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Abstract Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single
subject is most often performed using nonlinear models based on deterministic ordi-
nary differential equations (ODEs), and the variation between subjects in a population
of subjects is described using a population (mixed effects) setup that describes the
variation between subjects. The ODE setup implies that the variation for a single sub-
ject is described by a single parameter (or vector), namely the variance (covariance)
of the residuals. Furthermore the prediction of the states is given as the solution to the
ODEs and hence assumed deterministic and can predict the future perfectly. A more
realistic approach would be to allow for randomness in the model due to e.g., the
model be too simple or errors in input. We describe a modeling and prediction setup
which better reflects reality and suggests stochastic differential equations (SDEs) for
modeling and forecasting. It is argued that this gives models and predictions which
better reflect reality. The SDE approach also offers a more adequate framework for
modeling and a number of efficient tools for model building. A software package
(CTSM-R) for SDE-based modeling is briefly described.

1 Introduction

Pharmacokinetic/pharmakodynamic (PK/PD) modeling is often performed using
nonlinear mixed effects models based on deterministic ordinary differential equa-
tions (ODEs), [24]. The ODE models the dynamics of the system as

dX

dt
= f (X (t) , t)

yk = X (tk) + ek,
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where X(t) is the state of the system, f (·) the model, yk the discrete observations, and
ek themeasurement errorswhich are assumed independent and identically distributed
(iid) Gaussian. Given an initial value, the solution to the ODE X(t) is a perfect
prediction of all future values. The ODE model is an input–output model, where the
residuals are the difference between the solution to the ODE and the observations.
In the population setup, this implies that the total variation in data for a population
of individuals is split into inter- and intraindividual variation. However, due to the
ODE framework, the interindividual variation can only come from the covariance of
the iid residuals, i.e., there must be no autocorrelation in the residuals.

The ODE framework is built on the assumption that future values of the states
X(t) can be predicted exactly and that the residual error is independent of the pre-
diction horizon. This is often too simplistic and implies that the uncertainty about
future values of the states and observations is not adequately described. This again
has consequences for the design of model-based controllers and proper planning of
medical treatments in general.

The ODE-based model class has a restricted residual error structure, as it assumes
serially uncorrelated prediction residuals. There are several reasonswhy this assump-
tion is violated: (1) misspecification or approximations of the structural model due
to the complexity of the biological system, (2) unrecognized inputs, and (3) unpre-
dictable random behavior of the process due to measurement errors for the input
variables (e.g., specification of meals or physical exercise; both factors are known to
influence future values of the blood glucose). In addition to these issues, the intrain-
dividual (residual) variability also accounts for various environmental errors such as
those associated with assay, dosing, and sampling. Since most of these errors can-
not be considered as uncorrelated measurement errors, the description of the total
individual error should preferably be separated (see also [7, 13]). Furthermore, [8]
describe three types of residual error models to population PK/PD data analysis to
account for more complicated residual error structures.

Neglecting the correlated residuals in the model description not only leads to
serious issues when the model is used for forecasting and control as mentioned
above, but it also disables a possibility for using proper methods for statistical model
validation, parameter testing, and model identification (see e.g., [16], pp. 46–47).

In this chapter, stochastic differential equations (SDEs) are introduced to address
these issues. SDEs facilitate the ability to split the intraindividual error into two
fundamentally different types: (1) serially uncorrelated measurement error typically
caused by assay error and (2) system error caused by model and input misspecifica-
tions. The concept will first be studied for a single subject and later on in a mixed
effects setup with a population of individuals.

The use of SDEs opens up for new tools for model development, as it quantifies
the amount of system and measurement noise. Specifically the approach allows for
tracking of unknown inputs and parameters overtime by modeling them as random
walk processes. These principles lead to efficientmethods for pinpointingmodel defi-
ciencies, and subsequently for identifying model improvements. The SDE approach
also provides methods for model validation. This modeling framework is often called
gray box modeling [25].
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In this study, we will use maximum likelihood techniques both for parameter
estimation and for model identification, and both for a single subject and in the
population setting. It is known that parameter estimation in nonlinear mixed effects
models with SDEs is most effectively carried out by considering an approximation
to the population likelihood function. The population likelihood function is then
approximated using the first-order conditional estimation (FOCE) method, which is
based on a second-order Taylor expansion of each individual likelihood function at
its optimum—see [17]. Like in [12], the extended Kalman filter is used for evaluating
the single subject likelihood function.

This algorithm introduces a two-level numerical optimization, since not only the
population likelihood function has to be maximized, but also for each value of the
population likelihood all the individual likelihood functions must be maximized.
This makes estimation computationally demanding, but the algorithm facilitates par-
allelization at several places to reduce the estimation time. The method is imple-
mented in the R-package CTSM-R (continuous time stochastic modeling in R) [2],
which is used in the DIACON project [3] focusing on technologies for semi- and
fully-automatic insulin administration for treatment of type 1 diabetes. This project
takes advantage of the fact that the SDE approach provides probabilistic forecasts
for future values of the system states, which is crucial for reliable semi- and fully-
automatic (closed-loop) insulin administration using model predictive control.

Section2 describes various scenarios for data (single subject, repeated experi-
ments, and populations of subjects), and how the likelihood function is formulated
for each of these scenarios. Section3 describes the approach used for population
data from an experiment conducted in DIACON. Some practical issues related to
SDE-based modeling are discussed in Sect. 4, and finally Sect. 5 summarizes. Both
simulated and real-life experimental data are used throughout the chapter for illus-
trating the modeling and prediction framework.

