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Abstract The description of the insulin–glucose metabolism has attracted much
attention in the past decades, and several models based on physiology have been
proposed. While these models provide a precious insight in the involved processes,
they are seldomable to replicate andmuch less to predict the bloodglucose (BG)value
arising as a reaction of themetabolismof a specific patient to a given amount of insulin
or food at a given time. Data-based models have proven to work better for prediction,
but predicted andmeasured values tend to diverge stronglywith increasing prediction
horizon. Different approaches, for instance the use of vital signs, have been proposed
to reduce the uncertainty, albeit with limited success. The key assumption hidden
behind these methods is the existence of a single “correct” model disturbed by some
stochastic phenomena. In this chapter, instead, we suggest using a different paradigm
and to interpret uncertainty as an unknown part of the process. As a consequence,
we are interested in models which yield a similar prediction performance for all
measured data of a single patient, even if they do not yield a precise representation of
any of them. This chapter summarizes two possible approaches to this end: interval
models, which provide a suitable range; and probabilistic models, which provide the
probability that the BG lies in predetermined ranges. Both approaches can be used
in the framework of automated personalized insulin delivery, e.g., artificial pancreas
or adaptive bolus calculators.

1 Introduction

Glucose is the main energy source for the human body, but in excessive amounts it
can be detrimental as well. In healthy persons, the correct glucose level is regulated
by the insulin–glucose metabolism. In diabetes patients, this control system does not
work properly any more, due, roughly speaking, either to lack of endogenous insulin
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production or to a resistance to insulin action [23]. In such cases, the therapy of choice
consists in providing the necessary insulin externally. However, the delay times
associated with this procedure and the danger of removing too much glucose from
the blood circulation—with possibly lethal consequences—make the determination
of the correct insulin quantity quite difficult and delicate.

Against this background, there has been a sustained interest in describing the
glucose–insulin metabolism by physiological models of increasing complexity [2, 3,
25, 44] . A model resulting from the cooperation between the Universities of Padova
and Virginia [12] has been accepted in 2008 by the Food and Drug Administration
(FDA) as a substitute for preclinical trials for certain insulin treatments. The model
was recently extended with new features [11].

And, of course, there has been a large number of attempts to use the model
information to determine the right quantities of external insulin needed, so to say
to replace the missing control action, to “close the loop.” Positive results have been
reported for overnight operation [26], but also a reduction of variability for the daily
use have been reported [33]. New and improved sensors have been introduced, faster
insulin is entering the market, and all this nurtures the hope that more progress will
come. Unfortunately, in spite of over 40 years of research [1], the results of this
“artificial” or “virtual pancreas” are still not there where they should be and simple
safety rules—e.g., avoiding insulin infusion during or near to hypoglycemia—seem
to be able to offer the largest part of the benefits of closed-loop control in a much
simpler way as well.

Against this background, it is natural to lean back for a moment and wonder
whether we are asking the right questions. In this chapter, we are addressing this
very issue by presenting two promising alternatives to modeling, namely interval
models and probabilistic modeling techniques.

2 Alternatives for Modeling

The key assumption for modeling is the reproducibility of results. To some extent, of
course, this is always true, for instance insulin does reduce the blood glucose (BG)
concentration and carbohydrates (Carb) intake increases it. Many other effects are
known but hard to quantify—e.g., some hormones increase it as well, muscular work
reduces it—but there are many control loops in the human body which can lead to a
complex response, e.g., in the case of prolonged physical work [21]. Other effects,
like the circadian variation of sensitivities, are known as well [46].

Physiological models describe all these phenomena relying on deep under-
standing of physiology and frequently on very specific measurements, e.g., tracers
[24, 42]. It is usually impossible to determine all parameters of such models with
simple “external” measurements, e.g., taking only Carb and insulin administration
and BG values. Indeed, it has been shown that the “external” behavior—the rela-
tion between insulin and Carb intake and BG—of these complex models can be
approximated very well with very simple ones [17, 45] (see Fig. 1). This is the one
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Fig. 1 Approximation of the input–output relationship of model [12] as shown in [45]

reason why comparisons between the values predicted by physiological models and
measurements are very seldom, exceptions being for instance [8, 47].

Indeed, in general, physiological models are not able to provide a personalized
description.

As the comparisonmakes clear, themeasurements have a high degree of complex-
ity not reflected in the physiological model, the main reason being the many unmod-
eled effects, e.g., related to the emotional state, which may affect very strongly the
BGvalues, andwhich cannot be captured by themodel because the critical quantities,
in this case the concentration of some hormones, are not known.

There are several ways to cope with this problem. On one side, the attempt can
be made to find additional measurements to extend the model, e.g., vital signs—
acceleration, heart frequency, body temperature, and so on. Similar techniques have
proved very useful in the industrial framework, e.g., to detect changes in machines
[13], but have never really succeeded in the case of diabetes treatment.

Another approach, related to another chapter of this book (see “Empirical
Representation of Blood Glucose Variability in a Compartmental Model” by
S. Patek et al.) consists essentially in estimating a “corrective” Carb input to explain
the difference between measured and computed values. While this method cannot
be used in real time, it allows to study the effect of some changes in therapy, e.g.,
different amounts of insulin.

http://dx.doi.org/10.1007/978-3-319-25913-0_8
http://dx.doi.org/10.1007/978-3-319-25913-0_8
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Fig. 2 45min ahead prediction of glucose for two different patients from [6]

If we are interested in obtaining models which are sufficiently simple to allow
their use and parameter estimation in real time, it might be better to look for other
approaches. A very efficient adaptive model was developed by [5] which relies on a
simple hypothesis, a so-called ARX model, and determines the parameters continu-
ously, concentrating on the most critical BG ranges. Figure2 shows the performance
of such a model as predictor.

