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Abstract. Designing efficient key agreement protocols is a fundamental
cryptographic problem. In this paper, we first define a security model
for key agreement in certificateless cryptography that is an extension
of earlier models. We note that the existing pairing free protocols are
not secure in our model. We design an efficient pairing-free, single round
protocol that is secure in our model based on the hardness assumption
of the Computational Diffie Hellman (CDH) problem. We also observe
that previously existing pairing-free protocols were secure based on much
stronger assumptions such as the hardness of the Gap Diffie Hellman
problem. We use a restriction of our scheme to design an efficient pairing-
free single round identity based key agreement protocol that is secure
in the id-CK+ model based on the hardness assumption of the CDH
problem. Additionally, both our schemes satisfy several other security
properties such as forward secrecy, resistance to reflection attacks etc.

Keywords: Certificateless cryptography · Identity-based cryptography ·
Key exchange · Random oracle

1 Introduction

Symmetric key cryptography is a paradigm in which both encryption and decryp-
tion is done using the same key unlike asymmetric system in which each user
maintains a public key and a private key. Symmetric key cryptography is in
general more efficient than an asymmetric system. However, the main disadvan-
tage of symmetric key cryptography is the establishment of the shared secret
key between the entities that want to communicate. A secure way of setting up
the shared secret key is mandatory. In this work, we focus on key exchange pro-
tocols in the identity based and certificateless paradigm. Several key exchange
protocols have been designed in these paradigms [4,13,16,17].

2 Previous Work and Our Contribution

2.1 Certificateless Cryptography

Several protocols and security models have been proposed for certificateless
authenticated key exchange (CLAKE). The strongest security model is the one
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proposed by Lippold et al. [12], which is based on the Canetti Krawczyk model
for key agreement. In this paper, we propose a security model that is an extension
of the one proposed by Lippold et al. Our model considers an active adversary-
one who can tamper with any message that is being exchanged within the net-
work. In a real world scenario, active adversaries are very much present making
this an important consideration towards the security of protocols. Since pairing
is an extremely costly mathematical operation, it hampers the efficiency of the
system and so, we focus only on schemes which are pairing-free. Several pairing-
free protocols [6,8,15,18] were proposed but most of them are either based on a
weaker security model or have subsequently been broken. Two pairing-free pro-
tocols proposed by Yang et al. [18] and Sun et al. [15] are based on the Lippold
et al. model. However, we observe that both these protocols are not secure in our
definition. In particular, an active adversary can modify the ephemeral compo-
nents and prevent the users from being able to compute the same shared secret
without them realising that they are indeed not computing the same secret. The
main advantage of our proposed scheme is that we prove the security of our
protocol based on the hardness assumption of the Computational Diffie Hellman
problem. We observe that all previously existing pairing-free key agreement pro-
tocols are proven secure based on much stronger assumptions like the Gap Diffie
Hellman assumption. Another important property is the number of rounds in
the protocol. Lesser the number of rounds, greater the efficiency of the protocol.
Our proposed scheme is single round and hence can be implemented asynchro-
nously while multiple round protocols need to be implemented synchronously
and require both the parties to be online throughout the run of the protocol.
Several other security properties which are of paramount importance are forward
secrecy, resistance to collusion attacks, resistance to key impersonation attacks,
etc. Our proposed scheme satisfies all these properties. A comparison of our pro-
tocol and other protocols is listed in the table below and this clearly highlights
the salient features of the proposed scheme (Table 1).

Table 1. Comparison of certificateless key exchange protocols.

Protocol Pairing-free Reduced to CDH Active adversary Single round

Yang et al. ✓ ✗ ✗ ✓

Sun et al. ✓ ✗ ✗ ✓

Lippold et al. ✗ ✓ ✗ ✓

Our scheme ✓ ✓ ✓ ✓

2.2 Identity Based Cryptography

One of the strongest security models for identity based key agreement (IBKE)
is the id-CK+ model proposed by Fujioka et al. [5] which is based on the CK
model [1,10]. Since pairing is an extremely costly mathematical operation, we
focus on schemes that do not involve the use of pairing. There are four schemes
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in the literature by Fiore et al. [4], Gunther et al. [7], Saeednia et al. [14] and Sree
Vivek et al. [17] which are pairing free and secure in this model. However, three
of them are not secure in the presence of an active adversary as demonstrated in
the paper by Sree Vivek et al. Other proposed schemes [2,9] were either broken
subsequently or involve an initial agreement on who initiates the key agreement
protocol. Therefore, we do not consider those schemes for our comparison. We
propose an efficient pairing free scheme that is secure in this model and also in the
presence of active adversaries. Additionally, our scheme is proven secure based
on the hardness assumption of the Computational Diffie Hellman problem. Once
again, several other security properties which our scheme satisfies are forward
secrecy, resistance to collusion attacks, resistance to key impersonation attacks,
etc. A comparison of our protocol and other protocols is listed in the table
below and this clearly highlights the salient features of the proposed scheme.
Our scheme can also be proven secure according to the CK and eCK models [11]
which will be described in the full version of the paper. We observe that while
the id-CK+ model is stronger than the CK model [5], the eCK and CK models
are incomparable [3] (Table 2).

Table 2. Comparison of identity based key exchange protocols.

Protocol Pairing-free Reduced to CDH Active adversary Single round

Fiore et al. ✓ ✓ ✗ ✓

Gunther et al. ✓ ✗ ✗ ✗

Saeednia et al. ✓ ✗ ✗ ✓

Sree Vivek et al. ✓ ✗ ✓ ✓

Our scheme ✓ ✓ ✓ ✓

3 A Certificateless Authenticated Key Exchange Protocol
(CLAKE)

A certificateless key exchange protocol contains the following six probabilistic
polynomial time algorithms - Setup, Partial Extract, Set Secret Value, Public
Key Generation, Private Key Generation, Key Agreement.