2 Data and Modeling

Experiments can be conducted in various ways and the appropriate modeling
approach depends on this. The basics start with a single experiment (solid ellipse in
Fig. 1) which results in a series of data points Y sampled, possibly irregularly, at
times t1 < t2 < · · · < tN . This single time series and how it is modeled are described
in Sect. 2.1. Repeating the same experiment multiple times (dashed ellipse in Fig. 1)
may be modeled as independent data series assuming no random effects between
the runs. This is described in Sect. 2.2. When an experiment is done using several
subjects (dotted ellipse in Fig. 1), then it is normal to include random effects between
them. This is the so called population extension which is described in Sect. 2.3. In
addition to the structure of data prior information may be available or used as a
modeling technique. This is described in Sect. 2.4.
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Fig. 1 A scenario of experiments in a study. The solid ellipse is a single time series trial. The
dashed ellipse is a collection of three possibly independent repeated trials of subject 1. The dotted
ellipse is a collection of subjects with random variation from a population

2.1 Single Data Series

This section begins by introducing a fundamental framework describing how to
model physical phenomena. The aim is to provide a probabilistic model for a dis-
crete time series YN = Y1,Y2, . . . ,YN . The formulation in this section is a general
framework which is useful for all types of correlated time series data and not just
physiological data.

The natural extension to the ODE framework is SDE’s. We begin by introducing
the stochastic process xt which satisfies an Itô SDE

dxt = f (xt,ut, t, θ) dt + σ (xt,ut, t, θ) dωt , (1)

where xt is the state, ut is an exogenous input, and θ the parameters of the model. f()
and σ () are possibly nonlinear functions called the drift and diffusion terms. ω is the
Wiener process driving the stochastic part of the process. (1) describes the dynamics
and is called the system equation. Note that the ODE model is contained within the
SDE when removing the diffusion term σ (xt,ut, t, θ) dωt .

The solution to the SDE (1) is not in general known except for linear and a few
other SDE’s. Many methods for solving SDE’s have been proposed, e.g., Hermite
expansions, simulation-based methods and Kalman filtering, see [4]. This chapter
focuses on the Kalman filter using CTSM-R. The Kalman filter restricts the diffusion
to being independent of the states because the approximations required to integrate an
SDE with state-dependent diffusion give undesirable results or performance. How-
ever, some SDEs with state-dependent diffusion can be transformed to an SDE with
unit diffusion by the Lamperti transform (see Sect. 4.1).

The stochastic process is observed discretely and possibly partially with indepen-
dent noise via the measurement equation

yk = h (xk,uk, tk, θ , ek) , (2)

whereh() is a possibly nonlinear function of the states and inputs. ek is an independent
noise term attributed by the imperfect measurements. Due to the Kalman filter, the
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measurement model is restricted to additive noise in CTSM-R

yk = h (xk,uk, tk, θ) + ek, (3)

where ek is Gaussian withN (0,S(uk, tk)).
The combination (1) and (3) is the state space model formulation used in this

paper to understand data. This is a gray box model as it bridges the gap between data
driven black box models and pure physical white box models.

Example 1 Asan example to illustrate themethods,wewill use a simulation example
(see Fig. 2). A linear 3 compartment transport model [15] similar to the real-data
modeling example presented in Sect. 3 is used. We can think of the response (y) as
venous glucose concentration in the blood of a patient, and the input (u) as exogenous
glucagon.

The data are simulated according to the model

dxt =
⎛
⎝

⎡
⎣
ut
0
0

⎤
⎦ +

⎡
⎣

−ka 0 0
ka −ka 0
0 ka −ke

⎤
⎦ xt

⎞
⎠ dt +

⎡
⎣

σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎦ dωt (4)

yk = [
0 0 1

]
xtk + ek, (5)

where x ∈ R
3, ek ∼ N (0, s2), tk = {1, 11, 21, . . .}, and the specific parameters (θ )

used for simulation are given in Table1 (first column).
The structure of the model (4) will of course usually be hidden, and we will have

to identify the structure based on the measurements as given in Fig. 2. As a general
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Fig. 2 Simulated data for the example (Eqs. (4), (5), and Table1)
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principle simple models are preferred over more complex models, and therefore a
first hypothesis could be (Model 1)

dxt = (ut − kext) dt + σ3dωt (6)

yk = xtk + ek . (7)

In this approach, the estimation is based on the likelihood function as defined in
the following section.

2.1.1 Likelihood

Given a sequence of measurements

YN = [y0, y1, . . . , yk, . . . , yN ] (8)

the likelihood of the unknown parameters θ given the model formulated as (1)–(3)
is the joint probability density function (pdf)

L(θ ,YN ) = p(YN |θ), (9)

where the likelihood L is the probability density function given θ . The joint prob-
ability density function is partitioned as the product of the one-step conditional
probability functions

L(θ,YN ) =
(

N∏
k=1

p (yk|Yk−1, θ)

)
p(y0|θ). (10)

The solution to a linear SDE driven by a Brownian motion is a Gaussian process.
Nonlinear SDEs do not result in a Gaussian process and thus themarginal probability
is not Gaussian. By sampling, the nonlinearities fast enough in some sense then it is
reasonable to assume that the conditional density is Gaussian.

The Gaussian density is fully described by the first and second-order moments

ŷk|k−1 = E
[
yk|Yk−1, θ

]
(11)

�k|k−1 = V
[
yk|Yk−1, θ

]
. (12)

Introducing the innovation error

εk = yk − ŷk|k−1, (13)
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the likelihood (10) becomes

L(θ ,YN ) =
⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0|θ). (14)

The probability density of the initial observation p(y0|θ) is parameterized through
the probability density of the initial state p(x0|θ). The mean ŷk|k−1 and covariance
�k|k−1 are computed recursively using the extended Kalman filter, see Appendix A
for a brief description, or [10] for a detailed description.