In this chapter, however, we suggest two different approaches. The key idea is
not to get rid of uncertainty, assuming one particular value to be true, but to design
models valid for the whole region, implicitly assuming that a full range of values
are possible and in some sense true. One possible approach to this end are interval
models, i.e., models which compute an output range and not a single value. The
other alternative is using a probabilistic approach. Indeed, the exact BG value is not
really important in itself, the clinician is more interested in keeping it inside the usual
(“euglycemic”) range and preventing to reach a dangerous one, e.g., hypoglycemia.
Markov jump model can help in describing the physiology the way it really is—i.e.,
to some extent random.

Both models can be used for automated insulin delivery as well. In the case of
interval models, the problem can be stated in terms of a min/max problem such that
the carbohydrate amount optimizes the cost functions for all cases of uncertainty. In
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the probabilistic case, it becomes the minimization of the probability that, under the
action of insulin and meals, the BG leaves the good range to reach a dangerous one.

The further sections of this chapter are organized as follows: Before coming to
the topic of interval models itself, a review about empirical continuous time trans-
fer function models is given in Sect. 3 and the differences between possible model
structures are discussed. The models presented in that section are a special form
of control-oriented data-based models for describing the input–output relationship
of the glucose metabolism that have proven quite powerful in the recent past (see
e.g., [37, 38]). One of those presented model structures is then further used for the
interval modeling introduced in Sect. 4. After a quick overview about the topic of
interval modeling in general, some details about the methods used here for deriving
interval models from data are given in Sect. 4.1. In following Sect. 4.1, results for
the interval modeling are shown, both for simulated and for real patient data. The
subsequent Sect. 5 then describes a probabilistic framework that can be used for pre-
dicting changes from one BG range to another. It starts in Sect. 5.1 with an overview
about Gaussian mixture models that have been used in this context. Section5.2 gives
some details about the used model structure and the methodology of predicting tran-
sitions in the BG range, whereas actual prediction results for real patient data are
presented in the following Sect. 5.3. The chapter finishedwith some final conclusions
and discussion given in Sect. 6.

3 Model Structures

Amodel consists of a mathematical structure and of parameters. Thus the first step in
modeling consists of fixing the model structure, and thereafter the parameters have
to be tuned to get the best correspondence between measured and computed values.
Of course, every model represents a simplification of the real system, and not every
model structure is able to capture the behavior of the system under observation in a
sufficiently general way. This is especially true in the case of a simplified model we
are interested in.

Table1 summarizes previously proposed model structures to describe the blood
glucose dynamics where BG(s), Carb(s), and I (s) correspond to the blood glucose
concentration, ingested meal carbohydrates, and subcutaneously injected insulin bo-
lus, respectively, all transformed into the Laplace domain. The table also lists the
number of parameters which need to be estimated from data. All models thus use the
same amount of information. A typical dataset which could be used for parameter
estimation is shown in Fig. 3 (data from the DIAdvisor project [14]).

It is immediately visible that the model inputs are impulse-shaped quantities
which are zero most of the time. That is because subcutaneous insulin injections are
discrete events and meal ingestions, regardless of the quantity and time it takes to
actually consume the food, are commonly treated as discrete events also. Therefore,
formodel analysis, the impulse responses are of great interest whereas step responses,
commonly used in control engineering, do not provide sufficient information. A step
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Fig. 3 Illustration of the relevant measurement data for a specific patient, CHU0102 (data from
the DIAdvisor project [14])

Table 1 Selected model structures previously published

No. Model structure Parameters Reference

1 BG(s) = K1
(1+sT1)2s

Carb(s) + K2
(1+sT2)2s

I (s) 4 [29]

2 BG(s) = K1 exp (−τ1s)
(1+sT1)s

Carb(s) + K2 exp (−τ2s)
(1+sT2)s

I (s) 6 [36]

3 BG(s) = K1
(1+sT1)s

Carb(s) + K2
(1+sT2)s

I (s) 4 [9]

4 BG(s) = K1
(1+sT1)2

Carb(s) + K2
(1+sT2)2

I (s) 4 [4]a

5 BG(s) = K1 exp (−τ1s)
(1+sT1)(1+sT2)

Carb(s) + K2 exp (−τ2s)
(1+sT3)s

I (s) 7 [10]

aExtended with a dynamic model for carbohydrates

response would actually mean that food or insulin is added to the metabolism in a
continuous way over an extended period of time. While this might be true for the
case of insulin, it is definitely an unrealistic case for food. In all given references,
continuous insulin delivery is not considered for modeling.

Fromaphysiological point of view, the impulse response gives precise information
on the effect of one gram of carbohydrate and one unit of insulin, respectively, on
the blood glucose concentration.