Here, a particular user is denoted as UA and his identity as IDA. Additionally,
we use the following naming scheme: UPK - User Public Key, FPK - Full Public
Key, PPK - Partial Public Key, USK - User Secret Key, FSK - Full Secret Key,
PSK - Partial Secret Key.

– Setup (K): This algorithm is run by the KGC. It generates the master secret
key (MSK) first and then the public parameters (params), given a security para-
meter K as the input. The KGC publishes params and keeps the MSK secret.

– Partial Extract (params, IDA): This algorithm is run by the KGC. Given
params and user identity IDA, this algorithm generates the Partial Secret
Key (PSK) and the Partial Public Key (PPK) of a user UA and sends them
to the user. This can be sent over a public or private channel.
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– Set Secret Value (params, K, IDA, PSK): This algorithm is run by each
user to generate his user secret key. The input to this algorithm is params,
the security parameter K, the user’s identity IDA and the user’s partial secret
key PSK.
The user secret key is not revealed to anyone.

– Public Key Generation (params, IDA, USK, PPK): This algorithm is
performed by the user. The input to this algorithm is params, the user identity
IDA corresponding to the user UA, his user secret key and his partial public
key. The output of this algorithm is the user generated public key. The full
public key has two components - the partial public key together with the user
public key.

– Private Key Generation (params, IDA, PSK, USK): This algorithm is
run by each user to generate his full private key. The input to this algorithm
is params, the user identity IDA corresponding to user UA, his partial secret
key and his user secret key. The output is his full secret key which is a tuple
consisting of both the partial secret key and the user secret key. This is kept
secret by the user and even KGC does not have full knowledge about it.

– Key Agreement (params, IDA, IDB): This algorithm is run by two users
A and B who wish to compute a shared secret key. In order to do so, they
take part in a session by exchanging components and eventually compute
their shared secret which is unknown to other parties. The protocol could be
initiated by either of the two users.

Key Sanity Check:
Key sanity check is done at two different places

– User Verification: Whenever the KGC gives the user a PPK and PSK, he
runs a key sanity check to verify if the keys given by the KGC are valid.

– Public Verification: A different user (�= UA), who intends to use the public
key of user UA to take part in a key exchange protocol with A must first
ensure that the public key he receives is valid. This consists of two checks -
one for the partial public key and one for the user generated public key.

4 Security Models for CLAKE

There have been several security models proposed for certificateless key exchange
protocols. The strongest model is the one introduced by Lippold et al. which is
based on the Canetti-Krawczyk (CK) model for key agreement. In this paper, we
define a new security model that is an improvisation of the Lippold et al. secu-
rity model. The model considers an active adversary who can tamper with and
replace messages going across the network. We propose a scheme that is pairing
free, highly efficient and is secure in this model. Additionally, there are several
other security features like forward secrecy, resistance to reflection attacks, secu-
rity against collusion attack etc. Our scheme also satisfies these properties and
this is discussed in more detail later on.
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Let there be n parties in the network. The protocol may be run between any
of these parties. Each run of the protocol is called as a session and the secret
key computed in that run is called as the session key of the two parties involved.
Each session can be initiated by either of the two parties involved and the user
who initiates a session is called the initiator and the other user is called as the
peer. πt

i,j represents the tth session between parties i and j which is initiated by
party i with intended partner party j. The session state of a user with identity
IDi taking part in a session is the set comprising of all the components he sends
to the other user in that session.

For any certificateless crypto system, there are two types of adversaries AI

and AII . AI denotes a dishonest user who can replace other users’ public keys
but has no knowledge about the master secret key. AII represents the malicious
KGC who has knowledge of MSK but is trusted not to replace the public keys.
However, in this model we also allow AII to replace public keys.

The security game runs in two stages. During the first stage, the adversary
is allowed to make the following queries in any order:

– Hash Queries: The adversary has access to all the hash oracles.
– Reveal Partial Secret Key (IDi): The challenger responds with the partial

secret key of user with identity IDi.
– Reveal User Secret Key (IDi): The challenger responds with the user

generated secret key of the user with identity IDi.
– Replace Partial Public Key (IDi, pk): The challenger first checks that

the given input pk is a valid partial public key for user with identity IDi by
running the user verification test. If it is indeed valid, party i’s partial public
key is replaced with pk chosen by the adversary. Party i will use the new
partial public key for all communication and computation.

– Replace User Generated Public Key (IDi, pk): The challenger first
checks that the given input pk is a valid user generated public key for user
with identity IDi by running the public verification test. If it is indeed valid,
party i’s user generated public key is replaced with pk chosen by the adversary.
Party i will use the new public key for all communication and computation.

– Reveal Ephemeral Key (πt
i,j , i): The challenger responds with the

ephemeral secret key used by party with identity IDi in session πt
i,j .

– Session Simulation: The adversary is allowed to ask shared secret key
queries. The adversary queries for a shared secret belonging to a session estab-
lished between two users i and j. The adversary can also emulate as one of
the users, either i or j and present the challenger with the session state corre-
sponding to that user. The challenger has to generate the session state for the
other user of the session and obtain the shared secret key corresponding to
that session. The adversary can also query for the session secret key between
the two parties i and j from the challenger, where the adversary does not
impersonate any of the users. In this case, the challenger has to generate the
session state for both the users and obtain the shared secret key corresponding
to that session and provide it to the adversary.
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The key reveal queries can be classified into three categories:

– Reveal partial secret key: Which compromises the secret generated by the
KGC and given to the user.

– Reveal user generated secret key: Which compromises the secret generated by
the user as part of the full secret key.

– Reveal ephemeral secret key: Which compromises the transient secret gener-
ated by the user for that session alone.

A user is said to be fully corrupt with respect to a session if the adversary knows
all the three secrets associated with that user for that session. At the end of the
first stage, the adversary issues a test query as follows:

Test Session: The adversary randomly chooses a session πt
A,B between two

users A and B for which it has not already queried the shared secret key and
for which neither party is fully corrupted.