The unknown parameters are estimated by maximizing the likelihood function
using an optimization algorithm. The likelihood (14) is a product of probability
densities all less than 1, which causing numerical problems. Taking the logarithm of
the likelihood (14) turns the product into a summation and cancels the exponentials
thus stabilizing the calculation. The parameters are now found by maximizing the
log-likelihood or by convention minimize the negative log-likelihood

θ̂ = argmin
θ∈Θ

(−ln (L(θ,YN )) . (15)

The uncertainty of the maximum likelihood parameter estimate θ̂ is related to the
curvature of the likelihood function. An estimate of the asymptotic covariance of θ̂

is the inverse of the observed Fisher information matrix

V
[
θ̂
]

=
[
I
(
θ̂
)]−1

, (16)

where I
(
θ̂
)
is the observed Fisher information matrix, that is the negative Hessian

matrix (curvature) of the likelihood function evaluated at the maximum likelihood
estimate [17, 21].

Example 2 We continue with the simulated data from Example 1. As noted above, a
first approach to model the data could be a first-state model (Eqs. (6)–(7)). The result
of the estimation (θ̂1) is given in Table1, the initial value of the state (x30) and the
time constant (1/ke) are both captured quite well, while the uncertainty parameters
are way off, the diffusion is too large and the observation variance is too small (with
extremely large uncertainty).

The parameters in the model are all assumed to be greater than zero, and it is
therefore advisable to estimate parameters in the log-domain, and then transformback
to the original domain before presenting the estimates. The log-domain estimation
is also the explanation for the nonsymmetric confidence intervals in Table1, the
confidence intervals are all based on the Hessian of the likelihood at the optimal
parameter values, and confidence intervals are based on theWald confidence interval
in the transformed (log) domain [21]. Such intervals could be refined using profile
likelihood-based confidence intervals [21] (see also Sect. 4.4).
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Table 1 Parameter estimates from simulation example and confidence intervals for the individual
parameters are given in parenthesis below the estimates

θ θ̂1 θ̂2 θ̂3

x10 40.000 – 38.819

(29.172, 48.466)

x20 35.000 – 107.960 33.421

(75.211, 140.710) (29.778, 37.064)

x30 11.000 10.657 10.641 10.604

(6.606, 14.708) (10.392, 10.889) (10.281, 10.927)

ka 0.025 – 0.006 0.026

(0.0038, 00778) (0.025, 0.027)

ke 0.080 0.081 0.056 0.080

(0.071, 0.094) (0.0418, 0.0743) (0.078, 0.083)

σ1 1.000 – – 0.5500

(0.224, 1.353)

σ2 0.200 – 3.616 0.282

(2.670, 4.898) (0.113, 0.704)

σ3 0.050 2.206 0.001 0.001

(1.848, 2.634) (2 · 10−55, 3 · 1048) (9 · 10−56, 1 · 1049)

s 0.025 0.0002 0.016 0.031

(2 · 10−33, 2.6 · 1025) (0.0065, 0.0388) (0.020, 0.049)

l(θ̂ , y) – –343.68 –67.85 –19.70

df – 4 7 9

θ is the true values, θ̂1, θ̂2, and θ̂3 are the estimated for the first-, second-, and third-state models,
respectively. Last two rows present the log-likelihood and the number of degrees of freedom

In order to validate the model and suggest further development, we should inspect
the innovation error. When the model is not time homogeneous, the standard error of
the prediction will not be constant and the innovation error should be standardized

rk = εk√
�k|k−1

, (17)

where the innovation error (εk) is given in (13). All numbers needed to calculate
the standardized residuals can be obtained directly from CTSM-R using the function
predict. Both the autocorrelation andpartial autocorrelation (Fig. 3) are significant
in lag 1 and 2. This suggests a second-statemodel for the innovation error, and hence a
third-statemodel should be used. Consequently we can go directly from the first-state
model to the true structure (a third-state model).

Now we have assumed that a number of the parameters are actually zero, in a
real-life situation, we might test these parameters using likelihood ratio tests, or
indeed identify them through engineering principles. The parameter estimates are
given in Table1 (θ̂3); in this case, the diffusion parameter (σ3) has an extremely
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Fig. 3 Autocorrelation and partial autocorrelation from a simple (1 state) model

wide confidence interval, and it could be checked if these parameters should indeed
be zero (again using likelihood ratio test), but for now we will proceed with the
residual analysis which is an important part of model validation (see e.g., [16]). The
autocorrelation and partial autocorrelation for the third-state model are shown in
Fig. 4. We see that there are no values outside the 95% confidence interval, and we
can conclude that there is no evidence against the hypothesis of white noise residuals,
i.e., the model sufficiently describes the data.

Autocorrelation and partial autocorrelations are based on short-term predictions
(in this case 10 min) and hence we check the local behavior of the model. Depending
on the application of the model, we might be interested in longer-term behavior of
the model. Prediction can be made on any horizon using CTSM-R. In particular, we
can compare deterministic simulation in CTSM-R (meaning conditioning only on
the initial value of the states). Such a simulation plot is shown in Fig. 5, here we
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Fig. 4 Autocorrelation and partial autocorrelation from the third-state model (i.e., the correct
model)
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Fig. 5 Simulation with model 2 and 3, dashed gray line expectation of model 2, black line expecta-
tion of model 3, light gray area 95% prediction interval for model 2, dark gray area 95% prediction
interval for model 3, and black dots are the observations

compare a second-state model (see Table1) with the true third-state model. It is quite
evident that model 2 is not suited for simulation, with the global structure being
completely off, while “simulation” with a third-state model (with the true structure,
but estimated parameters), gives narrow and reasonable simulation intervals. In the
case of linear SDE-models with linear observation, this “simulation” is exact, but
for nonlinear models it is recommended to use real simulations, e.g., using a Euler
scheme.