The impulse responses for both inputs of model structure 1 in Table1 are shown in
Fig. 4 for various selections of the parameters T1 and T2. It is immediately clear that
the parameters K1 and K2 correspond to the steady-state change in BG. Furthermore,
the parameters T1 and T2 are time constants which determine the time it takes until
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Fig. 4 Impulse response of model structure 1 from Table1 using K1 = 10, K2 = −8
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Fig. 5 Impulse response of model structure 2 from Table1 using K1 = 10, τ1 = 10, K2 = −8,
τ2 = 5

this steady state is reached. From this perspective, the physiological interpretation
of the model parameters is straightforward.

The impulse responses for both inputs of model structure 2 in Table1 are shown
in Fig. 5 for various selections of the parameters T1 and T2. Compared to the im-
pulse responses in Fig. 4, model structure 2 involves a time delay determined by the
parameters τ1 and τ2. Furthermore, after this delay, the impulse response shows a
discontinuity (see themagnified plots in Fig. 5) which hardly appears in real subjects.
However, the overall responses of model structures 1 and 2 are similar.

The impulse responses for model structure 3 in Table1 are not shown explicitly
since they are very similar to those of model structure 2 shown in Fig. 5, except for
the time delay which is zero in this case (τ1 = 0, τ2 = 0).

Model structure 4 of Table1 gives a significantly different impulse response than
the models discussed above, see Fig. 6. Since there is no integrating behavior, the
impulse responses return to the steady state of zero. Physiologically, the assumption
is that even in the absence of insulin, glucose will be removed from the circulation
after meal ingestion. This is fundamentally different than the assumptions in the
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Fig. 6 Impulse response of model structure 4 from Table1 using K1 = 100, K2 = −80

Fig. 7 Impulse response of
model structure 5 from
Table1 using K1 = 100,
T2 = 20, τ1 = 10
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previous structures, where glucose will not be removed until insulin is supplied. As
it can be seen in the experimental results in the corresponding papers, both model
assumptions can lead to a good approximation of real data. Note also that model
parameters are not directly visible from the impulse response.

Finally, the impulse response related to the carbohydrate input from model struc-
ture 5 in Table1 is shown in Fig. 7. The response related to the insulin input is the
same as for model structure 2 and can be seen in Fig. 5. The main difference in this
structure is the assumption of two different time constants T1, T2, both for the carbo-
hydrate dynamics. Therefore, there is more flexibility in the response compared to
the case of using only one value for both constants (T1 = T2). However, it is ques-
tionable whether distinctive values for T1 and T2 can really be identified from clinical
data [29].
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4 Interval Models

There are essentially two ways to characterize interval models: one viewpoint is
to design the model such that all possible realizations of the uncertainties will be
considered and the true system output will be within the computed model output all
the time, minimizing at the same time the conservativeness. The other viewpoint is to
allow a certain amount or points to lie outside of the computed interval and thereby
obtaining amuch smaller interval [35]. The first approach is treated in another chapter
of this book (see “Physiology-Based Interval Models: A Framework for Glucose
Prediction Under Intra-Patient Variability” by J. Bondia and J. Vehi) while we focus
on the latter here.

We will choose the model structure 1 from Table1

BG(s) = K1

(1 + sT1)2s
Carb(s) + K2

(1 + sT2)2s
I (s) (1)

because it contains only four parameters to be estimated and does not lead to a
discontinuity in the impulse response. The generalized description of this model
(assuming only one input for simplicity of notation) is a continuous time process
model of the form

G(s) = B(s)

A(s)
= b0 + b1s + · · · + bmsm

a0 + a1s + · · · + sn
. (2)

Modeling a specific patient means to assign values to the variables ai , bi in (2). This
is an identification problem [34, 43] and can be tackled in twoways. By transforming
(2) into an equivalent discrete-time formulation, all the available tools of discrete-
time system identification can be applied. However, such a transformation might
introduce additional parameters and the initial (physiological) interpretation of the
continuous time parameters gets lost [20]. On the opposite, there are continuous time
identificationmethodswhich directly estimate the parameters in (2) without any need
for transformation [19]. The benefits of such a direct estimation in the context of the
human glucose insulin system have been treated in [10, 30]. In this contribution, we
will thus also focus on a direct continuous time estimation method.

4.1 Continuous Time System Identification

Beginning first without taking into account the uncertainty, estimates of the model
parameters can be found by minimizing a quadratic criterion of the form

J1(θ) = 1

N

N∑

k=1

ε2(k, θ) (3)

http://dx.doi.org/10.1007/978-3-319-25913-0_9
http://dx.doi.org/10.1007/978-3-319-25913-0_9
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where ε denotes the difference between measurement and model output,

ε(t, θ) = y(t) − ŷ(t, θ) (4)

N is the total number of available measurements and the vector θ contains all para-
meters. Various optimization techniques exist for actually minimizing the criterion
(3) (see e.g., [43]).

Now, considering uncertainty in the system to bemodeledwe assume two separate
datasets of the same system with different underlying dynamics. The cost function
which is minimized now is the sum of two similar terms as above, again taking into
account the deviation between model output and measurement. Additionally, we will
introduce a third term which penalize the standard deviation of the estimated model
parameters for the first dataset compared to the second dataset (5). For example, if
this third term is not present, themodel parameters for both datasets will be estimated
independently and might deviate to a great extent from each other. By introducing
and weighting (using the weighting matrix Π which has the tuning parameters in
the main diagonal) the third term, a compromise between a good model fit of the
individual datasets and compact parameter sets can be obtained.

