
Differential Power Analysis of HMAC SHA-1
and HMAC SHA-2 in the
Hamming Weight Model

Sonia Beläıd2,3(B), Luk Bettale1, Emmanuelle Dottax1, Laurie Genelle1,
and Franck Rondepierre1

1 Oberthur Technologies, 420 rue d’Estienne d’Orves, 92700 Colombes, France
{l.bettale,e.dottax,f.rondepierre}@oberthur.com,

laurie.genelle.p@gmail.com
2 École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France

3 Thales Communications and Security, 4 Avenue des Louvresses,
92230 Gennevilliers, France

sonia.belaid@ens.fr

Abstract. As any algorithm manipulating secret data, HMAC is poten-
tially vulnerable to side channel attacks. In 2004, Lemke et al. fully
described a differential power attack on HMAC with RIPEMD-160 in
the Hamming weight leakage model, and mentioned a possible exten-
sion to SHA-1. Later in 2007, McEvoy et al. proposed an attack against
HMAC with hash functions from the SHA-2 family, that works in the
Hamming distance leakage model. This attack makes strong assump-
tions on the target implementation. In this paper, we present an attack
on HMAC SHA-2 in the Hamming weight leakage model, which advan-
tageously can be used when no information is available on the targeted
implementation. Furthermore, we give a full description of an extension
of this attack to HMAC SHA-1. We also provide a careful study of the
protections to develop in order to minimize the impact of the security
on the performances.

Keywords: HMAC · Side channel analysis · Differential power
analysis · Hamming weight · SHA-1 · SHA-2

1 Introduction

With the expansion of internet communications, online transactions and the
transfer of confidential data in general, ensuring the integrity and the authen-
ticity of transmitted information is a prime necessity. To this end, a Message
Authentication Code (MAC) is generally used. A MAC algorithm accepts as
input a secret key – shared between senders and receivers – and an arbitrar-
ily long message. The output is a short bit-string which is jointly transmitted

S. Beläıd and L. Genelle—This work was essentially done while these authors were
members of the Cryptography Group of Oberthur Technologies.

c© Springer International Publishing Switzerland 2015
M.S. Obaidat and A. Holzinger (Eds.): ICETE 2014, CCIS 554, pp. 363–379, 2015.
DOI: 10.1007/978-3-319-25915-4 19

364 S. Beläıd et al.

with the message. It allows the receiver to verify that the message has not been
altered by an attacker.

Several MAC constructions exist, and the most common ones are based on
block-ciphers or on hash functions. Among the hash-based MAC algorithms,
HMAC [3] is the most widely used. Today it is a standardized algorithm [9] and
it is used by several protocols running on embedded devices [1,14]. The use of
HMAC in such a context leads the research community to study its vulnera-
bility against Side Channel Analysis (SCA). Those attacks take advantage of
statistical dependencies that exist between a physical leakage (e.g., the power
consumption, the electromagnetic emanations) produced during the execution
of a cryptographic algorithm and the intermediate values manipulated. In the
family of side channel analyses, Differential Power Analysis (DPA) is of par-
ticular interest [15]. The principle is the following. The attacker executes the
cryptographic algorithm several times with different inputs and gets a set of
power consumption traces, each trace being associated to one value known by
the attacker. At some points in the algorithm execution, sensitive variables are
manipulated, i.e., variables that can be expressed as a function of the secret key
and the known value. These sensitive values are targeted as follows: the attacker
makes hypotheses about the secret key and predicts the sensitive values and the
corresponding leakages. Then, a statistical tool is used to compute the correla-
tion between these predictions and the acquired power consumption traces. The
obtained correlation values allow the attacker to (in)validate some hypotheses.
In order to map the hypothetical sensitive value towards an estimated leak-
age, a model function must be chosen. The Hamming Distance (HD) and the
Hamming Weight (HW) models are the most commonly used by attackers to
simulate the power consumption of an embedded device. In the HW model, the
leakage is assumed to depend on the number of bits that are set in the handled
data. It is considered as a special case of the HD model, which assumes that
the leakage depends on the bits switching from one state to the next one. The
latter is usually considered to better integrate the behavior of CMOS circuits,
however it requires significant knowledge of the implementation. As for the HW
model, it can always be used and gives valid results for a large number of devices
[15,17,20].

Several DPA scenarios have been proposed in the literature to attack the
HMAC algorithm. Okeya et al. addressed in several papers [11,12,21] the ques-
tion of protecting HMAC against DPA. They focused their study on block-cipher
based hash functions. As well, [24] dealt with HMAC based on Whirlpool. In
[16], Lemke et al. described a theoretical attack on HMAC based on the hash
function RIPEMD-160 in the HW model. The authors mentioned that a similar
attack on HMAC with SHA-1 is possible following the same approach. McEvoy
et al. [18] proposed an attack against HMAC based on SHA-2 functions. They
chose the HD model to characterize the physical leakage of the device. The paper
[10] presented a template attack on HMAC SHA-1, which implies a more pow-
erful adversary than DPA [7]. More recently, SCA on keyed versions of Keccak
have been explored in [4,6,23,25].

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 365

In this paper, we improve the state of the art on the security of HMAC
against DPA by giving a complete description of attacks in the HW model for
HMAC with SHA-1 and SHA-2. Contrary to [18], our attacks can be used even
when no information about the HMAC implementation is available. We also
study the countermeasures required to protect the algorithm, and provide and
evaluation of the cost overhead for software implementations.

