 Method

The problem we address here is the melodic analysis of a work in a tonal context—in

particular, to tag all notes as harmonic tone (H), passing tone (P), neighbour tone

(N), suspension (S), appoggiatura (AP), anticipation (AN), or echappée (ES) (see

Fig. 8.2). As described in Sect. 8.2, this process, embedded in a more general tonal

analysis problem, has been tackled so far using knowledge-based systems and ma-

chine learning techniques. In previous work, using the classical pattern recognition

paradigm (Illescas et al., 2011), similar success rates for both approaches were ob-

tained using some of Bach’s harmonized chorales, with better results using statistical

methods. The IPR paradigm will be applied to improve that result.

The model in IPR systems can be built using any of the classifiers employed in

classical PR approaches. In order to assess the improvement of IPR over PR, the

same classifier will be used in the experiments for both paradigms.

Machine learning systems are those that can benefit the most from the IPR improve-

ments highlighted above. In order to choose among the variety of machine learning

algorithms, only those capable of providing a full explanation of the decisions taken

are considered here, with the aim of offering the user a full and understandable

interactive experience. This is why a decision-tree learner has been chosen. Illescas

et al. (2011) used a RIPPER algorithm (Cohen, 1995) to overcome the imbalance

in the data (around 89% of the notes are harmonic tones). However, in agreement

with the results of Chuan and Chew (2011), a C4.5 decision tree algorithm (Quinlan,

2014) gave better results using a leave-one-out scheme on a training corpus of 10

Bach chorales (previously used by (Illescas et al., 2011)). We extend and provide

details of this corpus in Sect. 8.7.2.1.
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8.5.1 Features

The classifier receives as input a note xi represented by a vector of fea-

tures, xi, and yields as output a probability for each tag: P(hi | xi), hi ∈ H =

{H, P, N, S, AP, AN, ES} on which the classification decision will be made. We

shall now define these features.

Definition previousIntervalName(xi) ∈ N

The absolute interval of a note with its predecessor as defined in music theory, i.e.,

unison, minor 2nd, major 2nd, 3rd, etc.

Definition previousIntervalDir(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
undefined, i = 1

ascending, pitch(xi)> pitch(xi−1)

descending, pitch(xi)< pitch(xi−1)

equal, pitch(xi) = pitch(xi−1)

Definition previousIntervalMode(xi) ∈ {major,minor,perfect,augmented,
diminished,double augmented,double diminished}
This is computed using the music theory rules from the previousIntervalName and

the absolute semitones from xi−1 to xi.

Definition nextIntervalName, nextIntervalMode and nextIntervalDir are defined

similarly using the interval of the note xi+1 with respect to xi.

Definition tied(xi) ∈ B is true if the note xi is tied from the note xi−1.

Definition rd(xi) = duration(xi)/duration(beat)

The relative duration function determines the ratio between the duration of xi and the

duration of a beat.

Definition ratio(xi) =
rd(xi)

rd(xi−1)
× rd(xi)

rd(xi+1)

The ratio function is used to compare the relative duration of xi to its next and

previous notes.

Definition meterNumerator(xi) is the numerator of the active metre at onset(xi).
The value of onset(·) is defined locally for each measure, depending on the metre,

as the position in the measure in terms of sixteenth notes, counted from 0 to (16 ×
numerator / denominator) – 1.

Definition instability(xi): given onset(xi), and meterNumerator(xi), it returns a

value relative to the metrical weakness of xi.

The stronger the beat in which the onset of a note is, the lower its instability value

will be. See Table 8.1 for the list of values used.5

5 The instability values for the binary metres can be obtained directly using the method described
by Martin (1972). Ternary and compound metres need a straightforward extension of the method.
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Table 8.1 Instability values as a function of the onset position for the different metres used. The
resolution is one sixteenth note

Metre Instability values indexed by onset(xi)

4/4 (1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16)
2/4 (1, 5, 3, 7, 2, 6, 4, 8)
3/4 (1, 7, 4, 10, 2, 8, 5, 11, 3, 9, 6, 12)
6/8 (1, 5, 9, 3, 7, 11, 2, 6, 10, 4, 8, 12)
9/8 (1, 7, 13, 4, 10, 16, 2, 8, 14, 5, 11, 17, 3, 9, 15, 6, 12, 18)
12/8 (1, 9, 17, 5, 13, 21, 3, 11, 19, 7, 15, 23, 2, 10, 18, 6, 14, 22, 4, 12, 20, 8, 16, 24)

Definition nextInstability(xi) = instability(xi+1); refers to the instability of the next

note.

Definition belongsToChord(xi)∈B is true if, given the pitch class of the note pc(xi),
at onset(xi) there is an active chord made up of a set of notes C, and pc(xi) ∈ C.

Definition belongsToKey(xi) ∈ B is true if, given the pitch class pc(xi), at onset(xi)
there is a key using the scale made up of a series of notes S, and pc(xi) ∈ S.

The scale is the major diatonic for major keys, and the union of ascending, descending,

and harmonic scales for minor keys.

Definition prevNoteMelodicTag(xi) ∈ H is the melodic tag of the previous note,

hi−1, if already analysed.

Definition nextNoteMelodicTag(xi) is equivalent to the previous definition but re-

ferred to the next note, hi+1.

The information about key and chord needed in the definitions above depends

on the order in which the user carries out the different analysis stages. If, at a given

stage, any of this information is not available, a feature will remain undefined, and the

classifier will not yet be able to use it. During the interaction stage, this information

becomes increasingly available.

Note that this feature-extraction scheme is using a window size of 3 notes. In

some studies (e.g., Meredith, 2007) a wider window is used for determining the pitch

spelling of notes. However, in our case, our system is able to explain the decision

using the predecessor and successor notes, based on the underlying harmony, as

explained in most music theory books.

8.5.2 Constraint Rules

As we are just focusing on the baroque period, some rules have been manually added

that constrain the set of possible outputs by removing those that are invalid (e.g., two

consecutive anticipations). Moreover, these rules allow the system to take advantage
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of some additional information the user provides by using the system, as will be seen

below.

As introduced above, the system avoids invalid outputs by checking the following

conditions. Let xi be the note to be analysed, pc(xi) its pitch class, c the active chord

at onset(xi), and C the pitches in chord c:

1. xi cannot be tagged as H (harmonic tone) if its onset occurs on a weak beat, i.e.,

instability(xi)> meterNumerator(xi), and pc(xi) /∈ C.

2. hi = H always if pc(xi) ∈ C.

3. xi cannot be tagged as passing tone (P) if hi−1 ∈ {AP,S,AN,N} (appoggiatura,

suspension, anticipation or neighbour tone).

4. xi cannot be tagged as N if hi−1 ∈ {AP,S,AN,P}.

5. xi cannot be tagged as {A,AP,S} if hi−1 ∈ {AP,S,AN,N,P}.

These rules involving key and chord information, as well as the tagging of sur-

rounding notes, are only available to the system through the interactive action of

the user. The computing of key and chord information would imply the full tonal

analysis process, and this work focuses only the melodic analysis task, the rest of the

process is performed manually by the user.

8.5.3 IPR Feedback and Propagation

The underlying classification model was required to provide a readable explanation of

the decision mechanism, so we focus on decision trees, as discussed at the beginning

of Sect. 8.5. The C4.5 decision tree algorithm, using the same features both for

the classical PR approach and the IPR system, was utilized. The C4.5 algorithm

provides the a posteriori probability P(hi | xi) as the proportion of samples in the

leaf that belongs to each class (Margineantu and Dietterich, 2003) using a Laplacian

correction to smooth the probability estimations. Although it cannot be incrementally

updated, it trains in a very short time. In this way, in our case, it is fully re-trained

after each interaction using the new information provided by the user. This fact does

not limit its usability for melodic analysis, since the re-training is perceived as a

real-time update by the user. Moreover, the size of the data set will never be too large,

because analysis rules are specific to each genre, so the need for scalability is not an

issue.

As introduced in Sect. 8.4.1, each time the user provides a feedback f ∈H, the

model is rebuilt as if the pair (xi,h′i = f ) was in the training set. Furthermore, this

means that, if the user amends the analysis of a note xi with features xi to be h′i �= ĥi,

the analysis ĥ j of further notes x j with features x j = xi should be the same, i.e., the

analysis of them will be modified accordingly as h′j = h′i. This is called propagation
and it is performed for the rest of notes x j,∀ j �= i after each user interaction on note

xi.
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8.6 Application Prototype

In order to prove the validity of the IPR approach for the melodic analysis task

in a real user scenario and in order to study how it leverages users’ effort using

the assistant system, an interactive prototype has been developed in JavaFX 8,6 a

graphical user interface developer framework built on top of the Java language.

The application allows not only the melodic analysis, but also helps in the task

of key and chord analysis, because chord identification and melodic analysis cannot

be done as isolated tasks, but need to be done in a coordinated fashion. The reason

is that the decision as to which notes have to be included to form a chord depends

on which ones have been tagged as harmonic; but in order to tag a note as harmonic,

one has to predict which chord will be formed (as well as other considerations).

In order to perform the analysis, the prototype has the following features:

• It reads and writes from and to MusicXML. Chords are encoded using the cor-

responding schema elements, the remaining analyses, such as tonal functions,

tonicizations, and so on, are encoded/decoded using lyrics.

• It reads from **kern format including the harmonic spines.

• It renders the score visually allowing for the selection of individual elements.

• It helps the user select the most probable chord and key at each moment.

• It permits the introduction and editing by the user of all the tonal analysis: melodic

tags, chords, key changes, tonicizations, and secondary dominants.

• It logs all the user actions for later study.

In order to compare the user’s actions using the three approaches considered

(manual, automatic PR-based automatic, and IPR-assisted), the user can select the

operation mode in the application.

8.6.1 Manual Mode

Not too different from employing a sheet of paper and a pencil, one computer-aided

way of doing an analysis is to use any kind of score editor like Finale or Musescore,

adding the melodic tags as lyrics under each note. This approach, which was adopted

by the authors in their creation of the first ground truth (Illescas et al., 2007), is tedious,

and the effort required to analyse a work, measured as number of interactions, is

at least equal to the number of notes. That method is not taken into account in this

experimentation.

The use of the prototype in manual mode allows the user to manually introduce

the melodic tag of each note. It acts as a helping tool to annotate the key and chord of

the selected sonority in an assisted way. The only logged user actions will be those

related to the melodic tagging, with those referring to chord and key being discarded.

In a typical scenario, the user proceeds as follows:

6 http://www.oracle.com/technetwork/es/java/javafx/overview/index.html
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Fig. 8.3 Highlight of sonority and application of selected key and chord

1. A note is selected. The corresponding sonority is highlighted accordingly by

including all the notes that are simultaneously active at any time during the

selected note (Fig. 8.3(a)). For them, a list of possible keys and chords in each

key is displayed hierarchically. The details of how this list is constructed are

given below.

2. A chord is selected from the list of valid keys and chords and is applied to the

current sonority (Fig. 8.3(b)). If the user prefers to apply another chord and key

not present in the proposed list (such as tonicizations or secondary dominants,

not included in it), it can be done using a dialogue as shown in Fig. 8.4. Once

the context is established, as a help to the user, notes not belonging to the active

chord are highlighted.

3. Finally, using a set of predefined keyboard keys, the user selects the suitable

melodic tag for each note. The system just logs this last action, because it is the

only one that corresponds strictly to the melodic analysis task.

This process is repeated for each note in the musical work. Note that the user may

backtrack on a decision and the same note could be tagged several times.

In most musical works, at least in the baroque period, almost all notes are harmonic

tones, not ornamental. This implies that the note tags follow a highly imbalanced

distribution in favour of class H. In order to avoid the user having to carry out

unnecessary actions, the prototype includes a button that tags all previously untagged

notes as harmonic (see Fig. 8.5). This allows the user to tag only non-harmonic tones,

reducing considerably the number of interactions.
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Fig. 8.4 Dialogue box that allows the user to apply a chord not present in the proposed chords list.
Used for assigning tonicizations and secondary dominants

8.6.1.1 Chord and Key List Construction

The valid keys added to the list are those whose associated scale includes all the

notes in the selected sonority.

The chords are chosen using a template-based approach: given the set of notes,

all possible combinations of groups of at least two notes are matched with the list of

chord types shown in Table 8.2. Finally, the list of keys is ranked using the following

ordering: the current key first (or the major mode of the key present in the key

signature if no previous key was found), then the next key up and down in the circle

of fifths and the relative minor or major. The rest of the keys are ordered inversely,

proportional to the distance along the circle of fifths. In the minor key, the relative

major key is located at the second position of the list.

Inside each key, the chords with more notes in the sonority are ordered first.

When having the same number of notes, those containing the root are located in

upper positions, and when comparing chords containing the root and having the

same number of notes, the tonal functions are ordered this way: tonal, dominant, and

subdominant. Figure 8.3(b) shows an example.

Fig. 8.5 Button that tags all non previously tagged notes as “harmonic tone”
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Table 8.2 Chord templates. The semitones of the first pitch correspond to the semitones from the
tonic of the chord

Chord type Semitones from previous pitch

Major triad (4,3)

Minor triad (3,4)

Augmented triad (4,4)

Diminished triad (3,3)

Major with minor seventh (4,3,3)

Augmented with major seventh (4,4,3)

Diminished with minor seventh (3,3,4)

Diminished with diminished seventh (3,3,3)

Major seventh with major seventh (4,3,4)

Minor seventh with minor seventh (3,4,3)

8.6.2 Automatic Mode

In automatic mode, previously introduced as “computer-implemented” by Maxwell

(1984) and described under the classical pattern recognition paradigm (Sect. 8.3), the

user proceeds using this protocol:

1. First, the system analyses the score automatically. The Weka (Hall et al., 2009)

implementation of the C4.5 algorithm (Quinlan, 2014) has been embedded in the

prototype and it is fed using the features described in Sect. 8.5.1, excluding the

chord- and key-related features (belongsToChord and belongsToKey) because

they are not available when the work is analysed automatically the first and only

time.

2. All notes have now an analysis tag, that may be correct or not. Now, the user

proceeds just like the manual mode explained above, by choosing chords and

keys, and, instead of setting the melodic tag for each note, just changing those

tags that the C4.5 classifier has misclassified (see Fig. 8.6).

The system has been trained using a bootstrap set of 10 Bach chorales manually

tagged (see list of works below in Sect. 8.7.2.1).

Fig. 8.6 Highlight of sonority and application of selected key and chord
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8.6.3 Assisted Mode

The assisted mode corresponds to the introduced IPR approach, named by Maxwell

(1984) as “computer-assisted” analysis. Here the system reacts against all the user

actions. The loop of actions is described next:

1. As in the manual mode, the user selects a note and a sonority is highlighted, for

which the user identifies and assigns key and chord.

2. The prototype performs a melodic analysis of the work using the C4.5 classifier.

Now the features belongsToChord and belongsToKey already have a value for

all the notes located from the selected sonority and forwards. Moreover, all the

constraint rules (Sect. 8.5.2) can now be applied.

3. As in the automatic mode, the user may amend (feedback) any melodic analysis

tag, which fires the propagation of that decision to all notes with the same

features, and runs again the C4.5 classifier, now re-trained with the new corrected

sample. A user-amended tag is never modified by the new classifier decision.

4. The process is repeated until all notes are melodically tagged.

This process is not a mere repetition of the automatic mode process for each note,

it has several important implications:

• In order to show the valid chords in the help list, notes tagged as any of the

non-harmonic tones are not used. This method narrows the search of the desired

chord, but also forces the user to tag as harmonic the notes the system had tagged

incorrectly as non-harmonic. It may seem that the correct chord and key identifi-

cation can slow down the melodic tagging. However, as the belongsToChord and

belongsToKey features use the key information, the classifier has more informa-

tion about the harmonic context after each interaction, which boosts the melodic

tagging.

• The change of a melodic tag affects the surrounding notes, that may be modified

by the constraining rules after a user interaction, leading to a correction of a

possibly incorrect tagging.

This process may not be done sequentially from left to right because the user

could proceed in an “island-growing” way, by first locating tonal centres and then

browsing back and forth.

8.6.4 User Interaction Analysis

The prototype logs each action carried out by the user. In this study, only the actions

relating to the melodic analysis itself have been taken into account. So, in order not

to block the user interaction at any moment, the Java logging framework has been

customized to export the kind of information shown in Table 8.3, printing the user

actions to a file, using a separate thread. This file has been parsed in order to extract
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Table 8.3 Example of log entries

Action
time stamp

Session
time stamp Action type Action

· · ·
1417009922812 1417009922796 actionloggersystem started

1417010341734 1417009922796 MELODICANALYSIS.CHANGE PASSING TONE

1417010390390 1417009922796 MELODICANALYSIS.CHANGE PASSING TONE

1417010550375 1417009922796 MELODICANALYSIS.CHANGE SUSPENSION

1417010665140 1417009922796 MELODICANALYSIS.CHANGE HARMONIC

· · ·

times and number of user interactions. The system records session information in

order that the user may close the prototype and continue the analysis task in a later

session.

8.7 Experiments

8.7.1 Proof of Concept: Ability to Learn Interactively

In order to assess the ability of the interactive system to learn online from the

interaction of the user, a simulation has been built in which the system receives

a musical work whose notes have been manually tagged with their corresponding

melodic analysis labels. It simulates the user actions as follows:

1. The work is automatically analysed using a (possibly untrained) classifier. After

this step, both the correct tag for each note obtained from the manual analysis

and the tag assigned by the classifier are available for every note.

2. The interaction system now proceeds as a human would: it looks for an error

in the analysis (at random to simulate the back-and-forth action by a real user),

then it replaces the incorrect label (assigned by the classifier) with the correct

tag (obtained from the previous manual analysis).

3. This interaction fires the interactive pattern-matching loop, i.e., the feedback

decision is propagated to all notes not previously corrected, and the classifier

model is updated including this new sample.

4. The process is repeated until no errors remain. The number of changes performed

(equal to the number of times the process has been carried out) is the actual

system performance evaluation value.

Using this setup, the complete collection of Bach’s harmonized chorales (see

Sect. 8.7.2.1) has been used. The system has been fed sequentially with the set of

chorales, starting with an untrained C4.5 classifier that learns after each user action
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Fig. 8.7 Evolution of the error rate as the user analyses works. The x axis represents the order in
which a work is analysed. The plot shows the average (thick line) of the results of 100 different
orderings of the input corpus. The standard deviations are also shown. The error rate is measured as
the number of interactions required to correct a piece divided by the number of notes it contains

on each musical piece. Not all chorales have the same level of complexity, so the

presentation order may affect the evolution of the error rate. In order to avoid any

bias, the process has been repeated 100 times in different random orderings of the

pieces. Figure 8.7 shows how the error rate becomes lower as the system analyses

more and more works. This provides evidence that the system is able to learn from

the interaction of the user.

Considering the possibility of using a decision-tree classifier able to update the

model online without having to train it for each new feedback sample, the simulation

has also been carried out using a Hoeffding tree (VFDT) (Hulten et al., 2001).

However, the results obtained, both with the classical PR approach and with the

setup just described were worse than those using the C4.5 classifier. Moreover, there

was no perceptible improvement in the training speed for the online VFDT learning

compared to the full re-training of the C4.5.

8.7.2 Experimental Setup and Data

In order to test the prototype, the following process has been followed:
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1. A musicologist7 has manually tagged the training set.

2. Students of the final course of a music degree analysed the test set using the

three modes of the prototype: manual, automatic, and interactive. The analysis

of the same work using different modes by the same user was avoided.

3. In all analyses, the system was bootstrapped using the same trained model.

8.7.2.1 Corpora

The system was assessed using some of Bach’s chorales, encoded using MusicXML

files. These pieces are widely accepted as a scholastic tonal harmony ground truth,

as mentioned in Sect. 8.2 above. Furthermore, they contain monodic lines for each

voice that help in the construction of features for the classifier.

For the training phase, the following chorales were used: catalogue BWV numbers

89/6, 148/6, 253, 272, 274, 275, 280, 437, 438.

For the test, the following were used: catalogue BWV numbers 255, 256, 257,

259, 260, 281, 282, 285, 286, 287, 288, 290, 292, 293, 294, 295, 296, 420, 421, 423,

424, 426, 427, 429, 431.

BWV 257, 260, 420 were analysed by several students, thus, a total of 30 pieces

were utilized for test.

8.7.3 Results

Figure 8.8 shows the results of the melodic analysis using the test set described

above. The percentage of less than 15% of non-harmonic tones (NHT) on average,

gives an indication of the minimum number of interactions the user has to complete

when using the “Tag all as harmonic tones” button first, and then tagging just the

non-harmonic tones. This assumes that no note is tagged twice due to a user changing

his or her mind.

The results show that the best performance is obtained using the proposed IPR

approach. The graph demonstrates what could be expected. The results for the

manual approach are worse than the theoretical minimum number of interactions

(i.e., ≈ 15%), expected to be equal to the number of non-harmonic tones plus one

for the action of pushing the “tag all as harmonic” button. This is caused by the fact

that the user, solving the problem heuristically, provides several possible solutions

leading to different taggings of the same note. The automatic, classical PR approach,

leverages the user’s effort, who takes advantage of some of the correctly classified

melodic tags that, in turn, help with the correct selection of keys and chords, thus

narrowing the user’s heuristic search for the solution. Finally, in the proposed IPR

system the advantages found in the PR approach are used, and they are improved in

two ways by the use of the feedback from the user. First, this feedback enriches the

7 The author Plácido R. Illescas.
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Fig. 8.8 Results in terms of number of user interactions required to solve the melodic analysis. The
percentages are obtained as the number of interactions divided by the number of notes

input features to the classifier after each interaction. Second, the feedback re-trains

the model, incorporating the corrected analyses as new examples in the training set.

Moreover, these examples are very probably found in the same work several times,

reducing in this way the number of interactions required to get a correct final analysis.

It is important to stress the fact that the IPR approach in this task has a competitive

advantage over a single PR one, due to the fact that the harmonic information (key

context and chords) cannot be analysed before doing the melodic analysis. This is

because each of the three aspects depends on the other two. Thus, the PR approach

cannot use the harmonic information that the user provides with his or her interactive

use of the tool.

In the current setup of the experiment, the most important improvement from the

user feedback comes from the use of contextual information added after each user

interaction, which is not available for the classical PR paradigm. The propagation,

which is the same as incorporating new samples in the model, that can be used to

solve similar situations in the future, constitutes a second enhancement. Finally, the

experiments have not really taken full advantage of the on-line training and tuning of

the model, as the model is not incrementally maintained from analysis to analysis.

Indeed, it is reset for each experiment in order to be compared with the manual and

PR approaches under similar conditions.

8.8 Conclusions

The tonal analysis of musical works in a computational environment is a problem

that has been addressed since the 1960s. Many different approaches have been

proposed since that time that roughly fall into two categories belonging to the pattern

recognition discipline: knowledge-based and machine learning methods. Although
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interesting results have been obtained in several studies, a full solution to the problem

has still not been found.

In this work, a different approach, called Interactive Pattern Recognition (IPR), has

been applied, that focuses on trying to reduce the final effort made by the user, rather

than minimizing the errors initially made by the system in an automatic analysis.

Using well-known techniques from the classical Pattern Recognition paradigm,

IPR improves their performance by incorporating user feedback into the model after

each interaction, which helps the system to be refined as the user works with it.

In order to explore the suitability of the method, this IPR approach has been

applied to one part of the tonal analysis task: melodic analysis, leaving aside the

key and chord computation to be done manually. The proposal has been assessed

by means of a prototype software application that, besides performing this melodic

analysis using IPR, helps the user to annotate the tonal context of the work.

Using a widely-used corpus, a subset of Bach’s harmonized chorales, the IPR

paradigm has been proven to provide a suitable approach for finally obtaining a

satisfactory solution to the problem of tonal analysis, assisted by computer from the

user’s point of view.
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Chapter 9
Implementing Methods for Analysing Music
Based on Lerdahl and Jackendoff’s Generative
Theory of Tonal Music

Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo

Abstract We describe and discuss our computer implementations of Lerdahl and

Jackendoff’s (1983) Generative Theory of Tonal Music (GTTM). We consider this

theory to be one of the most relevant music theories with regard to formalization

because it captures aspects of musical phenomena based on the Gestalts perceived

in music and presents these aspects with relatively rigid rules. However, the theory

has several problems in terms of computer implementation. To overcome these

problems, we have proposed four different kinds of analyser: an automatic time-

span tree analyser (ATTA); a fully automatic time-span tree analyser (FATTA); the

σGTTM analyser, which detects local grouping boundaries by combining GTTM

with statistical learning using a decision tree; and the σGTTM-II analyser, with

which we introduce full parameterization and statistical learning.

9.1 Introduction

Over the past ten years, we have developed several music analysers, based on Lerdahl

and Jackendoff’s (1983) Generative Theory of Tonal Music (GTTM), which provide

us with abstracted structures from scores (Hamanaka et al., 2006, 2007; Kanamori

and Hamanaka, 2014; Miura et al., 2009). When implementing music-theory-based

methods for analysing music on a computer, we have to consider several problems,
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including ambiguity, dependence on context and the trade-off between automation and

variation in analysis results. Each of these problems will now be briefly introduced.

Ambiguity in music analysis A piece of music will typically have more than

one interpretation, and dealing with such ambiguity is a major obstacle

when implementing a music theory on a computer. We have to consider

two types of ambiguity in music analysis, one involving human understand-

ing of music and the other concerning the representation of music theory.

The former stems from subjective interpretation and the latter from the

incompleteness of formal theory. GTTM is no exception. Therefore, due to

the presence of ambiguity, we assume that there is always more than one

correct result.

Context dependence in music analysis Even if the same musicologist analy-

ses the same note sequence, the analysis results will not always be the same.

This is because the results depend on so many different factors, such as

rhythm, chord progression, melody of the other parts, and the historical pe-

riod in which the piece of music was composed. Moreover, a musicologist

might take into account other unknown factors.

Trade-off relationship in music analysis There is a trade-off relationship be-

tween the automation of the analysis process and variation in the analysis

results. Since an analysis program outputs only one interpretation for a

given score, different ways of interpreting that score are ignored.

These problems are not specific to music analysis but arise whenever we try to build

a computer model of an ability that, in a human, would require intelligence. This

includes most abilities that involve recognition or understanding. Therefore, imple-

menting a music theory on a computer can be considered an artificial intelligence

problem.

The rest of this chapter is organized as follows. In Sects. 9.2 and 9.3, we give

a brief overview of GTTM and present related work. In Sect. 9.4, we discuss the

difficulty of implementing the theory on a computer. In Sects. 9.5 to 9.8, we go

into depth about the four proposed analysers: the automatic time-span tree analyser

(ATTA), the fully automatic time-span tree analyser (FATTA), the σGTTM analyser,

and the σGTTM-II analyser. In Sect. 9.9, we propose our interactive analyser for the

theory, and in Sect. 9.10, we describe a GTTM database we have constructed. Some

experimental results are presented in Sect. 9.11.

9.2 Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal
Music

Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal Music (henceforth,

GTTM) generates four different types of structural description for a piece of music,

each one intended to represent a separate aspect of the way that a listener understands
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Grouping structure 

Metrical structure 

Time-span tree 

Prolonga�onal tree 

Fig. 9.1 Grouping structure, metrical structure, time-span tree, and prolongational tree

the piece. The respective outputs are a grouping structure, a metrical structure, a

time-span tree, and a prolongational tree (see Fig. 9.1).

The grouping structure is intended to formalize the intuition that tonal music is

organized into groups composed of subgroups (see bottom row in Fig. 9.1). The

metrical structure describes the rhythmic hierarchy of a piece by identifying the

positions of beats at different metrical levels. Metrical levels are represented as rows

of dots below the staff. For example, in Fig. 9.1, the strongest beats occur at the

beginning of every second bar, the next strongest at the beginning of each bar, the

next strongest at the quarter note level and so on. The time-span tree is a binary

tree having a hierarchical structure that describes the relative structural importance

of notes that differentiate the essential parts of the melody from the ornamentation.

The prolongational tree is a binary tree that expresses the structure of tension and

relaxation in a piece of music.

A GTTM analysis has four processes: grouping structure analysis, metrical struc-

ture analysis, time-span reduction analysis, and prolongational reduction analysis.

Each process has two types of rule: well-formedness rules (WFRs) and preference
rules (PRs). Well-formedness rules are necessary conditions on assigning the struc-

ture and restrictions on these structures. For example, the GWFRs (grouping WFRs)

are defined as follows (Lerdahl and Jackendoff, 1983, p. 345):

GWFR1: Any contiguous sequence of pitch events, drum beats, or the like can constitute a
group, and only contiguous sequences can constitute a group.

GWFR2: A piece constitutes a group.

GWFR3: A group may contain smaller groups.

GWFR4: If group G1 contains part of group G2, it must contain all of G2.

GWFR5: If group G1 contains a smaller group G2, then G1 must be exhaustively partitioned
into smaller groups.
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Fig. 9.2 Examples of GWFRs
being satisfied or violated

The grouping structure in Fig. 9.2(a) satisfies all the GWFRs. In contrast, the

grouping structure in Fig. 9.2(b) violates GWFR4 because a segment boundary at the

second level of the grouping structure occurs in the middle of a group at the lowest

level. The grouping structure in Fig. 9.2(c) violates GWFR5 because group c2 is not

exhaustively partitioned into smaller groups.

When more than one structure can satisfy the WFRs, the PRs indicate the supe-

riority of one structure over another. In the PRs, some rules are for the local level

and others for the hierarchical level. For example, GPR2 is a local rule that is applied

to four consecutive notes n1,n2,n3,n4 as follows (Lerdahl and Jackendoff, 1983,

p. 345):

GPR 2 (Proximity) Consider a sequence of four notes n1,n2,n3,n4. All else being equal,
the transition n2–n3 may be heard as a group boundary if

a. (Slur/Rest) the interval of time from the end of n2 to the beginning of n3 is greater
than that from the end of n1 to the beginning of n2 and that from the end of n3 to the
beginning of n4, or if

b. (Attack-point) the interval of time between the attack points of n2 and n3 is greater
than that between the attack points of n1 and n2 and that between the attack points of
n3 and n4.

GPR2b is applied after a note that has a long duration (Fig. 9.3(a)), while GPR2a is

applied after a note that has a long gap, even if the inter-onset interval (IOI) of each

note is equal (Fig. 9.3(b)).

Fig. 9.3 Application of
GPR2b and GPR2a
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9.3 Related Work

Here, we briefly take a look at the history of cognitive music theory. The implication–

realization model (IRM) proposed by Eugene Narmour abstracts and represents

music according to changes in a melody, expressed symbolically (Narmour, 1990,

1992). The IRM has recently been implemented on computers, which can acquire

the chain structures of IRM from a score (Yazawa et al., 2014). Schenkerian analysis

acquires a deeper structure, called the Urlinie and Ursatz, from the musical surface

(Schenker, 1935). Short segments of music can be analysed through Schenkerian

analysis on a computer (Marsden, 2011). Other examples of music theories that

lend themselves to computer implementation include that of Lerdahl (2001). The

preference rule approach, pioneered by Lerdahl and Jackendoff (1983), was also

adopted by Temperley (2001) and Daniel Sleator in their Melisma Music Analyzer.1

The main advantage of analysis by GTTM is that it can acquire tree structures

(specifically, time-span and prolongational trees). These trees provide a summariza-

tion of a piece of music, which can then be used as the representation of an abstraction,

resulting in a music retrieval system (Hirata and Matsuda, 2003). It can also be used

for performance rendering to generate expressive musical performances (Hirata and

Hiraga, 2003) and to reproduce music (Hirata and Matsuda, 2004). Moreover, the

time-span tree can be used for melody prediction (Hamanaka et al., 2008a) and

melody morphing (Hamanaka et al., 2008b). Figure 9.4 shows an iOS application

that implements this melody morphing method and changes the degree of morphing

of each half bar by using the values from the device’s accelerometer (Hamanaka et al.,

2011). When the user stops moving the device, the unit plays the backing melody of

“The Other Day, I Met a Bear (The Bear Song)”. When the user shakes it vigorously,

it plays heavy soloing. When the user shakes it slowly, it plays a morphed melody

ranging in morphing degree from copying the backing to heavy soloing.

The grouping structure analysis generated by GTTM is a type of melody segmen-

tation. Previous segmentation methods have been unable to construct hierarchical

grouping structures because they have been focused on detecting the local bound-

Fig. 9.4 ShakeGuitar

1 Available at http://www.link.cs.cmu.edu/melisma/
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aries of a melody (Cambouropoulos, 2006; Rodriguez-Lopez et al., 2014; Stammen

and Pennycook, 1994; Temperley, 2001). A metrical structure analysis generated

by GTTM, in contrast, is a kind of beat tracking. Current methods based on beat

tracking (Davies and Bock, 2014; Dixon, 2001; Goto, 2001; Rosenthal, 1992) are

only able to acquire the hierarchical metrical structure up to the bar level but not

above that (e.g., at the two- and four-bar level).

9.4 Problems with Implementing GTTM

There are a number of features of GTTM that make it difficult to implement as a

computer program. The main problems with implementation are discussed in this

section.

9.4.1 Ambiguous Rule Definition

Some rules in GTTM are expressed ambiguously. For example, GPR4 is defined as

follows (Lerdahl and Jackendoff, 1983, p. 346):

GPR4 (Intensification) Where the effects picked out by GPRs 2 and 3 are relatively more
pronounced, a larger-level group boundary may be placed.

The words “relatively” and “may be” in this sentence are ambiguous. The sentence

also contains the phrase “more pronounced”, but the comparison is unclear. Another

example is that GTTM has rules for selecting proper structures when discovering

similar melodies (called parallelism), but does not define similarity. To implement

such ambiguous rules on a computer, we have to formalize the criteria for deciding

whether each rule is applicable.

Fig. 9.5 Example of conflict between PRs
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9.4.2 Conflict Among Preference Rules

Because there is no strict order for applying the GTTM rules, conflict between rules

often occurs when applying them, resulting in ambiguities in analysis. Figure 9.5(a)

shows a simple example of a conflict between GPR2b (Attack-Point) and GPR3a

(Register). GPR2b states that a relatively greater interval of time between attack

points initiates a grouping boundary, while GPR3a states that relatively greater pitch

differences between smaller neighbouring intervals initiates a grouping boundary.

Because GPR1 (alternative form) strongly prefers that note 3 in Fig. 9.5(a) should

not form a group on its own, placing boundaries between notes 2 and 3 and between

notes 3 and 4 is discouraged.

Figure 9.5(b) shows an example of conflict between MPRs 5c and 5a. MPR5c

states that a relatively long slur results in a strong beat, and MPR5a states that a

relatively long pitch event results in a strong beat. Because metrical well-formedness

rule 3 (MWFR3) states that strong beats are spaced either two or three beats apart, a

strong beat cannot be perceived at the onset of both the first and second notes.

To solve these problems, we have introduced the notion of parameterization in

Sect. 9.5. Each rule in the theory should be given a weight, allowing the strength

of its effect to be compared with that of other rules; this weight can be regarded as

a parameter of the analysis process. In addition, we have externalized the hidden

alternatives in the theory. This externalization in mechanizing GTTM includes

introducing an algorithm for generating a hierarchical structure of the time-span tree.

We call such weighting and externalization full parameterization. Employing these

parameters together with statistical learning, we obtain a methodology to control the

strength of each rule (described in Sect. 9.7).

9.4.3 Lack of Working Algorithm

Lerdahl and Jackendoff (1983) do not specify an algorithm for constructing a hierar-

chical structure because the preference rules only indicate preferred structures. For

example, no algorithm is provided for acquiring a hierarchical grouping structure

after acquiring local grouping boundaries in the grouping structure analysis. Also,

there are many time-span reduction preference rules (TSRPRs) for selecting the head

of a time-span, and there are various examples of analysis. However, no algorithm is

presented for acquiring the hierarchical time-span tree. It is not realistic to first gener-

ate every structure that satisfies the WFRs and then select the optimal structure. For

example, even for a musical fragment containing just 10 notes, there are 185,794,560

(= 92 ∗9!) possible time-span trees.

To solve this problem, in Sect. 9.5 we present an algorithm for acquiring the

hierarchical structure, taking into consideration some of the examples in GTTM

(Hamanaka et al., 2006).
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9.4.4 Less Precise Explanation of Feedback Link

GTTM has various feedback links from higher-level structures to lower-level ones,

e.g., GPR7 (time-span and prolongational stability) requires a grouping structure

that results in a more stable time-span and/or prolongational reduction. However, no

detailed description and only a few examples are given.

Other feedback links in the GTTM rules are not explicit. For example, analysing

the results of a time-span tree strongly affects the interpretation of chord progression,

and various rules are related to chord progression, e.g., MPR7 (Cadence) requires a

metrical structure in which cadences are metrically stable.

To solve this problem, in Sect. 9.9, we propose a tool that allows a user to modify

the automatic analysis process and manually edit the structures generated. A user can

thus acquire a target analysis that reflects his or her interpretation of a piece of music

by iterating the automatic and manual processes interactively and easily.

9.5 ATTA: Automatic Time-Span Tree Analyser

We extended the original theory of GTTM with full externalization and parameter-

ization and proposed a machine-executable extension of GTTM called exGTTM

(Hamanaka et al., 2006). The externalization includes introducing an algorithm

to generate the hierarchical structure of a time-span tree using a combination of

top-down and bottom-up processes. The parameterization includes introducing a

parameter for controlling the priorities of rules, in order to avoid conflict among rules,

as well as parameters for controlling the shape of the hierarchical time-span tree. We

developed an automatic time-span tree analyser (ATTA) to implement exGTTM. The

user can manually configure parameters and thus alter the analysis results generated

by the program. An example of constructing a time-span tree is given in the following

subsections.

9.5.1 Time-Span Segmentation

In the procedure of time-span reduction, we divide the entire piece into hierarchical

time-spans. The division procedure, shown in Fig. 9.6, is as follows.

1. Regard all of the resultant groups in a grouping analysis as time-spans.

2. Divide a time-span into two at the strongest beat when a time-span in the lowest

level includes more than one note.

3. Repeat 2 recursively.

Steps 1 and 2 correspond, respectively, to Lerdahl and Jackendoff’s (1983, pp. 146–

147) time-span reduction Segmentation Rules 1 and 2.
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Metrical structure 
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Fig. 9.6 Time-span segmentation

9.5.2 Implementation of Time-Span Reduction Preference Rules

A piece of music is formed into a binary tree where, at each node, the more important

branch extends upward as a head node. The selection of a head at each node is

hierarchically computed from the lower level. Therefore, heads are selected from

leaves to root branches. At the lowest level, every note is selected as a head for its

time-span and the next level head is selected repetitively. In this section, we explain

our implementations of time-span reduction preference rules (TSRPRs) 1, 3, 4, 8

and 9.

9.5.2.1 Calculation of Basic Parameters

For each level in the hierarchy, we provide the following basic parameters and

rule-application principles.

We calculate four basic parameters:

φi Offset-to-onset interval (OOI) of ith gap between heads
ψi Inter-onset interval (IOI) of ith gap between heads
ξi Difference in pitch in semitones of ith gap between heads
μi Number of metrical levels in which ith head is a beat

The term i indicates the order of heads at the current level of time-span. For example,

at the lowest level, the head order is the same as the note order. In the first three

parameters, i represents the ith gap between heads, that is, the gap between the ith
and (i+1)th head, while μi is the number of metrical dots for the ith head (i.e., the

number of metrical levels in which the ith head is a beat). The probability that the

ith head becomes a next-level head by the kth rule is denoted by DTSRPRk(i) where

0≤ DTSRPRk(i)≤ 1 and k ∈ {1,3,4,8,9}. The basic parameters and DTSRPRk(i) are

renewed at each level in the time-span tree, because the number of heads changes as

a result of selecting heads at each hierarchical level.
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9.5.2.2 Implementation of TSRPR1 (Metrical Position)

TSRPR1 prefers heads of time-spans to occur in relatively strong metrical positions.

We normalize the strength between 0 and 1 and define the likelihood of an event

being a head by the number of metrical dots divided by the maximum number of

metrical dots, thus

DTSRPR1(i) = μi/max
j

μ j . (9.1)

9.5.2.3 Implementation of TSRPR3 (Registral Extremes)

TSRPR3 is concerned with the pitch of a head. TSRPR3a weakly prefers an event to

be a head if its melodic pitch is higher; while TSRPR3b weakly prefers an event to

be a head if its bass pitch is lower. Thus, DTSRPR3a(i) returns a higher value if ξi is

higher:2

DTSRPR3a(i) = ξi/max
j

ξ j . (9.2)

Conversely, DTSRPR3b(i) returns a higher value if ξi is lower:

DTSRPR3b(i) = 1−ξi/max
j

ξ j . (9.3)

9.5.2.4 Implementation of TSRPR4 (Parallelism)

TSRPR4 involves parallelism and prefers heads to be in parallel positions in time-

spans that are construed to be parallel. The parallelism between heads in the current

hierarchical level’s time-spans is evaluated using the same method as is used in the

grouping and metrical analysis.

DTSRPR4(i) is calculated as follows. First, we calculate the similarity between the

interval from head i with length r and the one from j with the same length. Next, for

each i, we calculate the similarity for all js with the same length r. As Lerdahl and

Jackendoff (1983) do not define an effective melodic similarity measure, we define

our own. This similarity measure does not affect any other parts of the system, so we

can substitute other methods such as that proposed by Hewlett and Selfridge-Field

(1998).

Let us first consider the example in Fig. 9.7. In the figure, three notes out of

four coincide with respect to onset time. Two notes out of the three also coincide

with respect to pitch. In our implementation, we regard a greater number of notes

having the same onset time as indicating greater similarity of melodies. Furthermore,

the greater the number of instances where notes with the same onset time have the

same pitch, the more similar the melodies are considered to be. In the example in

2 There are several ways in which registral extremity could be explicated. We define DTSRPRk(i)
as simply as possible in order to allow the user who is manipulating the parameters of ATTA to
understand it easily.
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Fig. 9.7 Similarity of parallel
phrases

Fig. 9.7, we use notes and their durations for explanation. However, when calculating

similarity of time-spans, we use heads and the lengths of their time-spans.

We formalize the above discussion as follows. We assume that the beginning and

ending heads possess beats and that the length of an interval r is a multiple of a

beat. Also, we assume that parallelism cannot occur between time-spans separated

by distances less than, say, a quarter note of a beat. Given a beat number m (≥ 1),

we write the interval of r beats from m as [m,m+ r), which does not include the

(m+ r)th beat. We define the basic parameters as follows:

N(m,r) the number of heads in [m,m+ r).
O(m,n,r) the number of heads with the same time-span onset in

[m,m+ r) and [n,n+ r).
P(m,n,r) the number of heads with the same pitch, as well as the same

time-span onset.

We define the similarity between intervals [m,m+ r) and [n,n+ r) with these param-

eters:

G(m,n,r) =
{

O(m,n,r)
N(m,r)+N(n,r)

× (1−Wm)+
P(m,n,r)
O(m,n,r)

×Wm

}
× rWl , (9.4)

where

Wm (0≤Wm ≤ 1) For each head, gives more weight to similarity of time-span
onset than similarity of pitch.

Wl (0≤Wl ≤ 1) Gives more weight to longer intervals, r, than shorter ones,
when parallel intervals overlap each other.

In the above expressions, 1 ≤ m,n ≤ L− r+ 1 and 1 ≤ r ≤ L, where L is the total

number of beats. Beyond this domain, we regard G(m,n,r) = 0. Note that rWl be-

comes 1 when Wl = 0, and as r increases, rWl also increases provided Wl > 0. Thus,

as Wl approaches 1, the similarity of longer intervals becomes more significant.

The similarity of head i in [m,m+ r) and j in [m,m+ s) is expressed by

A(i, j) = G(timespans(i), timespans( j), timespansize(i)), (9.5)

where timespans(i) is the first beat of the time-span including i, and timespansize(i) is

the length (the number of beats) of the time-span including i. We define DTSRPR4(i, j),
by normalizing A(i, j), as

DTSRPR4(i, j) =

{
A(i, j)/Amax, if timespanpos(i) = timespanpos( j);
0, otherwise.

(9.6)
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where Amax = max(A(i,1),A(i,2), . . . ,A(i,L)) and timespanpos(i) is the interval

from the beginning of the time-span to i. Note that i indicates the order of heads at the

current time-span level, after which DTSRPR4(i, j) renews at each level of time-span.

9.5.2.5 Implementation of TSRPR8 (Structural Beginning)

TSRPR8 prefers heads to be nearer the beginnings of their time spans. DTSRPR8(i)
returns 1 if the head is at the beginning position; otherwise, 0:

DTSRPR8(i) =

{
1, if i = istart,

0, otherwise,
(9.7)

where istart is the head at the beginning of the time-span.

9.5.2.6 Implementation of TSRPR9 (Structural Ending)

TSRPR9 prefers heads to be nearer the tails of their time-spans. DTSRPR9(i) returns 1

if the head is at the tail position, otherwise, 0:

DTSRPR9(i) =

{
1, if i = iend ,

0, otherwise,
(9.8)

where iend is the head at the tail of the time-span.

9.5.3 Generation of Time-Span Tree

We calculate the plausibility of head Dtimespan(i) using DTSRPRk(i) where k ∈
{1,3a,3b,4,8,9}, as follows:

Dtimespan(i) = Btimespan(i)+∑
k

{
Btimespan(k)×STSRPR4, if DTSRPR4(i,k) = 1,

0, if DTSRPR4(i,k) = 0,

(9.9)

where

Btimespan(i) = ∑
k

DTSRPRk(i)×STSRPRk (9.10)

where k ∈ {1,3a,3b,8,9}. STSRPRk indicates the relative weighting associated with

each rule. The larger this value is, the more strongly the rule acts. Btimespan(i) repre-

sents the weighted summation of STSRPRk and DTSRPRk(i) where k is the rule number

and Dtimespan(i) represents the sum of Btimespan(i) and the summation of Btimespan(k),
where the ith head and kth head are parallel and consequently DTSRPR4(i,k) = 1. A
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Fig. 9.8 Selecting next-level heads

hierarchical time-span tree is constructed by iterating the calculation of the plausi-

bility of head Dtimespan(i) for the current heads and choosing the next-level heads

(Fig. 9.8). If there are two candidate heads in the current hierarchical level, we choose

the next-level head ĥ, as expressed by

ĥ =

{
i, if Dtimespan(i)≤ Dtimespan( j);
j, otherwise.

(9.11)

The order of choosing the next-level head is the reverse of that of constructing time-

spans in the time-span segmentation, as described in Sect. 9.5.2. DTSRPRk(i) and

Dtimespan(i) are renewed at each level of the hierarchy, since i indicates the order of

heads in the current level and changes at each level of time-spans.

9.6 FATTA: Fully Automatic Time-Span Tree Analyser

Although the ATTA has adjustable parameters for controlling the weight or priority

of each rule, these parameters have to be set manually (Hamanaka et al., 2006). This

takes a long time, because finding the optimal values of the settings themselves takes

a long time. Therefore, we also developed a fully automatic time-span tree analyser

(FATTA), which can automatically estimate the optimal parameters by introducing a

feedback loop from higher-level structures to lower-level structures on the basis of

the stability defined in GPR7 and TSRPR5 (Hamanaka et al., 2007):

GPR7 (Time-Span and Prolongational Stability) Prefer a grouping structure that
results in more stable time-span and/or prolongational reductions.

(Lerdahl and Jackendoff, 1983, p. 52)

and



234 Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo

TSRPR5 (Metrical Stability): In choosing the head of a time-span T , prefer a choice
that results in more stable choice of metrical structure

(Lerdahl and Jackendoff, 1983, p. 165)

These rules require information from later processes, such as time-

span/prolongational reductions, to be sent back to the earlier processes. To

automatically estimate the optimal parameters, we have to evaluate the level of

time-span tree stability derived using the ATTA. We use GPR7 and TSRPR5 for

calculating the level of stability. Figure 9.9 shows the process flow of the FATTA,

which consists of the ATTA and a feedback loop by the GPR7 and TSRPR5.

9.6.1 Implementation of GPR7 with Tonal Pitch Space

GPR7 is the rule applied to the feedback loop between the time-span/prolongational

reduction and grouping structure analysis. This rule leads to a preference for a

grouping structure that results in more stable time-span and/or prolongational reduc-

tions. The term DGPR7 indicates the degree of being a head by GPR7, which varies

continuously between 0 and 1. We define DGPR7 as

DGPR7 = ∑
i

distance(p(i),s(i))× size(i)2
/
∑

i
size(i)2 , (9.12)

where i indicates the head of the time-span, which has primary and secondary

branches denoted by p(i) and s(i), respectively. The distance(x,y) indicates the

distance between notes x and y in the tonality of the piece, which is defined according

to Lerdahl’s (2001) theory of tonal pitch space. We normalized the distance from 0 to

1. The size(i) indicates the length of the time-span that has head i. When calculating

DGPR7, we use the square of size(i) for weightings for empirical reasons.

9.6.2 Implementation of TSRPR5

TSRPR5 is the rule applied to the feedback loop between the time-span reduction

and the metrical structure analyser. This rule leads to a preference that results in a

more stable choice of metrical structure in choosing the head of a time-span. The

term DTSRPR5 indicates the strength of the rule in a given instance, which varies

continuously between 0 and 1. We define DTSRPR5 as

DTSRPR5 =
1

∑
i

size(i)2

{
size(i)2, if dot(p(i))≥ dot(s(i)) ,

0, otherwise ,
(9.13)

where dot(x) indicates the number of metrical dots for note x.
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Fig. 9.9 Processing flow of fully automatic time-span tree analyser

9.6.3 Optimization of Adjustable Parameters

The optimal parameter sets of the ATTA can be obtained by maximizing the average

of DGPR7(0 ≤ DGPR7 ≤ 1) and DTSRPR5(0 ≤ DTSRPR5 ≤ 1). Because there are 46

adjustable parameters, e.g., Srules or Wm, it takes a long time to calculate all the

combinations of parameter sets. To decrease the calculation time, we constructed the

following algorithm:

1. Maximize the average of DGPR7 and DTSRPR5 by changing a parameter from

minimum to maximum.

2. Repeat 1 for all parameters.
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3. Iterate 1 and 2, as long as the average of DGPR7 and DTSRPR5 is increased from

the previous iteration.

Finally, the FATTA can output only one analysis result without manual configura-

tion. The computation time depends on the piece. In our experiment, described in

Sect. 9.11, the shortest piece took about 5 minutes to analyse and the longest took

about one week.

9.7 σGTTM Analyser

Our σGTTM system can detect the local grouping boundaries in a GTTM analysis

by combining GTTM and statistical learning with a decision tree (Miura et al., 2009).

A decision tree is a statistical learning method in which decisions are made by

considering the value of each ramification. When learning the decision tree, bigger

ramifications have a greater influence on the decision-making process, which causes

it to be closer to the root position.

9.7.1 Abstraction of Training Data

As training data, we selected 100 MusicXML files that were then manually analysed

by a musicologist and checked by GTTM experts. The value we want to know

is the existence of a local grouping boundary (denoted as b), so that the value

can be represented as 1 or 0 (boundary exists or not). A local GPR such as GPR

2 or 3 should also be abstracted because whether there is a boundary or not is

determined by the local GPR. Considering that there is a local GPR for avoiding

groups consisting of single notes, not only interval n (between note n and note n+1)

but also the neighbouring intervals (interval n− 1 and interval n+ 1) should be

checked. Therefore, the data were abstracted in the form, Bn
GPR, where the superscript

n refers to the nth interval and the subscript GPR means the type of local GPR, of

which there are six (2a, 2b, 3a, 3b, 3c, 3d). The abstracted data for interval n can thus

be denoted by Bn
2a, Bn

2b, Bn
3a, Bn

3b, Bn
3c, Bn

3d . Considering the neighbouring intervals,

the total abstracted data can be represented by 18 (= 6 rules× 3 (n− 1,n,n+ 1))
elements. Each element has a value of 1 or 0 (rules exist or not). The existence of a

local grouping boundary (b) is determined on the basis of these 18 elements.

9.7.2 Detecting the Priority of Local GPRs Using a Decision Tree

We chose C4.5, an algorithm developed by Quinlan (1993), to construct the decision

tree. Figure 9.10 shows an example of the constructed decision tree. From the training

data, we can obtain the conditional probability of local grouping boundaries for each
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Fig. 9.10 Example of con-
structed decision tree 10
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combination of local GPRs. When this conditional probability is 0.5 or more, GTTM

detects the existence of a local grouping boundary (b = 1), and when it is less than

0.5, no boundary is detected (b = 0). For the example in Fig. 9.10, we detect a local

grouping boundary when Bn
2a = 1 and Bn

2b = 1.

Unfortunately, the performance of the σGTTM analyser is not good enough

because it can construct only one decision tree from 100 fragments of a piece and

grouping analysis data, and it sometimes outputs irrelevant results.

9.8 σGTTM-II Analyser

We therefore developed the σGTTM-II analyser, based on the assumption that a

piece of music has multiple interpretations; thus, it constructs multiple decision trees

(each corresponding to a different interpretation) (Kanamori and Hamanaka, 2014).

The main idea with the σGTTM-II analyser is to reiterate clustering and statistical

learning to classify each piece of music on the basis of the priority of the local

GPR and to detect the local grouping structure more appropriately and easily. This

analyser classifies a set of piece of music into clusters and outputs one detector of

local grouping structure per cluster. We can detect a local grouping boundary more

easily by choosing the most favourable detector from among various candidates.

First, we randomly classify training data into clusters. The training data of each

cluster is then trained by a decision tree. After this training, a decision tree of GPR

priority is constructed. We refer to this constructed decision tree as the “detector”. In

Fig. 9.11, clusters and detectors A and B mean that detector A is constructed in cluster

A, detector B is constructed in cluster B, and so on. However, this part is problematic

because an irrelevant analysed music structure might exist in a cluster. This is due to

the detectors of each cluster representing the features of the entire music structure as

the same for each cluster.

To solve this problem, the analyser evaluates the performance of each detector as it

is constructed and then reclassifies the training data into clusters that generate the best

performing detector. In Fig. 9.11, the clusters after reclassification are represented

as A′, B′, and so on. The analyser then compares the training data of each cluster

before (A,B, . . .) and after (A′,B′, . . .) reclassification. The less the training data in
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Fig. 9.11 Iterations of clustering and statistical learning

the cluster change, the more the constructed detectors cover the features such as

priority of the local GPRs of all training data in the cluster.

After this comparison between clusters, if the total difference of training data in

clusters before and after reclassification is more than two, the analyser returns to

constructing detectors again, and if the total difference is less than one, or if reclassi-

fication has been performed 150 times, it outputs the training data and detectors of

each cluster. Finally, we construct the most appropriate detector on the basis of the

priority of the local GPRs of the entire training data in a cluster.

In our experiment in Sect. 9.11, we changed the initial number of clusters from 1

to 100 in order to compare the performance.

9.9 Interactive GTTM Analyser

We propose an interactive GTTM analyser that can use either the ATTA or σGTTM-II

analyser (Fig. 9.12). We should point out that there is a trade-off relationship between

the automation of the analysis process and variation in the analysis results (Fig. 9.13).

Figure 9.14 shows an overview of our interactive GTTM analyser consisting of the

ATTA/σGTTM-II analyser, GTTM manual editor, and GTTM process editor.

9.9.1 Manual Editor for GTTM

In some cases, ATTA may produce an acceptable result that reflects the user’s inter-

pretation, but in other cases it may not. A user who wants to change the analysis result

according to his or her interpretation can use the GTTM manual editor. This editor

has numerous functions including loading and saving the analysis results, calling the

ATTA or σGTTM-II analyser, recording the editing history, undoing the editing, and

autocorrecting incorrect structures.
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Fig. 9.12 Interactive GTTM analyser

Fig. 9.13 Trade-off between
automation of analysis process
and variation of analysis
results
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9.9.2 Process Editor for GTTM

The analysing process with the ATTA and GTTM manual editor is complicated,

and sometimes a user may become confused as to what he or she should do next,

since there are three analysing processes in the ATTA and five editing processes in

the GTTM manual editor. A user may iterate the ATTA and manual edit processes

multiple times.

To solve this problem, we propose a GTTM process editor that presents candidates

for the next process of analysis. A user can change the process simply by selecting

the next process. The process editor enables seamless change in the analysis process

by using the ATTA and, in the manual edit process, by using the GTTM manual

editor, representing candidates for the next process of analysis. The representation

method differs depending on the number of candidates for the next process.

Fig. 9.14 Overview of interac-
tive GTTM analyser



240 Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo

Fig. 9.15 Two types of so-
lution for broken grouping
structure

When there are multiple candidates, the process controlling function automati-

cally opens the popup menu and shows the candidates. For example, if there is a

grouping structure, as shown Fig. 9.15(a), and a user deletes a group at the upper left

(Fig. 9.15(b)), the grouping structure of Fig. 9.15(b) is broken because GWFR3 does

not hold. The GWFR3 has the constraint that a group must contain smaller groups.

There are only two processes for solving this problem:

• Delete all the groups at the same level of the deleted group (Fig. 9.15(c)).

• Extend the group following the deleted group to the left (Fig. 9.15(d)).

The next process can then be executed depending on which of the two processes

displayed in the popup menu the user selects.

9.9.3 Implementation on Client-Server System

The ATTA and σGTTM-II are updated frequently, and sometimes it is a little difficult

for users to download an updated program. We therefore implement our interactive

GTTM analyser on a client-server system. The graphic user interface on the client

side runs as a Web application written in Java, while the analyser on the server side

runs as a program written in Perl. This enables us to update the analyser frequently

while allowing users to access the most recent version automatically.

9.10 GTTM Database

In constructing a musical analyser, test data from musical databases are useful for

evaluating and improving the performance of the analyser. At present, we have

a database of 300 analyses that are being used for researching music structural

analysis (Hamanaka et al., 2014). At this stage, several rules in the theory allow

only monophony, so we restrict the target analysis data to monophonic music in the

GTTM database.
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9.10.1 XML-Based Data Structure

We use an XML format for all analysis data. MusicXML was chosen as the primary

input format because it provides a common exchange format for music notation, anal-

ysis, retrieval, and other applications (Recordare, 2011). We designed GroupingXML

(XML format for grouping structure), MetricalXML (XML format for metrical struc-

ture), TimespanXML (XML format for time-span tree), and ProlongationalXML

(XML format for prolongational tree) as the export formats for our four proposed

analysers. We also designed HarmonicXML to express the chord progressions. The

XML format is suitable for expressing the hierarchical grouping structures, metrical

structures, time-span trees, and prolongational trees.

9.10.2 Score Data

The database should contain a variety of different musical pieces. When constructing

it, we used 8-bar excerpts from whole pieces of music because the time required for

analysing and editing by a musicology expert would be too long if whole pieces had

to be analysed. We collected 300 monophonic 8-bar excerpts from classical music

that included notes, rests, slurs, accents, and articulations entered manually with the

Finale music notation software (MakeMusic, 2015). We exported the MusicXML

using the Dolet plug-in.3 The 300 whole pieces and the 8-bar segments were selected

by a musicologist.