The step from a second-state model (had we initialized our model development
with a second-statemodel) to the third-statemodel is not at all trivial. However, Fig. 5
shows that simulation of model 2 does not contain the observations and thus model
2 will not be well suited for simulations. Also the likelihood ratio test (or AIC/BIC)
supports that model 3 is far better than model 2, further it would be reasonable to fix
σ3 at zero (in practice a very small number).

2.2 Independent Data Series

An experiment may be repeated several times without expecting variation in the
underlying parameters. Given S sequences of possibly varying length

Y = [
Y 1

N1
,Y 2

N2
, . . . ,Y i

Ni
, . . . ,Y S

NS

]
, (18)
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the likelihood is the product of the likelihood (10) for each sequence

L(θ ,Y) =
S∏

i=1

⎛
⎝

⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0,i|θ)

⎞
⎠. (19)

The unknown parameters are again estimated by minimizing the negative log-
likelihood

θ̂ = argmin
θ∈Θ

(−ln (L(θ ,Y)) . (20)

If the independence assumption is violated and the parameters vary between the time
series, then the model performance would be lowered as the parameter estimates will
be a compromise. The natural extension is to include a population effect.

2.3 Population Extension

The gray box model can be extended to include a hierarchical structure to model
variation occurring between data series where each series has its own parameter
set. This is useful for describing data from a number of individuals belonging to a
population of individuals. The hierarchical modeling is also called mixed effects and
population extension in pharmaceutical science. Nonlinear mixed effects modeling
has long been used in pharmacokinetic/pharmacodynamic studies to account for
variation from the natural grouping: multiple centers, multiple days, age and BMI of
subjects, etc. Mixed effects modeling combines fixed and random effects [17]. The
fixed effect is the average of that effect over the entire population while the random
effect allows for variation around that average.

Consider N subjects in a clinical study. This is a single level grouping. The model
for the ith subject is

dxi,t = f
(
xi,t,ui,t, t, θ i

)
dt + σ

(
ui,t, t, θ i

)
dωt (21)

yi,k = h
(
xi,k,ui,k, ti,k, θ i

) + ei,k, (22)

which is the general model extended with subscript i. The individual parameters θ i

are
θ i = z(θ f ,Zi, ηi), (23)

where z maps from subject covariates such (i.e., BMI and age) Zi, fixed effects
parameters θf , and the random effects ηi ∈ Rk ∼ N (0,Ω) to subject parameters.
The subject parameters are typically modeled as either normally or log-normally
distributed by combining the fixed effect parameters and the random effects in either
an additive θi = θf + ηi or an exponential transform θi = θf eηi .
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The likelihood of the fixed effects is the product of the marginal probability
densities for each subject

L(θ f ,Ω) =
N∏
i=1

p(Yi|θ i,Ω), (24)

where the marginal density is found by integrating over the random effects ηi

p(Yi|θ i,Ω) =
∫

p1(Yi|θ i, ηi)p2(ηi|Ω)dηi. (25)

p1(Yi|θ, η) is the probability of the individual subject which given by (10). p2(ηi|Ω)

is the probability of the second-stage model where the random effects describe the
interindividual variation.

2.3.1 Approximation of the Marginal Density

The integral in (25) rarely has a closed-form solution and thus must be approximated
in a computationally feasible way. This can be done in two ways: approximating (a)
the integrand by Laplacian or (b) the entire integral by Gaussian quadrature.

Gaussian quadrature can approximate the integral by a weighted sum of the inte-
grand evaluated at specific nodes. The accuracy of Gaussian quadrature increases
as the order (number of nodes) increases. With adaptive Gaussian quadrature, the
accuracy can be improved even further at higher cost. The computational complex-
ity of Gaussian quadrature suffers from the curse of dimensionality and becomes
infeasible even for few dimensions.

Now consider the Laplacian approximation which is widely used approximation
to integrals [17]. Observe that the integrand in (25) is nonnegative such that

p1(Yi|θ i, ηi)p2(ηi|Ω) = elog(p1(Yi|θ i,ηi)p2(ηi|Ω))

= egi(ηi), (26)

where gi (ηi) is the log-posterior distribution for the ith subject. Now consider the
second-order Taylor expansion of gi (ηi) around its mode η̂i

gi (ηi) ≈ gi
(
η̂i

) + 1

2

(
ηi − η̂i

)T
Δgi

(
η̂i

) (
ηi − η̂i

)
, (27)
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since ∇gi
(
η̂i

) = 0 at the mode. By inserting (27) and (26) in (25), the Laplacian
approximation of the marginal probability density is defined as

p(Yi|θ f ,Ω) ≈
∫

egi(η̂i)+ 1
2 (ηi−η̂i)

T
Δgi(η̂i)(ηi−η̂i)dηi

= egi(η̂i)
∫

e
1
2 (ηi−η̂i)

T
Δgi(η̂i)(ηi−η̂i)dηi, (28)

where the integral is recognized as the scaled integral over a multivariate Gaussian1

distribution with covariance � = (−Δg(ηi))−1. The marginal density becomes

p(Yi|θ i,Ω) ≈ egi(η̂i)

√
(2π)k

|−Δg
(
η̂i

) | . (29)

Inserting (29) in (24) the likelihood becomes

L(θf ,Ω) ≈
N∏
i=1

egi(η̂i)

√
(2π)k

|−Δg
(
η̂i

) | . (30)

The Hessian Δg(η̂i) is found by analytically differentiating the expression for the
log-posterior g(η). After some derivation, the Hessian is

Δg(ηi) =
N∑

k=1

⎡
⎣ ∂2yT

∂ηi∂ηi
�−1

k|k−1

(
yk − ŷk|k−1

) + 2
∂ ŷk|k−1

∂ηi

∂
[
�−1

k|k−1

]