The challenger will toss a random bit b ∈R {0, 1}. If b = 0, the challenger will
give the adversary the session key K0 of the test session. If b = 1, the challenger
will take a random shared secret key K1 and give it to the adversary.

The adversary can continue to make queries as in the first phase, subject to
certain restrictions which will be described later.

Guess: The adversary makes a guess b′ as to which key K0 or K1 was given by
the challenger. The adversary wins if b′ = b. The certificateless key agreement
protocol is said to be secure if no polynomial- time adversary has non-negligible
advantage in winning the above game, i.e., distinguishing K0 from K1.

Note: There is no ‘send’ query present in this model as our protocol is single
round and it is a 2-party protocol, thereby invalidating the need for it. Also, the
adversary has access to the components exchanged and can modify them as per
its wish as it is an active adversary.

4.1 Strong Type I Secure Certificateless Key Agreement Scheme

A certificateless key agreement scheme is Strong Type I secure if every prob-
abilistic, polynomial-time adversary E has negligible advantage in winning the
game described above subject to the following constraints:

– E may corrupt at most two out of three types of secrets per party involved in
the test session.

– E is allowed to replace public keys of any party. However, this counts as
the corruption of one secret. Replacing the partial public key and the user
generated public key each correspond to the corruption of one secret.

– E may not ask to reveal the secret value of any identity for which it has
replaced the corresponding public key. That is, E cannot ask to reveal the
partial private key if it has already replaced the partial public key, and simi-
larly cannot ask to reveal the user generated secret key if it has replaced the
user generated public key.
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– E is allowed to ask session key reveal queries even for session keys computed
by identities where E has replaced either of the identities’ public keys, but
not both. Also, E is not allowed to ask for session keys where E has replaced
the public keys of one party, and impersonates the other party generating its
own ephemeral components.

– E may not replace the public keys of either of the identities that take part in
the test query’s session before the test query has been issued. However, it can
replace their public keys after the test query subject to the fact that the test
query’s computation is done with respect to the unchanged public keys.

– E can tamper with any message that is exchanged between any two users in
the system, i.e. the ephemeral components. However, E cannot ask for the
ephemeral key of a user in a session where it has tampered with the compo-
nents that the user sent. In other words, replacing the ephemeral components
is also counted as corruption of one secret.

4.2 Strong Type II Secure Certificateless Key Agreement Scheme

A certificateless key agreement scheme is Strong Type II secure if every prob-
abilistic, polynomial-time adversary E has negligible advantage in winning the
game described above subject to the following constraints:

– E is given the master secret key at the start of the game. Therefore, E has
knowledge of the partial secret keys of all the users in the network.

– The rest of the properties are same as a strong type I adversary (from the
second point onwards)

4.3 Why is this Model an Extension?

The model we have defined in this paper is an extension of the Lippold et al.
model because we allow the adversary to replace both the partial public keys
and user generated public keys. Furthermore, we give the adversary the freedom
to replace either of the two alone and not necessarily both, and possibly have
a chance to get the other secret. For example, the adversary could replace the
partial public key and ask for the user generated secret key of a user. In the
Lippold et al. model, the adversary was only given the power to replace the
user generated public key and not the partial public key generated by the KGC
(such a notion was not present in the model). Also, in our scheme, we provide
a sanity check which helps a user to determine whether the ephemeral messages
he received were infact sent by the intended party or were modified by an active
adversary. Note that in a single round protocol only sanity checks and error
detection are possible and not error correction if the adversary tampered with
the message.

5 CLAKE Scheme

– Setup (K): Given K as security parameter, the key generating center (KGC)
chooses a group G of order p and generator of this group P . Then, x is chosen
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randomly from Z
∗
q . KGC sets the master secret key (MSK) as x and sets the

master public key as xP . The KGC chooses 5 hash functions defined below:
• H1: {0, 1}∗ × G× → Z

∗
q

• H2: {0, 1}∗ × {0, 1}∗ × G
5 → G

• H3: {0, 1}∗ × G × G → Z
∗
q

• H4: {0, 1}∗ × G × G → Z
∗
q

• H5: {0, 1}∗ × G × G → Z
∗
q

KGC keeps MSK secret and makes params public, where params = (K,xP ,H1,
H2,H3,H4,H5).
Note: We use the following naming scheme:
UPK - User Public Key, FPK - Full Public Key, PPK - Partial Public Key,
USK - User Secret Key, FSK - Full Secret Key, PSK - Partial Secret Key.

– Partial Extract (params, IDi): Given an identity IDi, the KGC does the
following to generate the partial public key (PPK) and the partial secret key
(PSK).
• Choose randomly ri ∈R Z

∗
q . Compute Ri = rP

• Compute hi = H1(IDi, Ri) and si = ri + xhi

Return PSK = < si > and PPK = < Ri, siP >.
Key Sanity Check by User
Now, the user can verify whether the partial keys received from the KGC were
valid using the following check:
• siP = Ri + H1(IDi, Ri)xP
If the equality is satisfied, the keys given by the KGC are valid.

– User Secret Key (params, IDi, PSK): After receiving the partial keys from
the KGC, a user with identity IDi does the following to generate the user
secret key (USK) and user public key (UPK).
• Choose randomly yi ∈R Z

∗
q

• Compute xi = yi + siH1(IDi, yiP )
Set USK = < xi > and UPK = < xiP, yiP >.

– Full Private Key (params, IDi, PSK, USK): The user with identity IDi

runs this algorithm and sets his full private key FSK as < xi, si >.
– Full Public Key (params, IDi, PSK, PPK, USK, UPK): The user with

identity IDi runs this algorithm and sets his full public key FPK as <
xiP, yiP, siP,Ri >.
Key Sanity Check For Public Verification
Anyone who intends to use the public key of a user with identity IDi must
first ensure that the available public key is valid. This can be done by the
following two checks:
• siP = Ri + H1(IDi, Ri)xP
• xiP = yiP + H1(IDi, yiP )siP
If both the equalities are satisfied, the available public key is valid.