9.10.3 Analysis Data

We asked an expert musicologist to analyse manually the score data in a way that was

faithful to GTTM by using the manual editor in the GTTM analysis tool to assist in

editing the grouping structure, metrical structure, time-span tree, and prolongational

tree. She also analysed the chord progression. Three other experts cross-checked

these manually produced results.

9.11 Experimental Results

In this section, we compare the performance of our four analysers and show examples

of the analysis results.

3 http://www.musicxml.com/dolet-plugin/dolet-6-plugin-for-finale/
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Fig. 9.16 Analysis of
Mozart’s Sonata K 331

Analysis result

Analysis result

GPR GPR GPR

GPR GPR GPR

9.11.1 Analysis by ATTA

There are at least two plausible grouping structures for the main theme from Mozart’s

Sonata K 331: a structure that has a boundary between notes 4 and 5 (Fig. 9.16(a));

or one in which there is a boundary between notes 5 and 6 (Fig. 9.16(b)). The

analyser can output either of these grouping structures by using exGTTM with

appropriate values for the strengths of grouping preference rules such as SGPR2a,

SGPR2b, and SGPR3a. In Fig. 9.16, T low, where 0≤ T low ≤ 1, is an adjustable parameter

for the threshold in the low-level grouping boundary and Blow(i) is a local strength,

represented by a real number between 0 and 1, defined so that the larger this value is,

the more likely the boundary is.

Figure 9.17 shows the analyses of two pieces, Beethoven’s “Turkish March”

and the traditional English folk song “Greensleeves”, that were set with the same

parameters. The numbers at the nodes in the tree in Fig. 9.17 indicate the applicable

rules. The parameters of ATTA are configured by hand, because the optimal values

of the parameters depend on a piece of music.

9.11.2 Comparison of ATTA and FATTA

We evaluated the performance of ATTA and FATTA using an F-measure given by the

weighted harmonic mean of precision P (proportion of selected groupings/dots/heads

that are correct) and recall R (proportion of correct groupings/dots/heads that are

identified). In calculating the F-measure of the grouping analyser and time-span tree

analyser, we did not consider the possibility that a low-level error is propagated up

to a higher level; we counted wrong answers without regard to the differences in

grouping levels and time-span levels.

The grouping, metrical, and time-span tree structures will change depending on

the adjustable parameters. To evaluate the baseline performance of ATTA, we used

the following default parameters: Srules = 0.5, Trules = 0.5, Ws= 0.5, Wr = 0.5, Wl =
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0.5, and σ= 0.05. The parameter range of Trules, Ws, Wr, and Wl was 0 to 1.0 and the

resolution was 0.1. The parameter range of σ was 0 to 0.1 and the resolution was

0.01 (see Table 9.1).

On average, it took about 10 minutes per piece to find a tuning for the set of param-

eters (Table 9.1). As a result of configuring the parameters, each F-measure of ATTA

outperformed the baseline. After automatic parameter optimization, FATTA achieved

average F-measures of 0.48 for grouping structure, 0.89 for metrical structure and

0.49 for time-span tree (see Table 9.2). FATTA thus outperformed the baseline of

ATTA, but did not perform as well as ATTA when the latter’s parameter values were

configured by hand.

9.11.3 Number of Clusters in σGTTM-II Analyser

When we first classify each piece of music into clusters, we do not know the optimum

number of clusters for producing the best performance of the σGTTM-II analyser.

Fig. 9.17 Analysis of two pieces having same parameter sets: (a) Beethoven, “Turkish March”, (b)
English Traditional, “Greensleeves”
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Table 9.1 Adjustable parameters

Structure Parameter Description

Grouping structure SGPR j The strength of each grouping preference rule.
j ∈ {2a,2b,3a,3b,3c,3d,4,5,6}

σ The standard deviation of a normal distribution for
GPR5.

Ws Preference weighting for end of a parallel segment
in favour of the start
of a parallel segment.

Wr Preference weighting of same rhythm in favour of
the same register in
parallel segments.

Wl Preference weighting for larger parallel segments.

T GPR4 The value of the threshold that decides whether
GPRs 2 and 3 are
relatively pronounced or not.

T low−level The value of the threshold that decides whether
transition i is a
low-level boundary or not.

Metrical structure SMPR j The strength of each metrical preference rule.
j ∈ {1,2,3,4,5a,5b,5c,5d,5e,10}

Wr Preference weighting for same rhythm in favour of
same register in
parallel groups.

T MPR j The value of the threshold that decides whether or
not each rule is
applicable. j ∈ {4,5a,5b,5c}

Time-span tree STSRPR j The strength of each time-span tree preference rule.
j ∈ {1,3a,3b,4,8,9}

Therefore, we first tested the system with the number of clusters ranging from 1 to

100. This means the number of input clusters of the σGTTM-II analyser is one and

the analyser outputs one detector, and then the number of input clusters is two and

the analyser outputs two detectors, and so on. Thus, the analyser runs 100 times

through the input and output. On each run, the analyser reiterates clustering and

statistical learning multiple times until it is ready to output detectors. The results of

this experiment are shown in Fig. 9.18.

Table 9.2 F-measures of
ATTA and FATTA

Baseline ATTA FATTA
of ATTA

Grouping structure 0.46 0.77 0.48
Metrical structure 0.84 0.90 0.89
Time-span tree 0.44 0.60 0.49
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Fig. 9.18 Performance of
σGTTM-II analyser
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9.11.4 Comparison of ATTA, σGTTM Analyser, and σGTTM-II
Analyser

We compared σGTTM-II with the ATTA and σGTTM analysers. The performance

of the σGTTM-II analyser was highest when the number of clusters was 10. The

σGTTM-II analyser outperformed the ATTA with adjusted parameters and the

σGTTM analyser when it came to selecting the optimum detector (Table 9.3).

9.11.5 Comparison of Analysis Results from Two Musicologists
with GTTM Database

Another musicologist who had not been involved in the construction of the GTTM

database was asked to manually analyse the 300 scores in the database in a way that

was faithful to GTTM. We provided her with only the 8-bar-long monophonic pieces

but allowed her to refer to the original score as needed. When analysing pieces of

music, she could not see the analysis results already in the GTTM database. She was

told to take as much time as she needed. The time needed for analysing one song

ranged from fifteen minutes to six hours.

The analysis results for 267 of the 300 pieces were the same as the original results

in the GTTM database. The remaining 33 pieces had different interpretations, so we

added 33 new analysis results to the GTTM database after they were cross-checked

by three other experts.

For those 33 pieces with different interpretations, we found the grouping structure

in the database to be the same as that obtained by the musicologist. For all 33 pieces,

in the time-span tree, the root branch and branches directly connected to the root

Table 9.3 Performance com-
parison of ATTA, σGTTM
analyser, and σGTTM-II
analyser

Precision Recall F-measure

ATTA 0.78 0.79 0.77
σGTTM 0.76 0.63 0.69
σGTTM-II 0.91 0.73 0.81
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branch in the database were the same as those in the musicologist’s results. In other

words, only some branches were different in both analyses.

Of the pieces analysed, one of Johann Pachelbel’s fugues in C major had the most

unmatched time-spans when the analysis results in the GTTM database (Fig. 9.19(a))

were compared with those from the musicologist (Fig. 9.19(b)). From yet another

musicologist, we obtained the following comments about different analysis results

for this piece of music.

Analysis results from GTTM database In analysis result (a), note 2 was in-

terpreted as the start of the subject of the fugue (Fig. 9.19(a)). Note 3 is

more salient than note 2 because note 2 is a non-chord tone. Note 5 is the

most salient note in the time-span tree of the first bar because notes 4 to 7

are a fifth chord and note 5 is a tonic of the chord. The reason that note 2

was interpreted as the start of the subject of the fugue is uncertain, but a

musicologist who is familiar with music before the Baroque era should be

able to see that note 2 is the start of the subject of the fugue.

Analysis results from musicologist Analysis result (b) was a more simple

interpretation than result (a), in which note 1 is the start of the subject of

the fuga. However, it is interesting that the trees of the second and third

beats of the third bar are separated because both are the fifth chord.

The musicologist who made this comment said that it is difficult to analyse a

monophonic piece of music from a contrapuntal piece of music without seeing the

other parts. Chord information is necessary for a GTTM analysis, and a musicologist

who is using only a monophonic piece of music has to imagine the other parts, which

can result in multiple interpretations.

9.12 Conclusion

We have described our efforts to develop computer implementations of analytical

methods based on music theory. By introducing full parameterization and statistical

learning, we were able to improve the performance of our analysers. However, a few

problems still remain. For example, none of our analysers can automatically analyse

polyphonic music, which consists of several independent parts (Hamanaka et al.,

2013). We plan to address this problem in future versions of the analyser.

The GTTM database contains analysis data for 300 monophonic pieces. However,

the manual editor in our interactive GTTM analyser is designed to deal with poly-

phonic pieces. Although the analyser works only on monophonic pieces, a user can

analyse polyphonic pieces by using the analyser’s manual editor to divide polyphonic

pieces into monophonic parts. We also attempted to extend the GTTM framework

to enable the analysis of polyphonic pieces. We plan to publicize 100 pairs of poly-

phonic scores and the analysis results of the musicologists consulted in this study.

Although the 300 pieces in the current GTTM database are only eight bars long, we
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Fig. 9.19 Time-span trees of one part from a fugue in C major by Johann Pachelbel

plan to also analyse whole pieces of music by using the interactive GTTM analyser’s

slide bar for zooming piano-roll scores and GTTM structures.

Supplementary Material The interactive GTTM analyser and GTTM database are available online
at http://www.gttm.jp/.
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Temperley, D. (2001). The Cognition of Basic Musical Structures. MIT Press.

Yazawa, S., Hamanaka, M., and Utsuro, T. (2014). Melody generation system based

on a theory of melody sequences. In Proceedings of the International Conference
on Advanced Informatics: Concepts, Theory and Applications, pages 347–352.



Chapter 10
An Algebraic Approach to Time-Span Reduction

Keiji Hirata, Satoshi Tojo, and Masatoshi Hamanaka

Abstract In this chapter, we present an algebraic framework in which a set of

simple, intuitive operations applicable to music can be flexibly combined to realize a

target application and generate music. We formalize the concept of time-span tree

introduced by Lerdahl and Jackendoff (1983) in their Generative Theory of Tonal
Music (GTTM) and define the distance between time-span trees, on the hypothesis

that this might coincide with the psychological resemblance between melodies heard

by human listeners. To confirm the feasibility of the proposed framework, we conduct

an experiment to determine whether the distance calculated on the basis of the

framework reflects cognitive distance in human listeners. To demonstrate that the

algebraic framework is computationally tractable, we present the implementation of a

musical morphing system that, given two original melodies, generates an intermediate

melody at any internally dividing point between them (i.e., at any ratio).

10.1 Introduction

The analogy between music and natural language has long been discussed (Aiello,

1994; Cook, 1994; Jackendoff, 2009; Molino, 2000; Sloboda, 1985). Our short-term

memory plays an important role in understanding music as well as language (Baroni

et al., 2011). Since short-term memory is used to realize a push-down stack, it can
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accept a context-free grammar (CFG) language. It is commonly accepted that human

language is mostly generated by a CFG in Chomsky’s hierarchy; at the same time, we

often encounter linguistic phenomena that are context-sensitive (Stabler, 2004). Most

sentences can be generated by CFGs, which have long distance dependency and a tree
structure. Thus, we may assume that music is also governed by a CFG-like grammar.

Many natural language researchers have tried to implement music parsers with CFG-

like grammars (Steedman, 1996; Tojo et al., 2006; Winograd, 1968). For another

example of the importance of short-term memory in music, we consider melodic

recognition. In a piece of music, the identical motif or phrase appears repeatedly in

time and/or in other voices. When we recognize such a motif/phrase, this suggests

that we possess an ability to group consecutive notes or parallel phrases together with

the help of short-term memory; this psychological phenomenon is called Gestalt.
Influenced by Noam Chomsky’s framework of transformational generative gram-

mar (Chomsky, 1957, 1965), Lerdahl and Jackendoff (1983) proposed their Gen-
erative Theory of Tonal Music (GTTM). GTTM consists of modules for grouping-

structure analysis, metrical-structure analysis, time-span reduction, and prolonga-

tional reduction. The grouping structure analysis segments a piece of music into

nested groups of varying sizes. The metrical structure analysis identifies the positions

of strong and weak beats at the levels of a quarter note, half note, whole note, and so

on.

The time-span tree is constructed on the basis of the results of the grouping struc-

ture and metrical structure analyses in a bottom-up manner: parts come together to

form wholes, in accordance with the Gestalt principle. Time-span reduction repre-

sents the intuitive idea, originating from Schenkerian analysis, that, if we remove

ornamental notes from a long melody, we obtain a simple melody that sounds similar.

By time-span reduction, an entire piece of music can eventually be reduced to an

important note or a tonic triad. Hence, the time-span tree stands for the progression

of this time-span reduction.

Prolongational reduction represents musical intuitions relating to both the har-

monic and melodic aspects of the global structure of a piece. In contrast to the

time-span reduction, a prolongational tree is constructed in a top-down manner, by

recognizing that parts of a piece—or even entire pieces—exhibit patterns of tension

and relaxation. That is, given a homophonic (i.e., homorhythmic) sequence, an im-

portant note or chord is first selected, and the sequence is then split at that note or

chord.

The rules of GTTM comprise well-formedness rules for specifying all the possible

tree structures on the basis of analyses, along with preference rules for designating

which of the possible tree structures to adopt. As described above, the time-span

and prolongational trees represent aspects of the underlying structure of a piece. The

theory attempts to look for a unique underlying structure by applying the preference

rules. However, a piece can be interpreted in various ways, and, of course, the analysis

occasionally derives more than one time-span tree and prolongational tree.

To understand the relationships between GTTM and Chomsky’s generative gram-

mar more precisely, let us compare the analysis process of GTTM with the derivation

of a sentence using a generative grammar. In Fig. 10.1(a), the meaning of an utter-
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Fig. 10.1 Framework for giving meaning to a sentence and a piece of music

ance is represented by its semantic content, which is transformed into deep and then

surface structures by applying the phrase structure rules and the transformational

grammar. These grammar rules give meaning to a transformed tree structure. The

direction of giving meaning is the same as that of producing a sentence.

The time-span tree and prolongational tree are generated from a motif and a

global structure by an elaboration that is the opposite of reduction (Fig. 10.1(b)). The

rules and the roles of tree structures in GTTM are different from those they have in

linguistic generative grammars. Thus, Lerdahl and Jackendoff (1983, p. 9) state that

we have found that a generative theory, unlike a generative linguistic theory, must not only
assign structural descriptions to a piece, but must also differentiate them along a scale of
coherence, weighting them as more or less “preferred” interpretations. . . The preference
rules, which do the major portion of the work of developing analyses within our theory, have
no counterpart in linguistic theory; their presence is a prominent difference between the
forms of the two theories. . .

Thus, a generative grammar usually assigns different derivational trees to different

sentences, mostly in a one-to-one manner (of course, there are exceptions). Ac-

cordingly, in language, the surface structure (a sentence) typically carries enough

information to allow direct manipulation and/or calculation of a derivational tree.

In contrast, in music, the relationship between the surface structure (a score) and a

time-span tree/prolongational tree is more ambiguous due to the preference rules. The

time-span/prolongational tree conveys more precise information of musical meaning

than the surface structure.

This chapter is structured as follows. In Sect. 10.2, we describe an algebraic

framework that formalizes the concept of a time-span tree. We introduce the concepts

of reduction and maximal time-span, define the time-span tree operations join and

meet, and provide a theoretical distance between time-span trees. On the basis of this

development, in Sect. 10.3, we conduct an experiment to confirm the feasibility of

the proposed framework. We compare the cognitive distances of human listeners,

measured experimentally, with those calculated by the framework, and determine

whether the theoretical distances correctly reflect our cognitive reality. Next, in

Sect. 10.4, to illustrate that the combination of primitive operators straightforwardly
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realizes a more complicated operation, we implement a musical morphing system.

As in the previous section, we employ human listeners to determine whether the

morphed melodies generated by the system properly correspond to internally dividing

points between the two original melodies given.

10.2 Formal Treatment of Time-Span Trees

In this section, we will explain our approach and introduce some fundamental defini-

tions and properties relating to time-span trees.

Surface structure

Reduction

�

Order in which
reduction process

is carried out

�

Fig. 10.2 Reduction hierarchy of the chorale, ‘O Haupt voll Blut und Wunden’ from the St. Matthew
Passion by J. S. Bach (from Lerdahl and Jackendoff, 1983, p. 115)
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Fig. 10.3 Proposed framework for composition and creation

10.2.1 The Time-Span Tree as a Domain for Modification

We consider that in computational composition or arrangement, it is more promising

to modify the time-span tree than the score itself for the following two reasons. First,

the tree is more meaningful. The time-span tree is organized on the basis of the reduc-
tion hypothesis so that neighbouring pitch events1 are compared in a bottom-up way

in terms of importance, and the less important notes are absorbed into more significant

ones in a hierarchical manner. As a result, we can obtain the fundamental skeleton

of the music (Marsden, 2005). We illustrate this process in Fig. 10.2.2 We can also

use the reduction process to obtain a hypothesis regarding the original intent of the

music, on an analogy with a Chomskyan analysis of natural language (Fig. 10.1(b)).

This relates to the Schenkerian notion that we can retrieve the underlying structure of

a piece by selecting pitch events that represent its tonality (Cadwallader and Gagné,

1998). This selection process exactly corresponds to the reduction hypothesis. In both

theories, as each note is classified according to its rhythmic and/or tonal significance,

it contributes to the formation of a specific interpretation of the music, and, for this

reason, we claim that a hierarchical tree is more meaningful than a raw score.

Second, we can distinguish the realm of formal modification (i.e., composition and

arrangement) from that of listening. In the former, we need to introduce a rendering
process which is the reverse of music analysis. In a time-span reduction analysis, a

tree is constructed on the basis of the reduction hypothesis; whereas, in the rendering

process, a concrete piece of music is created—that is, a musical score is externalized

and made performable and audible (Fig. 10.3). Rendering can be viewed as playing

the role of resolving ambiguity in the musical surface, which relates to the raw score

being less meaningful.

In general, the mapping from musical surfaces to time-span reductions is many-

to-many: for a given piece, there is typically more than one possible time-span tree;

and for a given time-span tree, there is typically more than one possible surface that

has that tree (Marsden et al., 2013). Fig. 10.4(a) shows that two possible time-span

1 A pitch event originally means a single note or a chord. In this work, we restrict our interest to
homophonic analysis as the method of polyphonic recognition is not included in the original theory.
2 Once a piece of music is reduced, each note with onset-offset and duration becomes a virtual note;
it is only meant to be a pitch event that is salient during the corresponding time-span. Therefore,
to listen to a reduced piece of music, we need a rendering process that compensates for this onset-
offset/duration information.
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Peters edition

Henle edition

(a) 1-to-many mapping in time-span

reduction analysis (from

score to time-span trees)

q
q e

‰

q
q q

(b) 1-to-many mapping in rendering

(from a time-span tree to scores)

Fig. 10.4 Samples of ambiguity in time-span reduction analysis and rendering. In (a), the time-span
reduction depends on slurring, which is different in different editions of the piece. In (b), two
different surfaces have the same time-span reduction analysis

trees may exist, depending on the edition of a score that is used. Conversely, in

Fig. 10.4(b), we show that one time-span tree can be rendered in multiple ways, as

the time-span tree does not include rests and the occurrences of a rest in a score have

various realizations.

10.2.2 Maximal Time-Span

The head pitch event of a tree is the most salient event in the tree—i.e., the salient

event dominates the whole tree. As the situation is the same in each subtree, we

consider that each pitch event has its maximal length of saliency, called its maximal
time-span. For example, let us think of two maximal time-spans such that one’s

temporal interval is subsumed by the other’s. Since the longer maximal time-span

dominates a longer interval, we assume that the longer maximal time-span conveys

more information and that the amount of information is proportional to the length

of the maximal time-span. Then, we hypothesize that, if a branch with a single

pitch event is reduced, the amount of information corresponding to the length of its

maximal time-span is lost.

Figure 10.5(a) contains four contiguous pitch events: e1, e2, e3 and e4. Each has

its own temporal span (duration on the surface score) denoted by thin lines: s1, s2, s3
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(a) Sequence of pitch events and their durations 

(b) Reduction proceeds by removing reducible maximal time-spans 
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Fig. 10.5 Reduction of time-span tree and maximal time-span hierarchy; thick grey lines denote
maximal time-spans while thin ones denote pitch durations

and s4. Figure 10.5(b) depicts time-span trees and corresponding maximal time-span

hierarchies, denoted by thick grey lines. The relationship between spans in (a) and

maximal time-spans in (b) is as follows: at the lowest level in the hierarchy, a span

is the same length as a maximal time-span: mt2 = s2, mt3 = s3; at the other levels,

mt1 = s1+mt2, and mt4 = mt1+mt3+ s4 = s1+ s2+ s3+ s4. In the figure, if the

duration of a quarter note is 12 ticks, then s1 = s2 = s3 = s4 = 12, mt2 = mt3 = 12,

mt1 = 24, and mt4 = 48. That is, every span extends itself by concatenating the span

at a higher level along the configuration of a time-span tree. When all subordinate

spans are concatenated into one span, the span reaches the maximal time-span.

10.2.3 Lattice and Join/Meet

Here we consider a sequence of reductions from a tree. First, the relation between

two trees on the sequence becomes the subsumption relation, which is the most

fundamental mereological relation among real-world objects in knowledge repre-

sentation. Since the reduction is generally made in a different order, the sequence

bifurcates, and the set of reduced time-span trees becomes a partially ordered set

(poset).3 Moreover, if we can define join and meet in the set, the set becomes a lattice.

For the base case, we define join and meet of two time-spans (Fig. 10.6). If τA and

τB are separated from each other (that is, they do not temporally overlap), join does

not exist, while meet becomes empty, denoted by ⊥. Next, we consider the inductive

case for a time-span tree. Let σ1 and σ2 be time-span trees. σ1 is subsumed by σ2,

3 Reflexive, anti-symmetric, and transitive set.
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Fig. 10.6 join and meet operators applied to maximal time-spans

denoted by σ1 � σ2, if and only if for any branch in σ1 there is a corresponding

branch in σ2.4 Now let σA and σB be time-span trees for pieces A and B, respectively.

join: If there is a smallest unique y such that σA � y and σB � y, we call such

y the join of σA and σB, denoted by σA�σB.

meet: If there is a largest unique x such that x� σA and x� σB, we call such x
the meet of σA and σB, denoted by σA�σB.

We illustrate join and meet in a simple example in Fig. 10.7. The ‘�’ (join) operation

takes eighth notes in the scores to fill sub-time-span trees so that a missing note in

one side is complemented. On the other hand, the ‘�’ (meet) operation takes ⊥ for

possibly mismatching sub-time-span trees, and thus only the common notes appear

as a result.

In the process of unification between σA and σB, when a single branch is unifiable

with a tree, σA�σB chooses the tree while σA�σB chooses the branch recursively.

Because there is no alternative action in these procedures, σA�σB and σA�σB exist

uniquely. Then, the partially ordered set of time-span trees becomes a lattice, as

mentioned above, where σA�x = σA and σA�x = x if x� σA. Moreover, if σA � σB,

then x�σA � x�σB and x�σA � x�σB for any x. In an algebraic lattice where

q
q
e
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q
q

e
‰ =

q
q
ee

q
q
e
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q

e
‰ =

q
q

Œ

Fig. 10.7 Samples of join and meet

4 Currently, we are concentrating on the theory for handling the configurations of trees and the
time-spans based on the subsumption relation introduced above, ignoring pitch events. When we
become able to define the proper subsumption relation between pitch events and integrate both
subsumption relations into a coherent framework, the total theory for handling melodies will be
realized. We consider Lerdahl’s (2001) tonal pitch space theory to be a valid starting point for
developing the subsumption relation between pitch events.
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meet and join exist uniquely, we can easily confirm the absorption law as follows:

(σA�σB)�σA = σA and (σA�σB)�σA = σA.

Tojo and Hirata (2012) provided the data representation of a time-span tree in a

feature structure and mentioned the algorithms for join and meet. The framework we

propose can be considered algebraic because the set of time-span trees works as a

domain and join and meet are operators defined on this set. Moreover, we consider

this algebraic approach to be an implementation of Donald Norman’s (1999, p. 67)

design principle of ‘Simplicity’:

Simplicity: The complexity of the information appliance is that of the task, not the tool. The
technology is invisible.

That is, Norman argued that a user should be provided with a framework in which

a set of simple, intuitive primitives can be flexibly combined to realize an intended

function.

10.2.4 Reduction Distance

We call a sequence of reductions of a piece of music a reduction path. We regard the

sum of the lengths of maximal time-spans lost in going from one tree to another in

the reduction path as the distance between the two trees. We generalize the notion

to be applicable not only between trees in the same reduction path, but also in any

direction in the lattice. We presuppose that branches are reduced only one-by-one, for

convenience in summing up distances. A branch is reducible only in the bottom-up

direction, i.e., a reducible branch possesses no other sub-branches except a single

pitch event as a leaf of a tree.

Let ς(σ) be a set of pitch events in a time-span tree σ and let #ς(σ) be its

cardinality. We denote by se the maximal time-span of event e. The distance d� of

two time-span trees such that σA � σB in a reduction path is defined as follows

d�(σA,σB) = ∑e∈ς(σB)\ς(σA) se.

For example in Fig. 10.5(b), the distance between σ1 and σ4 becomes mt1+mt2+
mt3. Note that, if e3 is first reduced and e2 is subsequently reduced, the distance is

the same. Although the distance appears at a glance to be a simple summation of

maximal time-spans, there is a latent order in the addition, because the reducible

branches are different in each reduction step. To give a constructive procedure to this

summation, we introduce the notion of total sum of maximal time-spans as:

tmts(σ) = ∑e∈ς(σ) se ,

which we call the total maximal time-span. When σA � σB, d�(σA,σB) = tmts(σB)−
tmts(σA). As a special case of the above, d�(⊥,σ) = tmts(σ).

We now consider the requirements for the distance between two trees to be a true

metric. As there is a reduction path between σA �σB and σA �σB, it follows that
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Fig. 10.8 Parallelogram composed of variations No. 2 and No. 5, join and meet. The values in
parentheses are total maximal time-spans

σA�σB � σA�σB and that d�(σA�σB,σA�σB) is unique. Suppose we define the

following two distance metrics:

d�(σA,σB)≡ d�(σA�σB,σA)+d�(σA�σB,σB) ,
d�(σA,σB)≡ d�(σA,σA�σB)+d�(σB,σA�σB) .

We immediately obtain the lemma, d�(σA,σB) = d�(σA,σB), by the uniqueness of

reduction distance (see Tojo and Hirata (2012) for the outline of a proof). From

here on, we therefore omit {�,�} from d{�,�}, and simply express it as ‘d’. Here,

d(σA,σB) is unique among the shortest paths between σA and σB. Finally, we obtain

the triangle inequality:

d(σA,σB)+d(σB,σC)≥ d(σA,σC) .

For more details on the theoretical background, see Tojo and Hirata (2012).

We show an example in which, given two pieces, the join and meet are calculated

(Fig. 10.8). The two pieces are taken from Mozart’s variations K.265/300e ‘Ah, vous
dirai-je, maman’, variations No. 2 and No. 5. The value in parentheses shows the

total maximal time-span of each time-span tree, as defined above. In Fig. 10.8, if

we let the duration of a quarter note be 12 ticks, the total maximal time-span of

variation No. 2 amounts to 744 ticks, which is the sum of the maximal time-spans

of all notes contained in variation No. 2. Similarly, the total maximal time-span

of variation No. 5 is 654 ticks. According to the definition of distance, we obtain

d� = (744−576)+(654−576) = 246, and d� = (822−744)+(822−654) = 246.

Notice that the four time-span trees form a parallelogram because the lengths of

the opposite sides are equal. Then, we have confirmed the lemma on uniqueness of

reduction distance in the proposed framework.
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In general, join and meet of the time-span trees in Fig. 10.8 are possible as long as

the left-/right-branching coincides in every subtree. However, we have enhanced the

algorithm to tolerate the matching between two different directions of branching. In

the current implementation, the join and meet operations have already been improved

to handle unmatched-branching trees so that they preserve the results of join and

meet in the matched-branching trees and satisfy the absorption law, (σA�σB)�σA =
σA and (σA�σB)�σA = σA, and the lemma, d�(σA,σB) = d�(σA,σB), even for the

unmatched-branching trees. For more details, see Hirata et al. (2014).

As described in footnote 4, since the subsumption relation between pitch events is

not given, at present, the distance between pitch events is not calculated. Thus, we

suppose that every pitch event occurring in a time-span tree is identical. Therefore,

within the calculation of the distance between time-span trees, join and meet neither

generate a homophonic pitch event nor a chord; that is, let e be such a pitch event, so

we have join(e,e) = meet(e,e) = e.

10.3 Verification: Distance and Cognitive Similarity

In this section, we investigate whether the definition of distance correctly reflects

cognitive reality. For this purpose, we employ human listeners to compare the distance

with intuitive similarity.

The target set of pieces was Mozart’s variations K.265/300e ‘Ah, vous dirai-je,
maman’ (known in English as ‘Twinkle, twinkle little star’). The piece consists of

the theme and 12 variations. In our experiment, we used the first eight bars of the

theme and each variation (Fig. 10.9). Although the original piece includes multiple

voices, our framework can only handle monophony; therefore, the original pieces

were reduced to monophonic melodies. We did this by extracting salient pitch events

from each of two voices, choosing a prominent note from a chord, and disregarding

the difference in octave so that the resultant melody sounded fluid. In total, we used

8-bar excerpts from the theme and 12 variations and thus obtained 78 pairs to be

compared (13C2 = 78).

For the similarity assessment by human listeners, 11 university students partici-

pated in our study, seven of whom had some experience in playing musical instru-

ments. Each participant listened to all pairs of excerpts, 〈m1,m2〉, in a random order

without duplication, and ranked each pair for similarity on a 5-point scale, ranging

from −2 (very different) through to 2 (very similar). To counteract a potential cold

start bias, each participant first heard all 8-bar excerpts without ranking them. To

avoid order effects, each pair of excerpts was presented in both possible orders on

separate trials The average rankings were calculated for each participant and then for

all participants. Finally, we computed a distance matrix based on the participants’

responses.

For the theoretical estimation by the proposed theory, we used the reduction

distance introduced in Sect. 10.2.4. In order to calculate the reduction distance, a unit

of duration must be defined. We set this unit to be one-third of a sixteenth note so
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Fig. 10.9 Monophonic melodies used in the experiment

that pieces in both duple and triple time could be represented (this is the same unit

as used in the examples in Figs. 10.5 and 10.8). The correct time-span trees of the

theme and 12 variations were first created by the authors and cross-checked against

each other.

It was not easy to examine the correspondence between the results calculated

by d(σA,σB) and the psychological resemblance obtained by participants in the

distance matrix. We thus employed multidimensional scaling (MDS) to visualize

the correspondence. MDS takes a distance matrix containing dissimilarity values or

distances among items, identifies the axes to discriminate items most prominently,

and plots items on the coordinate system of these axes. Therefore, the more similar

items are, the closer together they are in the resulting MDS solution.
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Fig. 10.10 Relative distances among melodies in multidimensional scaling

First, we used Torgerson’s (1952) traditional method of scaling in MDS to plot

the proximity among the 13 melodies. However, it was still difficult to find a clear

correspondence between the results calculated by the reduction distance and the

psychological resemblance obtained by participants. We then removed the results

for variations 10–12 (Fig. 10.10). The contributions in MDS are as follows: (a)

Theoretical estimation: the first axis (horizontal) = 0.21 and the second = 0.17; (b)

Human listeners: the first axis (horizontal) = 0.32 and the second = 0.17.

In Fig. 10.10, we can see an interesting correspondence between (a) and (b) in

terms of positional relationships among the 10 melodies. In both (a) and (b), we

find that the Theme and variations 5 and 9 are clustered together (cluster i), that

variations 3 and 4 form a cluster (ii) and that variations 2 and 7 form a cluster (iii).
The positional relationships among clusters i, ii and iii resemble each other. The

positional relationships between variation 1 and the others in (a) and (b) (except for

variation 6) show a similar tendency. Since the contribution in the first axis of (a) is

considered close to the second, by rotating the axes of (a) by 90 degrees anticlockwise,

a more intuitive correspondence between (a) and (b) emerges. On the other hand,

the discrepancy between them is quite apparent; the positional relationship between

No.6 and the others is significantly different.

These results suggest a correspondence between our calculated reduction distance

and intuitive similarity, if we focus on the rhythmic structure (Hirata et al., 2013).

However, in order to claim that our methodology was adequate, we would need to

include pitch similarity (see footnote 4). In addition, we need to carry out further

comparisons with other distance measures, such as Levenshtein (edit) distance and

Earth mover’s distance.
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Fig. 10.11 There are infinitely many σCs (left). On the right, the proposed morphing algorithm

10.4 Application: Melodic Morphing

In image processing, a morphing algorithm takes two images and finds an interme-

diate image. In a similar way, we now propose a new method for composing an

intermediate piece of music, given two existing variations with a common theme.

Let σA and σB be two time-span trees of music, and σC be the expected result of

morphing; we require σC to reside at a point between σA and σB that internally

divides the distance between these two in the ratio M : N, calculated in terms of the

total sum of maximal time-spans (denoted as tmts in Sect. 10.2.4). Note that there are

uncountably many σCs such that the ratio of the distance between σA and σC to that

between σC and σB is M : N. This is because σC resides at any point on the straight

line that crosses at such an internally dividing point of M : N and forms an angle of

90 degree with the line segment between σA and σB (the left-hand side of Fig. 10.11).

Thus, we should restrict σC to the one that resides on the line segment between σA
and σB, respectively.

Our morphing algorithm, shown on the right-hand side of Fig. 10.11 (Hirata et al.,

2014), consists of the following steps:

1. Given the time-span trees of two melodies σA and σB, calculate meet(σA, σB).

2. Find a time-span tree α that divides the line between σA and meet(σA, σB) in the

ratio of N : M by removing pitch events in order from σA.

3. Similarly, find β that divides the line between σB and meet(σA, σB) in the ratio

of M : N.

4. Calculate join(α , β ).

5. Obtain a real piece of music by rendering the result of join(α , β ).

We see that the four time-span trees, {α,β ,meet(σA,σB), join(α,β )}, form a par-

allelogram, as in Fig. 10.8. Clearly, in terms of the distance between σA and σB,
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we have d(σA,σB) = d(σA, join(α,β )) + d(join(α,β ),σB). Moreover, tmts(σA)≤
tmts(join(σA,σB))≤ tmts(σB) holds if tmts(σA)≤ tmts(σB).

5

Here, we add two more comments on the morphing algorithm. The first concerns

the unmatched-branching in join, i.e., the unification of left- and right-branching trees.

In the current implementation, we interpret the value of join as the superimposition of

the differently branching nodes of two time-span trees. Thus, the result of join simply

becomes a chord of two notes sounding simultaneously. Otherwise, for instance, it

could be rendered as a transformation of the superimposed time-spans.6

The second issue concerns the rendering algorithm itself. The current rendering

algorithm works in a top-down manner so that a maximal time-span is basically

regarded as a horizontal line segment in a piano-roll representation, and the time-

spans at lower levels (closer to the leaves) overwrite those at higher levels. Thus, the

entirety of the maximal time-span may be overwritten by the lower-level time-spans;

that is, even though a pitch event is quite salient, it may become inaudible, or its

assigned duration in a real score may become very short. Consequently, there are

cases where the simple top-down algorithm does not generate a proper melody. Thus,

we are considering algorithms that, for example, integrate some bottom-up process

with the current top-down one; alternatively, we may employ a new process, based on

GTTM, for determining whether the rendering process generates a correct melody.

The morphing algorithm is implemented in SWI-Prolog (SWI, 1987). The target

set of pieces was again Mozart’s variations K.265/300e ‘Ah, vous dirai-je, maman’.

In this experiment, we took the first 8 bars of each of the variations 1, 2, and 5 as the

sources for morphing (Fig. 10.12). We have chosen these three variations because, for

every pair of these three variations, we can calculate join—that is, the maximal time-

spans are all correctly concatenated. The morphed melodies are shown in Fig. 10.12

between the scores of the variations. For example, “No.2&No5 1:1” means the

morphed melody at the midpoint of variations 2 and 5. Ratio “1:3” indicates the

position of the internally dividing point, e.g., “No.2&No5 1:3” means the internally

dividing point is closer to variation 2 than it is to variation 5. Thus, the bottom three

melodies in Fig. 10.12 are formed by morphing variations 1 and 5, with different

ratios of internal division. We see that the melodic patterns are gradually changed in

accordance with the ratio in distance.

Next, taking “No.2&No.5 1:1” as an example, we examine the morphing calcula-

tion in more detail. For convenience of explanation, we show only the first bars of

variations 2 and 5 and intermediate time-span trees α and β (Fig. 10.13). In the figure,

the intermediate time-span trees are shown in the rendered melodies. Time-span

tree α is generated by dividing σA (variation 2) and meet(σA, σB) in the ratio of

1 : 1. Then, α is generated by removing some reducible branches in σA one-by-one

so that tmts(α) = (tmts(σA) + tmts(meet(σA,σB)))/2. This condition means that

tmts(α) is positioned at the centre of tmts(σA) and tmts(meet(σA,σB)). Similarly, β
is generated by removing some reducible pitch events in σB. Finally, by joining α
and β , we obtain the first bar of “No.2&No.5 1:1” in Fig. 10.12.

5 tmts means total maximal time-span, as introduced in Sect. 10.2.4.
6 This resembles the notion of a transformation head (Lerdahl and Jackendoff, 1983, p. 155).
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Fig. 10.12 Variations 1, 2, and 5, and morphed melodies between them
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Fig. 10.13 Detailed morphing calculation of first bars of No.2&No.5 1:1
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Fig. 10.14 Relative distance among variations and morphed melodies according to the impression
of human listeners

For the similarity assessment of the morphed melodies by human listeners, six

university students participated in our study, four of whom had played musical instru-

ments for five years or more. We used the same experimental method as described in

Sect. 10.3. A participant listened to all pairs 〈m1,m2〉 in a random order without dupli-

cation, where mi (i ∈ {1,2}) were either variations 1, 2 or 5 or the morphed melodies

between them, such as “No.2&No.5 M : N”. The experimental results were used to

construct a distance matrix between these three variations and the morphed melodies

between them. We then visualized the results using multidimensional scaling (MDS)

(Fig. 10.14).

As can be seen in Fig. 10.14, for variation pairs, 〈1,2〉 and 〈1,5〉, the morphed

melodies lie near the midpoints between the original variations, as expected. On

the other hand, the position of “No.2&No.5 1:1” is problematic. As can be seen in

Fig. 10.12, the number of notes in “No.2&No.5 1:1”, which is supposed to be at the

midpoint between variations 2 and 5, seems to be the average of the numbers of notes

in variations 2 and 5. However, “No.2&No.5 1:1” is almost entirely made of eighth

notes, and, as a result, many notes co-occur temporally. This may help to explain

why this intermediate melody was perceived by participants as being more similar to

variation 5 than variation 2.

10.5 Conclusions

In this chapter, we began by focusing on the structural information provided by a time-

span reduction tree produced in accordance with Lerdahl and Jackendoff’s (1983)

Generative Theory of Tonal Music (GTTM), where the process of reduction reflects

the hierarchical abstraction of the music. Then, we introduced the concept of maximal
time-span and formalized the time-span tree; thus, as the subsumption relation exists

between trees, the set of trees is a partially ordered set (poset) and is qualified as

a domain for computational processing and modification. Next, we defined such

primitive operations as join/meet on this domain, thus generating a distributive lattice
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from this poset. We are then able to define more complicated algebraic operations,

combining join/meet operations. As we can numerically measure the length of a

maximal time-span, we can define the notion of a distance between trees on a

reduction path as being the sum of reduced time-spans. Extending this idea, we were

able to define the distance between any two arbitrarily chosen trees in the lattice.

To assess the feasibility of the proposed framework, we conducted two experi-

ments. In the first, we focused on the similarity between variations, and compared

the reduction distance of our framework with the psychological distance of human

intuition. As we discussed in Sect. 10.3, we found a correspondence between the

computed reduction distance and experimentally determined intuitions of similarity,

when we focused on rhythmic structure. However, further experiments need to be

carried out on distance measures that take pitch structure into account, and these

measures need to be compared with other metrics that have been proposed in the

literature. Next, we implemented a music morphing system in order to illustrate that

a combination of primitive operators realizes a more complicated operation. Since

the distance between time-span trees defined in our framework satisfies the proper

geometric properties, we could locate the internally dividing point on a line segment

with a simple ratio. We also found that such geometric positioning coincides to some

extent with the cognitive intuition of human listeners.

In order to develop and deploy our proposed framework, we need to consider

the following issues. The first concerns music rendering, which is the process of

realizing a musical score from a time-span tree as we discussed in Sect. 10.2.1. In

fact, the applicability of our framework seems to depend strongly on the quality of the

rendering. There are many possible algorithms for the rendering process besides the

one described in Sect. 10.4. Ideally, a rendering algorithm would restore the original

pitch and duration of each note, since the algorithm can be viewed as the reverse of

the analysis process shown in Fig. 10.3. However, this is rarely the case in practice.

One practical strategy might be to employ machine learning on a large database

of pieces paired with their time-span trees. Here, we considered the “round-trip”

scenario in which a time-span tree, obtained by carrying out a time-span reduction

analysis, can be rendered as a real score which can then be re-analysed to generate a

time-span tree. Conversely, we could first have considered the process of generating a

tree from a musical surface, and then rendering the tree again to produce a (possibly

different) piece of real music. In this way, we would be able to assess the fidelity of

the analysis and rendering processes.

Thus far, we have provided only meet and join as primitive operators and shown

an example of music morphing by the combination of these operations. Indeed, if

we can extend the notion of such simple arithmetic operations in the domain of

time-span trees, we will be able to benefit from richer music manipulation systems.

An even more expressive algebra might be achieved by introducing a complement

or inverse element to make the set a group. As join behaves intuitively as addition

and meet as multiplication, introducing a complement could enhance the algebra by

allowing operations analogous to subtraction and division. As the current lattice we

have obtained is distributive, in our future work, we intend to employ the relative
pseudo-complement for each tree and apply it to a new arithmetic operation in a
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pseudo-Boolean (Heyting) algebra. This would provide us with much more expressive

methods for arranging time-span trees.

Although we have selected time-span trees as the semantic domain in our frame-

work, there are other possibilities. For example, we could incorporate the concept of

reduction into the implication–realization theory (Narmour, 1990). This is another

direction that we intend to explore in our future work.
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Chapter 11
Automated Motivic Analysis: An Exhaustive
Approach Based on Closed and Cyclic Pattern
Mining in Multidimensional Parametric Spaces

Olivier Lartillot

Abstract Motivic analysis provides very detailed understanding of musical composi-

tions, but is also particularly difficult to formalize and systematize. A computational

automation of the discovery of motivic patterns cannot be reduced to a mere extraction

of all possible sequences of descriptions. The systematic approach inexorably leads

to a proliferation of redundant structures that needs to be addressed properly. Global

filtering techniques cause a drastic elimination of interesting structures that damages

the quality of the analysis. On the other hand, a selection of closed patterns allows for

lossless compression. The structural complexity resulting from successive repetitions

of patterns can be controlled through a simple modelling of cycles. Generally, motivic

patterns cannot always be defined solely as sequences of descriptions in a fixed set of

dimensions: throughout the descriptions of the successive notes and intervals, various

sets of musical parameters may be invoked. In this chapter, a method is presented

that allows for these heterogeneous patterns to be discovered. Motivic repetition with

local ornamentation is detected by reconstructing, on top of “surface-level” monodic

voices, longer-term relations between non-adjacent notes related to deeper structures,

and by tracking motives on the resulting syntagmatic network. These principles are

integrated into a computational framework, the MiningSuite, developed in Matlab.

11.1 Systematic and Automated Motivic Analysis

One main dimension of music analysis is related to the repetition of particular

sequences and their development throughout pieces of music. These sequential repe-

titions form core theoretical aspects of music, whose actual denomination (motive,

theme, cell, etc.) depends on their specificity within genres, the way they repeat within

pieces and their sizes (cells and motives typically correspond to very short patterns,

Olivier Lartillot
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whereas themes are typically several bars in length). Studying these repetitions is an

important part of the analytical characterization of particular pieces of music, as well

as a means of deciphering the stylistic particularities of pieces in the context of other

related works (e.g., other works by the same composer or in the same genre or from

the same period).

Throughout the long tradition of motivic analysis (understood in a broad sense to

include thematic analysis), one can appreciate the value but also the possible limita-

tions of analyses carried out entirely by hand by musicologists, essentially driven

by musical intuition. Music reveals itself as a hugely rich and complex structure,

that cannot be easily grasped by human endeavour, no matter how expert it might be.

Twentieth-century musicology, nurtured by the advent of linguistics, structural anthro-

pology, semiology and cognitive science (Nattiez, 1990; Ruwet, 1987), proclaimed

the need for more formalized and systematic analytical processes. Yet no working

methodology towards that aim has yet been initiated, due to the huge structural

complexity underlying this issue. Systematic attempts have been hampered by the

underlying complexity of possible strategies and structures. Formalized descriptions

of segmentation strategies offered by psychological and cognitive studies might be

utilized as a means of guiding and making discovery processes explicit.

Computational modelling seems to be the most natural way of formalizing and au-

tomating thematic and motivic analysis, allowing for exhaustive analyses of sizeable

pieces of music to be carried out. Yet, it is still a struggle to control the combinatorial

explosion of structures and to offer musically relevant analyses. The main question of

how to model such analytical processes remains open. This chapter presents a model

that may offer an answer to these problems. Section 11.2 introduces the general prin-

ciples of the approach that can discover motives defined along multiple parametric

dimensions, such that each successive note of the motivic pattern can be defined on

different parameters. Section 11.3 explains the issues related to structural prolifera-

tion of redundant structures. We show how these questions have been addressed in

previous work and how a solution based on closed and cyclic patterns allows for a

compact, but detailed structural analysis. Section 11.4 generalizes the model to the

study of ornamented patterns.

11.2 Heterogeneous Multiparametric Pattern Mining

11.2.1 Why Heterogeneous Patterns?

What is a motive? At first sight, it could be considered a sequence of notes that

is repeated throughout a piece or a corpus of pieces of music. However, motives

can be transformed in various ways (e.g., transposed), so that what is repeated are

not the notes themselves, but more generally musical descriptions. So a motive is a

pattern representing a sequence of descriptions that is repeated at least once in a piece
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of music.1 Each successive description represented by a pattern will be called the

pattern’s individual description. Each sequence of notes in the score whose sequence

of descriptions is compatible with the sequence of descriptions defined by a pattern

forms an occurrence of that pattern.

Music is a complex signal that conveys a lot of information:

1. Scores contain many notes, and, at each instant, several of them can sound

together to form chords along multiple instrumental voices.

2. Each note conveys data along several parameters, related to diverse musical

dimensions (pitch, rhythm, accentuation, etc.) and to the musical context: a

metrical grid determines metrical positions, tonal/modal scales govern diatonic

representations of pitches, pitch intervals and gross contours can be defined in

particular with the previous note, rhythmic values are defined with respect to the

next note and so on.

3. A large range of structures can be inferred from those configurations, based on

motivic repetition, local (dis)continuities along the various parametric dimen-

sions and so on.

In this chapter, the focus is on monodic music, consisting of a succession of notes

without superpositions. Hence we ignore point 1 above, but still have to consider

points 2 and 3. Concerning point 3, this chapter will mainly address the question of

motivic repetition. However, in Sect. 11.4.2, local (dis)continuities are discussed,

particularly with respect to how they interact with motivic repetition.

According to point 2, the successive descriptions that form a motive can be

defined along various musical dimensions. In previous studies this has been addressed

either by the notion of “viewpoints” (Conklin and Anagnostopoulou, 2001) (see also

Chap. 15, this volume) or through representing pieces of music as sets of points

in multi-dimensional spaces (Meredith et al., 2002) (see also Chaps. 13 and 17,

this volume). These previous studies do not encompass the entire set of possible

motivic descriptions: often motives can be characterized by particular parametric

descriptions that are applied to particular notes and intervals of the motives, but not

all (Conklin and Bergeron, 2008; Lartillot, 2005). In the following sections, some

concrete examples of what can be called heterogeneous patterns will be developed.

11.2.2 Musical Parameters

Figure 11.1 shows the hierarchical parametric space presented in this chapter. Addi-

tional parameters can be integrated if required. This figure should be read as follows:

• Parameters indicated in bold letters indicate the detailed information composing

each note description: for instance for the second note in Fig. 11.2 (pitch F�4 at

1 In this chapter, a “pattern” represents a sequence of descriptions that is repeated at least once. If a
sequence is not repeated, it is not considered to be a pattern.
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Chromatic pitch Chromatic pitch class

Chromatic pitch 
interval

Chromatic pitch 
interval class

Gross 
contour

Diatonic pitch: letter
accidental
octave

Diatonic pitch interval: number
                                    quality

Metrical position: bar
       beat

Rhythmic value

Articulation

Fig. 11.1 Dimensions of the hierarchical parametric space currently used in the proposed model.
See the text for an explanation of the schema

note 1-2),2 the chromatic pitch value is the MIDI pitch value 66, the diatonic pitch

letter is F, accidental is sharp, octave is 4, metrical position is bar #1, beat #2.

Other information could be considered as well, such as articulation (e.g., staccato,

marcato).

• Parameters shown in grey are directly deduced from more specific information:

for our previous example, chromatic pitch class is 6 and is obtained from the

chromatic pitch information, by simply performing a modulo 12 operation.

• Parameters written in italics describe intervals between successive notes, and

are therefore obtained directly as a difference of the parameters associated with

each note. To continue our previous example, the second note is preceded by

the first note 1-1 (pitch D4 and a rhythmic value of quarter note): the interval

between the two notes has chromatic pitch interval +4 semi-tones, diatonic pitch

interval number +2 (an increasing third interval, i.e., 2 degrees upwards) and

quality ‘major’, and rhythmic value 1 (a quarter note being the unit in 3/4 metre).

• Interval descriptions can themselves accept more general information also in-

dicated in grey: here, chromatic pitch interval class, which is chromatic pitch

interval modulo 12, is 4 and gross-contour is ‘increasing’.

11.2.3 Pattern Prefix Tree

Following a common straightforward convention, all the motives (i.e., patterns)

extracted in the analysis are stored in a single prefix-tree (or trie), such as the one

shown in Fig. 11.3. Each pattern is represented by a chain from the root, /0, of the tree

to one particular node NL. This chain /0→ N1 → . . .→ NL represents the successive

2 Throughout this chapter, each note is identified with a label of the form i- j, where i is the bar
number and j the beat index in the bar.
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Fig. 11.2 Reduced and simplified version of the beginning of the first waltz theme in Johann Strauss’
op. 314: “An der schöne blauen Donau”. Pattern occurrences are shown below each stave. Patterns
are described in Fig. 11.3. The figure is further discussed in Sect. 11.2.4. The horizontal lines with
graduation notches correspond to cyclic patterns, as described in Sects. 11.3.3. Patterns branching
out from cyclic patterns, such as pattern d, are figure against cyclic background, as further explained
in Sect. 11.3.4

prefixes of the pattern. The whole pattern can therefore be identified with the final

node NL. The length of pattern NL is the number of nodes in that chain, root excluded,

i.e., L. In our illustration, pattern d is of length 2, pattern f of length 3, and pattern a
is of length 6.

Patterns are commonly constructed incrementally, by progressively adding new

nodes in the pattern tree, which initially is represented by only one node, i.e., the

root of the tree. Two cases should be considered:

• Adding a node as a direct child of the root of the tree corresponds to the discovery

of the repetition of a single note description.

• In other cases, the parent of that node already corresponds to a given pattern, so

the new node indicates that several occurrences of that pattern are immediately

followed by the same description. Notes that immediately follow occurrences of a

pattern are called the continuations of that pattern.

Each occurrence of a pattern in the musical sequence is a structure connected to

particular notes of the sequence and, at the same time, aligned with the corresponding

pattern. Such a structure interconnecting the concrete score with the abstract pattern

dictionary will be called a construct.

11.2.4 Illustration

The concepts developed in this section are illustrated on a particular example: a

reduced and simplified version of the beginning of the first waltz theme in Johann

Strauss’ op. 314: “An der schöne blauen Donau”, shown in Fig. 11.2. The prefix-

tree is shown in Fig. 11.3. Motive e, for instance, is shown on the sixth branch
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Fig. 11.3 Pattern trie related to the motivic analysis of the score shown in Fig. 11.2. The white
disk represents the root, /0, of the tree, while other nodes are shown with black disks. Each note
description is written next to its node; interval descriptions are shown along the edges between
nodes. See the text for further explanation. Arrows link more specific to less specific patterns, as
explained in Sect. 11.3.1

starting from the top, ending at the node labelled ‘e’. The successive descriptions of

the notes composing the motive are shown on each successive node in the branch:

‘,1 >’ represents a note on the first beat of a bar (1) that is accented (>); ‘,2.’
represents a note on the second beat that is staccato (.), and so on for ‘,3.’ and

‘,1 >’. Further description of the motive is also associated with the intervals between

successive notes, and represented on the edge between successive notes. In the

example, there is an interval description between the two first nodes, indicated

‘
−−−→−2,4’,3 which represents a decreasing third interval (‘−2’ indicating two degrees

down) and a 4-beat rhythmic value (‘4’). The whole pattern can thus be described as

“,1 >
−−−→−2,4 ,2.

−→
,1 ,3.

−→
,1 ,1 >”.4

We can see that the descriptions of the successive notes and intervals of these

motives do not always use the same types of musical parameter. Heterogeneous

patterns cannot be defined solely as sequences of descriptions in a fixed set of

dimensions.

3 Parameters related to the interval between successive notes are indicated with an arrow above the
parameter descriptions.
4 The interval descriptions related to the two subsequent intervals, both “−1”, do not convey
additional information: they directly result from the difference of the parametric description of the
corresponding pair of notes. For that reason, this information is shown in grey in Fig. 11.3.
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11.2.5 Heterogeneous Pattern Construction

The method presented in this section is capable of discovering heterogeneous patterns.

Instead of first decomposing the music into a superposition of viewpoints on which

motivic analysis is performed, each note is associated with its entire set of related

descriptions, and the analysis is performed on the whole set of descriptions at once.

The description of a given note consists not only of the descriptions associated

specifically with that note, but also includes the descriptions of the interval with its

previous note.

Focus on particular dimensions is made adaptively for each successive step of

the incremental construction of patterns. If, for instance, two notes share the same

pitch value, D4, but have different other parameters, they become an occurrence of

the pattern described solely by the pitch parameter “D4”, shown as the upper child of

the root in Fig. 11.3. If both notes are also on beat 1 of a bar, that beat representation

is indicated as well in the pattern (“D4,1”). If what is repeated is just an accented

note on the first beat of a bar, we obtain the pattern “,1>”.

A given pattern can be extended by a new description in the same way. To continue

our example, notes 1-1 and 3-1 are occurrences of the pattern “D4,1”. Each occurrence

is continued with the same pitch F�4 on notes 1-2 and 3-2. Hence pattern “D4,1” can

be extended with a new node related to the note-description “D4,1
−−−−→
+2M,1 F�4,2”.

The interval-description “
−−−−→
+2M,1” indicates the pitch interval of an ascending major

third (two degrees upwards, in major mode) and the rhythmic value of one quarter

note.

11.2.6 One-Pass Approach

The classical method for pattern construction (Cambouropoulos, 2006; Pasquier et al.,

1999; Wang et al., 2007) would be to first find all patterns of length 1, then all patterns

of length 2, and so on. To extend a given pattern, all its continuations are compared:

any repetition of a given parameter in at least two of these continuations leads to the

inference of a new hypothetical pattern extension.

In contrast, the pattern mining approach adopted here is based on an entirely

chronological approach, where, for each successive note in the score, all possible

patterns are inferred. This one-pass approach allows for redundant information to be

discarded more easily, as explained in Sect. 11.3.2.

11.2.6.1 Pattern Continuation Memory and Its Use

In the one-pass approach, the detection of new patterns is made possible through the

use of associative tables, one table for each parameter, that store, for each parameter

value, the set of notes in the score that share that particular value. For instance, the
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associative table in the top left-hand corner of Fig. 11.4 is related to pitch, and stores,

for each pitch value (D4, F�4, etc.), the set of notes where this pitch occurs.

For each pattern, P, all its possible continuations are stored in a set of dedicated

associative tables called continuation memory, associated with pattern P. In Fig. 11.4,

continuation memories related to patterns in the pattern tree introduced in Fig. 11.3

are shown.

• The root of the tree /0 stores the descriptions of all the notes in the score in a

dedicated continuation memory. In the example in Fig. 11.4, it is composed solely

of one associative table storing notes according to their pitches. This is precisely

the aforementioned table in the top left-hand corner of the figure.

• Each child of /0 corresponds to patterns made of one single note. For instance,

the topmost child of /0 in Fig. 11.4 is related to pattern “D4”. Its continuation

memory stores all the notes that immediately follow occurrences of “D4”. This

continuation memory is made of four different associative tables. From left to

right, they are related, respectively, to pitch, inter-pitch interval, beat and rhythm.

For instance, the pitch table shows occurrences of “D4” continued by either F�4
or D4.

• This associative table allows us to detect that several occurrences of “D4” are fol-

lowed by F�4. This triggers the detection of a new pattern, that we could describe

simply for the moment as “D4 F�4”. It is a child of the node related to pattern “D4”

and is displayed with a grey disk in Fig. 11.4. We will see in Sect. 11.2.6.2 that

the pattern would be described more precisely as “D4
−−−−→
+2M,1 F�4,2”. We will

see in Sect. 11.3 that this pattern is actually not interesting, because it is already

described by another more specific pattern, “D4,1
−−−−→
+2M,1 F�4,2”, shown also in

the figure.

• That more specific pattern “D4,1
−−−−→
+2M,1 F�4,2” also features a continuation

memory, decomposed into associative tables related to parameters pitch (“P.”),

inter-pitch interval (“I.p.”) and beat (“Bt”). The tables show that several occur-

rences of the pattern are followed by the same description, leading to an extension

of the pattern into “D4,1
−−−−→
+2M,1 F�4,2

−−−−→
+2m,1 A4,3”.