The rest of the paper is organized as follows. Section 2 introduces the neces-
sary background on HMAC, SHA-2 and SHA-1 algorithms. Section 3 describes
the attacks in details. Section 4 deals with the protections required to secure
HMAC implementations against our attacks, and notably it evaluates the impact
on performances. Finally, Sect. 5 concludes the paper.

2 Technical Background

2.1 The HMAC Construction

The HMAC cryptographic algorithm involves a hash function H in combination
with a secret key k. According to [9], it is defined as follows:

HMACk : {0, 1}∗ −→ {0, 1}h

m �−→ H ((k ⊕ opad) ‖ H ((k ⊕ ipad) ‖ m)),

where ⊕ denotes the bitwise exclusive or, ‖ denotes the concatenation, and opad
and ipad are two public fixed constant. We call inner hash the first hash com-
putation H ((k ⊕ ipad) ‖ m) and the second one is referred to as the outer hash.

In this paper, we focus on HMAC instantiated with a hash function H based
on the Merkle-Damg̊ard construction [8,19] (MD5, SHA-1 and SHA-2 are among
the most widely used). An overview of this construction is given in Fig. 1. The
input message m is first padded using a specific procedure to obtain N blocks of
bit-length n denoted by m1, . . . ,mN . Then each block mi is processed with a h-
bit chaining value CVi−1 through a one-way compression function F that outputs
a new h-bit chaining value CVi. The chaining value CV0, also denoted by k1, is
fixed and depends only on the secret key k. It is computed as F (IV, k ⊕ ipad),
with IV being the public Initial Value of the hash function. The final chaining
value CVN, also denoted by z, is the input of the outer hash. It is processed
with a second fixed key-dependent value k0 = F (IV, k ⊕ opad) in the last call
of the compression function that outputs the MAC. So we rewrite the HMAC
procedure as follows:

HMACk (m) = F (k0,F (. . . F (F (k1,m1) ,m2) , . . . ,mN) ‖ pad),

where pad is the bit-string used to pad the input of the outer hash. For the sake
of simplicity and without loss of generality, we omit this value in the following.

In the rest of the paper we resume our analysis on the HMAC algorithm
based on SHA-256 as presented in [2] and we extend it to HMAC-SHA-1. We
assume F to be the SHA-256 or SHA-1 compression function. Brief descriptions
of both functions are given in the next section.

366 S. Beläıd et al.

Fig. 1. HMAC using a Merkle-Damg̊ard hash function.

2.2 The SHA-256 Compression Function

As the compression functions of SHA-256 and SHA-512 are exactly the same
except for the size of the internal variables (32-bit for SHA-256 against 64-bit
for SHA-512), we limit ourselves to the description of the SHA-256 case.

The SHA-256 compression function F is described in Algorithm 1. It accepts
as input a 512-bit message block M and a 256-bit chaining value V (i.e., para-
meters n and h in Sect. 2.1 equal 512 and 256 respectively). The function iter-
ates 64 times the same round transformation on an internal state. The state
is represented by eight 32-bit words A,B,C,D,E, F,G and H initially filled
with V = (V1, . . . , V8). The round is a composition of 32-bit modular additions,
denoted by �, with boolean operations which are defined on 32-bit words u, v
and w as follows:

Ch (u, v, w) = (u ∧ v) ⊕ (¬u ∧ w)
Maj (u, v, w) = (u ∧ v) ⊕ (u ∧ w) ⊕ (v ∧ w)
Σ0 (u) = (u ≫ 2) ⊕ (u ≫ 13) ⊕ (u ≫ 22)
Σ1 (u) = (u ≫ 6) ⊕ (u ≫ 11) ⊕ (u ≫ 25)

where ∧ denotes the bitwise and, ¬ denotes the bitwise complement and x ≫ j
denotes a rotation of j bits to the right on x.

The message expansion splits the message block M into 32-bit words M1, . . . ,
M16, and expands it into 64 words Wt by using the following additional 32-bit
words operations:

σ0 (u) = (u ≫ 7) ⊕ (u ≫ 18) ⊕ (u � 3)
σ1 (u) = (u ≫ 17) ⊕ (u ≫ 19) ⊕ (u � 10)

where x � j denotes a shift of j bits to the right on x. In Algorithm 1, the values
K1, . . . ,K64 are public constants.

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 367

2.3 The SHA-1 Compression Function

The SHA-1 compression function is described in Algorithm 2. It accepts as input
a 512-bit message block M and a 160-bit chaining value V (i.e., parameters n
and h in Sect. 2.1 equal 512 and 160 respectively). The function iterates 80 times
the same round transformation on an internal state. The state is represented by
eight 32-bit words A,B,C,D and E initially filled with V = (V1, . . . , V5). The
round is a composition of 32-bit modular additions, with boolean operations
which are defined on 32-bit words u, v and w for each round t as follows:

Algorithm 1. SHA-256 Compression Function.