– Key Agreement
Two users A and B with identities IDA and IDB who wish to agree upon
a shared secret key choose ephemeral secrets respectively and engage in a
session as described below. As it is a single round protocol, without loss of
generality, let’s assume that the session is initiated by A.
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User A: Chooses his ephemeral components as follows:
• Choose zA ∈R Z

∗
q and compute tA = zA + xAH1(IDA, zAP )

A sets his ephemeral key as tA.
Then, A sends the following to B: < IDA, tAP, zAP >.
User B: First verifies that the components he received from A were valid
using the following check:

tAP = zAP + H1(IDA, zAP )xAP

If the equality is satisfied, the components sent by A are valid. This helps to
detect whether an active adversary tampered with the message. Now, user B
chooses his ephemeral components as follows:
• Choose zB ∈R Z

∗
q and compute tB = zB + xBH1(IDB , zBP )

B sets his ephemeral key as tB .
Then, B sends the following to A: < IDB , tBP, zBP >.
Shared Secret Computation
• User A: First verifies that the components he received from B were valid

using the following check:

tBP = zBP + H1(IDB , zBP )xBP

If the equality is satisfied, the components sent by B are valid. Then, A
does the following to compute the shared secret:

∗ K1 = {sA + tAH3(IDA, sAP, tAP )} {sBP + H3(IDB , sBP, tBP )tBP}
K2 = {xA+tAH4(IDA, xAP, tAP )} {xBP +H4(IDB , xBP, tBP )tBP}
K3 = {sA+xAH5(IDA, sAP, xAP )} {sBP+H5(IDB , sBP, xBP )xBP}
SK = H2(IDA, IDB , tAP, tBP,K1,K2,K3)
The shared secret is SK.

• User B: Does the following to compute the shared secret:

∗ K1 = {sAP + H3(IDA, sAP, tAP )tAP} {sB + H3(IDB , sBP, tBP )tB}
K2 = {xAP +H4(IDA, xAP, tAP )tAP} {xB +H4(IDB , xBP, tBP )tB}
K3 = {sAP+H5(IDA, sAP, xAP )xAP} {sB+H5(IDB , sBP, xBP )xB}
SK = H2(IDA, IDB , tAP, tBP,K1,K2,K3)
The shared secret is SK.

It can be observed that the shared secret computed by both of them is the
same.

6 Security Proof

In the following proof, all the hash functions are modeled as random oracles.
Here is a brief intuition behind the security proof of the scheme. Observe that
there are totally six secret components for the parties A and B taking part in
the test session. They are sA, xA, tA corresponding to the secrets of party A and
sB , xB , tB corresponding to the secrets of party B. The adversary can access at
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most four of the above six components and not more than two out of the three
secrets per party. As a result, we will inject the hard problem instance in the
other two components which are not revealed to the adversary. This explains the
necessity for the three equations K1,K2 and K3 in the key agreement as each
of them contain a few components that would help to compute the solution to
the hard problem depending on which of the secrets the adversary has queried.
In other words, in some situations we would use K1 to compute the solution to
the hard problem and in other cases K2 or K3 depending on the queries made
by the adversary.

6.1 Proof for Type I Adversary

Theorem 1. If there exists an adversary AI that can break the above scheme
with probability ε in time tadv, then there exists a challenger C who can solve
the CDH problem with probability atleast ε′ in time tch, such that

ε′ ≥ ε{(1/9t ∗ q2h1
)(1 − 1

q
)(1 − 4

qpkr
)(1 − 2

qekq
)}

and ε′ is a non-negligible quantity if ε is non-negligible.

tch = S + tadv +(q1 + q2 + q3 + q4 + q5 + qekq + qpsq + qusq + qfpq + qsq + qpkr)O(1)

which is polynomial if the time taken by the adversary is polynomial.
qid = number of distinct identities queried by the adversary, q = order of the
group G in which the hard problem can be solved by adversary to break the
system. qi = number of queries to the Hi hash oracle (where i = 1, 2..5). qekq
= number of ephemeral key queries, qpsq = number of partial extract queries,
qusq = number of user secret key queries, qfpq = number of full public key queries,
qsq = number of simulation queries, qpkr = number of public key replacements
made and S represents the time taken for the calculations performed by the
challenger after the adversary returns his guess.

Proof. Let C be given an instance of the CDH problem (P, aP, bP ). Suppose
there exists a type I adversary, who is capable of breaking the key agreement
scheme above, then C’s aim is to find the value of abP .

Setup: The challenger C must set up the system exactly as given in the scheme.
C chooses a random number x ∈ Z∗

q and sets the MSK as x and the master public
key as xP . The master public key is given to the adversary while the master secret
key is not revealed. C then chooses five hash functions, Hi, where i = 1, 2..5 and
models them as random oracles. Also C maintains a list li for each hash function
to maintain consistency. C also maintains a list lid for storing all the keys. Each
entry of lid is of the form < ID,FPK,PSK,USK,FSK,PPK,UPK,Xi, Yi >,
where the bits Xi and Yi are used to determine whether the partial and user
generated public keys have been replaced or not.

Training Phase: The adversary A1 makes use of all the oracles provided by C.
The system is simulated in such a way that A1 cannot differentiate between a
real and a simulated system that is provided by C.
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Choosing the Target Identities: In the oracle OH1(IDi,(Rj)), the adversary
asks qh1 queries and expects a response from the challenger for each of them.
Since the adversary can query on the same ID and different Rj ’s, the number
of distinct identities queried is different from qh1 . Let that number be qid. 1 ≤
qid ≤ qh1 . The challenger randomly chooses two queries with different identities
IDA and IDB sets the target identities to be those. Also, the challenger chooses
a random number t such that 1 ≤ t ≤ qh1 and sets the test session to be
πt
A,B . There are six secrets corresponding to the identities taking part in the

test session. They are:
sA, xA, tA which are the partial secret key, user secret key and ephemeral secret
key of A respectively and sB , xB , tB which are the partial secret key, user secret
key and ephemeral secret key of B respectively.