11.2.6.2 Description of the One-Pass Approach

The one-pass approach ensures an exhaustive heterogeneous pattern mining by

proceeding as follows: for each successive note ni in the piece of music to be analysed,

the previous note ni−1 has already been linked to its corresponding patterns, forming

a certain number of constructs ended by that note. Constructs attached to the previous

note ni−1 are considered one after each other. Each construct is related to a particular

pattern p.

For instance, in Fig. 11.5, let us consider note 5-2. The previous note, 5-1, ends

two constructs: one occurrence of pattern “D4”, and one occurrence of pattern “D4,1”.

Since the first construct is more general than the second construct, it is redundant

and therefore indicated in grey.
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Ø
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Fig. 11.4 Part of the pattern trie shown and described in Fig. 11.3. Associative tables are connected
to their corresponding pattern nodes with dotted lines. In each table are stored the notes (right
column) associated with each parameter value (left column). Notes memorized in the associative
tables that trigger the inference of new patterns are shown in bold and arrows point to the new nodes.
The node shown in grey is an example of a non-closed pattern that is actually not inferred by the
model, as mentioned in Sect. 11.2.6.1 and further explained in Sect. 11.3.2

For each of these constructs, three tests are carried out:

1. Pattern recognition If the description of the new note ni and of the interval

between the two notes ni−1 and ni is entirely compatible5 with the description of

one possible child c of pattern p, the construct is extended accordingly.

For instance, in Fig. 11.5, the description of 5-2 and the interval between 5-1 and

5-2 corresponds exactly to the child “D4,1
−−−−→
+2M,1 F�4,2” of pattern “D4,1”.

This pattern already exists because it was discovered while analysing note 3-2

(cf. below). Consequently, the construct is extended into an occurrence of that

child.

2. Pattern generalization Else if that description is partially compatible, the

common description between the child’s description and the description of the
current note ni and its interval with ni−1 is computed. If it does not exist already,

5 Expressions in italics are explained in more detail in Sect. 11.2.7.
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D4,1

F#4,2

A4,3

A4,1

D4,3

5-25-1 5-3

+2M,1
+2m,1

0,2
-,1
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,1

+,1

0,2

3-23-11-21-1 2-11-3 2-3 3-3 4-1 4-3 6-1

Fig. 11.5 Analysis of a variant of the beginning of the waltz melody in Fig. 11.2 (the pitches of the
notes at 4-3 and 5-1 have been changed from C�4 to D4). Constructs are shown by disks below the
notes. In each line, all constructs are occurrences of the same pattern. The first 3 lines are related
respectively to the elementary patterns “A4”, “D4” and “D4,1”. Other lines below correspond to
successive prefixes of the two branches of a simple pattern tree

a new child of pattern p is created, related to the common description. The

construct is extended accordingly.

For instance, in Fig. 11.5, the description of 5-3 and the interval between 5-2 and

5-3 corresponds only partially to the child “D4,1
−−−−→
+2M,1 F�4,2

−−−−→
+2m,1 A4,2”

of pattern “D4,1
−−−−→
+2M,1 F�4,2”. The common description between the child

and the current context defined by the succession 5-2 and 5-3 is an interval of

ascending pitch in the same rhythmical description, i.e., “
−−→
+,1 ,3”. This leads

therefore to the next pattern “D4,1
−−−−→
+2M,1 F�4,2

−−→
+,1 ,3”.

3. Pattern discovery The current context (i.e., the construct and the new note’s

description) is stored in the continuation memory of pattern p. If there already

exists a previous context with identical value along a particular parameter (i.e., if

a previous context is already stored for the same parameter value as key on one

or several parametric dimensions), then the common description between these
two contexts, d, is computed. If there does not exist a child of pattern p with that

description d, then

a. a new child c of pattern p is created, related to that description d;

b. the current construct is extended into a new construct that is an occurrence

of c; and

c. the retrieved construct6 is also extended into a new construct. Apart from

this, the note that follows that extended retrieved construct is also stored in

the continuation memory of the new pattern c.

6 In the context of closed pattern mining, as developed in Sect. 11.3, there can actually be several
retrieved constructs. Each construct is extended accordingly.
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For instance, let us return to note 3-2 in the analysis in Fig. 11.5. The previous

note is 3-1, with two associated constructs, which are occurrences of elementary

patterns “D4” and “D4,1”. The new note 3-2 is stored in the continuation memory

of pattern “D4,1” (as in Fig. 11.4). In these associative tables, we detect that a

previous context, the occurrence of “D4,1” at note 1-1 followed by note 1-2, already

shares same description along at least one parameter (pitch, but also inter-pitch

interval, beat and rhythm). The common description between these two contexts

is “
−−−−→
+2M,1 F�4,2”. This leads to the inference of a new child of pattern “D4,1”, of

description “D4,1
−−−−→
+2M,1 F�4,2”. Its two occurrences at notes 1-2 and 3-2 are also

created.

The three tests described above are also carried out in exactly the same way for

the root, /0, of the pattern tree:

1. Pattern recognition If the description of the new note ni is entirely compatible
with the description of one possible child c of the root, a new construct indicates

that ni is an occurrence of c. For instance, let us return to note 3-1 in the anal-

ysis in Fig. 11.5. Note 3-1 can be recognized as forming an occurrence of the

elementary pattern “D4” that was created at an earlier stage (for note 2-3).

2. Pattern generalization Else if that description is partially compatible, the

common description between the child’s description and the description of the
current note ni is computed. If it does not exist already, a new child c of the root

is created, related to the common description. A new construct indicates that ni
is an occurrence of c.

3. Pattern discovery The new note’s description is stored in the root’s continua-

tion memory. If there exists already a previous note with identical value along

a particular parameter (i.e., if a previous note is already stored for the same

parameter value as key on one or several parametric dimensions), the common
description between these two notes, d, is computed. If there does not exist a

child of the root with that description d, then

a. a new child c of the root is created, related to that description d;

b. a new construct indicates that ni is an occurrence of c; and

c. another construct indicates that the retrieved note7 is also an occurrence of

c. Besides, the note that follows that construct is stored in the continuation

memory of the new pattern c.

For instance, let us return to note 2-3 in the analysis in Fig. 11.5. This note

is stored in all the different associative tables (each one related to a different

musical dimension) that form the continuation memory of the root ( /0) pattern

(as in Fig. 11.4). In particular, the associative table related to pitch shows that

there is already a previous context with the same pitch value D4 at note 1-1. The

common description between these two contexts is “D4”. The elementary pattern

“D4” is created and its two occurrences at notes 1-1 and 2-3 are constructed.

7 Here also, in the context of closed pattern mining, there can actually be several retrieved notes.
Each of them forms a construct accordingly.
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11.2.7 Comparing Musical Descriptions

To understand more precisely how musical descriptions are compared, it is important

to distinguish between two types of description:

• The description of a given note (and its previous interval) in the score is specified

entirely by the most specific parameters represented in bold letters in Fig. 11.1.

All other parameters can be deduced directly from the most specific parameters.

• In contrast, a pattern’s individual description is defined on particular parameters

in that space, not necessarily the most specific ones.

For instance, as we saw in the previous example, pattern “D4” only specifies note

pitch information. In motive e (see Figs. 11.2 and 11.3), “,1 >” only indicates beat

and articulation; whereas, “
−−−→−2,4 ,2.” specifies diatonic interval number, rhythmic

value, beat position and articulation.

Recognizing a new occurrence of an already-discovered pattern requires testing

whether or not the description of a given note (and its previous interval) in the score is

totally compatible with a pattern’s individual description. This implies the following.

• If the pattern description contains any specific note- or interval-related parametric

description (along parametric dimensions indicated in black in Fig. 11.1: chro-

matic and diatonic pitch and pitch interval, metrical position and rhythmic value,

articulation), the given note (with its previous interval) should feature the same

parametric description.

• If the pattern description contains any more general parametric description (along

parametric dimensions indicated in grey in Fig. 11.1: chromatic pitch class and

pitch interval class, gross contour), the description of the given note (with its

previous interval) should be congruent. For instance, if the pattern contains an

ascending pitch contour, the interval description should also contain an ascending

pitch contour.

Detecting a new pattern more general than another pre-existing pattern requires

testing whether or not the description of a given note (and its previous interval) in

the score is partially compatible with a pattern’s individual description. This means

that the two descriptions are compared along all the different individual parameters,

and if there is any identity between the two descriptions along any parameter, they

are partially compatible. In such cases, the common description between these two

descriptions is the set of all these common parametric descriptions.

Finally, detecting a new pattern extension requires detecting an identity between

two different contexts (notes and their previous intervals) in the score. Once any

identity along any parameter is detected using the continuation memories, the com-
mon description between these two contexts is the set of all common parametric

descriptions.
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11.3 Richness and Concision of Pattern Description

At first sight, finding motivic patterns consists simply of extracting all possible

sequence of descriptions in the piece of music. But it turns out that the problem is

more complex, due to the proliferation of a large number of redundant structures

(Cambouropoulos, 1998).

In order to reduce that structural proliferation at the pattern extraction phase, filter-

ing heuristics are generally added that select a sub-class of the result based on global

criteria such as pattern length, pattern frequency (within a piece or among differ-

ent pieces), etc. (Cambouropoulos, 2006). Similarly, Conklin and Anagnostopoulou

(2001) base the search for patterns on general statistical characteristics.

One limitation of these methods comes from the lack of selectivity of global

criteria. Hence, by selecting longest patterns, one may discard short motives that

listeners may nevertheless consider as highly relevant. Even more problematic is the

fact that particular structural configurations (that will be studied in Sect. 11.3.3 and

11.3.4) lead to the generation of very long artefacts that do not necessarily correspond

to the types of structure that were looked for in the first place.

The design of the model presented in this chapter was motivated by the aim of

discovering the origins of the combinatorial explosion hampering the efficiency of

computational models. The objective was to build a model as simple as possible,

founded on heuristics ensuring a compact representation of the pattern configurations

without significant loss of information, thanks to an adaptive and lossless selection

of most specific descriptions. We found that pattern redundancy is based on two core

issues: closed patterns (Sect. 11.3.1) and cyclic patterns (Sects. 11.3.3 and 11.3.4).

Another class of methods consists of cataloguing all possible pairs of sequential

repetitions, and in clustering these pairs into pattern classes (Rolland, 1999) (see also

Chap. 12, this volume). This paradigm allows for compact description, akin to the

closed patterns selection that will be presented in Sect. 11.3.1, but no method in this

category has yet been conceived of that performs exhaustive mining of heterogeneous

patterns.

11.3.1 Closed Pattern Mining

When a pattern is repeated, all more general pattern representations it encompasses

are repeated as well. A sequence of descriptions S1 is more general than another

sequence of descriptions S2 if the sequence S1 features less information than the

sequence S2, so that S1 can be directly inferred from the description given by S2. In

such cases, we can also say that S2 is more specific than S1. More general patterns

correspond to substrings8 (prefixes, suffixes, prefixes of suffixes) of the pattern, but

also to more general representations of such substrings where individual descriptions

are replaced by more general ones as defined in Sect. 11.2.7. Figure 11.6 shows an

8 More generally, subsequences can be considered as well. This will be studied in Sect. 11.4.
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example of proliferation of general patterns. Examples of multiparametric pattern

comparison in music are shown by arrows in Fig. 11.3.

Restricting the search to the most specific (or “maximal”) patterns is excessively

selective as it filters out potentially interesting patterns (such as CDE in Fig. 11.6), and

would solely focus on large sequence repetitions.9 Pattern redundancy can be filtered

out without loss of information by taking into account both patterns’ descriptions

and the ways in which these patterns repeat in the sequences: the set of repetitions of

a given pattern provides relevant structural information that should not be excluded

from the analysis, unless that set of repetitions is equivalent to the set of repetitions

of another more specific pattern. In our example, the set of two repetitions of pattern

ABCDE is equivalent to the set of two repetitions of ABCDECDE: each occurrence

of ABCDE is a construct that can be further extended to become an occurrence of

ABCDECDE. On the other hand, the set of four repetitions of pattern CDE is not

equivalent to the set of two repetitions of ABCDECDE, as there are more occurrences

of CDE.

In order to obtain a compact lossless description, each possible set of pattern

repetitions is subject to a closure operation that assigns its most specific pattern

description, which is hence called a closed pattern (Pasquier et al., 1999). In our

example, the most specific description of the set of two repetitions is ABCDECDE,

and the most specific description of the pattern repeated four times is CDE.

ABCDECDEABCDECDE

Fig. 11.6 Patterns found in a sequence of symbols. Below the sequence, each row represents a
different pattern class with the occurrences aligned to the sequence. Solid lines correspond to closed
patterns (the upper one is the maximal pattern), grey dashed lines to prefixes of closed patterns, and
dotted lines to other non-closed patterns

9 Note that the term “maximal” is used here in the way that it is commonly used in the data-mining
literature to mean a pattern that is not included in any other patterns (see, e.g., Bayardo, 1998).
This differs from the way “maximal”’ is used in Meredith et al.’s (2002) concept of a “maximal
translatable pattern”, of which the pattern CDE is actually an example. See Chap. 13, this volume,
for a definition of the latter concept.
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Closed patterns are usually considered as preliminary information that is further

processed for maximal or frequent pattern mining (Conklin and Bergeron, 2008;

Pasquier et al., 1999). However, such global filtering results, once again, in the

patterns that are finally produced as output being of limited practical use. On the

other hand, by keeping the whole closed pattern lattice without further filtering, a

detailed motivic analysis can be produced without combinatorial explosion. We call

such an approach exhaustive closed pattern mining.

11.3.2 One-Pass Closed Pattern Mining

In previous studies on closed pattern mining in computer science (e.g., Pasquier

et al., 1999; Wang et al., 2007), the pattern dictionary is constructed in a breadth-

first fashion, while considering the whole document to be analysed (in our case,

the piece of music). First, all closed patterns of length 1 are constructed, then all

closed patterns of length 2, and so on. But such methods create a large number of

hypothetical patterns that turn out to be non-closed once the pattern tree is further

extended.

By adopting a one-pass approach, as presented in Sect. 11.2.6, there is no useless

inference of non-closed patterns, and the closure test is far simpler. Indeed, in the

one-pass approach, each pattern inference is made for a particular pattern occurrence

candidate, for which we can infer the most specific description. This ensures that the

obtained pattern is either closed, or is a prefix that will subsequently be extended

into a longer closed pattern. Indeed, there cannot be more specific patterns that

would contain that particular occurrence, apart from the possible extension of that

occurrence into an occurrence of a longer pattern. Prefixes of closed patterns are

the only type of possible non-closed pattern retained in the pattern tree. This is to

ensure that the latter is a complete pattern prefix tree, which is easier to use for

tracking patterns during the one-pass approach. It can also be shown that the one-pass

approach uncovers the whole set of closed patterns.

When considering a given pattern candidate at a given point in the piece of music,

we need to be already informed about the possible existence of more specific pattern

occurrences at the same place. Hence, for a given note, patterns need to be extended

in decreasing order of specificity, so that constructs10 are built also in decreasing

order of specificity.

For instance, in Fig. 11.7, when analysing the last note, E, there are two candidate

patterns for extension, ABCD and CD. We first extend the most specific pattern to

obtain ABCDE; then, when considering the more general pattern, CD, extension

CDE is found as non-closed and is thus not inferred.

10 A construct is an occurrence of a pattern (cf. Sect. 11.2.3).
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CDABCDEABCDE
Fig. 11.7 Closed patterns found in a sequence of symbols. The occurrence during which a pattern
is discovered is shown in black. Dashed extensions indicate two possible pattern extensions when
integrating the last note

11.3.2.1 Comparing Constructs

As has already been mentioned, the specificity of the one-pass approach for closed

pattern mining is that general/specific comparisons are not made between patterns in

general, but only between constructs that are aligned on a particular note in a musical

sequence. We need to define more precisely this notion of comparing constructs. A

construct A is more general than another construct B, if the set of notes connected to

A is included in the set of notes connected to B, and if, for each of those notes, the

underlying pattern’s individual description in A is equal to or more general than the

corresponding individual description in B.

For instance, in Fig. 11.5, a construct indicated with a grey disk is more general

than another construct in black vertically aligned on the same note. For note 3-3,

for instance, occurrences of “A4” and “D4,1
−−−−→
+2M,1 F�4,2

−−→
+,1 ,3” are both more

general than the occurrence of “D4,1
−−−−→
+2M,1 F�4,2

−−−−→
+2m,1 A4,3”.

We can notice that it is possible to compare the extension of a construct to other

constructs already inferred even if that construct extension is not actually inferred

yet. More precisely, a construct A extended with a new individual description d is

more general than another construct C already inferred if the two conditions below

are verified:

• the construct A is more general than a prefix B of the construct C,

• the new description d is more general than the description of the extension from

B to C.

This will be considered in the next paragraph as the comparison of a candidate
construct extension with actual constructs.

11.3.2.2 Integration in the One-Pass Approach

The closed pattern filtering constraint can simply be integrated in step number 3 of

the description of the one-pass approach given in Sect. 11.2.6.2, by replacing the

condition “If there does not exist a child of pattern p with that description d” by the

following condition: “If the candidate construct extension is not more general than

another construct already inferred”.
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11.3.2.3 Motivic/Thematic Classes

Extending the exhaustive method developed in the previous section to the hetero-

geneous pattern paradigm allows us to describe all possible sequential repetitions

along all parametric dimensions. This leads to very detailed pattern characterization,

describing all common sequential descriptions between any pair of similar motives.

However, a more synthetic analysis requires structuring the set of discovered patterns

into motivic or thematic classes. Manual motivic taxonomy of these discovered pat-

terns was demonstrated by Lartillot (2009). Lartillot (2014a) devised a method for

the collection of all patterns belonging to the same motivic or thematic class into

what is called a paradigmatic sheaf.

11.3.3 Cyclic Pattern Mining

When repetitions of a pattern are immediately successive, another combinatorial set

of possible sequential repetitions can be logically inferred, as shown in Fig. 11.8. As

each occurrence is followed by the beginning of a new occurrence, each pattern can

be extended by a description that is identical to the first description of the pattern.

This extension can be prolonged recursively, leading to a proliferation of patterns

in an intertwined network (Cambouropoulos, 1998), which is detrimental to the

effectiveness of the computation and the clarity of the results.

Avoiding overlapping between pattern occurrences (Cambouropoulos, 1998) al-

lows for some of these patterns to be filtered out. But the effect of this heuristic is

limited: as soon as the cyclicity is prolonged further, by repeating even further the

periodic motive, those patterns that were filtered out will reappear.

This redundancy can be avoided by explicitly modelling the cyclic loop in the

pattern representation. Once a successive repetition of a pattern has been detected,

such as the 3-note pattern starting the musical example in Fig. 11.9, the two occur-

rences are fused into one single construct, and all the subsequent notes in the cyclic

sequence are progressively added to that construct. This cyclic construct is first used

to track the development of the new cycle (i.e., the third cycle, since there were

already two cycles). The tracking of each new cycle is guided by a model describing

A B C A B C A B C A …

…
Fig. 11.8 Closed patterns found in a cyclic sequence of symbols. The occurrences of the pattern
shown in thick lines do not overlap, whereas those shown in thin lines do
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the expected sequence of musical parameters, i.e., the whole pattern P that is being

repeated. Initially, for the third cycle, this model corresponds to the pattern that was

repeated twice in the two first cycles.

• Every time a new cycle is being constructed, the growing cyclic construct keeps

in memory the cycle model that describes a complete cycle, as well as a cycle
state that indicates the current position of the last cycle of the cyclic construct.

• Every time the cycle state reaches the whole cycle model, a cycle has been

completed, so that the cycle state points back to the beginning of the cycle model,

which remains unchanged.

• If the current candidate extension is actually more general than the expected

continuation given by the cycle state (such as the modification, at the beginning

of bar 2 in Fig. 11.9, of the decreasing sixth interval, replaced by a more gen-

eral decreasing contour), the cycle state is generalized accordingly. The cycle

model, although now more specific than the actual cycle, is kept for the moment

unchanged as it can still be used as a guiding point. When the cycle is completed,

the cycle model can now be replaced by the new generalized cycle model given

by the complete generalized cycle state.

• If at some point, the new note does not match at all the corresponding description

in the model, the cyclic sequence is terminated.

This method allows us to track the cyclic development of repeated patterns, while

avoiding the proliferation of patterns that was discussed above. Indeed, each of these

problematic structures is detected as a candidate construct extension that is more

cycle 3

� � �������� ��89� � ��
G C Eb

+3 +2m-5m

G C Eb G
+3 +2m-5m

8th 8th 8th

8th 8th 8th

C Eb
+3 +2m -
8th 8th 8th

- -4

C Eb
+3 +2m -4
8th 8th 8th

1 4 7 10 13 14 15

cycle 1

Ab

cycle 2 cycle 4 cycle 5

Fig. 11.9 Two successive repetitions of the three-note pattern that begins this sequence, character-
ized by a pitch sequence (G, C, E�, and back to G), a pitch interval sequence (ascending perfect
fourth (+3), ascending minor third (+2m) and descending minor sixth (−5m)), and a rhythmical
sequence made of a succession of eighth notes. This successive repetition leads to the inference of
a cyclic chain, indicated at the bottom of the figure. When this cycle is initially inferred, at note
7, the model of the cycle, labelled “cycle 3”, corresponds to the initial pattern description. At note
10, some descriptions expected by the model (indicated in bold italics) are not fulfilled, but a more
general description is inferred (descending gross contour (−)). Consequently, the model for the next
cycle (i.e., cycle 4) is generalized accordingly. At note 13, a new regularity is detected, due to the
repetition of pitch A� and of descending perfect fifth (−4). Consequently, the model for cycle 5 is
specialized accordingly
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general than another construct already inferred. As such, following the closed pattern

constraint defined in Sect. 11.3.2.2, the redundant structure is not inferred at all.

In the waltz melody in Fig. 11.2, the successive repetition of pattern a at the

beginning of the piece leads to the creation of a cyclic construct related to that pattern.

That is why the occurrences of the pattern are shown in a single horizontal line

with tick marks showing the start of each new cycle.11 From bar 5 on, this cycle is

progressively altered: the initial specific pattern is not repeated exactly anymore, but

a more general pattern continues to be repeated. The generalization of the initial

cycle is indicated by a dotted line in Fig. 11.2.

11.3.4 Pattern Figure—Cyclic Background

Cyclic patterns engender further structural issues to be considered. A cyclic pat-

tern can be extended into a non-cyclic pattern: this would happen when a cyclic

pattern is repeated several times, and for several of those occurrences, the cycle

at a specific phase is followed by the same description d. Consider, for example,

‘ABCABCABD. . . ABCABCABCABD’.

Without the addition of particular mechanisms to handle this phenomenon, the

acyclic pattern corresponding to that particular cycle phase is extended with that

description d. In the example, D extends the acyclic patterns AB, or CAB, etc. But

this information is insufficient, as it fails to represent the fact that the description

d extends not only that particular acyclic pattern, but also a cyclic pattern. In our

example, D can be considered as an extension of the cyclic pattern ABCA. . . at phase

AB.

We can account for this type of situation by defining a new type of pattern exten-

sion related to cyclic contexts. In the example, as shown in Fig. 11.10, AB is extended

by D in the particular cyclic context where AB is a phase of the cycle ABCA. . . . In

this way, if a new cyclic repetition of ABCA. . . occurs with the same ending, it will

be immediately recognized as a new occurrence of that extension of the phase AB.

Another difficulty arises when the description d that extends one particular phase

of the cycle is compatible with its next phase. In other words, d does not lead to

an interruption of the cycle, as in the previous case, but rather to a continuation of

the cycle with the addition of new information. For instance, in the waltz melody in

Fig. 11.2, patterns b, c and d could, in fact, be considered extensions of the cyclic

pattern initiated by the successive repetitions of pattern a. The problem in this case

is that this extended pattern could theoretically be further extended by the cyclical

pattern, leading to a chaotic proliferation of patterns. For instance, pattern d, which

simply represents the repetition of pitch B4, could in principle be extended by the

next descriptions in the cycle: decreasing interval, unison, ascending interval, and

11 We should note that the tick marks do not necessarily correspond to segmentation points, but
are used here only as a way to represent the locations of an arbitrarily chosen phase in each cycle.
Hypothetical segmentation points can be inferred based on other strategies, such as local grouping,
as discussed in Sect. 11.4.2.
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A B C A …

D

Fig. 11.10 Pattern tree with cyclic extension: AB is extended by D in the context where AB is in
fact a phase of the cycle ABCA. . .

so on, without any clear limit in this pattern extension. If the cycle is repeated many

times, this would engender very long and uninformative patterns.

This difficulty can be solved by using a heuristic, inspired by the ‘figure-ground’

principle: the additional information given by the description d can be considered as

an extra layer on top of the cyclic pattern description. Further extensions of the pattern

by descriptions richer than the cycle description lead to an extension of the extra

layer, while keeping track of the background cycle. Whenever the next description

corresponds merely to the cyclical description without additional information, this

can be considered as a return of the background information without the extra-layer

structure. Hence this would be perceived as a termination of the specific pattern

on top of the cyclical background: in other words, the figure is not extended any

more. The integration of this heuristic in the model allows us to suppress the chaotic

proliferation of redundant structures.

11.4 Ornamented Pattern Mining

11.4.1 Ornamentation and Reduction

An ornamentation of a motive generally consists of the addition of one or several

notes—the ornament—between some of the notes of the initial motive. Each rep-

etition of a given motive can be ornamented in its own way, or not ornamented at

all. In order to be able to detect the pattern repetition corresponding to the reduced

motive, it is necessary to go beyond the “surface” of the actual music representa-

tion, i.e., beyond the mere succession of notes forming a single “syntagmatic chain”

(de Saussure, 1916).

The detection of pattern repetition with tolerance for the addition, suppression

or modification of individual descriptions has been previously addressed with the

use of edit distance and dynamic programming (Rolland, 1999). This technique

allows for a similarity distance to be computed between specific pattern occurrences,

based on their local transformations. This leads to a network of numerical distances

between occurrences, which cannot easily be turned into a clear categorization of

pattern occurrences into pattern classes with precise descriptions. Moreover, the
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use of numerical distances requires a choice of similarity threshold, leading to a

non-exhaustive search that is dependent on parametric choices. Another way to detect

pattern repetition despite ornamentation is the “geometric approach”, with patterns

made of notes scattered anywhere in the score without constraint of sequentiality

between the successive notes (Meredith et al., 2002). As mentioned in Sect. 11.3,

similarity-based and geometric approaches have not yet been used for exhaustive

mining of heterogeneous patterns.

We propose a solution to the problem of ornamentation reduction that is compati-

ble with our vision of pattern discovery as an exhaustive search for exact identification

along multiple parametric dimensions. The approach stems from the idea that, in

a motive formed of notes that are not immediately successive in the syntagmatic

surface, there is already implicitly a syntagmatic chaining between these successive

notes in the motive that could be perceived as such. We see that beyond the initial

syntagmatic chain at the “surface” emerges a more complex syntagmatic network. In

the most complex case, we could theoretically imagine that all pairs of notes could

be syntagmatically connected, but, perceptually speaking, we can understand that

there should be constraints on the establishment of such syntagmatic connections.

It is then possible to find the whole set of closed patterns along all possible

branches using the algorithm presented in the previous sections, appropriately gen-

eralized to the new framework. This will be shown in Sect. 11.4.3. But before that,

we present one way to construct the syntagmatic network: first, a hierarchical local

grouping structure is derived, then the resulting structures are used to determine the

structurally more important notes and construct syntagmatic connections between

them.

11.4.2 Syntagmatic Network Based on Local Grouping

There has been significant research around the concept of local segmentation, study-

ing the emergence of structure related to the mere variability in the succession of

musical parameters. These studies (Cambouropoulos, 2006; Lerdahl and Jackendoff,

1983; Tenney and Polansky, 1980) focus on the analysis of monodies, and model this

structural phenomenon as a segmentation of the monody, which cuts the temporal

span at particular instants, resulting in a linear succession of segments. In these ap-

proaches, the heuristics for segmentation are based on a mixture of several constraints

related to what happens both before and after each candidate segmentation point,

which leads to approximate and incomplete segmentation results. Here we present a

simple approach that reveals a clear structural description and that can be explained

with simple principles. The approach focuses on grouping instead of segmentation.

In other words, what needs to be characterized is not the segmentation boundaries

between notes, but rather the groups of notes that are progressively constructed. In

this study, so far, this clustering mechanism has been applied only to the time domain,

for grouping based on temporal proximity, following the second Grouping Preference

Rule (GPR2) from Lerdahl and Jackendoff’s (1983) Generative Theory of Tonal
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Fig. 11.11 Beginning of the right-hand part of the theme of Mozart’s Variations on “Ah, vous dirai-
je maman”, K. 265/300e. Repeated notes are shown with ellipses. Local groups are represented with
rectangles. The last note, playing the role of group head, is circled. Syntagmatic connections that
are drawn between non-successive notes are shown with straight and curved lines. By traversing
the syntagmatic chain represented by the dotted lines, we can recognize the successive notes of the
underlying theme (in English: “Twinkle, Twinkle, Little Star”)

Music (GTTM). Another type of grouping, based on change (GPR3) is currently

under study.

In the time domain, local grouping can aggregate in a purely hierarchical fashion.

For any succession of two notes n1 and n2, with inter-onset-interval (IOI) I, a local

group is formed by taking all successive notes before n1 and after n2 as long as the

IOI between successive notes does not exceed I. Smaller groups are related to short

IOIs while larger groups that contain other groups are related to longer IOIs. For

instance, the excerpt in Fig. 11.11 consists of a succession of quarter notes, except

for the last three notes. The shortest note (a sixteenth note) induces a local group,

joining that note with the final note. On a slightly larger scale, the last three notes

are grouped together, because the longer internal IOI, a dotted eighth note, is shorter

than the IOIs between the preceding quarter notes.

In Fig. 11.12, notes 2 and 3 form a local group because note 2 is a sixteenth note,

which is shorter than the rhythmic values that precede and follow it. The same applies

for notes 4 and 5. On a larger scale, because the quarter note (note 6) is longer than

all the notes before, these first 6 notes also form a local group. Notes 7 to 9 are

grouped together for the same reason: their successive IOIs do not exceed an eighth

note while the IOIs before and after that group are larger (one quarter note).

By definition, a time-based local group terminates with a note that is followed by

an IOI (before the next note) that is significantly longer than the IOIs between notes

within the group. As such, the local group can be perceived as a phrase that terminates

with a concluding note that has a higher structural importance. This hypothesis seems

to offer some general interest, even though it might not be always valid—in particular,

if notes within the group are accentuated. Following this observation, we formalize

this hierarchy of notes in local groups by associating with each local group a main

note, or “head”, following Lerdahl and Jackendoff’s (1983) Time-Span Reduction

terminology, which would in the simple case be the last note of the group. Heads are

circled in Fig. 11.12.

Based on this local grouping, two rules for inferring syntagmatic connections

between distant notes are proposed as follows:

• Any local group head is connected to the note preceding the group.

Thus, in Fig. 11.12, note 3, head of the local group starting with note 2, is connected

to the note immediately before that group (note 1).
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Fig. 11.12 Beginning of the right-hand part of Mozart’s Variation XI on “Ah, vous dirai-je maman”,
K. 265/300e. Local groups are represented by rectangles, notes that play the role of group heads
are circled. Syntagmatic connections that are drawn between non-successive notes are shown with
straight and curved lines. By traversing the syntagmatic chain represented by bold lines, we can
recognize the successive notes of the underlying theme (in English: “Twinkle, Twinkle, Little Star”)

• Any local group head is connected to the first element in the group. If the first note

of the group is not included in another internal local group, that first element is

the first note of the group. Otherwise, it is the head of the largest first local group

included in the local group.

Thus, in Fig. 11.12, note 6 is connected to note 1, because note 1 is not part of any

other local group. At the beginning of the second bar in stave 2, the note F is the

head of a local group. The first note of that group, note 4 in stave 2, is included in

another smaller local group whose head is the next note (note 5 in stave 2). Hence

note F is connected to that note 5, as shown by the dotted curved line above the

two notes.

A syntagmatic chain of notes with the same pitch forms a single meta-note
whose time onset is defined to be that of the first note. This meta-note can be

syntagmatically connected to the note that follows the meta-note. For instance, in

Fig. 11.11, repetitions of the same pitch form a single meta-note, and successive meta-

notes are syntagmatically connected, forming one syntagmatic chain with successive

pitches C, G, A, G, F, E, D and C.

11.4.3 Closed Pattern Mining in a Syntagmatic Network

We can observe that a motive is a construct that is more general than an ornamen-

tation of that motive. If a motive is always ornamented in the same way, the actual

closed pattern is the ornamented motive, while the reduced motive is a non-closed

pattern. If and only if the motive appears at least once without ornament, or with an

ornamentation that does not share any commonality with the other ornamentations,

does the motive become a closed pattern.
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As before, closed pattern mining requires that constructs be inferred in decreasing

order of specificity: a hypothetical construct extension should be compared to more

specific constructs already inferred. In this more general context, this means that

ornamented constructs should be discovered before their corresponding reduced

constructs.

This implies the following ordering of operations. As before, the score is analysed

chronologically, note by note. But for each note, ni, there exist one or more syntag-

matic connections from one or more previous notes pi, j to that note ni. We consider

these previous notes in reverse order, starting with the most recent note and working

backwards in time. For each previous note, pi, j, we try to extend the constructs it

terminates with the syntagmatic connection between pi, j and ni.

For each candidate construct extension, we need, as before, to consider all more

specific constructs already inferred. The comparison between constructs is the same

as in Sect. 11.3.2.1, because the proposed formalism can immediately be adapted to a

syntagmatic network: the prefix B of the more specific construct C is not necessarily

the immediate prefix of C, so that the description of the extension of B into C
corresponds to a syntagmatic connection that is above the surface. This syntagmatic

connection is therefore a chaining of several syntagmatic connections from the

surface. The parametric description of that connection is hence a summation of the

individual descriptions.

These rules allow for the detection of closed patterns along the different paths of

the syntagmatic network. For instance, it allows for the identification of the repetition

of the pitch sequence C, G, A, G, F, E, D, C that appears in the theme and variation

XI shown in Figs. 11.11 and 11.12 (and similarly in other variations in the piece).

To be more precise, a more detailed pattern C, G, G, A, A, G, G, F, E, D, C can be

detected.

11.5 Evaluation

The system described above has been implemented in Matlab and is publicly available

as part of the MiningSuite (Lartillot, 2015).

11.5.1 MIREX Task on Discovery of Repeated Themes & Sections

One version of the algorithm (PatMinr in MiningSuite 0.7.1) has been tested in

the MIREX task on Discovery of Repeated Themes & Sections (Collins, 2014).

The ground truth, called the Johannes Kepler University Patterns Test Database

(JKUPTD), is based on motives and themes in analyses by Barlow and Morgenstern,

Schoenberg and Bruhn, repeated sections marked explicitly in the score and supple-

mentary annotations by Tom Collins. The ground truth is not made available in order

to prevent developers from overfitting their algorithms to the test data.
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Because PatMinr did not produce an analysis of one of the pieces in the test

database for technical reasons,12 the algorithms participating in this MIREX competi-

tion in 2014 were compared on the 4 remaining pieces of the test database. PatMinr’s

results using the establishment metric are not particularly high: its establishment

precision is .62 while Velarde and Meredith’s (2014) method obtains better values

for both versions they submitted: .67 for VM1 and .63 for VM2. PatMinr’s estab-

lishment recall is .56 and F1 is .5, which are both lower than for most of the other

algorithms. PatMinr gives better results with the occurrence metric: occurrence

precision (c = .75) is .88 whereas other algorithms’ measures are between .48 to

.75; occurrence recall is .76 whereas Velarde and Meredith’s (2014) VM1 method

gives a better result of .82; occurrence F1 is .81 whereas other algorithms’ measures

are between .34 and .6. This superiority in the occurrence metric means that the

algorithm can find a large number of the occurrences of a given pattern, despite their

transformations. This capability is related to the heterogeneous pattern representation

that was presented in Sect. 11.2. Three-layer precision is .51, which is the highest

value, also met by VM1; three-layer recall is also the best one at .494, which is very

slightly better than 2 other algorithms: VM2 and Meredith’s (2013) SIATECCOM-

PRESSSegment; three-layer F1 is .43, which is lower than Velarde and Meredith’s

(2014) method, with value .49 for VM1 and .45 for VM2.

11.5.2 Example on the MIREX Development Database

The JKU Patterns Development Database (JKUPDD) allows developers to try out

and train algorithms to be used on the JKUPTD. Details of the analysis of one

particular piece of music included in the JKUPDD, the Fugue in A minor from

Book II of J. S. Bach’s Well-Tempered Clavier (BWV 889) are presented by Lartillot

(2014a). The ground truth consists of the first two bars of the third entry in the

exposition, along with the other two voices that constitute this fugue (Bruhn, 1993).

The third entry is chosen because it is the first entry where the subject and the two

countersubjects are stated together. The fugue’s subject is detected by PatMinr as one

single motivic/thematic class, i.e., one complete paradigmatic sheaf, resulting from

the bundling method presented in Sect. 11.3.2.3. All occurrences indicated in the

ground truth are retrieved. The patterns forming this thematic class are longer than

the two-bar motive indicated in the ground truth. The limitation of all subjects and

counter-subjects in the musicological analysis to two bars stems from a theoretical

understanding of fugue structure that cannot be automatically inferred from a direct

analysis of the score.

The model used in this analysis did not integrate mechanisms for the reduction of

ornamentation, as discussed in Sect. 11.4. The only melodic ornamentation appearing

amid the occurrences of the fugue’s subject is the addition of a passing note after

12 The piece was not analysed entirely, because the version of the algorithm was producing redundant
patterns in such a way that the computation took an excessive amount of time and had to be
interrupted.
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the first notes of some occurrences. This leads to a small error in the model’s results,

where the first actual note is not detected.

The thematic class related to the first countersubject is extracted in the same way,

forming a paradigmatic sheaf. The pattern class given by the model corresponds

mostly to the ground truth. Here again, some occurrences present similar extensions

that are inventoried by the model, although they are ignored in the ground truth. One

occurrence is not properly detected, once again due to the addition of passing notes.

The second countersubject is more problematic, because it is only 7 notes long.

Several other longer patterns are found by the model, and the specificity of this

countersubject is not grounded on characteristics purely related to pattern repetition.

As mentioned above, the ground-truth selection of these three patterns is based on

principles related to fugue rules, namely the synchronized iteration of the three

patterns along the separate voices. It seems questionable to expect a general pattern

mining algorithm non-specialized to a particular type of music to be able to infer this

type of configuration.

The analysis offered by the computational model offers richer information than

simply listing the occurrences of the subjects and countersubjects. It shows what

musical descriptions characterize them, and details particular commonalities shared

by occurrences of these subjects and countersubjects.

Various versions of the presented computational model have been used to analyse

pieces of music of different genres: among others, an 18th-century French folk song

“Au clair de la lune”, or the beginning of the upper voice of the theme of the Andante
grazioso of Wolfgang Amadeus Mozart’s Piano Sonata No. 11 in A major, K. 331

(Lartillot, 2014b).

11.6 Discussion

11.6.1 About Complexity

The determination of the computational costs of the method in time and space is a

complex question that is currently under investigation. The objective of the approach

was to achieve an exhaustive analysis, while keeping the representation compact and

the computation realistic. When evaluating the behaviour of the successive versions of

the model, there has been an implicit concern that the number of structural inferences

for each successive note analysed should not grow asymptotically. In other words, a

linear complexity in input to output size relationship is desired. Closed pattern mining

and elementary principles of cyclic pattern mining allow the output size to be reduced

significantly without loss of structural information. Still, further reduction in time

complexity would require enhancing the cyclic pattern mining mechanisms as well as

adding long-term memory limitations, so that a certain type of structural complexity

is discarded. Core hypotheses here are that the human cognitive system also carries

out some kind of selection process in order to reduce the number of inferred structures,
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and that a similar type of selection might be modelled computationally. Assessing

the validity of these claims will require significant further work.

11.6.2 Connection With Serial Pattern Learning

According to Restle’s (1970) theory of serial pattern learning, learning a patterned

sequence involves dividing it into subparts, where some subparts are generated

by applying simple rules on other subparts. A pattern representation such as the

one developed in this chapter allows a more general understanding of structure, in

which sequential repetitions are not necessarily repeated successively: they can start

anywhere in the sequence. Moreover, the proposed pattern representation models

not only the final structure, but also the incremental perspective taking place while

observing (i.e., listening to) a sequence.

When pattern occurrences do occur successively, this corresponds to cyclic pat-

terns as studied in Sect. 11.3.3, and this corresponds to the “repeat” operation R
in Restle’s theory (or equivalently to the “same” operation S in Simon’s (1972)

model). In Restle’s and Simon’s theories this is represented by a mere succession

of a given pattern. For the example shown in Fig. 11.8, this would be represented

as Rn(A+B+C)+A using Restle’s formalism.13 The cyclic pattern representation

shows that each occurrence of the pattern is immediately followed by another oc-

currence, by showing that each occurrence is followed by the first note of a new

occurrence. But this first note is not only the first note of an occurrence of that

pattern, it is also the note that follows a previous complete occurrence. This is what

is represented by the cyclic pattern: at each step in each occurrence of the pattern, we

know that the occurrence being constructed actually follows a previous occurrence of

the periodic pattern. Moreover, whereas Restle’s and Simon’s representations impose

one single understanding of the structure as the successive repetition of one given

period, the cyclic pattern representation, due to its symmetry, implicitly encompasses

all possible rotations of that period—for example, ABCABCA can be understood

not only as (ABC)(ABC)A, but also as A(BCA)(BCA).

11.6.3 Future Work

By controlling the factors of combinatorial redundancy, the approach proposed in

this chapter allows for the generation of a detailed description of pattern repetitions.

The approach is incremental, progressively analysing the musical sequence through

one single pass. This allows the structural complexity to be controlled using simple

heuristics. Besides the chronological approach, other techniques introduced in the

model include the concept of motivic cyclicity as a way to filter out the proliferation of

13 We note that prefixes, such as the final A which is a prefix of ABC, are not represented as such in
Restle’s representation.
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redundant patterns, and the integration of heuristics based on the figure-ground Gestalt

principle. We might hypothesize that the proposed model offers some explanation

concerning the ways listeners actually perceive and understand music; however,

further experiments need to be carried out in order to test this claim. The cognitive

validation of the principles underlying the model presented in this chapter could form

a topic for future work.

Gross contour needs to be constrained by factors related to local saliency and

short-term memory (Lartillot, 2009). The integration of beat positions and articulation

information, as shown in the examples developed in Sect. 11.2, is currently under

development. The study of ornamentation based on a syntagmatic network needs

further investigation: the solutions proposed in Sect. 11.4 only partially solve this

problem—further mechanisms need to be taken into account.

The model presented in this chapter is restricted to the analysis of monodies,

which is evidently a major limitation on the scope of application of the analytic

method. Polyphonic scores could be analysed if they are decomposed into a set of

monodies, which is possible for pieces like fugues that are in a contrapuntal style. Of

course, the automation of voice extraction from polyphony remains a challenging

problem. We are currently working on extending the model towards the detection of

repeated monodic patterns within a general polyphony without prior specification of

monodic lines. We also plan to generalize the model to the detection of patterns in

chord sequences.

We are also currently investigating the modelling of patterns of patterns, where

the meta-pattern consists of, for instance, various occurrences of the same pattern.

Motivic analysis can also provide useful input for the analysis of metrical structure,

leading to an interesting interdependency between these two types of analysis.
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Chapter 12
A Wavelet-Based Approach to Pattern Discovery
in Melodies

Gissel Velarde, David Meredith, and Tillman Weyde

Abstract We present a computational method for pattern discovery based on the

application of the wavelet transform to symbolic representations of melodies or

monophonic voices. We model the importance of a discovered pattern in terms of the

compression ratio that can be achieved by using it to describe that part of the melody

covered by its occurrences. The proposed method resembles that of paradigmatic

analysis developed by Ruwet (1966) and Nattiez (1975). In our approach, melodies

are represented either as ‘raw’ 1-dimensional pitch signals or as these signals filtered

with the continuous wavelet transform (CWT) at a single scale using the Haar wavelet.

These representations are segmented using various approaches and the segments

are then concatenated based on their similarity. The concatenated segments are

compared, clustered and ranked. The method was evaluated on two musicological

tasks: discovering themes and sections in the JKU Patterns Development Database

and determining the parent compositions of excerpts from J. S. Bach’s Two-Part

Inventions (BWV 772–786). The results indicate that the new approach performs

well at finding noticeable and/or important patterns in melodies and that filtering

makes the method robust to melodic variation.

12.1 Introduction

Since the 19th century, music theorists have placed great importance on the analysis

of motivic repetition and variation (Marx, 1837; Reicha, 1814; Riemann, 1912;
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Schoenberg, 1967), leading to the development of paradigmatic analysis by Ruwet

(1966) and Nattiez (1986) during the latter half of the 20th century. Ruwet’s method

consists of an exhaustive similarity comparison of small units or segments in order to

generate a structural description (see Monelle, 1992). Paradigmatic analysis focuses

on clustering similar segments in a melody into “paradigms”, regardless of where

these segments might occur. It is typically carried out in parallel with syntagmatic
analysis which focuses on identifying sequential relationships between consecutive

segments. Syntagmatic and paradigmatic analysis can be seen as complementary

tools for exploring the semiotic structure of a melody.

Almost three decades after the work by Ruwet, the first computational models

to automate paradigmatic analysis of music appeared (Adiloglu et al., 2006; Anag-

nostopoulou and Westermann, 1997; Cambouropoulos, 1998; Cambouropoulos and

Widmer, 2000; Conklin, 2006; Conklin and Anagnostopoulou, 2006; Grilo et al.,

2001; Höthker et al., 2001; Weyde, 2001). However, it is difficult to evaluate these

models, as some are not fully automated (e.g., require a user-supplied segmentation),

the implementations are generally not public and they have not been tested on a

common ground truth. Although the notion of defining a ground truth at all for a mu-

sical analysis is controversial, the MIREX task on discovery of repeated themes and

sections (Collins, 2014) offers a practical opportunity to evaluate thematic analysis

algorithms. However, it should be noted that the ‘ground truth’ analyses used in this

task do not include any analyses by experts in paradigmatic analysis.

In this chapter, we focus on describing a fully automated method of musical anal-

ysis that closely resembles paradigmatic analysis. It has been implemented in Matlab

and it is publicly available.1 The method is based on segmenting melodies, cluster-

ing the resulting segments by similarity and then ranking the clusters obtained. In

Sect. 12.3 we present the results obtained when our method was used for discovering

repeating themes and sections in the Johannes Kepler University Patterns Develop-

ment Database (JKU PDD).2 We also compare these results with those obtained using

other methods. In order to test the generalizability of the proposed method, we also

evaluated it on a second musicological task, namely, that of identifying the parent

compositions of excerpts from J. S. Bach’s Two-Part Inventions (BWV 772–786).3

1 Available at http://www.create.aau.dk/music/software/. It is implemented in MATLAB (R2014a,
The Mathworks, Inc), using the following toolboxes: Signal Processing, Statistics, Symbolic
Math, Wavelet, and the MIDI Toolbox (Eerola and Toiviainen, 2004). We also used an imple-
mentation of the dynamic time warping algorithm (DTW) by Paul Micó, accessed on 30-April-
2013 from http://www.mathworks.com/matlabcentral/fileexchange/16350-continuous-dynamic-
time-warping.
2 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
3 MIDI encodings edited by Steve Rasmussen,
http://www.musedata.org/encodings/bach/rasmuss/inventio/. Accessed April 2011
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12.1.1 Melodic Structure and Wavelet Analysis

Our understanding of melodic structure has benefited from work that has been carried

out in a number of fields, including music theory, psychology neuroscience and

computer science. For example, melodic contour has been studied by Huron (1996),

who classified melodies into 9 types according to their shapes (e.g., ascending, de-

scending, arc-like, etc.) by considering the first, last and average pitches of a melody.

In contrast, Schenkerian analysis aims to recursively reduce the musical surface

or foreground to a fundamental structure (Urzatz) via one or more middleground
levels (Schichten) (Schenker, 1935). Furthermore, listeners typically hear melodies

to be “chunked” into segments or, more generally, groups (Cambouropoulos, 1997;

Lerdahl and Jackendoff, 1983; Tenney and Polansky, 1980). Neuroscientific evidence

from fMRI studies suggests that brain activity increases when subjects perceive

boundaries between musical movements, and, indeed, boundaries between events in

other, non-musical domains (Kurby and Zacks, 2008). Such evidence strongly sup-

ports the notion that segmentation is an essential component of perception, occurring

simultaneously at multiple timescales. Psychological approaches focus on perception

and memory and have tried to determine relevant melodic structures empirically (see,

e.g., Lamont and Dibben, 2001; Müllensiefen and Wiggins, 2011b).

Computational approaches to the analysis of melodic structure include geometric

approaches to pattern discovery, grammars, statistical descriptors, Gestalt features

and data mining (see, e.g., Conklin, 2006; Mazzola et al., 2002; Meredith et al., 2002;

Weyde, 2002). Wavelet analysis is a relatively new approach that has been widely

used in audio signal processing. However, to our knowledge, it has been scarcely used

on symbolic music representations, except by Smith and Honing (2008), who used

wavelets to elicit rhythmic content from sparse sequences of impulses of a piece, and

Pinto (2009), who used wavelets for melodic indexing as a compression technique.

As mentioned above, the wavelet-based method that we present below is closely

related to paradigmatic analysis. It is based on the assumption that, if a melody is

segmented appropriately, then it should be possible to produce a high-quality analysis

by gathering together similar segments into clusters and then ranking these clusters by

their importance or salience. In our study, we were particularly interested in exploring

the effectiveness of the wavelet transform (WT) (Antoine, 1999; Farge, 1992; Mallat,

2009; Torrence and Compo, 1998) for representing relevant properties of melodies in

segmentation, classification and pattern detection.

Wavelet analysis is a mathematical tool that compares a time-series with a wavelet

at different positions and time scales, returning similarity coefficients. There are two

main forms of the WT, the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT). The CWT is mostly used for pattern analysis or feature

detection in signal analysis (e.g., Smith and Honing, 2008), while the DWT is used

for compression and reconstruction (e.g., Antoine, 1999; Mallat, 2009; Pinto, 2009).

In our method, we sample symbolic representations of melodies or monophonic

voices to produce one-dimensional (1D) pitch signals. We then apply the continuous

wavelet transform (CWT) to these pitch signals, filtering with the Haar wavelet

(Haar, 1910). Filtering with wavelets at different scales resembles the mechanism by
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Fig. 12.1 A schematic overview of the main stages of the proposed method

which neurons, such as orientation-selective simple cells in the primary visual cortex,

gather information from their receptive fields (Hubel and Wiesel, 1962). Indeed, more

recently, Gabor wavelet pyramids have been used to model the perception of visual

features in natural scenes (Kay et al., 2008).

Wavelet coefficient encodings seem to be particularly appropriate for melodic

analysis as they provide a transposition-invariant representation. We also use wavelet

coefficient representations to determine local segment boundaries at different time

scales, which accords well with the notion that listeners automatically organize the

musical surface into coherent segments, or groups, at various time scales (Lerdahl

and Jackendoff, 1983).

12.2 Method

The method presented in this chapter extends our previously reported approach to

melodic segmentation and classification based on filtering with the Haar wavelet

(Velarde et al., 2013), and also incorporates an approach to segment construction

similar to that developed by Aucouturier and Sandler (2002) for discovering patterns

in audio data. A schematic overview of the method is shown in Fig. 12.1. In the

following sub-sections we explain the method in detail.

12.2.1 Representation

A wide variety of different strategies have been adopted in music informatics for

representing melodies, including (among others) viewpoints (Conklin, 2006), strings

(McGettrick, 1997), contours (Huron, 1996), polynomial functions (Müllensiefen

and Wiggins, 2011a), point sets (Meredith et al., 2002), spline curves (Urbano, 2013),

Fourier coefficients (Schmuckler, 1999) and global features (van Kranenburg et al.,

2013).

The representations used in this study are illustrated in Fig. 12.2. The top graph

in this figure shows what we call a raw pitch signal. This is a discrete pitch signal,

v, with length, L, constructed by sampling from MIDI files at a rate, r, in samples

per quarter note (qn). MIDI files encode pitches as MIDI Note Numbers (MIDI NN).

We denote the pitch value at time point t by v[t]. This representation is not used for
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Fig. 12.2 Representations used in the method. From top to bottom: a raw pitch signal, a normalized
pitch signal, a wavelet coefficient representation and an absolute wavelet coefficient representation

segment comparison directly. It is either filtered by the Haar wavelet or transformed

into what we call a normalized pitch signal in order to obtain a transposition-invariant

representation which is then segmented.

The second graph in Fig. 12.2 shows a normalized pitch signal, obtained by

subtracting the average pitch of a segment from the pitch values in that segment.

This process is applied to each segment individually after segmentation. It serves to

reduce the measured dissimilarity between segments that have very similar contour

but occur at different pitch heights (i.e., have different transpositions).

The third graph in Fig. 12.2 shows a wavelet coefficient representation resulting

from carrying out a continuous wavelet transform (CWT) on the pitch signal with

the Haar wavelet at a single time scale. This process tends to highlight structural

features at the scale of the wavelet. The Haar wavelet (Haar, 1910) is used because it

measures the movement direction of the melody and because its shape reflects the

step-wise nature of symbolic pitch signals. Figure 12.3 shows an example of a Haar

wavelet.

The CWT computed at a single time scale acts as a filter by the convolution of v,

the pitch signal, with the scaled and flipped real-valued wavelet for each translation,

u, and scale, s:

ws[u] =
L

∑
�=1

ψs,u[�]v[�] . (12.1)

To avoid edge effects due to finite-length sequences (Torrence and Compo, 1998), we

pad on both ends with a mirror image of v (Woody and Brown, 2007). To maintain
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Fig. 12.3 The Haar wavelet

the signal’s original length, the segments that correspond to the padding on both ends

are removed after convolution.

The bottom graph in Fig. 12.2 shows an absolute wavelet coefficient representation.

The value at each time point in this representation is the absolute value of the wavelet

coefficient at that time point.

The type of wavelet to use depends on the kind of information one wishes to

extract from the signal, since the wavelet coefficients combine information about

the signal and the analysing function (Farge, 1992). We use the Haar wavelet (Haar,

1910) as the analysing function, as defined by Mallat (2009):

ψt =

⎧⎪⎨⎪⎩
1, if 0≤ t < 0.5,

−1, if 0.5≤ t < 1,

0, otherwise.

(12.2)

The choice of time scale depends on the scale of structure in which one is interested.

Local structure is best analysed using short time scales, while longer-term structure

can be revealed by using wavelets at longer time scales. When features of the wavelet-

based representations are used for segmentation (as will be described in Sect. 12.2.2),

using a shorter wavelet leads to smaller segments in general. We therefore expect

shorter wavelets to be more appropriate for finding smaller melodic structural units

such as motives, while longer wavelets might be expected to produce segments at

longer time scales such as the phrase level and above. In the experiments reported

below, we used a variety of different scales in order to explore the effect of time scale

on performance.

12.2.2 Segmentation

Segmentation is a central component of music perception, occurring simultaneously

at multiple timescales as an adaptive mechanism of the brain. It has been shown

that brain activity increases transiently at musical movement boundaries, as well as

other non-musical event boundaries (Kurby and Zacks, 2008). In agreement with the

neuroscientific evidence, most theories of music perception and cognition note the
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importance of segmentation, or grouping at various different time scales. Typically,

such theories concentrate on the perceived associations of events, relating visual

Gestalt principles to the musical domain. Examples of such theories include Tenney

and Polansky’s theory of temporal Gestalt-units (Tenney and Polansky, 1980), Lerdahl

and Jackendoff’s theory of grouping structure (Lerdahl and Jackendoff, 1983) and

Cambouropoulos’ Local Boundary Detection Model (LBDM) (Cambouropoulos,

1997, 2001). The rules in these models address changes in both local parameters and

longer-term averages. Similarly, wavelet filters could be used to represent melodic

movements at different scales, leading to different levels of localization on the time-

axis for deriving group boundaries. Conklin (2006) also stresses the importance

of melodic analysis on segmentation. He additionally demonstrates the effect of

different symbolic melodic representations called viewpoints at different time scales

(note, beat, bar, phrase and piece level) in the context of style discrimination.

As shown in Fig. 12.1, the Segmentation phase of our method is split into three

subphases: Preliminary segmentation, Comparison and Concatenation. Each of these

subphases will now be described.

12.2.2.1 Preliminary Segmentation

In this study, we explored three strategies for producing a preliminary segmenta-

tion: constant-duration segmentation; segmentation at zero crossings in the wavelet

coefficient and absolute wavelet coefficient representations; and segmentation at

local maxima in the absolute wavelet coefficient representation. The lower three

graphs in Fig. 12.4 show three of the possible combinations of representation and

segmentation.

The simplest segmentation strategy that we explore is constant-duration segmen-
tation in which the signal is chunked into segments of constant duration (with the

possible exception of the final segment which could be shorter than the other seg-

ments). The second graph in Fig. 12.4 shows an example of this type of segmentation

combined with a normalized pitch signal representation.

We also experiment with zero-crossings segmentation in the wavelet-based repre-

sentations, where segment boundaries are set at time points with value zero in the

representation. Zero-crossings occur when the inner product between the melody

and the Haar wavelet is zero. This means that the average pitch in the first half of the

scale period is equal to the average pitch in the second half of the scale period.

The third segmentation strategy we use is absolute maxima segmentation, where

segment boundaries are set at time points corresponding to local maxima in the

absolute wavelet coefficient representation. These maxima occur when the inner

product of the wavelet and the signal is locally maximal. In our case, this corresponds

to time points when there is a maximal positive or negative correlation between the

shape of the melody and the Haar wavelet. These points occur when there is a locally

maximal fall or rise in average pitch content at the scale of the wavelet used. The

absolute maxima of a real wavelet such as the Haar wavelet are a special case of the

modulus maxima of a wavelet transform in general. The latter were used by Muzy
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Fig. 12.4 Segmentation approaches used in the method, from top to bottom: a raw pitch signal
without segmentation; normalized pitch signal and constant-duration segmentation at a scale of 4 qn;
wavelet coefficient representation filtered with the Haar wavelet at a scale of 1 qn and segmented
at zero-crossings at a scale of 4 qn; absolute wavelet coefficient representation filtered at a scale
of 1 qn and segmented at absolute maxima at a scale of 4 qn. Note that the wavelet scales used
to generate the representations shown in the third and fourth graphs are different from those used
to produce the segmentations. The segmentation points therefore do not necessarily coincide with
zero-crossings or maxima in the wavelet coefficient representations shown

et al. (1991) to show the structure of fractal signals and by Mallat and Hwang (1992)

to indicate the location of edges in images. The bottom graph in Fig. 12.4 shows

an example of absolute maxima segmentation of an absolute wavelet coefficient

representation.