Inputs: the data block M = (M1, . . . , M16), the chaining value V = (V1, . . . , V8)
Output: the chaining value F(V, M)

1: (W1, . . . , W16) ← (M1, . . . , M16)
2: for t = 17 to 64 do � Message Expansion

3: Wt ← σ1 (Wt−2) � Wt−7 � σ0 (Wt−15) � Wt−16

4: end for
5: (A, B, C, D, E, F, G, H) ← (V1, . . . , V8)

6: for t = 1 to 64 do � Main Loop

7: T1 ← H �Σ1 (E) �Ch (E, F, G) � Kt � Wt

8: T2 ← Σ0 (A) �Maj (A, B, C)

9: H ← G
10: G ← F

11: F ← E
12: E ← D � T1

13: D ← C
14: C ← B

15: B ← A

16: A ← T1 � T2

17: end for
18: return (V1 � A, . . . , V8 � H) � Final Addition

ft (u, v, w) = Ch (u, v, w) , for 1 � t � 20,

ft (u, v, w) = Maj (u, v, w) , for 41 � t � 60,

ft (u, v, w) = u ⊕ v ⊕ w, for 21 � t � 40, and 61 � t � 80.

3 DPA on HMAC SHA-256 and HMAC SHA-1

3.1 Related Work and Contribution

In [18], the authors propose to attack the SHA-256 compression function to
recover k0 and k1. The authors mount their attack in the HD leakage model,
and they assume to have knowledge (only) of the input messages. They consider
an implementation that strictly follows Algorithm1, and in particular they make
the following assumptions. Firstly, the variables A,B, . . . ,H are initialized with
the input chaining value and T1 is initialized with an unknown but constant
value. Secondly, each one of the variables T1, T2, A,B, . . . ,H is updated with

368 S. Beläıd et al.

its value at the next round. It means that for each of these variables, the HD
between its value at round t − 1 and its value at round t is leaked at each round
t, for t = 1, . . . , 64. Under these assumptions, the authors present an attack wich
consists in a succession of DPAs. Each one allows the attacker to recover either
a part of the secret key or an intermediate result, and these results are re-used
in the following DPAs to recover the remaining secrets. It is worth noticing that
these assumptions are quite strong and could prevent applying the attack on
some implementations. For instance, a software implementation would probably
avoid updating registers value (steps 9 to 16 of Algorithm1) and rather choose
to directly update the pointers, which would clearly be more efficient.

Algorithm 2. SHA-1 compression function.

Inputs: the data block M = (M1, . . . , M16), the chaining value V = (V1, . . . , V5)
Output: the chaining value F(V, M)

1: (W1, . . . , W16) ← (M1, . . . , M16)

2: for t = 17 to 80 do � Message Expansion

3: Wt ← (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16)�1

4: end for
5: (A, B, C, D, E) ← (V1, . . . , V5)

6: for t = 1 to 80 do � Main Loop
7: T ← A�5 � ft (B, C, D) � E � Kt � Wt

8: E ← D
9: D ← C

10: C ← B�30

11: B ← A

12: A ← T
13: end for
14: return (V1 � A, V2 � B, V3 � C, V4 � D, V5 � E) � Final Addition

In [16], the authors apply partial DPAs to several algorithm, among which
HMAC RIPEMD and HMAC SHA-1. They only describe the steps for RIPEMD,
but their attack is dependent on the order in which the operations are performed.

In this paper, we propose an attack on the compression function that targets
different steps in the algorithm compared to [18]. This new method brings two
main advantages. First, our new attack benefits from the feature to work in the
HW model in which the power consumption is assumed to be proportional to
the number of non-zero bits of the processed values. Therefore our proposal can
be applied on devices that leak in this model, and also when the attacker has no
information about the implementation, as stated in [17]. Secondly, we show in
Sect. 3.4 how a similar attack can be mounted on HMAC SHA-1. In particular,
this attack does not need any assumption on the order of the operations.

3.2 New Attack in the Hamming Weight Model

To forge MACs for arbitrary messages, the attacker needs either to recover the
secret key k or both values k0 and k1. As seen in Fig. 1, the attacker cannot

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 369

Fig. 2. Attack paths on HMAC.

target directly the secret key k since it is never combined with variable and
known data. On the contrary, k0 and k1 may potentially be recovered by the
attacker. In the following, we define the three paths the attacker can follow to
recover k1 and k0 (they are shown by Fig. 2). Then, we give the detailed steps
of the attacks following respectively Path 1, 2 and 3.

As already noted, the value k1 may be obtained when it is combined with
the known and variable data m1 in the compression function. This attack path
is referred to as Path 1.

Definition 1 (Path 1: Inner Hash - DPA with Known Input). The
attacker targets the compression function whose input is the first message block
m1 to recover the secret value k1.

Once k1 is known, the attacker is able to compute the inner hash result
z = H(k1||m) for all input messages m. She can thus mount a DPA on the outer
hash compression function execution whose input is z to recover the constant
value k0. This path is denoted by Path 2.

Definition 2 (Path 2: Outer Hash - DPA with Known Input). The
attacker targets the last call of the compression function whose input is the known
and variable value z.

Another way for the attacker to obtain the secret value k0 is to target the
last call of the compression function focussing on the MAC value which is known
and variable. We refer to this attack path as Path 3.

Definition 3 (Path 3: Outer Hash - DPA with Known Output). The
attacker targets the last compression function execution whose output is the
known and variable MAC.

370 S. Beläıd et al.

3.3 Attack on HMAC SHA-2

Path 1. We depict here the attack following Path 1, i.e., on the computation
F (k1,m1). In this context, the attacker aims at recovering the secret value k1.
We completely develop this attack in Table 1. The notation X(i) refers to a
given intermediate variable X computed at round i. Variables denoted by X(0)

correspond to the input chaining value of the compression function. For the sake
of simplicity, δ(i) denotes the sum H(i) �Σ1

(
E(i)

)
�Ch

(
E(i), F (i), G(i)

)
�Ki+1.