J2(θ1, θ2) = 1

N

N∑

k=1

ε21(k, θ1) + 1

N

N∑

k=1

ε22(k, θ2) + 1

N
‖σ̄ (θ1, θ2)‖2Π (5)

The function σ̄ denotes a vector standard deviation operator which determines
component-wise the standard deviation of the model parameters of the parameter
vector θ .

Minimization can be done with a Gauss–Newton algorithm [43]. Thanks to the
definition of the cost and the model structure, gradient vector and Hessian matrix
can be determined analytically [30]. Nevertheless, the optimization is nonlinear and
iterative and thus care has to be taken to avoid improper starting values for the para-
meters. A generalization of the cost function to Nexp datasets and the corresponding
gradient vectors and the Hessian was derived in [30].

As a result of the continuous time system identification, there is one parameter
vector per experiment. The next step is to extract parameter intervals which then de-
fine the model output interval. Considering again the model structure 1 from Table1,
there are four model parameters which means the parameter vector has the form

θ = [K1, K2, T1, T2]� (6)

Denoting with superscripts the corresponding dataset number, at the end of the iden-
tification Nexp estimates K 1

1 , K
2
1 , . . . K

Nexp

1 are available and their maximum value
is Kmax

1 and minimum value Kmin
1 . The computation of the interval model output is

then
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Ŷmax(s) = Kmax
1

(1 + Tmin
1 s)2s

U (1)(s) + Kmax
2

(1 + Tmax
2 s)2s

U (2)(s) (7a)

Ŷmin(s) = Kmin
1

(1 + Tmax
1 s)2s

U (1)(s) + Kmin
2

(1 + Tmin
2 s)2s

U (2)(s) (7b)

Note that K2 describes the effect of insulin and is thus negative. In the following
subsection, we will present results when applying the interval model estimation to
short data segments representing the breakfast period. The starting point of the data
is breakfast time (around 8:00 in the morning) and data end points just before lunch
were taken (around 12:30).

4.2 Interval Model Results

Figure8 shows a typical result obtained with the methodology described above for
three independent measurement sets of a single patient. The black stars are the mea-
sured glucose levels using aYellowSpring InstrumentYSI 2300STATPlus™Glucose
Analyzer (YSI) device.Whenmodeling each dataset independently (individual mod-
els), the green curves apply which show of course the best performance. Depending
on the choice of the tuning matrix Π , the identified parameters then depend stronger
or less strong on each other and an output interval according to (7) can be computed,
see the red dashed lines in Fig. 8. Finally, also the mean interval model response is
shown, which is computed when using as parameter the average values of all the
estimated parameters of the interval model.

Remark 1 Again note the dependency of the results on the tuning matrix Π . When
choosing Π = 0 a zero matrix, the corresponding term in the cost function (5) will
disappear and the result is an independent estimation of the parameters for each
experiment. This also results in the largest possible output interval. In the other
extreme, choosing very large values in Π results in very small standard deviations
of the model parameters, making them equivalent. This also results in an output
interval which degenerates to a single line and is the same result as for a standard
multiexperiment identification setup [34].

For an in-depth analysis of the method, it was applied to 10 simulated and 10
clinical datasets. The simulated data was obtained from a time-varying metabolic
simulation model [28]. In the following, we will use the term individual model for
a model estimated on a single dataset (experiment), the term interval model for a
model according to (7), and the term mean interval model when a simulation with
the mean value of the interval model parameters is done.
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Fig. 8 Output response of the interval model compared to measurements for three datasets

4.2.1 Performance Metrics

Results will be evaluated based on a fit value (8) and on the error in detecting the
peak BG. This is visualized in Fig. 9: ΔBG is the difference between the measured
and predicted peak BG and ΔT is the difference in time. Both quantities can be
positive or negative, where positive means the measured BG peak is higher and later
in time than the simulated. The motivation of using those metrics is their importance
in diabetes treatment.

fit = 100

(
1 −

∥∥ŷ − y
∥∥2
2

‖y − ȳ‖22

)
(8)

4.2.2 Results Using the Simulated Data

First, we will present results from a single simulated patient before presenting sta-
tistics of all 10 considered patients. The parameter values and performance metrics
reported in Table2 are from simulated patient number 2. For the interval model, Π
(5) was tuned in such a way, that the fit value of the interval model is not significantly
less than 90% of the fit of the individual model, and that the ratio between mean
value and standard deviation (1/CV ) of each of the four parameters is at least five.
In this way, it is ensured that the interval predictions are reasonably tight.
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Fig. 9 Performance metrics
(ΔBG, ΔT ) for evaluation
of the results. Blue stars
indicate BG measurements,
interpolated with
second-order polynomial.
Black dashed are the
min/max responses of the
interval model (color figure
online)
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For the presented results in Table2 and Fig. 10, the elements in the main diagonal
of Π are [15000, 125, 20, 0.3] result in 1/CV = [5.02,−5.90, 5.94, 6.62]. The pa-
rameter estimation was done on the first 3 days (up to t = 72h). For the individual
models, the validation is based onmean parameters of the first 3 days. For the interval
models, the performance metrics were calculated based on the exact estimations for
days 1–3 and validation was done with the mean interval model.