Case 1: The adversary doesn’t know the ephemeral keys tA and tB of the test
session.

– Oracle OH1(IDi, Ri):
A list lh1 is maintained of the form < IDi, Ri, hi >. C responds as follows:
• If < IDi, Ri, hi > already exists in the list then respond with value hi from

the list.
• Else, choose a hi ∈R Z

∗
q . Return hi and add the tuple, < IDi, Ri, hi > to

the list.
The response to the other hash oracles is similar to the first one and is not
described here.

– Oracle Partial Extract: C responds as follows:
• If values corresponding to IDi already exists on the list lid, then return si

as PSK and (Ri, siP ) as PPK from the list
• Else,

Choose ri ∈R Z
∗
q . Compute Ri = riP

Compute hi = H1(IDi, Ri) and si = ri + xhi.
Output < si > as the PSK and < siP,Ri > as PPK. Add these values to
the list lid in the entry corresponding to IDi.

Lemma 1. The above oracle outputs valid PSK and PPK.
Proof. It can be seen that the outputs given by the oracle satisfy the condition
for a valid PPK, PSK.

– Oracle User Private Key: Challenger responds as follows:
• If values corresponding to IDi already exists on the list, then return <

si, xi > from the list.
• Else, if si is already in the list lid, in the entry corresponding to IDi, retrieve

them.
Else run the partial key extract oracle and retrieve that value.
Choose yi ∈R Z

∗
q

Compute hi = H1(IDi, yiP ) and xi = yi + sihi.
Output < xi > as the user generated private key and add it to the list lid.
The corresponding user public key is < xiP, yiP >.
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– Oracle Public Key Generation: Challenger responds as follows:
• If values corresponding to IDi already exists on the list, then return

< xiP, yiP,Ri, siP > from it.
• Else, if (Ri, siP ) are already in the list lid, in the entry corresponding to

IDi, retrieve them. Else run the partial key extract oracle and retrieve those
values.
If (yiP, xiP ) are already in the list lid, in the entry corresponding to IDi,
retrieve them. Else run the user private key extract oracle and retrieve those
values.
Output (Ri, siP, yiP, xiP ) as the full public key. Add these values to the
list lid in the entry corresponding to IDi and set Xi = 0, Yi = 0.

Lemma 2. The above oracle for public key generation outputs a valid full public
key.
Proof. It can be observed that the output generated by the oracle passes the
key sanity check for public verification mentioned in the scheme.

– Oracle Partial Public Key Replace: If the adversary tries to replace the
partial public key for the identities taking part in the key exchange before the
test query has been issued, the challenger will abort. Else, the adversary sends
the values < ID,Ri, siP > to the challenger C. The challenger runs the key
sanity check for verifying the partial public key. If the test succeeds it adds
these values to the list in the entry corresponding to ID and sets Xi = 1 to
indicate that the partial public key has been replaced. Further key exchanges
for this identity use this value of the partial public key.

– Oracle User Generated Public Key Replace: If the adversary tries to
replace the user generated public key for the identities taking part in the
key exchange before the test query has been issued, the challenger will abort.
Else, the adversary sends the values < ID, yiP, xiP > to the challenger C.
The challenger runs the public key verification test. If the test succeeds it
adds these values to the list in the entry corresponding to ID and sets Yi = 1
to indicate that the user public key has been replaced. Further key exchanges
for this identity use this value of the user public key.

– Oracle Reveal Ephemeral Key: Challenger responds as follows:
• If the adversary asks to reveal the ephemeral key for the identities taking

part in the key exchange for the session corresponding to the test session,
the challenger will abort.

• If values corresponding to IDi for the session πt
ij already exists, then return

< ti >.
• Else, if xi is already in the list lid, in the entry corresponding to IDi, retrieve

them.
Else run the user private key oracle and retrieve that value.
Choose zi ∈R Z

∗
q

Compute hi = H1(IDi, ziP ) and ti = zi + xihi.
Output < ti > as the ephemeral key and store that value.
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– Session Simulation:
The adversary asks for the shared secret between two users i and j for a session
t. The adversary can also act as one of the users and present the session state
of that user and ask the challenger to generate the session state of the other
user and compute the shared secret key.
Case 1: The adversary does not act as either of the users.
The challenger generates the ephemeral components of both the parties and
gives the following to the adversary: The session state of i as (IDi, Ti, ziP )
and the session state of j as (IDj , Tj , zjP ). Now, the adversary could have
corrupted two out of the three secrets of both the parties i and j. Also, the
adversary could have replaced the public keys of either user. Suppose it was
for user j. The challenger computes the shared secret sk the same way user
i would since he knows the secret keys of i. The challenger returns sk to the
adversary as the shared secret. Similarly, if the adversary had replaced i’s
public keys, the challenger would have computed sk the same way j would
have. The other cases where the adversary didn’t replace the public keys of
either party but corrupted the parties by just learning the secrets are easily
covered as the challenger can compute the secret key the same way as either
party would. Also, cases where the adversary replaced only one of the two
possible public keys of one user are weaker cases than the above and can be
easily handled.
Case 2: The adversary acts as user j and sends the session state to the
challenger. The challenger generates the ephemeral components of user i and
gives the following to the adversary: The session state of i as (IDi, Ti, ziP ).
Here, the challenger may or may not know the ephemeral secret key of j. The
adversary could have corrupted two out of the three secrets of both the parties
i and j. Also, the adversary could have replaced the public keys of either user.
Suppose it was for user j. Then, the challenger computes the shared secret sk
the same way user i would as he knows the secret keys of i.

The challenger returns sk to the adversary as the shared secret. If the
adversary had replaced the public keys of user i, then the challenger aborts
as this is not allowed as per the security model described earlier.