∂ηi

(
y − ŷk|k−1

)

− ∂ ŷk|k−1

∂ηi
�−1

k|k−1

∂ ŷk|k−1

∂ηi
− 1

2

(
y − ŷk|k−1

) ∂2
[
�−1

k|k−1

]

∂ηi∂ηi

(
y − ŷk|k−1

)

+ tr

⎛
⎝∂

[
�−1

k|k−1

]

∂ηi

∂�k|k−1

∂ηi
+ �−1

k|k−1

∂�k|k−1

∂ηi∂ηi

⎞
⎠

⎤
⎦ − Ω−1, (31)

where tr is the trace of a matrix. The second-derivative terms are generally compli-
cated or inconvenient to compute. At the mode η̂i, the contribution of the second-
derivative terms is usually negligible and thus an approximation for the Hessian
is

Δg(η̂i) ≈ −
N∑

k=1

(
∂ ŷk|k−1

∂ηi

∣∣∣∣
ηi=η̂i

�−1
k|k−1

∂ ŷk|k−1

∂ηi

∣∣∣∣
ηi=η̂i

)
− Ω−1. (32)

1The integral over the multivariate Gaussian density is 1√
(2π)k |�|

∫
e

(
− 1

2 (x−μ)T�−1(x−μ)
)
dx = 1.
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This approximation is similar to the Gauss–Newton and NONMEM’s first-order
conditional estimation (FOCE) approximations of theHessianwhere only first partial
derivatives are included [9, 17].

The parameters are found by iteratively minimizing the first- and second-stage
model. For a trial set of fixed effect parameters, an optimization of gmust be done for
all subjects. When all ηi have been found, the Laplacian and FOCE approximations
can be computed to obtain the population likelihood. The population likelihood can
then be optimized.

2.4 Prior Information

Bayesian analysis combines the likelihood of the data and already known information
which is called a prior. When the prior probability density function is updated, it
becomes the posterior probability density function. In true, Bayesian analysis the
prior may be any distribution, although conjugated priors are used in practice to
simplify the computations.

In the view of CTSM-R, priors are mainly used as (a) empirical prior or for (b)
regularizing the estimation.

An empirical prior is a result from a previous estimation. Imagine an experiment
has been analyzed and followed by rerunning the experiment. These two data series
are stochastically independent sets and should be analyzed as in Sect. 2.2. However,
using the results from the first analysis as a prior, only the new data series has to be
analyzed. If the quadratic Wald approximation holds this prior is Gaussian.

Regularizing one or more parameters is sometimes required to achieve a feasible
estimation of the parameters. State equations describe a physical phenomenon and
as such the modeler often has knowledge (possibly partly subjective) about the para-
meters from, e.g., another study. The reported values are often a mean and a standard
deviance. Thus a Gaussian prior is reasonable.

Updating the prior probability density function p(θ) forms the posterior proba-
bility density function through Bayes’ rule

p(θ |YN ) = p(YN |θ)p(θ)

p(YN )
∝ p(YN |θ)p(θ), (33)

where the probability density p(YN |θ) is proportional to the likelihood of a single
data series given in (10). No information is called a diffuse prior which is uniform
over the entire domain. The posterior then reduces to the likelihood of the data.

Let the prior be described by a Gaussian distribution N (μθ , �θ ) where

μθ = E [θ ] (34)

�θ = V [θ] , (35)
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and let
εθ = θ − μθ , (36)

then the posterior probability density function is

p(θ |YN ) ∝
⎛
⎝

⎛
⎝

N∏
k=1

exp
(
− 1

2ε
T
k �−1

k|k−1εk

)

√|�k|k−1|
√
2π

l

⎞
⎠ p(y0|θ)

⎞
⎠ × exp

(− 1
2ε

T
θ �−1

θ εT
θ

)
√

|�θ |
√
2π

p
. (37)

The parameters are estimated by maximizing the posterior density function (37), i.e.,
maximum a posteriori (MAP) estimation. The MAP parameter estimate is found by
minimizing the negative logarithm of (37)

θ̂ = argmin
θ∈Θ

(−ln (p(θ |YN , y0))) . (38)

When there is no prior the MAP estimate reduces to the ML estimate.

3 Example: Modeling the Effect of Exercise on Insulin
Pharmacokinetics in “Continuous Subcutaneous Insulin
Infusion” Treated Type 1 Diabetes Patients

The artificial pancreas is believed to ease substantially the burden of constant man-
agement of type 1 diabetes for patients. An important aspect of the artificial pancreas
development is themathematical models used for control, prediction, and simulation.
A major challenge to the realization of the artificial pancreas is the effect of exercise
on the insulin and plasma glucose dynamics. This is the first step towards a popu-
lation model of exercise effects in type 1 diabetes. The focus is on the effect on the
insulin pharmacokinetics in continuous subcutaneous insulin infusion (CSII)-treated
patients by modeling the absorption rate as a function of exercise. This example is
described in detail in [5].

3.1 Data

The insulin data for this study originates from a clinical study on 12 subjects with
type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). Each
subject did two study days separated by at least threeweeks. The insulinwas observed
by drawing blood nonequidistantly over the course of the trial. A detailed description
of the data is found in [23].

Natural considerations toward the subjects limits how frequent the insulin can
be sampled. This limits the amount of observations per time series and often care-
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ful nonequidistant sampling becomes necessary. Both issues makes estimation of
parameters more difficult. However, using all the subjects collectively increases the
amount of data and improves estimation. The repeated trials per subject are consid-
ered independent trials, i.e., no random variation on the parameters. The subjects are
assumed to have interindividual variation for several of the parameters.

3.2 The Gray Box Insulin Model

A linear three-compartment ODEmodel is used as basis to describe the pharmacoki-
netics of subcutaneous infused insulin in a single subject as suggested by [26]. The
model is illustrated in Fig. 6.