From Table2, we see that there is a rather small ratio between mean value and
standard deviation of the estimated parameters (especially for K2)—which would
mean that the insulin effect is very different—when the experiments are identified
independently of each other. This ratio is greatly increased when applying the pro-
posed interval model estimation, without decreasing the performance (on the three
training days). Considering validation, the interval model shows better performance
compared to the individual model. Note also that in this particular case, the individu-
ally estimated model for day 3 is not useful, because K2 < 0, i.e., an insulin injection
would result in a glucose increase.

The results for all 10 patients are summarized in Table3 where the mean values
of the performance metrics over all 5days are shown. The interval model shows
the highest fit values in every case, and the average error (for all 10 patients) of
correct estimation of the BG peak is only 3.79mg/dl compared to 10.80mg/dl of the
individual models. Note that this rather high error is to a large extent caused by the
specific glucose responses to meals by the simulator for some patients, where the
response does not have a single maximal value. In those cases there are two almost
equivalent high peaks, but separated in time. Such a shape cannot be reproduced with
the chosen model structure (1), and the approximation typically lies in the middle of
the two peaks. It is of interest to note that from the 30 individual models, there were
8 that showed to be incorrect from a physiological point of view (K1 < 0 and/or
K2 > 0). Considering the interval model, only for patient #6 no physiologically
correct models could be found, as this patient’s glucose dynamics have a high time
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Fig. 10 Simulated patient #2: simulated glucose profile (black solid) individual model outputs for
the breakfasts (green solid) and worst-case interval model outputs for breakfasts (red dashed). The
first 3days (up to t = 72 h) were used for estimation of the models, the remaining 2days show
validation results. Bottom panel shows the scaled impulse carbohydrate (black solid) and insulin
(red solid) inputs

Table 3 Statistics for all 10 virtual patients, mean values of the performance metrics

Individual model Interval model

Pat Fit ΔBG ΔT Fit ΔBG ΔT

P1 46.08 5.08 108.00 61.82 5.68 23.40

P2 55.16 5.33 100.00 58.56 3.44 93.20

P3 86.68 2.72 2.40 87.05 2.73 2.20

P4 32.15 16.36 76.00 74.01 4.64 49.60

P5 −8.26 33.73 18.80 89.69 2.67 18.20

P6 63.35 6.63 71.40 67.32 6.74 78.80

P7 65.20 6.76 8.00 71.41 3.68 6.00

P8 65.32 3.83 69.00 67.57 3.22 57.80

P9 70.78 3.08 6.40 71.57 2.48 5.40

P10 15.04 24.48 35.40 82.74 2.62 4.20

Avg. 49.15 10.80 49.54 73.18 3.79 33.88
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constant, and BG is only rising in the observational period. To correct this, a longer
simulation time would be necessary.

4.2.3 Results Using the Clinical Data

The data used here was collected in [14]. Similar to the previous section, let us
first analyze the estimated parameters for a specific patient in Table4. The ratio
between mean value and standard deviation was again greatly increased while the
mean performance decrease is only moderate.

A graphical representation of the results obtained for this patient (#0107) is given
in Fig. 11. In contrast to the previously simulated cases, there is a considerable dif-
ference between CGM and YSI measurements, available only at (infrequent) time
intervals. The sampling rate is however small enough such that interpolation with
second-order polynomials does not result in excessive overshoots. The figure does
not only show that individual and interval model are well suited to represent dy-
namics of T1DM patients, but also that the estimated parameter intervals are small
enough such that min/max simulations (7) result in reasonably small BG prediction
intervals. A detailed view of the three breakfast periods is given in Fig. 8 for patient
#0115.

Table5 complements Table3 and demonstrates the usefulness of the proposed
methodology for real measurements on a group of 28 patients (only 10 are listed for

Table 4 Estimated parameters and performance metrics for simulated patient #0107

Meal #1 Meal #2 Meal #3 Mean Mean/Std.

Individual model

Fit 91.59 93.51 91.39 92.16 78.85

ΔBG −5.75 4.04 −2.19 3.99 2.24

ΔT 5.00 4.00 −1.00 3.33 1.60

K1 5.18(±0.16) 4.34(±0.04) 5.68(±0.12) 5.07 7.50

K2 −65.64(±1.86) −49.01(±0.51) −76.76(±0.76) −63.80 −4.57

T1 20.15(±0.38) 18.14(±0.20) 20.67(±0.29) 19.65 14.70

T2 67.71(±3.63) 72.41(±1.68) 56.00(±1.74) 65.37 7.73

Interval model

Fit 91.27 89.52 86.11 88.97 33.89

ΔBG −6.87 7.76 −10.77 8.47 4.14

ΔT 5.00 6.00 −8.00 6.33 4.15

K1 4.94 4.69 4.55 4.72 24.03

K2 −61.59 −55.36 −66.39 −61.11 −11.05

T1 19.44 20.12 17.15 18.90 12.16

T2 71.32 73.74 67.86 70.97 24.01
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Fig. 11 Patient #0107: YSI measurements (stars), interpolated with second-order polynomial,
CGM readings (black dashed), individual model outputs for the breakfasts (green solid), and worst-
case interval model outputs for breakfasts (red dashed). All 3days were used for estimation of the
models. Bottom panel shows the scaled impulse carbohydrate (black solid) and insulin (red solid)
inputs