– Test Session:
The adversary gives the following session id πt

i,j to the challenger. Since the
adversary knows 4 of the secrets sA, xA, sB , xB , the challenger injects the hard
problem instance in the ephemeral components in the following way:
• Compute tAP = aP , tBP = bP , implicitly setting tA = a, tB = b
• Choose two random values c, d
• Compute zAP = tAP − cxAP ,zBP = tBP − dxBP
• Set H1(IDA, zAP ) = c and H1(IDB , zBP ) = d
The challenger sends the adversary the session state of A as (IDA, tAP, zAP )
and the session state of B as (IDB , tBP, zBP ).

Next, the challenger chooses a random group element Z and sends that
to the adversary as the shared secret. This won’t be a valid shared secret
key. So, if the adversary breaks the scheme, he would guess that this isn’t
a valid shared secret key and return the bit 1. But in order to find that
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this is invalid the adversary should have queried the H2 oracle with a valid
tuple (IDA, IDB , tAP, tBP, k1

AB , k2
AB , k3

AB). Using this query, the challenger
can solve the CDH problem by computing S = k1

AB−(sA)(SBP )−sA(tBP )H3

(IDB , sBP, tBP ) − (sB)(tAP )H3(IDA, sAP, tAP ).
The challenger returns S as the solution to the hard problem.

– Correctness:
• We know that k1

AB = (sA + tAH3(IDA, sAP, tAP )) (sBP + tBPH3(IDB ,
sBP, tBP ))

• This shows that S = tAtBP
• Since tA = a, tB = b implicitly, S is the solution to the CDH problem.
Probability Analysis:

The challenger fails only if any of the following events occur:
• E1 : The test session chosen by the adversary is not the same as the one

chosen by the challenger.
• E2 : An invalid public key replacement by the adversary was not detected.
• E3 : The adversary tried to replace the partial public key or the user gen-

erated public key for one of the identities in the test session.
• E4 : The adversary asked to reveal the ephemeral key for one of the identities

in the test session for the session corresponding to the test session.
Let t be the maximum number of sessions between any two parties.

Pr[E1] = (1 − 1/(t ∗ q2h1
));Pr[E2] =

(
1
q

)

Pr[E3] =
(

4
qpkr

)
;Pr[E4] =

(
2

qekq

)

Therefore, the probability of the challenger being successful is atleast Pr
[¬(E1 ∨ E2 ∨ E3 ∨ E4)]. And the advantage of the adversary is ε. Also,there
are 9 possible cases that could happen with equal probability. Thus,

ε′ ≥ ε{(1/9t ∗ q2h1
)(1 − 1

q
)(1 − 4

qpkr
)(1 − 2

qekq
)}

and ε′ is non-negligible whenever ε is non-negligible. Also, it can be easily seen
that tch = S + tadv + (q1 + q2 + q3 + q4 + q5 + qekq + qpsq + qusq + qfpq + qsq +
qpkr)O(1).

The other 8 cases are described in the below table (Table 3):

6.2 Proof for Type II Adversary

The proof is very similar to the proof in the case of the type I adversary and
will be described in the full version of the paper.
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Table 3. Security proof for Type 1 adversary.

Case Unknown to Adv AI Hard problem instance

2 tA, sB tAP = aP, sBP = bP

3 tA, xB tAP = aP, xBP = bP

4 sA, sB sAP = aP, sBP = bP

5 sA, xB sAP = aP, xBP = bP

6 sA, tB sAP = aP, tBP = bP

7 xA, sB xAP = aP, sBP = bP

8 xA, xB xAP = aP, xBP = bP

9 xA, tB xAP = aP, tBP = bP

7 Additional Security Properties

Our proposed CLAKE scheme satisfies several additional security properties.

– Strong Forward Secrecy: Learning the private keys of parties should not
affect the security of the shared secret key.

– Resistance to Reflection Attacks: Both parties in the session have the
same identity.

– Resistance to Collusion Attack: Several users should not be able to collude
and compute the secret keys of some other user.

– Resistance to Key Compromise Impersonation Attacks: The knowl-
edge of a user’s full private key should not allow the adversary to impersonate
another party to that user.

– Resistance to Ephemeral Key Compromise Impersonation Attacks:
The knowledge of a user’s ephemeral key in one session should not allow an
adversary to impersonate another party to that user.

– Known Session Key Security: A compromised session key does not com-
promise past or future sessions.

– Unknown Key Share: A user A cannot be coerced into sharing a key with
C when infact A thinks he is sharing a key with B.

A detailed proof of security for all these properties will be described in the full
version of the paper.

8 Identity based Key Exchange Protocol (IBKE)

In IBKE protocols, the KGC maintains the master public key and master secret
key and generates the private key si for each user. An identity based key exchange
protocol contains the following three probabilistic polynomial time algorithms -
Setup, Key Generation, Key Agreement.

Here, a particular user is denoted as UA and his identity as IDA. Additionally,
we use the following naming scheme: UPK - User Public Key. USK - User Private
Key.
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– Setup (K): This algorithm is run by the KGC. It generates the master secret
key (MSK) first and then the public parameters (params), given a security
parameter K as the input. Along with the other information, params addi-
tionally contains α. The KGC publishes params and keeps the MSK secret.

– Key Generation (params, IDA): This algorithm is run by the KGC. Given
params and user identity IDA, this algorithm generates the private key of the
user (USK) and the corresponding public Key (UPK) and sends them to the
user. This can be sent over a public or private channel.

– Key Agreement (params, IDA, IDB): This algorithm is run by two users
A and B who wish to compute a shared secret key. In order to do so, they
take part in a session by exchanging components and eventually compute
their shared secret which is unknown to other parties. The protocol could be
initiated by either of the two users.

9 Security Model for IBKE

There have been several security models proposed for identity based key exchange
protocols. We follow the id-CK+ model used by Fujioko et al. which is based
on the Canetti-Krawczyk (CK) model for key agreement. We propose a scheme
that is pairing free, highly efficient and is secure in this model. Additionally,
there are several security features that are still not covered in the model like
forward secrecy, resistance to reflection attacks, security against collusion attack
etc. Our scheme also satisfies these properties and this is discussed in more detail
later on.