Eventually, X̂ denotes a variable controlled by the attacker, meaning that she
can predict its value when the message changes.

Each line of the table describes a DPA attack. The column Hyp indicates the
secret value which is the target of the attack Attack in the operation Targeted
Operation. In each targeted operation, the hat indicates the variable that is
controlled (modified) by the attacker. The column Result lists the useful vari-
ables on which the attacker gains control after the attack (it includes, but is not
limited to, the target secret variables). Eventually, the double line separates the
attacks executed in Round 1 from the ones processed in Round 2.

The attacker progresses line after line and finally recovers the following parts
of the secret: A(0), B(0),D(0), E(0), F (0), G(0). The last remaining parts H(0)

and C(0) can be recovered by making substitutions in Algorithm1: in Step 7
of round 1, where H(0) is the only unknown variable, and similarly in Step 8 of
round 1 where C(0) is the only unknown variable.

Table 1. DPA attack on SHA-256 compression function using HW leakage model.

Rnd Attack Targeted operation Var. Hyp. Result

1 DPA 1 T
(1)
1 ← δ(0) � W1

̂W1 δ(0) ̂T
(1)
1 , δ(0)

DPA 2 E(1) ← D(0) � T
(1)
1

̂T
(1)
1 D(0)

̂E(1), D(0)

DPA 3 A(1) ← T
(1)
1 � T

(1)
2

̂T
(1)
1 T

(1)
2

̂A(1), T
(1)
2

2 DPA 4 E(1) ∧ F (1) in Ch
(

E(1), F (1), G(1)
)

̂E(1) F (1) F (1) = E(0)

DPA 5 E(1) ∧ G(1) in Ch
(

E(1), F (1), G(1)
)

̂E(1) G(1) G(1) = F(0)

DPA 6 A(1) ∧B(1) in Maj
(

A(1), B(1), C(1)
)

̂A(1) B(1) B(1) = A(0)

DPA 7 A(1) ∧C(1) in Maj
(

A(1), B(1), C(1)
)

̂A(1) C(1) C(1) = B(0)

DPA 8 T
(2)
1 ← H(1) � Σ1

(

E(1)
)

�

Ch
(

E(1), F (1), G(1)
)

� K2 � W2

̂W2 H(1) H(1) = G(0)

Remark. DPA 8 involves the message block W2. The attacker has two possibilities
to mount this attack:

1. She can fix the first message block W1 and thus makes hypotheses on the
whole constant sum δ(1), while modifying W2. She obtains the value of δ(1)

and deduces the secret H(1) from the knowledge of the other values.

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 371

2. W1 is not fixed, but rather changes together with W2. She then considers the
sum Σ1

(
E(1)

)
� Ch

(
E(1), F (1), G(1)

)
� K2 � W2 as the variable to mount

the DPA. Knowing the values taken by the variable and making hypotheses
on the secret H(1), she obtains as well the targeted value.

Both methods require the same number of traces and are applicable with respect
to the attack model. However, note that fixing W1 may be more convenient since
there is no need to compute E(1) for each execution.

The combination of these eight DPAs allows an attacker to recover the input
chaining value k1 from the observation of the first two rounds of F only.

Path 2. The attack related to Path 2 to recover k0 follows the same outline as
the one associated to Path 1. Indeed, it targets the computation F (k0, z) in the
outer hash, whose input is z. However, in this context the value z is known for
any input message but not chosen. As a consequence, the attacker cannot easily
fix the first message block and would probably choose the second alternative to
mount DPA 8 in Table 1.

Path 3. The attack related to Path 3 targets the same compression function
execution as Path 2. It also aims at recovering the same secret value k0 but
focuses on the output of the compression function. Indeed in the HMAC algo-
rithm, the last call to the compression function outputs the MAC value R. This
final value is obtained by performing a final addition between the secret chaining
input V = k0 and the output of a 64-round process. Thus we have:

A(64) = R1 � V1,

B(64) = R2 � V2,

. . .

H(64) = R8 � V8,

where � is the modular subtraction on 32 bits. In these final operations, the
(Ri)1�i�8 are known and variable and the (Vi)1�i�8 are constant parts of the
secret k0, thus the values A(64), . . . , H(64) are sensitive. Eight DPA attacks can
thus be mounted to recover the eight 32-bit parts (Vi)1�i�8 of the secret k0.

Full Attack. To conclude, the attacker can follow either Paths 1 and 2 or Paths 1
and 3 to recover the secret values required to forge MACs. In both cases, she
needs to mount sixteen DPAs on 32-bit words. As mentioned above, the attack
can be generalized on HMAC instantiated with any of the SHA-2 family hash
function with few adaptations. Indeed, the other SHA-2 hash functions differ
either in the size of the internal variables (32 bits or 64 bits), or in the length of
the final output. For the DPAs to be computationally practical when mounted
on 32-bit or 64-bit values, one can use partial DPAs [16] as explained in [2]. For
HMAC implementations whose final output is truncated, the attacker cannot
directly follow Path 3 to recover k0 but is still able to use Path 2.