Table 5 Statistics for clinical data, mean values of the performance metrics

Individual model Interval model

Pat Fit ΔBG ΔT Fit ΔBG ΔT

P0102 84.84 5.70 12.33 83.07 7.83 11.00

P0103 71.35 1.13 18.00 56.99 5.34 20.00

P0104 82.10 4.55 11.33 75.51 11.92 16.00

P0106 81.81 7.93 6.00 70.56 12.93 5.67

P0107 92.16 3.99 3.33 88.97 8.47 6.33

P0108 66.21 9.49 5.67 55.82 15.89 6.67

P0109 90.67 3.82 6.67 84.52 11.57 10.67

P0110 58.81 8.36 21.67 49.63 12.79 45.67

P0111 71.14 10.10 19.00 64.53 10.86 13.00

P0112 68.27 7.58 33.67 58.43 15.17 45.33

Avg.∗ 77.62 5.78 17.76 68.21 10.91 20.64
∗average values calculated based on 26 patients.

the sake of brevity). Out of this group, only for 2 patients no suitable, i.e., sufficiently
small parameter intervals could be found because the variability was too high.

Remark 2 The estimation of the model parameters was done based on YSI mea-
surements, which are probably not available in practice. It should be noted that the
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proposedmodel identification procedure is independent of the source of themeasure-
ments, the YSI data can be replaced with data from glucose meters which are usually
calibrated to show plasma equivalent values. As pointed out in the literature, e.g.,
in [7], the difference between those two measures can be up to 11%, with plasma
being higher than whole blood values, which directly effects the models. Similarly,
a model estimated with YSI data could be used afterwards with a BG meter which
introduces an uncertainty in the offset, directly related to the accuracy of the glucose
meter.

Remark 3 The proposed model structure approximates BG dynamics based on car-
bohydrate and insulin inputs. There are several other factors which have an impact,
e.g., physical activity, stress, and variation in nutrients in different meals. Activity
did not play an important role in the analyzed data, because patients were hospital-
ized and stress could not be assessed with the available measurements. Complete
information of nutrients (carbohydrates, proteins, and lipids) was available, but not
utilized. Extended versions of the model structure making use of those data were
tested (results not shown), but did not result in improvements. Changing meal com-
positions cause variations in the individual BG responses and are therefore indirectly
captured by the interval model, resulting in enlarged intervals.

5 A Probabilistic Approach

Classical methods use various mathematical techniques to predict a single value in
the future (e.g., the expected value in 30min.). Contrary to that, in the preceding
section, interval models were proposed which estimate a predicted range of the
future BG. Probabilistic models, the topic of this section, go one step further and are
solely concerned with the probability that the future BG will be inside a given region
defined on the basis of physiological criteria. This corresponds more to the interest
of the clinician, who aims to keep BG in a good range and not to some specific value.
This allows also redefining the control task in terms of minimizing a given transition
probability.

To estimate the mentioned probabilities for certain BG regions, we propose
Gaussian models, in particular Gaussian mixture models (GMM), which are com-
monly used for modeling of biometric and biological systems with continuous mea-
surements (see for example [15, 16] for an in-depth discussion). According to [39],
a GMM is defined as a parametric probability density function represented as a
weighted sum of Gaussian component densities.
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5.1 Gaussian and Generalized Gaussian Mixture Models

Let us assume that a given (biological) system has n measured inputs. If we assume
that each input is continuously measured with a sampling frequency f , a data vector
recorded over given time t will have a total ofm = f · t samples.Combined together,
the individual measurement vectors of the system variables will form a measurement
matrix x of dimensions n × m. A Gaussian Mixture Model of the system is given as

p(x |λ) =
n∑

i=1

wi · q (x |μi ,Σi ) (9)

wherewi , i = 1, . . . n are the mixture weights and the component Gaussian densities
are determined as

q (x |μi ,Σi ) = 1

(2 · π)m/2 |Σi |1/2
· e− 1

2 ·(x−μi )
′ ·Σi

−1·(x−μi ) (10)

with mean vector μi and covariance matrix Σi , i = 1, . . . n. The mixture weights
satisfy the constraint that

n∑

i=1

wi = 1 (11)

The complete GMM is represented by the mean vectors, covariance matrices, and
mixture weight from all variable densities:

λ = {wi , μi ,Σi }, i = 1, . . . , n (12)

There are several well-established algorithms for estimation of the parameters
of GMM from measurement data. Two of them, namely the iterative expectation-
maximization (EM) algorithm and the maximum a-posteriori (MAP) from a well-
trained priormodel aremost frequently used.More details about these two algorithms
can be found, for example, in [39] or [40].

However, the statistical analysis of the BG data used in this study showed that, in
the general case, they cannot be represented by the Gaussian distribution. In princi-
ple, this problem can be solved by the approximation of a non-Gaussian distribution.
The near-normal distributions, i.e., the distributions which moderately deviate from
the Gaussian distribution, can be approximated using disjunction into Gaussian com-
ponents. The details about this well-known approach can be found, for example, in
[27]. Now, modeling of the data with non-Gaussian distributions would be possible
using its Gaussian components. Thismethod is known as the independent component
analysis (ICA). The fundamental restriction in ICA is that the independent compo-
nents must be non-Gaussian for ICA to be possible [27]. Under the assumption that
the data is distributed according to multivariate Gaussian distribution, i.e., where the
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components are also distributed according to Gaussian distribution, the ICA method
is equivalent to the principal component analysis (PCA). The generalized mixture
model using ICA is discussed in [32]. This model is an extension of the GMMwhere
the model components have non-Gaussian distributions. The deviation of Gaussian
distribution is modeled using the generalized Gaussian density. It is assumed that
function p(x |μ) is a differentiable function μ, so that the log-likelihood is given as:

L =
n∑

i=1

log p(x |μi ) (13)

Thus, the class probabilities for the data matrix x are given as

q (λk |xn,Σ) = p (xn|Σk, λk) · p(λk)∑
k p (xn|Σk, λk) · p(λk)

(14)

The detailed discussion about the GMM using ICA, especially about generation
of model parameters, can be found, e.g., in [31] or [32]. The cited references also
give examples of applications of these models.