We consider an adversary who is given access to the private keys of poly-
nomial number of users. It can also impersonate as any other user. This is the
strongest adversary and we prove our scheme secure against this type of adver-
sary. The setting with n parties and the way they can exchange messages is same
as in CLAKE. The security game runs in two stages. During the first stage, the
adversary is allowed to make the following queries in any order:

– Hash Queries: The adversary has access to all the hash oracles.
– Party Corruption (IDi): The challenger responds with the private key of

the user with identity IDi.
– Reveal Ephemeral Key (πt

i,j , i): The challenger responds with the
ephemeral secret key used by party with identity IDi in session πt

i,j .
– Session Simulation: Same as in the security model for CLAKE.

A party is said to be fully corrupted with respect to a session if the adversary
knows both the private key and the ephemeral secret key. At the end of the first
stage, the adversary issues a test query as follows:

Test Session: This is same as in the test session in the security model for
CLAKE.
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10 Identity based Scheme

– Setup (K): Given K as security parameter, the key generating center (KGC)
chooses a group G of order p and generator of this group P . Then x is chosen
randomly from Z

∗
q . The KGC sets the master secret key (MSK) as x and

sets the master public key as xP . The KGC chooses 3 hash functions defined
below:
• H1: {0, 1}∗ × G× → Z

∗
q

• H2: {0, 1}∗ × {0, 1}∗ × G
5 → G

• H3: {0, 1}∗ × G × G → Z
∗
q

The KGC keeps the MSK secret and makes params public, where params =
(K,xP , H1,H2,H3,H4,H5).
Note: We use the following naming scheme:
UPK - User Public Key, USK - User Private Key

– Key Generation (params, IDi): Given an identity IDi, the KGC does the
following to generate the public key (UPK) and the private key (USK) of the
user.
• Choose randomly ri ∈R Z

∗
q . Compute Ri = rP

• Compute hi = H1(IDi, Ri), si = ri + xhi

• Return USK = < si > and UPK = Ri, siP .
Key Sanity Check by User
Same as in the CLAKE scheme where the user verifies the partial keys received
from the KGC.

– Key Agreement
The two users A and B with identities IDA and IDB who wish to agree upon
a shared secret key choose ephemeral secret components respectively and then
engage in a session as described below. Without loss of generality, let’s assume
that the session is initiated by A.
User A: Chooses his ephemeral components as follows:
• Choose zA ∈R Z

∗
q and compute tA = zA + sAH1(IDA, zAP )

A sets his ephemeral key as tA. Then, A sends the following to
B: < IDA, tAP, zAP >

User B: First verifies that the components he received from A were valid
using the following check:

tAP = zAP + H1(IDA, zAP )sAP

If the equality is satisfied, the components sent by A are valid. Now, user B
chooses his ephemeral components as follows:
• Choose zB ∈R Z

∗
q and compute tB = zB + sBH1(IDB , zBP )

B sets his ephemeral key as tB . Then, B sends the following to
A: < IDB, tBP, zBP >

Shared Secret Computation
• User A: First verifies that the components he received from B were valid

using the following check:

tBP = zBP + H1(IDB , zBP )sBP
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If the equality is satisfied, the components sent by B are valid. User A does
the following to compute the shared secret:

∗ K1 = {sA+tAH3(IDA, sAP, tAP )} {sBP+H3(IDB , sBP, tBP )tBP}
SK = H2(IDA, IDB , tAP, tBP,K1)
The shared secret is SK.

• User B: Does the following to compute the shared secret:

∗ K1 = {sAP+H3(IDA, sAP, tAP )tAP} {sB+H3(IDB , sBP, tBP )tB}
SK = H2(IDA, IDB , tAP, tBP,K1)
The shared secret is SK.

The shared secret computed by both of them is the same.

11 Security Proof for IBKE

In the following proof, all the hash functions are modeled as random oracles.

Theorem 1. If there exists an adversary E that can break the above scheme
with probability ε in time tadv, then there exists a challenger C who can solve
the CDH problem with probability atleast ε′ in time tch, such that

ε′ ≥ ε{(1/(4t ∗ q2h1
))(1 − 2

qekq
)}

and ε′ is a non-negligible quantity if ε is non-negligible.
tch = S + tadv + (q1 + q2 + q3 + qekq + qusq + qsq)O(1) which is polynomial if the
time taken by the adversary is polynomial.
qid = number of distinct identities queried by the adversary, q = order of the
group G in which the hard problem can be solved by adversary to break the
system.
qi = number of queries to the Hi hash oracle (where i = 1, 2, 3).
qekq = number of ephemeral key queries, qusq = number of user secret key
queries, qsq = number of simulation queries and S represents the time taken
for the calculations performed by the challenger after the adversary returns his
guess.

Proof. Let C be given an instance of the CDH problem (P, aP, bP ). Suppose
there exists an adversary, who is capable of breaking the key agreement scheme
above, then C’s aim is to find the value of abP .

Setup: The challenger C must set up the system exactly as given in the scheme.
C chooses a random number x ∈ Z∗

q and sets the MSK as x and the master
public key as xP . The master public key is given to the adversary while the
master secret key is not revealed. C then chooses three hash functions, Hi, where
i = 1, 2, 3 and models them as random oracles. Also C maintains a list li for each
hash function to maintain consistency. C also maintains a list lid for storing all
the keys. Each entry of the lid is of the form, < ID,USK,UPK >.
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Training Phase: In this phase the adversary E makes use of all the oracles
provided by C. The system is simulated in such a way that E cannot differentiate
between a real and a simulated system that is provided by C.

Choosing the Target Identities: The target identities are chosen the same
way as in the CLAKE security proof. Now there are four secrets corresponding
to the identities taking part in the test session. They are: sA, tA which are the
private key and ephemeral secret key of A respectively and sB , tB which are the
private key and ephemeral secret key of B respectively.