372 S. Beläıd et al.

3.4 Attack on HMAC SHA-1

The attack can be adapted for SHA-1. In particular, the attack related to Path
3 can be straightforwardly used for SHA-1 as it also implements a final addition
between the secret k0 and the known output.

The attack related to Path 1 and 2 needs more adaptation. We develop the
attack in Table 2 with the same notations as Table 1. We also use the notations
β(i) and γ(i) to ease the notations of the sum A

(i)
�5�Ch

(
B(i), C(i),D(i)

)
�E(i)�

Ki+1 = A(i) � β(i) = γ(i). Using these DPAs, the attacker recovers the following
parts of the secret: A(0), B(0), C(0). The last remaining parts D(0) and E(0) can
be recovered by making substitutions in Algorithm2: in Step 7 of round 2, where
E(1) = D(0) is the only unknown variable, and similarly in Step 7 of round 1
where E(0) becomes the only unknown variable.

Full Attack. Only 5 DPAs are needed to recover a full state of SHA-1. Following
the same paths as in SHA-2, this amounts to 10 DPAs on 32-bit words.

Table 2. DPA attack on SHA-1 compression function using HW leakage model.

Rnd Attack Targeted operation Var. Hyp. Result

1 DPA 1 T (1) ← A
(0)
�5 � Ch

(

B(0), C(0), D(0)
)

�
E(0) � K1 � W1

̂W1 γ(0)
̂T (1) = ̂A(1)

= ̂B(2)

2 DPA 2 T (2) ← A
(1)
�5 � Ch

(

B(1), C(1), D(1)
)

�
E(1) � K2 � W2

̂W2 β(1)
̂T (2) = ̂A(2)

3 DPA 3 B(2) ∧ C(2) in Ch
(

B(2), C(2), D(2)
)

̂B(2) C(2) C(2) = A(0)

DPA 4 B(2) ∧ D(2) in Ch
(

B(2), C(2), D(2)
)

̂B(2) D(2) D(2) = B(0)

DPA 5 T (3) ← A
(2)
�5 � Ch

(

B(2), C(2), D(2)
)

�
E(2) � K3 � W3

̂W3 B(1) E(2) = C(0)

3.5 Summary

Contrarily to previously known attacks on HMAC, the attacks described in this
section are sound in the Hamming weight model without any assumption on the
implementation. Furthermore, our attack can be straightforwardly adapted to
the Hamming distance model (see [2]). Simulations and complexity study of our
attack on SHA-2 using partial DPA can also be found in [2].

4 Protected Implementation

In this section, we focus on the countermeasures to apply to secure a HMAC
implementation instantiated with SHA-1, or a function from the SHA-2 family,

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 373

against the described attacks (and the ones in [16,18]). In software, the main
techniques used to thwart such SCA are masking and shuffling, as well as combi-
nation of both [22]. The principle is to inject some randomness in the algorithm
execution, in order to reduce the amount of information that leaks on sensitive
intermediate variables during the execution.

In [18], the authors use the hardware-specific techniques from [13] for masking
and propose a secure implementation of HMAC SHA-256 on FPGA. It is based
on a completely masked SHA-256 algorithm, where all intermediate values are
randomized. In particular, the authors did not investigate whether some calls
to the compression function or some rounds inside the compression function
could be left unmasked. This approach is acceptable in hardware. Indeed, the
implementation of both masked and unmasked versions of some functions would
have a substantial impact on the area used by the circuit. Given that hardware
resources must usually be minimized for cost reasons, and that the performance
overhead induced by masking is not excessive in hardware, securing the whole
algorithm constitutes an acceptable trade-off.

This is in opposition to software implementations. In this case, code is not so
much a scarce resource, while masking has an important impact on performances.
It is thus worth carefully studying the algorithm and establishing whether some
parts can be left unmasked. We show hereafter that the HMAC computation
does not need complete protection and that an efficient secure software imple-
mentation can be achieved.

In the rest of this section, we show how to prevent any information leakage
on the secret values k0 and k1 with a minimal impact on performances. We then
provide an evaluation of the timing overhead induced by the countermeasures.

4.1 Preventing Paths 1 and 2

To mount an attack via Path 2, we recall that the attacker must be able to
compute the intermediate value z for various messages and to mount a DPA
on the outer hash compression function. Protecting only the latter, we leave
the secret key k1 to the attacker, which is not satisfactory. Therefore we choose
to protect the generation of values z. As shown in Sect. 3.2, this ability can be
gained after recovering the value k1 by an attack following Path 1, i.e., during the
first compression function call F (k1,m1) in the inner hash. However, preventing
the recovery of k1 is not sufficient to completely annihilate Path 2. Indeed, the
knowledge of any of the chaining values CVi in the inner hash still allows the
attacker to compute the intermediate result z for fixed-prefix messages, and
to mount an attack with Path 2. As every CVi can be recovered by applying
the attack following Path 1 to the corresponding compression function call, we
deduce that every execution of the compression function in the inner hash has
to be protected from attacks using Path 1. This is sufficient to prevent attacks
via Path 2 as well.

Let us now see how to prevent the attack following Path 1. Since it is specific
to the compression function, we consider separately SHA-2 family and SHA-1
hash functions.