The absorption is characterized by the rate parameter ka between all three com-
partments. The two compartments Isc2 and Ip are modeled with diffusion. Only the
third-state Ip is being observed.

The compartment model is formulated as the following SDE

d

⎡
⎣
Isc1
Isc2
Ip

⎤
⎦ =

⎛
⎝

⎡
⎣

−ka 0 0
ka −ka 0
0 ka

VI
−ke

⎤
⎦

⎡
⎣
Isc1
Isc2
Ip

⎤
⎦ +

⎡
⎣
1
0
0

⎤
⎦ Ipump

⎞
⎠ dt +

⎡
⎣
0 0 0
0 σIsc 0
0 0 σIp

⎤
⎦ dωt,

(39)
where Isc1 [mU] and Isc2 [mU] represent the subcutaneous layer and deeper tissues,
respectively, and Ip [mU/L] represents plasma. Ipump is the input from the pump
[mU/min]. ka [min−1] is the absorption rate and ke [min−1] is the clearance rate of
insulin from plasma. VI is the volume of distribution [L]. σIsc and σIp are the standard
deviation of the diffusion processes.

The observation equation is formulated through a transformation of the third-state
Ip. The log transformation used here is a natural choice since Ip is a concentration
which is a nonnegative number. Transformations are discussed in Sect. 4.1. The
observation equation is

Fig. 6 Illustration of a three-compartment model describing the pharmacokinetics of insulin deliv-
ered continuously from an insulin pump. Lightning bolts indicate diffusion terms
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log(yk) = log(Ipk) + ek, (40)

where yk is the observed plasma insulin concentration and ek ∼ N(0, ξ) is the mea-
surement noise. The variance is further modeled such that ξ = Smin + S, where Smin

is a known hardware specific measurement error variance of the equipment [5]. Note
that the measurement error multiplicative in the natural domain of yk . This works as
an approximation of a proportional error model.

The full gray box model is the SDE system equation (39) and the observation
equation (40).

Population Parameters

The individual parameters are modeled as a combination of fixed population effects
and random individual effects

θi = h(θpop,Zi) · eηi , (41)

where θi is the parameter value for individual i, h(·) is a possibly nonlinear function,
θpop is the overall population parameter (fixed effect), Zi are covariates (age, weight,
gender etc.), and ηi ∼ N(0,Ω) is the individual random effect.

For this model, four parameters were modeled with a random effect. The initial
values of the two subcutaneous layer states are assumed to be affected by the same
variation from the population mean

Isc10,i = Isc10 · eηi,1 Isc20,i = Isc20 · eηi,1 .

The absorption rate ka and the clearance rate ke have separate random effects

ka,i = ka · eηi,2 ke,i = ke · eηi,3 .

The volume of distribution VI is scaled by the weight (kg) of the subject. The weight
is a covariate

VIi = VI · weighti.

The random effects are assumed Gaussian with

ηi = [ηi1, ηi2, ηi3] ∼ N
(
0, diag

(
ωIsc, ωka , ωke

))
.

3.3 Exercise Effects

The model is further extended by making the absorption rate ka dependent on exer-
cising. Two extensions are investigated.
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Model A

The first extension specifies ka as

ka = k̄a + α · Ex, (42)

where k̄a is the basal rate and α is the effect of exercise. Ex is a binary input which
is 1 when the subject is exercising and otherwise 0.

Model B

The subjects were exercising at two intensities and this extends (42) to

ka = k̄a + αmild · Exmild + αmoderate · Exmoderate, (43)

where k̄a is the basal rate, αmild and αmoderate are the effects of mild and moderate
exercise. Exmild and Exmoderate are binary inputs which is 1 during either mild or
moderate exercising.

3.4 Model Comparison

The best model is selected by comparing the ML estimates with the likelihood ratio
test, AIC, and BIC in Table2. The base model is nested in both model A and B and
model A is nested in B. The nested models can be compared with the likelihood ratio
test. Both models A and B explain significantly more of the variability in the data
than the base model. Model A is the prefered model based on the likelihood ratio
test. The additional improvement in the likelihood with model B is not enough to
justify the extra parameter. The difference in AIC and BIC between model A and B
relatively small but indicate that model B is to be prefered. The relative likelihood
betweenmodel A andB is exp (0.5 · (1815 − 1817)) = 0.37 and suggests that model
A is 37% as probable as model B [1].

The parameter estimates for all three models are seen in Table3. For model B, the
moderate intensity exercise results in a larger absorption rate than mild exercise.

Table 2 Model comparison using likelihood ratio test, AIC and BIC

Model df − log(L) LRT (p) AIC BIC

Base 10 927 – 1878 1799

Model A
versus Base

11 897 <10−7 1817 1729

Model B
versus A

12 895 0.16 1815 1720
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Table 3 Parameter estimates from the three models: base, A and C

Base Model A Model B

Isc10 87.4 58.3 61.8

Isc20 35.9 56.3 52.2

ka 0.023 0.026 0.024

ke 0.079 0.077 0.076

σIsc 2.94 2.61 2.48

σIp 0.030 0.027 0.026

S 0.00028 0.00034 0.00075

ωIsc 0.379 0.226 0.299

ωka 0.122 0.112 0.112

ωke 0.142 0.150 0.146

α 0.00762

αmild 0.00961

αmoderate 0.00515

Fig. 7 Top One-step predictions from model A (Blue line). The observations are represented by
dots. The gray area indicates 95% prediction interval. Middle and bottom Insulin and exercise
inputs
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3.5 Predictions

From the three models tried here, model A with a single absorption rate is the best to
explain the data.One-step predictions usingmodelAusing a single trial of one subject
are shown in Fig. 7. In general, the predictions are acceptable and the model does
seem to capture the increase related to exercise. Especially, in Fig. 7, the compliance
between the predictions and the observations is good. The width of the prediction
interval is, however, large in this case. k-step predictions can also easily be calculated
using CTSM-R and the predict function. A more detailed account of the exercise
dependence analysis using population modeling is found in [5].