5.2 Modeling Method and Model Structure

The main goal of this study was to generate probabilistic mixture models of the
blood glucose levels and to use the generated models for short-term predictions,
up to 30min in advance. Those predictions are being calculated on the basis of the
current and previous values of BG.

As alreadymentioned, themodelswere not designed to predict the exact futureBG
concentrations in patients. Instead, they predict in which of five predefined regions
(which could be easily changed and adapted) the BG would most probably lie after
the prediction interval:

<70 [mg/dl] (hypoglycemia)
70–120 [mg/dl] (normglycemia)
120–180 [mg/dl] (elevated normglycemia)
180–300 [mg/dl] (hyperglycemia)
>300 [mg/dl] (acute hyperglycemia)

Data from various patients are, in general case, not normally distributed. Under such
circumstances, the blood glucose levels of such patients must be modeled using
generalized GMM, as previously discussed in Sect. 5.1.

Several sources have already reported about periodic properties of the BG con-
centration in the human body. A reader can find in-depth analyses, e.g., in [41] or
[22]. Starting from the assumption that the BG exhibits periodic properties, the fast
Fourier transformation (FFT) analysis has been conducted in order to determine the
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dominant periodic components in the measured data. Figure12 shows the magnitude
spectrum of one representative patient (Patient #6 from clinical study [18]). The re-
sults are obtained by analyzing a 7-days blood glucose time series. Figure12 shows
the frequencies of the recurring patterns and the estimation of the importance of each
cycle in the glucose time series. As it can be seen in the figure, a 12-h pattern repe-
tition appears to be the most significant. Besides the 12-h pattern, the 24-h pattern
has also been identified as important due to the circadian nature of glucose control
[6]. The confirmation of these results can also be found in the extensive study of
frequency characterization of blood glucose dynamics [22].

Thus, based on the previous considerations, amodel structure shown in Fig. 13 has
been selected. It includes the previous levels of blood glucose as inputs, specifically
the onesmeasured 24h before (BGt−24h), 12h before (BGt−12h) and the last available
measurement (BGt−1). Themodel structure also includes the intake of insulin (I) and
carbohydrates (C). It is important to note that, differently from the continuous 24-
h blood glucose level measurements, the intake of insulin and carbohydrates were
discrete events typically occurring 3–6 times a day during the clinical stay of the
patients. It is also important to mention that the carbohydrate values used are not
measured but estimated on the basis of the actual content of patients meals.
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Fig. 14 10-min prediction of the BG concentration levels (Patient #6) (color figure online)

5.3 Modeling Results

The data used here were collected in the clinical trial [18] conducted at the Institute
for Diabetes-Technology GmbH in Ulm, Germany between October and December
2011. In this study, a total of 12 patientswith type-1 diabetes spent 7 days hospitalized
and were equipped with six CGM sensors in parallel. For the purpose of the present
study, the data from one of the sensors (aDexCom™Seven® Plus sensor byDexCom,
San Diego, CA) was used which provides continuous information on subcutaneous
glucose for 7 days with a sampling time of 5min. Additionally, we used recorded
information about meal intakes and bolus insulin injections.

The measurement data from clinical patients used in this study were divided into
two parts. The larger part of the data which corresponded to the first 6 clinical days,
was used to train the GMM. The smaller part of the data corresponded to the final
(seventh) clinical day and was used for prediction and testing of the trained models.
The models were used first to predict the blood glucose levels during the seventh
clinical day and then to compare the prediction with the actual measurements in
order to assess the correctness of the model.

Figure14 shows the results of prediction of the BG levels (concentrations) for a
clinical patient (designated for the purpose of this study asPatient #6), in particular the
predictions of thefinal clinical day (24h). Themeasured bloodglucose levels from the
previous 6 clinical days are used to generate the predictionmodel. Themeasurements
and predictions in Fig. 14 are shown in 10min equidistance (or time slices). To
prevent possible misunderstanding, it is important to underline that, although the
results are shown in 10min time slices, the figures show future trends 10min from
the observation point at any particular time.

Figure14 is divided into two parts. The upper part shows the actual (measured)
blood glucose levels (showed using black dots) and the predicted blood glucose inter-
vals (showed as vertical green lines limited at their ends by dots). The lower portion
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of figures indicates if the prediction above was correct or incorrect. A particular pre-
diction was considered as a correct one, in a strict sense, if the actual measurement
fell within its limits.

However, some of the predictions which are classified as incorrect can be found at
or very close to the limits of the prediction segments and they are actually predicting
the general trend of the blood glucose signal well. Examples of that can be seen
in Fig. 14 (e.g., samples #70 or #132). Therefore, some of those slightly incorrect
predictions can be considered to be borderline cases. This was one of the reasons
to define an evaluation algorithm which could cope with different kinds of border-
line behavior of the BG models. The evaluation algorithm, therefore, includes the
following rules:

• Segment overlapping: each two neighboring segments are overlapped for 5
[mg/dl]; therefore, at some prediction instances themodeling algorithm can extend
the width of the prediction segments.