The segments obtained using these three strategies generally have different dura-

tions. However, in order to measure similarity between them using standard metrics

such as city block or Euclidean distance, it is necessary for the segments to be the

same length. We achieve this by defining a maximal length for all segments and

padding shorter segments as necessary with zeros at the end.

12.2.2.2 Comparison

Segments are compared by building an m×m distance matrix, H, giving all pair-wise

distances between segments in terms of normalized distance. m is the number of
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segments. We use three different distance measures: Euclidean distance, city block
distance and dynamic time warping (DTW). For city block and Euclidean distances,

the segments compared must be of equal length and in these cases the normalization

consists of dividing the pairwise distance by the length of the smallest segment

before segment-length equalization by zero padding. When using DTW, which is an

alignment-based method, it is not necessary to equalize the lengths of the segments

being compared. In this case, therefore, the normalization consists of dividing the

distance by the length of the aligned segments.

We use the Euclidean distance dE(x,y) between two segments, x and y, which is

defined as follows:

dE(x,y) =

√
n

∑
j=1

(x[ j]− y[ j])2 , (12.3)

and the city block distance dC(x,y) between x and y:

dC(x,y) =
n

∑
j=1

|x[ j]− y[ j]| . (12.4)

The dynamic time warping distance (DTW), dD(x,y), is the minimal cost of a warping
path between sequences x and y. A warping path of length, L, is a sequence of pairs

p = ((n1,m1), ...,(nL,mL)), where ni is an index into x and mi is an index into y.

p needs to satisfy several conditions which ensure that it can be interpreted as an

alignment between x and y that allows skipping elements in either sequence (see

Müller, 2007, p. 70). The DTW distance, dD(x,y), is then defined to be the total cost

of a warping path, defined to be the sum of a local cost measure, c(x[ni],y[mi]), along

the path:

dD(x,y) =
L

∑
i=1

c(x[ni],y[mi]) , (12.5)

where, here, c(x[ni],y[mi]) is defined to be simply the absolute difference, |x[ni]−
y[mi]|.

Having computed all the pairwise distances in the matrix, H, these values are

then normalized in the range [0,1] by dividing each pairwise distance by the largest

distance in the matrix for that distance type.

12.2.2.3 Concatenation of Segments

The final subphase of the segmentation phase is to concatenate consecutive segments

found in the preliminary segmentation to form larger units that are then compared,

clustered and ranked in the subsequent phases of the method.

The first subphase of the segmentation phase gives a preliminary segmentation of

the melody. It is preliminary, as it may be the case that a repeated (or approximately

repeated) segment discovered in the preliminary segmentation only occurs as part

of a longer repeated segment, such that a paradigmatic relation is found. In such
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cases, one would generally only be interested in the longer repeated segment (this

relates to the concept of “closed patterns” (see Lartillot, 2005, and Chap. 11, this

volume) and Meredith et al.’s (2002) concept of “maximal translatable patterns” (see

also Chap. 13, this volume). One would only want to report the shorter segment

if it also occurred independently of the longer segment. In the third subphase of

the segmentation phase, we therefore concatenate, or merge locally, the preliminary

segments derived in the preliminary segmentation into generally longer units, that

are then passed on to the later phases of the method.

Segments are concatenated based on their similarity. We therefore set a threshold,

τ , that defines the level of similarity between preliminary segments required to allow

concatenation. The m×m distance matrix, H, is therefore binarized as follows:

H(i, j) =

{
1, if H(i, j)≤ τ ,

0, otherwise,
(12.6)

for 1≤ i≤ m and i≤ j ≤ m (note that we use 1-based indexing in this chapter).

Segments are concatenated to form units based on the information contained in

the upper triangle including the leading diagonal in the binarized similarity matrix, H,

scanning the matrix horizontally and diagonally. A unit, (i, j), i≤ j, consists of the

concatenated segments i, . . . , j, and we use two concatenation processes to generate

units.

A process of horizontal concatenation generates units that consist of consecutive

occurrences of the “same” segment (i.e., corresponding to horizontal sequences of

consecutive 1s in the binarized similarity matrix, H). The units, (i,k), generated by

this process are those for which hor(i,k) is true, where

hor(i,k) ⇐⇒ (hor(i,k−1)∧H(k−1,k) = 1) ∨ (i = k) . (12.7)

A process of diagonal concatenation generates units that are repeated in the piece,
and dia(i, j) must be true, where

dia(i, j) ⇐⇒ (dia(i, j−1)∧∃�,k | �− k = j− i∧dia(k, �−1)∧H( j−1, �−1) = H( j, �) = 1)

∨ ( j− i = 1∧∃� | H(i, �−1) = H( j, �) = 1) . (12.8)

Any hor(i, j) or dia(i, j) that is not a strict subset of another generates a unit (i, j).
Subsets will be identified as trivial units.

When these two concatenation processes are carried out on the matrix in Fig. 12.5,

horizontal concatenation generates the unit (9,10) and diagonal concatenation gener-

ates the units (1,2), (4,5) and (7,8).
The concatenation method presented here is similar to the one described by

Aucouturier and Sandler (2002).
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Fig. 12.5 Upper triangular matrix, grey means 1 and white 0. It corresponds to the binarized distance
matrix H of the sequence v1 = abxabyabzz

12.2.3 Comparison and Clustering of Units

In this second comparison, the units constructed in the previous concatenation step

(Sect. 12.2.2.3) are compared using the same process of similarity measurement

as that described in Sect. 12.2.2.2. Any two units (�, j) and (p,r) obtained by con-

catenation, will then be units x and y respectively, to be compared in this second

comparison.

Having obtained values for the pairwise similarity between units, these similarity

values are then used to cluster the units into classes. To achieve this, we use a

simple hierarchical agglomerative clustering method called single linkage, or nearest-
neighbour, which produces a series of successive fusions of the data, starting from N
single-member clusters that fuse together to form larger clusters (Everitt et al., 2011;

Florek et al., 1951; Johnson, 1967; Sneath, 1957). Here, the distance matrix obtained

from the comparison as described in Sect. 12.2.3 is used for clustering. Single linkage
takes the smallest distance between any two units, one from each group or cluster.

The distance D(X ,Y ) between clusters X and Y is described as

D(X ,Y ) = min
x∈X ,y∈Y

d(x,y) , (12.9)

where clusters X and Y are formed by the fusion of two clusters, x and y, and d(x,y)
denotes the distance between the two units x and y (Everitt et al., 2011). Consider

the case of five units or clusters v, w, x, y and z, as shown on the left in Fig. 12.6 as

points in a Euclidean space. The minimal distance occurs for x and y, and for z and

w. Then, two new clusters are formed, a cluster s consisting of x and y and a cluster t
consisting of z and w. The next minimal distance occurs for v and t, forming a new

cluster u consisting of v and t. Finally, clusters s and u are grouped together into a

cluster c. The right plot in Fig. 12.6 shows a dendrogram of the formed clusters. The

y-axis corresponds to the distances between clusters; for instance, clusters x and y
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Fig. 12.6 Example of the hierarchical clustering of units or clusters v, w, x, y and z. Left plot shows
the units in a Euclidean space. Right plot shows a dendrogram of the formed clusters

have a distance of 1, and clusters t and u have a distance of 2.2. In this example, the

number of clusters ranges from 1, where all units form a single cluster, to 5, where

each cluster contains just one unit. The number of clusters can be set to be three,

having clusters s, t and u or it can be set to two, giving clusters s and u. Finally, the

number of clusters is set to yield the best classification results.4

12.2.4 Ranking

In general, if X and Y are two parts of some object, then one can describe X ∪Y in

an in extenso fashion simply by specifying the properties of each atomic component

in X and Y . Alternatively, if there exists a sufficiently simple transformation, T , that

maps X onto Y , then it may be possible to provide a compact description of X ∪Y by

providing an in extenso description of X along with a description of T .5

In the current context, each cluster generated by the previous stage of the method

contains units (i.e., parts of a melody) that are similar to each other. If every member

of a cluster can be generated by a simple transformation of one member (e.g., if all

the units within a cluster are exact repeats of the first occurrence), then the portion

of the melody covered by the cluster (i.e., the union of the units in the cluster) can

be represented by giving an explicit description of the first occurrence along with

the positions of the other occurrences. If the members of the cluster do not overlap,

then such a representation can be compact because the starting position of a unit can

usually be specified using fewer bits than explicitly describing the content of the

unit. This would give a losslessly compressed encoding of the part of the melody

4 When preliminary experiments were performed on the JKU PDD, using between 3 and 10 clusters,
the best classification results were obtained using 7 clusters. We therefore used 7 clusters in the
experiments reported in Sect. 12.3 below.
5 This idea is discussed in more detail in Chap. 13, this volume.
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covered by the union of the units in the cluster. This is the essential idea behind the

compression-driven geometric pattern discovery algorithms described by Meredith

(2006, 2013) and Forth (2012). If we represent the music to be analysed as a set of

points in pitch-time space and if a cluster (or ‘paradigm’), C, only contains the exact
occurrences of a pattern, p, then the compression ratio achieved is

CR(C) =
|⋃q∈C{q}|
|p|+ |C|−1

, (12.10)

where | · | denotes the cardinality of a set. Here, however, the units within a cluster are

not necessarily exact repetitions of some single pattern. This means that the degree

of compression achievable with one of the clusters generated in the previous sections

will not, in general, be as high as in (12.10).

Collins et al. (2011) have provided empirical evidence that the compression ratio

achievable in this way by a set of occurrences of a pattern can be used to help predict

which patterns in a piece of music are heard to be noticeable and/or important. In the

method presented in this chapter, we therefore adapt (12.10) to serve as a measure

of importance or noticeability for the clusters generated in the previous phase of the

method. Here, we define the “compression ratio”, CRk, of cluster k as follows:

CRk =
∑nk

i=1 Si

(nk + S̄k)
, (12.11)

where nk is the number of units in cluster k, Si is the length in sample points of unit i
in cluster k, and S̄k is the mean length of a unit in cluster k. Clusters are ranked into

descending order by this value of “compression ratio”. All clusters are kept in the

final output.

12.3 Experiments

The method described above was evaluated on two tasks: discovering repeated themes

and sections in monophonic music; and identifying the parent works of excerpts from

J. S. Bach’s Two-Part Inventions (BWV 772–786). The methods used and results

obtained in these experiments will now be presented.

12.3.1 Experiment 1: Discovering Repeated Themes and Sections
in Monophonic Music

Various computational methods for discovering patterns in music have been devel-

oped over the past two decades (see Janssen et al., 2013, for a recent review), but

only recently have attempts been made to compare their outputs in a rigorous way.
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Notable among such attempts are the two tasks on discovering repeated themes and

sections that have been held at the Music Information Retrieval Evaluation eXchange

(MIREX) in 2013 and 2014 (Collins, 2014). In these tasks, algorithms have been

run on a set of five pieces and the analyses generated by the algorithms have been

compared with ground truth analyses by expert analysts. A number of measures

were devised for evaluating the performance of pattern discovery algorithms in this

competition and comparing the output of an algorithm with a ground truth analysis

(Collins, 2014). Collins has also provided a training database, the JKU PDD, which

exists in both monophonic and polyphonic versions. The JKU PDD consists of the

following five pieces along with ground truth analyses:

• Orlando Gibbons’ madrigal, “Silver Swan” (1612);

• the fugue from J. S. Bach’s Prelude and Fugue in A minor (BWV 889) from Book

2 of Das wohltemperirte Clavier (1742);

• the second movement of Mozart’s Piano Sonata in E flat major (K. 282) (1774);

• the third movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795);

and

• Chopin’s Mazurka in B flat minor, Op. 24, No. 4 (1836).

The monophonic versions of the pieces by Beethoven, Mozart and Chopin were

produced by selecting the notes in the most salient part (usually the top part) at each

point in the music. For the contrapuntal pieces by Bach and Gibbons, the monophonic

encodings were produced by concatenating the voices (Collins, 2014).

We used the JKU PDD as a training set for determining optimal values for the

parameters of the analysis method described above. Heuristics based on knowledge

gained from previous experiments (Velarde et al., 2013) were used to start tuning

the parameters. Then, in an attempt to approach optimal values, all parameters were

kept fixed, except one which was varied along a defined range to find an optimal

adjustment. This process was repeated for all parameters. Finally, the method was

run on the JKU PDD with 162 different parameter value combinations, consisting of

all possible combinations of the following:

• 1 sampling rate: 16 samples per qn

• 3 representations: normalized pitch signal, wavelet coefficients filtered at the scale

of 1 qn, absolute wavelet coefficients filtered at the scale of 1 qn

• 3 segmentation strategies: constant-duration segmentation, segmentation at zero-

crossings, segmentation at absolute maxima

• 2 scales for segmentation: 1 qn and 4 qn

• 1 threshold for binarizing the similarity matrix: 0.001

• 3 distances for measuring similarity between segments on the first comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)

• 3 distances for measuring similarity between segments on the second comparison:

city block (CB), Euclidean (Eu) and dynamic time warping (DTW)

• 1 strategy for equalizing the lengths of segments for comparison: segment length

normalization by zero padding

• 1 clustering method: Single linkage (nearest neighbour)

• 1 value for the number of clusters: 7
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• 1 criterion for ranking clusters: compression ratio

12.3.1.1 Results

We used the monophonic version of the JKU PDD with the evaluation metrics

defined by Collins (2014) and Meredith (2015), which we computed using Collins’

Matlab implementation.6 The evaluation metrics consist of a number of variants on

standard precision, recall and F1 score, designed to allow algorithms to gain credit for

generating sets of occurrences of patterns that are similar but not identical to those in

the ground truth. The standard versions of the metrics are not adequate for evaluating

pattern discovery algorithms because they return 0 for a computed pattern even if it

differs from a ground truth pattern by only one note.

The more robust versions of the precision, recall and F1 score are designed to

measure (1) the extent to which an algorithm finds at least one occurrence of a pattern

(establishment recall/precision/F1 score); (2) the extent to which an algorithm finds

all the occurrences of a pattern (occurrence recall/precision/F1 score); and (3) the

overall similarity between the set of occurrence sets generated by an algorithm and

the set of occurrence sets in a ground truth analysis (three-layer precision/recall/F1

score). As these different metrics reveal different aspects of the method’s strengths

or weaknesses, we decided to evaluate our method based on the standard F1 score,

where P is precision and R is recall

F1 =
2PR

P+R
(12.12)

and on the mean of establishment F1 (F1 est), occurrence F1 at (c=.75)

(F1 occ(c=.75)), occurrence F1 at (c=.5) (F1 occ(c=.5)) (Collins, 2014), and three-

layer F1 (F1 T L) (Meredith, 2015):

F1 mean =
F1 est +F1 occ(c=.75) +F1 occ(c=.5))+F1 T L

4
. (12.13)

Figure 12.7 shows the highest mean F1 scores (F1 mean) for each combination,

considering segmentation scale, representation type and segmentation type. The left

plot shows nine combinations where the segmentation scale was 1 qn, while the

right plot shows the scores of nine combinations where the segmentation scale was

4 qn. For each plot in Fig. 12.7, there are 3 bars grouped for each segmentation

method, where the grey tones (dark grey, light grey and white) indicate the three

representation types, and finally, the distance measures associated with the first

and second comparison (e.g., “EU,EU”, “CB,CB”, etc.). Figure 12.8 shows the

corresponding standard F1 scores for the same combinations. Finally, Fig. 12.9 shows

the runtimes in seconds obtained with our implementations of the method, associated

with each combination.

6 https://dl.dropbox.com/u/11997856/JKU/JKUPDD-Aug2013.zip. Accessed on 12-May-2014.
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Fig. 12.7 Mean F1 score (F1 mean)

We ran the experiment twice, the first time keeping trivial units and the second time

discarding trivial units. Figures 12.7, 12.8 and 12.9 show the results when keeping

trivial units. A Wilcoxon signed rank test indicated that keeping or discarding trivial

units did not significantly affect the results of mean F1 scores (Z = −1.2439, p =
0.2135), standard F1 scores (Z =−1.633, p = 0.1025), or runtimes (Z =−0.8885,

p = 0.3743), for a segmentation scale of 1 qn. Similarly, no difference was found

in the results when keeping or discarding trivial units for a scale of 4 qn for mean

F1 scores (Z = 1.007, p = 0.3139), standard F1 scores (Z = 0, p = 1), or runtimes

(Z =−0.53331, p = 0.5940). Therefore, only the results of the first run are shown

and explained in the following paragraphs.

Fig. 12.8 Standard F1 score
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Fig. 12.9 Runtimes in seconds obtained using our implementation of the method. The implementa-
tion was programmed using Matlab 2014a and run on a MacBook Pro using MAC OS X with a 2.3
GHz, Intel Core i7 processor and 8 GB 1600 MHz DDR3 RAM

According to the parameters tested, we observe that the segmentation scale used

in the preliminary segmentation phase has a greater effect on the results. Figures 12.8

and 12.9 show that using a smaller segmentation scale of 1 qn as opposed to 4 qn was

in general slower but produced better results. A Wilcoxon signed rank test indicated

there is a statistically significant difference between the use of a smaller and larger

scale (Z = 2.6656, p = 0.007), suggesting that a scale of 1 qn should be used in the

preliminary segmentation phase, for higher (mean or standard) F1 scores.

In terms of mean F1 score (Fig. 12.7), the normalized pitch signal representation

worked slightly better than the wavelet representations when constant-duration seg-

mentation was used. We speculate that only with additional pattern data containing

greater variation between occurrences would the benefit of wavelet over normalized

pitch representations emerge (see Sect. 12.3.2.1 for more discussion on this point).

DTW was used less frequently than Euclidean or city block distance in the best-

performing combinations. It seems possible that DTW might have proved more useful

if the input representations had included temporal deviations such as ritardando or

accelerando such as might occur in an encoding generated from a live performance.

From Figs. 12.7, 12.8 and 12.9 it is not possible to determine whether the running

time is more dependent on the segmentation approach or on the distance measure

used. Tables 12.1 and 12.2, show the highest mean F1 scores of combinations using

the same distance measure for both comparison phases, averaged by representation

approach. From Table 12.1, it is possible to observe that when using a scale of 1 qn for

the preliminary segmentation phase, Euclidean and city-block distances have similar

performance, and their F1 scores are higher than the ones delivered when using DTW

distance. However, this gap becomes smaller when the scale is 4 qn. The results in

Table 12.2 show that the running times using DTW are more than 8 times slower

than those obtained using Euclidean or city-block distances. Evaluating runtimes

according to segmentation approaches, it is possible to observe that for the smaller
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Table 12.1 Mean F1 scores averaged over representations, combinations of same distance measure
for both comparisons. The rows correspond to the different combinations of distances (CB = city-
block, Eu = Euclidean and DTW = dynamic time warping), while the columns correspond to the
segmentation approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation,
and AM = absolute maxima segmentation). Mean and standard deviation values are shown per row
and per column

Segmentation scale 1 qn Segmentation scale 4 qn

CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 0.74 0.69 0.75 0.73 0.03 0.65 0.60 0.70 0.65 0.05

Eu-Eu 0.73 0.68 0.72 0.71 0.03 0.63 0.59 0.70 0.64 0.05

DTW-DTW 0.57 0.64 0.60 0.60 0.04 0.59 0.61 0.66 0.62 0.03

Mean 0.68 0.67 0.60 0.62 0.60 0.69
SD 0.10 0.03 0.08 0.03 0.01 0.03

Table 12.2 Corresponding mean running times in seconds of the combinations in Table 12.1

Segmentation scale 1 qn Segmentation scale 4 qn

CS ZC AM Mean SD CS ZC AM Mean SD

CB-CB 24.3 60.8 17.9 34.32 23.17 2.2 5.4 5.2 4.23 1.80

Eu-Eu 24.4 57.1 17.8 33.10 21.02 2.1 5.3 5.1 4.16 1.79

DTW-DTW 664.4 2248.2 720.1 1210.91 898.77 21.5 61.5 67.4 50.14 25.01

Mean 237.69 788.70 251.93 8.58 24.04 25.92
SD 369.56 1263.98 405.44 11.17 32.44 35.97

Table 12.3 Mean F1 scores averaged over representations, when the concatenation phase is not
performed. The rows of the Table indicate the distances used for comparison (CB = city-block, Eu
= Euclidean and DTW = dynamic time warping), while the columns correspond to the segmentation
approaches (CS = constant-duration segmentation, ZC = zero-crossings segmentation, and AM =
absolute maxima segmentation). Mean and standard deviation values are shown per rows and per
columns

Segmentation scale 1 qn Segmentation scale 4 qn

CS ZC AM Mean SD CS ZC AM Mean SD

CB 0.10 0.18 0.11 0.13 0.04 0.22 0.23 0.18 0.21 0.03

Eu 0.10 0.14 0.10 0.11 0.02 0.22 0.21 0.16 0.20 0.03

DTW 0.10 0.09 0.11 0.10 0.01 0.22 0.20 0.18 0.20 0.02

Mean 0.10 0.14 0.11 0.22 0.21 0.18
SD 0.00 0.04 0.01 0.00 0.02 0.01

scale of 1 qn in the preliminary segmentation phase, the runtimes of constant-duration

segmentation and wavelet absolute maxima segmentation are similar and about twice

as fast as the runtimes of the zero-crossings segmentation. On the other hand, for

a larger scale of 4 qn in the preliminary segmentation phase, constant-duration

segmentation is three times faster than wavelet segmentation approaches.

Table 12.3 shows the effect of not using the concatenation phase: melodies un-

dergo the preliminary segmentation phase, but skip the first comparison and the

concatenation phases, such that all preliminary segments are used for the comparison,

clustering and ranking phases. The results in Table 12.3 show that omitting the con-

catenation phase severely reduces the performance of the method on this task. In this
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case, when segments are not concatenated, a segmentation scale of 4 qn is, in almost

all combinations, twice as good as a segmentation scale of 1 qn. On the other hand,

as seen in Table 12.1, a preliminary segmentation phase with a finer segmentation

scale, helps to improve the identification of patterns in this dataset.

12.3.1.2 Comparison with Other Computational Methods

The other computational methods addressing the MIREX task on Discovery of

repeated themes and sections, included geometric approaches (Meredith, 2013),

incremental mining methods (Lartillot, 2014) and methods based on audio techniques

(Nieto and Farbood, 2013, 2014).7 For comparison, we selected our submission VM1,

as this configuration was also selected for comparison in the published results of the

task. The details of the parameters settings of VM1 are described by Velarde and

Meredith (2014).

Table 12.4 shows the results obtained by the different algorithms in the 2014

MIREX task on the monophonic version of the JKU Patterns Test Database (PTD).

As can be seen in this table, our method ranked highest at discovering at least one

occurrence of each ground truth pattern (F1 est) as well as being the fastest method.

Lartillot’s method (OL1) performed better at finding inexact occurrences of patterns

(F1 occ(c=.75)) but is considerably slower. VM1 and OL1 performed at a similar

level with respect to finding exact occurrences of the patterns, and, in both cases,

the standard deviation was high. The addition of more pieces to training and test

databases over time will enable researchers to investigate the generalizability of their

methods.

Table 12.4 Results on the JKU test set. NF1 (Nieto and Farbood, 2014), OL1 (Lartillot, 2014),
VM1 (Velarde and Meredith, 2014) and DM10 (Meredith, 2013)

F1 est F1 occ(c=.75) T L F1 F1 Runtime

NF1 Mean 0.50 0.41 0.33 0.02 480.80

SD 0.14 0.27 0.12 0.05 558.43

OL1 Mean 0.50 0.81 0.43 0.12 35508.82

SD 0.17 0.12 0.13 0.13 52556.11

VM1 Mean 0.73 0.60 0.49 0.16 100.80
SD 0.14 0.09 0.14 0.15 119.18

DM10 Mean 0.55 0.62 0.43 0.03 161.40

SD 0.06 0.09 0.08 0.04 194.87

7 Results of the annual MIREX competitions on Discovery of Repeated Themes and Sections can
be found on the MIREX website at at http://www.music-ir.org/.
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Fig. 12.10 Notation and pitch-signal representations of the first ground truth pattern for the third
movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795)

12.3.1.3 Comparing Patterns Discovered Automatically with Patterns
Identified by Experts

In this section, we present the output of the computational method compared to the

JKU PDD ground truth analysis of the monophonic version of the third movement

of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795). In order to visualize

the ground truth and computationally discovered patterns and their occurrences, we

will present them as pitch signals rather than in notation. To help with understanding

the correspondence between the pitch signal representation and notation, Fig. 12.10

shows both representations of the first ground truth pattern.

The ground truth analysis for this piece identifies seven patterns and their occur-

rences as shown in Fig. 12.11. In this figure, plots on the left correspond to patterns,

while plots on the right correspond to pattern occurrences. Each pattern occurrence

is marked with vertical dotted lines in the graphs on the right side of the figure. All

pitch signals have been shifted to start at time 0. The patterns are ordered, from top

to bottom, in decreasing order of salience. The lengths of these seven ground truth

patterns range from 12 to 119 qn. Some occurrences of the patterns overlap as is the

case for the occurrences of pattern 1 and pattern 3, or pattern 2 and pattern 5.

The computational analysis of the piece can be seen in Fig. 12.12. The parameters

used are the following:

• 1 sampling rate: 16 samples per qn

• representations: absolute wavelet coefficients filtered at the scale of 1 qn

• segmentation at absolute maxima

• scales for segmentation: 1 qn

• threshold for binarizing the similarity matrix: 0.001

• distance for measuring similarity between segments on the first comparison: city

block (CB)

• distance for measuring similarity between segments on the second comparison:

city block (CB)

• clustering method: Single linkage (nearest neighbour)

• value for the number of clusters: 7
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Fig. 12.11 JKU PDD Ground truth patterns for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795). Pitch signal representation, with signals shifted to start at time 0.
Plots on the left correspond to the patterns, while plots on the right correspond to the entire piece,
with each pattern occurrence marked with a vertical dotted line at its starting and ending position

• criterion for ranking clusters: compression ratio

In this example, the number of clusters is the same as the number of patterns

in the ground truth. Once again, the salience of patterns can be seen from top to

bottom, where the most salient pattern is shown in the top plot. Six out of seven

pattern shapes match approximately the ground truth pattern shapes (in some cases,

some notes may be missing at the beginning or end of a pattern). The pattern that

has been ranked as the most salient, corresponds to pattern 2 in the ground truth

analysis, and all its four occurrences have been found. The shape of the second most

salient computed pattern, does not resemble the shape of any of the patterns in the

ground truth. Pattern 2 is a short-duration pattern, whose cluster contains several

melodic units, including segments that approximate the occurrences of pattern 1 in

the ground truth (this cannot be seen in Fig. 12.12). The remaining computed pattern
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shapes (patterns 3–7) can be found in the ground truth, each with the same number

of occurrences. The ranking of salience is not exactly the same as in the ground truth,

but it is similar in chunks, such that:

• the first two computed clusters correspond to the first two pattern occurrences in

the ground truth;

• computed cluster 3 corresponds to the occurrences of ground truth pattern 3;

• computed clusters 4–6 correspond to the occurrences of ground truth patterns 4–6,

• and finally the last computed cluster corresponds to the occurrences of the last

ground truth pattern.

The second cluster contains several melodic units. In future work, we would like

to cluster such clusters until they satisfy a given condition and discard clusters that

fail to satisfy the condition. We expect that the effect on such clusters of keeping or

discarding trivial units may be more evident if we carry out this process.

12.3.2 Experiment 2: Classification of Segments from J. S. Bach’s
Two-Part Inventions

We also evaluated the method on a second task where the goal was to recognize

the parent works of excerpts from J. S. Bach’s 15 Two-Part Inventions (BWV 772–

786). In contrast to the first experiment, in this task, all segments were used in the

evaluation, not just concatenated units. Also, whereas in the first experiment there

was room for disagreement about the validity of the ground truth, in this second

task, the ground truth was not controversial—there was no doubt as to which parent

Invention each test excerpt belonged to. The notion that the piece to which an excerpt

belongs can be identified on the basis of the content of the excerpt is based on the

premise that the musical material in the excerpt is motivically related to the rest of the

piece. Specifically, in the case of Bach’s Two-Part Inventions, it is well established

that the opening exposition of each of these pieces presents the motivic material

that is developed throughout the rest of the piece, which is typically divided into

three sections (Dreyfus, 1996; Stein, 1979). In this experiment, we followed the

experimental setup described by Velarde et al. (2013), building the classifier from the

expositions of the pieces and the test set from the three following sections of each

piece. More precisely, an initial, 16 qn segment from each piece was used to build

the classifier, and the remainder of each piece was split into three sections of equal

length which were used to build the test set. We could have attempted to determine

the length of each exposition precisely, but we wanted to avoid making subjective

analytical judgements. We therefore used a fixed length of 16 qn as the length of

each “exposition” section despite the fact that the actual lengths of the expositions in

the Inventions vary. This particular length was chosen because it was the length of

the longest exposition in the pieces, thus ensuring that no exposition material would

be included in the test set.
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Fig. 12.12 Patterns discovered by the method for the third movement of Beethoven’s Piano Sonata
in F minor, Op. 2, No. 1 (1795), JKU PDD monophonic version. Pitch signal representation, with
signals shifted to start at time 0. Plots on the left correspond to the patterns, while plots on the right
correspond to the entire piece, with each pattern occurrence marked with a vertical dotted line at its
starting and ending position

We were also interested in investigating the amount of initial expository material

required to enable the parent works of excerpts to be accurately identified. We

therefore constructed classifiers from the first 4, 8 and 16 qn of the pieces.

Figure 12.13 shows schematically how the classifiers and the test sets were con-

structed. The classifier set C was built from segments sci, j from the expositions of

the 15 Inventions, where each segment could be from either the upper or the lower

voice. sci, j is the jth segment in Invention i. Each test set T was built from segments

st, where each st could be from either the upper or the lower voice. We denote the jth
segment in Invention i by sti, j. To classify a segment st to one of the 15 classes, we

applied 1-nearest neighbour classification (Mitchell, 1997). That is, we computed the

distances between st and all sc in C, and classified st to the class i of the sci, j that had

the smallest distance to st. Each test excerpt was assigned the class most frequently
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Fig. 12.13 Scheme of classifier and test construction based on signal vi

predicted by its segments. In both cases we used the next nearest neighbour to break

ties.

We expected higher classification rates with classifiers built from more exposition

material, similar performance for the different combinations of wavelet-base clas-

sifiers, and higher classification rates in the first section compared to the following

two, as the subject appears in the first section following the exposition at least once

in each part (Stein, 1979).

The following parameters were used in the experiment:

• Sampling rate: 8 samples per qn8

• Representation: normalized pitch signal (WR), wavelet coefficients filtered at the

scale of 1 qn (WR) and absolute wavelet coefficients filtered at the scale of 1 qn

(WRA)

• Segmentation: constant-duration segmentation (CS), wavelet zero-crossing (ZC)

and wavelet absolute maxima (AM)

• Scale segmentation at 1 qn

• Segment length normalization by zero padding

• Clustering: 1-nearest neighbour

• Distance measure: city block

12.3.2.1 Results

Figures 12.14 and 12.15 show the classification accuracy on each section, with the

concatenation phase omitted and included, respectively. Both figures show the effect

of segmentation and representation (columns vs. rows), and the number of qn used

for the classifiers (asterisk, square, and circle markers). As expected, the amount of

material used from the exposition (4, 8, or 16 qn) affects the classification success

rates: the more material used, the higher the success rates. Moreover, segmentation

has a stronger effect on the classification than representation. With respect to the

results between sections, the classification rates for the first section are higher than

8 The sampling rate was chosen to be the same as that used by Velarde et al. (2013).
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those for the second and third sections. Representations associated with constant-

duration segmentation are accurate in the first section after the exposition, where

the subject is presented at least once in one of the voices (Stein, 1979), but far less

accurate in the second and third sections where an increasing degree of variation

of the original material occurs. Also, in sections 2 and 3, segment boundaries may

not fall on whole-quarter-note time points, instead they may be shifted by a small

amount, as an effect of the equal division of the sections. This may result in poor

discriminatory information contained in segments when using constant-duration seg-

mentation. The approach based on wavelet representation and segmentation is more

robust to variation compared to constant-duration segmentation and the unfiltered

pitch signal, resulting in similar classification rates for each classifier among all three

sections.

A Wilcoxon signed rank test indicated that the concatenation phase did not sig-

nificantly affect the results of accuracy per segmentation method (CS: Z = 1.6036,

p = 0.1088, ZC: Z = 0.4472, p = 0.6547, AM: Z = 1.6036, p = 0.1088) or accuracy

per representation type (VR: Z = 1.4142, p = 0.1573, WR: Z = 1.6036, p = 0.1088,

Fig. 12.14 Performance for each section with the classifier based on the exposition
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Fig. 12.15 Performance for each section with the classifier based on the exposition, and the con-
catenation phase included in the segmentation process

WA: Z = 0.8165, p = 0.4142 ) for classifiers built from the first 16 qn. However,

while including the concatenation phase did not significantly affect the results, it

slightly reduced the mean accuracy by 4%. We speculate that this may be a result of

the concatenation phase causing some test-set segments to become much longer than

the classifier segments, which would lead to segments of very unequal length being

measured for similarity. This, in turn, could result in poorer classification accuracies.

12.4 Summary and Conclusions

We have presented a novel computational method for analysis and pattern discovery

in melodies and monophonic voices. The method was evaluated on two musicological

tasks. In the first task, the method was used to automatically discover themes and

sections in the JKU Patterns Development Database. In the second task, the method
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was used to determine the parent composition of excerpts from J. S. Bach’s Two-Part

Inventions (BWV 772–786). We explored aspects of representation, segmentation,

classification and ranking of melodic units. The results of the experiments led us to

conclude that the combination of constant-duration segmentation and an unfiltered,

“raw”, pitch-signal representation is a powerful approach for pieces where motivic

and thematic material is restated with only slight variation. However, when motivic

material is more extensively varied, the wavelet-based approach proves more robust

to melodic variation.

The method described in this chapter could be developed further, perhaps by

evaluating the quality of clusters in order to discard clusters that are too heterogeneous.

Other measures of pattern quality could also be explored for ranking patterns in the

algorithm output, including measures that perhaps more precisely model human

perception and cognition of musical patterns. Moreover, it would be interesting to

study the method’s performance on a corpus of human performances of the pieces in

experiment 1, in order to test, in particular, the robustness of our distance measures.
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Chapter 13
Analysing Music with Point-Set Compression
Algorithms

David Meredith

Abstract Several point-set pattern-discovery and compression algorithms designed

for analysing music are reviewed and evaluated. Each algorithm takes as input a

point-set representation of a score in which each note is represented as a point in

pitch-time space. Each algorithm computes the maximal translatable patterns (MTPs)

in this input and the translational equivalence classes (TECs) of these MTPs, where

each TEC contains all the occurrences of a given MTP. Each TEC is encoded as a

〈pattern,vector set〉 pair, in which the vector set gives all the vectors by which the

pattern can be translated in pitch-time space to give other patterns in the input dataset.

Encoding TECs in this way leads, in general, to compression, since each occurrence

of a pattern within a TEC (apart from one) is encoded by a single vector, that has

the same information content as one point. The algorithms reviewed here adopt

different strategies aimed at selecting a set of MTP TECs that collectively cover (or

almost cover) the input dataset in a way that maximizes compression. The algorithms

are evaluated on two musicological tasks: classifying folk song melodies into tune

families and discovering repeated themes and sections in pieces of classical music.

On the first task, the best-performing algorithms achieved success rates of around

84%. In the second task, the best algorithms achieved mean F1 scores of around 0.49,

with scores for individual pieces rising as high as 0.71.

13.1 Music Analysis and Data Compression

A musical analysis represents a particular way of understanding certain structural

aspects of a musical object, where such an object may be any quantity of music,

ranging from a motive, chord or even a single note through to a complete work or

even an entire corpus of works (cf. Bent, 1987, p. 1). In the spirit of the theory of
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Kolmogorov complexity (Chaitin, 1966; Kolmogorov, 1965; Li and Vitányi, 2008;

Solomonoff, 1964a,b) and the minimum description length principle (Rissanen, 1978),

a musical analysis is conceived of here as being a compact or compressed encoding

of an in extenso description of a musical object. An in extenso description is one in

which the properties of each atomic component of the object are explicitly specified,

without encoding any structural groupings of these components into higher-level

constituents, and without encoding any relationships between atomic components

(see Simon and Sumner (1968, 1993) for a similar use of the term, “in extenso”).

Music theorists and analysts often refer to such in extenso descriptions as “musical

surfaces” (Lerdahl and Jackendoff, 1983, pp. 3,10–11) (see also Chap. 2, this volume).

The atomic components themselves might be, for example, notes in a score or events

in a MIDI file or sample values in a PCM audio file. Their nature thus depends on

both the nature of the object being described (e.g., a specification of what to play or

a recording of an actual performance) and the level of detail or “granularity” of the

description.

In contrast, while a musical analysis is itself a description of a musical object,

it will typically differ from an in extenso description by representing the object as

being constructed from sets of atomic components that form larger-scale constituents,

such as motives, phrases, chords, voices and sections. An analysis will also typi-

cally encode relationships between such constituents (e.g., repetition, transposition,

inversion, elaboration, augmentation and diminution).

The Kolmogorov complexity of an object is, roughly speaking, the length in bits

of the shortest possible program that generates the object as its only output. In the

spirit of Kolmogorov complexity, in this chapter, an analysis is thus conceived of as

a program that outputs the in extenso description of a musical object that we want

to analyse and explain. The precise way in which such a program generates the in

extenso surface description of the object constitutes an hypothesis as to how that

surface might have come about. Equivalently, we can thus consider an analysis to be

a losslessly compressed encoding of an in extenso description of a musical object. In

this way, an analysis is an explanation for or a way of understanding certain aspects

of the structure of the musical object that it describes.

Suppose X and Y are two constituent sets of atomic components of a musical

object (e.g., two sets of notes forming two occurrences of the subject in a fugue) and

that the transformation, T , maps X onto Y (e.g., T could be “shift in time by x quarter

notes and transpose by y semitones”). If T can be described more parsimoniously

than Y , then the part of the musical surface consisting of X and Y (i.e., X ∪Y , or the

union of the atomic components in X and Y ) can be described more parsimoniously

by giving an in extenso description of X together with a description of T , than it

can by giving in extenso descriptions of both X and Y . In this way, by identifying

structural relationships between constituents of a musical object, a musical analysis

can convey at least as much information about that object as an in extenso description

on the same level of detail, but may manage to do so more parsimoniously. A musical

analysis can thus take the form of a compact description or compressed encoding of a

musical object. Of course, a musical analysis usually conveys more information than

an in extenso description on the same level of detail, since it also typically describes
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groupings of atomic components into larger constituents and structural relationships

between these constituents.

Kolmogorov complexity (Chaitin, 1966; Kolmogorov, 1965; Li and Vitányi, 2008;

Solomonoff, 1964a,b) (also known as algorithmic information theory, see also

Chap. 7, this volume) suggests that the length of a program, whose output is an

in extenso description of an object, can be used as a measure of the complexity of its

corresponding explanation for the structure of that object: if we have two programs

in the same programming language that generate the same output, then the shorter of

the two will typically represent the simpler explanation for that output.

The level of structural detail on which an analysis (encoded as a program) explains

the structure of a musical object is determined by the granularity of the in extenso

description that it generates. Typically, much of the detailed structure of an object

will not be encoded in the in extenso description generated by an analysis and this

omitted structure will therefore go unexplained.

In the work presented in this chapter, I assume that the music analyst’s goal is

to find the best possible explanations for the structures of musical objects, which

raises the question of how we are supposed to decide, given a pair of alternative

explanations for the same musical object, which of these explanations is “better”. In

my view, we can only meaningfully claim that one analysis is “better than” another if

it allows us to more successfully carry out some objectively evaluable task; and even

then, we can only claim that the analysis is superior for that task. Such tasks might

include, for example, detecting errors, memorizing pieces, identifying composers

(or dates of composition, forms or genres), and predicting how incomplete pieces

might be completed. It is possible that the best analysis for carrying out one such

task might be different from the best analysis for carrying out another. However, the

algorithms and experiments described in this chapter are founded on the hypothesis

that the best possible explanations for a musical object (i.e., the best analyses for all
objectively evaluable tasks) are those that are represented by that object’s shortest

possible descriptions—that is, the descriptions of the object whose lengths are equal

to the Kolmogorov complexity of that object.

In general, the Kolmogorov complexity of an object is not computable.1 This

means that, if we have some in extenso description of an object and a compressed

encoding of that description, then typically we cannot be sure that the compressed

encoding is the shortest one possible. We can, of course, often prove that an encoding

is not the shortest possible, simply by finding a shorter one. However, in the current

context, the non-computability of Kolmogorov complexity does not pose a problem,

as we will only use the relative lengths (i.e., information content) of analyses to

predict which analyses will serve us better for carrying out musicological tasks. That

is, in order to be able to evaluate whether we are making progress, we never really

need to know if an analysis is the best possible (although, of course, that would be

nice), we only need to be able to predict (at least some of the time) whether or not it

will be better than another one.

1 Actually prefix complexity, K, is upper semicomputable, but it cannot be approximated in general
in a practically useful sense (Li and Vitányi, 2008, p. 216).
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If we adopt the approach outlined above, then the music analyst’s goal becomes

that of finding the shortest possible “programs” (i.e., encodings, analyses) that gener-

ate the most detailed representations of as much music as possible. In other words,

our ultimate goal may be considered to be to compress as detailed a description as

possible of as much music as possible into as short an encoding as possible.

With this goal in mind, the main purpose of this chapter is to present, analyse and

evaluate a number of compression algorithms that have been specifically designed

for analysing music (see Sect. 13.3). Each of these algorithms takes an in extenso

description of a musical object as input and generates a losslessly compressed en-

coding of this description as output. All of the algorithms examined in this study are

based on Meredith et al.’s (2002) “Structure Induction Algorithm” (SIA) which takes

as input a multidimensional point set (in this context, representing a musical object)

and computes all the maximal repeated patterns in the point set.

The results of evaluating these compression algorithms on two musicological

tasks will also be presented (see Sect. 13.4). In the first task, the algorithms were

used as compressors to compute the normalized compression distance (NCD) (Li

et al., 2004) between each pair of melodies in the Annotated Corpus of Dutch folk

songs from the collection Onder de groene linde (Grijp, 2008; van Kranenburg et al.,

2013; Volk and van Kranenburg, 2012). The NCD between two objects, x and y, is

defined as follows:

NCD(x,y) =
Z(xy)−min{Z(x),Z(y)}

max{Z(x),Z(y)} , (13.1)

where Z(x) is the length of a compressed encoding of x and Z(xy) is the length of a

compressed encoding of a concatenation of x and y. The NCD between two objects is

designed to be a practical alternative to the normalized information distance (NID),

a universal similarity metric based on Kolmogorov complexity. These calculated

NCDs were then used to classify the melodies into tune families and the classifi-

cations generated were compared with “ground-truth” classifications provided by

musicologists (van Kranenburg et al., 2013; Volk and van Kranenburg, 2012).

In the second task, the algorithms were used to find repeated themes and sections

in five pieces of Western classical music in various genres and from various historical

periods (Collins, 2013a). The analyses generated by the algorithms were, again,

compared with “ground-truth” analyses provided by expert analysts (Collins, 2013b).

Before presenting the algorithms, however, it is first necessary to review some

basic concepts and terminology relating to representing music with point sets.

13.2 Representing Music with Point Sets

In the algorithms considered in this chapter, it is assumed that the music to be

analysed is represented in the form of a multi-dimensional point set called a dataset,
as described by Meredith et al. (2002). Most of these algorithms work with datasets

of any dimensionality. However, it will be assumed here that each dataset is a set of
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Fig. 13.1 An example of a dataset. A two-dimensional point-set representing the fugue from
J. S. Bach’s Prelude and Fugue in C minor, BWV 846. The horizontal axis represents onset time in
tatums; the vertical axis represents morphetic pitch. Each point represents a note or a sequence of
tied notes

two-dimensional points, 〈t, p〉, where t and p are integers representing, respectively,

the onset time in tatums and the chromatic or morphetic pitch (Meredith, 2006b,

2007; Meredith et al., 2002) of a note or sequence of tied notes in a score. Assuming

the musical object to be analysed is the score of a single movement, then the tatum

for that score is defined to be the largest common divisor of every note onset and

duration in the score. The chromatic pitch of a note is an integer indicating the key on

a normal piano keyboard that would need to be pressed to play the note. For example,

if we define the chromatic pitch of A0 to be 0, then the chromatic pitches of B�3, C4

and C�4 are 39, 39 and 40, respectively. The morphetic pitch of a note is an integer

that depends on the position of the head of a note on the staff and the clef in operation

on that staff. It indicates pitch height while ignoring accidental. For example, if we

define the morphetic pitch of A0 to be 0, then the morphetic pitches of B�3, C4 and

C�4 are 22, 23 and 23, respectively. For a more extensive and in-depth discussion of

these and other pitch representations, see Meredith (2006b, pp. 126–130).

Figure 13.1 shows an example of such a dataset. When the music to be analysed is

modal or uses the major–minor tonal system, the output of the algorithms described

below is typically better when morphetic pitch is used. If morphetic pitch information

is not available (e.g., because the data is only available in MIDI format), then, for

modal or tonal music, it can be computed with usually very high accuracy from a

representation that provides the chromatic pitch (or MIDI note number) of each note,

by using an algorithm such as PS13s1 (Meredith, 2006b, 2007). For pieces of music

not based on the modal or major–minor tonal system, using chromatic pitch may give

better results than using morphetic pitch.

13.2.1 Maximal Translatable Patterns (MTPs)

If D is a dataset (as just defined), then any subset of D may be called a pattern. If

P1,P2 ⊆ D, then P1,P2, are said to be translationally equivalent, denoted by P1≡T P2,

if and only if there exists a vector v, such that P1 translated by v is equal to P2. That

is,
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Fig. 13.2 Examples of maximal translatable patterns (MTPs). In each graph, the pattern of circles is
the maximal translatable pattern (MTP) for the vector indicated by the arrow. The pattern of crosses
in each graph is the pattern onto which the pattern of circles is mapped by the vector indicated by
the arrow

P1≡T P2 ⇐⇒ (∃v | P2 = P1 + v) , (13.2)

where P1 +v denotes the pattern that results when P1 is translated by the vector v. For

example, in each of the graphs in Fig. 13.2, the pattern of circles is translationally

equivalent to the pattern of crosses. A pattern, P⊆D, is said to be translatable within

a dataset, D, if and only if there exists a vector, v, such that P+v⊆D. Given a vector,

v, then the maximal translatable pattern (MTP) for v in the dataset, D, is defined and

denoted as follows:

MTP(v,D) = {p | p ∈ D∧ p+ v ∈ D} , (13.3)

where p+ v is the point that results when p is translated by the vector, v. In other

words, the MTP for a vector, v, in a dataset, D, is the set of points in D that can

be translated by v to give other points that are also in D. Figure 13.2 shows some

examples of maximal translatable patterns.

13.2.2 Translational Equivalence Classes (TECs)

When analysing a piece of music, we typically want to find all the occurrences of an

interesting pattern, not just one occurrence. Thus, if we believe that MTPs are related

in some way to the patterns that listeners and analysts find interesting, then we want

to be able to find all the occurrences of each MTP. Given a pattern, P, in a dataset,

D, the translational equivalence class (TEC) of P in D is defined and denoted as

follows:

TEC(P,D) = {Q | Q≡T P∧Q⊆ D} . (13.4)

That is, the TEC of a pattern, P, in a dataset contains all and only those patterns in the

dataset that are translationally equivalent to P. Note that P≡T P, so P ∈ TEC(P,D).
Figure 13.3 shows some examples of TECs.
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Fig. 13.3 Examples of translational equivalence classes (TECs). In each graph, the pattern of circles
is translatable by the vectors indicated by the arrows. The TEC of each pattern of circles is the set
of patterns containing the circle pattern itself along with the other patterns generated by translating
the circle pattern by the vectors indicated. The covered set of each TEC is the set of points denoted
by icons other than filled black dots

The covered set of a TEC, T , denoted by COV(T ), is defined to be the union of

the patterns in the TEC, T . That is,

COV(T ) =
⋃

P∈T

P . (13.5)

Here, we will be particularly concerned with MTP TECs—that is, the translational

equivalence classes of the maximal translatable patterns in a dataset.

Suppose we have a TEC, T = TEC(P,D), in a k-dimensional dataset, D. T con-

tains the patterns in D that are translationally equivalent to P. Suppose T contains n
translationally equivalent occurrences of the pattern, P, and that P contains m points.

There are at least two ways in which one can specify T . First, one can explicitly

define each of the n patterns in T by listing the m points in each pattern. This requires

one to write down mn, k-dimensional points or kmn numbers. Alternatively, one can

explicitly list the m points in just one of the patterns in T (e.g., P) and then give the

n−1 vectors required to translate this pattern onto its other occurrences in the dataset.

This requires one to write down m, k-dimensional points and n−1, k-dimensional

vectors—that is, k(m+n−1) numbers. If n and m are both greater than one, then

k(m+n−1) is less than kmn, implying that the second method of specifying a TEC

gives us a compressed encoding of the TEC. Thus, if a dataset contains at least two

non-intersecting occurrences of a pattern containing at least two points, it will be

possible to encode the dataset in a compact manner by representing it as the union of

the covered sets of a set of TECs, where each TEC, T , is encoded as an ordered pair,

〈P,V 〉, where P is a pattern in the dataset, and V is the set of vectors that translate P
onto its other occurrences in the dataset. When a TEC, T = 〈P,V 〉, is represented in

this way, we call V the set of translators for the TEC and P the TEC’s pattern. We

also denote and define the compression factor of a TEC, T = 〈P,V 〉, as follows:

CF(T ) =
|COV(T )|
|P|+ |V | , (13.6)
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where |X | denotes the cardinality of set, X .2 In this chapter, the pattern, P, of a TEC,

used to encode it as a 〈P,V 〉 pair, will be assumed to be the lexicographically earliest

occurring member of the TEC (i.e., the one that contains the lexicographically earliest

point).3

13.2.3 Approximate Versus Exact Matching

Each of the algorithms described in the next section takes a dataset as input, computes

the MTPs in this dataset and may then go on to compute the TECs of these MTPs.

Several of the algorithms generate compact encodings of the input dataset in the

form of sets of selected TECs that collectively cover the input dataset. Two of

these algorithms, COSIATEC (see Sect. 13.3.3) and SIATECCOMPRESS (see

Sect. 13.3.7), generate losslessly compressed encodings from which the input dataset

can be perfectly reconstructed. These encodings can therefore be interpreted as

explanations for the input dataset that offer an account for every note, reflecting

the assumption that, in a well-composed piece of music, notes will not be selected

at random by the composer, but rather chosen carefully on the grounds of various

aesthetic, expressive and structural reasons. Consequently, if one is interested in

learning how to compose music in the style of some master composer, then one aims

to understand the reasoning underlying the selection of every note in pieces in the

form and style that one wishes to imitate. To do this, merely identifying instances in

these pieces where patterns approximately resemble each other is not enough. One

must also attempt to formulate precise explanations for the differences (however

small) between these approximately matching patterns, so that one understands

exactly how and why the patterns are transformed in the way they are. In other words,

one needs to exactly characterize the transformations that map a pattern onto its

various occurrences—even when the transformation is not simply a shift in time

accompanied by a modal or chromatic transposition. This implies that, if one’s goal

is to achieve an understanding of a set of pieces that is complete and detailed enough

to allow for high-quality novel pieces to be composed in the same style and form,

then one requires losslessly compressed encodings of the existing pieces, based on

exact matches (or, more generally, exactly characterized transformations) between

pattern occurrences.

Nevertheless, if one’s goal is only to produce an analysis that informs the listening

process, or if one only needs to be able to classify existing pieces by genre, composer,

2 In order to conform to standard usage in the data compression literature (see, e.g., Salomon and
Motta, 2010, p. 12), in this chapter, the term “compression factor” is used to signify the quantity
that I and other authors in this area have referred to as “compression ratio” in previous publications
(e.g., Collins et al., 2011; Meredith et al., 2002).
3 A collection of strings or tuples is sorted into lexicographical order, when the elements are sorted
as they would be in a dictionary, with higher priority being given to elements occurring earlier. For
example, if we lexicographically sort the set of points {〈1,0〉,〈0,1〉,〈1,1〉,〈0,0〉}, then we get the
ordered set, 〈〈0,0〉,〈0,1〉,〈1,0〉,〈1,1〉〉.
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period, etc., then approximate matching and lossily compressed encodings may

suffice. In such cases, there are a number of ways in which the algorithms considered

in this chapter can be adapted to account for occurrences of a pattern that are not

exact transpositions in chromatic-pitch-time space. That is, there are a number of

ways in which we might address what Collins et al. (2013) call the “inexactness

problem” with the SIA-based algorithms. First, instead of using a chromatic-pitch

vs. time representation as input, one can use some other point-set representation of

a piece, such as morphetic-pitch vs. time, where translationally equivalent patterns

correspond to sets of notes related by modal rather than chromatic transposition

(e.g., C-D-E would match with D-E-F). Second, one can replace each occurrence

of an MTP in the output of one of the algorithms described below with either the

shortest segment in the music or bounding box in pitch-time space that contains the

MTP (as was done in the experiment reported in Sect. 13.4.2 below). Third, Collins

et al. (2013) address this “inexactness problem” in their SIARCT-CFP algorithm

by combining their SIACT and SIAR algorithms (see Sects. 13.3.5 and 13.3.6,

respectively) with a fingerprinting technique that computes a time-stamped hash key

for each triple of notes in a dataset and then matches these keys (see Chap. 17, this

volume).

13.3 The Algorithms

In this section, the algorithms evaluated in this study will be briefly described and

reviewed.

13.3.1 SIA

SIA stands for “Structure Induction Algorithm” (Meredith, 2006a; Meredith et al.,

2002, 2003, 2001). SIA finds all the maximal translatable patterns in a dataset

containing n, k-dimensional points in Θ(kn2 lgn) time and Θ(kn2) space.4 SIA

computes the vector from each point in the dataset to each lexicographically later

point. Each of these vectors is stored in a list together with a pointer back to the

origin point (see Fig. 13.4 (a) and (b)). This list of 〈vector,point〉 pairs is then sorted

into lexicographical order, giving priority to the vector in each pair (see Fig. 13.4

(c)). The resulting sorted list is segmented at the points at which the vector changes

(as indicated by the boxes in the column headed “Datapoint” in Fig. 13.4 (c)). The

set of points in the entries within a segment in this list form the MTP for the vector

for that segment. This means that all the MTPs can be obtained simply by scanning

this list once (i.e., in Θ(kn2) time, since the list has length n(n−1)/2).

4 By using hashing instead of sorting to partition the inter-point vectors, the average running time
can be reduced to Θ(kn2). For an explanation of asymptotic notation, see Cormen et al. (2009,
pp. 43–53)
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(a) (b)

(c)

Fig. 13.4 The SIA algorithm. (a) A small dataset that could be provided as input to SIA. (b) The
vector table computed by SIA for the dataset in (a). Each entry in the table gives the vector from a
point to a lexicographically later point. Each entry has a pointer back to the origin point used to
compute the vector. (c) The list of 〈vector,point〉 pairs that results when the entries in the vector
table in (b) are sorted into lexicographical order. If this list is segmented at points at which the
vector changes, then the set of points in the entries within a segment form the MTP for the vector
for that segment. (Reproduced from Meredith et al. (2003))

Figure 13.5 gives pseudocode for a straightforward implementation of SIA. The

pseudocode used in this chapter is based on that used by Meredith (2006b, 2007).

In this pseudocode, unordered sets are denoted by italic upper-case letters (e.g., D
in Fig. 13.5). Ordered sets are denoted by boldface upper-case letters (e.g., V, D
and M in Fig. 13.5). When written out in full, ordered sets are listed between angle

brackets, “〈·〉”. Concatenation is denoted by “⊕” and the assignment operator is

“←”. A[i] denotes the (i+1)th element of the ordered set (or one-dimensional array),

A, (i.e., zero-based indexing is used). If B is an ordered set of ordered sets (or a

two-dimensional array), then B[i][ j] denotes the ( j+ 1)th element in the (i+ 1)th
element of B. Elements in arrays of higher dimension are indexed analogously. Block

structure is indicated by indentation alone.

The SIA algorithm in Fig. 13.5 takes a single argument, D, which is assumed to

be an unordered set of n, k-dimensional points. The first step is to sort the points

in D into lexicographical order (line 1) to give an ordered set of points, D. This

takes Θ(kn lgn) time in the worst case using a comparison sort. In lines 2–5, the

vector, D[ j]−D[i], from each point, D[i], to each lexicographically later point, D[ j],
is calculated and stored with the index, i, of the origin point in a pair, 〈D[ j]−D[i], i〉.
Each of these pairs is added to an ordered set, V, in line 5. In line 6, the pairs in V are

sorted lexicographically (i.e., by assigning higher priority to the vector in each pair,

and by sorting the vectors themselves lexicographically). This produces a list, V′,
such as the one shown in Fig. 13.4 (c), in which all pairs with a given vector occur in

a contiguous segment. Line 6 takes Θ(kn2 lgn) time and is asymptotically the most
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SIA(D)
1 D← SORTLex(D)
2 V← 〈〉
3 for i← 0 to |D|−2
4 for j ← i+1 to |D|−1
5 V← V⊕〈〈D[ j]−D[i], i〉〉
6 V′ ← SORTLex(V)
7 M← 〈〉
8 v← V′[0][0]
9 P← 〈D[V′[0][1]]〉
10 for i← 1 to |V′|−1
11 if V′[i][0] = v
12 P← P⊕〈D[V′[i][1]]〉
13 else
14 M←M⊕〈〈P,v〉〉
15 v← V′[i][0]
16 P← 〈D[V′[i][1]]〉
17 M←M⊕〈〈P,v〉〉
18 return M

Fig. 13.5 The SIA algorithm

expensive step in the algorithm. In line 7, an empty ordered set, M, is initialized. This

ordered set will be used to hold the 〈MTP,vector〉 pairs computed in lines 8–17. As

described above, the MTPs and their associated vectors are found simply by scanning

V′ once, starting a new MTP (stored in P) each time the vector (stored in v) changes.

This scan can be accomplished in Θ(kn2) time.

The algorithm can easily be modified so that it only generates MTPs whose sizes

lie within a particular user-specified range. It is also possible for the same pattern to

be the MTP for more than one vector. If this is the case, there will be two or more

〈pattern,vector〉 pairs in the output of SIA that have the same pattern. This can be

avoided and the output can be made more compact by generating instead a list of

〈pattern,vector set〉 pairs, such that the vector set in each pair contains all the vectors

for which the pattern is an MTP. In order to accomplish this, the vectors for which

a given pattern is the MTP are merged into a single vector set which is then paired

with the pattern in the output.