374 S. Beläıd et al.

SHA-2. We focus here on SHA-256 since SHA-512 behaves exactly the same
with a twice larger block size and an greater number of rounds and SHA-224
and SHA-384 are essentially truncated versions of the same function. The attacks
following Path 1 rely on the observation of the first two rounds of the compression
function, where the input message block mi is manipulated together with the
targeted secret values. But, as we can see in Algorithm 1, parts of the input
message block are also involved in each of the other rounds, via the message
expansion output Wt. Thus, we have to check the feasibility of the attack on
later rounds. We assume that the attacker adapts the attack described by Table 1
to rounds t and t + 1, with t ≥ 2. The first attack DPA 1 now relies on the
variable Wt. The attacker can perform this attack and gain control on T

(t)
1 when

values E(t−1), F (t−1), G(t−1), H(t−1) are constant. Afterwards, an adaptation of
DPA2 can be performed provided that D(t−1) is constant as well, and DPA 3
can be performed if A(t−1), B(t−1) and C(t−1) are constant. Remaining DPAs
can then be performed, and the full internal state (A(t−1), B(t−1), . . . , H(t−1))
can be finally recovered. The attacker subsequently recovers previous states by
inverting the round function, until she recovers the secret input chaining value
V = (A(0), B(0), . . . , H(0)).

Coming back to the adaptation of DPA 1, the following two conditions must
thus be fulfilled: values E(t−1), F (t−1), G(t−1),H(t−1) must be fixed and the value
Wt must be variable. To achieve the first condition, variables (W1, . . . ,Wt−1)
associated to the previous rounds must all be fixed as well. Yet, as soon as t > 16,
the message expansion is such that constant values for (W1, . . . ,Wt−1) implies a
constant value for Wt too, which contradicts the second condition. Hence, these
two requirements can be fulfilled only for t � 16. We conclude that the attack
from Path 1 presented in Sect. 3.3 can be extended to any rounds among the
first 16 ones. Moreover, due to the structure of the compression function, some
of the sensitive variables produced at round 16 remain available in rounds 17 to
20. Consequently, it is necessary to protect the sensitive variables until the 20th
round.

SHA-1. We now focus on the slightly different hash function SHA-1. As depicted
in Sect. 3.2, the attacks following Paths 1 and 2 require this time the observation
of rounds 1 to 3 of the compression function. We thus need to protect the sensi-
tive variables manipulated in these three rounds. Furthermore, since the input
message block is involved in each of the 80 rounds, we have to check the feasibil-
ity of this attack on each of them. We assume that the attacker applies the attack
described in Table 2 to rounds t to t + 2, with t � 2. The first attack DPA 1
works the same and gives the attacker the control on A(t) when the intermediate
values A(t−1), B(t−1), C(t−1), D(t−1) and E(t−1) are fixed and block Wt varies.
Under the same assumptions, an adaptation of DPA 2 can be performed and
gives the attacker the control on A(t+1). DPAs 3, 4 and 5 can also be adapted
and substitutions can be made to recover the whole internal state. Afterwards,
the attacker just has to invert the round function to recover the secret input
chaining value V .

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 375

Thus, the tweaked attack works if values A(t−1), B(t−1), C(t−1), D(t−1),
E(t−1) are fixed and the value Wt is variable. Since these two requirements
can only be fulfilled for t � 16, the attack can be extended to any rounds among
the 16 first ones. But as some of the sensitive variables produced at round 16
remain available until the 21th round, the protection to thwart the attack must
be applied to rounds 1 to 21.

4.2 Preventing Path 3

Section 3.3 describes an attack on the outer hash computation that targets the
final addition of the last compression function call F (k0, z). We recall the sensi-
tive variables for the two families of hash functions.

SHA-2 and SHA-1. The sensitive variables targeted by the attack are:

A(τ) = R1 � V1, B(τ) = R2 � V2, . . . , H(τ) = R8 � V8

for SHA-2 family and

A(τ) = R1 � V1, B(τ) = R2 � V2, . . . , E(τ) = R5 � V5

for SHA-1 family where τ denotes the number of rounds (64 for SHA-256 and 80
for SHA-512 and SHA-1), the Ri’s are known outputs, and the Vi’s constitute
the secret chaining input k0. An attack can be mounted as soon as these sensitive
values are manipulated. Rolling back the rounds of the compression function, we
track these sensitive variables and present them in bold in Table 3 for SHA-2 and
in Table 4 for SHA-1. This shows that sensitive variables in SHA-2 are produced
in round (τ − 3), thus protection is required in the last four rounds. For SHA-1
family hash functions, the sensitive variables are produced in round (τ − 4) thus
protection is required in the last five rounds.

Table 3. Sensitive variables in last rounds of SHA-2.

Roundτ A(τ) B(τ) C(τ) D(τ) E(τ) F (τ) G(τ) H(τ)

Round(τ − 1) A(τ−1) B(τ−1) C(τ−1) D(τ−1) E(τ−1) F (τ−1) G(τ−1) H(τ−1)

Round(τ − 2) A(τ−2) B(t−2) C(τ−2) D(τ−2) E(τ−2) F (τ−2) G(τ−2) H(τ−2)

Round(τ − 3) A(τ−3) B(τ−3) C(τ−3) D(τ−3) E(τ−3) F (τ−3) G(τ−3) H(τ−3)

4.3 Considering Other Paths

The approach presented above is secure only if no attack path exists that could
be used to mount an attack on unprotected rounds. We first focus on the unpro-
tected part of the compression function SHA-2, and then examine the case of
SHA-1.

376 S. Beläıd et al.

Table 4. Sensitive variables in last rounds of SHA-1.