4 Other Topics

4.1 Transformations

In general, transformations should be applied whenever appropriate, and as all infer-
ence with CTSM-R assumes Gaussian random output, this should be ensured by
transformations. Transformations can be applied in three different levels (1) state
transformations, (2) transformation of observations, and (3) transformation of the
parameters. We will briefly discuss each of these types of transformations and refer
the interested reader to appropriate literature.

If there are natural restrictions of the state space, e.g., the natural state space is
the positive real axis, or some interval, then these restrictions should be included in
the SDE description. This implies a formulation of the form

dxt = f (xt, ut)dt + σ(xt)dwt . (44)

However, the Kalman filter requires the diffusion term to be independent of the state
and therefore we should apply the Lamperti transform;

zt =
∫

dξ

σ (ξ)

∣∣∣∣
ξ=xt

(45)

and use Itô’s Lemma to obtain a descriptionwhere the SDEdescription is independent
of the state (see [18], Paper D for a tutorial on the Lamperti transform, and [19] for
a nontrivial application).

The usual comments on transformation of the observations also apply to the SDE
models, i.e., the standardized residuals should have constant variance, this should be
checked and if the residuals do not have constant variance the observations should
be transformed (e.g., using log transformation).

As already discussed in the examples in this chapter, the parameters should be
estimated on the real axis (implying e.g., log transformation of positive parameters).
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4.2 Identification

We have already seen that the autocorrelation function and the partial autocorrelation
functions can be used for identification. If data are not equivalently sampled, one
might use linear SDE models on the residuals to identify model order (number of
states).

For nonlinearmodels the usual autocorrelation function is also relevant. Nonlinear
dependence in the residuals will almost always include a linear dependence which
will appear in the autocorrelation function. It can be shown that some nonlinear
functions does not have linear dependence and the autocorrelation functions will
fail. Generalizations in the formof lag-dependent and partial lag-dependent functions
might then be used instead [20].

Finally identification can be based on random walk identification, where one
parameter is formulated as a randomwalk process and the reconstruction or smoothed
parameter is compared with state estimates and/or input to identify possible model
extensions (see also [18, 19], paper F, and [11]).

4.3 Simulation/Prediction Models

As we have already seen in the simulation example, misspecification of a model
can lead to very poor performance in simulation (long-term prediction) performance
of models. A way to ensure reasonable performance in long-term predictions is
by forcing the diffusion parameters to be small. This is done by fixing diffusion
parameters, see [14] for a discussion about simulation and multistep predictions in
SDE-models.

4.4 Testing and Confidence Intervals

Often, in particular for data-rich situations, the standardWald confidence intervals, as
presented directly from CTSM-R, are good approximations of the “true” confidence
intervals. These are, however, approximations, and conclusions regarding individual
parameters should be based on likelihood ratio tests rather than confidence intervals.
In cases where models are not nested, it is recommended to use likelihood-based
information criteria (AIC or BIC) for model selection.

Still, confidence intervals provide useful information that should always be
reported, also when parameters are significant. But as we saw in the simulation
examples, the Wald confidence interval might fail completely (e.g., σ3 in Models 2
and 3). The problem is that the Wald standard error uses the local curvature of the
likelihood (the Hessian), to approximate the uncertainty, and e.g., if the curvature
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Fig. 8 Profile likelihood for σ3 in the third-state simulation model of Examples 1–2

is close to zero (see Fig. 8), then the variance of the parameter estimates becomes
infinite (as we saw in the examples).

As an alternative, we can calculate profile likelihood confidence intervals (see
Fig. 8), we will not go into detail with the calculation of such intervals, but note that
the profile likelihood confidence interval is based on the same statistical properties of
the likelihood ratio as the likelihood ratio test. In the case ofModel 3 of the simulation
example, the profile likelihood confidence interval for σ3 is [0, 0.12], which seems
much more reasonable than the values obtained by the Wald approximation. For
further reading see [17, 21].

5 Summary

A general framework for modeling physical dynamical systems using stochastic dif-
ferential equations has been demonstrated. CTSM-R is an efficient and parallelized
implementation in the statistical language R. R facilitates easy data handling, visual-
ization, and statistical tests essential for any modeling task. CTSM-R uses maximum
likelihood and thus known techniques for model identification and selection can also
be used for this framework as demonstrated.

This chapter has demonstrated the principles using linear models with trans-
formations. CTSM-R has been used for a number of nonlinear problems see
e.g., [18, 22].

CTSM-R has been extended to include hierarchical modeling. A study of exercise
dependence in insulin absorption was modeled with a random effect between the
subjects. This is an example of commonly used population modeling in PK/PD.

A detailed user guide and additional examples are available from http://ctsm.info.

http://ctsm.info


Modeling and Prediction Using Stochastic Differential Equations 205

Appendix A: Extended Kalman Filtering

For nonlinear models the innovation vectors εk (or εi
k) and their covariance matrices

�
yy
k|k−1 (or �

yy,i
k|k−1) can be computed recursively by means of the extended Kalman

filter (EKF) as outlined in the following.
Consider first the linear time-varying model

dXt = (A(ut, t, θ)Xt + B(ut, t, θ)) dt + σ (ut, t, θ)dωt (46)

Yk = C(uk, tk, θ)Xk + ek (47)

in the followingwewill useA(t),B(t), andσ (t) as short-hand notation forA(ut, t, θ),
B(ut, t, θ), and σ (ut, t, θ).