Finally, it is possible to reduce the average running time of SIA to Θ(kn2) by

using hashing instead of sorting to partition the vector table into MTPs.

13.3.2 SIATEC

SIATEC (Meredith, 2006a; Meredith et al., 2002, 2003, 2001) computes all the MTP

TECs in a k-dimensional dataset of size n in O(kn3) time and Θ(kn2) space. In order

to find the MTPs in a dataset, SIA only needs to compute the vectors from each point
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to each lexicographically later point. However, to compute all occurrences of the

MTPs, it turns out to be beneficial in the SIATEC algorithm to compute the vectors

between all pairs of points, resulting in a vector table like the one shown in Fig. 13.6.

The SIATEC algorithm first finds all the MTPs using SIA. It then uses the vector

table to find all the vectors by which each MTP is translatable within the dataset. The

set of vectors by which a given pattern is translatable is equal to the intersection of

the columns in the vector table headed by the points in the pattern (see Fig. 13.6). In

a vector table computed by SIATEC each row descends lexicographically from left

to right and each column increases lexicographically from top to bottom. SIATEC

exploits these properties of the vector table to more efficiently find all the occurrences

of each MTP (Meredith et al., 2002, pp. 335–338).

Figure 13.7 shows pseudocode for a straightforward implementation of SIATEC.

The first step in the algorithm is to sort the points in the dataset, D, lexicographically,

to produce the ordered point set, D (line 1). In line 2, an ordered set, V is initialized

which serves the same purpose as it does in SIA (see Fig. 13.5). In line 3, the

|D|×|D| array, W, is initialized. This array will be used to hold a vector table like the

one in Fig. 13.6. Lines 4–9 compute the inter-point vectors that are stored in W and

V (cf. lines 3–5 in Fig. 13.5). Lines 10–24 compute the MTPs and closely resemble

lines 6–17 in Fig. 13.5. The difference is that, in SIATEC, each MTP is stored with

an ordered set, C, containing the indices into the sorted dataset, D, of the points in the

MTP. This sequence of indices is used in lines 25–48 to compute the translator set of

the TEC for each MTP. The ordered set of MTP TECs, T, is computed in lines 25–48

and returned in line 49. The for loop starting in line 26 iterates over the list of MTPs,

M. For each MTP, P (line 27), and its associated index set, C (line 28), the while
loop in lines 33–47 finds all the vectors by which P can be translated, by computing

the intersection of the columns in the vector table W indexed by the values in C.

This is done by descending the columns in the table and starting and stopping these

descents neither earlier nor later than necessary, respectively.

For a k-dimensional dataset of size n, the worst-case running time of line 1 of

SIATEC is Θ(kn lgn). Lines 2–9 run in Θ(kn2) time. Line 10 takes Θ(kn2 lgn) time

and lines 11–24 take Θ(kn2) time. Let mi be the cardinality of the (i+1)th MTP in

M at line 25. The (i+1)th iteration of the for loop that starts in line 26 computes the

intersection of the columns in the vector table, W, that are headed by the points in

mi. Each column has length n. Therefore the worst-case running time of lines 26–48

Fig. 13.6 The vector table computed by SIATEC for the dataset shown in Fig. 13.4 (a). (Reproduced
from Meredith et al. (2003))
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SIATEC(D)
1 D← SORTLex(D)
2 V← 〈〉
3 Allocate a |D|× |D| array, W
4 for i← 0 to |D|−1
5 for j ← 0 to |D|−1
6 w← 〈D[ j]−D[i], i〉
7 if j > i
8 V← V⊕〈w〉
9 W[i][ j]← w
10 V′ ← SORTLex(V)
11 M← 〈〉
12 v← V′[0][0]
13 P← 〈D[V′[0][1]]〉
14 C← 〈V′[0][1]〉
15 for i← 1 to |V′|−1
16 if V′[i][0] = v
17 P← P⊕〈D[V′[i][1]]〉
18 C← C⊕〈V′[i][1]〉
19 else
20 M←M⊕〈〈P,C,v〉〉
21 v← V′[i][0]
22 P← 〈D[V′[i][1]]〉
23 C← 〈V′[i][1]〉
24 M←M⊕〈〈P,C,v〉〉
25 T← 〈〉
26 for i← 0 to |M|−1
27 P←M[i][0]
28 C←M[i][1]
29 R← 〈0〉
30 for j ← 1 to |P|−1
31 R← R⊕〈0〉
32 X← 〈〉
33 while R[0]≤ |D|− |P|
34 for j ← 1 to |P|−1
35 R[ j]← R[0]+ j
36 v0 ←W[C[0]][R[0]][0]
37 found← false
38 for c← 1 to |P|−1
39 while R[c]< |D|∧W[C[c]][R[c]][0]< v0

40 R[c]← R[c]+1
41 if R[c]≥ |D|∨ v0 �= W[C[c]][R[c]][0]
42 break
43 if c = |P|−1
44 found← true
45 if found∨|P|= 1
46 X← X⊕〈v0〉
47 R[0]← R[0]+1
48 T← T⊕〈〈P,X〉〉
49 return T

Fig. 13.7 The SIATEC algorithm
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is given by

Θ

(|M|−1

∑
i=0

knmi

)
= Θ

(
kn

|M|−1

∑
i=0

mi

)
.

But we know that ∑|M|−1
i=0 mi = n(n− 1)/2, since the MTPs are computed in lines

10–24 by scanning the sorted list, V′. Therefore, the worst-case running time of lines

26–48 and the worst-case running time of SIATEC as a whole, is

Θ

(
kn

|M|−1

∑
i=0

mi

)
= Θ

(
kn

n(n−1)

2

)
= Θ(kn3) .

It is easy to see that the algorithm uses Θ(kn2) space.

13.3.3 COSIATEC

COSIATEC (Meredith, 2006a; Meredith et al., 2003) is a greedy point-set com-

pression algorithm, based on SIATEC (“COSIATEC” stands for “COmpression

with SIATEC”). COSIATEC takes a dataset, D, as input and computes a com-

pressed encoding of D in the form of an ordered set of MTP TECs, T, such

that D =
⋃

T∈T COV(T ) and COV(T1)∩ COV(T2) = /0 for all T1,T2 ∈ T where

T1 �= T2. In other words, COSIATEC strictly partitions a dataset, D, into the cov-

ered sets of a set of MTP TECs. If each of these MTP TECs is represented as a

〈pattern, translator set〉 pair, then this description of the dataset as a set of TECs is

typically shorter than an in extenso description in which the points in the dataset are

listed explicitly.

Figure 13.8 shows pseudocode for COSIATEC. The first step in the algorithm is

to make a copy of the input dataset which is stored in the variable D′ (line 1). Then,

on each iteration of the while loop (lines 3–6), the algorithm finds the “best” MTP

TEC in D′, stores this in T and adds T to T. It then removes the set of points covered

by T from D′ (line 6). When D′ is empty, the algorithm terminates, returning the list

of MTP TECs, T. The sum of the number of translators and the number of points in

COSIATEC(D)
1 D′ ← COPY(D)
2 T← 〈〉
3 while D′ �= /0
4 T ← GETBESTTEC(D′,D)
5 T← T⊕〈T 〉
6 D′ ← D′ \COV(T )
7 return T

Fig. 13.8 The COSIATEC algorithm
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Fig. 13.9 A visualization of the output generated by COSIATEC for the fugue from J. S. Bach’s
Prelude and Fugue in C major (BWV 846) from the first book of Das wohltemperirte Clavier. Note
that, for convenience, the time axis has been labelled in bars rather than tatums. See main text for
details

this output encoding is never more than the number of points in the input dataset and

can be much less than this, if there are many repeated patterns in the input dataset.

The GETBESTTEC function, called in line 4 of COSIATEC, computes the “best”

TEC in D′ by first finding all the MTPs using SIA, then iterating over these MTPs,

finding the TEC for each MTP, and storing it if it is the best TEC so far. In this process,

a TEC is considered “better” than another if it has a higher compression factor, as

defined in (13.6). If two TECs have the same compression factor, then the better TEC

is considered to be the one that has the higher bounding-box compactness (Meredith

et al., 2002), defined as the ratio of the number of points in the TEC’s pattern to the

number of dataset points in the bounding box of this pattern. Collins et al. (2011) have

provided empirical evidence that the compression factor and compactness of a TEC

are important factors in determining its perceived “importance” or “noticeability”. If

two distinct TECs have the same compression factor and compactness, then the TEC

with the larger covered set is considered superior.

Figure 13.9 shows a visualization of the output generated by COSIATEC for the

fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first

book of Das wohltemperirte Clavier. In this figure, each TEC is drawn in a different

colour. For example, occurrences of the subject (minus the first note) are shown in red.

Points drawn in grey are elements of the residual point set. COSIATEC sometimes

generates such a point set on the final iteration of its while loop (see Fig. 13.8) when

it is left with a set of points that does not contain any MTPs of size greater than 1. In

such cases, the final TEC in the encoding contains just the single occurrence of the

residual point set. In the analysis shown in Fig. 13.9, the residual point set contains 26

notes (i.e., 3.57% of the notes in the piece). The overall compression factor achieved

by COSIATEC on this piece is 2.90 (or 3.12, if we exclude the residual point set).

13.3.4 Forth’s Algorithm

Forth (Forth and Wiggins, 2009; Forth, 2012) developed an algorithm, based on

SIATEC, that, like COSIATEC, computes a set of TECs that collectively cover the
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FORTHCOVER(D,C,W,cmin,σmin)
1 S← 〈〉
2 P← /0
3 found ← true
4 while P �= D∧ found
5 found ← false
6 γmax ← 0
7 Cbest ← nil
8 ibest ← nil
9 R← 〈〉
10 for i← 0 to |C|−1
11 c← |C[i]\P|
12 if c < cmin

13 R← R⊕〈i〉
14 continue
15 γ ← cW[i]
16 if γ > γmax

17 γmax ← γ
18 Cbest ← C[i]
19 ibest ← i
20 if Cbest �= nil
21 R← R⊕〈ibest〉
22 found ← true
23 P← P∪Cbest

24 i← 0
25 primaryFound ← false
26 while ¬primaryFound∧ i < |S|
27 if (|S[i][0]∩Cbest|)/|S[i][0]|> σmin

28 S[i]← S[i]⊕〈Cbest〉
29 primaryFound ← true
30 i← i+1
31 if ¬primaryFound
32 S← S⊕〈〈Cbest〉〉
33 for each i ∈ R
34 Remove W[i] from W and C[i] from C
35 return S

Fig. 13.10 An implementation of Forth’s method for selecting a cover for the input dataset, D, from
the set of TEC covered sets, C

input dataset. However, unlike COSIATEC, Forth’s algorithm runs SIATEC only

once and the covers it generates are not, in general, strict partitions—the TECs in

the list generated by Forth’s algorithm may share covered points and, collectively,

may not completely cover the input dataset. The first step in Forth’s algorithm is

to run SIATEC on the input dataset, D. This generates a sequence of MTP TECs,

T = 〈T1,T2, . . .Tn〉. The algorithm then computes the covered set, Ci =
⋃

P∈Ti
P, for

each TEC, Ti in T, to produce a sequence of TEC covered sets, C = 〈C1,C2, . . .Cn〉.
It then assigns a weight, Wi, to each covered set, Ci, to produce the sequence, W =
〈W1,W2, . . .Wn〉. Wi is intended to measure the “structural salience” (Forth, 2012,
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p. 41) of the patterns in the TEC, Ti, and it is defined as follows:

Wi = w′cr,iw
′
compV,i , (13.7)

where w′cr,i is a normalized value representing the compression factor of Ti and

w′compV,i is a normalized value representing compactness. The algorithm then attempts

to select a subset of C that covers the input dataset and maximizes the weights of the

TECs in this cover.

Figure 13.10 gives pseudocode for Forth’s cover selection algorithm. This algo-

rithm takes five arguments: D, C and W, as defined above, along with two numerical

parameters, cmin and σmin. On each iteration of the outer while loop (lines 4–34), the

algorithm selects the “best” remaining TEC covered set in C and adds this to the

cover, S, which is ultimately returned in line 35. The point set, P, initialized in line 2,

is used to store the set of points covered by the TEC covered sets selected. In order for

a TEC covered set to be added to the cover, the number of new points that it covers,

c, (i.e., that are not already in P) must be at least cmin (see line 12). The TEC covered

set that is added on a particular iteration of the while loop is then the one for which

cWi is a maximum (lines 15–19). If no TEC covered set is selected on a particular

iteration, then the algorithm terminates, even if the dataset has not been completely

covered. In lines 20–32, the algorithm determines whether the selected TEC covered

set, Cbest should be added as a “primary” or a “secondary” pattern: a pattern Cs is

defined to be secondary to another (primary) pattern, Cp, if the proportion of points

in Cp that are also in Cs is greater than the parameter, σmin (line 27) (Forth, 2012,

p. 38). On each iteration of the while loop, the best pattern and patterns that fail to

cover a sufficient number of new points are removed from C to improve efficiency

(lines 33–34).

Figure 13.11 shows the analysis generated by Forth’s algorithm for the fugue from

the Prelude and Fugue in C major (BWV 846) from the first book of J. S. Bach’s

Das wohltemperirte Clavier. Again, each TEC is drawn in a different colour. This

analysis was obtained with cmin set to 15 and σmin set to 0.5, as recommended by

Forth (2012, pp. 38, 42).

Fig. 13.11 A visualization of the output generated by Forth’s algorithm for the fugue from
J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first book of Das wohltemperirte
Clavier. For this analysis, cmin was set to 15 and σmin was set to 0.5
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13.3.5 SIACT

Collins et al. (2010) claim that all the algorithms described above can be affected by

what they call the “problem of isolated membership”. This ‘problem’ is defined to oc-

cur when “a musically important pattern is contained within an MTP, along with other

temporally isolated members that may or may not be musically important” (Collins

et al., 2010, p. 6). Collins et al. claim that “the larger the dataset, the more likely it is

that the problem will occur” and that it could prevent the SIA-based algorithms from

“discovering some translational patterns that a music analyst considers noticeable

or important” (Collins et al., 2010, p. 6). Collins et al. propose that this problem

can be solved by taking each MTP computed by SIA (sorted into lexicographical

order) and “trawling” inside this MTP “from beginning to end, returning subsets that

have a compactness greater than some threshold a and that contain at least b points”

(Collins et al., 2010, p. 6). This method is implemented in an algorithm that they

call SIACT, which first runs SIA on the dataset and then carries out “compactness

trawling” (hence “SIACT”) on each of the MTPs found by SIA.

Suppose P = 〈p1, p2, . . . pm〉 contains all and only the points in an MTP, sorted

into lexicographical order. Suppose further that iL(pi) is the index of pi in the lexi-

cographically sorted dataset and that IL(P) = 〈iL(p1), iL(p2), . . . iL(pm)〉. For each

MTP discovered by SIA, SIACT ‘trawls’ the MTP for lexicographically compact

subsets using the CT algorithm shown in Fig. 13.12. Given P, IL(P) and the thresh-

olds, a and b, as just defined, CT first sets up two variables, X and Q (lines 1–2 in

Fig. 13.12). X is used to store the compact subsets of P found by the algorithm and is

eventually returned in line 18. Q is used to store each of these subsets as it is found.

The algorithm then scans P in lexicographical order, considering a new point, P[i],
with dataset index IL(P)[i], on each iteration of the for loop in lines 3–15. On each

iteration of this for loop, if Q is empty, then P[i] is added to Q and the dataset index

of P[i] is stored in the variable iL,0 (lines 4–6). Otherwise, the compactness of the

pattern that would result if P[i] were added to Q is calculated and, if this compactness

is not less than a, then P[i] is added to Q (lines 8–10). If the compactness of the

resulting pattern would be less than a, then the algorithm checks whether Q holds

at least b points and, if it does, Q is added to X and reset to the empty set (lines

11–13). If |Q| is less than b, then it is discarded (lines 14–15). When the algorithm

has finished scanning all the points in P, it is possible that Q contains a pattern of at

least b points. If this is the case, then it is also added to X (lines 16–17) before the

latter is returned in line 18.

A problem with the CT algorithm is that the patterns found for a particular MTP

depend on the order in which points in the MTP are scanned, and there seems to

be no good musical or psychological reason why this should be so—why should

the decision as to whether a given member point is considered ‘isolated’ depend on

the order in which the points in the pattern are scanned? Suppose, for example, that

P = 〈q5,q8,q9,q10,q11〉, where qi is (lexicographically) the ith point in the dataset.

Now suppose that a = 2/3 and b = 3, as Collins et al. (2010, p. 7) suggest. If P
is scanned from left to right, as it would be by the CT algorithm, then the only

compact pattern trawled is {q8,q9,q10,q11}, indicating that the first point, q5 is an
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CT(P,IL(P),a,b)
1 X ← /0
2 Q← /0
3 for i← 0 to |P|−1
4 if Q = /0
5 Q← Q∪{P[i]}
6 iL,0 ← IL(P)[i]
7 else
8 s← IL(P)[i]− iL,0 +1
9 if (|Q|+1)/s≥ a
10 Q← Q∪{P[i]}
11 else if |Q| ≥ b
12 X ← X ∪{Q}
13 Q← /0
14 else
15 Q← /0
16 if |Q| ≥ b
17 X ← X ∪{Q}
18 return X

Fig. 13.12 The SIACT compactness trawler

‘isolated member’. However, if P were scanned from right to left, then the found

pattern would be {q5,q8,q9,q10,q11}—that is, P would not be considered to suffer

from the ‘problem of isolated membership’. Similarly, if the pattern to be trawled

were P2 = 〈q8,q9,q10,q11,q14〉, then clearly q14 in this pattern is no less ‘isolated’

(lexicographically) than q5 in P. However, the CT algorithm would remove q5 from

P, but not q14 from P2. In other words, the CT algorithm would judge P but not P2

to suffer from the ‘problem of isolated membership’.

Figure 13.13 shows the output obtained with COSIATEC for the fugue from

BWV 846 when SIA is replaced by SIACT, with the parameters a and b set to 0.67

and 3, respectively, as suggested by Collins et al. (2010, p. 7). This modification

Fig. 13.13 A visualization of the output generated by the COSIATEC algorithm, with SIA replaced
by SIACT, for the fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first
book of Das wohltemperirte Clavier. This analysis was obtained with parameter a set to 0.67 and
parameter b set to 3
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reduces the overall compression factor achieved from 2.90 to 2.53 and increases the

size of the residual point set from 26 to 118 (16.19% of the dataset). With this residual

point set excluded, the compression factor achieved over the remaining points is

3.59. Note that, when modified in this way, the encoding generated by COSIATEC

includes the full subject, as opposed to the subject without the first note, discovered

by the unmodified version of COSIATEC (see Fig. 13.9). On the other hand, this

analysis using SIACT fails to find a pattern corresponding to the bass entry of the

subject that starts 3
4 of the way through bar 17.

13.3.6 SIAR

In an attempt to improve on the precision and running time of SIA, Collins (2011,

pp. 282–283) defines an SIA-based algorithm called SIAR (which stands for “SIA

for r superdiagonals”). Instead of computing the whole region below the leading

diagonal in the vector table for a dataset (as in Fig. 13.4(b)), SIAR only computes

the first r subdiagonals of this table. This is approximately equivalent to running SIA

with a sliding window of size r (Collins, 2011; Collins et al., 2010). Pseudocode for

SIAR is provided in Fig. 13.14, based on Collins’s (2013c) own implementation.

The first step in SIAR is to calculate the first r subdiagonals of SIA’s vector table

(lines 1–7). This results in a list, V, of 〈v, i〉 pairs, each representing the vector, v,

from point pi to p j, where pk is the (k+1)th point in D, the lexicographically sorted

input dataset. The next step in SIAR is to extract the (not necessarily maximal)

translatable patterns discoverable from V. This is done using the same technique as

used in SIA: V is first sorted into lexicographical order and then segmented at points

where the vector changes (lines 8–17). This produces an ordered set, E, of patterns.

SIA is then applied to each of the patterns in E. However, the MTPs found by SIA

are not required, so, for each pattern, e ∈ E, only the positive inter-point vectors for

e are computed and these are stored in a list, L (lines 18–23). SIAR then produces

a new list of vectors, M, by removing duplicates in L and sorting the vectors into

decreasing order by frequency of occurrence (lines 24–34). The final step in SIAR

is to find the MTP for each of the vectors in M, which, in Collins’s (2013c) own

implementation, is achieved using the method in lines 35–37 in Fig. 13.14. In line

37, the MTP for the vector M[i][0] is found by translating the input dataset, D, by the

inverse of this vector and then finding the intersection between the resulting point set

and the original dataset, D.

Figure 13.15 shows the analysis generated by COSIATEC for the fugue from

BWV 846 when SIA is replaced by SIAR, with the parameter r set to 3. This

modification reduces the overall compression factor from 2.90 to 2.41 and increases

the size of the residual point set from 26 to 38 (5.21% of the dataset). If we exclude

this residual point set, the compression factor over the remaining points is 2.61. Note

that, if compactness trawling is enabled in this modified version of COSIATEC,

then the output for this particular piece is identical to that shown in Fig. 13.13—that

is, when SIA is replaced by SIACT.
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SIAR(D,r)
� Sort the dataset into lexicographical order

1 D← SORTLex(D)
� Compute r subdiagonals of vector table and store in V

2 V← 〈〉
3 for i← 0 to |D|−2
4 j ← i+1
5 while j < |D|∧ j ≤ i+ r
6 V← V⊕〈〈D[ j]−D[i], i〉〉
7 j ← j+1

� Store patterns in E by sorting and segmenting V
8 V← SORTLex(V)
9 E← 〈〉
10 v← V[0][0]
11 e← 〈D[V[0][1]]〉
12 for i← 1 to |V|−1
13 if V[i][0] = v
14 e← e⊕〈D[V[i][1]]〉
15 else
16 E← E⊕〈e〉, e← 〈D[V[i][1]]〉, v← V[i][0]
17 E← E⊕〈e〉

� For each pattern in E, find +ve inter-point vectors and store in L
18 L← 〈〉
19 for i← 0 to |E|−1
20 e← E[i]
21 for j ← 0 to |e|−2
22 for k ← j+1 to |e|−1
23 L← L⊕〈e[k]− e[ j]〉

� Remove duplicates from L and order vectors by decreasing frequency of occurrence
24 L← SORTLex(L)
25 v← L[0]
26 f ← 1
27 M← 〈〉
28 for i← 1 to |L|−1
29 if L[i] = v
30 f ← f +1
31 else
32 M←M⊕〈〈v, f 〉〉, f ← 1, v← L[i]
33 M←M⊕〈〈v, f 〉〉
34 M← SORTDESCENDINGBYFREQ(M)

� Find the MTP for each vector in M, store it in S and return S
35 S← 〈〉
36 for i← 0 to |M|−1
37 S← S⊕〈D∩ (D−M[i][0])〉
38 return S

Fig. 13.14 Pseudocode for SIAR, based on Collins’s (2013c) own implementation
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Fig. 13.15 A visualization of the output generated by the COSIATEC algorithm, with SIA replaced
by SIAR, for the fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first
book of Das wohltemperirte Clavier. This analysis was obtained with the parameter r set to 3

13.3.7 SIATECCompress

One of the actions carried out by the GETBESTTEC function, called in line 4 of

COSIATEC (see Fig. 13.8), is to run SIATEC on the set, D′, which contains what

remains of the input dataset, D, on each iteration of the while loop. Since SIATEC

has worst-case running time Θ(n3) where n is the number of points in the input

dataset, running COSIATEC on large datasets can be time-consuming. On the other

hand, because COSIATEC strictly partitions the dataset into non-overlapping MTP

TEC covered sets, it tends to achieve high compression factors for many point-set

representations of musical pieces (typically between 2 and 4 for a piece of classical

or baroque music).

SIATECCOMPRESS(D)
1 T← SIATEC(D)
2 T← SORTTECSBYQUALITY(T)
3 D′ ← /0
4 E← 〈〉
5 for i← 0 to |T|−1
6 T ← T[i]
7 S ← COV(T )

� Recall that each TEC, T , is an ordered pair, 〈pattern, translator set〉
8 if |S\D′|> |T [0]|+ |T [1]|
9 E← E⊕〈T 〉
10 D′ ← D′ ∪S
11 if |D′|= |D|
12 break
13 R← D\D′
14 if |R|> 0
15 E← E⊕〈ASTEC(R)〉
16 return E

Fig. 13.16 The SIATECCOMPRESS algorithm



13 Analysing Music with Point-Set Compression Algorithms 357

Like COSIATEC, the SIATECCOMPRESS algorithm shown in Fig. 13.16 is a

greedy compression algorithm based on SIATEC that computes an encoding of a

dataset in the form of a union of TEC covered sets. Like Forth’s algorithm (but unlike

COSIATEC), SIATECCOMPRESS runs SIATEC only once (line 1) to get a list

of TECs. This list is then sorted into decreasing order by quality (line 2), where the

decision as to which of any two TECs is superior is made in the same way as in

COSIATEC (described above). The algorithm then finds a compact encoding, E, of

the dataset in the form of a set of TECs. It does this by iterating over the sorted list of

TECs (lines 5–12), adding a new TEC, T , to E if the number of new points covered

by T is greater than the size of its 〈pattern, translator set〉 representation (lines 8–12).

Each time a TEC, T , is added to E, its covered set is added to the set D′, which

therefore maintains the set of points covered so far after each iteration. When D′ is

equal to D or all the TECs have been scanned, the for loop terminates. Any remaining

uncovered points are aggregated into a residual point set, R, (line 13) which is re-

expressed as a TEC with an empty translator set (line 15) and added to the encoding,

E. SIATECCOMPRESS does not generally produce as compact an encoding as

COSIATEC, since the TECs in its output may share points. However, it is faster

than COSIATEC and can therefore be used practically on much larger datasets. Like

COSIATEC, but unlike Forth’s algorithm, SIATECCOMPRESS always produces

a complete cover of the input dataset (although the last TEC in the encoding may

consist of just a single residual point set).

Figure 13.17 shows the analysis generated by SIATECCOMPRESS for the fugue

from BWV 846. The overall compression factor for this analysis is 1.94 compared

with the value of 2.90 obtained using COSIATEC. The residual point set in this

case contains 82 notes (11.25%) (cf. 26 notes, 3.57% for COSIATEC) and the

compression factor excluding this residual point set is 2.20 (compared with 3.12 for

COSIATEC).

Fig. 13.17 A visualization of the output generated by the SIATECCOMPRESS algorithm, for the
fugue from J. S. Bach’s Prelude and Fugue in C major (BWV 846) from the first book of Das
wohltemperirte Clavier
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13.4 Evaluation

The algorithms described above were evaluated on two musicological tasks: clas-

sifying folk song melodies into tune families and discovering repeated themes and

sections in polyphonic classical works. The results obtained will now be presented

and discussed.

13.4.1 Task 1: Classifying Folk Song Melodies into Tune Families

For over a century, musicologists have been interested in measuring similarity be-

tween folk song melodies (Scheurleer, 1900; van Kranenburg et al., 2013), primarily

with the purpose of classifying such melodies into tune families (Bayard, 1950),

consisting of tunes that have a common ancestor in the tree of oral transmission. In

the first evaluation task, COSIATEC, Forth’s algorithm and SIATECCOMPRESS

were used to classify a collection of folk song melodies into tune families. The

collection used was the Annotated Corpus (van Kranenburg et al., 2013; Volk and

van Kranenburg, 2012) of 360 melodies from the Dutch folk song collection, On-
der de groene linde (Grijp, 2008), hosted by the Meertens Institute and accessible

through the website of the Dutch Song Database (http://www.liederenbank.nl). The

algorithms were used as compressors to calculate the normalized compression dis-
tance (NCD) (Li et al., 2004) between each pair of melodies in the collection (see

(13.1)). Each melody was then classified using the 1-nearest-neighbour algorithm

with leave-one-out cross-validation. The classifications obtained were compared with

a ground-truth classification of the melodies provided by expert musicologists. Four

versions of each algorithm were tested: the basic algorithm as described above, a

version incorporating the CT algorithm (Fig. 13.12), a version using SIAR instead

of SIA and a version using both SIAR and CT. As a baseline, one of the best

general-purpose compression algorithms, BZIP2, was also used to calculate NCDs

between the melodies.

Table 13.1 shows the results obtained in this task. In this table, algorithms with

names containing “R” employed the SIAR algorithm with r = 3 in place of SIA. The

value of 3 for r was chosen so as to be small, as the higher the value of r, the more

SIAR approximates to SIA. Collins et al. (2013) ran SIAR with r = 1. Algorithms

with names containing “CT” used Collins et al.’s (2010) compactness trawler, with

parameters a = 0.66 and b = 3, chosen because these were the values suggested by

Collins et al. (2010, p. 7). Forth’s algorithm was run with cmin = 15 and σmin = 0.5,

as suggested by Forth (2012, pp. 38, 42). No attempt was made to find optimal

values for these parameters, so overfitting is very unlikely. On the other hand, this

also means that the chosen parameters are probably suboptimal. The column headed

“SR” gives the classification success rate—i.e., the proportion of songs in the corpus

correctly classified. The third and fourth columns give the mean compression factor

achieved by each algorithm over, respectively, the corpus and the file-pairs used to

compute the compression distances.



13 Analysing Music with Point-Set Compression Algorithms 359

Table 13.1 Results on Task 1. SR is the classification success rate, CRAC is the average compression
factor over the melodies in the Annotated Corpus. CRpairs is the average compression factor over
the pairs of files used to obtain the NCD values

Algorithm SR CRAC CRpairs

COSIATEC 0.8389 1.5791 1.6670

COSIARTEC 0.8361 1.5726 1.6569

COSIARCTTEC 0.7917 1.4547 1.5135

COSIACTTEC 0.7694 1.4556 1.5138

ForthCT 0.6417 1.1861 1.2428

ForthRCT 0.6417 1.1861 1.2428

Forth 0.6111 1.2643 1.2663

ForthR 0.6028 1.2555 1.2655

SIARCTTECCompress 0.5750 1.3213 1.3389

SIATECCompress 0.5694 1.3360 1.3256

SIACTTECCompress 0.5250 1.3197 1.3381

SIARTECCompress 0.5222 1.3283 1.3216

BZIP2 0.1250 2.7678 3.5061

The highest success rate of 84% was obtained using COSIATEC. Table 13.1

suggests that algorithms based on COSIATEC performed markedly better on this

song classification task than those based on SIATECCOMPRESS or Forth’s algorithm.

Using SIAR instead of SIA and/or incorporating compactness trawling reduced the

performance of COSIATEC. However, using both together, slightly improved the

performance of SIATECCOMPRESS. Forth’s algorithm performed slightly better

than SIATECCOMPRESS. The performance of Forth’s algorithm on this task was

improved by incorporating compactness trawling; using SIAR instead of SIA in

Forth’s algorithm slightly reduced the performance of the basic algorithm and had

no effect when compactness trawling was used. The results obtained using BZIP2

were much poorer than those obtained using the SIA-based algorithms, which may

suggest that general-purpose compressors fail to capture certain musical structure

that is important for this task. However, using an appropriate string-based input

representation, where repeated substrings correspond to repeated segments of music,

instead of a point set representation as was used here, may improve the performance

of compressors such as BZIP2 that are designed primarily for text compression. Of

the SIA-based algorithms, COSIATEC achieved the best compression on average,

followed by SIATECCOMPRESS and then Forth’s algorithm. COSIATEC also

achieved the best success rate. However, since Forth’s algorithm performed slightly

better than SIATECCOMPRESS, it seems that compression factor alone was not a

reliable indicator of classification accuracy on this task—indeed, the best compressor,

BZIP2, produced the worst classifier. None of the algorithms achieved a success rate

as high as the 99% obtained by van Kranenburg et al. (2013) on this corpus using

several local features and an alignment-based approach. The success rate achieved

by COSIATEC is within the 83–86% accuracy range obtained by Velarde et al.
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(2013, p. 336) on this database using a wavelet-based representation, with similarity

measured using Euclidean or city-block distance.

13.4.2 Task 2: Discovering Repeated Themes and Sections

In the second task, each of the SIA-based algorithms tested in Task 1 was used

to discover repeated themes and sections in the five pieces in the JKU Patterns

Development Database (JKU-PDD) (Collins, 2013a). This database contains Orlando

Gibbons’ madrigal, “Silver Swan” (1612); the fugue from J. S. Bach’s Prelude and

Fugue in A minor (BWV 889) from Book 2 of Das wohltemperirte Clavier (1742);

the second movement of Mozart’s Piano Sonata in E flat major (K. 282) (1774); the

third movement of Beethoven’s Piano Sonata in F minor, Op. 2, No. 1 (1795); and

Chopin’s Mazurka in B flat minor, Op. 24, No. 4 (1836). The database also contains

encodings of ground-truth analyses by expert analysts that identify important patterns

in the pieces. For each of these patterns, a ground-truth analysis encodes one or more

occurrences, constituting an occurrence set for each of the ground-truth patterns. It

is important to note, however, that each of these ground-truth occurrence sets does

not necessarily contain all the occurrences within a piece of a particular pattern. For

example, the ground-truth analyses fail to recognize that, in both of the minuet-and-

trio movements by Beethoven and Mozart, the first section of the trio is recapitulated

at the end of the second section in a slightly varied form. Why such occurrences have

been omitted from the ground-truth is not clear.

It can also be argued that the ground-truth analyses in the JKU-PDD omit certain

patterns that might reasonably be considered important or noticeable. For example,

Figure 13.18 shows two patterns discovered by COSIATEC that help to account

for the structure of the lyrical fourth section of the Chopin Mazurka, yet this section

of the piece is completely ignored in the JKU-PDD ground truth. Again, why the
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Fig. 13.18 Examples of noticeable and/or important patterns in Chopin’s Mazurka in B flat minor,
Op. 24, No. 4, that were discovered by COSIATEC, but are not recorded in the ground truth. Pattern
(a) occurs independently of pattern (b) at bars 73 and 89
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analysts whose work was used as a basis for the ground-truth should have ignored

such patterns is not clear.

Each of the algorithms tested generates a set of TECs which is intended to contain

all the occurrences of a particular pattern. That is, each TEC is intended to corre-

spond to a ground-truth occurrence set. In general, in the ground-truth analyses, an

“occurrence” of a pattern is not necessarily exactly translationally equivalent to it

in pitch-time space. For example, it is common in the ground-truth analyses of the

JKU-PDD for patterns to be specified by just the segments of the music that span

them; or, if the pattern occurs entirely within a single voice, by the segment of that

voice that spans the pattern. On the other hand, it is not uncommon for an MTP to

contain only some of the notes within the shortest segment of the music or smallest

rectangle in pitch-time space that contains it, resulting in it having a compactness

less than 1. In such cases, a ground-truth pattern may be equal to the shortest segment

containing an MTP or an MTP’s bounding-box, rather than equal to the MTP itself.

In this task, therefore, each of the 12 algorithms was tested on the JKU-PDD in

three different “modes”: “Raw” mode, “Segment” mode and “BB” mode. In “Raw”

mode, the pattern occurrence sets generated are simply the “raw” TECs computed

by the algorithm (see Fig. 13.19(a)). In “BB” mode, each raw pattern occurrence is

replaced in the output with the pattern containing all the points in the bounding-box

of the pattern (Fig. 13.19(b)). In “Segment” mode, each raw pattern occurrence is

replaced with the pattern containing all the points in the temporal segment spanning

the pattern (Fig. 13.19(c)). The results of this task are given in Table 13.2. The values

in this table are three-layer F1 scores (TLF1), as defined by Meredith (2013). Each

value gives the harmonic mean of the precision and recall of the algorithm on a given

piece. Three-layer F1 score is a modification of the standard F1 score that gives credit

to an algorithm for discovering a pattern or an occurrence that is very similar but

not identical to a ground-truth pattern. If the standard definition of F1 score is used

in this task, then an algorithm may score 0 even if each pattern that it generates

differs from a ground-truth pattern by only one note. Three-layer F1 score overcomes

(a) Raw (b) BB (c) Segment

Fig. 13.19 (a) The pattern consisting of two black dots is a “raw” pattern, as might be output by
one of the SIA-based algorithms. This pattern is the MTP for the vector indicated by the arrow. The
pattern of crosses is the image of the black dot pattern after translation by this vector. (b) The shaded
area indicates the corresponding bounding-box pattern output by the algorithm when operating
in “BB” mode. (c) The shaded area indicates the corresponding segment pattern output when the
algorithm operates in “Segment” mode
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this problem by using F1 score (or, equivalently, the Sørensen–Dice index (Dice,

1945; Sørensen, 1948)) to measure similarity on three levels of structure: between

individual occurrences, between occurrence sets and between sets of occurrence sets.

In Table 13.2, the highest values for each piece are in bold. The last column gives

the mean TLF1 value over all the pieces for a given algorithm. The algorithms are

named using the same convention as used in Table 13.1, except that, in addition, the

mode (Raw, Segment or BB) is appended to the name.

Overall, the best performing algorithms on this task were COSIATEC and SIATE-

CCOMPRESS in “Segment” mode. These were the best-performing algorithms on

the Chopin, Gibbons and Beethoven pieces. Using SIAR instead of SIA in these

algorithms in “Segment” mode did not change the overall mean performance, but

Table 13.2 Results on Task 2. Values are “three-layer F1” values, as defined by Meredith (2013)

Algorithm Chopin Gibbons Beethoven Mozart Bach Mean

COSIACTTEC 0.09 0.16 0.22 0.29 0.23 0.20

COSIACTTECBB 0.18 0.24 0.42 0.40 0.22 0.29

COSIACTTECSegment 0.25 0.31 0.56 0.45 0.19 0.35

COSIARCTTEC 0.09 0.16 0.22 0.29 0.23 0.20

COSIARCTTECBB 0.18 0.24 0.42 0.40 0.22 0.29

COSIARCTTECSegment 0.25 0.31 0.56 0.45 0.19 0.35

COSIARTEC 0.05 0.12 0.14 0.18 0.20 0.14

COSIARTECBB 0.22 0.31 0.49 0.38 0.22 0.32

COSIARTECSegment 0.44 0.39 0.69 0.55 0.19 0.45
COSIATEC 0.05 0.11 0.18 0.23 0.19 0.15

COSIATECBB 0.17 0.23 0.51 0.46 0.21 0.32

COSIATECSegment 0.37 0.37 0.71 0.60 0.18 0.45
Forth 0.12 0.33 0.32 0.21 0.17 0.23

ForthBB 0.18 0.27 0.32 0.27 0.17 0.24

ForthCT 0.23 0.35 0.56 0.56 0.40 0.42

ForthCTBB 0.27 0.34 0.57 0.58 0.39 0.43

ForthCTSegment 0.29 0.35 0.58 0.59 0.31 0.42

ForthR 0.12 0.30 0.20 0.25 0.30 0.23

ForthRBB 0.18 0.25 0.29 0.31 0.28 0.26

ForthRCT 0.23 0.35 0.56 0.56 0.40 0.42

ForthRCTBB 0.27 0.34 0.57 0.58 0.39 0.43

ForthRCTSegment 0.29 0.35 0.58 0.59 0.31 0.42

ForthRSegment 0.28 0.25 0.35 0.38 0.27 0.31

ForthSegment 0.33 0.26 0.35 0.33 0.19 0.29

SIACTTECCompress 0.12 0.20 0.23 0.30 0.27 0.22

SIACTTECCompressBB 0.17 0.27 0.30 0.35 0.27 0.27

SIACTTECCompressSegment 0.20 0.26 0.33 0.38 0.22 0.28

SIARCTTECCompress 0.12 0.20 0.23 0.30 0.27 0.22

SIARCTTECCompressBB 0.17 0.27 0.30 0.35 0.27 0.27

SIARCTTECCompressSegment 0.20 0.26 0.33 0.38 0.22 0.28

SIARTECCompress 0.10 0.18 0.19 0.18 0.25 0.18

SIARTECCompressBB 0.39 0.32 0.53 0.45 0.26 0.39

SIARTECCompressSegment 0.60 0.39 0.65 0.57 0.25 0.49
SIATECCompress 0.11 0.16 0.19 0.25 0.26 0.19

SIATECCompressBB 0.37 0.30 0.51 0.51 0.29 0.40

SIATECCompressSegment 0.56 0.40 0.63 0.59 0.29 0.49
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did change the performance on individual pieces. The highest score obtained on any

single piece was 0.71 by COSIATECSEGMENT on the Beethoven sonata movement.

Interestingly, Forth’s algorithm was the best-performing algorithm on the Bach fugue

by a considerable margin. This suggests that there may be some feature of this

algorithm that makes it particularly suited to analysing imitative contrapuntal music.

13.5 Conclusions

Each of the algorithms considered in this study takes a point-set representation of

a piece of music as input and computes a set of TECs that collectively cover (or

almost cover) this point set. All the algorithms attempt to select TECs in a way that

maximizes compression factor and compactness. The results obtained on two quite

different evaluation tasks suggest that this geometric, compression-based approach

has the potential to lead to versatile algorithms that derive analyses from in extenso

music representations that can profitably be used in a variety of musicological tasks.

However, the results also indicate that certain variants of the algorithms may be

more suited to some tasks than to others. The results do not unambiguously support

the hypothesis that the best analyses of a piece correspond to the shortest possible

descriptions of it. However, COSIATEC, the SIA-based algorithm that achieves

the best compression in general, was the best-performing algorithm on Task 1 and

achieved the second-best score overall on Task 2.
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Chapter 14
Composer Classification Models for
Music-Theory Building

Dorien Herremans, David Martens, and Kenneth Sörensen

Abstract The task of recognizing a composer by listening to a musical piece used

to be reserved for experts in music theory. The problems we address here are, first,

that of constructing an automatic system that is able to distinguish between music

written by different composers; and, second, identifying the musical properties that

are important for this task. We take a data-driven approach by scanning a large

database of existing music and develop five types of classification model that can

accurately discriminate between three composers (Bach, Haydn and Beethoven).

More comprehensible models, such as decision trees and rulesets, are built, as well

as black-box models such as support vector machines. Models of the first type offer

important insights into the differences between composer styles, while those of the

second type provide a performance benchmark.

14.1 Introduction

Automatic composer-identification is a complex task that remains a challenge in the

field of music information retrieval (MIR). The problems we address here are, first,

that of constructing an automatic system that is able to distinguish between music

written by different composers; and, second, that of identifying the musical properties

that are important for this task. The latter can offer interesting insights for music

theorists.

A data-driven approach is taken in this research by extracting global features from

a large database of existing music. Based on this data, five types of classification
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model (decision tree, ruleset, logistic regression, support vector machines and Naive

Bayes) are developed that can accurately classify a musical piece between Bach,

Haydn or Beethoven. Most of the developed models are comprehensible and offer

insight into the styles of the composers. Yet, a few black-box models were also built

as a performance benchmark.

14.2 Prior Work in Music Information Retrieval

The task of composer classification belongs to the domain of Music Information

Retrieval (MIR), a multidisciplinary field concerned with retrieving and analysing

multifaceted information from large music databases (Downie, 2003). The field of

MIR has grown rapidly in recent years due to the digitization of the music industry.

In 2011 alone, the European consumer expenditure on digital media exceeded 33

billion euros (Stenzel and Downes, 2012).

The first mention of the term MIR is due to Kassler (1966), who named the

programming language he developed to extract information from music files “MIR”.

The early work done on the topic of computational music analysis is described in

more detail by Mendel (1969).

Recently, many topics have been explored in the field of MIR. Examples of these

are the content-based music search engine “query-by-humming”, which allows a user

to hum a tune in order to search for the original song in a large database (Ghias et al.,

1995; Tseng, 1999). Pfeiffer et al. (1997) developed a system that can detect violence

in video soundtracks. The techniques developed by Wold et al. (1996) are used to, for

instance, identify different types of human speaker (e.g., female versus male). Music

similarity research is another topic that has been explored by MIR scientists, in which

the similarity of two musical pieces is measured (Berenzweig et al., 2004). For more

detailed surveys of research done in the field of MIR, see Typke et al. (2005), Weihs

et al. (2007) and Casey et al. (2008). In the current chapter, however, the focus will

be on composer classification.

14.2.1 Classification Systems

The task of music classification can be seen as building models that assign one or

more class labels to musical pieces based on their content. These models are often

evaluated based on accuracy, i.e., the number of correctly classified instances versus

the total number of instances. It should be noted however that accuracy is not always

the best performance measure, for instance in the case of an unbalanced dataset. In

this research, the area under the curve (AUC) of the receiver operating characteristic

(ROC) is used to evaluate the performance of the models. This metric, which takes

into account the true positives versus the false positives, is more suitable since the

dataset is slightly skewed (see Fig. 14.1) (Fawcett, 2004). Most existing studies on
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music classification only evaluate their model based on the accuracy rate. When

comparing the performance of previous studies, one should take into account that

accuracy is not always comparable.

While the specific task of composer classification has not received a great deal

of attention in the literature (Backer and van Kranenburg, 2005; Geertzen and van

Zaanen, 2008; van Kranenburg, 2008), music classification has been applied to a

plethora of other topics. Machine learning tools have been applied to classify pieces

by, for example, cultural origin (Whitman and Smaragdis, 2002), geographic region

(Hillewaere et al., 2009), timbre (Cosi et al., 1994), mood (Laurier et al., 2008), artist

(Mandel and Ellis, 2005), hit ranking (Herremans et al., 2014) and genre (Chew et al.,

2005; Tzanetakis and Cook, 2002).

There is an important difference between the data representation in classification

models that work with audio data (e.g., WAV files) and symbolic data (e.g., MIDI

files). The types of feature that can be extracted from a dataset and used to build

models are vastly different for the two categories. Encouraging results have been

obtained on classifying music audio data. For example, Whitman et al. (2001) built

neural networks and support vector machine models for artist identification based on

audio features. These models achieved classification accuracies of 91% in a one-in-

five artist space over a small corpus (35 songs) and 70% correct over a larger corpus

(50 songs) with ten artists. However, in this chapter, the focus will be on building

comprehensible models, therefore we chose to work with symbolic features since

they are generally more meaningful for music theorists.

In symbolic music classification, there are two main approaches. On the one hand,

there are systems that use a language modelling approach, including n-grams and

hidden Markov models. They take into account local features that change over the

course of the musical fragment (Pérez-Sancho et al., 2008). On the other hand are

systems that extract a finite vector of global features from each song (Steinbeck,

1982).

A study by Volk and van Kranenburg (2012) showed that recurring motifs are

important when classifying songs into tune families. This suggests that locality, and

thus local features, are important factors in classifying songs. This first approach,

based on local features, was confronted by the challenge of efficiently representing

data for machine learning. Techniques such as multiple viewpoints offer a possible

solution to this problem (Conklin and Witten, 1995; Pearce et al., 2005). The problem

of classifying folk songs by region was tackled with a language model by Li et al.

(2006). They achieved an accuracy rate of 72.5% on a data set of European folk songs

from six different regions. Pérez-Sancho et al. (2008) modelled chord progressions

and melodies as n-grams and strings, and constructed genre classification models

based on this representation. They were able to achieve an 86% accuracy rate for

three broad genres. A success rate of 96.6% was obtained by Hontanilla et al. (2013)

with an n-gram approach on discriminating between Shostakovich and Bach.

The second approach, based on global features, is the one that we focus on in this

chapter. Other studies that have used this approach include that of Steinbeck (1982),

who used global features to cluster melodies into meaningful groups such as hymns,

children’s songs and hunting songs. Eerola et al. (2001) used global features for
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assessing similarity. Ponce de León and Iñesta (2003) used global melodic, harmonic

and rhythmic descriptors for style classification. The ensemble method based on a

neural network and a k-nearest neighbour developed by McKay and Fujinaga (2004)

for genre classification used 109 global features and achieved an accuracy of 98% for

root genres and 90% for leaf genres. Moreno-Seco et al. (2006) also applied ensemble

methods based on global features to a style classification problem. Bohak and Marolt

(2009) used the same type of features to assess the similarity between Slovenian

folk song melodies. Herlands et al. (2014) combined typical global features with a

novel class of local features to detect nuanced stylistic elements. Their classification

models obtained an accuracy of 80% when discriminating between Haydn’s and

Mozart’s string quartets.

A small number of studies have compared both types of feature and compared

their performance on the folk music classification problem. Jesser (1991) created

classification models based on both features using the dataset from Steinbeck (1982).

Her conclusion was that global features do not contribute much to the classification.

A study by Hillewaere et al. (2009) found that event models outperform a global

feature approach for classifying folk songs by their geographical origin (England,

France, Ireland, Scotland, South East Europe and Scandinavia). In another study

with European folk tunes, Hillewaere et al. (2012) compared string methods with

n-gram models and global features for genre classification of 9 dance types. They

concluded that features based on duration lead to better classification, no matter

which method is used, although the n-gram method performed best overall. Van

Kranenburg et al. (2013) obtained similar results for the classification of Dutch folk

tunes into tune families. Their study showed that local features always obtain the

best results, yet global features can be successful on a small corpus when the optimal

subset of features is used. Similar results were obtained in a study to detect similarity

between folk tunes (van Kranenburg, 2010).

Since the dataset used in our research was relatively small and global features

were a relatively simple way of representing melodies that can be easily processed by

different types of classifier, we opted to use a carefully selected set of global features

in the research reported in this chapter.

14.2.2 Composer Classification

While a lot of research has been done on the task of automatic music classification (see

Sect. 14.2.1), the subtask of composer classification remains relatively unexplored.

Wołkowicz et al. (2007) used n-grams to classify piano files into groups of five

composers. Hillewaere et al. (2010) also used n-grams and compared them with

global feature models to distinguish between string quartets by Haydn and Mozart.

The classification accuracy of their trigram approach for recognizing composers for

string quartets was 61% for violin and viola, and 75% for cello. Another system that

classifies string quartet pieces by composer has been implemented by Kaliakatsos-

Papakostas et al. (2011). They used a Markov chain to represent the four voices of



14 Composer Classification Models for Music-Theory Building 373

the quartets as a monophonic melody. A classification success rate of 59 to 88%

was achieved when classifying between two composers with their weighted Markov

chain model. The study performed by Pollastri and Simoncelli (2001) had a lower

accuracy rate than the previously discussed research. The Hidden Markov Models

they designed for the classification of 605 monophonic themes by five composers

had an accuracy of 42% on average. Backer and van Kranenburg (2005) have applied

statistical pattern recognition to the problem of distinguishing Bach from Handel,

Telemann, Haydn and Mozart using 20 features in different time slices throughout

the pieces. They concluded that it is “very possible to isolate the style of J.S. Bach

from Telemann, Handel, Haydn or Mozart”.

Van Kranenburg and Backer (2004) used 20 global style markers based on proper-

ties of counterpoint. A decision tree (C4.5) (Quinlan, 1993) and nearest neighbour

classification algorithm are built on a database of 320 pieces from the eighteenth and

early nineteenth century. They are able to achieve a fairly low error rate. Although

the features are described in the paper, a detailed description of the models is missing.

Similar features based on counterpoint are used by Mearns et al. (2010) to develop

a C4.5 decision tree and naive Bayes models. Their models correctly classified 44

out of 66 pieces with 7 groups of composers. The resulting decision tree could give

music theorists insight into the differences between styles of composers; however,

the tree is not shown in the paper.

In the following sections, the dataset used in this research is discussed together

with the chosen features. These are then used to build accurate and comprehensible

classification models (Sect. 14.4). The resulting models are described in detail in this

chapter and give insight into the differences between the styles of Haydn, Beethoven

and Bach.

14.3 Data Sources

The range of features that can be extracted from music depends heavily on the type

of file they have to be extracted from. Computational music analysis is typically

performed on two types of music file, those based on audio signals and structured
files. The first category includes files representing audio signals (e.g., WAV and MP3)

and files containing the values of features derived from audio signals (e.g., short-term

Fourier spectra, MFCCs, etc.). While there is a large quantity of music available in

such formats, the types of feature that result from analysing these files (e.g., spectral

flux and zero-crossing rate (Tzanetakis et al., 2003)) are not the most comprehensible,

especially for music theorists. For the purpose of our research, it was therefore more

appropriate to work with files of the second type, i.e., structured files.

Structured, symbolic files, such as MIDI files, contain high-level structured infor-

mation about music. MIDI files, in particular, describe a specific way of performing

a piece and contain information such as the start, duration, velocity and instrument

of each note. These files allow us to extract musically meaningful features.
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Fig. 14.1 Class distribution
of the dataset for the different
composers

Haydn (HA) Beethoven (BE) Bach (BA)
0

200

400

600

254

196

595

N
u

m
b

er
o

f
in

st
an

ce
s

14.3.1 Dataset

We used MIDI files from the KernScores database, since they could be loaded into

jSymbolic, the software used to extract the features (see Sect. 14.3.2). This is a large

collection (7,866,496 notes in 108,703 files) of virtual music scores made available by

the Center for Computer Assisted Research in the Humanities at Stanford University

(CCARH) (CCARH, 2012). It must be pointed out that MIDI files are a performance

representation, often recorded by a human playing the score, and they therefore do

not guarantee an accurate representation of the score (van Kranenburg and Backer,

2004). However, the KernScore database contains MIDI files with correct timing and

pitch information, since they were derived from MuseData files that were produced

by manual encoding of printed scores (Sapp, 2005).

Three composers, Johann Sebastian Bach (BA), Ludwig van Beethoven (BE)

and Franz Joseph Haydn (HA), were chosen for this research since there are many

pieces by these composers in the KernScores database, allowing us to create more

accurate models. An overview of the composer class distribution of the selected 1045

movements is given in Fig. 14.1. Almost all available pieces by these composers

were included in our dataset, except for a few very short fragments.

14.3.2 Feature Extraction

There are a number of tools available for extracting musical features from symbolic

files, such as Humdrum (Huron, 2002) and MIDI toolbox for Matlab (Eerola and

Toiviainen, 2004). Due to its ease of use, compatibility with polyphonic music, good

support and the quality of the resulting features, the software package jSymbolic was

used to extract the features from the dataset (McKay and Fujinaga, 2007). jSymbolic

is contained within jMIR, the Java-based Open Source software toolbox designed for

automatic music classification (McKay and Fujinaga, 2009).
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Table 14.1 Features extracted with jSymbolic

Variable Feature description

x1 Chromatic Motion Frequency - Fraction of

chromatic intervals

x2 Melodic Fifth Frequency

x3 Melodic Octaves Frequency

x4 Melodic Thirds Frequency

x5 Most Common Melodic Interval Prevalence

x6 Most Common Pitch Prevalencea

x7 Most Common Pitch Class Prevalenceb

x8 Relative Strength of Most Common Intervals

- fraction of intervals belonging to the

second most common / most common melodic intervals

x9 Relative Strength of Top Pitch Classesc

x10 Relative Strength of Top Pitchesc

x11 Repeated Notes - fraction of notes

that are repeated melodically

x12 Stepwise Motion Frequency

a Pitch refers to MIDI pitch number.
b Pitch class refers to MIDI pitch number mod 12.
c Top pitch or top pitch class refers to the most common pitch or pitch class in the

piece.

jSymbolic is able to extract 111 different features. However, for this research, not

all of them are meaningful or computationally easy to implement in classification

models. Multidimensional features, nominal features, features related to instrumen-

tation or that depend upon the key were excluded from the dataset. This resulted

in a selection of twelve one-dimensional features that output normalized frequency

information related to intervals or pitches. All of these features are represented in

Table 14.1. They are measured as normalized frequencies and offer information

regarding melodic intervals and pitches.

A second reason, other than musical meaningfulness, for keeping the feature

set small is to avoid overfitting the models (Gheyas and Smith, 2010). Having a

limited number of features allows a thorough testing of a model, even with limited

instances, and can thus enhance the quality of a classification model (McKay and

Fujinaga, 2006). This way we avoid the “curse of dimensionality”, where the number

of labelled training and testing samples needed increases exponentially with the

number of features.

In the following sections, five types of classification model are developed, based

on the extracted features.
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14.4 Classification Models

Predictive models can be used not only for classification, but also in theory-building

and testing (Shmueli and Koppius, 2011). Using powerful models, in combination

with high-level musical features enables us to construct models that give useful

insights into the characteristics of the style of a composer. The first models in this

section (i.e., rulesets and trees) are of a more linguistic nature and therefore fairly

easy to understand (Martens, 2008). Support vector machines and naive Bayes classi-

fiers are more black-box, as they provide a complex non-linear output score. Using

pedagogical rule extraction techniques like Trepan and G-REX (Martens et al., 2007),

comprehensible rulesets can still be extracted from black-box models. However, this

falls outside the scope of this chapter. The ruleset described in Sect. 14.4.2 simply

induces the rules directly from the data. While this research focuses on building com-

prehensible models, some black-box models were included to provide performance

benchmarks.

The open source software, Weka, is used to create five different types of classifica-

tion model, each with varying levels of comprehensibility, using supervised learning

techniques (Witten and Frank, 2005). This toolbox and framework for data mining

and machine learning is a landmark system in this field (Hall et al., 2009). jSymbolic,

used to extract features as described in Sect. 14.3.2 above, outputs the features of all

instances in ACE XML files. The jMIR toolbox offers a tool to convert these features

into Weka ARFF format (McKay and Fujinaga, 2008).

Table 14.2 shows the results of using each of these types of model for composer

classification on the dataset described in Sect. 14.3.1 above. For some types of

model, such as decision trees and rulesets, multiple models were built with different

levels of comprehensibility. In these cases, Table 14.2 shows the results for the best

performing model of that type. The results are based on a run with stratified 10-fold

cross validation (10CV), where the dataset is divided into 10 folds, with 9 used for

model building and 1 for testing. This procedure is repeated 10 times, so that each

fold is used once for testing. The AUC and accuracy values shown in Table 14.2

are the average results over the 10 test sets. The entire dataset is used to build the

resulting final model, which can be expected to have a performance at least as good as

the 10CV performance. In order to compare the performance of the different models,

Table 14.2 Performance of the models with 10-fold cross-validation

Method Accuracy AUC

C4.5 Decision tree 80% 79%
RIPPER ruleset 81% 85%
Logistic regression 83% 92%

Naive Bayes 80% 90%

Support vector machines 86% 93%

p < 0.01: italic, p > 0.05: bold, best: bold.
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a Wilcoxon signed-rank test was conducted, the null hypothesis of this test being that

there is no difference between the performance of a model and that of the best model.

14.4.1 C4.5 Tree

In this section we describe a decision tree classifier, which is a simple, yet widely

used and comprehensible classification technique. Even though decision trees are not

always the most competitive models in terms of accuracy, they are computationally

efficient and offer a visual understanding of the classification process. A decision tree

is a tree data structure that consists of decision nodes and leaves, where the leaves

specify the class value (i.e., composer) and the nodes specify a test of one of the

features. A predictive rule is found by following a path from the root to a leaf based

on the feature values of a particular piece. The resulting leaf indicates the predicted

composer for that particular piece (Ruggieri, 2002).