Roundτ A(t) B(t) C(t) D(τ) E(τ)

Round(τ − 1) A(τ−1) B(τ−1) C(τ−1) D(τ−1) E(τ−1)

Round(τ − 2) A(τ−2) B(τ−2) C(τ−2) D(τ−2) E(τ−2)

Round(τ − 3) A(τ−3) B(τ−3) C(τ−3) D(τ−3) E(τ−3)

Round(τ − 4) A(τ−4) B(τ−4) C(τ−4) D(τ−4) E(τ−4)

SHA-2. Let us have a more general look at the algorithm. To mount a DPA, it is
necessary to target an operation where a known variable is mixed with a secret,
and to be able to predict the result of this operation according to hypotheses on
the value of the secret. The only known variables that we can vary are the Wt,
which are introduced during the computation of T1 and then propagated in the
internal state. Section 4.1 has considered natural extensions of DPA 1, where the
first t−1 blocks of the message are fixed while the t-th one is used as the variable.
However, it has been shown that for t > 16, no Wt can vary without changing
one of the previous blocks. If we consider an implementation secure regarding
Path 1, an attacker has to target an operation after round 20. She thus has no
other possibility than varying a block Wt and targeting an operation after the
corresponding T

(t)
1 has been computed. In particular, she will have to express

internal results as functions of Wt and some secret data, despite the mixing that
will already have occurred. Let us consider the simplest case: blocks W1 to W15

and W17 are fixed, while block 16 varies. At round 21, the following value is
manipulated:

H(20) = D(16) � H(16) � Σ1

(
E(16)

)
� Ch

(
E(16), F (16), G(16)

)
� K17 � W17.

In this equation, variables D(16), F (16), G(16) and H(16) are fixed, while E(16)

depends on W16 and on a sum of fixed values that we refer to as Δ. As it is
computationally impossible to make hypotheses directly on all involved secret
values, D(16) + H(16), F (16), G(16) and Δ1, we search for simpler relations and
consider mounting a partial DPA. Assuming we can perform a partial DPA on
one bit, we focus on the least significant bit (LSB) of H(20). It depends, among
others, on the LSB b of Σ1 (Δ � W16). To simplify we write W for W16, and we
note X(i) the i-th bit of X. Then we have:

b = Δ(6) ⊕ W(6) ⊕ c6 ⊕ Δ(11) ⊕ W(11) ⊕ c11 ⊕ Δ(25) ⊕ W(25) ⊕ c25,

where ci denotes the carry that propagates during the addition Δ�W . As these
carries depend on W , we have to make additional assumptions on all involved
bits of Δ (expressing the carries as functions of bits of Δ and W does not lead to
a reduced number of hypothesis). For this sole bit b, we already have to make 26

1 We cannot target the intermediate computations since they are performed in secure
rounds.

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 377

bits of hypothesis. Coming back to H(20), we have to make a 29-bit hypothesis
to recover only the LSB. Note that considering other variables (A(20), B(20),. . .)
or different rounds does not help. In all cases, at least the same hypotheses have
to be made since the variable W is introduced via the variable T1.

Such an attack based on this partial DPA would be very complex to mount
in practice. We thus reasonably assume that no additional protection is needed
and a safe and efficient implementation can be achieved.

SHA-1. In the case of SHA-1, the first 21 rounds and the last 5 ones must be
protected. Therefore, if we assume the implementation secure against the given
attacks, the attacker can only target an operation between rounds 22 and 75.
Let us consider here the simplest case when W1 to W15 and W17 are fixed and
W16 varies. At round 22, the following value is manipulated:

E(21) = A(17) = A
(16)
�5 � F (B(16), C(16),D(16)) � K17 � W17.

In this equation, all the variables are fixed but A(16) which depends on W16.
This time again, we cannot make hypotheses on all the other secret values.
Furthermore, regarding only the LSB of E(21), we already need to make a 29-bit
hypothesis. As for the SHA-2 family, considering other variables does not help.
Indeed at least the same hypotheses have to be made since the message block is
always introduced via the variable T . For the same reasons as for SHA-2 family
hash functions, the complexity of the simplest attack justifies the absence of
additional protection to achieve a secure implementation.

4.4 Performance Overhead Evaluation

First, the two calls to the compression function dedicated to k0 and k1 computa-
tions need no security against DPA, so they can be omitted. Then, following the
results exposed above, preventing the attack presented in this paper is possible
while leaving completely unmasked the main part of each treated instantiation of
HMAC. Equivalently, protecting an implementation only requires countermea-
sures on

– the first t0 rounds of each call to the compression function in the inner hash
(where t0 equals 20 for SHA-2 and 21 for SHA-1);

– the last t1 rounds of the final call to the compression function in the outer
hash (where t1 equals 4 for SHA-2 and 5 for SHA-1).

In a first approximation, we leave the details of the implementation for a secure
round and simply consider it is k times slower than a non-secure round. In that
case, the execution time of an implementation where sensitive rounds of the com-
pression function are protected is approximately (t0 k+(τ−t0))/τ ≈ 0, 31 k times
slower than an unprotected implementation, where t is the number of rounds.
Additional work is required to precisely evaluate k, however we expect it to
be relatively large. Indeed, if masking is chosen as a countermeasure, switching

378 S. Beläıd et al.

from arithmetic to boolean masks and backwards (which is required when arith-
metic and boolean operations are mixed, as it is the case for all SHA-1/SHA-2
functions) is usually costly [17].