• Persistence principle: in order to eliminate the prediction outliers, all single pre-
diction segments which are in opposition to their neighboring prediction segments
(from left and right) are changed to correspond to their neighboring predictions;
this rule is not applied in cases when there is a persistent transition from one to
another prediction segment.

The results shown in Fig. 14 are obtained by the application of so defined evaluation
algorithm. The model has 96.53% correct prediction rate, having only 3.47% incor-
rect predictions during the final 24-h period.
The evaluation algorithm was able to deliver usable predictions of blood glucose
trends up to 30min in the future. The future predictions are generated stepwise,
in 10-min steps, where the second (20-min prediction) and the third step (30-min
prediction) are using the predictions from their preceding steps in calculations. The
20-min predictions are, therefore, calculated on the basis of the preceding 10-min.
predictions, and the 30-min predictions are calculated on the basis of the preceding
20-min predictions. As a consequence, the evaluation algorithm was able to make
corrections of the results with 10min delay.
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Fig. 15 10-min prediction of the BG concentration (Patient #4)
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Fig. 16 20-min prediction of the BG concentration (Patient #4)

Figures15, 16 and 17 show blood glucose prediction results for a clinical patient
(Patient #4). The figures show the 10-, 20-, and 30-min predictions of the final
(seventh) clinical day of Patient #4. Similarly as in the case of Patient #6, themeasured
blood glucose levels from the previous six clinical days are used to generate the
prediction model. The model performance for the tests shown in Figs. 15, 16 and 17
are summarized in Table6.

For the purpose of comparison, the blood glucose levels of the same patient
(Patient #4) are modeled using linear second-order autoregressive models (AR) for
the same prediction horizons (10-, 20-, and 30-min). The linear AR models used the
same data as the GMMmodels. However, due to the fundamental difference between
these twomodel types (the linearARmodels predict single values,while the proposed
prediction method using GMMmodels predicts intervals with certain probabilities),
in order to make the comparison possible, the single value predictions of the linear
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Fig. 17 30-min prediction of the BG concentration (Patient #4)

Table 6 Correct and incorrect prediction rates for 10-, 20-, and 30-min predictions of the BG
concentrations for Patient #4 (GMM and linear AR model)

Patient #4 GMM model Linear AR model

Correct% Incorr.% Correct% Incorr.%

10-min prediction 93.06 6.94 96.56 3.45

20-min prediction 88.19 11.81 84.83 15.17

30-min prediction 76.39 23.61 67.59 32.41

AR models are used to predict the blood glucose intervals. Figure18 shows both the
single value predictions as well as the corresponding interval predictions of blood
glucose level; themodel performance for the tests shown inFig. 18 is also summarized
in Table6.

In general, based on the results summarized in Table6, it can be concluded that
the GMM models deliver mostly correct predictions. The correct prediction rate for
the 20- and 30-min predictions is expectedly lower than for the 10-min prediction
because, as explained earlier, the 20- and 30-min predictions use the outputs from
their preceding predictions which are already uncertain to the some extent.
The comparisonof theGMMmodelswith the linearARmodels showed that the linear
ARmodels exhibit slightly better 10-min predictions, while theGMMmodels exhibit
superior results for 20- and especially 30-min predictions. However, the performance
of the linear AR models in predicting intervals should be taken with caution. The
linear AR models predict single values of blood glucose concentration. Thus, a
probability could not be assigned to the BG intervals detected using those single
values predictions of the linear AR models, making them not entirely comparable
to the GMM models. Instead, if a fit value is used to assess the performance of the
linear AR models, they showed much worse results: 84.76%, 68.82%, and 54.01%
fit for 10-, 20-, and 30-min predictions, respectively. Thus it can be concluded that
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Fig. 18 10-, 20- and 30-min prediction of the BG concentration using linear second-order AR
models (Patient #4)

the proposed method using GMM models showed superior performance especially
as the prediction window increased. It is important to stress that in no case a wrong
prediction of the proposedmethod using GMMmodels could have led to a dangerous
patient decision (as in the case of a hyperglycemia predicted when the patient was
in fact in hypoglycemia).

6 Conclusion and Outlook

The increasing availability of new sensors, smart insulin pumps, and more in general
of computing power opens new chances for personalized diabetes care, in particular
for closed-loop control, as in the artificial pancreas. First results in this direction are
promising.

Nevertheless, variability, in particular intrapatient variability, remains a challenge.
It also means that some methods may work well for some patient in most cases, but
not for all patients and all cases. Of course, having a perfect model which can predict
the future BG value with a high precision would be the best. Clinical experience,
however, shows that some conditions, like anger, can affect enormously the BG
development without being predictable.
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This chapter intended to show that it might be wiser to accept this limitation from
the very beginning and to look for “range” models, either in the form of moving or
of prefixed ranges. While they will almost never provide an exact prediction of the
next BG values, their error can be limited in such a way to be clinically easier to
cope with than classical models.

Of course, the validity of the proposed approach needs testing in a clinical study
and there is still much work to be done to tailor the methods to the specific problem.
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