J48 (Witten and Frank, 2005), Weka’s implementation of the C4.5 algorithm, is

used to build decision trees (Quinlan, 1993). A “divide and conquer” approach is used

by C4.5 to build trees recursively. This is a top-down approach, which repeatedly

seeks a feature that best separates the classes, based on normalized information gain

(i.e., difference in entropy). After this step, subtree raising is done by pruning the

tree from the leaves to the root (Wu et al., 2008).

Three decision trees were built (T1, T2 and T3), each with a different setting for

the confidence factor (confFactor) and the minimum number of instances per leaf

(minNumObj). A low confidence factor will result in more pruning but a less accurate

model. Requiring a greater minimum number of instances per leaf will also reduce

the size of the tree, so that it becomes more easy to understand; on the other hand, it

will also reduce accuracy. The settings for the three trees are shown in Table 14.3,

together with their performance results and the sizes of the resulting trees (sizeTree),

including the numbers of leaves (numLeaves).

The first model (T1) was heavily pruned, so that the resulting tree was compact.

As expected, the accuracy and AUC values, respectively 73% and 72%, were lower

than the less pruned models. Figure 14.2 shows the resulting classifier.

A second, slightly less pruned, model (T2) was built (see Fig. 14.3). As shown in

Table 14.3, the accuracy and AUC values were slightly higher. The tree itself was

slightly bigger (8 leaves), but still comprehensible.

Table 14.3 Performance and settings of the C4.5 decision trees (10CV)

ID confFactor minNumObj numLeaves sizeTree Accuracy AUC

T1 0.01 100 3 5 73% 72%

T2 0.01 50 8 15 76% 78%

T3 0.25 2 54 107 80% 79%
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Most Common Melodic Interval Prevalence

Melodic Octaves Frequency

≤ 0.3007

Haydn

≤ 0.02922

Beethoven

> 0.02922

Bach

> 0.3007

Fig. 14.2 C4.5 decision tree (T1)

We will not show the third tree (T3) here, as it is too large (54 leaves). With an

accuracy of 80% and an AUC of 79%, it is the most accurate model; however, it is also

the least easy to comprehend. The confusion matrix of this best model is displayed

in Table 14.4. This matrix reveals that there is a relatively higher misclassification

rate between Haydn and Beethoven and between Haydn and Bach. This could be due

to the fact that the dataset was larger for Bach and Haydn. It might also be due to

the fact that Haydn and Beethoven’s styles are indeed more similar, as they had a

greater amount of chronological and geographical overlap in their lives, just as Haydn

and Bach had chronological overlap. Furthermore, Haydn was once Beethoven’s

teacher (DeNora, 1997). Bach and Beethoven on the other hand never lived in the

same country, nor during the same time period (Greene, 1985). For more details on

the musicological similarities and background of Haydn and Beethoven, the reader is

referred to Rosen (1997).

When examining the three models, the importance of the ‘Most common melodic

interval prevalence’ feature for composer recognition is clear, as it is the root node of

Most Common Melodic Interval Prevalence

Repeated Notes Frequency

≤ 0.3007

Bach

≤ 0.01953

Most Common Pitch Prevalence

> 0.01953

Beethoven

≤ 0.06289

Stepwise Motion Frequency

> 0.06289

Beethoven

≤ 0.3467

Haydn

> 0.3467

Most Common Pitch Prevalence

≤ 0.3007

Bach

> 0.09219

Most Common Melodic Interval Prevalence

≤ 0.09219

Repeated Notes Frequency

≤ 0.3932

Haydn

> 0.09456

Bach

≤ 0.09456

Bach

> 0.3932

Fig. 14.3 C4.5 decision tree (T2)
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all three models. It indicates that Bach focuses more on one particular interval than

the other composers. Bach also seems to use fewer repeated notes than the other two

composers. The ‘Melodic octaves frequency’ feature indicates that Beethoven uses

more octaves in melodies than Haydn.

14.4.2 RIPPER

As with the decision trees just described, the rulesets presented in this section were

built with an inductive rule-learning algorithm (as opposed to rule-extraction tech-

niques such as Trepan and G-REX (Martens et al., 2007)). They are comprehensible

models based on “if-then” rules, that are computationally efficient to implement.

JRip, Weka’s implementation of the ‘Repeated Incremental Pruning to Produce

Error Reduction’ (RIPPER) algorithm, was used to build a ruleset for composer

classification (Cohen, 1995). RIPPER uses sequential covering to generate the ruleset.

It consists of a building stage and an optimization stage. The building stage starts by

growing one rule by greedily adding antecedents (or conditions) to the rule, until it is

perfect (i.e., 100% accurate) based on an initial growing and pruning set (ratio 2:1).

The algorithm tries every possible value for each attribute and selects the condition

with the highest information gain. Then each condition is pruned in last-to-first order.

This is repeated until either there are no more positive examples, or the description

length (DL) is 64 bits greater than the smallest DL found so far, or the error rate is

>50%. In the optimization phase, the instances covered by existing rules are removed

from the pruning set. Based on this new pruning set, each rule is reconsidered and

two variants are produced. If one of the variants offers a better description length, it

replaces the rule. This process is repeated (Hall et al., 2009). The models below were

created with 50 optimizations.

We again built three models (R1, R2 and R3), each with varying levels of com-

plexity. This was achieved by varying the minimum total weight of the instances in a

rule (minNo). Setting a higher level for this parameter forces the algorithm to have

more instances for each rule, thus reducing the total number of rules in the model.

The settings and performance results of the models are summarized in Table 14.5.

The first model (R1) was created by setting the minimum total weight of the

instances in a rule very high. This resulted in an easy-to-understand ruleset (see

Fig. 14.4). As can be seen in Table 14.5, its performance is slightly lower than the

other models, yet comparable to the performance of the decision trees, described in

the previous section.

Table 14.4 Confusion matrix
for C4.5 (model T3)

a b c classified as

175 39 40 a = HA

66 110 20 b = BE

24 21 550 c = BA
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Table 14.5 Performance
and settings of the RIPPER
rulesets (10CV)

ID minNo Number of rules Accuracy AUC

R1 50 3 75% 75%

R2 25 5 78% 80%

R3 2 12 81% 85%

if (Most Common Melodic Interval Prevalence) ≤ 0.2678 and (Melodic Octaves

Frequency ≥ 0.03006) then
Composer = BE

else if (Stepwise Motion Frequency ≤ 0.5464) and (Chromatic Motion Frequency

≥ 0.1726) and (0.06466 ≤ Most Common Pitch Prevalence ≤ 0.1164) then
Composer = HA

else
Composer = BA

end if

Fig. 14.4 RIPPER Ruleset (R1)

The second model (R2) was created with a higher setting for the minimum total

weight of the instances in a rule. This resulted in the five “if-then” rules shown in

Fig. 14.5. The model is slightly more difficult to understand, but it also performed

better on the dataset used here (see Table 14.5).

A final model (R3) was created by setting minNo very low. The resulting model,

consisting of 12 rules, is not shown here as it is too extensive. However, with an

accuracy of 81% and AUC of 87% it does outperform the previous two models. The

if (Most Common Melodic Interval Prevalence) ≤ 0.2688 and (Melodic Octaves

Frequency ≥ 0.04438) then
Composer = BE

else if (Most Common Pitch Prevalence ≤ 0.07191) and (Most Common Melodic

Interval Prevalence ≤ 0.2956) and (Melodic Octaves Frequency ≥ 0.02489) then
Composer = BE

else if (Most Common melodic Interval Prevalence ≤ 0.328) and (Melodic Thirds

Frequency ≥ 0.1119) and (Chromatic Motion Frequency ≥ 0.1692) and (Most

Common Pitch Prevalence ≤ 0.106) then
Composer = HA

else if (Stepwise Motion Frequency ≤ 0.5245) and (Chromatic Motion Frequency

≥ 0.1166) and (Repeated Notes Frequency ≥ 0.1972) then
Composer = HA

else
Composer = BA

end if

Fig. 14.5 RIPPER Ruleset (R2)
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Table 14.6 Confusion matrix
for RIPPER

a b c classified as

189 32 33 a = HA

48 124 24 b = BE

37 21 537 c = BA

confusion matrix of the model is shown in Table 14.6. The misclassification rates

are very similar to those of the decision trees in the previous section, with fewest

misclassifications occurring between Beethoven and Bach.

It is noticeable that the first feature evaluated by the rulesets is the same as the

root feature of the decision trees in Sect. 14.4.1 above, which confirms its importance.

The rulesets and decision trees can be interpreted in a similar way. Like the decision

trees, the rulesets suggest that Beethoven uses more melodic octaves than the other

composers and that Haydn uses more repeated notes than Bach.

14.4.3 Logistic Regression

In the previous sections, two techniques were explored to build comprehensible

models. Both trees and rulesets provide crisp classification. This means that they

classify a musical piece as being either by a certain composer or not. The logistic

regression model built in this section offers a continuous measure that indicates the

probability that a piece is by each composer under consideration. These models are

built for each composer and the one with the highest probability is chosen as the

predicted class. Just like the previously discussed models, implementing logistic

regression models is computationally efficient. They are also less prone to overfitting

than other models such as neural networks (Tu, 1996).

A logistic regression model was built with Weka’s SimpleLogistic function. This

implementation uses LogitBoost, an algorithm that performs additive logistic regres-

sion (Witten and Frank, 2005). LogitBoost sequentially applies a simple regression

function to re-weighted versions of the training data. The optimal number of Log-

itBoost iterations to perform is cross-validated, which leads to automatic attribute

selection (Landwehr et al., 2005). This simple boosting strategy often results in

dramatic performance improvements (Friedman et al., 2000).

The resulting model that we obtained outputs the probability, P(Ly), that a piece

is by a certain composer, y. P(Ly) is defined as follows:

P(Ly) =
1

1+ e−Ly
, (14.1)

where
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LHA =−3.39+21.19 · x1 +3.96 · x2 +6.22 · x3 +6.29 · x4−4.9 · x5

−1.39 · x6 +3.29 · x7−0.17 · x8 +0 · x9

−0.72 · x10 +8.35 · x11−4.21 · x12 ,

(14.2)

LBE = 6.19+5.44 · x1 +14.69 · x2 +24.36 · x3−0.45 · x4−6.52 · x5

−29.99 · x6 +3.84 · x7−0.38 · x8−3.39 · x9

−2.76 · x10 +2.04 · x11−0.48 · x12 ,

(14.3)

LBA =−4.88−13.15 · x1−6.16 · x2−5.28 · x3−11.63 · x4 +11.92 · x5

+34 · x6−13.21 · x7 +3.1 · x8 +2.37 · x9

+0.66 · x10−5.05 · x11 +3.03 · x12 .

(14.4)

In these expressions, xi refers to the corresponding feature value from Table 14.1.

This type of continuous output score allows it to be included in an evaluation

metric used by a music generation algorithm. In a previous study, the authors used

a local search heuristic to generate music intended to have the characteristics of a

certain composer. The amount of influence of a certain composer contained within

a certain piece was measured by the probability of a logistic regression model

(Herremans et al., 2015).

The logistic regression equations are not as straightforward to interpret as the

previous two models. Yet they still offer a lot of information about the differences

between the styles of the composers. When a feature has a high coefficient, it means

that it is important for distinguishing a particular composer from other composers.

For instance, x5 (‘Most Common Melodic Interval Frequency’) has a high coefficient

value, especially for BA. When looking at the previous models, this feature is also at

the top of the decision trees (see Figs. 14.2 and 14.3) and occurs in almost all of the

rules in the rulesets (see Figs. 14.4 and 14.5).

The logistic regression model that we obtained outperforms the two previous

models with an AUC of 92% and accuracy of 83% and is the second best model

overall (see Table 14.2). The confusion matrix, shown in Table 14.7, reflects this

higher accuracy rate. When examining the misclassified pieces, we notice that their

average probability is 64%. Examples of misclassified pieces include the fourth

movement of Beethoven’s String Quartet No. 9 in C major, Op. 59, No. 3 (Allegro

molto), which is classified as Haydn with a probability of 4% and the first movement

of Bach’s Brandenburg Concerto No. 5 in D major (BWV 1050), which is classified

as Haydn with a probability of 37%.

Table 14.7 Confusion matrix
for logistic regression

a b c classified as

190 30 34 a = HA

57 119 20 b = BE

25 15 555 c = BA
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14.4.4 Naive Bayes

We also used Weka to build a naive Bayes classifier. Like the logistic regression

model, a naive Bayes model outputs the probability that a piece is by a certain

composer. This probability estimate is based on the assumption that the features are

conditionally independent. Given class label (i.e., composer) y, this independence

assumption can be represented as follows (Tan et al., 2007):

P(x | Y = y) =
M

∏
j=1

P(x j | Y = y) , (14.5)

where each attribute set x = {x1,x2, . . . ,xM} consists of M attributes.

Because of the independence assumption, we do not need to calculate the class-

conditional probability for every combination of x. Only the conditional probability

of each xi given that Y = y has to be estimated. This offers a practical advantage,

since a good estimate of the probability can be obtained without the need for a very

large training set. Given a test piece, the posterior probability for each composer Y
can be calculated by the following formula (Lewis, 1998):

P(Y | x) =
P(Y ) ·∏M

j=1 P(x j | Y )
P(x)

. (14.6)

Since the attributes are continuous, a normal distribution is often chosen to repre-

sent the class-conditional probability. However, we found that better performance

was achieved by using a kernel estimator instead of a normal distribution (John and

Langley, 1995). However, unlike the previous models, the model produced is too

extensive to show in this chapter and is not easily comprehensible. Its results are

included as a benchmark value for the other models. The resulting model has an

accuracy of 80% and an AUC value of 90%, which is less good than the logistic

regression model described in the previous section. The confusion matrix is shown

in Table 14.8. As can be seen in this table, many pieces by Haydn are misclassified

as Beethoven. Other than that, the misclassification errors are comparable to those

for the previous models (cf. Figs. 14.4, 14.6 and 14.7), with least confusion between

Beethoven and Bach.

Table 14.8 Confusion matrix
for naive Bayes

a b c classified as

199 28 27 a = HA

69 118 9 b = BE

41 34 520 c = BA
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14.4.5 Support Vector Machine

In order to provide a benchmark for the performance of the comprehensible models

presented above, a support vector machine classifier was implemented. Support

vector machines (SVMs) are black-box models, yet they outperform more traditional

models in many areas including stock market prediction (Huang et al., 2005), text

classification (Tong and Koller, 2002), Celtic violin performer identification (Ramirez

et al., 2011), gene selection (Guyon et al., 2002) and others.

In this section, the library LibSVM (Chang and Lin, 2011) was used to build

a support vector machine (SVM) classifier. This is a learning procedure based on

statistical learning theory (Vapnik, 1995). Given a training set of N data points

{(xi,yi)}N
i=1 where the features xi ∈ IRn and corresponding binary class labels yi ∈

{−1,+1}, the SVM classifier should fulfil the following conditions (Cristianini and

Shawe-Taylor, 2000; Vapnik, 1995):{
wT ϕ(xi)+b≥+1, if yi =+1

wT ϕ(xi)+b≤−1, if yi =−1
(14.7)

which is equivalent to

yi× (wT ϕ(xi)+b)≥ 1, i = 1, ...,N . (14.8)

The input space is mapped to a high (possibly infinite) dimensional feature space

by the non-linear function ϕ(·). In this new feature space, the above inequalities

construct a hyperplane wT ϕ(x)+b = 0 discriminating between the two classes. The

margin between the two classes is maximized by minimizing wT w. Describing the in-

ner workings of the SVM falls beyond the scope of this chapter. The interested reader

is referred to Cristianini and Shawe-Taylor (2000), who describe the optimization

problem that results in the following formula for the actual classifier:

y(x) = signum(∑N
i=1 αi yi K(xi,x)+b) , (14.9)

where K(xi,x) = ϕ(xi)
T ϕ(x) is taken with a positive definite kernel satisfying the

Mercer theorem and αi are the Lagrange multipliers, determined by optimizing the

dual problem. Here, the Radial Basis Function (RBF) kernel was used to map the

feature space to a hyperplane:

K(x,xi) = exp{−‖x−xi‖2/σ2}, (RBF kernel)

where σ is a constant.

The GridSearch procedure in Weka was used to determine the optimal settings

for the regularization parameter (see Cristianini and Shawe-Taylor (2000)) of the

optimization problem and the σ for the RBF kernel (Weka, 2013).

Trying to comprehend the logic of the classifications made is quite difficult, if

not impossible since the SVM classifier with non-linear kernel is a complex, non-

linear function (Martens and Provost, 2014; Martens et al., 2009). It does however
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Table 14.9 Confusion matrix
for support vector machines

a b c classified as

204 26 24 a = HA

49 127 20 b = BE

22 10 563 c = BA

outperform the previous models. The resulting accuracy is 86% and the AUC-value

is 93% for the SVM with RBF kernel (see Table 14.2). However, when testing

for the difference in AUC performance between SVM and other models, the p-

value remained > 0.01 for both logistic regression and naive Bayes. This indicates

that these two models closely match the performance of the SVM. The confusion

matrix (see Table 14.9) confirms that, of the types of model that we have considered,

SVM provides the best model for discriminating between Haydn, Beethoven and

Bach. Most misclassification occurs between Haydn and Beethoven, which might

be correlated with the geographical and temporal overlap between the lives of these

composers as mentioned in Sect. 14.4.1. When examining the misclassified pieces,

they all seem to have a very low probability, with an average of 39%. Examples of

misclassified pieces are the first movement of Haydn’s String Quartet in C major, Op.

74, No. 1, which is misclassified as Bach with 38% probability; and the theme from

Beethoven’s Six Variations on a Swiss Song, WO 64, which is misclassified as Bach

with a probability of 38%.

14.5 Summary of Results

The receiver operating characteristic (ROC) of the most accurate model for each of

the different classifiers is shown in Fig. 14.6. The ROC curve displays the trade-

off between true positive rate (TPR) and false negative rate (FNR). The logistic

regression and the SVM classifiers score best, which is confirmed by their high AUC

value in Table 14.2. The SVM classifier achieves the highest AUC value. Yet when

testing for the difference in AUC performance between SVM and other models, the

p-value remains > 0.01 for logistic regression, which makes this the best-performing

comprehensible model. Although trees and rulesets are more intuitive to understand,

their performance is slightly lower, which is reflected in their ROC curves.

All models clearly score better than a random classification, which is represented

by the diagonal through the origin. While the SVM significantly outperforms the

other models (except the AUC of logistic regression and naive Bayes), they can

still be used to get a better understanding of the style characteristics of the three

composers.
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Fig. 14.6 ROC curves of the models

14.6 Conclusions

In this study, a number of global musical features were extracted from a large database

of music consisting of pieces by three composers (Bach, Beethoven and Haydn).

Based on these features, five types of classification model were built. The first three

models are more comprehensible and thus offer more insight and understanding into

the characteristics of each composer’s style and the differences between them. The

latter two models serve as a performance benchmark as they are too complex or

extensive to be easily understood. While black-box models (SVM) have the highest

performance (AUC 93% and accuracy 86%), comprehensible models such as the

RIPPER ruleset still perform well (AUC 85% and accuracy 81%).
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The comprehensible models give us musical insights and can suggest directions

for further musicological research. For example, the results of this study suggest that

Beethoven typically does not focus on using one particular interval, in contrast to

Haydn or Bach, who have a higher prevalence of the most common melodic interval.

Clearly, this result is based on a limited corpus and cannot be generalized without

further investigation.

It would be interesting to examine whether an approach based on local features

could contribute to gaining even more insight into the styles of composers. Classifi-

cation models with an even higher accuracy rate might also be developed. It could be

interesting to extract comprehensible rules from SVM models with rule extraction

techniques such as Trepan and G-REX (Martens et al., 2007). This might provide

more accurate comprehensible models. According to Backer and van Kranenburg

(2005), the composers examined in the study reported in this chapter are relatively

easy to distinguish. It would therefore be interesting to apply the methods from this

chapter to distinguishing between composers whose styles are more similar, such as

Bach, Telemann and Handel.
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Cosi, P., De Poli, G., and Lauzzana, G. (1994). Auditory modelling and self-

organizing neural networks for timbre classification. Journal of New Music
Research, 23(1):71–98.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge University

Press.

DeNora, T. (1997). Beethoven and the Construction of Genius: Musical Politics in
Vienna, 1792-1803. University of California Press.

Downie, J. (2003). Music information retrieval. Annual Review of Information
Science and Technology, 37(1):295–340.

Eerola, T., Järvinen, T., Louhivuori, J., and Toiviainen, P. (2001). Statistical features

and perceived similarity of folk melodies. Music Perception, 18(3):275–296.

Eerola, T. and Toiviainen, P. (2004). MIR in Matlab: The Midi Toolbox. In Proceed-
ings of 6th International Conference on Music Information Retrieval (ISMIR 2005),
pages 22–27, London, UK.

Fawcett, T. (2004). ROC graphs: Notes and practical considerations for data mining

researchers. Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A

statistical view of boosting (with discussion and a rejoinder by the authors). The
Annals Of Statistics, 28(2):337–407.

Geertzen, J. and van Zaanen, M. (2008). Composer classification using grammatical

inference. In Proceedings of the International Workshop on Machine Learning
and Music (MML 2008), pages 17–18, Helsinki, Finland.

Gheyas, I. and Smith, L. (2010). Feature subset selection in large dimensionality

domains. Pattern Recognition, 43(1):5–13.

Ghias, A., Logan, J., Chamberlin, D., and Smith, B. (1995). Query by humming:

Musical information retrieval in an audio database. In Proceedings of the Third
ACM International Conference on Multimedia, pages 231–236, San Francisco,

CA.

Greene, D. (1985). Greene’s Biographical Encyclopedia of Composers. The Repro-

ducing Piano Roll Foundation. Edited by Alberg M. Petrak.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. Machine Learning, 46(1-3):389–422.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009).

The Weka data mining software: An update. ACM SIGKDD Explorations Newslet-
ter, 11(1):10–18.

Herlands, W., Der, R., Greenberg, Y., and Levin, S. (2014). A machine learning ap-

proach to musically meaningful homogeneous style classification. In Proceedings
of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 276–282,

Quebec, Canada.
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Pérez-Sancho, C., Rizo, D., and Inesta, J. M. (2008). Stochastic text models for music

categorization. In da Vitoria Lobo, N. and others, editors, Structural, Syntactic,
and Statistical Pattern Recognition, volume 5342 of LNCS, pages 55–64. Springer.



14 Composer Classification Models for Music-Theory Building 391

Pfeiffer, S., Fischer, S., and Effelsberg, W. (1997). Automatic audio content analysis.

In Proceedings of the 4th ACM International Conference on Multimedia, pages

21–30, Boston, MA.

Pollastri, E. and Simoncelli, G. (2001). Classification of melodies by composer with

hidden Markov models. In Web Delivering of Music, 2001. Proceedings. First
International Conference on, pages 88–95. IEEE.
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Stenzel, U. Lima, M. and Downes, J. . (2012). Study on Digital Content Products in

the EU, Framework contract: Evaluation impact assessment and related services;

Lot 2: Consumer’s Policy. Technical report, EU, Brussels.

Tan, P. et al. (2007). Introduction to Data Mining. Pearson Education.

Tong, S. and Koller, D. (2002). Support vector machine active learning with applica-

tions to text classification. The Journal of Machine Learning Research, 2:45–66.

Tseng, Y.-H. (1999). Content-based retrieval for music collections. In Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 176–182.

Tu, J. (1996). Advantages and disadvantages of using artificial neural networks

versus logistic regression for predicting medical outcomes. Journal of Clinical
Epidemiology, 49(11):1225–1231.

Typke, R., Wiering, F., and Veltkamp, R. (2005). A survey of music information

retrieval systems. In Proceedings of the 6th International Conference on Music
Information Retrieval (ISMIR 2005), pages 153–160, London, UK.

Tzanetakis, G. and Cook, P. (2002). Musical genre classification of audio signals.

IEEE Transactions on Speech and Audio Processing, 10(5):293–302.



392 Dorien Herremans, David Martens, and Kenneth Sörensen
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Chapter 15
Contrast Pattern Mining in Folk Music Analysis

Kerstin Neubarth and Darrell Conklin

Abstract Comparing groups in data is a common theme in corpus-level music anal-

ysis and in exploratory data mining. Contrast patterns describe significant differences

between groups. This chapter introduces the task and techniques of contrast pattern

mining and reviews work in quantitative and computational folk music analysis as

mining for contrast patterns. Three case studies are presented in detail to illustrate

different pattern representations, datasets and groupings of folk music corpora, and

pattern mining methods: subgroup discovery of global feature patterns in European

folk music, emerging pattern mining of sequential patterns in Cretan folk tunes, and

association rule mining of positive and negative patterns in Basque folk music. While

this chapter focuses on examples in folk music analysis, the concept of contrast

patterns offers opportunities for computational music analysis more generally, which

can draw on both musicological traditions of quantitative comparative analysis and

research in contrast data mining.

15.1 Introduction

In his introduction to computational and comparative musicology, Cook (2004)

outlined the potential of computational approaches to analysing large repertoires

of music, and proclaimed an opportunity for re-evaluating comparative analysis

in musicology. For ethnomusicology, Nettl (2005, 2010) re-assessed comparative
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research, including quantified comparison (Nettl, 1973, 1975), as a methodological

option among others rather than a defining feature of the discipline. Quantitative

comparisons between groups or across time—based on music corpora, bibliographic

data or compilations of context information—can support research on, for example,

composers’ and national styles (Trowbridge, 1986; VanHandel, 2009), a composer’s

choices (Lampert, 1982), a performer’s repertoire selection (Kopiez et al., 2009),

or changes in musical taste, music practice and its social, political, economic or

technological context (Alessandri et al., 2014; Carter, 1987; Forrest and Heaney,

1991; Hess, 1953; Rose and Tuppen, 2014). In many cases, recent studies can draw

on, and are confronted with, larger datasets than their forerunners (e.g., Forrest and

Heaney, 1991; Rose and Tuppen, 2014). Data mining provides concepts and methods

for organizing and analysing large datasets, discovering underlying relations in data

and describing interesting patterns (Klösgen, 1999; Witten et al., 2011). Contrast
data mining focuses on finding differentiating characteristics between groups in

labelled data or trends in time-stamped data (Bay and Pazzani, 2001; Dong and Li,

1999; Webb et al., 2003). This chapter introduces concepts and methods of contrast

data mining and illustrates their application to music with examples from folk music

analysis.

Computational analysis of folk music has been referenced in the context of com-

putational and empirical musicology (Cook, 2004; Lincoln, 1970, 1974), modern

methods for musicology (Marsden, 2009) and digital humanities (Fujinaga and Weiss,

2004), and folk music corpora have attracted attention in music information retrieval

(Cornelis et al., 2010; Tzanetakis et al., 2007; van Kranenburg et al., 2010). From

a data mining point of view, folk music has proven a fruitful domain for exploring,

developing and testing computational methods in corpus-level analysis thanks to the

availability of relatively large, coherent, musicologically curated and annotated digital

music collections. From a musicological point of view, ethnomusicologists have long

explored computational approaches for organizing (Elscheková, 1966; Suchoff, 1967,

1968), indexing (Hoshovs’kyj, 1965; Járdányi, 1965), analysing (Elscheková, 1966,

1999; Suchoff, 1971) and better understanding (Elscheková, 1965, 1966) folk music

collections and repertoires. The potential of computational methods is seen in facili-

tating the fast, accurate and reliable processing of large amounts of data (Csébfalvy

et al., 1965; Elscheková, 1965, 1999; Járdányi, 1965; Rhodes, 1965; Steinbeck, 1976;

Suchoff, 1968), supporting flexible search of folk music collections (Járdányi, 1965;

Steinbeck, 1976; Suchoff, 1971), enhancing transparency of the analysis (Elscheková,

1999; Jesser, 1991), preserving analytical data (Elscheková, 1966) and enabling the

discovery of hidden patterns in folk music corpora (Keller, 1984; Suchoff, 1970).

Comparative analysis of folk music has investigated acoustic, stylistic, functional

or behavioural traits in folk music and their convergence, distribution or variation,

both heuristically and speculatively (Bohlman, 1988; Nettl, 2005, 2010; Schneider,

2006). The analytical interest in finding differences between repertoires and practices

within folk music corpora using statistical and computational methods is reflected in

research questions such as those suggested by one of the pioneers of computational

folk music analysis:
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Historical Questions. [...] Are there different habits and preferences in melodic range and
mode at different periods of history, and what is their relative strength?
Geographical Questions. What are the characteristic differentiae of specific regions? [...]
Typological Questions. What are the prevailing melodic forms within a given area of study?

(Bronson, 1959, p. 165)

Quantitative comparisons underlie observations on contrasting features such as:

A strange contrast [of songs by the Yuman and Yaqui] to all tribes previously analysed is
shown in the relative proportion of songs ending on the third and fifth above the keynote [...].
The percentage ending on the keynote is smaller than in the total number of songs previously
analysed. This is a peculiarity of this group of Indians [...].

(Densmore, 1932, p. 38)

We can conclude that organization and general war songs are low, rapid, and of wide range.
By contrast the love songs tend to be high, slow, and of medium range.

(Gundlach, 1932, p. 138)

In contrast to German melodies, Chinese songs hardly ever start with an upbeat [...].

(Schaffrath, 1992, p. 108)

The average range of at least an eleventh [in Scottish melodies] is rather impressive. [...] In
contrast to this, folksongs of the Shetlands seem to have less important [sic] ranges.

(Sagrillo, 2010, [p. 8])

Contrast data mining provides a coherent framework for relating early and more

recent work in quantitative and computational folk music analysis.

More specifically, contrast data mining is the task of identifying significant differ-

ences between groups in data. In this chapter we focus on contrast data mining of

folk music as a form of supervised descriptive pattern discovery (Herrera et al., 2011;

Novak et al., 2009b). Supervised data mining is applied to labelled data instances:

contrast data mining discovers contrasting characteristics of selected subpopulations

in the data which are identified by group labels. In this respect supervised contrast

mining differs from unsupervised techniques (e.g., clustering), in which groups are

not predetermined but are identified during the mining. Supervised descriptive pattern

discovery is primarily interested in finding individual rules which describe groups

by characteristic local patterns: discovered contrast patterns make statements about

parts of the data space (Hand et al., 2001), patterns tolerate some counter-examples

(Lavrač et al., 2004), and patterns may overlap, describing different aspects of the

same data instances (Klösgen, 1999; Lavrač et al., 2004). Exhaustive algorithms find

all interesting patterns; heuristic algorithms apply strategies to reduce the search

space, resulting in a subset of possible patterns (Herrera et al., 2011; Novak et al.,

2009b). Descriptive patterns ideally are relatively simple and understandable (Herrera

et al., 2011; Klösgen, 1996). In predictive data mining, on the other hand, induced

models should be complete (i.e., cover all instances in the dataset) and ideally should

be consistent (i.e., predict the correct group label for all instances) (Fürnkranz et al.,

2012). Resulting models may be complex and possibly intransparent (Klösgen, 1996).

Predictive methods generally infer one model out of a family of potential models
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supervised descriptive supervised predictive

group labels group labels

local patterns covering subsets of groups global models covering all examples of

groups

patterns evaluated by interestingness models evaluated by predictive accuracy

comprehensible patterns potentially intransparent models

exhaustive or heuristic search heuristic search

Fig. 15.1 Schematic view and summary of supervised descriptive vs. predictive data mining

which best fits the complete dataset according to chosen heuristics (Hand et al., 2001).

Figure 15.1 summarizes the fundamental differences between supervised descriptive

and predictive data mining. The diagram constructs a small artificial data mining sce-

nario, showing a dataset organized into two groups (labelled by x: 11 examples; and

o: 8 examples). For the descriptive schema, solidly shaded areas refer to individual

rules: three rules describing x examples (light regions) and two rules describing o
examples (dark shading). For the predictive task the hatched areas represent global

models constituted by sets of rules. Together the rules in a set provide a global

representation of a group (Witten et al., 2011); individual rules can be difficult to

interpret in isolation (Bay and Pazzani, 2001; Lavrač et al., 2004).

This chapter offers three main contributions to the area of computational music

analysis. First, it generalizes the concept of pattern in inter-opus and corpus-level

music analysis beyond melodic and polyphonic patterns: contrast patterns are pri-

marily defined by their ability to distinguish groups of pieces within a music corpus.

Two possible representations of contrast patterns are considered in detail: sequential

patterns which capture succession relations between event features, and global feature

patterns which describe music pieces by unordered sets of global features. Second,

this chapter revisits existing research in quantitative folk music analysis spanning a

century—from early work, even predating computational methods, through to mod-

ern approaches—and shows how this work can be viewed as contrast pattern mining.

Contrast pattern mining provides a vocabulary which can highlight both shared anal-

ysis interests and approaches but also different choices in the methodological design.

Thus, current and future research in computational music analysis can draw on, pos-

sibly critically, both musicological experience and the substantial existing research

on theory, methods and algorithms for data mining. Third, this chapter shows how
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Contrast pattern mining task
Contrast pattern mining is the task of discovering and describing patterns that differ-

entiate groups in data.

Given:
• a dataset with N instances

• a target attribute which partitions the dataset into groups

• a pattern description language

• an evaluation measure and threshold

Discover: patterns which distinguish a group from other groups, returning patterns

whose evaluation measure value is above some threshold, or a specified number of

patterns ranked highly by the evaluation measure

Fig. 15.2 Definition of contrast pattern mining, adapting the definition of local pattern mining by
Zimmermann and De Raedt (2009)

the concept of subsumption (Baader et al., 2003), the logical specialization relation

between patterns, applies equally to global feature and sequential patterns. This

provides a basis for navigating the search space during pattern discovery, and also

for organizing and presenting the results of contrast pattern mining.

The task and terminology of contrast pattern mining are defined in Sect. 15.2. In

the subsequent sections contrast pattern mining is applied to comparative analyses

of folk music: Sect. 15.3 offers a systematic overview of existing work as contrast

pattern mining; Sect. 15.4 presents three case studies illustrating different pattern

representations, folk music corpora and contrast mining methods. Section 15.5 briefly

looks beyond contrast pattern mining to other comparative approaches and looks

ahead to possible directions for future work.

15.2 Contrast Pattern Mining

A recurring theme in exploratory data analysis is that of determining differences

between groups. In inferential statistics, this is done by studying different samples

and determining whether they significantly differ in their distribution of one or

more variables. In contrast pattern mining (see Fig. 15.2 for a definition of the

task) the aim is to find local patterns which capture differences between groups

of data. This section introduces the contrast pattern mining task and particularly

looks at how patterns are represented. The relevant notation and concepts of contrast

pattern mining are introduced, and three contrast mining methods are reviewed.

This theoretical background provides the context for rephrasing work in folk music

analysis as contrast pattern mining in Sects. 15.3 and 15.4.
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int ⊥ +2 +1 −3 −5 +1 −3 +2 +5 +2 +1 −3 −2 −2 −1 −2
dur ⊥ 1/1 1/1 3/1 1/3 1/1 1/1 3/1 1/3 1/1 1/1 3/1 1/3 1/1 1/1 3/1

metre:3/8
range:medium
repeated:low

Fig. 15.3 Lullaby “Itsasoan laño dago” (excerpt) from the Cancionero Vasco. Top: score fragment.
Middle: examples of event feature representation; viewpoints refer to melodic interval in semitones
(int) and duration ratio (dur). These features are undefined (⊥) for the first event (Conklin and
Witten, 1995). Bottom: examples of global features, numeric features discretized; the abbreviated
attribute name repeated refers to the fraction of notes that are repeated melodically (McKay, 2010)

15.2.1 Patterns

In contrast pattern mining of music, patterns are predicates that map music pieces to

boolean values. In this chapter, two types of pattern representation are considered:

global feature patterns and sequential patterns based on event features. Here a feature
is an attribute–value pair. A global feature represents a piece by a single value (see

Fig. 15.3 bottom). A global feature pattern is a set of features, representing the

logical conjunction of the features in the set. A pattern is supported by a piece of

music in the corpus if all features in the feature set are true of the piece. Global

features can be explicit in the metadata annotations of pieces (e.g., for attributes

such as region, genre, tune family, collector), or can be derived directly from the

score (e.g., for attributes such as average melodic interval, range). In classic contrast

data mining, pattern descriptions are based on categorical attributes and continuous

attributes are discretized, either in a pre-processing step (e.g., Bay, 2000; Kavšek

and Lavrač, 2006) or dynamically during the data mining (e.g., Srikant and Agrawal,

1996). A sequential pattern, on the other hand, is a sequence of event features (see

Fig. 15.3 middle): attribute–value pairs over contiguous events. Event features can be

numeric (e.g., intervals, durations), categorical (e.g., contour, chord types) or binary

(e.g., contour change, in scale/not in scale). Sequential patterns are by definition

derived directly from the score. A piece supports a sequential pattern if the pattern

occurs at least once within the piece. For both global feature patterns and sequential

patterns, the absolute support or support count of a pattern X , denoted by n(X), is

the number of pieces in the dataset supporting the pattern.



15 Contrast Pattern Mining in Folk Music Analysis 399

G ¬G
X n(X ∧G) n(X ∧¬G) = n(X)−n(X ∧G) n(X)

¬X n(¬X ∧G) = n(G)−n(X ∧G) n(¬X ∧¬G) = n(¬X)−n(¬X ∧G) n(¬X) = N−n(X)
n(G) n(¬G) = N−n(G) N

Fig. 15.4 Contingency table describing all relationships between a pattern X and a group G

15.2.2 Contrast Patterns

As a supervised data mining technique, contrast pattern mining requires a dataset

to be partitioned into labelled groups. Intuitively, groups arise from the values of

a target attribute (see Fig. 15.2). For example, folk tunes may be grouped by their

function into several genres, such as lullabies, wedding songs or laments. A piece in

the dataset supports a group G if it is a member of group G. The number of pieces in

the dataset supporting a group G gives the support count of the group, n(G).
A pattern is a contrast pattern if its support differs significantly between groups

in a dataset. The support count of pattern X in a group G, denoted by n(X ∧G), is the

number of pieces in the dataset supporting both the pattern X and the group G. To

assess whether or to what extent a pattern distinguishes a group from other groups, an

evaluation measure compares the support of the pattern in the different groups. Many

evaluation measures have been proposed, based on notions of, for example, generality,

reliability, conciseness, peculiarity, surprisingness or utility (Geng and Hamilton,

2006). Contrast mining techniques commonly consider reliability (strength of the

relation between a pattern and a group), generality (proportion of data instances

supporting a pattern) and sometimes conciseness (simplicity of the description).

Evaluation measures are used to prune the search space during the mining process,

to filter or rank rules in a post-processing phase, or to provide additional information

when presenting results.

Evaluation measures are usually computed from the 2×2 contingency table which

summarizes the occurrence of a pattern in a specific group of interest G against other

groups (see Fig. 15.4): the marginal counts n(X) and n(G) refer to the support counts

of pattern X and group G. The variable N indicates the total number of pieces in

the dataset. The notations ¬X and ¬G denote the complements of pattern X and

group G: the pieces not supporting X and G respectively. The inner cells of the

contingency table contain the support counts for pairwise conjunctions of X , ¬X , G
and ¬G. If n(X ∧G), n(X), n(G) and N are known all other counts can be derived.

From the absolute counts empirical probabilities are calculated as P(X) = n(X)/N,

P(G) = n(G)/N and P(X ∧G) = n(X ∧G)/N, and conditional probabilities are

derived as P(X |G) = P(X ∧G)/P(G) and P(G |X) = P(X ∧G)/P(X). Statistical

tests, such as Fisher’s exact test, assess observed counts in the inner cells of the

contingency table against expected counts based on the pattern and group distribution

across the full corpus reflected in the marginal counts: the lower the p-value calculated

by the test the less likely are the observed counts.
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Relations between contrast patterns and the groups they characterize can be

expressed as rules, directed relations between a pattern X and a group G: X → G
(e.g., Novak et al., 2009b). The left-hand side of the rule is called the rule antecedent,

the right-hand side of the rule is called the rule consequent. Positive rules describe

patterns which are frequent or over-represented in a group: a rule X → G generally

captures that pieces supporting pattern X tend to be members of group G and thus

group G may be distinguished from other groups by a high proportion of pieces

supporting pattern X . Patterns which are infrequent, under-represented or even absent

in a group can be expressed as negative rules. Several formalizations of negative rules

exist, depending on whether negation is applied to the rule antecedent or consequent

as a whole, to attribute–value pairs within patterns or to the implication between

antecedent and consequent (Cornelis et al., 2006; Savasere et al., 1998; Wong and

Tseng, 2005). In this chapter only negative rules with negated consequent, X →¬G,

are considered. An intuitive interpretation of a rule X →¬G is that a pattern X tends

to be found in pieces outside of group G and thus is rare or even absent in group G.

15.2.3 Methods for Contrast Pattern Mining

Specific methods of contrast pattern mining include subgroup discovery (Klösgen,

1996), emerging pattern mining (Dong and Li, 1999) and contrast set mining (Bay and

Pazzani, 2001). At times, methods have been adapted from one contrast mining task

to another, for example, subgroup discovery to perform contrast set mining (Novak

et al., 2009a) or association rule mining to perform subgroup discovery (Kavšek

and Lavrač, 2006). This section briefly summarizes three representative methods for

discovering contrast patterns; examples of their application in folk music analysis

will be presented in Sect. 15.4.

Subgroup Discovery The formulation of subgroup discovery is generally traced

back to Klösgen (1996), although the term only appears in later publications (e.g.,

Klösgen, 1999; Wrobel, 1997). Here subgroup discovery is defined as the task of

finding subgroups in a dataset which exhibit distributional unusualness with respect to

a given target attribute. An additional condition requires subgroups to be sufficiently

large. Several evaluation measures have been proposed, which trade off unusualness

and generality of subgroups (Klösgen, 1996; Wrobel, 1997); the case study presented

in Sect. 15.4.1 below uses weighted relative accuracy:

WRAcc(X → G) = P(X)× [P(G |X)−P(G)] . (15.1)

The first term, coverage P(X), measures the generality of the pattern; the second term,

relative accuracy or added value P(G |X)−P(G), measures the reliability of the rule

X →G as the gain between the probability of group G given pattern X and the default

probability of group G. Subgroup discovery performs a one-vs-all comparison, in

which data instances supporting a target group G are considered positive examples
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and all other instances are considered negative examples, corresponding to a 2×2

contingency table with columns indexed by G and its complement ¬G (see Fig. 15.4).

Emerging Pattern Mining Emerging patterns are conjunctions of global features

(Dong and Li, 1999) or sequential patterns (Chan et al., 2003), whose support in-

creases significantly from one dataset (or group) to another. In its original formulation

(Dong and Li, 1999), emerging pattern mining corresponds to a one-vs-one compar-

ison and can be represented in a 2×2 contingency table with columns indexed by

two groups G and G′. A contrast between the two groups is measured as the growth
rate of a pattern X :

GrowthRate(X ,G,G′) =
P(X |G)

P(X |G′)
with P(X |G)> P(X |G′) . (15.2)

A pattern X is considered an emerging pattern if its growth rate is above a user-defined

threshold θ (with θ > 1). Compared to weighted relative accuracy in subgroup

discovery, growth rate in emerging pattern mining does not take into account the

generality of a pattern: emerging pattern mining focuses on the change in relative

support from group G′ to group G, while the absolute support levels can be low

(Dong and Li, 1999).

Association Rule Mining An association rule (Agrawal and Srikant, 1994) is a rule

of the form A → B, where A and B can be sets of attribute–value pairs. In class
association rule mining, the consequent of the rule is restricted to a class or group

in the dataset (Ali et al., 1997; Liu et al., 1998); then an association rule between a

pattern X and a group G is of the form X → G. The reliability of an association rule

is generally evaluated by rule confidence:

c(X → G) = P(G |X) . (15.3)

The generality of the rule is captured by its relative support, s(X → G) = P(X ∧G).
Support and confidence are computed from a 2×2 contingency table with columns

indexed by G and ¬G (see Fig. 15.4), thus comparing one group (G) against all other

groups (¬G). The task of association rule mining consists of finding all rules which

meet user-defined support and confidence thresholds.

The methods summarized above differ mainly in their task or comparison strategy

and in the evaluation measure used to assess candidate contrast patterns. Emerging

pattern mining originally compares two groups by a one-vs-one strategy, while

subgroup and class association rule discovery translate a multigroup mining task into

a series of one-vs-all comparisons. In emerging pattern mining, growth rate builds

on sensitivity P(X |G) to evaluate the distribution of a pattern in the two groups;

association rule mining uses confidence P(G |X) to assess the relation between a

pattern and a group, and weighted relative accuracy in subgroup discovery integrates

added value P(G |X)−P(G) to measure rule reliability. Relative support P(X ∧G)
in association rule mining and pattern coverage P(X) as part of weighted relative

accuracy in subgroup discovery also consider the generality of potential contrast
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patterns. At an algorithmic level, implementations of these methods may differ in the

search and pruning strategies employed to generate candidate contrast patterns and to

filter redundant patterns, and in statistical techniques used to control false positives

or false negatives (e.g., Atzmüller, 2015; Novak et al., 2009b; Webb et al., 2003).

15.3 Applications in Folk Music Analysis

Using the criteria and terminology introduced in the previous section, Table 15.1

summarizes 15 selected studies which analyse folk music corpora for contrasts be-

tween groups. The first nine of the listed studies use global feature representations;

the remaining six studies mine for contrasting sequential patterns. The table includes

both quantitative analyses which extract support counts of global feature or sequential

patterns in different groups but do not explicitly quantify the contrast (Densmore,

1913, 1918, 1929; Edström, 1999; Grauer, 1965), and studies which directly adopt

contrast data mining methods such as subgroup discovery (Taminau et al., 2009) and

constrained association rule discovery (Neubarth et al., 2012, 2013a,b), or explic-

itly relate their method to emerging pattern mining or supervised descriptive rule

discovery (Conklin, 2009, 2010a, 2013; Conklin and Anagnostopoulou, 2011).

Datasets The folk music corpora used by the cited studies range from regional

repertoires through corpora covering larger areas to diverse styles across different

continents: Cretan folk music (Conklin and Anagnostopoulou, 2011) and Basque

folk music (Conklin, 2013; Neubarth et al., 2012, 2013a,b); European folk music

(Neubarth et al., 2013b; Taminau et al., 2009) and North-American folk music (Dens-

more, 1913, 1918, 1929); or regional and cultural styles from around 250 areas across

the world (Grauer, 1965; Lomax, 1962). Most regionally defined corpora represent a

variety of folk music genres; on the other hand, Anagnostopoulou et al. (2013) focus

on children’s songs, and the European folk music corpus used in Taminau et al. (2009)

and Neubarth et al. (2013b) is largely dominated by dance genres. The listed studies

generally consider complete tunes, with two exceptions: Anagnostopoulou et al.

(2013) take tune segments as data instances (505 segments derived from 110 tunes),

and Edström (1999) extracts rhythmic patterns from the first four bars of refrains.

Groups Groupings in quantitative and computational folk music analyses often

refer to geographical regions, ethnic groups and folk music genres or functions.

The folk music styles suggested by Lomax (1959) and referenced in later analyses

(Grauer, 1965; Lomax, 1962) are to some extent mapped onto geographical or cultural

areas, such as Western European song style. Edström (1999) compares Swedish and

German foxtrots in the context of constructing Swedishness. Regarding the analyses

by Densmore, Table 15.1 includes both analyses of the song repertoires of different

Native American tribes (Densmore, 1929) and of folk music genres among the songs

of a tribe (Densmore, 1913). The third cited study by Densmore compares old and

comparatively new songs within the music of the Teton–Sioux Indians (Densmore,

1918).
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Description To characterize groups within the datasets, the studies listed in Ta-

ble 15.1 make use of metadata (Neubarth et al., 2012), global music content fea-

tures which are extracted manually (Densmore, 1913, 1918, 1929) or automatically

(Neubarth et al., 2013a,b; Taminau et al., 2009), or descriptors referring to the perfor-

mance style of songs (Grauer, 1965; Lomax, 1962). Sequential patterns are either

derived by computing the event feature sequence for predefined segments (Anagnos-

topoulou et al., 2013; Edström, 1999) or by discovering patterns of flexible length as

part of the contrast mining process (Conklin, 2009, 2010a, 2013; Conklin and Anag-

nostopoulou, 2011). Many of the cited studies analyse one global or event feature at

a time. The application of subgroup discovery to European folk music by Taminau

et al. (2009) allows flexible conjunctions of two attribute–value pairs, while Grauer

(1965) determines a fixed combination of four attribute–value pairs by inspecting

individual songs of the target style; in a second step Grauer then considers the remain-

ing 33 attributes for the covered songs. The study by Lomax (1962) presents style

profiles using the complete set of 37 descriptor attributes, from which candidates

for contrasting attributes can be suggested. Some sequential pattern studies extract

several event features but treat each of these separately (Anagnostopoulou et al.,

2013; Conklin, 2013); on the other hand, two of the listed analyses (Conklin, 2009,

2010a) mine for patterns using multiple features.

Contrast Mining Table 15.1 indicates the primary evaluation measure that the listed

studies apply in the comparison. Analyses adopting contrast mining techniques, or

explicitly referring to contrast data mining, use measures common in these techniques:

weighted relative accuracy in subgroup discovery (Taminau et al., 2009), confidence

in constrained association rule mining (Neubarth et al., 2012, 2013a,b), or growth rate

from emerging pattern mining (Conklin, 2010a; Conklin and Anagnostopoulou, 2011).

Conklin (2013) evaluates the p-value computed with Fisher’s exact test to assess

candidate patterns. Cited earlier studies consider occurrences of patterns in different

groups, but the comparison itself is mainly narrative (Densmore, 1913, 1918, 1929;

Edström, 1999) or to some extent visual (Lomax, 1962). Occasionally Densmore’s

textual description uses phrasings corresponding to growth rate (not illustrated in

Table 15.1), for example: “The percentage of songs of a mixed form is more than

twice as great in the Ute as in the Chippewa and Sioux” (Densmore, 1922, p. 53).

Where group counts are included (Densmore, 1913, 1918, 1929), evaluation measures

may be calculated post hoc (Neubarth, 2015). Most of the listed studies follow a one-

vs-all strategy in comparing pattern distributions between groups. The publications

by Densmore represent different comparison strategies: the analysis of Teton–Sioux

music (Densmore, 1918) contrasts two chronologically ordered repertoires—old and

relatively modern songs of the Teton–Sioux—presented as Group I and Group II

(one-vs-one comparison); features of Pawnee music (Densmore, 1929) are presented

against the cumulative support for the comparator groups (one-vs-all comparison); in

the analysis of different genres among Chippewa music (Densmore, 1913) all groups

are listed. Different comparison strategies, applied to the same dataset, may result in

different contrast patterns (Neubarth, 2015).



15 Contrast Pattern Mining in Folk Music Analysis 405

15.4 Case Studies

In this section, three case studies will be presented in some detail to illustrate the

different contrast mining methods applied to folk music. The first case study describes

patterns by global features and discovers contrasting patterns as subgroups (Taminau

et al., 2009). The second case study uses an event feature representation; candidate

sequential patterns are evaluated as emerging patterns (Conklin and Anagnostopoulou,

2011). The third case study draws on two publications which apply constrained

association rule mining to discover not only positive but also negative rules in folk

music data (Conklin, 2013; Neubarth et al., 2013b); both global feature patterns and

sequential patterns are considered.

15.4.1 Case Study 1: Subgroup Discovery in European Folk Music

The analysis of European folk music by Taminau et al. (2009) identifies global

feature patterns which distinguish between folk songs of different geographical origin,

through subgroup discovery. The authors explicitly set out to explore descriptive

rule learning as an alternative approach to predictive classification, in order to find

interpretable patterns. The following sections summarize the dataset, outline the data

mining method and relate discovered subgroups.

15.4.1.1 Dataset and Global Feature Representation

The studied folk music corpus, called Europa-6 (Hillewaere et al., 2009), contains

3470 folk music pieces from six European countries or regions; thus the dataset

is partitioned into six groups: England (1013 pieces), France (404 pieces), Ireland

(824 pieces), Scotland (482 pieces), South East Europe (127 pieces) and Scandinavia

(620 pieces). All pieces are monophonic melodies, encoded in MIDI, quantized

and with grace notes removed (Taminau et al., 2009). To represent melodies, global

attributes are selected from existing attribute sets, resulting in a total of 150 global

attributes: 12 attributes from the Alicante feature set (Ponce de León and Iñesta, 2004),

37 from the Fantastic feature set (Müllensiefen, 2009), 39 from the Jesser feature

set (Jesser, 1991), and 62 from the McKay feature set (McKay, 2010). Numeric

features are discretized in a pre-processing step, into categorical values low and high,

using as a split point the attribute’s mean value in the complete corpus. Consequently,

melodies are represented as tuples containing 150 attribute–value pairs and the region.

15.4.1.2 Contrast Pattern Mining by Subgroup Discovery

Subgroup discovery is applied to find global feature patterns which are characteristic

for a region compared to other regions. Subgroups are extracted for each region at a
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Table 15.2 Contrast patterns discovered in the Europa-6 corpus (based on Taminau et al., 2009).
The table lists pattern X , group G, coverage P(X), prevalence P(G), sensitivity P(X |G), confi-
dence P(G |X) and weighted relative accuracy WRAcc. Abbreviated attribute names: proportion of
descending minor thirds (dminthird); proportion of dotted notes (dotted); proportion of melodic tri-
tones (melTrit); interpolation contour gradients standard deviation (intcontgradstd). Bold WRAcc
values mark the strongest subgroup among subsuming subgroups (details see text). Contrast patterns
for South East Europe are omitted because of inconsistencies in the reported measures (Taminau
et al., 2009)

X G P(X) P(G) P(X |G) P(G |X) WRAcc

mode:major, notedensity:low England 0.36 0.29 0.54 0.43 0.052
mode:major England 0.77 0.29 0.88 0.33 0.032

notedensity:low England 0.50 0.29 0.63 0.37 0.038

dminthird:low, range:low France 0.26 0.12 0.77 0.34 0.059
dminthird:low France 0.52 0.12 0.83 0.19 0.036

range:low France 0.43 0.12 0.93 0.25 0.058

dotted:low, compoundMetre:1 Ireland 0.23 0.24 0.62 0.65 0.093

dotted:low Ireland 0.70 0.24 0.86 0.29 0.038

compoundMetre:1 Ireland 0.32 0.24 0.71 0.53 0.093

metre:3/4, melTrit:low Scandinavia 0.14 0.18 0.62 0.78 0.086

metre:3/4 Scandinavia 0.15 0.18 0.63 0.75 0.086
melTrit:low Scandinavia 0.94 0.18 0.96 0.18 0.004

metre:4/4, intcontgradstd:high Scotland 0.17 0.14 0.62 0.52 0.063
metre:4/4 Scotland 0.38 0.14 0.77 0.28 0.054

intcontgradstd:high Scotland 0.44 0.14 0.76 0.24 0.044

time, taking all instances annotated with the region under consideration as positive

examples and all instances annotated with other regions as negative examples (one-vs-

all comparison). The study uses the CN2-SD algorithm (Lavrač et al., 2004), which

adapts the classification rule induction algorithm CN2 (Clark and Niblett, 1989) for

subgroup discovery. In CN2-SD rule candidates are evaluated by weighted relative

accuracy (see (15.1)) rather than predictive accuracy. Compared to classification rule

induction, which seeks to create highly accurate rules, weighted relative accuracy

trades off accuracy against coverage in order to find statistically interesting subgroups

which “are as large as possible and have the most unusual distributional characteristics

with respect to the target attribute” (Lavrač et al., 2004, p. 154). In the application

to folk music (Taminau et al., 2009), rules are generated with a fixed length of two

features in the antecedent in order to avoid overfitting the data and to increase the

interpretability of discovered rules.

15.4.1.3 Discovered Contrast Patterns

The study by Taminau et al. (2009) presents the top contrast pattern for each of the

geographical regions, ranked by weighted relative accuracy. To facilitate interpre-

tation of these rules, additional evaluation measures are reported: the coverage and

sensitivity for the pattern and for each of its global features individually as well as
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the confidence of the rule. The information on the individual features allows us to

analyse pattern subsumption: given two sets of global features, a more specific set X
is subsumed by a more general set X̂ if all pieces in the corpus which support set X
also support set X̂ . Syntactically, a subsumed global feature pattern X is a superset of

a more general global feature pattern X̂ (see Fig. 15.5). For each group Table 15.2

first lists the two-feature pattern reported in Taminau et al. (2009), followed by the

subsuming single-feature patterns. Bold values in the last column mark the highest

weighted relative accuracy in each rule triple; if both the original specialized pattern

and a more general single-feature pattern have the same measure value the more gen-

eral pattern is marked, as the specialized pattern does not provide further distinctive

information for the characterization of the region.

The results support several observations. Subgroup descriptions are simple ex-

pressions built from categorical (or discretized) attributes and their values. Different

subgroups are characterized by different attributes; only the metre attribute appears

in more than one subgroup. The rules, which link the global feature pattern with

a region, are partial rules, which do not cover all instances of a group or pattern:

for the originally reported rules, sensitivity P(X |G) ranges between 54% and 77%,

and confidence P(G |X) ranges between 34% and 78%. The measure of weighted

relative accuracy trades off confidence and coverage of the rule: for Scandinavia

and Ireland, a more general subgroup reaches the same weighted relative accuracy,

despite a lower rule confidence, because of the higher coverage P(X) of the rule

antecedent. These subgroups could already be sufficiently characterized by a single

feature. Indeed, Taminau et al. observe that for Scandinavia the second component of

the rule, the low proportion of melodic tritones, does not increase the reliability of the

rule as the probability of this component in the Scandinavia group (P(X |G) = 0.96)

is hardly higher than its probability in the total corpus (P(X) = 0.94). The subgroup

is mainly specified by the metre feature, presumably relating to the large proportion

of triple-metre polskas among the Scandinavian tunes (Taminau et al., 2009). By

comparison, for the Ireland subgroup Taminau et al. comment that the addition of

the second component substantially increases the rule’s confidence, with P(G |X)
increasing from 0.29 to 0.65. In fact, in this case the second component, compound

metre, dominates the subgroup, and adding the first component, low proportion of

dotted rhythms, does not increase weighted relative accuracy: the main genre among

the Irish tunes in the corpus is the jig (Neubarth et al., 2013b), typically in 6/8 metre.

In the case of the French tunes in Europa-6, the low proportion of descending minor

thirds only slightly increases the weighted relative accuracy of the subgroup (from

WRAcc = 0.058 to WRAcc = 0.059). More characteristic is a low range, which may

be related to the fact that all French tunes with known lyrics in the corpus are covered

by this description; as sung melodies they would obey certain restrictions of the

human voice compared to instrumentally performed tunes (Taminau et al., 2009).
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notedensity:lowmode:major

mode:major, notedensity:low

metre:4/4

mode:major, notedensity:low, metre:4/4

Fig. 15.5 Example of subsumption between global feature patterns

15.4.2 Case Study 2: Emerging Pattern Mining in Cretan Folk
Tunes

As a second case study we present an example of sequential pattern discovery as

emerging pattern mining (Conklin and Anagnostopoulou, 2011). Again, we summa-

rize the data set, mining method and example results.