5 Conclusions

We have presented in this paper side channel attacks on HMAC with SHA-1
and SHA-2 in the Hamming weight model. The complete attack steps have been
described. Then, we have analysed the attacks and corresponding protections,
and proposed a strategy that limits the performance overhead for software imple-
mentations. Better than masking everything, we have determined which parts
of the HMAC algorithm actually need protection. Further work has to be done
to focus on the details of the countermeasures.

Acknowledgements. The authors wish to thank Christophe Giraud for helpful dis-
cussions, and anonymous referees of a previous version of this work for their valuable
comments.

References

1. Arkko, J., Haverinen, H.: RFC 4187: Extensible Authentication Protocol Method
for 3rd Generation Authentication and Key Agreement (EAP-AKA) (2006)

2. Beläıd, S., Bettale, L., Dottax, E., Genelle, L., Rondepierre, F.: Differential power
analysis of HMAC SHA-2 in the Hamming weight model. In: Samarati, P. (ed.)
SECRYPT, SECRYPT is Part of ICETE - The International Joint Conference on
e-Business and Telecommunications, pp. 230–241. SciTePress, USA (2013)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

4. Bertoni, G., Daemen, J., Debande, N., Le, T.H., Peeters, M., Van Assche, G.:
Power Analysis of Hardware Implementations Protected with Secret Sharing. IACR
Cryptology ePrint Archive Report 2013/67 (2013). http://eprint.iacr.org/2013/67.
A preliminary version appeared at MICROW’12 [5]

5. Bertoni, G., Daemen, J., Debande, N., Le, T. H., Peeters, M., Van Assche, G.:
Power analysis of hardware implementations protected with secret sharing. In: 45th
Annual IEEE/ACM International Symposium on Microarchitecture Workshops
(MICROW), pp. 9–16. IEEE Computer Society (2012)

6. Bettale, L., Dottax, E., Genelle, L., Piret, G.: Collision-correlation attack against a
first-order masking scheme for MAC based on SHA-3. In: Prouff, E. (ed.) COSADE
2014. LNCS, vol. 8622, pp. 129–143. Springer, Heidelberg (2014)

7. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B., Koç, Ç., Paar,
C. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2002. LNCS,
vol. 2523, pp. 13–29. Springer, Heidelberg (2002)

8. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

9. FIPS 198–1: The Keyed-Hash Message Authentication Code (HMAC). National
Institute of Standards and Technology, July 2008

http://eprint.iacr.org/2013/67

Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 379

10. Fouque, P.-A., Leurent, G., Réal, D., Valette, F.: Practical electromagnetic tem-
plate attack on HMAC. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol.
5747, pp. 66–80. Springer, Heidelberg (2009)

11. Gauravaram, P., Okeya, K.: An update on the side channel cryptanalysis of MACs
based on cryptographic hash functions. In: Srinathan, K., Rangan, C.P., Yung, M.
(eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Heidelberg
(2007)

12. Gauravaram, P., Okeya, K.: Side channel analysis of some hash based MACs: a
response to SHA-3 requirements. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS
2008. LNCS, vol. 5308, pp. 111–127. Springer, Heidelberg (2008)

13. Golić, J.D.: Techniques for random masking in hardware. IEEE Trans. Circ. Syst.
I 54(2), 291–300 (2007)

14. Haverinen, H., Salowey, J.: RFC 4186: Extensible Authentication Protocol Method
for Global System for Mobile Communications (GSM) Subscriber Identity Modules
(EAP-SIM) (2006)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized Boolean and arithmetic
operations and its application to IDEA, RC6, and the HMAC-Construction. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219.
Springer, Heidelberg (2004)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smartcards. Springer, US (2007)

18. McEvoy, R., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power analy-
sis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer,
Heidelberg (2008)

19. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

20. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

21. Okeya, K.: Side channel attacks against HMACs based on block-cipher based hash
functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 432–443. Springer, Heidelberg (2006)

22. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

23. Taha, M., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust - HOST 2013. IEEE
Computer Society (2013)

24. Zhang, F., Shi, Z. J.: Differential and correlation power analysis attacks on HMAC-
Whirlpool. In: ITNG 2011, pp. 359–365. IEEE Computer Society (2011)

25. Zohner, M., Kasper, M., Stöttinger, M., Huss, S.A.: Side channel analysis of the
SHA-3 finalists. In: Rosenstiel, W., Thiele, L. (eds.) Design, Automation & Test
in Europe Conference & Exhibition, DATE 2012, pp. 1012–1017. IEEE Computer
Society, USA (2012)

	Differential Power Analysis of HMAC SHA-1 and HMAC SHA-2 in the Hamming Weight Model
	1 Introduction
	2 Technical Background
	2.1 The HMAC Construction
	2.2 The SHA-256 Compression Function
	2.3 The SHA-1 Compression Function

	3 DPA on HMAC SHA-256 and HMAC SHA-1
	3.1 Related Work and Contribution
	3.2 New Attack in the Hamming Weight Model
	3.3 Attack on HMAC SHA-2
	3.4 Attack on HMAC SHA-1
	3.5 Summary

	4 Protected Implementation
	4.1 Preventing Paths1 and 2
	4.2 Preventing Path3
	4.3 Considering Other Paths
	4.4 Performance Overhead Evaluation

	5 Conclusions
	References