Case 1: The adversary doesn’t know the ephemeral keys tA and tB of the test
session.

– Oracle OH1 (IDi, Ri):
The response to the hash oracles is same as in the CLAKE proof and is not
described here.

– Oracle Reveal Private Key: The challenger’s response is as follows:
• If values corresponding to IDi already exists on the list lid, then return si

as USK from the list
• Else,

Choose ri ∈R Z
∗
q .

Compute Ri = riP
Compute hi = H1(IDi, Ri) by querying the H1 oracle.
Compute si = ri + xhi. Output < si > as the USK and set < siP,Ri > as
UPK. Add these values to the list lid in the entry corresponding to IDi.

Lemma 1. The above oracle outputs valid USK and UPK.
Proof. It can be observed that the outputs given by the oracle satisfy the condi-
tion for a valid USK, UPK. (They satisfy the key sanity check for user verification
given earlier).

– Oracle Public Key Generation: The challenger’s response is as follows:
• If values corresponding to IDi already exists on the list, then return

< Ri, siP > from the list.
• Else,

Run the private key extract oracle and retrieve those values. Output <
Ri, siP > as the full public key.

– Oracle Reveal Ephemeral Key: The challenger’s response is as follows:
• If the adversary asks to reveal the ephemeral key for the identities IDA or

IDB for the session corresponding to the test session, the challenger will
abort.

• If values corresponding to IDi for the session πt
ij already exists, then return

< ti >.
• Else,

If si is already in the list lid, in the entry corresponding to IDi, retrieve
them. Else run the private key oracle and retrieve that value.
Choose zi ∈R Z

∗
q
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Compute hi = H1(IDi, ziP ) by querying the H1 oracle.
Compute ti = zi + sihi.
Output < ti > as the ephemeral key and store the value.

– Session Simulation: The adversary asks for the shared secret between two
users i and j for a session t. The adversary can also act as one of the users
and present the session state of that user and ask the challenger to generate
the session state of the other user and compute the shared secret key.
Case 1: The adversary does not act as either of the users.
The challenger generates the ephemeral components of both the parties and
gives the following to the adversary: The session state of i as (IDi, Ti, ziP ) and
the session state of j as (IDj , Tj , zjP ). The challenger computes the shared
secret sk the same way user i would since he knows the secret keys of i. The
challenger returns sk to the adversary as the shared secret.
Case 2: The adversary acts as user j and sends the session state to the
challenger.
The challenger generates the ephemeral components of user i and gives the
following to the adversary: The session state of i as (IDi, Ti, ziP ). Here, the
challenger may or may not know the ephemeral secret key of j. The challenger
computes the shared secret sk the same way user i would since he knows the
secret keys of i. The challenger returns sk to the adversary as the shared
secret.

– Test Session:
The adversary gives the following session id πt

i,j to the challenger.
Since the adversary knows 2 of the secrets (sA, sB), the challenger injects the
hard problem instance in the ephemeral components in the following way:
• Set tA = a, tB = b
• Compute tAP = aP , tBP = bP
• Choose two random values c, d
• Compute zAP = tAP − csAP
• Compute zBP = tBP − dsBP
• Set H1(IDA, zAP ) = c
• Set H1(IDB , zBP ) = d
The challenger sends the adversary the session state of A as (IDA, tAP, zAP )
and the session state of B as (IDB , tBP, zBP ).
Next, the challenger chooses a random group element Z and sends that to the
adversary as the shared secret. This won’t be a valid shared secret key. So,
if the adversary breaks the scheme, he would guess that this isn’t a valid
shared secret key and return the bit 1. But in order to find that this is
invalid the adversary must have queried the H2 oracle with a valid tuple
(IDA, IDB , tAP, tBP, k1). Using this query, the challenger can solve the CDH
problem.
It computes S = {H3(IDA, sAP, tAP )H3(IDB , sBP, tBP )}−1{k1 −
(sA)(SBP ) − sA(tBP )H3(IDB , sBP, tBP ) − (sB)(tAP )H3(IDA, sAP, tAP )}.
The challenger returns S as the solution to the hard problem.
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– Correctness:
• We know that k1 = (sA + tAH3(IDA, sAP, tAP )(sBP + tBPH3(IDB , sBP,

tBP )
• This shows that S = tAtBP
• Since tA = a , tB = b, S is the solution to the CDH problem.
Probability Analysis: The probability analysis is similar to (and simpler
than) the one given in the proof for the CLAKE scheme and hence is not
described here.

The other 3 cases are described in the below table (Table 4):

Table 4. Security proof.

Case Unknown to Adv AI Hard problem instance

2 tA, sB tAP = aP, sBP = bP

3 sA, sB sAP = aP, sBP = bP

4 sA, tB sAP = aP, tBP = bP

Our proposed identity based key agreement scheme satisfies all the additional
security properties described in Sect. 7. The proof of security is similar to that
in the CLAKE scheme.

12 Conclusions

In this paper, we propose a security model for certificateless key exchange proto-
cols that is an extension of previously existing models. We note that previously
existing pairing-free protocols are not secure in this model and we design a highly
efficient pairing-free certificateless authenticated key exchange protocol that is
secure in this model. Our scheme also has the advantages of having a single
round of communication between the pair of users and there is no predefined
order in which messages are exchanged between the users. Also, our scheme is
the first pairing-free certificateless key exchange protocol secure based on the
CDH assumption. The previously existing schemes were secure based on much
stronger assumptions like the Gap-Diffie Hellman assumption. Finally, we use
a restriction of our scheme to design an efficient pairing-free identity based key
agreement protocol that is secure in the id-CK+ security model and we prove its
security based on the hardness assumption of the CDH problem. Our identity
based scheme is also a single round protocol. Additionally, both our schemes
satisfy several other security properties such as resistance to collusion attacks,
forward secrecy etc. We prove the security of both our schemes in the random
oracle model. An open problem is to design schemes satisfying all these proper-
ties that is proven secure in the standard model.
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