15.4.2.1 Dataset and Viewpoint Representation

For this study (Conklin and Anagnostopoulou, 2011), 106 Cretan folk tunes were se-

lected from four printed sources which collate transcriptions of Cretan and Greek folk

music. In preparation for computational analysis, the tunes were digitally encoded in

score format and exported as MIDI files. The selected tunes represent eleven song

types: four dance types and seven non-dance types. In addition, tunes are assigned to

geographical regions: more specifically to one of five areas and more generally to

Western or Eastern Crete. An idiosyncratic aspect of this dataset is that geographical

area groups are not completely mutually exclusive: songs that are known to be sung in

several areas of Crete were placed in all of the relevant area groups. In summary, the

dataset is overlaid with four groupings (target attributes): type (11 groups), supertype

(2 groups: dance vs. non-dance), area (5 groups) and superarea (2 groups: west vs.

east).

Data instances are represented as sequences of intervals, using the viewpoint

formalism of Conklin and Witten (1995): the melodic interval viewpoint calculates

the interval between the current event and the previous event in semitones. As an

example, [−4,+2] describes a sequence of a descending major third followed by

an ascending major second, which is supported by, for example, the note (event)

sequence [A, F, G]. With a single viewpoint, the viewpoint name is often omitted

from the individual components in the description.
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15.4.2.2 Contrast Pattern Mining by Emerging Pattern Mining

The MGDP method (Conklin, 2010a) is applied to find maximally general distinctive

patterns: emerging patterns which differentiate between the groups in the dataset. In

previous work (Conklin and Bergeron, 2008), a pattern was considered interesting

with respect to a corpus of music pieces if its frequency in the corpus was higher than

expected, where expected frequency was computed from some statistical background

distribution (see also Chap. 16, this volume). When applying the MGDP method

for emerging pattern mining of a corpus organized into groups, the support of a

pattern in a target group can be directly compared against its support in other groups,

or more specifically in a one-vs-all approach: against its support in the rest of the

corpus. Then pattern interest I(X) is defined as the growth rate (see (15.2)), with the

background dataset G′ consisting of all groups but G (i.e., ¬G) to adapt the measure

to the one-vs-all comparison: I(X) = P(X |G)/P(X |¬G). A pattern is distinctive if

its interest I(X) is greater than or equal to a specified threshold θ , with θ > 1. Thus

a pattern is distinctive for a group G if it is at least θ times more likely to occur

in group G than in the other groups. For P(X |¬G) = 0, pattern interest is infinite,

I(X) = ∞, and pattern X is called a jumping pattern.

Among distinctive patterns the analysis is interested in maximally general patterns:

patterns which are not subsumed by more general distinctive patterns. A pattern X
is subsumed by a more general pattern X̂ if all instances supporting X also support

X̂ . In particular, a single-viewpoint sequential pattern is subsumed by any of its

subsequences, and, vice versa, a pattern subsumes any pattern extended by one

or more components (see Fig. 15.6). For example, the interval pattern [−4,+2]
subsumes the pattern [−4,+2,−3], supported by the note sequence [A, F, G, E]. If

both a pattern X and a more general pattern X̂ are distinctive (and no more general

pattern subsuming X̂ is distinctive), only pattern X̂ is reported as a maximally general

distinctive pattern: while X is distinctive, it is not maximally general. If, on the other

hand, X is distinctive but X̂ is not distinctive, X is reported. In addition, a minimum

support threshold can be applied to ensure a certain generality of discovered rules.

15.4.2.3 Discovered Contrast Patterns

Table 15.3 lists examples of discovered patterns which are distinctive (with a pattern

interest threshold of 3) and maximally general. Only patterns with a minimum support

count of 5 are presented (Conklin and Anagnostopoulou, 2011). From top to bottom

the table includes two examples each for contrast mining by type, supertype, area

and superarea. The results illustrate how local contrast patterns can overlap: of the

dances described by the third and fourth rule in Table 15.3, twelve tunes support both

patterns, [+4,−4] and [+4,+1,+2]. Two of the listed patterns are jumping patterns:

the sequence of a descending fourth followed by a descending major second found in

the dance syrtos, and the pattern of two intertwined falling thirds found in Western

Crete.
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Table 15.3 Examples of maximally general distinctive patterns in Cretan folk tunes (Conklin and
Anagnostopoulou, 2011). Columns indicate pattern X , group G, support count of the group n(G),
support count of the pattern in the group n(X ∧G), pattern interest I(X) and p-value according to
Fisher’s exact test. The last column shows a schematic pitch sequence instantiating the pattern

X G n(G) n(X ∧G) I(X) p-value

[−5,−2] syrtos 22 5 ∞ 0.00032

 

� �� �

[+1,+2,+3] malevisiotis 13 5 34.2 8.6e-5

 

� �� �� �
[+4,−4] dance 51 16 19.1 8.4e-6

 

� ���
[+4,+1,+2] dance 51 19 11.4 3.3e-6

 

� �� � ��

[−7,+4] lassithi 35 7 14.2 0.0017

 

� �� �
[−4,+2,−3] rethymno 29 10 6.6 0.00028

 

��� �� �
[−4,+2,−3] west 64 14 ∞ 0.00023

 

�� �� �
[+1,+2,−2,+2,−2] east 47 13 5.9 0.00081

 

� � �� �� � �

While only maximally general distinctive interval patterns are included in Ta-

ble 15.3 and thus no subsumed distinctive patterns are reported, the rules for the

west of Crete and for Rethymno (in Western Crete) are related by subsumption

(see Fig. 15.6). In Conklin (2013), the MGDP algorithm is extended to consider

subsumption relations between groups and to exploit background ontologies in or-

der to prune redundant rules. A rule linking a pattern and a group subsumes rules

derived by specializing the pattern, specializing the group or both (see Fig. 15.6).

If a more general rule is distinctive the search space underneath this rule can be

pruned and specializations of the rule are not further explored. Thus, if the extended

method was applied to the Cretan folk music corpus the pattern [−4,+2,−3] would

no longer be reported for both west and rethymno but only for west: as the pattern is

already distinctive for the super-area the specialized rule for rethymno would not be

generated.
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[ ]

[ ‒4 ] [ +2 ] [ ‒3 ]

[ ‒4,+2 ]

[ ‒4,+2,‒3 ]

west east

rethymno chania herakleion lassithi syria

[ ‒4,+2 ]  →  west

[ ‒4,+2,‒3 ]  →  west [ ‒4,+2 ]  →  rethymno

[ ‒4,+2,‒3 ]  →  rethymno

pattern subsumption group subsumption

rule subsumption

Fig. 15.6 Examples of subsumption between patterns, groups and rules. Group (region) subsumption
from Conklin and Anagnostopoulou (2011)

15.4.3 Case Study 3: Association Rule Mining in Basque Folk
Music

The two case studies presented above yield positive rules: sufficiently frequent global

feature patterns or sequential patterns which are more likely to occur in one group

than in the other groups. In comparison, the third case study gives examples of

mining not only for patterns which are over-represented but also for patterns which

are under-represented in one group relative to the remaining corpus, considering both

global feature patterns (Neubarth et al., 2013b) and sequential patterns (Conklin,

2013).

15.4.3.1 Data

The Cancionero Vasco is a collection of Basque folk songs and dances, collated by

the Basque folklorist and composer Padre Donostia. The digitized corpus, curated
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by the Basque Studies Society, consists of 1902 tunes. The tunes are annotated with

geographical information on the location of collection and with genre information,

organizing the dataset into seven regions and five genres, which are further specified

into sub-regions and sub-genres, giving a total of 272 regions and 31 genres used to

label tunes in the Cancionero Vasco. The tunes were represented by global features

(Neubarth et al., 2013b), with continuous attributes discretized during pre-processing,

and by viewpoints (Conklin, 2013). Contrasting global feature patterns were mined

for region and for genre as target attribute, only considering the top-level regions and

genres (Neubarth et al., 2013b); for the discovery of contrasting sequential patterns

(Conklin, 2013) the genre was selected as the target attribute, taking into account the

complete genre ontology.

15.4.3.2 Contrast Pattern Mining by Association Rule Mining

Conklin (2013) introduced the term antipatterns to denote (sequential) patterns which

are rare in a corpus, corresponding to a target group G, but frequent in an anticorpus,

corresponding to the complement of the target group ¬G. This chapter shows that,

in the context of contrast pattern mining, conjunctions of global features can be

treated as patterns; thus the term antipatterns can equally be applied to global feature

patterns under-represented in a corpus relative to an anticorpus. Then antipatterns

can be expressed as negative class association rules, X →¬G, where X is a global

feature pattern or a sequential pattern.

In the analysis of global feature patterns (Neubarth et al., 2013b), constrained

association rule mining is applied to find both positive and negative rules. Candidate

rules are primarily evaluated by rule confidence (see (15.3)): c(X → G) = P(G |X)
for positive rules and c(X →¬G) = P(¬G |X) = 1−P(G |X) for negative rules. A

minimum confidence threshold ensures that the pattern occurs mainly in instances

of group G (positive rules) or mainly in instances of groups other than G (negative

rules), and that group G is distinguished from other groups by a high or low number

of data instances supporting pattern X . The mining is restricted to pairwise associa-

tions between one attribute–value pair in the antecedent and the target attribute in

the consequent in order to reveal the fundamental relationships in the data before

considering attribute interactions and in order to reduce the search space by syntactic

rather than evaluation measure constraints: for negative rules with small or even

zero rule support the pruning strategies of positive rule mining based on minimum

support (Agrawal and Srikant, 1994) can no longer be applied. For rules meeting the

confidence threshold, a p-value is calculated according to Fisher’s one-tailed exact

test, with right tail for positive and left tail for negative rules. The test measures the

probability of finding at least (right tail) or at most (left tail) the observed number

n(X ∧G) of instances supporting both X and G given the marginal counts in the

contingency table (see Fig. 15.4); the lower the p-value the less likely it is that the

number of co-occurrences can be explained by chance alone.

Sequential antipattern candidates in the Cancionero Vasco are primarily evaluated

by their p-value (Conklin, 2013). In addition to Fisher’s exact test in order to assess
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Table 15.4 Positive and negative rules discovered in the Cancionero Vasco. Top: global feature
patterns and antipatterns discovered with a minimum confidence threshold of 0.5 (based on Neubarth
et al., 2013b). Abbreviated attribute names referring to attributes of the McKay (2010) set: pri-
mary register (register); repeated notes (repeated); average melodic interval (intervals). Bottom:
sequential antipatterns discovered with a maximum p-value threshold of 0.01 (Fisher’s test) and
minimum p-value threshold of 0.001 (χ2 test) (Conklin, 2013)

X G or ¬G n(X) n(G) n(X ∧G) confidence p-value

register:high → dances 249 495 179 0.72 ≈ 0.0
repeated:freq → life-cycle songs 7 477 5 0.71 0.012

intervals:narrow → ¬ Araba 945 27 4 0.99 6.0e-4

notedensity:low → ¬ Zuberoa 95 80 0 1.00 0.015

[+1,−5,0] → ¬ historical songs 60 121 0 1.00 0.007

[+1,−1] → ¬ children′s songs 754 56 13 0.98 7.8e-5

[2/1,3/2] → ¬ festive songs 164 82 2 0.99 0.005

[3/1] → ¬ lullabies 883 98 29 0.97 2.3e-8

the reliability of the association between an antipattern and a group, a χ2 goodness of

fit test is applied to assess the distribution of a candidate antipattern in the anticorpus.

The anticorpus ¬G covers several groups. To be considered interesting, an antipattern

candidate should be frequent across the groups of the anticorpus rather than being

concentrated in only one group within the anticorpus; in the latter case it would be

more appropriate to consider it as a pattern for that group instead of an antipattern

for the target group (Conklin, 2013). Thus, antipatterns must satisfy two measure

thresholds: a maximum p-value threshold in Fisher’s test and a minimum p-value

threshold in the χ2 test.

15.4.3.3 Discovered Contrast Patterns and Antipatterns

Table 15.4 shows selected results of mining the Cancionero Vasco for positive and

negative rules. The first four rules relate to global feature patterns, with two examples

each for positive and for negative associations, covering both genres and regions as

target attributes. The second part of the table lists examples of sequential antipatterns

for genres: two melodic interval antipatterns and two duration ratio antipatterns. The

last global feature antipattern and the first interval antipattern are jumping antipatterns,

which do not occur at all in the target group.

Considering not only the top-level genres and regions but the complete taxonomies

and thus exploring rule subsumption (Neubarth et al., 2013a) could provide additional

insight and help the interpretation of general rules (see Fig. 15.7). For example, high

register is particularly related to dances without lyrics (165 out of the 179 tunes)

and thus presumably instrumental performance of these tunes. The primary register
attribute of the McKay (2010) set is calculated as the average MIDI pitch of a piece;

a high register corresponds to an average pitch of 73 or higher, that is, above C5 (see

example in Fig. 15.8). The positive association between tunes with a high proportion

of repeated notes and the genre of life-cycle songs is supported by repetitive melodies
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danceslife-cycle songs

dances with lyrics dances without lyricslullabies children's songs

group subsumption

laments. . .

. . .

repeated:freq  →  life-cycle songs

repeated:freq  →  children's songs

register:high  →  dances

register:high  →  dances without lyrics

rule subsumption

Fig. 15.7 Examples of group (genre) subsumption and rule subsumption for patterns discovered in
the Cancionero Vasco. In the group taxonomy solid boxes refer to metadata annotations, dashed
boxes refer to specialized groups of dances derived by evaluating the presence of lyrics

in children’s songs, which include songs associated with children’s games such

as skipping songs, clapping songs or counting-out rhymes (see also Martı́ i Pérez

et al., 2001). Figure 15.9 shows a children’s song from the Cancionero Vasco, in

which 70.1% of notes repeat the previous note, against a mean value of 19.2% in the

complete corpus. For German folk songs, Steinbeck (1982) also observes a higher

proportion of repeated notes in children’s tunes than in other folk music samples.

Fig. 15.8 Untitled dance without lyrics (excerpt) from the Cancionero Vasco

Fig. 15.9 Children’s song “Arri, arri, mandua” from the Cancionero Vasco
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15.5 Conclusions

Contrast pattern mining aims to discover and describe patterns which differentiate

subpopulations or groups in a dataset. This chapter has introduced the task and repre-

sentative methods of contrast pattern mining and has reviewed work in quantitative

and computational folk music analysis which can be phrased as mining for contrast

patterns. Three case studies have been presented in detail, illustrating a variety of

folk tune corpora, different groupings or partitionings of datasets, global feature and

sequential representations of patterns, and different contrast pattern mining methods.

The analysis task of contrast pattern mining is related to classical methods in

descriptive and inferential statistics, which describe the distributions of variables and

differences between group means and variances for selected continuous variables.

Statistical analysis has also been used in quantitative folk music analysis, generally

restricted to analysing single variables (e.g., Freeman and Merriam, 1956; Gundlach,

1932; Kolinski, 1982; Sagrillo, 2010; Steinbeck, 1982). Methods of descriptive and

inferential statistics are productively applied for testing variable distributions across

the complete dataset, rather than for knowledge discovery (i.e., the discovery of

previously unknown relations). In classic contrast pattern mining, on the other hand,

pattern descriptions are based on discrete attributes, and discovered contrast patterns

are local descriptive patterns which constitute binary predicates on music pieces in a

corpus and are assessed by evaluating pattern support in different groups.

Contrast patterns are traditionally specified as combinations (sets or sequences)

of attribute–value pairs. Previous work in computational folk music analysis has

sometimes used attribute selection or classification to evaluate the discriminative

power of single attributes or sets of attributes in the context of predictive model

induction (e.g., Bohak and Marolt, 2009; Hillewaere, 2013; van Kranenburg and

Karsdorp, 2014; van Kranenburg et al., 2013); the methods reveal attributes which

can separate groups of music pieces but reported results do not give insight into

which values or value ranges of the attributes are characteristic for which group.

For sequential pattern discovery in inter-opus music analysis, two ways of deter-

mining pattern frequencies have been proposed (e.g., Conklin and Bergeron, 2008):

the piece count of a pattern is the number of pieces in the corpus which contain the

pattern one or more times; the total count of a pattern is the number of all pattern

occurrences including repetitions of a pattern within the same piece. The definition

of pattern support in this chapter, and in the case studies presented in this chapter,

corresponds to piece count; it follows general approaches in contrast data mining

and classic sequential pattern mining (Agrawal and Srikant, 1995; Mooney and Rod-

dick, 2013; Novak et al., 2009b). Some quantitative studies in folk music research

have also considered total counts, or proportional frequencies, of event features (e.g.,

Gundlach, 1932; Sagrillo, 2010). Beyond folk music, examples of mining contrasting,

or distinctive, melodic or polyphonic patterns using total counts include an analysis

of Brahms’ string quartet op. 51 no. 1 against the string quartets op. 51 no. 2 and

op. 67 (Conklin, 2010b) and the analysis of Beethoven’s piano sonatas in Chap. 17

of this volume.
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As the name contrast data mining suggests, the analysis focuses on differences,

rather than similarities, between groups. The notion of similarity has attracted con-

siderable attention in music information retrieval and computational music research,

including computational folk music research (e.g., Müllensiefen and Frieler, 2004;

Scherrer and Scherrer, 1971); generally the comparison tends to be between pairs of

individual folk tunes rather than at the level of groups of tunes. An early exception

is an example study by Suchoff (1970), who compares support counts of interval

sequences in folk music repertoires (Serbo-Croatian women’s songs and Romanian

winter solstice songs) against samples of 16th-century vocal and instrumental music

and finds “interesting similarities [...] which seem to point toward folk-based or

folk-styled characteristics of the art melodies” (p. 202). Similarity or overlap between

folk music repertoires has also been studied in the context of clustering (e.g., Juhász,

2006; Juhász and Sipos, 2010). However, clustering itself is an unsupervised data

mining method: information on groups is introduced manually by partitioning the

mining input or during post-processing; groups are referenced by prototypical in-

stances rather than generalized patterns (Juhász, 2006) or filtered visualization rather

than symbolic description (Toiviainen and Eerola, 2001).

Compared to the unsupervised task of clustering, contrast pattern mining is a

supervised data mining task, which evaluates instances from labelled groups within

a dataset. The three case studies presented in this chapter have all used predefined

groupings or partitionings of a folk music corpus based on metadata, for example,

into folk music genres or regions of collection. Obviously there is no one “correct”

grouping of a corpus appropriate for all analysis tasks, and there is no reason the

grouping cannot use any available ontology, be specified flexibly by an analyst

considering metadata or music content characteristics (e.g., Jesser, 1991) or result

from previous computational analysis such as clustering (e.g., Steinbeck, 1982).

While this chapter has focused on applications in folk music analysis, quantitative

comparative analysis and contrast pattern mining are not confined to this repertoire.

Existing musicological research has applied quantitative methods to corpora of, for

example, early music (Trowbridge, 1986), performance criticism of Beethoven piano

sonatas (Alessandri et al., 2014), 19th-century music (VanHandel, 2009) and popular

music (Huron and Ommen, 2006), as well as comparisons between folk and art

music (Suchoff, 1970). Recent example studies in music data mining and music

information retrieval include, for example, subgroup discovery in Haydn and Mozart

string quartets (Taminau et al., 2010), corpus analysis of ragtime (Volk and de Haas,

2013) or visualization of contrapuntal module occurrences in different style periods

(Antila and Cumming, 2014). Contrast pattern mining could be used where support

counts can be determined for features or feature sets which are derived from metadata,

such as instruments, genres or styles in music publication titles (Hess, 1953; Rose

and Tuppen, 2014); extracted from music scores or digitized music content, such as

tempo indications, tonal material or melodic patterns (Albrecht and Huron, 2014;

Post and Huron, 2009; Suchoff, 1970); or compiled from contextual information,

such as dates, locations and repertoire of concert performances (Kopiez et al., 2009)

or performers, compositions and release dates of music recordings (Alessandri et al.,

2014).
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Contrast patterns are not restricted to the specific representations of melodic pat-

terns used in the reported case studies: conjunctions of global features and sequences

of event features. The general approach is very flexible, and numerous other pattern

representations used in symbolic music analysis could also be considered, for ex-

ample, vertical viewpoint patterns (Conklin, 2002), geometric polyphonic patterns

(Meredith et al., 2002, see also Chaps. 13 and 17, this volume) and chord sequence

patterns (Conklin, 2010a). Theoretically, any representation that defines a computable

boolean predicate can be used for a pattern representation (Atzmüller, 2015), for

example: patterns described by a conjunction of global and event features, feature

set sequential patterns (Conklin and Bergeron, 2008), sequential patterns with gaps

(Comin and Parida, 2008), patterns with variables (Angluin, 1980), and even patterns

described by grammars or rewrite rules (Sidorov et al., 2014). With more powerful

pattern representations would come additional challenges. First, the classical tradeoff

between expressiveness and tractability in knowledge representation (Levesque and

Brachman, 1987) would naturally be encountered, and compromises on the search of

the pattern space would need to be accepted. Second, the results of contrast pattern

mining may be more difficult to interpret as one moves to further levels of abstraction

from the underlying music representation. Logical subsumption between patterns, as

well as consideration of domain ontologies, offers one strategy to restrict the search

space, organize the data mining output and facilitate the interpretation of discovered

patterns.
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Suchoff, B. (1967). Computer applications to Bartók’s Serbo-Croatian material.
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Chapter 16
Pattern and Antipattern Discovery
in Ethiopian Bagana Songs

Darrell Conklin and Stéphanie Weisser

Abstract Pattern discovery is an essential computational music analysis method

for revealing intra-opus repetition and inter-opus recurrence. This chapter applies

pattern discovery to a corpus of songs for the bagana, a large lyre played in Ethiopia.

An important and unique aspect of this repertoire is that frequent and rare motifs

have been explicitly identified and used by a master bagana teacher in Ethiopia. A

new theorem for pruning of statistically under-represented patterns from the search

space is used within an efficient pattern discovery algorithm. The results of the

chapter show that over- and under-represented patterns can be discovered in a corpus

of bagana songs, and that the method can reveal with high significance the known

bagana motifs of interest.

16.1 Introduction

Pattern discovery is a central component of music analysis, concerned with the

induction of patterns, those that are perceptually salient, statistically distinctive, or

interesting to an analyst, within a single piece of music (intra-opus) or in a corpus of

pieces (inter-opus). In contrast to a deductive analysis, which proceeds from known

or postulated patterns and queries for their occurrences within a corpus, an inductive
analysis performs the converse inference, proceeding from the music surface to

salient patterns. The identification of salient structures within a piece or a corpus is a
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central part of musical analysis. In contrast to current methods for pattern discovery

in music (Conklin and Anagnostopoulou, 2001; Lartillot, 2004; Meredith et al., 2002),

which rely to varying extent on a form of salience determined by intra-opus repetition

and inter-opus recurrence, a recent study (Conklin, 2013) has considered the problem

of discovering antipatterns: patterns that are surprisingly rare or even absent from a

piece or corpus. This property, which Huron (2001) refers to as a negative presence,

has so far seen little attention in the computational music analysis literature.

Since the virtual space of patterns may be large or even infinite (in the case, for

example, of antipatterns), all pattern discovery algorithms must address the dual

problems of efficiently searching this space, and of ranking and presenting the results.

Subsequently, a second order evaluation process arises: are patterns that are highly

ranked also interesting to the analyst? Therefore it can be extremely productive

to deeply study pieces where prior motivic analyses are available (Collins et al.,

2014), for example as performed by Huron (2001), and Conklin (2010b) in their

computational validations of Forte’s (1983) motivic analysis of the Brahms String

Quartet in C Minor.

In this chapter we will present a study of pattern discovery in Ethiopian bagana

songs. The study of a bagana corpus provides a unique opportunity for the evaluation

of pattern discovery techniques, because there are known inter-opus motifs, both rare

and frequent, that are significant for didactic purposes (Weisser, 2005). The aim of

this study is to explore whether inductive methods for the discovery of significantly

frequent and rare patterns in music can reveal the known motifs, and possibly others

that have functional significance.

Sequences are a special form of data that require specific attention with respect to

alternative representations and data mining techniques. Sequential pattern mining

methods (Adamo, 2001; Agrawal and Srikant, 1995; Ayres et al., 2002; Mooney and

Roddick, 2013) can be used to find frequent and significant patterns in datasets of

sequences, and also sequential patterns that contrast one data group against another

(Deng and Zaı̈ane, 2009; Hirao et al., 2000; Ji et al., 2007; Wang et al., 2009). In

music, sequential pattern discovery methods have been used for the analysis of single

pieces (Conklin, 2010b), for the analysis of a corpus of pieces (Conklin, 2010a), and

also to find short patterns that can be used to classify melodies (Conklin, 2009; Lin

et al., 2004; Sawada and Satoh, 2000; Shan and Kuo, 2003).

Further to standard pattern discovery methods, which search for frequent patterns

satisfying minimum support thresholds (Webb, 2007), another area of interest is the

discovery of rare patterns. This area includes work on rare itemset mining (Haglin

and Manning, 2007) and negative association rules (Wu et al., 2004) which have

seen application in bioinformatics (Artamonova et al., 2007). For sequence data, rare

patterns have not seen as much attention, but are related to unwords (Herold et al.,

2008) in genome research (i.e., absent words that are not subsequences of any other

absent word), and antipatterns (Conklin, 2013) in music (patterns that are surprisingly

rare in a corpus of music pieces). Antipatterns may represent structural constraints of

a musical style and can therefore be useful for classification and generation of new

pieces.
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Fig. 16.1 The Ethiopian lyre bagana. Photos: Stéphanie Weisser

This chapter is structured as follows. Section 16.2 provides some historical context

on the Ethiopian bagana, the notation used to encode notes in bagana songs, the known

motifs, and a description of the encoded corpus of bagana songs. Section 16.3 outlines

the pattern discovery method, statistical evaluation of patterns, and an algorithm for

pattern discovery. Section 16.4 presents the computational analysis of the bagana

corpus, first for antipatterns, then for positive patterns. The method is able to reveal

known bagana motifs in a small corpus of bagana songs. The chapter concludes

with a general discussion on the role of inductive methods in computational music

analysis.

16.2 Bagana Music and Notation

In this chapter known frequent and rare motifs proposed by a master bagana teacher

are studied using pattern discovery methods. Before presenting the motifs and cor-

pus, a brief introduction of the cultural context will serve to provide the relevant

background in playing technique and notation used to encode pieces.

The Ethiopian lyre bagana is a large instrument (ca. 1.20m high), made of wood,

cattle skin and gut strings (see Fig. 16.1). It is played by the Amhara, a people

settled mostly in Central and Northern Ethiopia. As a stringed instrument with strings

running to a yoke or crossbar held by two arms coming out of the resonator, the

bagana is categorized by organologists as a lyre. While such instruments were largely
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Fig. 16.2 Bagana representations from ancient manuscripts. Left: Illumination (detail) from Gospel
of St. John (fol. 3v), Debre Bankol, Shire, Tigre Province, 19th century. Photo courtesy of Michael
Gervers, University of Toronto. Right: Illumination (detail) from Life of St. Täklä Haymanot &
Gäbrä Mänfäs Qeddus, Story of Archangel Mikael (fol. 119v), Samuel Za-Qoyetsa Monastery, Tigre
Province, 18th century. Photo courtesy of Michael Gervers, University of Toronto

played in ancient Mesopotamia, ancient Egypt and ancient Greece, millennia ago,

they are nowadays only found around the Nile and in East Africa.

The bagana plays a special role in Amhara culture: it is indeed the only melodic

instrument belonging to the zema, the Amhara spiritual musical sphere. All the other

instruments of the zema are percussive, producing sounds without definite pitch. The

myth of its origin might explain such a specific status: according to Amhara belief,

the bagana is the biblical King David’s instrument, brought to Ethiopia together with

the Ark of the Covenant by Menelik I, legendary son of King Solomon and Queen of

Sheba. Such close association with the divine election and with the founder of the

Solomonic dynasty explains why the bagana was historically an instrument played

by pious men and women of the nobility (makwannent).
Even though it is not played during liturgical ceremonies, the bagana is considered

as a sacred instrument, whose sounds are able to create a special connection with God,

the saints and the Virgin Mary. For this reason, it is the only instrument traditionally

allowed to be sounded during Lent (Fasika Tsom), the long fasting period before

Easter. The bagana is also considered as a very powerful object, able to cast away

the devil and to protect a house from evil spirits. This power against evil forces is

linked to the biblical text of Samuel (1 Samuel 16:14-23), recalling the episode of

King David playing the instrument to appease King Saul, tormented by an evil spirit.

Indeed, the bagana is often depicted in iconographic representations being played

by King David in majesty on his throne (see Fig. 16.2). The bagana is therefore a
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highly-respected instrument, inducing strong emotional states for players as well as

for listeners (Weisser, 2012).

The bagana is a solo instrument accompanied by singing voice only and produces

very low pitch sounds (from 50 to 200 Hz in general, which is close to the tessitura of

a double bass). Bagana sounds are characterized by their very specific buzzing sound

quality: indeed, due to a specific device named enzira and located at the bridge, the

instrument generates extremely rich and harmonic sounds, perceived by the human

ear as buzzing.

A bagana song is usually referred to as a mezmour (spiritual song), and it is built

on repetition: a relatively short melody is repeated up to 20 times, with different lyrics

each time except in the refrain (azmatch). Bagana songs are usually preceded by

instrumental preludes, called derdera (pl. derderotch). Lyrics are an important part of

the bagana repertoire, as they comprise prayers, praise to God, Jesus, the Virgin Mary

and the saints, and elaborate poetry including semenawork (literally “wax-and-gold”,

a literary construct widely used by Amhara and characterized by double- or triple-

meaning). Musical repetition is not strict: several modifications can be introduced by

players in the course of the song, but they are usually subtle. The perceptual effect of

the musical repetition, combined with the absence of dynamic variation (the buzzing

sound colour makes it impossible to vary the loudness), the specific flowing rhythm

and the softened voice tone induces a very meditative, introspective mood, distinct

from other Amhara musical expressions (Weisser, 2012).

16.2.1 Bagana Playing and Notation

The bagana can be played by plucking the strings with the left hand fingers or with a

plectrum (girf). The latter technique has nowadays almost disappeared, even though

iconographic evidences (see Fig. 16.2: left) suggest that it was frequently in use.

The bagana is a monophonic instrument; even when played with the plectrum, the

musician selects the pitches by allowing to vibrate freely only the strings that are

supposed to sound, and by blocking with the fingers the ones that are not supposed to

sound. When plucked with the fingers, the strings are also played individually, even

though, as the strings are left open and therefore sound until natural extinction, some

superposition might be created when the plucking of several strings is fast.

The plucking technique of bagana consists in placing the left hand behind the

strings, and performing a movement from a non-sounding string (a rest string) to

the next one (a playing string), to pluck it with the flesh of the finger and then back

to the rest string. Traditionally, the playing of the bagana was taught privately, by a

master player to a pupil. The pupil placed his hand on the master’s and understood

that way how to proceed. The musical part of bagana repertoire was not written down:

only lyrics were sometimes notated. However, the development of musical teaching

inspired from Western music schools led to the opening of a bagana class at the

Yared School of Music (Addis Ababa). The professor Alemu Aga, one of the most

renowned and acclaimed bagana players of the country, who taught this class from
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Table 16.1 Fingering of the bagana, with finger numbers assigned to string numbers

string 1 2 3 4 5 6 7 8 9 10

finger 1 r 2′ 2 r 3 r 4 r 5

1972 to 1980, developed a new method in order to formalize the learning process, in

cooperation with the professors of other instruments. He assigned a number for each

finger, each sounding string and each pitch (see Table 16.1 and Fig. 16.3).

In Table 16.1, “r” (for “rest”) indicates a string that is not played, but rather is

used as a rest for the finger after it plucks the string immediately next to it. Strings 3

and 4 are both played by finger number 2 (string 3 being therefore notated as finger

2′), otherwise the assignment of finger number to string number is fixed.

Only six of the ten strings are playing strings, tuned according to a pentatonic

scale. The two scales (keniet, pl. kenietotch) used for bagana performance are usually

either anhemitonic (with all intervals larger than a tempered semitone), or hemitonic

(containing one or more semitones). The anhemitonic scale is called tezeta and the

hemitonic one is often named anchihoye (see Table 16.2). As in the rest of Amhara

music, both secular and sacred, the scales are built on untempered intervals and the

absolute pitch is irrelevant. Players usually adjust their pitch range to their taste and

voice range, transposing the scale to the desired voice register.

To illustrate the notation in Table 16.2, for example, in the tezeta scale the as-

cending pentatonic scale (closest tempered degrees being C, D, E/F, G, A) would

be notated by the sequence [2,3,1,5,4]. The scale degree notation is also useful for

considering the intervallic relation between two strings, as will be used in Sect. 16.4.

Figure 16.3 shows the placement of the left hand on the 10 bagana strings, along with

the information from Table 16.2: the finger numbering used, and the notes played

by the fingers (in the tezeta scale). Figure 16.4 shows an example of a fragment

of a bagana song, encoded as a sequence of finger numbers, corresponding to the

fingering of the song.

Table 16.2 Tuning of the bagana, in two different scales, and the nearest Western tempered note
(with octave number) corresponding to the degrees of the scales. String 1 in the tezeta scale can be
tuned to either E2 or F2

finger 1 2′ and 2 3 4 5

string 1 3 and 4 6 8 10

scale tezeta E2 or F2 C2 D2 A2 G2

scale anchihoye F2 C2 D�2 A2 G�2

scale degree 3̂ 1̂ 2̂ 5̂ 4̂
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Fig. 16.3 Placement of left
hand on the strings of the
bagana. Photo: Stéphanie
Weisser, Addis Ababa, October
2012

16.2.2 Known Motifs

In the context of formal teaching, Alemu Aga wrote down with this numbered notation

all of the melodic material of the songs he performed. He also designed specific

exercises: based on an analysis of his personal repertoire, he developed several

motifs (two to seven notes), to be used in an early stage of the learning process (see

Tables 16.3 and 16.4). The student, after learning how to hold the instrument properly

and placing the left hand in a correct position, is expected to practise these series of

motifs regularly until moving on to learning a real song. To this day, Alemu Aga still

uses these motifs in his teaching, considering that they familiarize the student with

the playing technique, the numbered notational system, the pitch of each string, and

the unique buzzing sound colour of the instrument.

In the teaching process, Alemu Aga requests the student to practise each exercise

three times before moving to the next one. When the motif is short (such as the first

and second of the rare motifs in Table 16.3, and the second and third of the frequent

motifs in Table 16.4), repetition is usually performed without a break, which leads

the student to practice both the motif and its retrograde. For example, the pattern

[1,4,1,4,1,4] (repeating the first rare motif three times) effectively comprises the

pattern [1,4] and its retrograde [4,1]. When the exercise is long (such as the third and

fourth of the rare motifs, and the first of the frequent motifs), a pause is usually taken

Fig. 16.4 A fragment encoded in score and finger notation, from the beginning of the song Abat-
achen Hoy (“Our Father”), one of the most important bagana songs, as performed by Alemu Aga
(voice transcription and lyrics not shown). Transcribed by Weisser (2006)



432 Darrell Conklin and Stéphanie Weisser

Table 16.3 The four rare motifs provided by
Alemu Aga, from Weisser (2005, page 50)

Motifs in numeric notation

First exercise [1,4]

Second exercise [1,2]

Third exercise [2,3,1,5,4]

Fourth exercise [4,5,1,3,2]

Table 16.4 The three frequent motifs provided
by Alemu Aga, from Weisser (2005, page 50)

Motifs in numeric notation

First exercise [4,5,4,5,4,5,1]

Second exercise [4,2]

Third exercise [3,1]

after the final note, before starting the motif all over again. Therefore, it cannot be

said that the bigrams [4,2] and [2,4] (which are the joining bigrams formed by the

repetition of the third and fourth rare motifs) are rare, nor that the motif [1,4] (which

is the joining bigram formed by the repetition of the first frequent motif) is frequent.

In fact, the opposite is true ([1,4] is a rare motif: see Table 16.3) and this will also be

confirmed by the pattern discovery results of Sect. 16.4.

16.2.2.1 Rare Motifs

Table 16.3 shows four motifs that correspond, according to the bagana master Alemu

Aga, to motifs that are rarely encountered in his real bagana songs and are used

during practice to strengthen the fingers with unusual finger configurations (Weisser,

2005). Referring to Fig. 16.4, it can be seen that the motifs of Table 16.3 are absent

from the fragment. The first two motifs are bigrams, and in Sect. 16.4 it will be

explored whether these two rare motifs can be discovered from corpus analysis. The

third and fourth motifs correspond to longer pentagrams that form ascending and

descending pentatonic scales and are also used for didactic purposes. Since most

pentagram patterns will be rare in a small corpus, an additional question that will be

explored in Sect. 16.4 is whether these two pentagram motifs are surprisingly rare.

16.2.2.2 Frequent Motifs

Table 16.4 shows three motifs that correspond, according to the bagana master Alemu

Aga, to motifs that are frequently encountered in his real bagana songs. The first

exercise works the independence of the little finger regarding the ring finger and

increases the strength of the little finger. The ring finger and the little finger are

particularly exercised because they pluck the tautest strings of the instrument. The

final part [5,1] of the first exercise also directly outlines the particular difficulty of

the thumb, which plucks the string in the opposite direction compared to the other

fingers. The second exercise focuses on mastering extreme notes of the ambitus of

the bagana. This motif is very often used, particularly at the beginning and at the

end of musical phrases (for example, see the final notes of the fragment of Fig. 16.4).
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Finally, the third exercise of this category outlines the difficulty of plucking a string

with the middle finger without moving the ring finger.

16.2.3 Bagana Corpus

The analysed corpus comprises 29 melodies of bagana songs and 8 derderotch

(instrumental preludes) performed by seven players (five men, two women). These

37 pieces were recorded and transcribed by Weisser (2005) between 2002 and 2005

in Ethiopia (except for two of them recorded in Washington, DC).

It is important to note that in bagana performances, melodic variations are frequent,

and the performance is rarely completely fixed. However, these modifications are

not structural, as they do not undermine the identity of the song. Some musicians

introduce these changes in a different way each time they are playing the song. In

order to limit the impact of these variations on the results, non-structural variations

were not included, nor were additional and optional ornamentations.

After removal of non-structural variations, a total of N = 1906 events (finger

numbers) are encoded within the 37 pieces (events per song: μ = 51, σ = 30, min =
13, max = 121).

16.3 Pattern Discovery Method

In this work we apply data mining to discover distinctive patterns in the bagana

corpus. Here a pattern P of length � is a contiguous sequence of finger numbers,

notated as [e1, . . . ,e�]. The number of occurrences of a pattern P in the corpus is

given by cP (see Table 16.5).

In pattern discovery in music, the counting of pattern occurrences can be done in

two ways (Conklin, 2010b): either by considering piece count (the number of pieces

containing the pattern one or more times, i.e., analogous to the standard definition

of pattern support in sequential pattern mining) or by considering total count (the

total number of positions matched by the pattern, also counting multiple occurrences

within the same piece). Total count is used whenever a single piece of music is the

target of analysis. For the bagana, even though several pieces are available, total

count is used, because we consider that a pattern is frequent (or rare) if it is frequently

(or rarely) encountered within any succession of events. Therefore in this study cP is

the total number of events which initiate a pattern P.
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Table 16.5 Glossary of notation and terminology used in this chapter

notation / terminology meaning

pattern a sequence of finger numbers

P = [e1, . . . ,e�] pattern P of length �

motif a known frequent or rare pattern for the bagana

positive pattern over-represented in a corpus

antipattern under-represented in a corpus

cP total count of pattern P

ce total count of event e

N total number of events in corpus

X random variable modelling the total count cP of pattern P

tP maximum possible total count of pattern P

bP analytic background probability of pattern P

E expected total count of pattern

B binomial probability density function

B≤ binomial cumulative distribution function

α statistical significance level

16.3.1 Pattern Statistics

In this section two subtypes of pattern are introduced. A positive pattern is a pattern

which is frequent in a corpus; an antipattern is a sequence that is rare, or even absent,

in a corpus. For data mining, these definitions though intuitive are not operational.

For positive patterns, very short patterns will tend to be highly frequent but usually

are not meaningful because they may occur with high frequency in any corpus. For

antipatterns, almost any sequence of events is an antipattern, that is, most possible

event sequences will never occur in a corpus, and most are not interesting because it

is expected that their total count is zero. Therefore we want to know which are the

significant positive patterns and antipatterns: those that are surprisingly frequent or

rare in a corpus.

Positive patterns and antipatterns can be evaluated by their p-value, which gives

the probability of finding at least (for positive patterns) or at most (for antipatterns) the

observed number of occurrences in the corpus. The binomial distribution, which can

be used to compute the probability of obtaining an observed number of occurrences

in a given number of sequence positions, is a standard model for assessing discovered

motifs in bioinformatics (van Helden et al., 1998) and will be used here to compute

pattern p-values as described below.
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In studies where there is a set of pieces available to contrast with the corpus, it is

possible to compute the empirical background probability of a pattern. This was the

method used for ranking patterns in inter-opus pattern discovery studies of Cretan

folk songs (Conklin and Anagnostopoulou, 2011) and antipatterns in Basque folk

tunes (Conklin, 2013). For the bagana there is no natural set of pieces to contrast

with the corpus, and the background probability of a pattern P = [e1, . . . ,e�] must be

estimated, for example using a zero-order model of the corpus:

bP =
�

∏
i=1

(cei/N) , (16.1)

where cei is the total count of event ei, and N is the total number of events in the

corpus. This analytic background probability bP therefore estimates the probability

of finding the pattern in � contiguous events. In this study, a zero-order model of the

corpus is used: a higher-order analytic model would not be able to detect bigram

patterns because the expected total count of a bigram pattern would be equivalent to

its actual count.

To define the p-value of a pattern P = [e1, . . . ,e�], we define the random variable

X that describes its total count cP. This is modelled by the binomial distribution (see

Appendix A for definitions):

P
(
X = cP

)
= B

(
cP; tP,bP

)
, (16.2)

where tP = "N/�# approximates the maximum number of positions that can be

possibly matched by the pattern (this is a lower bound, as patterns with self-overlap

have a higher maximum) and bP is the background probability of the pattern.

Letting B≤ be the binomial cumulative distribution function (see Appendix A for

definitions), the p-value of P as an antipattern is the probability of finding cP or fewer

occurrences of the pattern in the corpus:

P
(
X ≤ cP

)
= B≤

(
cP; tP,bP

)
, (16.3)

and the p-value of P as a positive pattern is the probability of finding cP or more

occurrences of the pattern in the corpus:

P
(
X ≥ cP

)
= 1−B≤

(
cP−1; tP,bP

)
. (16.4)

Low p-values according to (16.3) or (16.4) indicate patterns that are statistically

surprising and therefore potentially interesting.

16.3.2 Pattern Discovery Algorithm

The pattern discovery task can be stated as: given a corpus, find all patterns having

a p-value ((16.3) and (16.4)) below the specified significance level α . Furthermore,
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for presentation we consider only those significant patterns that are minimal, that is,

those that do not contain any other significant pattern (Conklin, 2013; Ji et al., 2007).

The discovery of minimal significant patterns can be efficiently solved by a

refinement search over the space of possible patterns (Conklin, 2010a, 2013), using

an algorithm similar to general approaches for sequential pattern mining (Ayres et al.,

2002). The refinement search is also similar to the STUCCO (Bay and Pazzani, 2001)

method for contrast set mining, here with a method for under-represented pattern

pruning. A depth-first search (see Fig. 16.5) starts at the most general (empty) pattern.

The search space is structured lexicographically so that no pattern is visited twice. If

a pattern P at a particular node of the search tree is not significant (either as a positive

pattern or an antipattern: see (16.3) and (16.4)), it is specialized to a new pattern P′
by extending it on the right hand side by every possible event (finger number) and

updating the pattern counts cP′ , and computing tP′ , bP′ , and both p-values ((16.3) and

(16.4)). All specializations of the pattern are then added to the search queue. The

search continues at a node if the pattern is significant neither as a pattern nor as an

antipattern. Significant patterns are added to a solution list, with a filtering against

other solutions found so far to ensure that the final pattern set contains only minimal

patterns.

The runtime of the algorithm is largely determined by the specified significance

level α , because with low α the search space must be more deeply explored before

a significant positive pattern is reached. For positive patterns, the p-value (defined

in (16.3)) rapidly decreases with pattern specialization, so unless α is very low the

search for positive patterns will tend to terminate early. For antipatterns the situation

is reversed, with the p-value tending to increase through a search path.

Nevertheless, for antipatterns it is possible to compute the minimal antipattern

p-value (16.3) achievable on a search path. This can lead to the pruning of entire

[]

[1] [2] [3] [4] [5]

[1,1] [1,2] [1,3] [1,4] [1,5]

[1,3,1] [1,3,2] [1,3,3] [1,3,4] [1,3,5]

Fig. 16.5 A refinement search space of bagana patterns, through the pattern [1,3] down to its
specializations
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search paths that cannot possibly visit an antipattern meeting the significance level

of α:

Theorem 16.1. For any pattern P, if B
(
0; tP,bP

)
> α , then B≤

(
cP′ ; tP′ ,bP′

)
> α for

any specialization P′ of P.

Proof. Consider a pattern P = [e1, . . . ,e�] and a specialization P′ = [e1, . . . ,e�′ ].
Since �′ > �, it follows that bP ≥ bP′ (16.1) and that tP ≥ tP′ . This implies that

(1−bP)
tP ≤ (1−bP′)

tP′ . Therefore,B
(
0; tP,bP

)≤B
(
0; tP′ ,bP′

)
. Following the defini-

tion of the cumulative distribution B≤ (16.6), B
(
0; tP′ ,bP′

)≤ B≤
(
cP′ ; tP′ ,bP′

)
. There-

fore B
(
0; tP,bP

) ≤ B≤
(
cP′ ; tP′ ,bP′

)
, so if B

(
0; tP,bP

)
> α , then B≤

(
cP′ ; tP′ ,bP′

)
>

α . �
The impact of this new theorem is that if the pattern P at a search node is being

tested only as an antipattern, and B
(
0; tP,bP

)
> α , the search does not need to

continue at that search node. The theorem also provides an important way to use the

algorithm above for efficient unword discovery, i.e., to find significant antipatterns

where cP = 0.

16.4 Results and Discussion

The pattern discovery method described in Sect. 16.3 was applied to the bagana

corpus to find all minimal antipatterns and positive patterns at the significance level

of α = 0.01. In this section, first the discovered antipatterns, then the discovered

positive patterns, are presented and discussed.

16.4.1 Discovered Antipatterns

Table 16.6 presents the antipatterns revealed by the discovery method. In the columns

are the pattern P, the closest tempered interval (in the tezeta scale) formed by the

components of the pattern, the pattern counts (both total count and piece count), the

expected total count of P given by E(X) = bP× tP, and finally the p-value according

to (16.3).

The method revealed exactly ten significant antipatterns: five antipatterns and

their retrogrades. Interestingly, all are bigrams and all come in retrograde pairs. The

two antipatterns [4,1] and [2,1] presented in the top part of Table 16.6 are the most
significant antipatterns discovered, and correspond to the retrogrades of two of the

didactic rare motifs (Table 16.3). As mentioned earlier, this discovery is valid as,

for example, the first motif [1,4] repeated three times will also play the motif [4,1].
It is therefore remarkable that both retrograde forms, not only the form listed in

Table 16.3, are discovered.

The second column of Table 16.6 presents the closest tempered interval (in the

tezeta scale) formed by the pattern. Note that antipatterns involving finger 1 can give
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Table 16.6 Bagana antipatterns discovered (top and middle) at α = 0.01. Intervals are measured in
the tezeta scale. Top: corresponding to rare bigram motifs of Table 16.3; middle: novel rare patterns;
bottom: the two pentagram motifs of Table 16.3. Partial horizontal lines separate retrograde pairs.
Numbers in brackets indicate the number of distinct pieces containing the pattern

P closest tempered interval cP E
(
X
)

P
(
X ≤ cP

)
[1,4] P4/M3 21 (14) 48 7.5e-06

[4,1] 2 (2) 48 6.3e-19

[2,1] M3/P4 6 (5) 50 1.8e-15

[1,2] 13 (7) 50 2.6e-10

[3,4] P5 3 (3) 30 4.0e-10

[4,3] 2 (2) 30 3.8e-11

[2,5] P5 16 (9) 38 2.7e-05

[5,2] 17 (10) 38 6.6e-05

[3,5] P4 5 (4) 26 5.7e-07

[5,3] 11 (8) 26 0.00077

[2,3,1,5,4] ascending scale 8 (7) 0.11 1.0

[4,5,1,3,2] descending scale 4 (3) 0.11 1.0

rise to two alternatives, depending on the tuning of string 1 to either an E or an F (see

Table 16.2). Interestingly, all of the discovered antipatterns form a melodic interval

of a major third or greater (intervals of P4, M3, and P5).

In addition to the two bigram motifs in Table 16.3, the three additional antipatterns

[3,4], [2,5], and [3,5] (with their retrogrades) are found by the method. It is worth

noticing specifically the rarity of the interval of fifths (perfect in tezeta, diminished

and augmented in anchihoye) outlined by antipatterns [3,4] and [2,5]. According to

authoritative writings in ethnomusicology (Arom, 1997), the perfect fifth and the

cycle of fifths play a founding role in anhemitonic pentatonic scales such as tezeta.

The rarity of perfect fifths (P5) in the songs is significant, and it can be speculated

that this interval is a mental reference that is never (and does not necessarily need to

be) performed. Similarly, the antipattern [3,5], a perfect fourth (P4), is the inversion

of a perfect fifth. The rarity of the fourth can be related to the rarity of the fifth,

as intervals and their inversions are usually connected in several musical cultures,

including Western art music.

For completeness with the results of Weisser (2005), at the bottom of Table 16.6

are the two pentagram motifs from Table 16.3. As expected, these motifs are not

frequent, but it is notable that they are not significant as antipatterns according to

their p-value (therefore they are not reported by the pattern discovery method). In

fact, they occur in the corpus more than expected according to their background

probability.
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16.4.2 Discovered Positive Patterns

The method revealed fourteen significant positive patterns (Table 16.7): five patterns

and their retrogrades (reversal), and four unison patterns (repetitions of the same

finger number). Most of the significant patterns are bigrams, as with the antipatterns

in Table 16.6. The unison patterns are not presented further: according to bagana

musicians, the exact number of a repeated pitch is not important and may depend on

other factors than the structure of music.

The three patterns [3,1], [2,4], [5,4] (with their retrogrades, which are also signifi-

cant) cover the frequent motifs in Table 16.4. As with the rare motifs, the discovery

of the retrograde is valid, as the frequent motifs are also practised three times in a

row. Regarding the discovered pattern [1,5], which is not listed in Table 16.4, it is

the retrograde of [5,1] (which is the end of the first frequent motif of Table 16.7).

It is worth noticing that the pattern [1,5], though appearing in Alemu Aga’s third

rare motif (see Table 16.3), is only a small part of this motif: [1,5] is therefore not

practised as much as the other retrogrades. However, the fact that the discovered

pattern [1,5] is found among the rare motifs can be explained: it is mostly in songs

studied in a more advanced phase in the learning process. Therefore, the practice

of the [1,5] motif in a familiarization phase is not really needed. Its discovery as a

pattern is consistent with all discovered bigrams being in retrograde pairs.

In terms of melodic intervals, the discovered patterns represent conjunct melodic

motion (one scale step), except for the pattern [2,4], corresponding in the tezeta scale

to a major sixth and the largest interval playable on the instrument. This pattern is

also considered idiomatic of bagana playing. Interestingly, the two pentagram motifs

of Table 16.3, presented according to their rarity in the songs of Alemu Aga, are

composed entirely of frequent significant bigram motifs.

Table 16.7 Bagana positive patterns discovered at α = 0.01. Top: frequent bigram motifs of
Table 16.4; bottom: two novel discovered patterns. Partial horizontal lines separate retrograde pairs.
Numbers in brackets indicate the number of distinct pieces containing the pattern

P closest tempered interval cP E
(
X
)

P
(
X ≥ cP

)
[3,1] M2/m3 195 (37) 34 1e-87

[1,3] 148 (35) 34 4.6e-51

[2,4] M6 154 (35) 44 9.4e-41

[4,2] 200 (37) 44 1.3e-71

[5,4] M2 127 (31) 37 3.7e-33

[4,5] 112 (31) 37 8e-25

[1,5] m3/M2 160 (35) 41 6.4e-48

[5,1] 139 (32) 41 4.9e-35

[2,3] M2 104 (35) 31 3.7e-26

[3,2] 67 (28) 31 7.7e-09
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It can be hypothesized that the favouring of patterns forming a conjunct melodic

motion is linked with the singing voice. Indeed, as the lyrics are of great importance

and mostly syllabic (each syllable is sung on one note), such a conjunct motion is

easier for the musician to sing as well as easier for the listener to understand. It

should be noted that the singing voice accompanying the bagana is not limited to a

total range of a sixth: as an interval of an octave is not considered significant, the

pattern [4,2] can be also performed as conjunct, when the pitch of string 4 (A) is

sung an octave lower than usual, meaning lower than the pitch of string 2 (C).

16.5 Conclusions

An inductive approach to computational music analysis holds great potential for

revealing both intra-opus motifs from a single piece, or inter-opus motifs from

a corpus of several pieces. In cases where motifs of functional significance are

known, pattern discovery methods can be validated against prior knowledge, and new

discoveries may gain potential musicological significance.

This chapter has developed an inter-opus pattern discovery method and applied

it to the discovery of over- and under-represented patterns in bagana songs. From

a small corpus of bagana songs, the method was able to find the rare and frequent

motifs used by Alemu Aga for bagana teaching. The validation of pattern discovery

on a known motif set is invaluable as it lends additional interest to novel motifs

discovered, and even to future work with other corpora.

A zero-order background model for pattern discovery provided excellent results

for pattern discovery in the bagana corpus, with few type I errors (discovered minimal

patterns that are not bigram motifs) and no type II errors (bigram motifs that are

not discovered as minimal patterns). As mentioned above, higher-order background

models would not be able to detect the types of short motifs that are known for the

bagana. The selection of a background model for pattern discovery, necessary in

music analysis tasks where no explicit anticorpus is available, is always an issue in

statistical hypothesis testing, being a tradeoff between tolerance of type I and type II

errors. In the field of musicology, Huron (1999) refers to the reluctance to discard

patterns as “theory-conserving skepticism”, arguing that the application of statistical

methods to musicology should have high statistical power to avoid overlooking any

potentially interesting pattern.

Antipattern discovery in music, the process of discovering patterns that are sur-

prisingly rare in a group of pieces, was introduced in the context of Basque folk tunes

(Conklin, 2013), where each annotated tune genre is contrasted against remaining

genres. This chapter shows that antipattern discovery can be carried out without an

explicit set of contrasting pieces by setting up a background statistical model that

produces expected counts in the corpus. Large deviations have low probabilities

according to the binomial distribution, and are reported as significantly rare patterns.

From a musicological point of view, the analysis we present here can be character-

ized by its emic basis, based on a musician within the culture. Such ground provides
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the analyst with a very important clue regarding the way a musical piece is built

and conceptualized. Influenced by linguistics and more specifically by phonology,

(ethno)musicologists often search for “minimal units” in a musical repertoire, similar

to phonemes in a language. In the case of the bagana, the use of such motifs by the
musicians themselves is a precious indication towards the idea that the minimal units

of bagana songs are not single pitches, but rather pairs (or triplets) of sounds.

Such formal principles made the computational analysis of the presence of mo-

tifs pertinent in this specific context. The analysis of non-Western, non-written (or

partially non-written) repertoires is a complex task, mostly when it comes to the

validation of hypotheses constructed by the analyst—often an outsider to the cul-

tural and musical system being studied. Several researchers, including Arom (1997),

developed methods allowing a kind of generation of the repertoire according to the

hypothesis tested by the investigator (Fernando, 2004). Indeed, with such a method,

the musician can therefore validate a result, instead of a concept. Pattern and an-

tipattern discovery, with its inductive approach, paves the way for generating music

according to structural and formal rules. Such an approach will be invaluable for the

analysis of a repertoire, especially in the field of ethnomusicology.
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A Binomial Distribution: Definitions and Notation

Binomial probability density function (probability of exactly k successes in n inde-

pendent trials, each having probability p of success):

B
(
k;n, p

)
=

(
n
k

)
pk(1− p)n−k . (16.5)

Binomial cumulative distribution function (probability of k or fewer successes in n
independent trials, each having probability p of success):

B≤
(
k;n, p

)
=

k

∑
i=0

B
(
i;n, p

)
. (16.6)
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van Helden, J., André, B., and Collado-Vides, J. (1998). Extracting regulatory sites

from the upstream region of yeast genes by computational analysis of oligonu-

cleotide frequencies. Journal of Molecular Biology, 281(5):827–842.

Wang, J., Zhang, Y., Zhou, L., Karypis, G., and Aggarwal, C. C. (2009). CONTOUR:

an efficient algorithm for discovering discriminating subsequences. Data Mining
and Knowledge Discovery, 18(1):1–29.

Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1):1–33.

Weisser, S. (2005). Etude ethnomusicologique du bagana, lyre d’Ethiopie. PhD
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Chapter 17
Using Geometric Symbolic Fingerprinting
to Discover Distinctive Patterns
in Polyphonic Music Corpora

Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer

Abstract Did Ludwig van Beethoven (1770–1827) re-use material when composing

his piano sonatas? What repeated patterns are distinctive of Beethoven’s piano sonatas

compared, say, to those of Frédéric Chopin (1810–1849)? Traditionally, in preparation

for essays on topics such as these, music analysts have undertaken inter-opus pattern

discovery—informally or systematically—which is the task of identifying two or

more related note collections (or phenomena derived from those collections, such as

chord sequences) that occur in at least two different movements or pieces of music.