We will restrict ourselves to the initial value problem; solve (46) for t ∈ [tk, tk+1]
given that the initial condition Xtk ∼ N(x̂k|k, �xx

k|k). This is the kind of solution we
would get from the ordinary Kalman filter in the update step.

Now if we consider, the transformation

Zt = e− ∫ t
tk
A(s)dsXt, (48)

then by Itô’s Lemma, it can be shown that the process Zt is governed by the Itô
stochastic differential equation

dZt = e− ∫ t
tk
A(s)dsB(t)dt + e− ∫ t

tk
A(s)ds

σ (t)dωt (49)

with initial conditionsZtk ∼ N(x̂k|k, �xx
k|k). The solution to (49) is givenby the integral

equation

Zt = Ztk +
∫ t

tk

e− ∫ u
tk
A(u)duB(s)ds +

∫ t

tk

e− ∫ s
tk
A(u)du

σ (s)dωs (50)

Now inserting the inverse of the transformation (48) gives

Xt = e
∫ t
tk
A(s)dsX0 + e

∫ t
tk
A(s)ds

∫ t

tk

e− ∫ u
tk
A(u)duB(s)ds

+ e
∫ t
tk
A(s)ds

∫ t

tk

e− ∫ s
tk
A(u)du

σ (s)dωs (51)
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Taking the exception and variance on both sides of (51) gives

E[Xt] = e
∫ t
tk
A(s)ds

E[Xtk ] + e
− ∫ t

tk
A(s)ds

∫ t

tk
e
− ∫ u

tk
A(u)du

B(s)ds (52)

V [Xt] = e
∫ t
tk
A(s)ds

V [Xtk ]e
∫ t
tk
A(s)T ds + e

∫ t
tk
A(s)ds

V

[∫ t

tk
e
− ∫ s

tk
A(u)du

σ (s)dωs

]
e
∫ t
tk
A(s)T ds

= e
∫ t
tk
A(s)ds

V [X0]e
∫ t
tk
A(s)T ds

+ e
∫ t
tk
A(s)ds

∫ t

tk
e
− ∫ s

tk
A(u)du

σ (s)σ (s)T e
− ∫ s

tk
A(u)T du

dse
∫ t
tk
AT (s)ds

, (53)

where we have used Itô isometry in the second equation for the variance. Now
differentiation the above expression w.r.t. time gives

dE[Xt]
dt

= A(t)E[Xt] + B(t) (54)

dV [Xt]
dt

= A(t)V [Xt] + V [Xt]A(t)T + σ (t)σ (t)T , (55)

with initial conditions given by E[Xtk ] = x̂k|k and V [Xtk ] = �xx
k|k .

For the nonlinear case

dXt = f(Xt,ut, t, θ)dt + σ (ut, t, θ)dωt (56)

Yk = h(Xk,uk, tk, θ) + ek, (57)

we introduce the Jacobian of f around the expectation of Xt (x̂t = E[Xt]), we will
use the following short hand notation

A(t) = ∂f(x,ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k

, f(t) = f(x̂t|k,ut, t, θ) (58)

where x̂t is the expectation ofXt at time t, this implies that we canwrite the first-order
Taylor expansion of (56) as

dXt ≈ [
f(t) + A(t)(Xt − x̂t|k)

]
dt + σ (t)dωt . (59)

Using the results from the linear time-varying system above, we get the following
approximate solution to the (59)

dE[Xt]
dt

≈ f(t) (60)

dV [Xt]
dt

≈ A(t)V [Xt] + V [Xt]AT (t) + σ (t)σ T (t), (61)
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with initial conditionsE[Xtk ] = x̂k|k andV [Xtk ] = �xx
k|k . Equations (60) and (61) con-

stitute the basis of the prediction step in the Extended Kalman Filter, which for
completeness is given below

Theorem 1 (Continuous-discrete time extended Kalman filter) With given initial
conditions for the x̂1|0 = x0 and �xx

1|0 = �xx
0 the extended Kalman filter approxima-

tions are given by; the output prediction equations:

ŷk|k−1 = h(x̂k|k−1,uk, tk, θ); �
yy
k|k−1 = Ck�

xx
k|k−1C

T
k + Sk (62)

the innovation and Kalman gain equation:

εk = yk − ŷk|k−1; Kk = �xx
k|k−1C

T
(
�

yy
k|k−1

)−1
(63)

the updating equations:

x̂k|k = x̂k|k−1 + Kkεk; �xx
k|k = �xx

k|k−1 − Kk�
yy
k|k−1K

T
k (64)

and the state prediction equations:

dx̂t|k
dt

= f(x̂t|k,ut, t, θ) , t ∈ [tk, tk+1[ (65)

d�xx
t|tk

dt
= A(t)�xx

t|tk + �xx
t|tkA(t)T + σ (t)σ (t)T , t ∈ [tk, tk+1[ (66)

where the following short-hand notation has been applied:

A(t) = ∂f(x,ut, t, θ)

∂x

∣∣∣∣
x=x̂t|k−1

, Ck = ∂h(x,utk , tk, θ)

∂x

∣∣∣∣
x=x̂k|k−1

(67)

σ (t) = σ (ut, t, θ) , Sk = S(uk, tk, θ) (68)

The prediction step was covered above and the updating step can be derived
from linearization of the observation equation and the projection theorem [6]. From
the construction above, it is clear that the approximation is only likely to hold if
the nonlinearities are not too strong. This implies that the sampling frequency is
fast enough for the prediction equations to be a good approximation and that the
accuracy in the observation equation is good enough for the Gaussian approximation
to hold approximately. Even though “simulation” through the prediction equations
is available in CTSM-R, it is recommended that simulation results are verified (or
indeed performed), by real-stochastic simulations (e.g., by simple Euler simulations).
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