More recently, computational methods have emerged for tackling the inter-opus

pattern discovery task, but often they make simplifying and problematic assumptions

about the nature of music. Thus a gulf exists between the flexibility music analysts

employ when considering two note collections to be related, and what algorithmic

methods can achieve. By unifying contributions from the two main approaches

to computational pattern discovery—viewpoints and the geometric method—via

the technique of symbolic fingerprinting, the current chapter seeks to reduce this

gulf. Results from six experiments are summarized that investigate questions related

to borrowing, resemblance, and distinctiveness across 21 Beethoven piano sonata

movements. Among these results, we found 2–3 bars of material that occurred across

two sonatas, an andante theme that appears varied in an imitative minuet, patterns

with leaps that are distinctive of Beethoven compared to Chopin, and two potentially

new examples of what Meyer and Gjerdingen call schemata. The chapter does not

solve the problem of inter-opus pattern discovery, but it can act as a platform for

research that will further reduce the gap between what music informaticians do, and

what musicologists find interesting.
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17.1 Introduction

The topic of borrowing, between composers or within a single composer’s oeu-

vre, has long been a concern for musicologists studying various periods and gen-

res (Burkholder, 2001). George Frideric Handel’s (1685–1759) music has received

much attention in this regard, so it seems appropriate to begin this chapter with

an example of Handel’s borrowing from Reinhard Keiser (1674–1739), given in

Fig. 17.1 (Roberts, 1986; Winemiller, 1997). In Fig. 17.1(a), Keiser’s seven-note

pattern occurs first in the oboe and is then sung by Clotilde. Shown in Fig. 17.1(b),

Handel uses this same sequence of pitches, again in the oboe, but with a different

rhythmic profile. Whereas Handel is often mentioned in connection with borrowing

between composers, a composer well known for reworking of his own compositions

is Beethoven:

More than a third of Beethoven’s compositions reworked his existing music in some way.

(Burkholder, 2001)

Lutes (1974) identifies a pattern from the first movement of Beethoven’s Piano Sonata

no. 5 in C minor, op. 10, no. 1 (Fig. 17.2(a)) that recurs in the first movement of the

Piano Sonata no. 6 in F major, op. 10, no. 2 (Fig. 17.2(b)). Beethoven, however, was

also apt to borrow from other composers and Lutes (1974) credits Radcliffe (1968)

with identifying the pattern in Fig. 17.2(a) as an instance of borrowing from Joseph

Haydn’s (1732–1809) Symphony no. 88 in G major, Hob.I:88 (Fig. 17.2(c)).

What do the pattern occurrences in Fig. 17.2 have in common, and how do we

define the term pattern? Commonalities first (and see Sect. 17.3 for a definition of

a

b

Fig. 17.1 (a) Bars 1–5.1 of ‘Mit einem schönen Ende’ from La forza della virtù by Keiser. Two
occurrences of a seven-note pattern are highlighted. (b) Bars 1–4.1 of ‘Must I my Acis still bemoan’
from Acis and Galatea by Handel. An occurrence of a seven-note pattern is highlighted. Throughout
this chapter, ‘bar x.y’ means ‘bar x beat y’
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a

b

c

M 1Lutes

Lutes

Radcl i ffe

Fig. 17.2 (a) Bars 233–240 of the first movement from Beethoven’s Piano Sonata no. 5 in C minor,
op. 10, no. 1. One occurrence of a twelve-note pattern is highlighted in blue. A second occurrence
in bars 237–240 is not highlighted. Instead, a different ten-note pattern is highlighted in red and
discussed later on with reference to Fig. 17.11(c). (b) Bars 18–26 with upbeat of the first movement
from Beethoven’s Piano Sonata no. 6 in F major, op. 10, no. 2. One occurrence of a twelve-note
pattern is highlighted in blue. A second occurrence in bars 25–26 with upbeat is not highlighted.
(c) Piano reduction of bars 1-4.2 with upbeat of the second movement from Symphony no. 88 in
G major by Haydn. An occurrence of a ten-note pattern is highlighted in bars 1–2, followed by a
second occurrence in bars 3–4
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pattern): the bass moves from scale degree 1̂ to 2̂. Simultaneously, the melody—

doubled at the octave—outlines a rising arpeggio, beginning on 3̂ and ending on scale

degree 1̂, followed by a fall to scale degree 7̂. This pattern provides the antecedent

of an antecedent-consequent formula typical of the period. In each excerpt, the

consequent consists of the bass moving from 7̂ to 1̂, while the melody—still doubled

at the octave—outlines a rising arpeggio beginning on 5̂ and ending on 4̂, followed

by a fall to 3̂. Putting the octave arpeggio to one side, the bass movement of 1̂–2̂–7̂–1̂

and melodic movement of 1̂–7̂–4̂–3̂ was referred to by Meyer (1980) as a schema—

instances of simultaneous bass and melodic movement to be found across many pieces.

Gjerdingen (1988) identified numerous instances of this particular schema across

the period 1720–1900, and then other different categories of schemata (Gjerdingen,

2007). So the subdiscipline of music analysis known as schema theory was born,

and remains popular to this day (Byros, 2012). So prevalent was the use of Meyer’s

schema in the Classical period, and so abstract the definition, that to mix it with

remarks on borrowing is perhaps inappropriate. It seems neither Meyer (1980) nor

Gjerdingen (1988, 2007) were aware of the examples identified in the earlier work of

Radcliffe (1968) and Lutes (1974), which are perhaps better described as borrowing
rather than schemata due to the specificity of octaves and rising arpeggios in each

case. Still, Radcliffe (1968, p. 38) cautions,

it is very dangerous to attach too much importance to thematic resemblances of this kind,
especially in music written at a time when there were so many familiar turns of phrase used
by all and sundry. Haydn’s tune is slow and majestic, and Beethoven’s recollections of it all
move at a quicker pace, sometimes with the suggestion of a dance.

Whether referred to as pattern or schema, evidently the highlighted content of

Figs. 17.1 and 17.2 and surrounding discussion are of interest to music analysts

and musicologists more broadly. Processes of musical variation (more about which

below) are in evidence in these figures, but instances of literal borrowing—e.g.,

where a number of bars are reused more or less verbatim—are of interest also

(Winemiller, 1997). This chapter explores computational methods for identifying

resemblances between pieces of music (involving both literal borrowing and more

complex variation). The methods are described, applied to 21 movements from

Beethoven’s piano sonatas (which, given the above discussion, seem a sensible

place to begin), and the results are presented and discussed.1 It is remarkable how

much existing literature on Beethoven’s piano sonatas focuses on intra-movement

as opposed to inter-movement or inter-piece analyses (Caplin, 2013)—an exception

being Marston (1995). Even so, Marston’s (1995) mix of sketchbook, biographical,

and Schenkerian analysis is quite apart from what follows here. The question of

whether Beethoven intended any discovered resemblance will not be considered. We

focus instead on the likelihood of the pattern occurring in other Beethoven sonatas,

or in the piano works of another composer such as Chopin. If the pattern occurs

more often in the works of Beethoven than some other composer(s), then it can be

1 The movements used are: op. 2, no. 1, mvts. 1–4; op. 10, no. 1, mvts. 1–3; op. 10, no. 2, mvts. 1–3;
op. 10, no. 3, mvts. 1–4; op. 26, mvts. 1–4; and op. 109, mvts. 1–3. Movements were selected on
the basis of frequent mentions in the analytic literature.
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said to be distinctive of Beethoven’s style. Books and articles abound on the topic of

Beethoven’s sonatas, but one motivation for this chapter is to see what light can be

shed on the sonatas from the point of view of computational music analysis.

It is also remarkable how much existing (predominantly non-computational) work

on borrowing involves musical excerpts that are either at the beginning of pieces or

already known to be themes (Barlow and Morgenstern, 1948). One of the advantages

of taking a computational approach is that it can be made more democratic in terms of

detecting borrowing beyond incipits and themes. The apparent bias towards incipits

and themes in existing work also raises the question: is thematic material inherently

more distinctive than excerpts drawn from elsewhere in a movement? This is a

question that we also seek to address in the current chapter.

17.2 Select Review of Computational Pattern Discovery

While the current chapter focuses on the music of Beethoven, it is part of a wider

literature on inter-opus pattern discovery. That is, given a corpus of music, define an

algorithm that returns musically interesting patterns occurring in two or more pieces.

With regards to work on inter-opus pattern discovery, the major contribution of this

chapter is a method capable of being applied to polyphonic music—polyphonic in the

most complex sense of the term, where any number of voices may sound at a given

point in time. After processing of the symbolic representations in Fig. 17.1 to extract

individual melodic lines, there are computational methods capable of retrieving the

type of patterns shown (Conklin, 2010; Knopke and Jürgensen, 2009). At present,

however, no computational method exists capable of discovering the type of patterns

shown in Fig. 17.2. The lack of such a method goes some way towards explaining

why musicologists do not, in general, employ computational methods as part of their

research into borrowing: practitioners of music computing have tended to import

algorithms from other fields such as bioinformatics, which work well for melodic

representations but do not apply to polyphonic music where voices can appear and

disappear. Should practitioners of music computing be in any doubt about the need to

look beyond melody-only representations, then let us consider Caplin (2013, p. 39):

Although it is easy to focus attention on the melody, it is important to understand that the
basic idea is the complete unit of music in all of its parts, including its harmonic, rhythmic,
and textural components. The basic idea is much more than just its “tune”.

Broadly, there are two approaches to the discovery of patterns in symbolic rep-

resentations of music: (1) string-based or viewpoint methods (Cambouropoulos,

2006; Conklin, 2010; Conklin and Bergeron, 2008; Knopke and Jürgensen, 2009;

Lartillot, 2005) (see also Chaps. 11, 12 and 15, this volume); (2) point-set or ge-
ometric methods, such as those described in the current chapter and Chap. 13 in

this volume (see also Collins, 2011; Collins et al., 2013, 2011; Forth, 2012; Janssen

et al., 2013; Meredith et al., 2002). As the name suggests, the viewpoints approach

involves treating musical events as sequences considered from different perspectives
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(e.g., sequences of MIDI note numbers, sequences of intervals, durations, etc.) and in

different combinations. The geometric approach, on the other hand, involves repre-

senting numerical aspects of notes in a given piece as multidimensional points. The

two approaches diverge when more than two notes sound at the same point in time,

because in the viewpoints approach the sequential ordering of features of those notes

becomes ambiguous. Viewpoints have been applied in both intra- and inter-opus

pattern discovery scenarios, but up until this point, geometric methods have been

applied in intra-opus discovery scenarios only.

In this chapter, we describe the first application of geometric pattern discovery

algorithms in an inter-opus scenario. We discuss the challenges involved, present

results from the piano works of Beethoven, and suggest possible directions for

future work in this domain. The geometric method has some advantages over the

viewpoint approach: first, the geometric method can be applied conveniently to

both polyphonic and monophonic representations. Viewpoints have been applied

to polyphonic representations before (Conklin and Bergeron, 2010), but rely on

extracting a fixed number of voices from each piece in the chosen corpus; second, the

geometric method is more robust to interpolated events in pattern occurrences. For

instance, the six notes highlighted in red and labelled H2 in Fig. 17.3(c) are a diatonic

transposition of the six notes highlighted in red and labelled H1 in Fig. 17.3(a).

In between the C�4 and A3 of H2, however, there is an interpolated B3 (similarly,

there is an interpolated G�3 between the following A3 and F�3). The sequential

integrity of C�4→ A3 is broken by the interpolated B3, compared with G�4→ E4

of H1, and so the viewpoint method will not recognize the evident similarity of the

melodies in bar 1 of Fig. 17.3(a) and bar 21 of Fig. 17.3(c). We refer to this as the

interpolation problem of the viewpoint method—a problem that also affects models

of music cognition derived from the viewpoint method (e.g., Pearce et al., 2010).2

The geometric approach is more robust to this type of variation (Collins et al., 2013,

2011). Therefore, the application of geometric pattern discovery algorithms in an

inter-opus scenario described in this chapter constitutes an important advance for

computational music-analytic methods.

17.3 Method

This section begins with a mathematical definition of the term pattern. As in Chap. 13

of this volume, in the current chapter we represent notes in a given piece of music as

multidimensional points. For example, a note has a start time that might be assigned

2 Advocates of the viewpoint method might say that defining a so-called threaded viewpoint to take
pitch values only on quarter note beats would address this interpolation problem, but then offbeat
notes that do belong to a pattern are overlooked also. Since we have mentioned an advantage of
the geometric approach over the viewpoint approach, it is fair to state an advantage in the other
direction also: if one is interested primarily in patterns that consist of substrings (as opposed
to subsequences) in monophonic voices, then such patterns can be found more efficiently using
string-based representations than they can be using point-based representations.
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a

b

cH 1

H 2

Fig. 17.3 (a) Bars 1–2 of the third movement from Piano Sonata no. 30 in E major, op. 109, by
Beethoven. One occurrence of a six-note pattern is highlighted in red and labelled H1. Taken together,
the red and blue notes form a fifteen-note pattern that occurs inexactly in (b), which shows bars
31–37 of the same movement. In (b), one inexact occurrence can be seen in bars 33–34, and a second
inexact occurrence in bars 35–36, with the same colour scheme as in (a) being maintained. (c) Bars
20–22 of the third movement from Piano Sonata no. 7 in D major, op. 10, no. 3 by Beethoven. An
inexact occurrence of the six-note pattern from Fig. 17.3(a) is highlighted in red and labelled H2

to the x-value of some point, and a numeric pitch value (e.g., MIDI note number)

that might be assigned to the y-value of the same point, to give d = (x,y). (Using two

dimensions is typical, but more are admissible, and later in the chapter we represent

chord labels as points rather than notes.)

In a point-set representation of a given piece of music, there may be a collec-

tion of points P1 that are perceived as similar to some other collection of points

P2, heard either elsewhere in the same piece or in another piece. In general, there

could be m so-called pattern occurrences P1,P2, . . . ,Pm across a corpus of pieces.

Sometimes it is convenient to group these together into an occurrence set, denoted

P = {P1,P2, . . . ,Pm}. The term pattern is used rather loosely to refer to a member

Pi ∈ P , normally the member that is most typical of the occurrence set (often but not

always the first occurrence, Pi = P1).
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17.3.1 Calculating the Distinctiveness of a Pattern

Rather than seeing viewpoint and geometric approaches to pattern discovery as

two opposing camps, this chapter seeks to unify the methods to some extent, by

developing geometric equivalents of the viewpoint technique for measuring pattern

distinctiveness in inter-opus scenarios (Conklin, 2010). This technique is based on

the concept of likelihood ratio. In statistics, the likelihood ratio test gives the best

chance of occurrence of an observation under some null hypothesis, divided by its

best chance of occurrence overall. Common uses include testing goodness of fit of

observed data to some hypothesized underlying distribution (Pielou and Foster, 1962),

and testing dependencies between variables such as crime and drinking (Pearson,

1909). In viewpoint pattern discovery, the likelihood ratio appears in various guises,

e.g., for estimating the interest of an observed pattern in some corpus (Conklin

and Bergeron, 2008). Conklin (2010) uses another likelihood ratio to measure the

distinctiveness of an observed pattern P for one corpus of pieces Θ versus another

anticorpus of pieces Θ ′, written

d(P,Θ ,Θ ′) = p(P |Θ)/p(P |Θ ′) . (17.1)

In these settings, the statistics are based on either piece counts (the number of pieces

in which the pattern occurs (Conklin, 2010)) or a zero-order model (Conklin and

Bergeron, 2008). Piece counts can be problematic if a pattern occurs note for note (or

feature for feature) in some pieces but only partially in others. Only counting exact

occurrences leads to underestimation of the probability, whereas counting inexact

occurrences on a par with exact occurrences leads to overestimation. In a zero-order

model, a pattern is defined as a sequence of musical features, and its probability is

proportional to the product of the relative frequencies of occurrence of the constituent

features. Temporal order of features does not impact on the calculated probabilities in

a zero-order model, which is a shortcoming (i.e., because B4, G4, C5 might be more

probable in a certain style than the same pitches in different order, C5, B4, G4, say).

We refer to this as the zero-order problem of the viewpoint method. An extension of

these likelihood calculations to polyphonic textures has been proposed (Collins et al.,

2011), but it too assumed a zero-order model.

To develop a geometric equivalent of the distinctiveness measure, it is necessary to

calculate the empirical probability of a given pattern occurrence in a piece or across

multiple pieces, p(P |Θ), preferably using a model that is: (1) less reliant on the

sequential integrity of pattern occurrences and so addresses the interpolation problem,

which is important since variation is such a central concept in music; (2) more realistic

than one based on zero-order distributions, and so addresses the zero-order problem.

Central to this development will be the technique of symbolic fingerprinting, which

enables us to estimate the likelihood of occurrence of a pattern across one or more

pieces of polyphonic music.
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17.3.2 Symbolic Fingerprinting

Symbolic fingerprinting consists of calculating, storing, and retrieving differences

between local pairs or triples from a point-set representation of a piece or pieces,

denoted D (Arzt et al., 2012). It enables us to take some point-set query Q and find

occurrences in D of Q that have been transposed, time-shifted and time-scaled. For

readers familiar with music theory, the definition of a fingerprint will be reminiscent

of Lewin’s (1987, Chapter 4) generalized interval systems. Independently of Lewin’s

work, Wang and Smith (2012) developed an efficient fingerprinting storage and

retrieval method that enabled automatic, fast recognition of music audio, known as

Shazam.

In the general case, we have a piece of music represented as an ordered point

set D = 〈d1,d2, . . . ,dn〉.3 To begin with in this chapter, each point di ∈ D represents

a note from the piece, and is a pair di = (xi,yi) consisting of an ontime xi and a

morphetic pitch yi (MPN, see Meredith, 2006). Ontime is the time in the piece in

quarter note beats, counting from zero for bar 1 beat 1, and MPN is the height of the

note on the staff, with C4 = ‘middle C’ = 60, C�4 = 60, D�4 = D4 = D�4 = 61, etc.4

Other choices about how to represent time and pitch, and how many dimensions to

include in one point set, have been explored (Collins et al., 2010), but for the sake

of simplicity we will use ontime and MPN at present. As an example, Beethoven’s

op. 109, mvt. 3 (see Fig. 17.3(a)) would be represented as

D =
〈
(0,48),(0,59),(0,64),(1,50),(1,59),(1,62), . . . ,

(192,48),(192 1
4 ,59),(192 1

2 ,64),(192 3
4 ,55),

(193,57),(193 1
4 ,62),(193 1

2 ,59),(193 3
4 ,50),

(194,51),(194 1
4 ,60),(194 1

2 ,63),(194 3
4 ,58),

(195,59),(195 1
4 ,61),(195 1

2 ,56),(195 3
4 ,52),

(196,53),(196 1
4 ,55),(196 1

2 ,59),(196 3
4 ,60),

(197,61),(197 1
4 ,59),(197 1

2 ,56),(197 3
4 ,54), . . . ,

(891,59),(891,62),(891,64)
〉
.

(17.2)

The first chord, consisting of pitches E2, B3, and G�4, has ontime 0, and it can

be verified that the MPNs of these pitches are 48, 59, and 64 respectively. The

next excerpt of the piece given in (17.2) corresponds to bars 33–34 (the beginning

of variation II, Fig. 17.3(b)). The beginning of bar 33 has ontime 192 (although

calculating this is nontrivial, given some intervening repeat marks and first/second

3 The order is called lexicographic order. It is most easily explained in relation to (17.2). For instance,
(0,64) is lexicographically less than (1,50) because 0 < 1. If there is a tie in the x-dimension, it is
broken by the values in the y-dimension, which is why (1,50) is lexicographically less than (1,59).
And so on.
4 Note that Meredith (2006) defines the morphetic pitch of . . . , A�0, A0, A�0, . . . to be 0, so that
middle C has a morphetic pitch of 23.
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time bars), and its first note is E2, or MPN 48. The movement ends on bar 293, beat

3, ontime 891, with a five-note chord, of which the top three notes are B3, E4, and

G�4, or MPNs 59, 62, and 64 respectively.

In what follows, we want to be able to perform matching that is invariant to

time-shifting, time-scaling, transposition, or any combination of these operations, so

we will use triples of points (di,d j,dk) (where i, j and k are the indices of the points

in the lexicographically ordered dataset) such that:

1. the points are local, obeying i < j < k, with j− i < 5 and k− j < 5;

2. the ontimes are not simultaneous, i.e., xi �= x j and x j �= xk;

3. the ontimes are proximal, with x j− xi < 10 and xk− x j < 10; and

4. the MPNs are proximal, with y j− yi < 24 and yk− y j < 24.

These criteria were selected based on previous work (Arzt et al., 2012). A fingerprint—
that is, the information stored for each (di,d j,dk)—is a quadruple, 〈token, piece ID,

ontime, ontime difference〉, where each token is itself a triple:〈〈
y j− yi, yk− y j,

xk− x j

x j− xi

〉
︸ ︷︷ ︸

token

, “beethoven123”︸ ︷︷ ︸
piece ID

, xi︸︷︷︸
ontime

, x j− xi︸ ︷︷ ︸
ontime difference

〉
. (17.3)

For the three underlined points in (17.2), which form a legal triple according to

criteria 1–4 above, the fingerprint is〈〈
62−64, 60−62,

194 1
4 −193 1

4

193 1
4 −192 1

2

〉
, “beetOp109Mvt3”, 192 1

2 , 193 1
4 −192 1

2

〉

=

〈〈
−2, −2, 1 1

3

〉
, “beetOp109Mvt3”, 192 1

2 ,
3
4

〉
.

(17.4)

For each legal triple (di,d j,dk) in the point set D, a fingerprint is calculated and

stored in a so-called fingerprint database.

Given a query point set Q, which represents some known theme or otherwise-

interesting excerpt (from the same piece or from another piece), the fingerprint

database calculated over the point set D can be used to find ontimes t1, t2, . . . , tm in

D at which events similar to the query Q occur. First, it is necessary to calculate the

fingerprints of triples (qi,q j,qk) from Q, in an analogous fashion to the calculations

over D. Then tokens from the query are matched against tokens from the database.

When there is a match, the ontime ul of the matching fingerprint in the database and

the ontime vl of the matching fingerprint in the query are recorded as a pair (ul ,vl).
These ontimes are readily accessible, being stored as the third element in a fingerprint

(see (17.3)).

Let the set of ontime pairs of matching tokens be denoted

U(Q,D,α) = {(u1,v1),(u2,v2), . . . ,(uL,vL)} , (17.5)
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where α is a parameter to be described in due course.

If the piece contains a transformation of the query Q, then an arbitrary point q ∈Q
will be expressible as q = (axi +b,yi + c) for some (xi,yi) ∈ D, where a is the time

scale, b is the time shift, and c is the transposition. Substituting this expression for

some triple (qi,q j,qk) from Q in (17.3), these operations will cancel, and so the

query and database tokens will match:〈
(y j + c)− (yi + c), (yk + c)− (y j + c),

(axk +b)− (ax j +b)
(ax j +b)− (axi +b)

〉
=

〈
y j− yi, yk− y j,

xk− x j

x j− xi

〉
.

(17.6)

While being able to match queries to instances that have undergone such trans-

formations is useful, composers often write more complex variations of themes into

their works than can be expressed in terms of the transformations considered above

(i.e., time-shifting, time-scaling and transposition). As an example of more complex

variation, let us take the opening two bars of Beethoven’s op. 109, mvt. 3, as a query

(Fig. 17.3(a)), the transition into the complex variation shown in Fig. 17.3(b) as

database, and see what would be required to match the two via symbolic fingerprint-

ing. The query is

Q =
〈
(0,48),(0,59),(0,64),(1,50),(1,59),(1,62),(2,51),(2,60),(2 1

2 ,63),

(3,52),(3,56),(3,61),(4,53),(4,56),(4,58),(4,59),(5,54)
〉
.

(17.7)

Taking the underlined triple in (17.7), which corresponds to the underlined triple

in (17.2), the fingerprint token would be 〈−2,−2,1〉. Comparing with 〈−2,−2,1 1
3 〉

from (17.4), the disparity between the two is in the final element—the time difference

ratio of 1 in the query token versus 1 1
3 in the database token. If however, we permit

some percentage error, α = 40% say, when matching tokens’ time difference ratios,

then the query token 〈−2,−2,1〉 would be considered a match to the database token

〈−2,−2,1 1
3 〉, and the corresponding ontimes would be included in U from (17.5).

Plotted in Fig. 17.4(a) are the ontime pairs of matching tokens U(Q,D,α =
40) for the query Q from (17.7) and the point set D from (17.2). As there are

coincident points, we use marker size to indicate the relative number of matches at a

particular coordinate, with larger circles indicating more matches. The presence of

approximately diagonal lines in this plot means that there are multiple subsequent

matches between query and database (i.e., that there is a more or less exact occurrence

of the query in the database). Two such occurrences are indicated by the two thick

dashed transparent lines in Fig. 17.4(a). To summarize this plot properly, affine

transformations are applied to the points (indicated by the arrows and straight vertical

lines) and they are binned to give the histogram shown in Fig. 17.4(b). The histogram

shows two peaks—one at ontime 192 (or bar 33) and another around ontime 198 (bar

35). There is an occurrence of the theme from Fig. 17.3(a) at each of these times,
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Fig. 17.4 (a) Plot of time stamps for matching query and database fingerprint tokens. Size of circular
markers indicates the relative number of matches coincident at a particular point, with larger circles
meaning more matches. Two occurrences of the query in the database are indicated by the two thick
dashed transparent lines. The arrows and straight vertical lines allude to an affine transformation.
(b) Fingerprint histogram indicating the similarity of the piece to the query as a function of time.
This plot results from application of an affine transformation to the points in Fig. 17.4(a), followed
by binning the transformed points to give the histogram. The rotation in the affine transformation is
influenced by the value of the ontime difference, stored as the final element of a fingerprint (see
(17.3), and, for more details, Arzt et al. (2012))
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subject to quite complex variation as shown in Fig. 17.3(b) (where red and blue

highlighting indicates likely contributors to the two peaks in the histogram).

In summary, symbolic fingerprinting can be used to identify occurrences of a

given query in a point-set representation of a piece. The stronger the resemblance

to the query at a particular time in the piece, the larger the number of matches

in a fingerprint histogram such as Fig. 17.4(b). In what follows, we refer to the

fingerprint histogram as f (t), and use it as a measure of the similarity of the piece

to the query as a function of time t. For the purposes of comparing different queries

and different pieces, it is also convenient to normalize the fingerprint histogram so

that the y-axis is in the range [0,1]. For the purposes of analysing occurrences of

a query across multiple pieces, we will also concatenate point sets D1,D2, . . . ,DN
representing N pieces into one point set D. That is, we set D = D1 and then for

i = 2, . . . ,N, the set Di is shifted to begin shortly after Di−1 ends, and then appended

to D. To distinguish between the fingerprint histogram for a query calculated over

some collection of pieces Θ = {D1,D2, . . . ,DN} as opposed to some other collection

Θ ′ = {D′
1,D

′
2, . . . ,D

′
N′ }, we will write fΘ (t) and fΘ ′(t) respectively.

Among the advantages of symbolic fingerprinting are its speed and robustness

(Arzt et al., 2012). As demonstrated, it is capable of identifying query occurrences that

have had time shift, time scale, and transposition applied, as well as more complex

transformations. Symbolic fingerprinting is not necessarily a definitive solution to the

problem of modelling perceived music similarity, however. For example, based on the

ontime-MPN representation, it is unlikely that the α-parameter could be increased

sufficiently to identify Lutes’ pattern occurrences without also returning many false

positive matches. The concision of the fingerprint histogram can also be a double-

edged sword. Especially with the α-parameter increased, sometimes there is a peak

in the histogram (say, at ontime 190 in Fig. 17.4(b)), but, when referring back to the

music, one is hard-pressed to justify the peak’s existence.

17.3.3 Calculating the Probability of a Pattern Occurrence

To develop geometric equivalents of the distinctiveness measure, given in (17.1), we

must be able to calculate the empirical probability of a given pattern occurrence in a

piece or across multiple pieces. Symbolic fingerprinting, described in the previous

section, will be central to this development. If we calculate fingerprints for a short

pattern occurrence, as well as fingerprints for a whole piece or collection of pieces,

it is possible to construct a histogram fΘ (t) measuring the similarity of the pattern

occurrence to the piece(s) as a function of time. Strong matches appear as large global

peaks in the histogram, whereas partial/weaker matches appear as smaller local peaks

or are indistinguishable from chance matches. Examples of such histograms are

given in Fig. 17.5. The dashed curve shows fΘ (t) for the query highlighted in red in

Fig. 17.3(a). Intuitively, this is quite a specific query, with a relatively low likelihood

of occurrence across Beethoven’s piano sonatas (apart perhaps from its host piece,

op. 109, mvt. 3). In accordance with this intuition, fΘ (t) for this specific query is
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Fig. 17.5 Fingerprint histograms fΘ (t) for a specific query (dashed blue line) and gΘ (t) for a generic
query (solid green line). The x-axis, time in the concatenated point set (database of Beethoven piano
sonatas), extends from the end of op. 10, no. 3, mvt. 1, continuing through op. 10, no. 3, mvt. 2, and
ending shortly after the beginning of op. 10, no. 3, mvt. 3

generally below the indicated similarity level of .5 in Fig. 17.5. For the sake of clarity,

the time axis in Fig. 17.5 is restricted to a subset of our database, beginning towards

the end of op. 10, no. 3, mvt. 1, continuing through op. 10, no. 3, mvt. 2, and ending

shortly after the beginning of op. 10, no. 3, mvt. 3. Beyond op. 109, mvt. 3, two

strong occurrences of the specific query stand out, in bars 18 and 20 of op. 10, no. 3,

mvt. 3 (see arrow on the right of Fig. 17.5 and Fig. 17.3(c)).

The solid green curve, gΘ (t), in Fig. 17.5 is the fingerprint histogram for a query

consisting of a seven-note descending scale. Intuitively, this is quite a generic query,

with a relatively high likelihood of occurrence across Beethoven’s piano sonatas.

That is, whilst listening to or studying Beethoven’s piano sonatas, we would not be

particularly surprised if a descending scale or scale fragment appeared. In accordance

with this intuition, gΘ (t) for the generic query in Fig. 17.5 is most often above
fΘ (t)for the specific query, and also quite often above the indicated similarity level

of .5. A descending scale in the recapitulation of op. 10, no. 3, mvt. 1, is particularly

noticeable (see arrow on the left of Fig. 17.5), but multiple other descending scale

figures occur across these movements. Even though the generic query contains more

notes than the specific query, the former appears to have a higher likelihood of

occurrence than the latter.

In this chapter we use the superlevel set of a fingerprint histogram fΘ (t) to

formalize the intuitive sense of a query point set’s likelihood. The superlevel set of

fΘ (t) is defined by

L+
c ( fΘ ) = {t | fΘ (t)≥ c} , (17.8)
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which is the set of timepoints for which the histogram is equal to or exceeds some

threshold similarity level c. The cardinality of the superlevel set (the number of

timepoints it contains), divided by the total number of timepoint bins in the histogram,

denoted |L+
0 ( fΘ )|, can be used as a proxy for the empirical probability of observing

the pattern occurrence across some piece or pieces.

Returning to the example queries and histogram excerpts shown in Fig. 17.5, the

superlevel set (with parameter c = .5) for the specific query contains 638 timepoints,

out of a total 13,003 timepoint bins. Thus the specific query has an empirical likeli-

hood of |L+
.5( fΘ )|/|L+

0 ( fΘ )|= 638/13,3003 = .049. Meanwhile, the more generic

query has an empirical likelihood of |L+
.5(gΘ )|/|L+

0 (gΘ )| = 1,345/13,003 = .103.

Thus the empirical likelihoods confirm our intuition: the highlighted note collection

in Fig. 17.3(a) is less likely to occur in Beethoven’s piano sonatas than a seven-note

descending scale.

But what about distinctiveness? To bring this section to its natural conclusion, we

turn back to Sect. 17.3.1 on distinctiveness, and substitute the above likelihoods into

(17.1), writing

p(P |Θ) = |L+
c ( fΘ )|/|L+

0 ( fΘ )| , (17.9)

where P is a point set representing some query, Θ is a collection of pieces in point-set

representations, and fΘ (t) is the fingerprint histogram of P across Θ . To measure

how distinctive some pattern P is of some corpus Θ , relative to some anticorpus Θ ′,
it follows that we can use

d(P,Θ ,Θ ′) =
|L+

c ( fΘ )|× |L+
0 ( fΘ ′)|

|L+
c ( fΘ ′)|× |L+

0 ( fΘ )| . (17.10)

To avoid division by zero, we set |L+
c ( fΘ ′)| equal to a minimum of 1.5 Completing the

worked example, we can take Chopin’s piano sonatas as an anticorpus, and calculate

the distinctiveness of the specific and generic patterns for Beethoven’s piano sonatas,

relative to Chopin’s.6 The specific query has empirical likelihood of .075 in Chopin’s

piano sonatas, and so the distinctiveness of the specific query for Beethoven’s piano

sonatas relative to Chopin’s is .049/.075 = .660. The generic query has empirical

likelihood of .117 in Chopin’s piano sonatas, and so the distinctiveness of the generic

query is .103/.117 = .887. Importantly, this example demonstrates that specificity

and distinctiveness are not the same thing. According to intuition, the specific query

has lower probability of occurrence in Beethoven’s piano sonatas than the generic

query. The specific query does not appear to be more distinctive of Beethoven’s

sonatas than the generic descending scale, however. This is because the specific query

has a relatively high likelihood of occurrence in Chopin’s compared to Beethoven’s

sonatas (cf. .075 and .049), and so its distinctiveness is low. Distinctiveness values

5 Division by zero arises if L+
c ( fΘ ′ ) is empty, either because c is too high and/or fΘ ′ too low

(Conklin, 2010).
6 Chopin’s sonatas are: op. 4, mvts. 1–4; op. 35, mvts. 1–4; and op. 58, mvts. 1–4. It is worth noting
that even though there are allusions to Beethoven in these works (cf. Chopin, op. 35, mvt. 1, and
Beethoven, op. 111, mvt. 1), the focus in this chapter is Beethoven–Beethoven resemblances, not
Chopin–Beethoven resemblances.
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greater than one indicate that a pattern is more probable in the corpus than the

anticorpus, and so more distinctive of the corpus.

Choice of anticorpus will affect the results, so, for the first time here, we consider

the impact of this choice by reporting results for a second anticorpus also: Chopin’s

mazurkas.7 These corpora (21 Beethoven sonata movements, twelve Chopin sonata

movements, 49 Chopin mazurkas) may appear to differ in size, but they are compara-

ble (to within 1,000) in terms of number of notes.

17.4 Experimental Results

Although we were not necessarily expecting to detect instances of literal borrowing

across Beethoven’s piano sonatas (because they are not already known, suggesting

perhaps there are none), it is prudent to at least check. Experiment 1 was designed

primarily with this aim in mind. Experiment 2 increased the temporal inexactness

parameter α to investigate less literal resemblances, and Experiments 3 and 4 were

similar to 1 and 2 but for melodic rather than polyphonic queries. The last two

experiments apply a pattern discovery algorithm SIARCT-CFP (Collins et al., 2013)

to pairs of Beethoven sonata movements to find—in an unsupervised manner—inter-

opus resemblances between note collections (Experiment 5) and chord sequences

(Experiment 6). Apart from discovering resemblances, the experimental results also

shed some light on: (1) patterns that are distinctive of Beethoven’s piano sonatas

compared to Chopin’s; (2) whether thematic material is inherently more distinctive
than excerpts drawn from elsewhere in a movement; and (3) the impact of anticorpus

choice.

17.4.1 Experiment 1

In Experiment 1, we defined twelve-note queries using the full polyphonic represen-

tation of each movement, beginning at the start of each bar. This method of query

definition is not exhaustive: if there are more than twelve notes in a given bar, then

some content will be overlooked. Nor is the method always musically appropriate: if

some phrase begins with an upbeat and/or contains fewer/more than twelve notes,

then this will not be segmented appropriately. Taking a fixed number of notes is

preferable, however, to taking a fixed time window and the (variable) number of notes

appearing in this window, because the latter leads to variable-length queries, which

could introduce biases in similarity calculations. In any case, our fixed-length queries

are only intended to identify the kernel of some inter-piece resemblance, and then

we can review the excerpts in question, to hear/see whether the resemblance extends

7 Chopin’s mazurkas include the following: op. 6, nos. 1–4; op. 6, nos. 1–4; op. 7, nos. 1–5; op. 17,
nos. 1–4; op. 24, nos. 1–4; op. 30, nos. 1–4; op. 33, nos. 1–4; op. 41, nos. 1–4; op. 50 nos. 1–3;
op. 56, nos. 1–3; op. 59, nos. 1–3; op. 63, nos. 1–3; op. 67, nos. 1–4; and op. 68 nos. 1–4.
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a

b
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continues

resemblance
continues

A 1

A 2

Fig. 17.6 (a) Bars 64–70 of the third movement from Piano Sonata in F minor, op. 2, no. 1, by
Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 1–10.1 with upbeat of
the first movement from Piano Sonata in D major, op. 10, no. 3, by Beethoven. One occurrence of a
twelve-note pattern is highlighted, indicating a second occurrence of the pattern from Fig. 17.6(a)

over a longer time period, and to consider other contextual factors that need to be

taken into account. In inter-opus pattern discovery in general, rarely will it suffice to

present the algorithm output and say nothing more. Reviewing and interpreting the

excerpts in question are vital steps towards producing a musical analysis.

Each twelve-note query was subject to fingerprinting analysis against the database

of Beethoven piano sonata movements (as well as two anticorpora— Chopin’s piano

sonatas and mazurkas). Taking the fingerprint histogram f (t) calculated for a query

over the Beethoven piano sonata movements (see Sect. 17.3.2), we could determine

the location of the strongest match to the query (other than in the piece where the

query originated), as well as the strength of this strongest match. Queries that provide

strong matches to segments from other movements may indicate instances of literal

borrowing. The strongest-matching query to a segment from another movement is

indicated in Fig. 17.6, and some summary statistics for the pattern, labelled A1 and

A2, are given in Table 17.1.

As alluded to above, it so happens that A1 and A2 comprise the kernel of resem-

blance that extends over a longer time period: bars 65–66 of Fig. 17.6(a) appear in

bars 5–7 of Fig. 17.6(b). The query alone is not particularly distinctive, consisting

of a first-inversion triad played at successively lower scale steps twice and then one

scale step higher. It is more interesting, however, that the resemblance between the

two pieces extends over two bars in the first instance and three bars (because of



462 Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer

Table 17.1 Distinctiveness of Beethoven patterns relative to two anticorpora

Figure Label Anticorpus of

Chopin Sonatas

Anticorpus of

Chopin

Mazurkas

Query Definition,

Time Tolerance α =

17.6(a), 17.6(b) A1, A2 0.430 1.376 Polyphonic segment, 15%

17.7(a), 17.7(b) B1, B2 0.476 1.188 Polyphonic segment, 15%

17.7(c), 17.7(d) C1, C2 0.536 3.557 Polyphonic segment, 15%

17.8(a), (b) E1, E2 0.799 1.870 Polyphonic segment, 40%

17.8(c), (d) F1, F2 0.660 0.957 Polyphonic segment, 40%

17.9(a), 17.9(b) G1, G2 12.880 2.084 Melodic segment, 15%

17.3(a), 17.3(c) H1, H2 0.660 1.953 Melodic segment, 15%

17.10(a), 17.10(b) I1, I2 2.036 4.305 Melodic segment, 40%

17.9(a), 17.9(c) J1, J2 5.400 8.663 Note discovery, 15%

17.11(a), 17.11(b) K1, K2 0.193 44.101 Note discovery, 15%

17.2(a), 17.11(c) M1, M2 41.092 78.121 Note discovery, 15%

17.12(c), 17.12(d) N1, N2 1.515 2.544 Chord discovery, 15%

the differing time signature) in the second instance. Of what does this extended

resemblance consist? The extension consists of A1 heard twice more at successively

lower scale steps. In op. 2, mvt. 3, this causes a strong hemiola effect, with six beats

of music being perceived as three groups of two (as opposed to the prevailing two

groups of three). Beethoven arrives on chord V in bar 67, V7 in bar 69, and then

the theme from the trio returns with chord I in bar 70 (Barlow and Morgenstern,

1948). The context of the borrowing in op. 10, no. 3, mvt. 1, is different. According to

Barlow and Morgenstern (1948), the theme of op. 10, no. 3, mvt. 1, covers bars 1–4.1

with upbeat. Bar 5 with upbeat is likely heard as a variation of the theme’s opening,

with the melody D–C�–B–A in both cases. Therefore, the instance of borrowing in

op. 10, no. 3, mvt. 1, has a different function from that in op. 2, no. 1, mvt. 3. In

op. 10, no. 3, mvt. 1, it is a variation of the theme, followed by a perfect cadence in

bars 9.2–10.1. Taken as a whole, bars 5–10.1 with upbeat act as a consequent to the

antecedent of bars 1–4.1 with upbeat, with bars 1–4.1 concluding on scale degree 5̂.

As we did not expect to find instances of inter-piece resemblance stretching 2–

3 bars, the result shown in Fig. 17.6 is surprising and, to our knowledge, novel.

Other results from the first experiment did not extend to create a longer period of

resemblance, but two more are included in Table 17.1 (labelled B and C) and given

in Fig. 17.7. The third movement of op. 2, no. 1, features in all three patterns A,B,C,

suggesting it contains a stock of patterns—albeit not particularly distinctive according

to Table 17.1—that appear in later compositions.
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C 1
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Fig. 17.7 (a) Bars 1–5 with upbeat of the third movement from Piano Sonata no. 1, in F minor,
op. 2, no. 1, by Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 8–10 of
the first movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One occurrence
of an eleven-note pattern is highlighted, indicating a partial second occurrence of the pattern from
Fig. 17.7(a). (c) Bars 24–28.1 of the third movement from Piano Sonata no. 1 in F minor, op. 2, no. 1,
by Beethoven. One occurrence of a twelve-note pattern is highlighted. (d) Bars 15–16 of the fourth
movement from Piano Sonata no. 7 in D major, op. 10, no. 3, by Beethoven. One occurrence of a
twelve-note pattern is highlighted, indicating a second occurrence of the pattern from Fig. 17.7(c)

17.4.2 Experiment 2

The previous experiment aimed towards identifying instances of literal repetition

or borrowing between movements, so in that experiment it was sensible to keep the

temporal inexactness parameter α quite low (α = 15%). As symbolic fingerprinting

can be used to identify non-rigid variations such as between Fig. 17.3(a) and (b),

however, in the second experiment, α is increased to 40% to enable such discoveries.

Everything else from Experiment 1 is kept the same.

Many of the patterns discovered in Experiment 2 were similar to or the same as

those discovered in Experiment 1. But beyond these, two examples of the inexact inter-

opus patterns discovered in Experiment 2 are given in Fig. 17.8. Pattern occurrence

E1 in Fig. 17.8(a) consists of a rising major triad, F3, A3, C4, with each note played
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Fig. 17.8 (a) Bars 1–5 with upbeat of the third movement from Piano Sonata no. 6 in F major, op. 10,
no. 2, by Beethoven. One occurrence of a twelve-note pattern is highlighted. (b) Bars 172–173
of the third movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One inexact
occurrence of the pattern from Fig. 17.8(a) is highlighted. (c) Bars 47–50 of the second movement
from Piano Sonata no. 6 in F major, op. 10, no. 2, by Beethoven. One occurrence of a twelve-note
pattern is highlighted. (d) Bars 1–4 with upbeat of the third movement from Piano Sonata no. 12
in A� major, op. 26, by Beethoven. One inexact occurrence of the pattern from Fig. 17.8(c) is
highlighted

three times following a lower member of the triad. In occurrence E2 (Fig. 17.8(b)),

the three notes are D�5, F�5, A5, with each note played twice, and on this occasion

they form the upper three notes of a dominant seventh chord that has B1 in the bass.

There are fewer notes in E2 than in E1, and the time difference ratios between triples

of notes in each occurrence are not always the same, but with α = 40% the two

occurrences bear sufficient resemblance to cause a local maximum in the fingerprint

histogram. The same observation applies to pattern occurrences F1 (Fig. 17.8(c)) and

F2 (Fig. 17.8(d)). This pattern consists of a chordal progression, with each occurrence
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having very similar voice-leading. The progression is I, I, Vb in Fig. 17.8(c), and i, i,

V7b in Fig. 17.8(d).

a

b

c

G 1

G 2

J 1

J 2

Fig. 17.9 (a) Bars 122–137.1 of the first movement from Piano Sonata no. 7 in D major, op. 10,
no. 3, by Beethoven. One occurrence of a six-note pattern is highlighted in red. A different nineteen-
note pattern is highlighted in blue. (b) Bars 43–44 of the second movement from Piano Sonata no. 7
in D major, op. 10, no. 3, by Beethoven. One inexact occurrence of the pattern from Fig. 17.9(a) is
highlighted. (c) Bars 54–57.2 of the first movement from Piano Sonata no. 1 in F minor, op. 2, no. 1,
by Beethoven. A second occurrence of the nineteen-note pattern from Fig. 17.9(a) is highlighted
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17.4.3 Experiment 3

Since Handel sometimes borrowed melodies rather than full textures (see Sect. 17.1),

it is sensible to make the same checks for Beethoven. Accordingly, Experiment 3

consisted of a melodic version of Experiment 1. We defined six-note queries using the

highest-sounding notes in the right hand, beginning at the start of each bar. Everything

else from Experiment 1 is kept the same.

The pattern H1 from Fig. 17.3(a), recurring as H2 in Fig. 17.3(c), is among

the results of this experiment. In op. 109, mvt. 3, H1 is the opening of a theme

and variations. In op. 10, no. 3, mvt. 3, H2 is imitative, passing between left and

right hands at the beginning of the second section of the minuet. According to

Table 17.1, however, pattern H1 is not particularly distinctive of Beethoven’s sonatas

(d = .660) compared, say, to pattern occurrences G1 and G2 from Figs. 17.9(a) and

(b), respectively (d = 12.880). The leap of six scale steps E3 to D4 in G1 is the reason

for this pattern’s high distinctiveness. In op. 10, no. 3, mvt. 1, the first three notes of

G1 belong to a lower-octave repetition of the development’s opening (see bar 125

with upbeat of Fig. 17.9(a)). This is the opening theme beginning on scale degree

5̂ instead of the original 1̂ (see Fig. 17.6(b)). The last three notes of H1 belong to a

minor statement of the opening theme, now beginning again on 1̂. Beethoven reuses

these three-note scale fragments separated by a leap of six scale steps in the second

movement of the same piece (Fig. 17.9(b)), just before the return of the main theme.

a

b

I 1

I 2

Fig. 17.10 (a) Bars 152–157 of the first movement from Piano Sonata no. 12 in A� major, op. 26,
by Beethoven. One occurrence of a six-note pattern is highlighted. (b) Bars 126–128 of the third
movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. One inexact occurrence of
the pattern from Fig. 17.10(a) is highlighted
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17.4.4 Experiment 4

Just as with Experiment 2, where we increased the temporal inexactness parameter of

Experiment 1 from α = .15 to α = .4 to enable discovery of more complex variations

on a pattern, so we did for melodic queries in Experiment 4. Many of the patterns

discovered in Experiment 4 were similar to those discovered in Experiment 3, but

an example of an additional pattern discovered in Experiment 4 is given as I1 and

I2 in Fig. 17.10. Just as G1 (Fig. 17.9(a)) was distinctive due to a large leap, so I1

contains two compound sevenths. The inexactness of the relationships between notes

belonging to I1 and I2, added to the large number of interpolated notes in I2, make

the resemblance between these passages difficult to discern. This was often the case

for results from Experiment 4, inviting the observation that α = 40% may be too

high for melody-only queries.

Coming to the end of our experiments involving fixed-length queries, we address

the issue of whether thematic material is inherently more distinctive than excerpts

drawn from elsewhere in a movement. In each of the 21 Beethoven movements

selected, it is the case that the first theme as annotated by Barlow and Morgen-

stern (1948) begins in bar 1. Therefore, to address the issue, we can calculate the

distinctiveness of the opening six-note query from each movement, and compare

this value to the distinctiveness of some other six-note query selected at random

from the same movement. This procedure can be simulated many times for each

movement to derive a proportion ρ of the times that the distinctiveness values of

themes are significantly higher than those of randomly-selected queries. If a query

Q belongs to piece Di, then it makes sense to set the corpus Θ from (17.1) to this

piece, Θ = {Di}, and the anticorpus Θ ′ to all other Beethoven movements apart from

this piece, Θ ′ = {D1,D2, . . . ,Di−1,Di+1, . . . ,D21}. Then d(Q,Θ ,Θ ′) indicates how

distinctive the query Q is for piece Di, relative to its prevalence in other movements.

Following this procedure for α = 15% and 1,000 simulations, we found that

only on 18 occasions (ρ = 1.8%) was distinctiveness of themes significantly higher

according to the Wilcoxon signed-rank test than distinctiveness of queries selected

at random from elsewhere in the same piece. The proportion ρ was still small

(i.e., always below 5%), whether using α = 40%, twelve-note polyphonic queries,

or Chopin as the anticorpus instead of other Beethoven movements. These results

suggest that Beethoven’s thematic material is not more distinctive of his style—at

least quantitatively—compared to excerpts drawn from elsewhere in a movement.

17.4.5 Experiment 5

In the last two experiments reported in this chapter, we move away from predefined,

fixed-length queries, and toward queries generated in an unsupervised manner by

running the pattern discovery algorithm SIARCT-CFP (Collins et al., 2013) on

concatenated pairs of movements D = conc(Di,D j), where 1≤ i, j,≤ 21. That is, for

instance, when running SIARCT-CFP on a point set consisting of the concatenation



468 Tom Collins, Andreas Arzt, Harald Frostel, and Gerhard Widmer
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Fig. 17.11 (a) Bars 103–107 with upbeat of the first movement from Piano Sonata no. 12 in A�
major, op. 26, by Beethoven. One occurrence of a 28-note pattern is highlighted. (b) Bars 41–44
of the third movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven. A second
occurrence of the pattern from Fig. 17.11(a) is highlighted. (c) Bars 9–11 of the second movement
from Piano Sonata no. 7 in D major, op. 10, no. 3, by Beethoven. A second occurrence of the pattern
from Fig. 17.2(a) is highlighted (in red)

of op. 10, no. 3, mvt. 1, and op. 2, no. 1, mvt. 1, the pattern occurrences labelled

J1 (Fig. 17.9(a)) and J2 (Fig. 17.9(c)) are discovered, and we can calculate the

distinctiveness of all such output patterns. Until recently, it would not have been

feasible to run geometric pattern discovery algorithms across all pairs of movements

from a 21-piece corpus, but Collins (2011) introduced a parallel version of SIA

(Meredith et al., 2002) called SIAR, whose runtime reduces with the number of

available processors.

Pattern occurrences J1 and J2 provide a kernel of resemblance that could point

to a more pervasive Beethovian stylistic trait: both bars 133–137.1 of Fig. 17.9(a)

and bars 55-57.1 of Fig. 17.9(c) consist of alternating octave eighth notes in the left

hand; both consist of a global descending melodic contour in the right hand with

a concluding upturn; both involve dynamic emphases at beginning and end; both

excerpts appear early on in the development sections of op. 10, no. 3, mvt. 1, and

op. 2, no. 1, mvt. 1 (although the latter has been heard before as the second theme).

So it would be interesting to know whether further instances appear in other pieces

by Beethoven, Haydn, etc. Potentially, this could be an example of a new Beethovian

developmental schema.

Similar remarks about schematic potential could be made regarding K1

(Fig. 17.11(a)) and K2 (Fig. 17.11(b)), since both constitute chordal textures in
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theme and variations movements. An interesting aspect of this pattern is that while it

does not appear to be distinctive of Beethoven’s piano sonatas relative to Chopin’s

(d = 0.193 in Table 17.1), it is distinctive of Beethoven’s sonatas relative to Chopin’s

mazurkas (d = 44.092). This trend in distinctiveness values was present across many

discovered patterns (e.g., see M1 and M2 in Table 17.1 and Figs. 17.2(a) and 17.11(c)

respectively), but it was most marked for K1,K2. Overall, the choice of anticorpus

does not seem to create too much volatility in results: if pattern X has distinctiveness

dX for the Chopin sonata anticorpus and eX for the Chopin mazurka anticorpus,

pattern Y has distinctiveness dY for the Chopin sonata anticorpus and eY for the

Chopin mazurka anticorpus, and there is some distinctiveness ordering for one of

the anticorpora (e.g., dX < dY ), then apart from a couple of exceptions in Table 17.1,

this ordering holds also for the other anticorpus (e.g., eX < eY ).

17.4.6 Experiment 6

The final experiment explored a new representation in the context of pattern discovery:

geometric encoding of chord symbols. To create such a representation, the HarmAn

algorithm (Pardo and Birmingham, 2002) was run on all pieces in our database.

For given symbolic note input, HarmAn produces ontimes of chord labels, the root

pitch classes, chord types, chord durations, and ratings of the confidence with which

each label was assigned. It does not take into account modulations, inversions, or

functional harmonic labels. Focusing on chord ontimes and root pitch classes, an

example of HarmAn output is shown in Fig. 17.12(b) for the input of Fig. 17.12(a).

SIARCT-CFP was used to identify collections of points that occur repeated and/or

varied in the ontime-root space of Fig. 17.12(b), just as it had done in ontime-MPN

space for Experiment 5.

An example of the type of harmonic pattern discovered is given in Figs. 17.12(c)

and (d), where chord labels have been converted manually to Roman numerals for

clarity. Both N1 (Fig. 17.12(c)) and N2 (Fig. 17.12(d)) begin by moving from i to V

and back to i. Whereas N2 then mimics this movement to reach the dominant minor

(V, II, v), in N1 the pattern occurrence finishes on V7 and then cadences back on to

i a bar later. Pattern discovery on a large scale in this harmonic space is still in its

infancy, because robust algorithms capable of labelling chords to the standard of a

human expert still do not exist (Collins, 2014).

17.5 Conclusions and Future Work

This chapter has described a computational method for discovering resemblances

between excerpts from different pieces of polyphonic music, and summarized the

results of this method applied to a collection of piano sonatas by Beethoven. The

method combines formulae for calculating the distinctiveness of repeating patterns—
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Fig. 17.12 (a) Bars 1–8.1 with upbeat of the first movement from Piano Sonata no. 1 in F� minor,
op. 2, no. 1, by Beethoven. (b) Plot of root pitch class against ontime of chords, as estimated by
the HarmAn algorithm. (c) Bars 72–77 of the first movement from Piano Sonata no. 6 in F major,
op. 10, no. 2, by Beethoven. An occurrence of a six-chord pattern is highlighted below the staff.
(d) Bars 18–22 of the first movement from Piano Sonata no. 30 in E major, op. 109, by Beethoven.
A second occurrence of the six-chord pattern from Fig. 17.12(c) is highlighted. Chord labels were
converted to Roman numerals in these plots to aid comparison
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developed in the viewpoint approach to pattern discovery—with representations that

apply conveniently to melodic or polyphonic (voiced or unvoiced) representations—

developed in the geometric approach to pattern discovery. The combination or unifi-

cation was made possible by symbolic fingerprinting, which enabled us to estimate

the likelihood of occurrence of a music query across a piece or database of pieces.

Of particular interest among the results was an instance of literal resemblance be-

tween op. 2, no. 1, mvt. 3 and op. 10, no. 3, mvt. 1 (Fig. 17.6), a melodic resemblance

between an andante theme in op. 109, mvt. 3 and an imitative passage in the minuet,

op. 10, no. 3, mvt. 3 (Fig. 17.3), and two new candidates for schemata (Figs. 17.9 and

17.11). A quantitative analysis of the distinctiveness of Beethoven’s thematic material

versus material drawn from elsewhere in the same pieces found that the themes are

not significantly more distinct. One should be wary of interpreting null effects, but

this result is perhaps not so surprising when one considers the content of Beethoven’s

motivic designs. For instance, the themes in both Figs. 17.8(a) and 17.12(a) consist

of rising triadic pitches followed by a descending scale fragment. Such musical

building blocks have relatively high likelihood across many corpora, and so may not

be distinctive of Beethoven. Based on this result, we might tentatively suggest that

the apparent bias in existing analytic work toward discussing incipits and themes

could be due to cognitive load (easier to remember and maintain incipits and themes

than entire movements) rather than this material being particularly distinctive of a

composer’s style. Computational music analysis may serve to democratize intra- and

inter-opus pattern discovery somewhat, giving equal consideration to less well-known

passages from longer pieces, which could lead to interesting new findings.

At the beginning of the chapter, we stated that computational methods exist capa-

ble of discovering the type of melodic resemblance shown in Fig. 17.1, but that no

computational method exists capable of identifying the more abstract resemblances

in Fig. 17.2. As yet, therefore, music informaticians have not developed sufficiently

flexible methods for identifying the types of patterns that musicologists find interest-

ing (Burkholder, 2001; Byros, 2012; Gjerdingen, 1988, 2007; Lutes, 1974; Radcliffe,

1968; Winemiller, 1997). The method proposed and applied in the current chapter

has made some progress in this regard, because it can handle melodies as well as any

sort of polyphonic texture, and it addresses the interpolation and zero-order problems,

which are simplifying and problematic assumptions about the nature of music made

by previous approaches. If, however, the temporal inexactness parameter α of our

fingerprinting method is increased to the point where occurrences of schema such

as in Fig. 17.2 become detectable, then many false positive results are returned also.

The method proposed in the current chapter is not a complete solution, therefore, and

one idea for future work would be to query point-set representations of notes and

chord labels simultaneously, to help filter out the number of false positives resulting

from increases in the inexactness parameter.

Taking a step back, a more fundamental suggestion for future work is to cre-

ate high-quality encodings in kern or MusicXML format, synchronized to audio

recordings, of specific works that can support computational research into borrowing

and distinctive pattern discovery. For instance, while there are a good number of

Handel’s works available in kern format, there are far fewer encodings of works by
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contemporaries such as Keiser, let alone encodings of human-annotated instances

of borrowing between these works. If we want to rigorously evaluate methods for

identifying borrowing and resemblances—so that these methods can be applied

more widely and with more confidence to other music—then testing against known

instances of borrowing is a sensible first step. This testing requires that digital en-

codings of specific works and annotations of those works exist. Synchronizing audio

recordings achieves two things: first, while it may sound trivial, it makes browsing

of the discovered patterns a far more enjoyable process, because the researcher can

listen to a human performance while doing so, rather than, say, inspecting piano-roll

plots without sound or (possibly worse for some individuals) listening to mechanical

MIDI files. This is important when trying to engage musicologists with the technol-

ogy. Second, if audio and symbolic representations of a piece are synchronized, and

there exist expert music-theoretical annotations of the symbolic data (e.g., functional

harmonic analyses, cadence locations, textural categories, occurrences of schemata,

occurrences of motifs, themes, and other repetitive elements), then via the synchro-

nization this can act as a ground truth for evaluating audio-based algorithms (in

addition to symbolic-based algorithms) that attempt to produce these annotations

automatically.

We would like to see more joint work between technologists and musicologists

on the development of interfaces that make it possible to run and browse the output

of such algorithms across corpora and for representations of interest. The results

presented in this chapter suggest that our knowledge about music can be advanced

by computational music analysis—the extent to which it will be advanced in coming

decades depends on researchers in music informatics getting to grips with some

higher-level music-theoretic concepts, and musicologists being prepared to help

guide and engage with this work.
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